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Chapter 1

Introduction

The central topic of this work is how to describe the structures of probabilistic conditional
independence in a way that the corresponding mathematical model has both relevant
interpretation and offers the possibility of computer implementation.

It is a mathematical work which, however, found its motivation in artificial intelligence
and statistics. In fact, these two fields are the main areas where the concept of conditional
independence was successfully applied. More specifically, graphical models of conditional
independence structure are widely used in

e analysis of contingency tables which is an area of discrete statistics dealing with
categorical data,

e multivariate analysis which is a branch of statistics investigating mutual relation-
ships among continuous real-valued variables,

e probabilistic reasoning which is an area of artificial intelligence where decision-
making under uncertainty is done on basis of probabilistic models.

Moreover, (non-probabilistic) concept of conditional independence was introduced and
studied in several other calculi for dealing with knowledge and uncertainty in artificial in-
telligence (e.g. relational databases, possibility theory, Spohn’s kappa-calculus, Dempster-
Shafer’s theory of evidence). Thus, the presented work has multidisciplinary flavour. Nev-
ertheless, it certainly falls within the scope of informatics or theoretical cybernetics, and
the main emphasis is put on mathematical groundings.

The work uses concepts from several branches of mathematics, in particular measure
theory, discrete mathematics, information theory and algebra. Occasional links to further
areas of mathematics occur throughout the work, e.g. to probability theory, mathematical
statistics, topology and mathematical logic.

1.1 Motivation account

The reader is asked to excuse the following 'methodological’ consideration which perhaps
explains my motivation. In the sequel I formulate six general questions of interest which
may arise in connection with every particular method of description of conditional inde-
pendence structures. I think that these questions should be answered in order to judge
fairly and carefully the quality and suitability of every particular considered method.
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Figure 1.1: Theoretical groundings (informal illustration).

To be more specific one can assume a general situation illustrated by Figure 1.1.
One would like to describe conditional independence structures (shortly CI structures)
induced by probability distributions from a given fixed class of distributions over a set
of variables N. For example, one can consider the class of discrete measures over N (see
p. 13), the class of non-degenerate Gaussian measures over N (see p. 28), the class of
CG measures over N (see p. 54) or any specific parametrized class of distributions. In
probabilistic reasoning every particular discrete probability measure over N represents
‘global” knowledge about a (random) system involving variables of N. That means, it
serves as a knowledge representative. Thus, one can take even a more general point
of view and consider a general class of knowledge representatives within an (alternative)
uncertainty calculus of artificial intelligence instead of the class of probability distributions
(e.g. a class of possibilistic distributions over N, a class of relational databases over N
etc.).

Every knowledge representative of this kind induces a formal independence model over
N (for definition see Section 2.2.1 on p. 14). Thus, the class of induced conditional inde-
pendence models is defined, or in other words, the class of CI structures to be described
is specified (the shaded respectively coloured area in Figure 1.1). Well, one has in mind
a method of description of CI structures in which objects of discrete mathematics, for
example graphs, finite lattices or discrete functions, are used to describe CI structures.
Typical examples are classic graphical models widely used in multivariate statistics and
probabilistic reasoning (for details see Chapter 3). It is supposed that every object of this
type induces a formal independence model over N. Intended interpretation is that the
object then ’describes’ the induced independence model so that it can possibly describe
a conditional independence model, that is one of the CI structures to be described.

The definition of the induced model depends on the type of considered objects. Ev-
ery class of objects has its specific criterion according to which a formal independence
model is ascribed to a particular object. For example, various separation criteria for clas-
sic graphical models were obtained as a result of development of miscellaneous Markov
properties (see Remark 3.1 in Section 3.1). Evolution ended by the concept of 'global



Markov condition’ which establishes a graphical criterion how to determine the maximal
set of conditional independence statements represented in a given graph. This set is the
induced formal independence model then. The above mentioned implicit assumption is
a basic requirement of consistency, that is the requirement that every object in the con-
sidered class of objects has undoubtedly ascribed a certain formal independence model.
Note that some recently developed graphical approaches (see Section 3.5.3) still need to
be developed up till the concept of global Markov condition so that they will comply with
the basic requirement of consistency.

Under situation above I can formulate first three questions of interest which, in my
opinion, are the most important theoretical questions in this general context.

e [Fuaithfulness is the question whether every considered object indeed describes one
of the CI structures to be described.

e Completeness is the question whether every CI structure to be described is described
by one of the considered objects. In case this is not the case an advanced subtask
occurs, namely to characterize conveniently those formal independence models which
can be described by the considered objects.

e Fquivalence question involves the taks to characterize in a suitable way equivalent
objects, that is objects describing the same CI structure. An advanced subquestion
is whether one can find a suitable representative for every class of equivalent objects.

The phrase "faithfulness’ was inspired by terminology of [94] where it has similar meaning
for graphical objects. Of course, the above notions depend on the considered class of
knowledge representatives so that one can differentiate between faithfulness in discrete
framework (= relative to the class of discrete measures) and faithfulness in Gaussian
framework. Note that in case of classic graphical models faithfulness is usually ensured
while completeness is not (see Section 3.6). To avoid misunderstanding let me explain that
some authors in the area of (classic) graphical model, including myself, have also used a
traditional term “(strong) completeness of a separation graphical criterion” [31, 69, 112,
54]. However, according to the classification above, results of this type belong to the
results gathered under label 'faithfulness’ (customary reasons of traditional terminology
are explained in Remark 3.2 on p. 38). Thus, I distinguish between ’completeness of a
criterion’ on one hand and 'completeness of a class of objects’ (for description of a class
of CI structures) one the other hand. Let me remark that not all relevent theoretical
questions can be included in the above classification, e.g. the ’inclusion problem’ (see p.
129) which can perhaps be regarded as a specific extension of the equivalence question
motivated by additional practical questions.

Let me formulate three remaining questions of interest which, in my opinion, are the
most important practical questions in this context (for an informal illustrative picture see
Figure 1.2).

o Interpretability is the question whether considered objects of discrete mathematics
can be conveyed to humans in an acceptable way. That usually means whether they
can be visualized in a way that they are understood easily and interpreted correctly
as CI structures.
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Figure 1.2: Practical questions (informal illustration).

e Learning or ’identification’ is the question how to determine the most suitable CI
structure either on basis of statistical data (= estimation problem) or on basis of
expert knowledge provided by human experts. An advanced statistical subtask is
to determine even a particular probability distribution inducing the CI structure.

e Implementation is the question how to manage the corresponding computational
tasks. An advanced subquestion is whether acceptance of a particular CI structure
allows one to do respective subsequent calculation with probability distributions
effectively, namely whether the describing objects clue in calculation.

Classic graphical models are easily acceptable by humans but their pictorial representation
may sometimes lead to another interpretation. For example, acyclic directed graphs
can be either interpreted as CI structures or one can prefer ’causal’ or 'deterministic’
interpretation of their edges [94] which is different. Concerning computational aspects
almost ideal framework is provided by the class of decomposable models which is a special
class of graphical models (see Section 3.4.1). This is a basis of well-known method of "local
computation’ [49] which is behind several working probabilistic expert systems [17, 35].
Of course, the presented questions are connected each other. For example, structure
learning from experts certainly depends on interpretation while (advanced) distribution
learning is closely related to the 'parametrization problem’ (see p. 147) which has a strong
computational aspect.

The goal of this motivation account is the idea that the practical questions are also
strongly connected with theoretical groundings. Thus, in my opinion, before inspection
of practical questions one should first solve the related theoretical questions thoroughly.
Regretably, some researches in artificial intelligence (marginally in statistics) do not pay



enough attention to theoretical groundings and concentrate mainly on practical issues like
simplicity of accepted models either from the point of view of computation or visualization.
They usually settle in a certain class of 'nice’ graphical models (e.g. Bayesian networks
- see p. 39) and do not realize that their later technical problems are caused by this
limitation.

Even worse, limitation to a small class of models may lead to serious methodological
errors! Let me give an example which is my main source of motivation. Consider a
hypothetical situation when one is trying to learn CI structure induced by a discrete
distribution on basis of statistical data. Suppose, moreover, that one is limited to a
certain class of classic graphical models, say Bayesian networks. It is known that this
class is not complete in discrete framework (see Chapter 3). Therefore one searches for
‘the best approximation’. Well, some of the learning algorithms for graphical models
browse thorough the class of possible graphs as follows. One starts with a graph with
maximal number of edges, performs certain statistical tests for conditional independence
statements and represents the acceptance of these statements by removal of certain edges
in the graph. Well, this is a correct procedure in case that the underlying probability
distribution indeed induces a CI structure which can be described by a graph within the
considered class of graphs. However, in general, this edge removal represents acceptance
of a new graphical model together with all other conditional independence statements
which are represented in the 'new’ graph but which may not be valid with respect to the
underlying distribution. Let me emphasize once more that this erroneous acceptance of
further conditional independence statements is made on basis of a 'correctly recognized’
conditional independence statement!

Thus, this error is indeed forced by the limitation to a certain class of graphical
models which is not complete. Note that an attitude like this was already criticized
several times (see e.g. [125]). In my opinion, these repeated problems in solving practical
question of learning are inevitable consequences of omission of theoretical groundings,
namely the question of completeness. This maybe motivated several recent attempts to
introduce wider and wider classes of graphs which, however, loose easy interpretation and
do not achieve completeness. Therefore, in this work, I propose a non-graphical method
of description of probabilistic CI structures which primarily solves the completeness and
has a potential to take care of practical questions.

1.2 Goals of the work

The aim of the present work is threefold. The first goal is to make an overview of clas-
sic methods of description of (probabilistic) CI structures. These methods use mainly
graphs whose nodes correspond to variables as a basic tool for visualization and inter-
pretation. The overview involves basic results about conditional independence including
those published in my earlier papers.

The second goal is to present a mathematical basis of an alternative method of descrip-
tion of probabilistic CI structures. My alternative method removes certain basic defects
of classic methods.

The third goal is an outline of those directions in which the presented method needs
to be developed in order to satisfy the requirements of practical applicability. It involves
the list of open problems and promising directions of research.

10



The work is perhaps longer and more detailed than it could be. The reason is that
not only experts in the fields and mathematicians are expected audience. My intention
was to write a report which can be read and understood by PhD students in computer
science and statistics. This was the main stimulus which made me to solve the dilemma
‘understandability’ versus ’conciseness’ in favour of preciseness and understandability.

1.3 Structure of the work

Chapter 2 is an overview of basic definitions, tools and results concerning the concept of
conditional independence. These notions, including the notion of imset which is a certain
integer-valued discrete function, are supposed to be a theoretical basis of the rest of the
work.

Chapter 3 is an overview of graphical methods for description of CI structures. Both
classic approaches (undirected graphs, acyclic directed graphs and chain graphs) and
recent attempts are included. The chapter makes for a conclusion that a non-graphical
method achieving completeness (see Section 1.1, p. 8) is needed.

Chapter 4 introduces a method of this type. The method uses certain imsets, called
structural imsets, to describe probabilistic CI structures. It is shown that three possible
ways of associating probability distributions and structural imsets are equivalent.

Chapter 5 compares two different (but equivalent) ways of description CI structures by
means of imsets. It is shown that every probabilistic CI structure can be described using
this approach and a duality relation between these two ways of description is established.

Chapter 6 is devoted to an advanced question of Markov equivalence (see Section 1.1,
p. 8) within the framework of structural imsets. Certain characterization of equivalent
imsets is given and related implementation tasks are discussed.

Chapter 7 deals with the problem of choice of a suitable representative of a class
of equivalent structural imsets. Possible approaches to this problem are proposed and
roughly compared.

Chapter 8 is an overview of open problems to be studied in order to tackle practical
question (see Section 1.1 p. 8-9). Chapter 9 (Conclusions) summarizes the presented
method.

The Appendix (Chapter 10) is an overview of concepts and facts which are supposed
to be elementary and can be omitted by an advanced reader. They are added for several
minor reasons: to clarify and unify terminology, to broaden circulation readership and
to make reading comfortable as well. It can be used with help of the Index. References
conclude the work.

11



Chapter 2

Basic concepts

Throughout the work the symbol N will denote a non-empty finite set of variables. In-
tended interpretation is that the variables correspond to primitive factors described by
random variables. In Chapter 3 variables will be represented by nodes of graphs. The
sett N will also serve as the basic set for non-graphical tools of discrete mathematics
introduced in this work (semi-graphoids, imsets etc.).

The following convention will be used throughout the work: given A, B C N the
juxtaposition AB will denote their union A U B. Moreover, the following symbols will
be reserved for sets of numbers: R will denote real numbers, Q rational numbers, Z
integers, Z+ non-negative integers (including 0), N natural numbers (that is positive
integers without 0). The symbol |A| will be used to denote the number of elements of a
finite set A, that is its cardinality. Moreover, the symbol |z| will also denote the absolute
value of a real number x, that is |z| = max {z, —z}.

2.1 Conditional independence

Basic notion of this work is a probability measure over N. This phrase will be used to
describe the situation when a measurable space (X;, X;) is given for every i € N and a
probability measure P is defined on the Cartesian product ([,.y Xi, [[;cy &i)- In this
case I will use (X4, X4) as a shorthand for (J],. 4 X;, [[;c4 &i) for every § # A C N. The
marginal of P for ) # A C N, denoted by P*, is defined by the formula

PA(A) = P(A x Xy\a) for A€ X,.

Moreover, let us accept two conventions. First, the marginal of P for A = N is P itself,
that is PV = P. Second, fully formal convention is that the marginal of P for A = ()
is a probability measure on a (fixed appended) measurable space (Xp, Xp) with trivial
o-algebra Xy = {0, Xy}. Observe that a measurable space of this kind admits only one
probability measure P?.

To give the definition of conditional independence within this framework one needs
certain general understanding of the concept of conditional probability. Given a prob-
ability measure P over N and disjoint sets A,C' C N by conditional probability on X,
given C (more specifically given Xg) will be understood a function of two arguments
Pajc + X4 x Xe — [0,1] which ascribes a Xc-measurable function Pac(Al*) to every

12



A € X4 such that

PAC(A x C) = / Pac(Alz) dPC(x)  for every C € Xe.
C

Note that no restriction concerning the mappings A — Py (A|x), x € X (often called the
regularity requirement - see Section 10.5, Remark on p. 158) is needed within this general
approach. Let me emphasize that Py depends on the marginal PA¢ only and that it
is defined, for a fixed A € X4, uniquely within the equivalence P“-almost everywhere.
Observe that, owing to the convention above, in case C' = () the conditional probability
P4 ¢ coincides in fact with the marginal for A, that means one has P,y = P4 (because a
constant function can be identified with its value).

REMARK 2.1 The conventions above are in concordance with the following unifying per-
spective. Realize that for every ) 2 A C N the measurable space (X4, X4) is isomorphic
to the space (Xy, /'\_?A) where X4 C Xy is a certain o-algebra representing the set A so
that inclusion of sets is reflected, namely

Xy=f{AxXya; A€ Xy} ={BeXy; B=AxXyu for ACXs}.

It is natural to require then that the empty set () is represented by the trivial o-algebra
Xy over Xy and N is represented by Xy = Xy. Using this point of view, the marginal
P4 corresponds to the restriction of P to X4, and P4 ¢ corresponds to the concept of
conditional probability with respect to the o-algebra X. Thus, the existence and above
mentioned uniqueness of P4 ¢ follows from basic measure-theoretical facts, for details see
the Appendix, Section 10.5. A

Given a probability measure P over N and pairwise disjoint subsets A, B,C' C N
one says that A is conditionally independent of B given C' with respect to P and writes
A 1L B|C [P]if for every A € X4 and B € X

Papic(A x Blz) = Pac(Alz) - Pgc(Blz)  for P%ae. z € Xc. (2.1)

Observe that in case C' = () it collapses to a simple equality PA#(A x B) = P4(A)- PB(B),
that is to classic independence concept. Note that the validity of (2.1) does not depend
on the choice of versions of conditional probabilities given C' since these are determined
uniquely just within equivalence P®-almost everywhere.

REMARK 2.2 Let me specify the definition for the case of discrete measures over N, when
X; is a finite non-empty set and &; = P(X;) for every i € N. Then Py¢ is determined
uniquely exactly on the set {z € X¢o; P¢({z}) > 0} by means of the formula
PAC(A x {z})
Pe({z})
so that A Il B|C [P] is defined as follows:
PAB\C(A X B|!L‘) = PA\C(A|-T) . PB|C(B|QS)

for every A C X4, B C Xp and = € Xo with PY({z}) > 0. Of course, A and B can be
replaced by singletons in this case. Note that the fact that the equality P®-a.e. concides
with the equality on a certain fixed set is a speciality of discrete case. Other common
equivalent definitions of conditional independence will be mentioned in Section 2.3. A

Pac(Alr) = for every A C Xy,

13



However, the concept of conditional independence is not exclusively a probabilistic
concept. It was introduced in several non-probabilistic frameworks, namely in various
calculi for dealing with uncertainty in artificial intelligence - for details and overview see
(104, 20, 92]. Formal properties of respective conditional independence concepts may
differ in general, but an important fact is that certain basic properties of conditional
independence appear to be valid in all these frameworks.

2.2 Semi-graphoid properties

Several authors independently drew attention to these basic formal properties of condi-
tional independence. In modern statistics, they were first accentuated by Dawid [19],
then mentioned by Mouchart and Rolin [71], van Putten and van Shuppen [81]. Spohn
[96] interpreted them in the context of philosophical logic. Finally, their significance in
(probabilistic approach to) artificial intelligence was discerned and highlighted by Pearl
and Paz [77]. Their terminology [78] was later widely accepted, so that researchers in
artificial intelligence started to call them the semi-graphoid properties.

2.2.1 Formal independence models

Formally, a conditional independence statement over N is a statement of the form “A is
conditionally independent of B given C” where A, B,C C N are pairwise disjoint subsets
of N. A statement of this kind should be always understood with respect to a certain
mathematical object o over N, for example a probability measure over N. However,
several other objects can occur in place of o, for example a graph over N (see Chapter 3),
possibility distributions over N [14, 117], relational databases over N [88] or a structural
imset over N (see Section 4.4.1). The notation A 1l B |C [o] will be used then; but the
symbol [o] can be omitted when it is suitable.

Thus, every conditional independence statement corresponds to a disjoint triplet over
N, that is a triplet (A, B|C') of pairwise disjoint subsets of N. Here, the punctation
anticipates the intended role of component sets. The third component, put after the
straight line, is the conditioning set while two former components are independent areas,
usually interchangeable. Formal difference is that a triplet of this kind can be interpreted
either as the corresponding independence statement, or (alternatively) as its negation,
that is the corresponding dependence statement. Occasionally, T will use the symbol
ATTB|C [o] to denote the dependence statement which corresponds to (A4, B|C'). The
class of all disjoint triples over N will be denoted by 7 (N).

Having established the concept of conditional independence within a certain framework
of mathematical objects over IV, every object o of this kind defines a certain set of disjoint
triplets over N, namely

M, = {(A,B|C) e T(N); A1 B|C [o]}.

Let us call it the conditional independence model induced by o. This phrase is used to
indicate that the involved triplets are interpreted as independence statements although
from purely mathematical point of view it is nothing but a subset of 7 (N). Thus, the
conditional independence model induced by a probability measure P over N (according
to the definition from Section 2.1) is a special case. Conversely, any class M C T(N) of
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disjoint triplets over N can be formally interpreted as a conditional independence model
if one defines

AL B|C[M] = (A,B|C)e M.

By restriction of a formal independence model M over N to a set () # T C N will be un-
destood the class MNT (T') denoted by Mr. Evidently, the restriction of a (probabilistic)
conditional independence model is again a conditional independence model.

REMARK 2.3 This is to explain my limitation to disjoint triplets over N because some au-
thors [19] do not make this restriction at all. For simplicity of explanation consider discrete
probabilistic framework. Indeed, one can introduce, for a discrete probability measure P
over N, the statement A 1l B|C [P] even for non-disjoint triplets A, B,C C N in a
reasonable way [27, 61]. However, then the statement A 1 A|C [P] has specific inter-
pretation, namely that the variables in A are functionally dependent on the variables in
C' (with respect to P), so that it can be interpreted as a functional dependence statement.
Let us note (cf. Section 2 in [61]) that one can easily derive that

AL B|C [Pl { (ANB)\C 1L (ANB)\C|CU(B\ A) [P] & A\ C 1L B\ AC|C [P] .

Thus, every statement A 1l B |C of general type can be “reconstructed” from functional
dependence statements and from pure conditional independence statements described by
disjoint triplets. The topic of this work are pure conditional independence structures;
therefore I limit myself to pure conditional independence statements. A

2.2.2 Semi-graphoids

By a disjoint semi-graphoid over N is understood any set M C T (N) of disjoint triplets
over N (interpreted as independence statements) such that the following conditions hold
for every collection of pairwise disjoint sets A, B,C, D C N:

triviality AlLO|C [M],

symmetry Al B|C [M] implies B 1L A|C [M],

decomposition A 1L BD|C [M] implies A 1L D|C [M],

weak union Al BD|C [M] implies A Il B|DC [M],

contraction Al B|DC [M]and A 1L D|C [M] implies A 1L BD|C [M].

Gl W o=

Note that the terminology above was proposed by Pearl [78] who formulated the formal
properties above in the form of inference rules, gave them special names and interpretation
and called them the semi-graphoid azioms. Of course, the restriction of a semi-graphoid
is a semi-graphoid. An important fact is the following one.

LEMMA 2.1 Every conditional independence model induced by a probability measure
over N is a disjoint semi-graphoid over N.

Proof: This can be derived easily from Consequence 10.1 proved in the Appendix (see
p. 160). Indeed, having a probability measure P over N defined on a measurable space
(X, Xx) one can identify every subset A C N with a o-algebra X4 C Xy in the way
described in Remark 2.1. Then, for a disjoint triplet (A, B|C) over N, the statement
A 1L B|C [P] is equivalent to the requirement X, 1L Xp | Xo [P)] introduced in Section
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10.6. Having in mind that X453 = X4V Xp for A, B C N the rest follows from Consequence
10.1. U]

Note that the above mentioned fact is not a special feature of probabilistic framework.
Also conditional independence models occuring within other uncertainty calculi mentioned
in the end of Section 2.1 are (disjoint) semi-graphoids. Well, even various graphs over N
induce semi-graphoids, as explained in Chapter 3.

REMARK 2.4 The limitation to disjoint triplets in the definition of semi-graphoid, is not
substantial. One can introduce an abstract semi-graphoid on a joint semi-lattice (S, V) as
a ternary relation % Ll x| x over elements A, B,C, D of § satisfying

e All B|C whenever BV C =C,
e ALl B|C iff B1 A|C,
e AL BVD|C iff [ALB|DVC & A1 D|C].

Taking & = P (V) one obtains the definition of a non-disjoint semi-graphoid over N. A
more complicated example is the semi-lattice of all o-algebras A C X in a measurable
space (X, X) and the relation L of conditional independence of o-algebras with respect to
a probability measure over (X, X') (see Consequence 10.1). This perspective leads to the
general notion of separoid introduced in [22] which is a mathematical structure unifying
variety of notions of ’irrelevance’ arising in probability, statistics, artificial intelligence and
other fields. A

2.2.3 Elementary independence statements

Well, to store a semi-graphoid over N in memory of a computer one need not allocate all
|7(N)| = 41 bits. A more economic way of their representation is feasible. Of course,
one can evidently omit trivial statements which correspond to triplets (A, B|C) over N
with A = () or B = (). Let us denote the class of respective ’trivial’ disjoint triplets over
N by T5(N).

However, principal importance have elementary statements or triplets, that is disjoint
triplets (A, B|C) over N where both A and B are singletons (c.f. [2, 59]). A simplifying
convention will be used in that case: braces in singleton notation will be omitted so that
(1,7|K) or i 1L j| K will be written only. The class of elementary triplets over N will be
denoted by T:(N).

LEMMA 2.2 Suppose that M is a semi-graphoid over N. Then, for every disjoint triplet
(A, B|C) over N, one has A 1L B|C' [M] iff the following condition holds

VieA VjeB VYCCKCABC\{i,j} il j|K M) (2.2)

In particular, every semi-graphoid is determined by its trace within the class of elementary
statements (i.e. by the intersection with 7:(V)).

Proof: (see also [59]) The necessity of the condition (2.2) is easily derivable using de-
composition and weak union combined with symmetry.
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For converse implication suppose (2.2) and that (A, B|C') is not a trivial triplet over N
(othervise it is evident). Use induction on |AB|; the case |[AB| = 2 is evident. Supposing
|AB| > 2 either A of B is not a singleton. Owing to symmetry one can consider without
loss of generality |B| > 2, choose j € B and put B’ = B\ {j}. By induction assumption
(2.2) implies both A 1l j|B'C [M] and A 1 B'|C [M]. Hence, by application of the
contraction property A Il B |C [M] is derived. [

Sometimes, an elementary mode of representation of semi-graphoids (that is by the
list of contained elementary statements) is more suitable. The characterization of those
collections of elementary triplets which represent semi-graphoids is given in [59].

REMARK 2.5 Another reduction of memory demands for semi-graphoid representation
follows from symmetry. Instead of keeping a pair of mutually symmetric statements
i 1L 7] K and j 1L i | K one can choose only one of them according to a suitable criterion.
In particular, to represent a semi-graphoid over N with |N| = n it suffices to have only
n-(n—1)-2"3 bits. Note that the idea above is also reflected in Section 4.2.1 where just
one function corresponds to a 'symmetric’ pair of elementary statements.

However, further reduction of the class of considered statements is not possible. The
reason is as follows: every elementary triplet (i, j|K) over N generates a semi-graphoid
over N consisting of (i, j|K), its symmetric image (j,i|K) and trivial triplets over N (c.f.
Lemma 4.5). In fact, these are minimal non-trivial semi-graphoids over N and one has to
distinguish them from other semi-graphoids over N. Of course, the above mentioned fact
motivated the terminology. A

2.2.4 Problem of axiomatic characterization

Pearl and Paz [77, 78] formulated a conjecture that semi-graphoids coincide with con-
ditional independence models induced by discrete probability measures. However, this
conjecture was refuted in [100] by finding a further formal property of these models, not
derivable from semi-graphoid properties, namely

[ALLB|CD & CAD|A & CLUD|B & Al B|)] &
& [CILUD|AB & AW B|C & AL B|D & C1.D|0).

Another formal property of this sort was later derived in [2]. Consequently, a natural
question occured. Can conditional independence models arising in discrete probabilistic
setting be characterized in terms of a finite number of formal properties of this type? This
question is known as the problem of axiomatic characterization since a result of this kind
would have been a substantial step towards a syntactic description of these models in
sense of mathematical logic. Indeed, as explained in Section 5 of [102], then it would have
been possible to construct a deductive system which is an analogue of the notion “formal
axiomatic theory” from [70]. The wished formal properties then would have played the role
of syntactic inference rules of an axiomatic theory of this sort. Unfortunately, the answer
to the question above is also negative. It was shown in [102] (for a more didactic proof
see [115]) that for every n € N there exists a formal property of (discrete) probabilistic
conditional independence models which applies on a set of variables N with |N| = n but
which cannot be revealed on a set of less cardinality. Note that a basic tool for derivation
of these properties was the multiinformation function introduced in Section 2.3.4.
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On the other hand, having fixed NV, a finite number of possible conditional indepen-
dence models over N suggests that they can be characterized in terms of a finite number
of formal properties. Thus, a related task is, for a small cardinality of N, to characterize
them in that way. Well, it makes no problem to verify that in case |[N| = 3 they coincide
with semi-graphoids (see Figure 5.6 for illustration). Discrete probabilistic conditional
independence models over N with |N| = 4 were characterized in recently completed series
of papers [64, 65, 67]. For an overview see [107] where respective formal properties are
explicitly formulated (one has 18300 different conditional independence models over N
which can be characterized by more than 28 formal properties).

REMARK 2.6 On the other hand several results on relative completeness of semi-graphoid
properties were achieved. In [32] and independently in [62] models of “unconditional”
stochastic independence (that is submodels consisting of unconditioned independence
statements, i.e. statements of the form A Il B |()) were characterized by means of prop-
erties derivable from semi-graphoid properties. Analogous result for the class of saturated
or fized-contexrt conditional independence statements, that is statements A 1L B |C with
ABC = N, was achieved independently in papers [33, 56]. As a specific relative com-
pleteness result can be interpreted the result from [109] saying that the semi-graphoid
generated by a couple of conditional independence statements is always a conditional in-
dependence model induced by discrete probability measure. Note that the problem of
axiomatic characterization of CI models mentioned above differs from the problem of ax-
iomatization (in sense of mathematical logic) of a single CI structure over an infinite set
of variables N treated in [46]. A

2.3 Classes of probability measures

There is no uniform conception of the notion of probability distribution in literature. In
probability theory authors usually understand by a distribution of a (n-dimensional real)
random vector an induced probability measure on the respective sample space (R en-
dowed with the Borel o-algebra), that is a set function on the sample (measurable) space.
On the other hand, authors in artificial intelligence usually identify a distribution of a
(finitely-valued) random vector with a pointwise function on the respective (finite) sam-
ple space, ascribing probability to every configuration of values (= to every element of
the sample space [[,.y X;, where X; are finite sets). In statistics, either the meaning
wavers between these two basic approaches, or authors even avoid the dilemma by de-
scribing specific distributions directly by their parameters (e.g. covariance matrix of a
Gaussian distribution). Therefore, no exact meaning is assigned to the phrase 'probabil-
ity distribution’ in this work; it is used only in general sense, mainly in vague motivation
parts. Moreover, terminological distinction is made between those two above mentioned
approaches. The concept of probability measure over N from Section 2.1 rather reflects
the first approach, which is more general. To relate this to the second approach one has
to make an additional assumption on a probability measure P so that it can be also de-
scribed by a pointwise function, called the density of P. Note that many authors simply
make an assumption of this type implicitly without mentioning it.

In this section, basic facts about these special probability measures are recalled and
several important subclasses of the class of measures having density (called 'marginally
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Figure 2.1: The relation of basic classes of probability measures over N.

continuos measures’) are introduced. One of them, the class of measures with finite multi-
information is strongly related to the method described in later chapters. The information-
theoretical methods are applicable to measures belonging to this class which fortunately
involves typical measures used in practice. Mutual relationships among introduced classes
of measures are depicted in Figure 2.1.

2.3.1 Marginally continuous measures

A probability measure P over N is marginally continuous if it is absolutely continuous
with respect to the product of its one-dimensional marginals, that is P < []..y pli
The following lemma contains apparently weaker equivalent definition.

LEMMA 2.3 A probability measure P on (Xy, Xy) is marginally continuous iff there exists
a collection of o-finite measures y; on (X;, X;), i € N such that P < HieN 1 -

Proof: It was shown in [100], Proposition 1, that in case |N| = 2 one has P < [],_, P
iff there are probability measures \; on (X;, &;) with P <[],y Ai. One can easily show
that for every o-finite measure p; on (X;, X;) a probability measure \; on (X;, X;) with
i < A\ < p; exists. Hence, the condition above is equivalent to the requirement of the
existence of o-finite measures y; with P < [[,.y pi. Finally, one can use induction on
|N| to get the desired conclusion. [

Thus, marginal continuity of P is equivalent to the existence of a dominating measure p
for P, that is the product p = [ [,y pti of some o-finite measures y1; on (X;, Aj), i € N such
that P < p. In particular, every discrete measure over /N is marginally continuous since
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the counting measure on Xy can serve a dominating measure. Having fixed a dominating
measure p by a density of P with respect to p will be understood (every version of) the
Radon-Nikodym derivative of P with respect to .

REMARK 2.7 Let us note without details (see Remark 1 in [100]) that the assumption
that a probability measure P over N is marginally continuous also implies that, for every
disjoint A,C" € N there exists a regular version of conditional probability P4 on Xy4
given X¢ in sense of Loéve [55]. Regularity of conditional probability is usually derived as
a consequence of specific topological assumptions on (X;, X;), i € N (see the Appendix,
Section 10.5). Thus, marginal continuity is a non-topological assumption implying regu-
larity of conditional probabilities. The concept of marginal continuity is closely related
to the concept of dominated experiment in Bayesian statistics - see §1.2.2 and §1.2.3 in
the book [24]. A

The next step will be an equivalent definition of conditional independence for margi-
nally continuous measures in terms of densities. To formulate it in an elegant way let us
accept the following (notational) convention.

CONVENTION 1 Suppose that a probability measure P on (Xy, Xx) together with a fixed
dominating measure 1 is given. More specifically, P < ji = [, tti Where p; is a o-finite
measure on (X;, X;) for every i € N.

Then, for every () # A C N, let us put ps = [[;c4 14> choose a version fs of Radon-

Nikodym derivative %, and fix it. The function f4 will be called a marginal density of
P for A. It is a X4-measurable function on Xj,4.

In order to be able to understand it as a function on Xy as well let us accept the
following notation. Given ) # A C B C N and x € Xg, the symbol x4 will denote the
projection of x onto A, that is x4 = [1;];c4 Whenever x = [2;];c 5.

The last formal convention concerns the marginal density f; for the empty set. It
should be a constant function on (an appended) trivial measurable space (Xy, Xp). Thus,
in formulas below one can simply put f(zg) =1 for every z € Xg, ) # B C N. O

REMARK 2.8 This is to explain the way of definition of marginal densities in Convention
1. First, let me emphasize that the marginal density is not the Radon-Nikodym derivative
of respective marginals since p4 = [],c, ¢ need not coincide with the marginal ut of
1t = [ L;cn 1s unless every p; is a probability measure.
Indeed, the marginal of a o-finite measure may not be a o-finite measure (e.g. ;? in
drPA

case (1(Xy) = 00) so that Radon-Nikodym derivative = may not exists. Instead, one

can take the following point of view. Let us fix a density f = % and introduce, for every
) £ A C N, its 'projection’ f+* as a function on X4 defined p4-a.e. as follows:

() = /‘f@w>mwm@> for yeX,.

Xn\a

One can easily conclude using Fubini theorem that f+4 = % lta-a.e., so that there is

no substantial difference between f+* and any version of the marginal density f4. The
convention for the empty set follows this line since one has

0 = [ 1) dut) = 1.
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LEMMA 2.4 Let P be a marginally continuous measure over N. Let us accept Convention
1. Given (A, B|C) € T(N) one has then A 1l B|C [P] iff the following equality holds

fapc(zape) - fe(re) = fac(xac) - fee(rre) for p-a.e. x € Xy. (2.3)

Proof: Note that minor omitted details of the proof (e.g. verification of equalities u-a.e.) can
be verified with help of basic measure-theoretical facts gathered in Section 10.5.
As a preparatory step choose and fix a density f : Xy — [0, 00) such that

VOi£AACN VzeXy [ (zy) = / f(zay) dunaly) < oo,
Xn\A
and moreover, for every disjoint A, ¢ C N (with convention f+*N = f, f# = 1) one has
Ve Xy fic (zc)=0 = fiAC (xac)=0. (2.4)

Indeed, these relationships hold p-a.e. for every version f of ‘fi—P and every version can be
overdefined by 0 whenever these relationships do not hold. It makes no problem to verify
that f44 = % for every ) # A C N. Then, for every disjoint A, C' C N, one can introduce the
function hy o : X4 X X — [0,00) as follows:

Al €2)) T e 0
hae (z]2) =4 F9@) if f*7(2) >0, for 7 € X4, z € Xc.
A (12) {0 a2 .
One can verify using Fubini theorem (for 4 x P¢), Radon-Nikodym theorem (for f+¢ = %)
and again Fubini theorem (for uc X p4) that the function
(A, 2) = Pyjc(Alz) = / hajc (w|2) dpa(z) where A € Xy, z € X¢,
A
is (a version of) the conditional probability on X4 given X¢.
After this preparatory stage realize that (2.3) can be written as follows:
P ane) - o) = 9 @ac) - P (wpo)  for prae. € Xy (2.5)

Further, this can be rewritten in the form
hagjc(zaBlzc) - % ze) = hac(zalre) - hpc(zslze) - Y ze) for prae. z € Xy. (2.6)
Indeed, owing to (2.4) both (2.5) and (2.6) are trivially valid on {z € Xy; f+*“(z¢) = 0} while

they are equivalent on the complement of this set. The next step is to observe that (2.6) is
equivalent to the requirement that VA € X4, VB € X, VC € X it holds

/ / hapic(@aplee) duap(rap) dPC(xc) =
C AxB

= [ [ hactoale) dusaa) - [ bucteatoe) dunton) dP(ac).
C A B

Indeed, as mentioned in Section 10.5 the equality in (2.6) is equivalent to the requirement that
their integrals with respect to u4pc through measurable rectangles A x B x C coincide. This can
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be rewritten using Fubini theorem, Radon-Nikodym theorem and basic properties of integral in
the form above. But as explained in the preparatory stage, it can be understood as follows:

/ Papic(A x Blz) dPC(z) = / Pyc(Al2) - Pyc(Blz) dPC(2). (2.7)
C C

Having fixed A € X4 and B € Xp the equality (2.7) for every C € X is equivalent to the
requirement that the integrated functions are equal P®-a.e. Hence, one obtains the condition
that (2.1) from p. 13 holds for every A € X4 and B € X, i.e. A L B|C [P]. L]

Let us observe that in (2.3) one can write for papc-a.e. * € X4pc’ instead. Of course,
the validity of (2.3) trivially does not depend on the choice of (versions) of densities. The
point of Lemma 2.4 is that it even does not depend on the choice of the dominating
measure 4 since A Il B|C [P] does depend on it as well. Note that this fact may not be
so apparent when one tries to introduce the concept of conditional independence directly
by means of densities.

2.3.2 Factorizable measures

Let ) # D C P(N)\ {0} be a non-empty class of non-empty subsets of N and D = J,.p.
We say that a marginally continuous measure P over N is factorizable after D (with
respect to a dominating measure p) if the (respective) marginal density of P for D can
be expressed in the form

fp(xp) = H gs(xs) for p-a.e. z € Xy, (2.8)
SeD

where gg : Xg — [0,00), S € D are Xg-measurable functions, called potentials. In fact,
factorization does not depend on the choice of a dominating measure p. One can show that
the validity of (2.8) with respect to a general dominating product measure = [ ..y 1
where 4i; is are o-finite, is equivalent to the validity of (2.8) with respect to [],.y pi
and with other potentials. Of course, factorization after D is equivalent to factorization
after D™* and potentials are not unique unless |D| = 1.

Further equivalent definition of conditional independence for marginally continuous
measures is formulated in terms of factorization (see also [53], §3.1).

LEMMA 2.5 Let P be a marginally continuous measure over N and (A4, B|C) € T(N).
Then A Il B|C [P]ifand only if P is factorizable after D = { AC, BC'}. More specifically,
under Convention 1 one has A I B|C [P] iff there exist a X4c-measurable function
g : Xac — [0,00) and a Xpc-measurable function h : Xpe — [0, 00) such that

fapc (xape) = g(xac) - h(zpe) for p-ae. z € Xy. (2.9)

Proof: One can use Lemma 2.4. Clearly, (2.3) = (2.9) where g = fac and

IfBc(rBo) :
h(ch) = fo(ze) if fc(xc) > 0’ for x € XN;
0 lf fc(!L‘c) == 0,

because for p-a.e. x € Xy one has fo(re) =0 = fpe(rpe) = 0.
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For the proof of (2.9) = (2.3) one can first repeat the preparatory step of the proof of
Lemma 2.4 (see p. 21), that is to choose a suitable version f of density. Then (2.9) can
be rewritten in the form

fLABC(xABC) =g(xac) h(xpe) for p-a.e. x € Xy. (2.10)

Now, using Fubini theorem and basic properties of integral one can derive from (2.10) by
integrating
[ ac) = g (ac) - W (ze),
fJ’BC(J?Bc) = gJ’C(ch) . h(ZL’Bc), for H-a.e. T € XN, (211)
[ (we) = ¢*(ze) - 1< (2c),

where the functions
9" (zc) = / 9(y,zc) dualy), h*C(zc) = / h(z,z¢)dpp(z) for zc € Xe,
XA XB

are finite pc-a.e. (according to Fubini theorem, owing to (2.10) and the fact that f+45¢
is papc-integrable). Thus, (2.10) and (2.11) give together

fiABC(fL’ABc) : fw(fl’c) = g(rac) - Mzpe) - gw(xc) : hw(l’c) =
= f%240) - FBC(2pe) for prae. xz € Xy,
which is equivalent to (2.3). [

As a consequence, one can derive a certain formal property of conditional independence
which was already mentioned in discrete case (see [2, 97] and Proposition 4.1 in [61]).

CONSEQUENCE 2.1 Suppose that P is a marginally continuous measure over N and
A,B,C,D C N are pairwise disjoint sets. Then

C I D|AB[P], AL B|0[P], Al B|C [P], Al B|D [P] implies A 1L B|CD [P].

Proof: It follows from Lemma 2.4 that the assumption C' 1L D|AB can be rewritted
in terms of marginal densities as follows (throughout this proof I write f(xg) instead of
fs(zg) for any S C N):

f(zapep) - f(xag) - flzg) - f(zc) - f(xp) = f(zasc)- f(xasp)- f(zy) - f(zc) - f(zp)

for p-a.e. r € Xy. Now, again using Lemma 2.4 the assumptions A 1L B|(0, A 1L B|C
and A 1L B|D imply that

f(zapep) - f(wa) - f(wB) - f(zc)- fzp) = f(wac)- f(zpc)- f(xap) - f(zeD) - f(zp)

for p-a.e. x € Xy. Since f(x4) =0 = f(zapcp) = 0 for p-a.e. € Xy (and similarly for
B, C, D) one can accept the convention f~'(z4) = 0 whenever f(z4) =0 and obtain

9(zacp)

f(zaBep) = }_1(55/4) (zac) - f(l'AD;‘
-f(zpc) - f(zp) - f(zg) - [~ (xB) - [~ (wc) - [~ (zp) for pae z€Xy.

~ /
—~

-f
- f

h(zpcp)

Hence, by Lemma 2.5 one has A 1L B|CD. ]

23



2.3.3 Multiinformation and conditional product

Let P be a marginally continuous measure over N. Multiinformation of P is the rela-
tive entropy H(P| [[,cy P{) of P with respect to the product of its one-dimensional
marginals. It is always a value in [0, 4+00] (see Lemma 10.3 in Section 10.7). Common
formal convention is that the multiinformation of P is +00 in case P is not marginally
continuous.

REMARK 2.9 The term 'multiinformation” was proposed by my PhD supervisor Albert
Perez in late eighties. Note that miscellaneous other terms were used earlier in literature
(even by Perez himself); for example ’total correlation’ [123], ’"dependence tightness’ [79]
or 'entaxy’ [57]. The main reason of Perez’s later terminology is that it directly generalizes
widely accepted information-theoretical concept of 'mutual information’ of two random
variables to the case of any finite number of random variables. Indeed, it can serve as a
measure of global stochastic dependence among a finite collection of random variables (see
§4 in [115]). Asymptotic behaviour of ’empirical multiinformation” which can be used as
a statistical estimate of multiinformation on basis of data was examined in [99]. A

To clarify the significance of multiinformation for study of conditional independence I
need the following lemma.

LEMMA 2.6 Let P be a marginally continuous probability measure on (Xy, Xy) and
(A, B|C) € T(N). Then there exists unique probability measure @ on (Xapc, Xapc)
such that

QA = PAY, QPY=PP° and A 1 B|C[Q]. (2.12)
Moreover, PP¢ <« Q < [[;capc P! and the following equality holds (the symbol H
denotes the relative entropy introduced in Section 10.7)

HPAPC I P+ HPC| ] PW) =

Y

1 EABC ieC (2 13)
H(PABC| Q)+ H(PAC| T P+ H(PBC| [ PW). '
iI€AC 1€EBC

Proof: Again, omitted technical details can be verified by means of basic measure-theoretical
facts from Section 10.5. First, let us verify the uniqueness of . Supposing both Q' and Q?
satisfy (2.12) one can observe that (Q")¢ = (Q?)¢ and then Qh‘c ~ Qi‘c, Q]lB'C ~ QQB|C where
~ indicates the respective equivalence of conditional probabilities (on X4 resp. Xp) given C
mentioned in Section 2.1. Because of A 1. B|C [Q’], i = 1,2 one can derive using (2.1) that
Q}43|C ~ QiB‘C for measurable rectangles which together with (Q1)¢ = (Q?)¢ implies Q' = Q?.

For existence proof assume without loss of generality ABC' = N and put p = [[;cn Pl
Like in the preparatory step of the proof of Lemma 2.4 (see p. 21) choose a density f = ‘2—5 and
respective collection of marginal *projection’ densities f+4, A C N satisfying (2.4). For brevity,
we write f(z4) instead of f+4(z4) in the rest of this proof so that (2.4) has the form

VeeXy VA CCN such that ANC =0 flze) =0 = f(zac)=0. (2.14)

Let us define a function g : Xy — [0,00) by

f(zc)

for x € Xy =X ,
0 it f(zo) =0, N ane

f(xac) fxpc) :
o(a) = { it f(zc) >0,
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and introduce a measure @) on (Xy, Xy) as follows:

Q(D) = /g(x) dpu(z) for D € Xy = XaBc.
D

Now, under the convention £ f(ZE;('O)) = 0 in case f(z¢c) = 0 one can write for every E € X4¢ using

Fubini theorem, (2.14) and Radon-Nikodym theorem

QAC(E) _ / f /f zprc) dup(zp) dpac(zac) =

EXXB

/% flwe) duac(zac) = /f(iL“Ac) dpac(zac) = PAC(E).

Hence, Q¢ = PAY and Q is a probability measure. Replace (X4, X4) by (Xp,XB) in the
preceding consideration to obtain QP¢ = PBY. The way of definition of ) implies Q < p and
g = 'fiff The form of g implies that @ is factorizable after {AC, BC} so that A 1 B|C [Q]
by Lemma 2.5. To see PAPC < Q observe that (2.14) implies g(z) = 0 = f(z) = 0 for every

z € Xy, accept the convention % = 0 in case g(z) = 0, and write for every D € Xy using
Radon-Nikodym theorem
f@) /f ) [
x) du(z) = [ f(z) du(z) = P(D).
DQ(I) o) ()D() (z) = P(D)

Thus, P < @ and f = % To derive (2.13) realize that it follows from the definition of g (under

the convention above) that

—~

()

x)

- f(zac) - f(xpe) forevery z € Xy .

f(z)- fze) =

Q
—

Hence, of course

f(x)
g9(z)

According to (10.4) and Lemma 10.3 on p. 161 each of five logarithmic terms above is P-quasi-

VeeXy Inf(z)+Inf(ze) =In—= +1Inf(zac)+Inf(zpc).

integrable and the integral is a value in [0, 00] (use [y h(zp = [x, Mxp) dP"(zp) for
D C N). Hence, (2.13) was derived. L]

REMARK 2.10 The measure ) satisfying (2.12) can be interpreted as the conditional
product of PAC and PPC. Indeed, one can define the conditional product for every pair of
consonant probability measures (that is measures sharing marginals) in this way. However,
in general, some obscurities can occur. First, there exists a pair of consonant measures
such that no joint measure having them as marginals exists. Second, even in case joint
measures of this type exist, it may happen that none of them complies with the required
conditional independence statement. For both examples see [21].

Thus, the assumption of marginal continuity implies the existence of the conditional
product. Note that regularity of conditional probabilities P4 or Ppgj¢ is a more general
sufficient condition for its existence (see Proposition 2 in [100]). The value of H(P4B|Q)
in (2.13) is known in information theory as the conditional mutual information of A and B
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given C' (with respect to P). In case C' = () just the mutual information H(PAB|P* x P?)
is obtained, so that it can be viewed as a generalization of mutual information (but from
a different perspective than multiinformation). Conditional mutual information is known
as a good measure of stochastic dependence between A and B conditional on knowledge
of C'; for an analysis in discrete case see §3 in [115]. A

2.3.4 Properties of multiinformation function

Supposing P is a probability measure over N the induced multiinformation function
mp : P(N) — [0, 0] ascribes the multiinformation of the respective marginal P* to every
non-empty set S C N, that is

mp(S) = H(PY| [[P")  forevery D £SCN.

1€S

Moreover, a natural convention mp(()) = 0 is accepted. The significance of this concept
is evident from the following consequence of Lemma 2.6.

CONSEQUENCE 2.2 Suppose that P is a probability measure over N whose multiinfor-
mation is finite. Then the induced multiinformation function mp is a non-negative real
function which satisfies

mp(S) =0 whenever S CN, |S| <1, (2.15)
and is supermodular, that is
mp(ABC) +mp(C) — mp(AC) — mp(BC) > 0 whenever (A, B|C) € T(N). (2.16)

These two conditions imply mp(S) < mp(T) whenever S C T C N. Moreover, for every
(A, B|C) € T(N) one has

Proof: The relation (2.15) is evident. Given S C N, put (A, B|C) = (S,N \ S|0) in
Lemma 2.6 and (2.13) gives

mp(N) = mp(N) +mp(0) = H(P|Q) +mp(S) +mp(N\ S).

Since all terms here are in [0, +oc] and mp(N) < oo it implies mp(S) < oo. Therefore
(2.13) for general (A, B|C) can be always written in the form

mp(ABC) +mp(C) — mp(AC) — mp(BC) = H(P'PC|Q),

where @ is the conditional product of PA¢ and PBC. By Lemma 10.3 derive (2.16).
It suffices to see mp(S) < mp(T) when |T \ S| = 1 which follows directly from (2.16)
with (A, B|C) = (S,T\ S|0) and (2.15). The uniqueness of the conditional product @
mentioned in Lemma 2.6 implies that A 1L B|C [P]iff PAPY = Q, that is H(P'?¢ | Q) =
0 by Lemma 10.3. Hence (2.17) follows. ]

Thus, the class of probability measures over N having finite multiinformation is (by
definition) a subclass of the class of marginally continuous measures. It will be shown in
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Section 4.1 that it is a quite wide class of measures involving several classes of measures
used in practice. The relation (2.17) provides very useful equivalent definition of condi-
tional independence for measures with finite multiinformation, namely by means of an
algebraic identity. Note that just relations (2.16) and (2.17) establish a basic method for
study of conditional independence used in this work. Because these relations originate
from information theory (the expresion in (2.16) is nothing but the conditional mutual
information mentioned in Remark 2.10) I dare to call them information-theoretical tools.
For example, all formal properties of conditional independence from Section 2.2.2 and the
result mentioned in the beginning of Section 2.2.4 were derived using this method. Con-
sequence 2.2 also implies that the class of measures with finite multiinformation is closed
under marginals. Note without details that it is closed under the operation of conditional
product as well.
The following observation appears to be useful later.

LEMMA 2.7 Let P be a probability measure on (Xy, Xy) and P < pn = [[;c 1 where
p; is a o-finite measure on (X;, X;) for every i € N. Let ) # S C N such that —oco <
H(PS| [1;eq 1) < o0 and —oo < H (P | ;) < oo for every i € S. Then 0 < mp(S) <

oo and
mp(S) = H(P® | HM) - ZH(P{i}|M1)- (2.18)

Proof:This is just a rough sketch (for technical details see Section 10.5). Suppose without loss
of generality S = N and put v = [[,cx P11}, By Lemma 2.3 one knows P < v. Since P11} « 15

for every ¢« € N choose versions of ‘2—1; and dIdD:} and observe that ‘é—f Tlien dg;_i} is a version of
‘fl—];, defined uniquely P-a.e. Hence derive
dP dP dpii
In—=In— — In for P-a.e. x € Xy .
dv du Z dps; N

1EN
The assumption of the lemma implies that all logarithmic terms on the right-hand side are
P-integrable. Hence, by integration with respect to P (2.18) is obtained. L]

2.3.5 Positive measures

A marginally continuous measure P over N is positive if there exists a dominating measure
1 whose density f = % is (strictly) positive, that is f(x) > 0 for p-a.e. x € Xy. Note
that positivity of density may depend on the choice of dominating measure. However,
whenever a measure £ of this kind exists one has p < P. Since P < [[,cy Pt and
[Licn Pl <« [Licy #i = p one can always take [[. .y Pt in place of p. In particular,
one can equivalently introduce a positive measure P over N by a simple requirement that
P < Ilien Pt <« P. Typical example is a discrete positive measure P on Xy = [Len X
with 1 < |X;| < 00, @ € N such that P({z}) > 0 for every z € Xy (or alternatively only
for v € [T;en Yi with Y; = {y € X;; PU({y}) > 0}). These measures play an important
role in (probabilistic approach to) artificial intelligence. Pearl [78] noticed that conditional
independence models induced by these measures satisfy further special formal property
(except semi-graphoid properties) and introduced the following terminology.

A disjoint semi-graphoid M over N is called a (disjoint) graphoid over N if, for every
collection of pairwise disjoint sets A, B,C, D C N, one has
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6. intersection A Il B|DC [M]and A 1L D|BC [M] implies A 1L BD |C [M].

It follows from Lemma 2.1 and the observation below that every conditional independence
model induced by a positive measure is a disjoint graphoid.

OBSERVATION 2.1 Let P be a marginally continuous measure over N; A, B,C,D C N
are pairwise disjoint, and PP¢? is a positive measure over BC'D. Then

AL B|DC[P] & AL D|BC[P] = Al BD|C [P].

Proof: (see also [53] for alternative proof under additional restrictive assumption) This is a
rough hint only. Let p be a dominating measure and f = Zl—i a density with f(zgcp) > 0
for p-a.e. z € Xy (I again follow notational convention from the proof of Lemma 2.4, p. 21).
The assumptions A Il B|DC [P] and A 1L D|BC [P] imply by Lemma 2.4 (one can assume

f(zg) > 0 for p-a.e. z € Xy whenever E C BCD)

f(zacp) - f(zBoD) f(zapc) - f(xBeD)

f(zep) f(zBe)

The terms f(xpcp) can be cancelled, so that one derives by dividing

= f(zaBcp) = for p-a.e. z € Xy .

f(zacp) - f(zpe) = f(zape) - f(zep) for p-a.e. r € Xy.

One can take integral with respect to up and get by Fubini theorem

f(a:ACD) . f(xc) = f(a,‘Ac) . f(ICD) for H-a.e. x € XN,

that is A 1L D |C [P] by Lemma 2.4. This, together with A 1l B|DC [P] implies the desired
conclusion by the contraction property. L]

Let us note that there are discrete probability measures whose induced conditional
independence model is not a graphoid, i.e. it does not satisfy the intersection property
(see Example 2.2 on p. 32). On the other hand, Observation 2.1 holds also under weaker
assumptions on PBCP.

2.3.6 Gaussian measures

These measures are usually treated in multivariate statistics, often under alternative name
'normal distributions’. In this work Gaussian measures over N are measures on (Xy, Xy)
where (X;, ;) = (R, B) is the set of real numbers endowed with the o-algebra of Borel
sets for every i € N. Every vector e € RY and every positive semi-definite N x N-matrix
3 € RM*N defines a certain measure on (Xy, Xy) denoted by N (e, £) whose expectation
vector is e and whose covariance matriz is 3. The components of e and ¥ are then
regarded as parameters of the Gaussian measure.

Attention is almost exclusively paid to non-degenerate Gaussian measures which are
obtained in case that X is positive definite (equivalently regular). In that case N (e, X)
can be introduced directly by its density with respect to Lebesgue measure on (Xy, Xy)

1 _@-e)T 2 @
2

fexs(t) = ————=-exp

f € Xy, 2.19
(2m)INI.det(X) o N ( )

where 7 is Ludolf’s constant and 37" the inverse of the covariance matrix 3, called the
concentration matriz. Its elements are sometimes considered as alternative parameters

28



of a non-degenerate Gaussian measure. Since the density fes in (2.19) is positive, non-
degenerate Gaussian measures are positive in sense of Section 2.3.5.

On the other hand, in case X is not regular, the respective degenerate Gaussian mea-
sure N'(e,X) (for a detailed definition see Section 10.9.3) is concentrated on a linear
subspace in RY = Xy having Lebesgue measure 0. Thus, degenerate Gaussian measures
are not marginally continuous except some rare cases (when the subspace has the form
{y} x X4, A C N for y € Xy\4); for illustration see Example 2.2 below.

Given a Gaussian measure P = N (e, X) over N, non-empty disjoint sets A,C C N a
usual implicit convention (used in multivariate statistics and applicable even in degenerate
case) identifies the conditional probability P4 with its unique ’continuous’ version

PA\C’(*| Z) :N(BA + ZA-C’ . 260 . (Z — ec), EA-A — 2A~C . 260 . EC-A) for every z € Xc.

The point is that, for every z € Xg, it is again a Gaussian measure, whose covariance
matrix Yo = a4 — Xac - oo - Ve.a actually does not depend on the choice of
z. Therefore, the matrix 3 ,,¢ is called a conditional covariance matriz. Recall that in
case C' = () one has Y 4jc = X 4.4 by convention. Elements of misceleaneous conditional
covariance matrices can serve as convenient parameters of Gaussian measures - e.g. [7].
Important related fact is that the expectation vector of a Gaussian measure is not sig-
nificant from the point of view of conditional independence. It follows from the following
lemma that single-handed covariance matrix contains all information about conditional
independence structure. Therefore it is used in practice almost exclusively.

LEMMA 2.8 Let P = N (e, X) be a Gaussian measure over N and (A, B|C) € T(N) is a
non-trivial triplet over N. Then

Proof: The key idea is that topological assumptions (see Remark on p. 158) imply the
existence of a regular version of conditional probability on X,p given C| that is a version
PAB‘C such that the mapping D — PAB|C(D | z) is a probability measure on X 45 for every
z € X¢. Clearly, for every A € Xy, the mapping z — Pagjc(A x Xg|z2), z € X¢, is a
version of conditional probability on X, given C'; analogously for B € Xz. Thus, (2.1)
can be rewritten in the form VA € X4, VB € X,

Papic(A x B|2) = Papjc(A x Xp| 2) - Papio(Xa x B|2) for PCae. z€Xo, (2.20)

Since all involved versions of conditional probability are probability measures for every
x € X it is equivalent to the requirement that (2.20) hold for every A € Y4, B € Vg where
Y4 resp. Vp are countable classes closed under finite intersection such that o(Y4) = X4
resp. 0(Yp) = Xp (use 1.1.5 in [98]). These classes exist in case of Borel o-algebras on
R4 resp. RP. The set of z € X¢ for which (2.20) holds for every A € Y4 and B € Vg has
PC measure 1 (since Y4 and Yp are countable). For these z € X then (2.20) holds for
every A € X4 and B € Xz by the above mentioned consideration. Hence,

AL B|C[P] & AL B|0 [Papjc(x]2)] for P%a.e. z € Xc.

However, in this special case one can suppose that Pypc(x]2) is a Gaussian measure
(see Section 10.9.3) with the same covariance matrix X ¢ for every z € X (while the
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expectation does depend on z). It is well-known fact that regardless the expectation
vector one has A 1L B | () with respect to a Gaussian measure iff the A X B-submatrix of
its covariance matrix vanishes (see again Section 10.9.3). ]

The previous lemma involves the following well-known criteria for elementary condi-
tional independence statements (see also Proposition 5.2 in [53] or Corollaries 6.3.3 and
6.3.4 in [124]).

CONSEQUENCE 2.3 Let P be a Gaussian measure over N with a covariance matrix > =
(0ij)ijen and a correlation matrix I' = (9;;)i jen. Then for distinct i,j € N

il j|0[P] & 05j=0 & p; =0,
and for distinct i, j,k € N
i W j|{k} [P] & Ok 04 =0 Ok & 0ij = Oik * Okj -
If 3 is regular and A = (k;;);jen is the concentration matrix, then for distinct 7, j € N
i 1L jIN\{ij} [P] & ki =0.

Proof: The first part is an immediate consequence of Lemma 2.8. For the last fact first
observe by elementary computation that a non-diagonal element of a regular 2 x 2-matrix
vanishes iff the same element vanishes in its inverse matrix. In particular,

i L7 IN\{i,j} [P] & (Bujymgig)ii =0 < ((Crymgigy) Dig =0,

The second observation is that ((Zpx\p)~")p.p = (£7")p.n = Ap.p for every set D C N
containing {i, j} (see Section 10.9.1). Hence ((Xpjn\p)~"')ij = kij for every such D. [

REMARK 2.11 The proof of Lemma 2.8 reveals notable difference between Gaussian and
discrete case. While in discrete case a conditional independence statement A 1l B |C [P]
is equivalent to the collection of requirements

AL B0 [Papjc(*|2)] for every 2 € X¢ with PY(2) > 0,
in Gaussian case it is equivalent to a single requirement
A 1L B0 [Papc(*|2)] for at least one z € X¢,

which already implies the same fact for all other z € X (one uses conventional choice
of 'continuous’ versions of P,p|c in this case). Informally said, the same’ conditional
independence model is, in Gaussian case, specified by ’less’ number of requirements than
in discrete case. The reason behind this phenomenon is that the actual number of free
parameters characterizing a Gaussian measure over N is, in fact, smaller than the number
of parameters characterizing a discrete measure (if |X;| > 2 for i € N). Therefore, discrete
measures offer wider variety of induced conditional independence models than Gaussian
measures. This is maybe a surprising fact for those who anticipate that a continuous
framework should be wider than a discrete framework. The point is that the ’Gaussianity’
is quite restrictive assumption. A
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Thus, one can expect many specific formal properties of conditional independence
models arising in Gaussian framework. For example, the following property of a disjoint
semi-graphoid M was recognized by Pearl [78] as a typical property of graphical models
(see Chapter 3):

7. composition A 1L B|C [M]and A 1L D|C [M] implies A 1L BD |C [M]

for every collection of pairwise disjoint sets A, B, C', D C N. It follows easily from Lemma
2.8 that it is also a typical property of Gaussian conditional independence models.

CONSEQUENCE 2.4 Let P be a Gaussian measure over N and A, B,C, D C N are pair-
wise disjoint. Then

AU B|CIPl & AL D|CI[P] = Al BD|C[P].

Proof: Observe that (EABD|C)AB~AB == ZAB\C’ and (ZABD\C’)AD-AD = ZAD\C’ for a co-
variance matrix X (see Section 10.9.1). Thus, the assumptions (X4zpjc)a.z = 0 and
(ZABD\C)A-D =0 1mply together (EABD|C)A~BD = 0. D

However, composition is not universally valid property of conditional independence
models as the following example shows.

EXAMPLE 2.1 There exists a discrete (binary) probability measure P over N with |[N| = 3
such that

i 1|0 [P] and —(4 1L j|{k} [P]) for any distinct i,j,k € N.

Indeed, put X; = {0,1} for i € N and ascribe the probability 1 to every of the following
configurations of values: (0,0,0), (0,1,1), (1,0,1), (1,1,0). &

Further important fact is that every non-degenerate Gaussian measure has finite mul-
tiinformation. This follows from Lemma 2.7.

CONSEQUENCE 2.5 Let P be a non-degenerate Gaussian measure with a correlation ma-
trix I'. Then its multiinformation has the value
1
mp(N) = —3 -In(det(T)) . (2.21)

Proof: Take the Lebesgue measure on (Xy, Xy) in place of  in Lemma 2.7. Substitution
of (10.9) from Section 10.9.3 into (2.18) gives

IN| IN| 1 ~In(27r) 1 1 B
—5 In(2m) — = = = In(det(X)) — ;V {(—5 =55 mla)}=
_ % ;v In oy — % In(det(E)) = —% ‘In li.[le:% _ —% In(det(T).

0

On the other hand, a degenerate Gaussian measure need not be marginally continu-
ous as the following example shows. It also demonstrates that the intersection property
mentioned in Section 2.3.5 is not universally valid.
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EXAMPLE 2.2 There exists a Gaussian measure P over N with |N| = 3 such that
i AL j|{k} [P] and —(7 1L 5|0 [P]) for arbitrarily chosen distinct 4,j, k € N.

Put P = N(0,X) where ¥ = (0;)ijen with o;; = 1 for every i,j € N and apply Cons-
esquence 2.3. It makes no problem to verify (see Section 10.9.3) that P is concentracted on
the subspace {(z,z,z);2 € R} while P} = N/(0,1) for every i € N. Since [[,.y P! is
absolutely continuous with respect to Lebesgue measure, P is not marginally continuous.

Note that the same conditional independence model can be induced by a discrete
(binary) measure; put X; = {0, 1} for i € N and ascribe the probability 3 to configurations
(0,0,0) and (1,1,1). &

2.3.7 Basic construction

The following lemma, provides a basic method of construction of probability measures
with prescribed CI structure.

LEMMA 2.9 Let P, () are probability measures over N. Then there exists a probability
measure R over N such that Mprp = Mp N Mg. Moreover, if P and () have finite
multiinformation then a probability measure R over N with finite multiinformation and
Mp = Mp N Mg exists. The same statement holds for the class of discrete measures
over N, respectively for the class of positive discrete measures over V.

Proof: Let P be a measure on a space (Xy, Xn) = ([[;cn Xis [[;en &) and Q be a measure
on (YN,J)N) = (HiGN Yia HiGN yl) Let us put (ZZ, ZZ) = (Xz X Yi, Xz X yl) fori € N, introduce
(Zn, 2n) = [lien(Zi, Z;) which can be understood as (Xy X Y, Xx x Vy) and define a prob-
ability measure R on (Zy, Zy) as the product of P and Q. The goal is to show that for every
(A,B|C) € T(N)

AL B|C[R & {ALB|C[P] and A1 B|C[Q]}. (2.22)

Let us take unifying perspective indicated in Remark 2.1: (Zy, Zy) and R are fixed and respec-
tive coordinate o-algebras X4,Y4, 24 C Zy are ascribed to every A C N. Then P corresponds
to the restriction of R to Xy, Q to the restriction of R to Yy and (2.22) takes the form (see
Section 10.6 for related concepts)

Z_AJ_LZB|ZC [R] <~ .)EAJ_L.)EB|A?C [R] and )_7AJ_L)_73|5}C [R] (2.23)

As X4 x Ya-measurable rectangles generate Z, for every A C N by the 'weaker’ formulation of
the definition of conditional independence for o-algebras observe that the fact Z4 1L Zp | Z¢ [R]
is equivalent to the requirement: VA* € X4, AY € Y4, B* € X, BY € Vp

RA"NAYNB"NBY | 2¢)(2) = R(A"NAY| Z0)(2) - R(B* NBY | Z5)(2) for R-ae. z € Zn. (2.24)

On the other hand X4 1 Xp|Xo [R] is equivalent to the requirement by usual definition of
conditional indepencence for o-algebras: VA* € X4, B® € Xp

P(A* NB? | Xo)(x) = P(A” | Xo)(z) - P(B* | X¢)(x) for R-ae. z= (z,y) € Zn, (2.25)
and Y4 1L Yp| Ve [R] is equivalent to the requirement: YAY € Y4, BY € Vp

Q(AY NBY | Ye)(y) = QA" | Yc)(y) - Q(BY | Vo)(y) for R-ace. 2= (z,y) € Z . (2.26)
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Moreover, using the (weaker) definition of conditional probability (see Section 10.5, p. 158) and
by the definition of R verify that

R(A"NAYNB"NBY | 2¢)(2) = P(A"NB” | Xo)(z)-Q(AYNBY | Vo) (y) for R-a.e. 2z = (z,y) € Zn. (2.27)

Thus, to evidence (2.24)=-(2.25) put AY = BY = Zy; to evidence (2.24)=(2.26) put A* = B* =
Zy. Conversely, (2.25),(2.26)=(2.24) by (2.27) which means (2.23) was verified.

In both P and Q have finite multiinformation then R = P} x Q1% are marginals of R on
(Zi, i) fori € N and R < [[;eny P x ey QU = [Tien P} x QUF). Thus, R is marginally
continuous measure over N and one can apply Lemma 2.6 to R with ’"doubled” NV to see that

HR| [[ P™ x [[ @™ = H(P| [ P™ + H@Q| [] @¥).
ieN JEN iEN JEN

Note for explanation that in the considered case R is the conditional product of P and @
and therefore the term H(PAPC|Q) in (2.13) vanishes by Lemma 10.3 from Section 10.7. In
particular, the multiinformation of R is the sum of the multiinformations P and ) and therefore
it is finite. The statement concerning discrete and positive discrete measures easily follows from
the given construction. []

Elementary constructions of probability measures are needed to utilize the method
from Lemma 2.9. One of them is the product of one-dimensional probability measures.

OBSERVATION 2.2 There exists a discrete (binary) probability measure P over N such
that
A1l B|C [P] forevery (A, B|C) € T(N).

OBSERVATION 2.3 Suppose that |[N| > 2 and A C N with |A| > 2. Then there exists a
discrete (binary) probability measure P over N such that

mp(S):{ln2 if ACS,

0 otherwise.

Proof: Put X; = {0,1} for i € N and ascribe the probability 2!~V to every configuration
of values [7;];ey with even ) ._, x; (remaining configurations have zero probability). L[]

LEMMA 2.10 Suppose that [N| > 3,2 <[ <|N|and £ C {S C N;|S|=1}. Then there
exists a discrete probability measure P over N such that

Y (i, j|K) € T.(N) with |ijK| =1 il j|K[P] & ijK¢&L. (2.28)

Proof: If £ = () then use Observation 2.2. If £ # () then apply Observation 2.3 to every
A € L and Consequence 2.2 to get a binary probability measure P4 such that

V elementary triplet (i, j|K) with [ij K| =1 il j| K [Pa) & ijK # A,

Then Lemma 2.9 can be applied repeatedly to get a measure over N satisfying (2.28). ]

This gives a lower estimate of the number of ’discrete’ probabilistic CI structures.

CONSEQUENCE 2.6 If n = |N| > 3 then the number of distinct CI structures induced

by discrete probability measures over N exceeds the number 92" Where | 2] denotes the

2
lower integer part of .
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Proof: Let us put [ = % for even n, respectively [ = ”;“1 for odd n. By Lemma 2.10
for every subclass £ of {S C N;|S| =1} a respective probability measure P exists. By
(2.28) these measures induce dlstlnct CI models over N. Therefore, the number of distinct
induced CI models exceeds 2° where s is the number of elements of {S C N;|S| = [}.
Find suitable lower estimates for s. If [ = & then write

2 1.2....20 13- (20=1) 242 _
° (l) A1) 1.2 ... 1.2....0° ’

+

Similarly, in case | = % write

L (A1 :1'3""'(21_1)-2'4""'(2l_2)zzl—lzzt%J.
! 1-2-...-1 1-2-...-(1=1)

which implies the desired conclusion 2° > 924 i1 both cases. L]

2.4 Imsets

By an imset over N is understood an integer-valued function on the power set of N, that
is any function u : P(N) — Z, or alternatively an element of Z7N). Basic operation
with imsets, namely summation, subtraction, multiplication by an integer are defined
coordinatewisely. Analogously, we write u < v for imsets u,v over N if u(S) < v(S)
for every S C N. Multiset is an imset with non-negative values, that is any function
m : P(N) — Z*. Any imset u over N can be written as a difference u = u™ —u~ of
two multisets over N where u™ is the positive part of v and u ™ is the negative part of u,
defined as follows:

u"(S) = max {u(S),0}, wu (S)=max{-u(S),0} forSCN.

By positive domain of u will be undestood the class of sets D;f = {S C N; u(S) > 0}, by
negative domain of u the class D, = {S C N; u(S) < 0}.

REMARK 2.12 The word ‘multiset’ is taken from combinatorial theory [1] while the word
‘imset’ is an abbreviation for integer-valued multiset. Later in this work certain special

imsets will be used to describe probabilistic conditional independence structures (see
Section 4.2.3). A

Trivial example of an imset is the zero imset denoted by 0 which ascribes zero value
to every S C N. Another simple example is the identificator of a set A C N denoted by
04 and defined as follows:

1 incase S=A,
6’4(5):{ 0 incase SCN, S#A.

Special notation mA" respectively m4* will be used for multisets which serve as identifi-
cators of classes of subsets respectively classes of supersets of a set A C N:

1 ifADS 1 ifACS
Al o = ) At o = )
m=(S) = { 0 otherwise, and - m™(S) = { 0 otherwise.

34



\{a,b,c}/
(£33 (£2) (0
{a,b} {b,c} /

{fa /7 A0/ _{} J

+1
N

Figure 2.2: Hasse diagram of an imset over N = {a, b, ¢}.

It is clear how to represent an imset over N in memory of a computer, namely by a vector
with 2/"! integral components which correspond to subsets of N. However, for a small
number of variables, one can also visualize imsets in a more telling way, using special
pictures. The power set P(N) is a distributive lattice and can be represented in the form
of Hasse diagram (see p. 6 in [8]). Nodes of this diagram correspond to elements of P(N),
that is to subsets of NV, and a link is made between two nodes if the symmetric difference
of the represented sets is a singleton. A function on P(N) can be visualized by writing
assigned values into respective nodes. For example, the imset u over N = {a, b, ¢} defined
by the table

S O | {fa} | {0} | {c} | {a,b} | {a,c} | {bc} | {a,b,c}
w(S) | +1| =3 | -11] 0 +3 +2 0 -2

can be visualized in the form of the diagram from Figure 2.2. The third possible way
of description of an imset (used in this work) is to write it as a combination of more
elementary imsets with integral coefficients. For example, the imset u from Figure 2.2
can be written as follows:

u = =205+ 3 ap} +20fae} — 3 0{ay — Oy +p .

In this work, certain special imsets over N will be used. Effective dimension of these
imsets, that is the actual number of free values is not 2!V but 2Nl — |N| — 1 only. There
are several ways of standardization of imsets of this kind. I will distinguish three basic
ways of standardization (for justification of terminology see Remark 5.3 in Section 5.1.2).
An imset u over N is o-standardized if

d u($)=0 and VieN Y u(S)=0.

SCN SCN,ics

Alternatively, the second requirement can be formulated in the form ¢y u(S) =0
for every 7 € N. An imset u is (-standardized if N

u(S)=0  whenever SCN, |S| <1,
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and u-standardized if
u(S) =0 whenever S C N, |S| > |N|—1.

An imset u over N is called normalized if the collection of values {u(S); S C N} has
no common prime divisor. Except basic operations with imsets the operation of scalar
product of a real function m : P(N) — R and an imset u over N denoted by (m,u) and
defined by

(m,u) = m(S) - u(S)

SCN

will be used. Indeed, it is a scalar product on the Eucledian space RP(™) . Note that the
function m can be an imset as well, it will be often a multiset.
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Chapter 3

Graphical methods

Graphs whose nodes correspond to random variables are traditional tools for description
of CI structures. One can distinguish three classic approaches: using undirected graphs,
using acyclic directed graphs and using chain graphs. This chapter is an overview of graph-
ical methods of description of CI structures with the main emphasis put on theoretical
questions mentioned in Section 1.1. Both classic and advanced approaches are included.
Note that elementary graphical concepts are introduced in Section 10.3.

3.1 Undirected graphs

Graphical models based on undirected graphs are also known as Markov networks [78].
Given an undirected graph G over N one says that a disjoint triplet (A, B|C') € T(N) is
represented in G and writes A 1L B|C [G] if every route (equivalently every path) in G
between a node in A and a node in B contains a node in C, that is C' separates between
A and B in G. For illustration see Figure 3.1. Thus, every undirected graph G over N
induces a formal independence model over N by means of the separation criterion (for
undirected graphs):

Mg = {(A,B|C)eT(N); AL B|C[G]}.

Let us call every independence model obtained in this way an UG model. These models
were characterized in [77] in terms of a finite number of formal properties:

triviality AlLO|C [G],

symmetry A 1l B|C [G] implies B 1L A|C [G],

decomposition A Il BD|C [G] implies A 1 D|C [G],

strong union A Il B|C [G] implies A 1L B|DC [G],

intersection A1l B|DC [G] and A 1L D|BC [G] implies A 1L BD |C [G],
transitivity A 1L B|C [G] implies A 1L {d}|C [G] or {d} 1L B|C [G].

This axiomatic characterization implies that every UG model is a graphoid satisfying the
composition property.

SR

REMARK 3.1 Let me note that the above mentioned separation criterion was a result of
certain development. Theory of Markov fields stems from statistical physics [73] where
undirected graphs were used to model geometric arrangement in space. Several types of
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Figure 3.1: The set C' = {e, f} separates between A = {a,d} and B = {h}.

Markov conditions were later introduced [52] in order to associate these graphs and prob-
abilistic CI structures. The original 'pairwise Markov property’ was strengthened to the
'local Markov property’ and this was strengthened to the 'global Markov property’. The
latter property corresponds to the separation criterion and appeared to be the strongest
possible Markov condition in a certain sense (see Remark 3.2). The Markov conditions
differ in general (e.g. [60]) but coincide in case of positive measures [52].

Note that similar story was observed in case of acyclic directed graphs and chain
graphs (for an overview see Chapter 3.2 of [53]) and has been repeated recently in case
of advanced graphical models (see Section 3.5). However, in this work attention is paid
only to the result of this development, that is to graphical criteria which correspond to
respective global Markov conditions. A

A probability measure P over N is Markovian with respect to an undirected graph G
over N if

A1l B|C [G] implies A 1L B|C [P] for every (A, B|C') € T(N)

and perfectly Markovian if the converse implication holds as well. It was shown in [33]
(Theorem 11) that a perfectly Markovian discrete probability measure exists for every
undirected graph over N. In other words, every UG model is a (probabilistic) CI model
and faithfulness of UG models (in sense of Section 1.1) is ensured.

REMARK 3.2 This is to explain certain habitual terminology used sometimes in literature.
The remark holds also in case of acyclic directed graphs and chain graphs (see Sections
3.2, 3.3, 3.5.4, 3.5.5). The existence of a perfectly Markovian measure which belongs to a
class of measures ¥ implies the following weaker result. Whenever a disjoint triplet ¢ is
not represented in a graph G then there exists a measure P € ¥ which is Markovian with
respect to G and t is not valid conditional independence statement with respect to P.
Some authors [25, 44, 39] say then that the class of measures W is perfect with respect to
G. Thus, Theorem 2.3 from [26] says that the class of CG measures with prescibed layout
od discrete and continuous variables is perfect with respect to every undirected graph.
However, the claim about perfectness of a class WU is also referred in literature [31, 112, 54]
as the completeness (of the respective graphical criterion relative to W) since it says that
the criterion cannot be strengthened within ¥ any more (unlike the pairwise and local
Markov conditions in case of the class of positive measures - see Remark 3.1). By strong
completeness is then meant the existence of a perfectly Markovian measure over N with
prescribed non-trivial sample space Xy [69, 54]. A
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Figure 3.2: Testing (a, f | {c, d}) according to the moralization criterion.

One can say that two undirected graphs GG and H over N are Markov equivalent if the
classes of Markovian measures with respect to G and H coincide. The result about the
existence of perfectly Markovian measures implies that it occurs iff M5 = M py. Moreover,
the observation that ¢ — b in G iff =(a 1L b| N \ ab [G]) implies that Mg = My iff
G = H. Thus, the equivalence question (in sense of Section 1.1) has a simple solution in
case of undirected graphs.

REMARK 3.3 A marginaly continuous probability measure over N is called factorizable
with respect to an undirected graph G over N if it factorizes after the class (see p. 22) of
its cliques. It is known that every factorizable measure is Markovian [52], the converse is
true for positive measures [43] but not for all (discrete) measures [60].

One can say that two graphs are factorizably equivalent if the corresponding classes of
factorizable measures coincide. However, this notion is not very sensible in the frameowrk
of undirected graphs since it reduces to identity of graphs in this case (one can use the
same reasoning like in case of Markov equivalence). A

The restriction of an UG model to a set ) # T C N is an UG model [111]. However,
the corresponding marginal graph G* differs from the usual induced subgraph Gr. For
a,b € T one has a — b in G7 iff there exists a path in G between a and b consisting of
nodes of {a,b} U (N\T).

3.2 Acyclic directed graphs

These graphical models are also known under name Bayesian networks [78]. Note that
the majority of authors became accustomed to the phrase 'directed acyclic graphs’ which
is not accurate from grammatical point of view (since the adjectives do not commute).
The respective abbreviation DAG is therefore commonly used.

Two basic criteria to determine whether a triplet (A, B|C') € T(N) is represented in an
acyclic directed graph G were developed. Lauritzen et. al. [52] proposed the moralization
criterion while the group around Pearl [30] used the d-separation criterion (d means
"directional’).
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The moralization criterion has three stages. First, one takes the set T = ang(ABC)
and considers the induced subgraph Gr. Second, Gt is changed into its moral graph H,
that is the underlying graph of the graph K (with mixed edges) over T which is obtained
from the graph G'r by adding a line @ — b in K whenever there exists ¢ € T having both a
and b as parents in G7. The name 'moral graph’ was motivated by the fact that the nodes
having a common child are 'married’. The third step is to decide whether C' separates
between A and B in H. If yes, one says that (A, B|C) is represented in G according to
the moralization criterion. For illustration see Figure 3.2 where the tested triplet is not
represented in the original graph.

To formulate d-separation criterion one needs some auxiliary concepts as well. Let
W:cCy,...,Ch, n > 1Dbe aroute in a directed graph G. By a collider node with respect to
w is understood every node ¢;, 1 < 7 < n such that ¢;_y = ¢; < ¢;41 in w. One says that
w is active with respect to a set C C N if

e every collider node with respect to w belongs to ang(C),
e every other node of w is outside C.

Route which is not active with respect to C' is blocked by C. A triplet (A, B|C) is rep-
resented in G according to the d-separation criterion if every route (equivalently every
path) in G from A to B is blocked by C. For illustration of d-separation criterion see
Figure 3.3. It was shown in [52] that the moralization and d-separation criteria for acyclic
directed graphs are equivalent. Note that the moralization criterion is effective if (A, B|C)
is represented in G while d-separation is suitable for the opposite case. The third possible
equivalent criterion (a compromise between those two criteria) appeared in [58].

One writes A Il B|C [G] whenever (A, B|C') € T(N) is represented in an acyclic
directed graph G according to one of the criteria. Thus, every acyclic directed graph G
induces a formal independence model

Mg = {(A,B|C) e T(N); A1 B|C [G]}.

Following common practice let me call every independence model obtained in this way a
DAG model. These models were not characterized like UG models, just several formal
properties of DAG models were given in [78]. They imply that every DAG model is a
graphoid satisfying the composition property. The problem of axiomatic characterization
of DAG models seems to be more complicated - see Remark 3.5.

The definition of Markovian and perfectly Markovian measure with respect to an acyclic
directed graph is analogous to the case of undirected graphs. It was shown in [31] that a
perfectly Markovian discrete probability measure exists for every acyclic directed graph.
Hence, the existence of a perfectly Markovian measure with prescribed non-trivial discrete
sample space was derived [69]. Thus DAG models are also probabilistic CI models.

Two acyclic directed graphs are Markov equivalent if their classes of Markovian mea-
sures coincide. The problem of graphical characterization of this equivalence was probably
first solved in [120] but the result can be found also in other publications [5, 94] and fol-
lows from an analogous result for chain graphs [25] as well. Let’s call by an immorality in
an acyclic directed graph G every induced subgraph of G for a set T'= {a, b, ¢} such that
a — cin G, b — cin G and [a,b] is not an edge in G. Two acyclic directed graphs are
Markov equivalent iff they have the same underlying graph and the same immoralities.
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Figure 3.3: The path a — b < e — f is active with respect to C' = {¢, d}.
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Note that the word 'immorality’ has the same justification like 'moralization criterion’;
other authors used various alternative names like 'unshield colliders’, "v-structures’ and
'uncoupled head-to-head nodes’.

However, the question of choice of a suitable representative of equivalence class has no
natural solution in the framework of acyclic directed graphs. There is no distinguished rep-
resentative in every class of equivalent graphs. Thus, hybrid graphs like essential graphs
(5] or (completed) pattern [120] were used in literature to represent uniquely equivalence
classes of acyclic directed graphs. The problem of estimation of DAG models from data,
more exactly estimation of an essential graph on basis of the induced independence model
(which could be obtained as a result of statistical tests based on data) was treated in
[121, 68, 16].

REMARK 3.4 It is a speciality of the case of acyclic directed graphs that for marginally
continuous probability measures the respective concept of (recursively) factorizable mea-
sure coincides with the concept of Markovian measure [52]. Another specific feature of
this case is that an analogue of the 'local Markov property’ is equivalent to the ’global
Markov property’ [52]. This fact can be also derived from the result in [119] saying that
the least semi-graphoid containing the following collection of independence statements

a; 1L {ay,...,a;1} \ pag(a;) | pag(a;)) fori=1,....n

where aq,...,a,, n > 1 is an ordering of nodes of G consonant with direction of arrows,
is nothing but the induced model M. The above collection of independence statement
is called often an causal input list or 'stratified protocol’. A

Unlike the case of UG models the restriction of a DAG model need not be a DAG
model as the following example shows.

EXAMPLE 3.1 There exists a DAG model over N = {a,b,c,d, e} whose restriction to
T = {a,b,c,d} is not a DAG model over T'. Consider the independence model induced by
the graph in Figure 3.4. It was shown in [21] (Lemma 5.1) that its restriction to 7" is not
a DAG model. This unpleasant property of DAG models probably motivated attempts
to extend study to DAG models with hidden variables, that is restriction of DAG models
- see Section 3.5.7. %
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Figure 3.4: Acyclic directed graph with hidden variable e.

REMARK 3.5 An indirect consequence of the preceding example is that DAG models can-
not be characterized in terms of properties of ’semi-graphoid’ type (unlike UG models).
To evidence it take the following perspective. Let us call by a relevance statement over N
any independence or dependence statement which corresponds to a disjoint triplet over
N. By a full-consistent set of relevance statements is understood a set of these statements
over N such that for every (A4, B|C') € T(N) exclusively either the corresponding indepen-
dence statement or the corresponding dependence statements belongs to the set. Every
independence model can be easily identified with a set of relevance statements of this
kind: every 'missing’ independence statement is automatically regarded as a dependence
statement.

Consider special formal properties of full-consistent sets of relevance statements where
a finite conjunction of relevance statements (which may be empty) implies another rel-
evance statement. These formal properties are general enough since every requirement
that a finite conjuction implies a finite disjunction (of relevance statements) can be equiv-
alently described in this way (because of full-consistency). To be more specific, I have
in mind properties expressed in the form of ’syntactic inference rules’ (e.g. semi-graphoid
properties on p. 15 or the properties characterizing UG models on p. 37). The interpre-
tation for a given set of variables N is this: a rule of this sort is applicable only when the
substitution of subsets of N for capital letters A, B,C, ... (resp. elements of N for lower
case letters like d; the symbol () has specific meaning) leads to relevance statements over
N which correspond to disjoint triplets over N (for all involved statements!).

Basic observation is that the restriction of any full-consistent set of relevance state-
ments over N satisfying a formal property of this kind to a set ) # T C N is a full-
constistent set of relevance statements over T satisfying the same formal property. This
hold for any (even infinite) collection of formal properties of this type. Therefore, because
of Example 3.1, DAG models can never be characterized by means of any collection of
these properties.

However, perhaps DAG models can be characterized by means of more general formal
properties where ’elementary clauses’ are more complex and represent sets of relevance
statements. For example, one symbol AT B | C'T could represent a class of all dependence
statements AT B |D where C C D C N\ AB. According to e-mail communication by
T. Verma such a characterization is possible but very complex. A

3.3 Classic chain graphs

A chain graph is a hybrid graph without directed cycles or equivalently a hybrid graph
which admits a chain (see Section 10.3, p. 154). The class of chain graphs was introduced
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Figure 3.5: Testing (a,d | {b, ¢, g}) according to the moralization criterion for chain graphs.

by Lauritzen and Wermuth in middle eighties in the report [47] which became later a
basis of a journal paper [50].

Classic interpretation of chain graphs is based on the moralization criterion for chain
graphs established by Lauritzen [51] and Frydenberg [25]. The main distinction between
the moralization criterion for chain graphs and for acyclic directed graphs (see p. 40) is
a more general definition of the moral graph in case of chain graphs. Supposing Gr is
a hybrid graph over ) # T' C N one defines a graph K with mixed edges over T by
adding lines @ — b in K whenever there exist ¢,d € T belonging to the same connectivity
component of G (possibly ¢ = d) such that @ — ¢ in Gy and b — d in Gy. The moral
graph H of G is then the underlying graph of K. A triplet (A, B|C') € T (N) represented
in a chain graph G over N according to the moralization criterion if C' separates between
A and B in the moral graph Gp where T' = ang(ABC). For illustration see Figure 3.5.

An equivalent c-separation criterion (¢ stands for ’chain’) which generalizes the d-
separation criterion for acyclic directed graphs was introduced in [11]. This criterion was

later simplified as follows [113]. By a section of a route w : ¢1,...,¢,, n > 1 in a hybrid
graph G is understood a maximal undirected subroute ¢; — ... — ¢; of w (that is either
i =1or [¢;_1,¢] is not a line, analogously for j). By a collider section of w is understood
a section ¢;,...,c;, 1 <i<j <mnsuchthat ¢,y = ¢ —... —¢j < ¢j41 in w. A route w

is superactive with respect to a set C' C N if

e cvery collider section of w contains a node of C,

e every other section of w is outside C.

Route which is not superactive with respect to C' is blocked by C. A triplet (A, B|C) €
T(N) is represented in G according to the c-separation criterion if every route in G from
A to B is blocked by C. The equivalence of the c-separation criterion and the moralization
criterion was shown in [112] (Consequence 1). One writes A Il B|C [G] if (A, B|C) is
represented in a chain graph G according to one of these criteria. The induced formal
independence model is then

Mg = {(A,B|C) e T(N); A1 B|C [G]}.

Thus, the class of CG models was introduced. Since c-separation generalizes both the
separation criterion for undirected graphs and the d-separation criterion for acyclic di-
rected graphs every UG model and every DAG model is a CG model (for illustration see
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Figure 3.6 on p. 46). Every CG model is a graphoid satisfying the composition property
[112]. Note that Example 3.1 can serve also as an example that the restriction of a CG
model need not be a CG model. Therefore, one can repeat the arguments from Remark
3.5 showing that CG models cannot be characterized by means of formal properties of
"'semi-graphoid’ type.

REMARK 3.6 Unlike the case of undirected and acyclic directed graphs blocking of all
routes required in c-separation criterion is not equivalent to blocking of all paths. Consider
the chain graph G in the left-hand picture of Figure 3.5. The only path between A = {a}
and B = {d} is a - b — ¢ — d which is blocked by C' = {b,e,g}. However, the
route a - b —c —e + f — g+ ¢ — dis active with respect to C'. Thus, one has
—{a 1L d|{b,e,g} [G]}. Despite the fact that the class of all routes between two sets
could be infinite c-separation is finitely implementable for another reason - see Section 5
in [113].

Note that the above mentioned phenomenon was the main reason why the original
version of c-separation [11] looked akward. It was formulated for a special finite class of
routes called ’trails’ and complicated by subsequent inevitable intricacies. A

A probability measure P over N is Markovian with respect to a chain graph G over N
if
A1l B|C [G] implies A 1L B|C [P] for every (A, B|C') € T(N)
and perfectly Markovian if the converse implication holds as well. The main result of [112]

says that a perfectly Markovian positive discrete probability measure exists for every chain
graph. In particular, faithfulness of CG models (in sense of Section 1.1) is ensured as well.

Two chain graphs over N are Markov equivalent if their classes of Markovian measures
coincide. These graphs were characterized in graphical terms by Frydenberg [25]. By a
complez in a hybrid graph G over N is understood every induced subgraph of G for a set
T ={dy,...,dp}, k > 3 such that d; — dy, d; — d;j 1 for i = 2,...,k — 2, d_1 < dj in
G and no additional edge between (distinct) nodes of {dy,...,d;} exists in G. Two chain
graphs over N are Markov equivalent iff they have the same underlying graph and the
same complexes.

However, unlike the case of acyclic directed graphs the advanced question of repre-
sentation of Markov equivalence classes has an elegant solution. Every class of Markov
equivalent chain graphs contains a naturally distinguished member! Given two chain
graphs GG and H over N having the same underlying graph one says that G is larger than
H if every arrow in G is an arrow in H with the same direction. Frydenberg [25] showed
that every class of Markov equivalent chain graphs contains a graph which is larger than
every other chain graph within the class (that is, it has the greatest number of lines).
This distinguished graph is named the largest chain graph of the equivalence class. An
elegant graphical characterization of those graphs which are the largest chain graphs was
presented in [122]. The paper also describes an algorithm for transformation of every
chain graph into the respective largest chain graph. An alternative algorithm is presented
in [110] where the problem of finding the largest chain graph on basis of induced formal
independence model is solved. This could be utilized for learning CG models.
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REMARK 3.7 Lauritzen [53], Section 3.2.3 defined the concept of (marginally continuous)
factorizable measure with respect to a chain graph. Like in case of undirected graphs every
factorizable measure is Markovian and the converse is true for positive measures [25].
Well, having fixed the sample space (Xy, Xy) where A; is non-trivial for each i € N
one can say that two chain graphs over N are factorizably equivalent if the corresponding
classes of factorizable measures (on Xy) coincide. However, unlike the case of undirected
and acyclic directed graphs the hypothesis that this equivalence coincides with Markov
equivalence has not been confirmed untill now - see Question 3. A

3.4 Within classic graphical models

This section deals with some methods of description of probabilistic structures which in
fact fall within the scope of classic graphical models.

3.4.1 Decomposable models

Very important class of undirected graphs is the class of triangulated graphs. An undi-
rected graph G is called triangulated or chordal if every cycle ay,...,a,, n > 5 in G has
a ’chord’, that is a line between nodes of {ai,...,a, 1} different from the lines of the
cycle. There are several equivalent definitions of a chordal graph; one of them says that
the graph can be decomposed in a certain way into its cliques (see [53], Proposition 2.5)
which motivated other alternative name decomposable graph (see p. 141). For this reason
UG models induced by triangulated graphs are named decomposable models [78]. Another
equivalent definition (see [53]|, Proposition 2.17) is that all cliques of the graph can be

ordered into a sequence C1,...,C,,, m > 1 satisfying the running intersection property
j<i

Note that the phrase acyclic hypergraph is sometimes used in literature for a class of
sets admitting an ordering of this type. The sets S; are then called separators since S;
separates the 'history’ H; = Uj<2. C; \ S; from the 'residuals’ R; = C; \ S; in the graph
for every i = 2,...,m (see [53], p. 15). Actually, separators and their multiplicity (i.e.
the number of indices 7 € {2,...,m} for which S = S;) do not depend on the choice of
the sequence satisfying the running intersection property (see Lemma 7.2 in Section 7.2.2
or [48]). Note that the running intersection property has a close connection to marginal
problem within the framework of probabilistic expert systems [37, 40].

One can show (by repeated application of Proposition 3.17 from [53]) that a marginally
continuous probability measure P is Markovian with respect to a triangulated undirected
graph G over N iff its marginal densities f4, A C N satisfy the following product formula

_ HCeC fc(l‘c)
fn() Mows fo(w5)"®

where C is the class of cliques, S the class of separators and w(S) denotes the multiplicity
of a separator. Thus, to store a discrete measure P in memory of a computer one needs
to store only its clique marginals.

(3.2)
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Figure 3.6: Relationships among classic graphical models.

Further related equivalent definition of a triangulated graph is the existence of a
junction tree ([17], Theorem 4.6) of its cliques (and separators). Junction trees then form
a mathematical basis for miscellaneous effective computational methods [89, 17] which
originate from the local computation method [49]. Thus, decomposable models are very
suitable from the point of view of implementation (see Section 1.1, p. 9).

Perhaps another characterization of decomposable models is worthy of mentioning.
Decomposable models are just those formal independence models which are simutaneously
UG models and DAG models. For illustration see Figure 3.6. A characterization of
decomposable models in terms of a finite number of formal properties is given in [15]. It
implies that decomposable models are closed under restriction.

3.4.2 Recursive causal graphs

The concept of recursive causal graph [41] seems to precede the concept of chain graph.
It can be equivalently defined as a chain graph which admits a chain such that all its lines
belong to the first block. Thus, both undirected and acyclic directed graphs are special
cases of recursive causal graphs. The way of ascribing of an independence model to a
recursive graph is consonant with the way used in case of classic chain graphs.

3.4.3 Lattice conditional independence models

Andersson and Perlman [4] came with an idea to describe probabilistic CI structures
by finite lattices (of subsets of N). Given a ring R of subsets of N one says that a
probability measure over N satisfies the lattice conditional independence model (= LCI
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model) induced by R if
VE,FER (E\F)l1 (F\E)|ENnF[P].

However, it was found later in [6] that LCI models coincide with DAG models induced
by transitive acyclic directed graphs in which @ — b and b — ¢ implies a — ¢. Thus, LCI
models also fall within the scope of classic graphical models. Note that these models are
advantageous from the point of view of learning. It was shown in [80] that an explicit
formula for the maximum likelihood estimate exists even in case of 'non-monotone’ pattern
of missing data.

3.4.4 Bubble graphs

Shafer in Section 2.3 of [89] defined bubble graphs which are not graphs in standard sense
mentioned in Section 10.3. A bubble graph over N is specified by an ordered decomposition
Bi,...,B,, n > 1 of N into non-empty subsets called bubbles and by a collection of
directed links which point to bubbles although they originate from single nodes taken
from the preceding bubbles. Every graph of this type describes a class of probability
measures over N which satisfy certain factorization formula.

One can associate a chain graph with every bubble graph as follows. Join nodes in
each bubble by lines and replace any directed link from a node a € N to a bubble B C N
by the collection of arrows from a to every node of B. Then one can show easily that a
probability measure over N satisfies the factorization formula corresponding to the bubble
graph iff it factorizes with respect to the ascribed chain graph in sense of Remark 3.7. In
particular, every bubble graph can be interpreted as a classic chain graph. On the other
hand, every DAG model can be described by a bubble graph.

3.5 Advanced graphical models

Various types of graphs have been recently proposed in literature in order to describe
probabilistic structures (possibly expressed in terms of structural equations for random
variables). Some of these graphs can be viewed as tools for description of CI structures
(although this may not be the original aim of respective authors). This section gives an
overview of these graphical approaches. Note that the majority of formal independence
models ascribed to these graphs are semi-graphoids satisfying the composition property.

3.5.1 General directed graphs

A natural way of generalization is to allow directed cycles. Spirtes, Glymour and Scheines
(see Chapter 12 in [94]) mentioned possible use of general directed graphs for description
of models allowing feedback. They proposed to use d-separation criterion (see p. 40) to
ascribe a formal independence model to a directed graph (even allowing multiple edges).
It was shown in [95] that even in case of general directed graphs, d-separation criterion is
equivalent to the moralization criterion and the criteria are complete (in sense of Remark
3.2) relative to the class of non-degenerate Gaussian measures. Richardson [83] published
a graphical characterization of Markov equivalent directed graphs. It is rather complex
in comparison with the case of acyclic directed graphs (six independent conditions are
involved).
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3.5.2 Reciprocal graphs

Koster [44] introduced very general class of reciprocal graphs. A reciprocal graph G over
N is a graph with mixed edges over N (multiple edges are allowed) such that there is no
arrow in G between nodes belonging to the same connectivity component of G. Thus,
every classic chain graph is a reciprocal graph and every (general) directed graph is a
reciprocal graph as well. The moralization criterion for chain graphs (see p. 43) can be
used to ascribe a formal independence model to every reciprocal graph. Note that in case
of directed graphs it reduces to the moralization criterion treated by Spirtes [95].

Thus, consistency of reciprocal graphs (see p. 8) is ensured. The question of their
faithfulness remains open but the related question of existence of a perfect class of mea-
sures (see Remark 3.2) was answered positively. Koster’s aim was to apply these graphs to
simultaneous equation systems (LISREL models [38]). A certain reciprocal graph can be
ascribed to every LISREL model so that the class of non-degenerate Gaussian measures
satisfying the LISREL model is perfect with respect to the assigned reciprocal graph (in
sense of Remark 3.2).

3.5.3 Joint-response chain graphs

Cox and Wermuth [18] generalized the concept of chain graph by introducing two addi-
tional types of edges. A joint-response chain graph G is a chain graph (in sense of Section
10.3) in which, however, every arrow is either a solid arrow or a dashed arrow and every
line is either a solid line or a dashed line. Thus, even four types of edges are allowed in a
graph of this type. Moreover, two technical conditions are required for every connectivity
component C' of a joint-response chain graph, namely

e all lines within C' are of the same type (i.e. either solid or dashed),
e all arrows directed to nodes of C are of the same type.

The interpretation of these graphs (see [18], Section 2.3) is more likely in terms of what
is known as pairwise Markov property (see Remark 3.1). Namely, the absence of an edge
between nodes a and b is interpreted as a CI statement a 1L b| C where the set C' C N\ ab
depends on the type of ’absent” edge. Note that technical conditions above allow one to
deduce implicitly what is the type of the 'absent’ edge.

The resulting interpretation of joint-response chain graphs with solid lines and arrows
only is then in concordance with the original interpretation of chain graphs (see Section
3.3) so that they generalize classic chain graphs. An analogue of global Markov property
was established in two other special cases (see Sections 3.5.4 and 3.5.5).

REMARK 3.8 Following an analogy with development of classic graphical models (see
Remark 3.1) observe that in order to determine the strongest possible Markov condition
(on basis of pairwise Markov condition) one needs to know what is the respective class
of probability measures. This class of measures was traditionally closely connected with
the considered class of graphs. It was the class of positive measures in case of CG models
and UG models (which are called concentration graphs by Cox and Wermuth [18]), the
class of Gaussian measures in case of covariance graphs (see Section 3.5.4) and the class
of all probability measures in case of acyclic directed graphs (see Remark 3.4). Since
Cox and Wermuth did not explicate the class of measures which should correspond to
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general joint-response chain graphs one cannot derive ’automatically’ the respective global
Markov condition. Well, I can only speculate that they have probably in mind the class
of non-degenerate Gaussian measures. In particular, global Markov condition for general
joint-response chain graph was not established so far (see Section 2.4.5 of [18]) and the
question of consistency (see Section 1.1) remains to be solved. A

Thus, other theoretical questions mentioned in Section 1.1 do not have sense for joint-
response chain graphs untill consistency is established for them.

3.5.4 Covariance graphs

However, consistency was ensured in a special case of undirected graphs made of dashed
lines and named covariance graphs. Kauermann [39] formulated a global Markov property
for covariance graphs which is equivalent to the above mentioned condition of Cox and
Wermuth for every probability measure whose induced independence model satisfies the
composition property. A triplet (A, B|C) € T(N) is represented in a covariance graph G
if N\ ABC separates between A and B. Thus, every covariance graph induces a graphoid
satisfying the composition property. Kauerman [39] also showed that the class of Gaussian
measures is perfect (in sense of Remark 3.2) with respect to every covariance graph. In
particular, his criterion is the strongest possible one for the considered class of measures.

3.5.5 Alternative chain graphs

Another class of joint-response chain graphs for which the global Markov property was
established are chain graphs with solid lines and dashed arrows only. Lead by a specific
way of parametrization of non-degenerate Gaussian measures Andersson, Madigan and
Perlman [7] introduced ’alternative Markov property’ (AMP) for chain graphs. Their
alternative chain graphs are chain graphs in sense of Section 10.3 but their interpretation
is different from the interpretation of classic chain graphs (see Section 3.3) so that they
correspond to the above mentioned joint-response chain graphs (see [7], §1 for details).

The corresponding augmentation criterion is analogous to the moralization criterion
for classic chain graphs but it is more complex. Testing whether a triplet (A, B|C') € T (N)
is represented in an alternative chain graph G over N consists of 3 steps. The first step
is a specific restriction of G to an ’extended graph” over a set T" C N involving ABC
(= an analogue of the induced graph Gr in the moralization criterion). The second step
is transformation of the extended graph into an undirected 'augmented graph’. This
is done by adding some edges and taking the underlying graph (= an analogue of the
moralization procedure). The third step is testing whether C' separates between A and B
in the augmented graph.

Like in case of classic chain graphs an equivalent p-separation criterion (p stands for
'path’) was introduced [54]. The main result of [54] is the existence of perfectly Markovian
non-degenerate Gaussian measure for every alternative chain graph. Thus, the faithfulness
of these models is ensured. Moreover, Markov equivalent alternative chain graphs were
characterized in graphical terms as well [7]. Every class of Markov quivalence can be
represented by respective essential graph (for details see [7], §7).
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3.5.6 Annotated graphs

Paz proposed in [75] a special fast implementation (modification) of the moralization
criterion for acyclic directed graphs. In the preparatory stage of that procedure the
original directed graph G is changed into its moral graph and every its immoralitity
a — ¢ < b in G is recorded by annotation of the edge a — b of the moral graph by
the set C' of all descendants of ¢ in G. Thus, the original graph over N is changed into
an annotated graph over N, that is an undirected graph supplemented by a collection
of ’elements’ [{a, b} |C'] where a,b € N, a # b and ) # C C N \ ab which represents
annotated edges. Testing whether a triplet (A, B|C') € T (V) is represented in G then
consists in application of a special membership algorithm for annotated graphs. This
algorithm consists in successive restriction of the graph, removal of (respective) annotated
edges and final checking whether C separates between A and B in the resulting graph.
All this procedure is equivalent to the moralization algorithm [75].

The point is that this approach has much wider applicability. In [76] the class of regular
annotated graphs was introduced together with the corresponding general membership
algorithm. Formal independence model induced in this way by a regular annotated graph
was shown to be a graphoid. Regular annotated graph can serve as a condensed record
for the least graphoid containing the unions of UG models (= their graphoid closure).
Given a sequence of undirected graphs G; = (N;,L;), i = 1,...,k (kK > 1) such that
N; € Njyqp and L; C Ly for e =1,...,k — 1 a specific annotation algorithm described
in [76] allows one to construct a regular annotated graph over N = Nj such that the
independence model induced by it is just the graphoid closure of all UG models induced
by G;, i = 1,...,k. Since every (classic) CG model can be obtained in this way regular
annotated graphs generalize classic graphical models.

3.5.7 Hidden variables

Example 3.1 shows that the restriction of a DAG model need not be a DAG model.
This maybe led to an idea to describe restrictions of DAG models by means of graphical
diagrams. These models are usually named the models with hidded variables since except
‘observed’ variables in N one anticipates other 'unobserved’ hidden variables K and a

DAG model over NK.

Geiger, Paz and Pearl [34] introduced the concept of embedded Bayesian network. Tt is
a graph over (observed variables) N allowing both directed and bidirected edges (without
multiple edges) such that purely directed cycles (that is directed cycles made exclusively
of arrows) are not present in the graph. A generalized d-separation criterion was used to
ascribe a formal independence model over N to a graph of this type. It is mentioned in
[34] that one can always find a DAG model over a set M O N whose restriction to N
is the ascribed independence model. Moreover, according to Pearl’s oral communication,
Verma showed that the restriction of every DAG model can be described in this way. Note
that faithfulness of embedded Bayesian networks is an easy consequence of faithfullness
of DAG models and the above mentioned claims.

However, there are other graphical methods for description of models with hidden
variables. For example, summary graphs from [18], §8.5 or ancestral graphs mentioned
below.
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3.5.8 Ancestral graphs

Motivated by the need to describe classes of Markov equivalent (general) directed graphs
Richardson [84] proposed to use special graphical objects called partial ancestral graphs
(PAGs) for this purpose. PAGs are graphs whose edges have 3 possible endings for both
end-nodes and where the endings of different edges near a common end-node may be
connected by two possible ’connections’. Every mark of this type in a PAG express
certain graphical property shared by all graphs within the Markov equivalence class, for
example that a node is not an ancestor of another node in all equivalent graphs.

The idea of graphical representation of common features of classes of Markov equiv-
alent graphs was later substantially simplified. In a recent paper [85] Richardson and
Spirtes introduced ancestral graphs. These graphs admit three types of edges, namely
lines, arrows and bi-directed edges (e.g. a <> b) and satisfy some additional requirements.
These requirements imply that multiple edges and loops are not present in ancestral
graphs. A formal independence model over N is ascribed to an ancestral graph over N
by means of the m-separation criterion which generalizes the d-separation criterion for
acyclic directed graphs.

Additional standardization of ancestral graphs is suitable. Mazimal ancestral graph
(MAG) is an ancestral graph G such that [a,b] is an edge in G iff ={a 1L b|C [G]}
for every C C N \ ab. MAGs exhibit some elegant mathematical properties. One can
define graphical operation of marginalizing and conditioning of MAGs which corresponds
to the respective operation with induced formal independence models (c.f. Section 8.2.1).
Edges of a MAG G correspond to single real parameters in a certain parametrization of
the class of non-degenerate Gaussian measures which are Markovian with respect to G.
Moreover, there exists a perfectly Markovian Gaussian measure with respect to G. Thus,
the question of faithfulness (see Section 1.1) has positive solution in this framework. Note
that MAG models involve both UG models and DAG models and coincide with the class
of models induced by summary graphs - see §9.3.1 in [85].

3.5.9 MC graphs

Koster [45] introduced a certain class of graphs which admit the same three types of edges
as ancestral graphs. However, in these graphs, called MC' graphs, multiple edges and some
loops are allowed. The abbreviation MC means that graphical operations of 'marginalizing
and conditioning’ can be applied to these graphs (like in case of MAGs). However, unlike
m-separation the respective separation criterion for MC graphs requires blocking of all
routes (like in the c-separation criterion for classic chain graphs - c.f. Remark 3.6). As
mentioned in §9.2 of [85] the separation criterion for MC graphs generalizes m-separation
criterion. Thus, the class of formal independence models induced by MC graphs involves
MAG models. On the other hand, although MC graphs include chain graphs the respective
separation criterion in case of chain graphs differs both from the c-separation criterion
and from the p-separation criterion.

3.6 Incompleteness of graphical approaches

Let me raise the question how many probabilistic CI models can be described by graphs
(cf. the question of completeness in Section 1.1, p. 8). Expressiveness of graphical methods
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varies. For example, in case |N| = 3 one has 8 UG models and 11 DAG models (= CG
models). But in case |[N| = 4 one has 64 UG models, 185 DAG models and 200 CG models,
while in case |[N| =5 there exist 1024 UG models, 8782 DAG models [5] and 11519 CG
models [122]. However, this is not enough for description of CI structures induced by
discrete probability measures. Well, in case |N| = 3 one has 22 discrete CI models but in
case |N| = 4 already 18300 CI models! [107] So, there is a tremendeous gap between the
number of classic graphical models and the number of discrete probabilistic CI structures
in case |N| = 4 and this gap increases with |N|. In particular, classic graphical models
cannot describe all CI structures.

The reader may object that a sufficiently wide class of graphs could possibly cure the
problem. Let me give an argument against it. Having fixed a class of graphs over N in
which only finitely many types of edges are allowed the number of these graphs is bounded
by the cardinality of the power set of the set of possible edges which grows polynomially
with n = |N|. On the contrary, as shown in Consequence 2.6 on p. 33 the number of
discrete probabilistic CI structures grows with n at least as rapidly as the power set of
power of n.

Thus, in my opinion, one can hardly achieve completeness of a graphical approach (see
p. 8) relative to the class of discrete measures and this may result in serious methodological
errors (see Section 1.1 p. 10). Well, perhaps one can think about a class of advanced
complex graphs which allow exponentially many ’(hyper)edges’ (e.g. annotated graphs)
and which has a chance to achieve completeness. But complex graphs of this sort loose
their easy interpretability for humans.

The conclusion above is the reason for an attempt to develop a non-graphical approach
to the description of probabilistic CI structures. The approach described in subsequent
chapters achieves completeness in discrete framework and had minor chance to be accept-
able by humans. On the other hand, the mathematical objects which are used describe
more than necesary in sense that some induced formal independence models are not
probabilistic CI models. The loss of faithfulness is a natural price for the possibility of
interpretation and relatively good solution of the equivalence question. Nevertheless, I
consider these two gains more valuable than faithfulness.
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Chapter 4

Structural 1imsets: fundamentals

The moral of the proceding chapter is that the main drawback of graphical models is their
inability to describe all probabilistic conditional independence structures. This motivated
an attempt to develop an alternative method of their description which overcomes this
drawback and keeps some assets of graphical methods. The central notion of this method
is the concept of structural imset introduced in this chapter. Note that basic ideas of
the theory were presented earlier [108] but (later recognized) superfluous details worsened
understanding of the message of the original series of papers. This work brings (in the
next four chapters) much simpler presentation supplemented by facts and perspectives
revealed later.

4.1 Basic class of distributions

The class of probability measures for which this approach is applicable, that is whose
induced conditional independence models can be described by structural imsets, is rela-
tively wide. It is the class of measures over N with finite multiinformation mentioned in
Section 2.3.4. The aim of this section is to show that this class involves three basic classes
of measures used in practice in artificial intelligence and multivariate statistics.

4.1.1 Discrete measures

These simple probability measures (see Remark 2.2, p. 13) are mainly used in probabilistic
reasoning [78] which is an area of artificial intelligence. Positive discrete probability
measures are behind the models used in analysis of contingency tables (see [53], Chapter
4) which is an area of statistics. The fact that every discrete probability measure over N
has finite multiinformation is trivial.

4.1.2 Non-degenerate Gaussian measures

These measures (see Section 2.3.6 for their basic properties) are widely used in mathe-
matical statistics, in particular in multivariate statistics [18]. Consequence 2.5 says that
every non-degenerate Gaussian measure over N has finite multiinformation.
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4.1.3 Non-degenerate conditional Gaussian measures

This class of measures was proposed by Lauritzen and Wermuth [50] with the aim to unify
discrete and continuous graphical models. Non-degenerate conditional Gaussian measure
P over N, in the sequel called shortly CG-measure over N, will be specified as follows.
The set N is partitioned into the set A of discrete variables and the set I' of continuous
variables. For every i € A, X; is a finite non-empty set and X; = P(X;). For every
i €', X; = R and A&; is the class of Borel sets in R. A (discrete) probability measure
Px on (Xa,Xa) is given and a vector e(z) € RY' and a positive definite ' x T-matrix
¥(z) € R™T is ascribed to every € Xa with Pa(z) > 0if T' # (. Then P is simply
specified by its marginal for A and the conditional probability on Xr given A:

P® = Pa, Pra(x|7) = N(e(z),=(x)) for every z € Xa with Pa(z) > 0.

Of course, these requirements determine unique probability measure on (Xy, Xx). The
above definition collapses in case I' = () to a discrete measure over N and in case A = ()
to a non-degenerate GGaussian measure over V.

REMARK 4.1 Note that positive CG-measures (when Pa(z) > 0 for every x € Xa) are
mainly used in practice. A CG-measure of this type can be defined directly (see [53]
§6.1.1) by its density f with respect to the product of the counting measure on X5 and
the Lebesgue measure on Xr

f(a,y) = exp I@HR@Tv=3vT L@y for g eXa, y € Xr,

where g(z), h(xz) € R" and positive definite matrices T'(z) € R'™*" are named canonical
characteristics of P. One can compute them directly from parameters Pa(x), e(z), ()
which are named moment characteristics of the CG-distribution as follows (see [53], p.
159):

9(r) = InPa(x) ~ L In(27) — 1 n(det(S()) - £ - () - S(a) - ef).

These measures are positive in sense of Section 2.3.5 but they do not involve all discrete
measures. Therefore, the class of CG-measures was slightly enlarged in this work. A

To evidence that every CG-measure has finite multiinformation (and thus it is mar-
ginally continuous) I use auxiliary estimates with relative entropies modified in a certain
way.

Supposing (X, X') is a measurable space, P and @) are probability measures and p is
a o-finite measure on (X, X') such that P,Q < p by Q-perturbated relative entropy of P
with respect to p will be understood the integral

APl @) = [ @) dw = |

X X

dQ dP
@) @) du(x)

provided that the function lnfl—P is (Q-quasi-integrable. Of course, the value does not
m

depend on the choice of versions of Radon-Nikodym derivatives z—ﬁ or %. In case Q = P

it coincides with H (P | ) mentioned in Section 10.7. Note that a discrete version of this
concept is known in information theory as Kerridge’s inaccuracy [118] p. 322-323.
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LEMMA 4.1 Let (X, X) be a measurable space and p a o-finite measure on (X, X'). Sup-
pose that Pi,..., P,, r > 1 is a finite collection of probability measures on (X, X’) such
that —oo < H(Py|p : P)) < 400 for every k,l € {1,...,r}. Then every convex combina-
tion of Py, ..., P, has finite relative entropy with respect to u, that is

r r
-0 < H(Zak - Pyl p) < 400 whenever ay,...,a, >0, Zak =1.
k=1

Proof: Put P = EZ 1 @ - Pp, choose and fix a version of dd% for every k and fix the version

of gp > 1—; o - L. The assumption says

Vkle{l,...,r} /dpl dl;’“()mu() 0.

One has to show that

dP

/|lnd— )| dP(x / )" dP(x -I-/ln— " dP(r) < 00.
L

X X

X

To estimate the first term above use Radon-Nikodym theorem, the observation that the function
y + (y-Iny)T is convex and the inequality y™ < |y|:

[ @) ap@) < [(50@) )" duto) <
X X

7 dp
r
dPy ap; de dP;
< Olk'/( (z) - In——(z) )< > oy / In —=(z)|du(z) < co.
k=1 dp dp Z a dp |
= X
To estimate the second use the fact that the function y — (Iny)~ is convex, the inequality
y~ < |y|, Radon-Nikodym theorem and the form of %
dpP dp, i dPp,
/(md—( ~ dP(z <Zak /111—’c )~ dP(x ay, - /|n " (z)| dP(z) =
X k=1 X

—Z%/me 0 S @) o) = 3 aweone [ @)1 T @] duta) < .
X

LEMMA 4.2 Let P be a CG-measure over N = AUT and p =[],y pi where p; = v for
i € Aand pu; = X fori € I'. Then

—00o < H(P|p) <oo and —oo < H(P®W|u) < oo foreveryic N.

Proof: A direct formula for H(P|u) is easy to derive. Indeed, write

dP
@(:r,y) = PA(Z) - fen)m@)(y) for x € Xao with Px(z) >0 and y € X,
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apply logarithm, integrate it with respect to P and obtain using standard properties of
integral

Pl = [0 Pa@)dPley) + [0 fawrmiofv) aP(r.0) =
Xy XN

= H(Palua)+ ) Palw)- H(P(x[z)|ur).

IGXA,PA(I)>0

The fact —oo < H(P{}| ;) < oo for i € A is trivial. For fixed i € T first realize that
PAY is again a CG-measure where

Piya(xlz) = N(e(r)s, B(x)iq) for i € XA with Pa(z) > 0.

Therefore, the marginal P!} is nothing but a convex combination of non-degenerate

Gaussian measures. To verify —oo < H(P{}|)\) < 0o one can use Lemma 4.1. Indeed,
suppose P, = N(e,3) and P, = N(f,7) where e, f € R, 3,y > 0 are the corresponding
parameters. Because expectation and variance of P, are known one can compute easily

H(Pk|)\:Pl):/—%-ln(27r[3)— (x;;) dPl(a:):—%-ln(Qwﬂ)—%- (z —e)2dP,(z) =
R R
1 1 2 2 2 _
= —5o@m) -~ gz [@ =P’ +2-(F )2+ ("~ f)AR(@) =
R

= —%ln(Zﬂ'ﬂ)—%[V+2'(f_e)'f+(e2_f2)]:_%'ln(%ﬂ)_%'

The result is evidently a finite number. L]
CONSEQUENCE 4.1 Every CG-measure over N has finite multiinformation.

Proof: Owing to Lemma 4.2 the assumptions of Lemma 2.7 on p. 27 for S = N are
fulfilled. [

The fact above was verified by finding finite lower and upper estimates for multiinfor-
mation. The question whether there exists a suitable exact formula for values of multiin-
formation function in terms of parameters of CG-measure remains open (see Theme 1 in
Chapter 8).

REMARK 4.2 The class of CG-meassures is not closed under marginalizing which may
lead to problems when one tries to study CI within this context. However, it was shown

that this class can be embedded into a wider class of measures with finite multiinformation
which is already closed under marginalizing (see Consequence 2.2). A

4.2 Classes of structural imsets

Definitions and elementary facts concerning structural imsets are gathered in this section.
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Figure 4.1: Elementary imsets over N = {a, b, ¢}.

4.2.1 Elementary imsets

Elementary imset over a set of variables N with |N| > 2 is an imset of a specific form.
Given (an elementary) triplet (i, j|K) where K C N and i,j € N\ K are distinct (i # j)
the corresponding elementary imset wu; jxy over N is defined by the formula

Uiy = 0fijyur + 0x — dpur — Ogjyuk -

The class of elementary imsets over N will be denoted by £(N). In case |[N| =1 is the
class £(N) empty by convention. By level of an elementary imset u j k) is understood
the number |K|. For every [ =0,...,|N|—2, the class of elementary imsets of level [ will
be denoted by &(N). Supposing [N| =n > 2 it is easy to see that |&(N)| = (3) - ("7
and |E(N)| = () - 2"72. Thus, in case N = {a,b,c} one has 6 elementary imsets of 2
possible levels. They are shown in Figure 4.1.

The following observation is a basis of later results.

OBSERVATION 4.1 Supposing n = |[N| > 2 and [ € {0,...,n — 2} let us introduce a
multiset m; over N by means of the formula

my(S) =max{|S|—1—1,0} forevery SC N,

and a multiset m, over N by means of the formula

m.(S)==-1S|-(|S| —1) forevery S C N.

NN
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{a,b} {a,c} {b,c} {a,b} {a, c} {b, c}

-1 0 0 —2 0 -1
{a} 3] {c} {a} i3] {c

1
(+2)

Figure 4.2: Two combinatorial imsets over N = {a, b, c}.

Then one can observe the following facts

(a) Yue&(N) (my,u) =1,
(b) Vue&(N)\&E(N) (my,u) =0,
(c) Yueé&(N) (my,u) = 1.

Proof:The first two facts are easy to evidence, the third fact follows from the identity m, =
n—2

>~ my and the previous facts. Indeed, this identity can be verified for S C N, |S| > 2 as follows:
=0

n—2 [S]—2 [S]—2 |S|—2 |S|—2 1

domu(8) =Y mu(S) =D IS|= > 1= 1=|5]-(I8]-1) - (IS = 1) - [8] = m.(5).
1=0 1=0 1=0

0

4.2.2 Semi-elementary and combinatorial imsets

Given (A, B|C) € T(N) the corresponding semi-elementary imset wu a pcy is defined by
the formula
ua,B|cy = 0apc +0c — 0ac — OBC -

Evidently, zero imset is semi-elementary as w4 p|cy = 0 for any (A, B|C) € T4(N). Every
elementary imset is semi-elementary as well. An example of non-zero semi-elementary
imset which is not elementary is the imset wpc9) shown in the left-hand picture of
Figure 4.2. Provided one accepts the convention that zero imset is a combination of the
empty set of imsets one can observe the following fact.

OBSERVATION 4.2 Every semi-elementary imset is a combination of elementary imsets
with non-negative integral coefficients.

Proof:A non-zero semi-elementary imset has the form u 4 |y where (4, B|C) € T(N)\T4(N).

The formulas U(A,BD|C) = W(A,B|DC) t U(A,D|C) and U(AD,B|C) = W(A,B|DC) t+ WD, B|C) can be
applied repeatedly. L]
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By a combinatorial imset over N will be understood every imset u which is a combi-
nation of elementary imsets with non-negative integral coefficients, that is

Z k. where k, € Z*. (4.1)

veE(N

The class of combinatorial imsets over N will be denoted by C(N). By Observation 4.2,
every semi-elementary imset is a combinatorial imset. The converse is not true: the
imset e pje) + 2+ Ue)py in the right-hand picture of Figure 4.2 is not semi-elementary.
Clearly, every combination of combinatorial imsets with coefficients from Z* is again a
combinatorial imset. In particular, combinatorial imsets can be equivalently introduced
as combinations of semi-elementary imsets with non-negative integral coefficients.

Of course, a particular combinatorial imset can be sometimes expressed in several
different ways. For example, the imset u from the left-hand picture of Figure 4.2 can
be written either as ) + Ua,cip) OF aS Uga,cipy + Uapipy- On the other hand, there are
characteristics which do not depend on a particular way of combination. Supposing (4.1)
one can introduce the degree of a combinatorial imset u, denoted by deg(u), as follows

deg(u Z ky .
veE(N

Similarly, if |[N| > 2 then introduce the level-degree of u for every [ = 0,...,|N| — 2,
denoted by deg(u, ), as the number

deg(u, ) Z ky .
UES[ )

The following lemma implies that these numbers do not depend on the choice of coefficients
k, for v € E(N).

OBSERVATION 4.3 Supposing v € C(N) and [ € {0,...,|N|— 2} with [N| > 2
deg(ua l) = <ml7 U>, deg(u) = <m*7 U> )
where the multisets m;, m, are introduced in Observation 4.1 on p. 57.

Proof: Substitute (4.1) in (my,u) and (m,,u) and use Observation 4.1. []

4.2.3 Structural imsets

An imset u over N will be called structural if there exists n € N such that the multiple
n - u is a combinatorial imset, that is

Z k. for some n €N, k, € Z*. (4.2)
vEE(N)

In other words, an imset is structural if it is a combination of elementary imsets, re-
spectively semi-elementary imsets, with non-negative rational coefficients. The class of
structural imsets over N will be denoted by S(NN). By definition, every combinatorial
imset is structural. In case |N| < 4 the converse is true [101]. However, the question
whether this is true in general remains open (see Question 7 on p. 142).
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OBSERVATION 4.4 Every structural imset u over N is o-standardized, (mA", u) > 0 and
(m™* u) > 0 (see pp. 34-35). The only imset w € S(N) with —w € S(N) is the zero
imset w = 0.

Proof: All three properties hold for zero and elementary imsets and can be extended to
combinatorial imsets and then to structural imsets. Given w € ZPWN) with (mA%, w) = 0 for
every A C N the condition w(S) =0 for S C N can be verified by induction on |S]|. L]

Given a structural imset u let us introduce the lower class of u, denoted by L,, as the
descending class induced by the negative domain of u, that is

L,={T CN;35C N suchthat T C S and u(S) <0} = (D;)".

Similarly, one can introduce the upper class of u, denoted by U, as the descending class
induced by the positive domain of «

U,={T CN: IS C N such that T C S and u(S) >0} = (D})".
Terminology is motivated by the next fact and later results (Consequence 4.3 on p. 66).

OBSERVATION 4.5 Whenever u is a structural imset one has £,, C U,. Moreover
Us="Us. (4.3)
SELy SEUy

Proof: Supposing T € L, find T C S C N with u(S) < 0. The fact (m°T,u) > 0 from
Observation 4.4 implies the existence of S C K C N with u(K) > 0. The fact that u is o-
standardized says (m!{"",u) = 0 for every i € N which implies (4.3) then. L]

Given a structural imset u over N, by the range of u, denoted by R,,, will be understood
the set union from (4.3). The following lemma is a basis of a later result.

LEMMA 4.3 Supposing u is a non-zero combinatorial imset over N let us consider a fixed
particular combination

U= Z k,-v where k, € Z*, u#0.
veE(N)

Then there exists v € £(N) such that &k, > 0 and £, C L,.

Proof: Since u # 0 necessarily £, UlU, # (. Because u is structural, by Observation 4.5
L, CU,, and therefore U, # (). Take maximal K € U, and again using L, C U, observe
that u(K) > 0and VL D K wu(L) = 0. Introduce

Su=PN)\L,={TCN; VT CSCN u(S)>0}.

Clearly, S, is an ascending class and K € S,; let us consider a multiset s = Y ¢ ¢ 5. It
follows from the definition of S, that (s,u) > w(K) > 0. Thus, one can write

0< (s,u)= Z ky - (s,v) < Z ky - (s,v),
veEE(N) veE(N), (s,0)>0

which implies the existence v € £(N) with k£, > 0 and (s,v) > 0. Well, since S, is
ascending, an elementary imset v = ug; jjxy satisfies (s,v) > 0 iff {i,j} UK € S, and
{iI} UK, {j} UK ¢& S, (see Section 4.2.1). However, this implies £, NS, = @, which
means £, C L,,. L]
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4.3 Product formula induced by a structural imset

This formula provides a direct way of associating a structural imset with a probability
measure. [t can be viewed as a generalization of the concept of factorization into marginal
densities. To give a sensible definition I need the following auxiliary concept whose sense
becomes evident later (see Section 4.5). Suppose that P is a probability measure on
(X, Xn) which has finite multiinformation. By a reference system of measures for P will
be understood any collection {;; i € N} of o-finite measures on (X;, X;), i € N such that

Pt <« p; and  —oo < H(P| 1) < 400 for every 1€ N.

Having fixed a reference system {;1;; i € N'} one can put p = [ [,y 1 and observe P < i,
that is p is a dominating measure for P. Thus, one can repeat what is done in Convention
1 (p. 20), that is to choose marginal density fg (= a version of %) for every S C N.
Given a structural imset u over N one says that P satisfies the product formula induced
by u if
H Fs(zg)™ ) = H fo(xzs)™ ) for pae. ze Xy. (4.4)
SCN SCN
Of course, the validity of this formula does not depend on the choice (of versions) of
marginal densities. The influence of the choice of a reference system of measures will
appear to be seeming as well (see Section 4.5). On the other hand, flexibility in its choice
is advantageous since miscellaneous special cases can be described in more details.

4.3.1 Examples of reference systems of measures

Let me illustrate this concept by four basic examples. The first one shows that one can
always find a reference system for a probability measure with finite multiinformation. The
other examples correspond to important special cases mentioned already in Section 4.1.

Universal reference system

Given a probability measure P over N with H(P|[],.y P) < oo one can simply
put u; = P for every i € N. Tt is evidently a reference system of measures since
H (P} ;) = 0 for every @ € N. Let us call it the universal reference system because it
can be established for any measure with finite multiinformation.

Discrete case

Supposing P is a discrete measure on (X, Xy) with 1 < |X;| < 0o, i € N one can consider
the counting measure v on X; in place of y; for every ¢ € N. This is evidently a reference
system for P leading to the following system of marginal densities:

fs(zg) = PS({zs}) for every S C N, z € Xy.

REMARK 4.3 An alternative choice of a reference system in discrete case is possible. One
can take uniformly distributed probability measure fi; = \;(}'I on X; for every ¢ € N. This
leads to alternative marginal densities

2 _ P°({zs})
fs(zg) = TIXs|

for every S C N, z € Xy,
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with convention |Xy| = 1. A

Gaussian case

Supposing P = N (e, X) with ¥ = (0y;);jen is a non-degenerate Gaussian measure over
N one consider the Lebesgue measure A on R is place of u; for every i € N. It is a
reference system for P because H(P{}|\) = —% — 1 .In(270;) for every i € N by (10.9)
in Section 10.9.3. Owing to the fact that the marginal of a Gaussian measure is again
Gaussian and (2.19) one can choose marginal densities fg for ) .S C N in the form

1 1 T 1
— . —5-(y—es) (Bs.5)" " (y—es) S
fS(y) (2m)IS1.det(Zs.5) P for yEe R

CG-measures

Let P be a non-degenerate CG-measure over N partitioned into the set A of discrete
variables and the set I' of continuous variables. By a standard reference system for P will
be understood the system {u;; i € N} where p; = v is the counting measure on finite
X; for i € A and p; = A is the Lebesgue measure on X; = R for i« € I'. By Lemma 4.2
it is indeed a reference system of measures for P. In purely discrete or Gaussian case it
coicides with two above mentioned reference systems which I recalled explicitly in order
to emphasize the importance of these two classic cases.

One can choose the following versions of marginal densities fg for ) # S C N (of
course, the formula is more complex than in purely discrete or purely Gaussian case)

fS(xa y) - Z PA(ZL’, Z) . fe(x,z)snp,il(x,z)snp.snp(y) for xz € XSDA; (S XSDF;
2€XA\s
Pa(z,2)>0

where a detailed formula for feq) s (¥) is in (2.19).

4.3.2 Topological assumptions

The reader can object that the product formula (4.4) is not elegant enough since it
is dimmed by non-uniqueness of marginal densities and the equality is understood in
‘almost everywhere’ sense. However, under certain topological assumptions usually valid
in practice and additional natural convention it turns into a fair equality ’everywhere’.

A reference system {p;;i € N} for a probability measure P on (Xy, Xy) with finite
multiinformation will be called continuous if the following three conditions are fulfilled.

(a) X; is a separable metric space and A; is the class of Borel sets in X; for every i € N.

(b) Every open ball in X; has positive measure p; for every ¢ € N, that is
VieN VzeX, Ve>0 p(U(x,e))>0.

(c) For every ) # S C N there exists a version fg of % (where p1g = [[;cq pti) which is

continuous with respect to the product topology on Xg = [],.¢ X;.
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The following observation is easy to evidence (see the Appendix, Sections 10.4, 10.5
and 10.9 for relevant facts).

OBSERVATION 4.6 The standard reference system of measures for a non-degenerate CG-
measure over N is continuous.

In case of a continuous reference system Convention 1 can be explicated as follows.

CONVENTION 2 Suppose that P is a probability measure on (Xy, Xy) with finite multi-
information and {y;;7 € N} is a continuous reference system for P. Then (a) implies that
Xg is a separable metric space and Xg is Borel o-algebra on Xg for every ) # S C N. Put
s = I l,eq i choose a version fg of Radon-Nikodym derivative % which is continuous
with respect to respective topology on Xg and fix it. Note that it is possible owing to (c).
Let us call it the continuous marginal density of P for S. Note that it follows from (b)
that it is determined uniquely (use arguments from the proof of the next lemma).

Other notational habits from Convention 1 remain valid. In particular, every fs can

be viewed as a continuous function on Xy endowed with the product topology. A

LEMMA 4.4 Let P be a probability measure over N with finite multiinformation and
{pi;i € N} a continuous reference system of measures for P. Let’s accept Convention 2.
Then (4.4) is equivalent to the requirement

H Fs(zg) ') = H fs(zs)™ S for every = € Xy . (4.5)

SCN SCN

Proof: By (a) assume that (X;, ;) is a separable metric space for every i € N. Observe
that Xy endowed with the distance

o(z,y) = max 0i(xi,y;)  for z,y € Xy

is a separable metric space inducing product topology which generates Xs (see e.g. [98]
Theorem 1.2.3). This definition implies that open balls in Xy are Cartesian products of
open balls in X; and therefore one derives from (b)

VeeXy Ve>0 pv(Uy(z,e)) = pun(]]Uplaie) > 0.
ieN
Now, both the left-hand side and the right-hand side of (4.4) are continuous functions
on Xy by (c) (see Convention 2) and (4.4) says that their difference ¢ (which is also a
continuous function on Xy) vanishes py-a.e. Hence, fXN lg(y)|dun(y) = 0.
Suppose for contradiction that g(x) # 0 for some x € Xy. Then there exists ¢ > 0
such that V y € U(z, ) one has |g(y)| > 2% and therefore

[swlduntz [ lowldus) > 2 @) >0

(z2)
which contradicts the fact above. Therefore g(z) = 0 for every x € Xy. ]

Thus, by Observation 4.6 one can interpret the product formula induced by a structural
imset as a real identity of uniquely determined marginal densities in three basic cases
used in practice: for discrete measures, for non-degenerate Gaussian measures and for
non-degenerate CG-measures. Of course, this need not hold for arbitrary measure with
finite multiinformation and respective universal reference system of measures.
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4.4 Markov condition

The second basic way of associating a structural imset with a probability measure is
an analogue of Markov condition used in graphical models. That means, one requires
that some conditional independence statements determined by an imset through a certain
criterion are valid conditional independence statements with respect to the measure.

4.4.1 Semi-graphoid induced by a structural imset

One says that a disjoint triplet (A, B|C') € T(N) is represented in a structural imset u
over N and writes A 1L B|C [u] if there exists & € N such that k- u — w4 oy is a
structural imset over N as well. An equivalent requirement is that there exists [ € N such
that [ - u — w4 p|c) is a combinatorial imset over N. The class of represented triplets then
defines the (conditional independence) model induced by u

M, ={(A,B|C)eT(N); Al B|CJu]}.
Trivial example is the model induced by zero imset.
OBSERVATION 4.7 M, = T,(N) for u = 0.

Proof: Inclusion 75(N) C M,, is trivial. Suppose for contradiction (A, B|C) € T(N) \ T5(N)
which means that —u4 p|cy 18 a structural imset. This contradicts Observation 4.4. L]

Further example is the model induced by an elementary imset.
LEMMA 4.5 Supposing v = u; jjxy € E(N) one has
My = {(i, 1K), (J,ilK) }UT5(N).

Proof: The facts (i, j|K), (j,i|K) € M, and T,(N) C M, are evident. Suppose that
(A,B|C) € My \T5(N) and k- v = uga,pjcy + w for k € N and a structural imset w. To
evidence ABC' C ij K use Observation 4.4 to derive

k- (mAPCT vy = (mAP kv = (mMPOT uia pioy) + (m P w) > 0. (4.6)

The fact (m*#T u; j1x)) > 0 then implies ABC C ijK. Analogously, to evidence C' O K
use also Observation 4.4 with m© in (4.6) instead of m*B¢T. The fact that (A, B|C) is
a disjoint triplet and K C C' C ABC C ijK then implies that (A, B|C) coincides either
with (7, j|K) or with (j,7|K). ]

A basic fact is this.
LEMMA 4.6 Every structural imset over N induces a disjoint semi-graphoid over .

Proof: Semi-graphoid properties (see Section 2.2.2, p. 15) easily follow from the definition
above and the fact that the sum of structural imsets is a structural imset. Indeed, for
triviality property realize jia,9/cy = 0, for symmetry jia,5/c) = ji(B,ajc) and for remaining
properties fia,Bp|cy = I(A,B|DC) t [4(A,D|C)- [
For the proof of the equivalence result in Section 4.5 I need a technical lemma. In its
proof the following simple observation concerning upper classes (see p. 60) is used.
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OBSERVATION 4.8 Supposing v = w + v where w, v are structural imsets one has U, =
Uy, UU,.

Proof: Inclusion U, C U, UU, is trivial. To show U, C U, take S € U . By Observation
4.5 w(S) > 0 and w(T) = 0 whenever S C T C N. Hence, by Observation 4.4

0 < {mt,w) + () = (m*u) = 3 u(T)
T,SCT
which implies that S € Uf,,. The inclusion U,, C U,, is analogous. L]

LEMMA 4.7 Suppose that u is a structural imset over N. Then there exists a sequence
U, = Dy,...,D, = L,, r > 0 of descending classes of subsets of N and a sequence
(ay,b1|Ch), ..., {ay,b|C,) of elementary triplets over N (which is empty in case r = 0)
such that for every : =1,...,7

(a) a; AL bz | Cz [U],
(b) aiCi, b;C; € D; and D;_; =D; U {S, S C aleCZ}

Proof: Observe that for every combinatorial imset and every n € N one has U,,., = U,
Loy =Lyand AL B|C[n-u|iff A L B|C[u] for each (A, B|C) € T(N). Therefore, it
suffices to assume that « is a combinatorial imset and prove the proposition by induction
on deg(u).

In case deg(u) = 0 necessarily u = 0 and one can put » =0 and Dy = U, = L, = 0.
In case deg(u) > 1 one has u # 0 by Observation 4.3 and can apply Lemma 4.3 to find
v = Ugpcy € E(N) with £, C L, such that w = u — v is a combinatorial imset. Of
course {aC,bC} C L, a 1L b|C [u] and one can observe that £, C £, U{S;S C abC}.
Moreover, by Observations 4.3 and 4.1

deg(w) = (my, w) = (m,,u) — (m,,v) = deg(u) — 1.

In particular, one can apply the induction hypothesis to w an conclude that there exists
a sequence U, = Fo,...,Fr_1 = Ly, 7 — 1 > 0 of descending classes and a sequence
(a;, b;|Cy), i =1,...,7 — 1 of elementary triplets with a; 1L b; | C; [w] and
a;Ci, b;Cs € Fyy  Fioy = FiU{S; S C a;ib;Ci}.

Let us put D; = F, UU, U L, for i = 0,...,r — 1 and for i = r define D, = L, and
(a,,b,|Cy = (a,b|C). By Observations 4.8 and 4.5 Dy = FoUlU,UL,, = (U,UU,)UL, = U,.
It makes no problem to evidence that Dy, ..., D, satisfies the required conditions. Indeed,
a; 1L b; | C; [w] implies a; L b; | C;[u] for i < r and since £, € £, U{S; S C abC} by
w=w+wv onehas D,y = L,UU,UL, = L,U{S;S CabC} =D,U{S;S C a,b.C,}.00

The significance of the preceding lemma (summarized in the consequence below) is
that one can always 'reach’ the upper class of a structural imset from its lower class with
help of its induced conditional independence statements. Note that ’'reverse order’ in

formulation of Lemma 4.7 (going from the upper class to the lover class) is used because
it is more suitable from the point of view of the proof(s).

CONSEQUENCE 4.2 Let u be a structural imset over N. Then every descending system
& C T(N) containing £, and satisfying

V(A,B|IC)e T(N) Al B|C [u] and AC,BC € £ implies ABC €&, (4.7
necessarily contains U,,.

Proof: Apply Lemma 4.7 and prove D, C £ by reverse induction on ¢ =r,...,0. L]
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4.4.2 Markovian measures

Suppose that u is a structural imset over N and P is a probability measure over N. One
says that P is Markovian with respect to u if

Al B|Clu] implies Al B|C[P] whenever (A, B|C) € T(N).

Thus, statistical meaning of an 'imsetal’ model is completely analogous to statistical
meaning of a graphical model. Every structural imset u over N represents a class of
probability measures over N (within the respective framework of measures, e.g. discrete
measures, Gaussian measures etc.), namely the class of measures which are Markovian
with respect to u. In fact, ’imsetal’ models generalize graphical models: given a classic
graph there exists a structural imset having the same class of Markovian distributions
(for DAG models see Lemma 7.1).

One says that P is perfectly Markovian with respect to a structural imset u over N
if u induces exactly the conditional independence model induced by P, that is for every
(A, B|C) € T(N) one has

A1l B|Clu] ifandonlyif A1l B|CI[P].

One of the results of this work (Theorem 5.2) is that every probability measure with
finite multiinformation is perfectly Markovian with respect to a structural imset. On the
other hand, there are 'superfluous’ structural imsets whose induced semi-graphoid is not
a model induced by any probability measure with finite multiinformation.

EXAMPLE 4.1 There exists a structural imset u over N = {a, b, ¢,d} such that no mar-
ginally continuous measure over N is perfectly Markovian with respect to u. Put

U = Ulcd|{ab}) T U(a,b0) T Wapl{c}) T Uap/{d}) -

Evidently ¢ Il d|{a,b} [u], a 1L 0|0 [u], a 1L b|{c} [u] and a 1L b|{d} [u]. To show
that a0 | {c,d} [u] consider the multiset m; in Figure 4.3 and observe that (my,v) > 0
for every v € £(N). Hence, (m;, w) > 0 for every structural imset w over N. Because

(my, k ~u—ugp|eap) = —1 for every k € N the imset k - u — w(qp|{c,a}) is nOt structural.
However, by Consequence 2.1 there is no marginally continuous probability measure over
N which is perfectly Markovian with respect to . &

Another important consequence of Lemma 4.7 is that marginals of a Markovian mea-
sure with respect to a structural imset u for sets in £, determine uniquely its marginals
for sets in U,. This motivated the terminology lower and upper class of u introduced
in Section 4.2.3. Note that one often has ¢, = P(N) in which case whole Markovian
measure is determined by its marginals on the lower class.

CONSEQUENCE 4.3 Suppose that both P and @ are probability measures on (Xy, Xx)
which are Markovian with respect to a structural imset u. Then

[P =Q° forevery S € L,] = [P°=Q" forevery S €U,].

Proof: One can repeat the arguments used in the beginning of the proof of Lemma 2.6 (p. 24)
to verify the following 'uniqueness principle’. For every (A, B|C) € T(N)

A1 B|C[P], AL B|C[Q], P'°=Q"Y, PPY=Q"% = p'P¢=q"PC.

Then, owing to the fact that S C T, PT = QT implies P° = Q°, one can apply Lemma 4.7 and
show by reverse induction on i = r,...,0 that [ P® = Q° for every S € D;]. U]
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Figure 4.3: The multiset m; from Example 4.1.

4.5 Equivalence result

The third way of associating a structural imset with a probability measure is an algebraic
identity in which the measure is represented by its multiinformation function.

One says that a probability measure P over N with finite multiinformation complies
with a structural imset u over N if (mp,u) = 0 where mp denotes the multiinformation
function defined in Section 2.3.4.

REMARK 4.4 The concept above can be introduced alternatively in the following way.
Suppose that P is a probability measure over N which has a dominating measure (see p.
19) 1 = [L;en 1 such that —oco < H(PS| [[;cq i) < 400 for each S C N. Note that
by Lemma 2.7 P has finite multiinformation then. Thus, one can introduce the entropy
function of P relative to p as follows:

hpu(S)=—H(PS| [[w) for 0#£SCN

1€S

and hp,(0) = 0 by convention. Then P complies with a structural imset u over N iff
(hpyu,u) = 0. Indeed, (2.18) implies together with the fact that u is o-standardized

Y me(S) - ulS) ==Y heu(S) - u(S)+ Y heu({ih) - Y ulS),

SCN SCN jEN SCN,jes
—_——
0
that is (mp,u) = —(hp,, u). Note that in case of a discrete probability measure one can

always take the counting measure v in place of p. The corresponding entropy function
is then non-negative and has very pleasant properties which enable one to characterize
functional dependence statements (p. 15) with respect to P [61] (in addition to pure con-
ditional independence statements). Namely, hp,(A) < hp,(AC) for A,C C N while the
equality occurs iff A 1l A|C'[P] (c.f. Remark 2.3). However, this pleasant phenomenon
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seems to be more or less limited to discrete case. It is not clear which dominating mea-
sures in general produce entropy functions with behaviour of this type towards functional
dependence (except measures concentrated on a countable set). For example, in Gaussian
case the entropy function relative to Lebesgue measure need not be non-negative or even
monotone. This is the main reason why I prefer multiinformation function to entropy
function. The second one is that entropy function does depend on the choice of a suitable
dominating measure unlike multiinformation function. A

The main result of this chapter says that all three ways of associating structural imsets
with probability measures are equivalent. In words, a probability measure complies with
a structural imset iff it is Markovian with respect to it or iff the product formula induced
by it holds. In the proof below the following simple observation is used.

OBSERVATION 4.9 Suppose the situation from Convention 1 (p. 20). Then
VSCTCN fs(xs) =0 = fr(zr) =0 for p-ae. x € Xy. (4.8)

Proof: Combine the arguments used in Remark 2.8 with the formula (2.4) in the proof of
Lemma 2.4. L]

THEOREM 4.1 Let u be a structural imset over N, P a probability measure on (Xy, Xy)
with finite multiinformation. Suppose that {p;; i € N} is a reference system of measures
for P (p. 61); let us accept Convention 1 on p. 20. Then the following four conditions
are equivalent.

() I fs(zs)*™ =TI fs(zs)* ) for p-a.e. x € Xy,

SCN SCN

(i) [] fs(zs)"™ =1 for P-a.e. z € Xy,

SCN

(iii) (mp,u) =0,

(iv) A 1L B|C [u] implies A 1L B|C [P] for every (A, B|C) € T(N).

Proof: Implication (i) = (ii) is trivial since P < pu and fg(zg) > 0 for P-a.e. x € Xy

and every S C N. To show (ii) = (iii) apply logarithm to the assumed equality first and
get

> u(S)-In fs(zs) =In(J] fs(zs)"®) = for P-a.e. 7 € Xy .

SCN SCN

Then by integrating with respect to P (notation is from Convention 1)

S™ u(S) - H(PS | us) = /Z ) In fs(rs) dP(x) = 0.

SCN SCN

As explained in Remark 4.4 this is equivalent to (mp,u) = 0.
To see (iii) = (iv) consider a structural imset w =k -u — w4 pjcy with & € N and write

0= (mp,k -u) = (mp,ua gy + (mp,w).
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By Consequence 2.2, the inequality (2.16), both terms on the right-hand side are non-
negative and therefore they vanish. Thus, by (2.17) one has A 1L B|C'[P].
Supposing (iv) one already knows that fs(xg) > 0 for every z € Xy, S C N. Thus, the

condition (i) can be proved separately on the set Y = {y € Xy; [[gcn fs(ys)" (%) = 0}

and on the set Z = {z € Xy; [[scy fo(2s)" ) > 0}. Because of £, C U, (Observation
4.5) it follows from (4.8) in Observation 4.9 that

H Fs(ys)™ ) =0 for prae. yev,
SCN

and both sides of the expression in (i) vanish p-a.e. on'Y.

Suppose now z € Z and put £, = {S C N; fs(zs) > 0}. Observe that £, C &, for
every z € Z and that &, is a descending class for p-a.e. z € Z by (4.8). Having fixed
(A, B|C) € T(N) the assumption A 1l B |C' [u] implies by (iv) A 1L B|C [P] and hence
by Lemma 2.4 derive that

fAC(QfAC) . ch(l‘Bc) >0 = fABC(xABC) >0 for H-a.e. x € XN.

In particular, for p-a.e. z € Z the fact AC, BC' € &, implies ABC' € £,. Altogether, for
p-a.e. z € Z the assumptions of Consequence 4.2 with £ = &£, are fulfilled and therefore
U, C &,, that is

VSCN u(S)>0= fs(zg) >0  for p-ae z€Z. (4.9)

Since u is a structural imset one has n-u = Zveg(m k,-v for n € Nand k, € Z* (see
Section 4.2.3). For every v = w jxy € £(N) with k, > 0 one has ¢ 1L j| K [u] and
therefore by (iv) and (2.3) on p. 21 derives

H fg($5)v+(s) = H fg(ﬂ?s)v_(s) for p-a.e. x € Xy .

SCN SCN

These equalities can be multiplied each other so that one gets

H Fs(zg)Sveean kvt (S) — H fs(zg)>veean ko™ (9 for i ae zeZ. (4.10)
SCN SCN

Let us introduce the multiset w =3 oy ko - v" —n-ut =37 oy kv v" —n-u". For
every S C N the fact w(S) > 0 implies v(S) > 0 for some v € £(N) with &, > 0. Hence,
S eu, CU,, =U, by Observation 4.8. By application of (4.9) to some 7" D S and (4.8)
one derives fg(zg) > 0 for p-a.e. z € Z. This consideration implies

H fs(z5)"S) >0 for p-a.e. 2z € 7Z.

SCN

Thus, one can divide (4.10) by this non-zero expression for u-a.e. z € Z and conclude that

H fo(zs)™" ) = H fs(zg)m ™™ for py-a.e. 2 € Z.

SCN SCN

Take the n-th root of it and obtain what is desired. []
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Let me note that one can always take the universal reference system (p. 61) in Theo-
rem 4.1 which implies that the conditions (iii) and (iv) which are not dependent on the
choice of a reference system are always equivalent (for a probability measure with finite
multiinformation).

Further comment is that another equivalent definition of conditional independence
can be derived from Theorem 4.1. Suppose that P is a probability measure over N with
finite multiinformation, (A4, B|C) € T(N) and accept Convention 1. It suffices to put
u = u4,p|cy and use (ii) in Theorem 4.1 to see that A 1L B|C [P] iff

fABC(xABC) = fAC(xAC) . fBC(xBC) for P-a.e. = € XN . (411)

fe(ze)
Note that fs(zs) > 0 for P-a.e. © € Xy.
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Chapter 5

Description of probabilistic models

Two basic approaches to description of probabilistic CI structures are dealt with in this
chapter. The first one which uses structural imsets was already mentioned in Section
4.4.1. The second one which uses supermodular functions is closely related to the first
one. It can also use imsets over N to describe CI models over N but the respective
class of imsets and their interpretation are completely different. However, despite formal
difference, the approaches are equivalent. In fact, there exists a certain duality relation
between these two methods: one approach is complementary to the other (see Section
5.4). The main result of the chapter says that every CI model induced by a probability
measure with finite multiinformation can be described both by a structural imset and by
a supermodular function.

5.1 Supermodular set functions
A real set function m : P(N) — R is called a supermodular function over N if
mUUV)+mUnV)>m(U)+m(V) for every U,V C N. (5.1)

The class of all supermodular functions on P(N) will be denoted by KC(NN). The definition
can be formulated in several equivalent ways.

OBSERVATION 5.1 A set function m : P(IN) — R is supermodular iff any of the following
three conditions holds:

(i) (m,u) > 0 for every structural imset u over N,
(ii) (m,u) > 0 for every semi-elementary imset u over N,

(iii) (m,u) > 0 for every elementary imset u € E(N).

Proof: Evidently (i) = (ii) = (iii). The implication (iii) = (i) follows from the definition of
structural imset (see Section 4.2.3 p. 59) and linearity of scalar product. The condition (5.1)
is equivalent to the requirement (m,u 4 g|cy) > 0 for every (A, B|C) € T(N) which is nothing
but (ii). L]

Further evident observation is as follows.
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OBSERVATION 5.2 The class of supermodular functions (V) is a cone:

Vmy,me € K(N) Va,3>0 a-my+[-my€K(N). (5.2)

REMARK 5.1 This is to warn the reader that a different terminology is used in game
theory, where supermodular set functions are named either ’convex set functions’ [86]
or even 'convex games’ [91]. I followed that terminology in some of my former reports
(101, 108]. However, another common term ’supermodular’ is used here in order to avoid
confusion with usual meaning of the adjective 'convex’ in mathematics. As mentioned in
[13] supermodular functions are also named ’2-monotone Choquet capacities’. A

5.1.1 Semi-graphoid produced by a supermodular function

One says that a disjoint triplet (A, B|C') € T(N) is represented in a supermodular function
m over N and writes A I B |C [m] if (m, ua,p|c)) = 0. The class of represented triplets
then defines the model produced by m

M™ = {(A,BIC) € T(N); AL B|C[m]}.

Two supermodular functions over N are model equivalent if they represent the same class
of disjoint triplets over N.

REMARK 5.2 This is to explain terminology. I usually say that a model is induced by
a mathematical object over N (see Section 2.2.1), for example by a probability measure
over N or by a graph over N (see Chapter 3). However, in this chapter and in subsequent
chapters I need to distinguish two different ways of inducing formal independence models
by imsets. Both ways appear to be equivalent as concerns the class of obtained models
(see Consequence 5.4). The problem is that some imsets (e.g. zero imset or w, gy in case
N = {a,b}) may 'induce’ different models depending on the way of 'inducing’. To prevent
misunderstanding T decided to emphasize the difference both in terminology (induced
versus produced) and in notation (M, versus M™). Regretably, I have to confess that
the adjective 'induced’ was used in a former report [116] also for supermodular functions
over N. A

Basic fact is this.
LEMMA 5.1 A supermodular function over N produces a disjoint semi-graphoid over N.

Proof: This follows easily from respective formulas for semi-elementary imsets and linear-
ity of scalar pruduct. Let m be a supermodular function over N. For triviality property
realize (m, ua 9 cy) = (m,0) = 0, for symmetry (m, ui pjcy) = (M, up,ajcy). The formula

(m, uga,Bpicy) = (M, uia,Bpey) + (M Wa,pic)) (5.3)

implies directly contraction. To verify decomposition and weak union use Observation 5.1
which says that both terms on the right-hand side of (5.3) are non-negative. ]

Typical example of a supermodular set function is the multiinformation function in-
troduced in Section 2.3.4. In fact, Consequence 2.2 on p. 26 says the following.
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OBSERVATION 5.3 Given a probability measure P over N with finite multiinformation
the multiinformation function mp is an /-standardized supermodular function.

One can conclude even more.

CONSEQUENCE 5.1 Given a probability measure P over N with finite multiinformation
there exists an /-standardized supermodular function m such that Mp = M™.

Proof: Let us put m = mp. The relation (2.17) from Consequence 2.2 says
Al B|C[P] & Al B|C [mp] for every (A, B|C) € T(N)

which implies the desired fact. L]

Note that the value (mp,u4 p|c)) for a probability measure P and a disjoint triplet
(A, B|C) is nothing but the relative entropy of PABY with respect to the conditional
product of PAY and PBC (see the proof of Consequence 2.2 on p. 26). This number
can be interpreted (in discrete case) as a numerical evaluation of the degree of stochas-
tic conditional dependence between A and B given C' with respect to P [115]. Thus,
given a supermodular function m over N and (A, B|C') € T(N) the non-negative value
(m, uea,p|cy) could be interpreted as a generalized degree of dependence between A and B
given C' with respect to m. Having in mind this point of view there is no reason to distin-
guish between two supermodular functions for which scalar products with semi-elementary
imsets coincide. This motivated the next definition.

5.1.2 Strong equivalence of supermodular functions

One says that two supermodular functions m; and my over N are strongly equivalent if
<m1, U(A,B|C>> = <m2, U(A,B|C>> for every <A, B|C> € T(N) . (5.4)

Obviously, m; and my are then model equivalent. Strong equivalence can be equivalently
described with help of a special class of functions, namely the class of functions inducing
the maximal independence model 7(N). A function [ : P(N) — R is called modular if

{WOUV)+1L(UNV)=1U)+1(V) forevery U,V C N. (5.5)
The class of modular functions over N will be denoted by £(N). Evidently £L(N) C IC(N).
OBSERVATION 5.4 The only /-standardized modular function is the zero function.
Proof: Indeed, supposing that [ : 7(N) — R is /-standardized modular function one can show
by induction on |S| that [(S) = 0 for every S C N. This is evident in case |S| < 1. If |S| > 2
then take u(; jixy € E(N) such that S =ijK. The fact (I,u(; jjx)) = 0 says
I(S) =1tK)+I(jK) - I(K)

and the right-hand side of this equality vanishes by the induction hypothesis. L]
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LEMMA 5.2 A supermodular function m produces 7 (N) iff m € L(N). Two super-
modular functions my, msy over N are strongly equivalent iff m; — my € L(N). Every
supermodular function is strongly equivalent to an /-standardized supermodular function.
The class £(N) is a linear subspace of dimension |N| 4 1. The functions m?" and m{
for i € N (see p. 34) form its linear base.

Proof: Clearly, m : P(N) — R is modular iff both m and —m are supermodular. Hence,
by Observation 5.1(ii) one has m € L(N) iff (m,u) = 0 for every semi-elementary imset
u which means M™ = T(N). On the other hand because of linearity of scalar product
two supermodular functions m; and ms are strongly equivalent iff (m; — mo,u) = 0 for
every semi-elementary imset u over N.

Let m be a supermodular function over N. The function

m=m—m(®)-m" =3 {m({i}) = m(0)} - m"" (5.6)

1EN

is evidently /-standardized and supermodular as m’t € £(N) and m!}t € £(N) fori € N.

Of course, £L(N) is a linear subspace. Observe that m®" and m{M" for i € N are
linearly independent. To show that they generate £(N) take m € £(NN) and introduce m
by means of the formula (5.6). By Observation 5.4 m = 0. ]

REMARK 5.3 Thus, to have a clear view on ’quantitative’ dependence structures pro-
duced by supermodular functions one should choose one representative from every class
of strong equivalence in a systematic way. The choice should follow relevant mathemati-
cal principles: to have geometric insight one should do the choice ’linearly’. This can be
made as follows. Take a linear subspace S(N) C RP(™) such that S(N)NL(N) = {0} and
S(N) ® L(N) = RP(™). Then every m € IC(N) can be uniquely decomposed: m = s + [
where s € S(N), [ € L(N). The fact —L(N) C K(N) and Observation 5.2 implies
s € K(N). Moreover, s is strongly equivalent to m by Lemma 5.2 and the function
s € K(N) NS(N) conicides for strongly equivalent functions m € IC(NV).

However, there is flexibility in the choice of S(IV). Fixing on a space S(N) satisfying
the above requirements means that one restricts attention to this linear subspace and
represents the class of supermodular functions KC(N) by respective class of standardized
supermodular functions C(N) N S(N). In this work only three ways of standardization
are mentioned (they are justified by some theoretical reasons). Preferred standardization
using the linear subspace

S(N)={m e R°™); m(S) =0 whenever |S| <1}

is in concordance with the property (2.15) of multiinformation functions (see p. 26).
Functions m € IC(N) N Sy(N) are non-decreasing: m(S) < m(T) whenever S C T (see
Consequence 2.2). In particular, they are non-negative.

However, from purely mathematical point of view another standardization which uses
the subspace

Su(N) ={m e R"M); m(S) =0 whenever |S| > |N| -1}

is equally entitled. This standardization can be viewed as ’reflection’ the of former
one since composition with the mapping S —— N\ S, S € N on P(N) transforms
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KK(N) N S¢(N) onto KL(N) NS, (N). Thus, this standardization leads to non-increasing
standardized supermodular function, which are non-negative as well.
The third natural option is to take the orthogonal complement of L(NV)

S(N)={meR"™: N "m(S)=0 and Y  m(S)=0 foric N},

SCN SCN,ieS

Note that every independence model produced by a supermodular function is even pro-
duced by a supermodular imset (see Consequence 5.4 in Section 5.3). Thus, standardiza-
tions of imsets mentioned in Section 2.4 are just the standardization of supermodular func-
tions. The letters ¢, u, o distinguish the types of standardization: /-standardization means
that the "lower’ part of the respective diagram of an imset is 'vanished’, u-standardization
means that the "upper’ part is 'vanished” and o-standardization means that the respective
linear space is the orthogonal complement of L(N). A

5.2 Skeletal supermodular functions

A supermodular function m over N will be called skeletal if M™ C T (N) but there is no
supermodular function r over N such that M™ C M" C T(N). Thus, a supermodular
function is skeletal iff it produces ’submaximal’ independence model. The definition
implies that a supermodular function which is model equivalent to a skeletal function
is also skeletal. In particular, strong equivalence has the same property. Of course, model
equivalence decomposes the collection of skeletal functions into finitely many equivalence
classes. The aim of this section is to characterize these equivalence classes. To have a
clear geometric view on the problem it is suitable to simplify the situation with help of
(-standardization mentioned in Remark 5.3.

Introduce the class of ¢-standardized supermodular functions IC,(N) = IC(N)NSy(N).
Basic observation is that () is a direct sum of Ky(N) and L(N), in notation IC(N) =
Ki(N)® L(N).

OBSERVATION 5.5 Ky(N)NL(N) = {0} and every m € I(N) has unique decomposition
m = m + [ where m € K,(N) and [ € L(N).

Proof: Put [ = m(0) - m"" + 3.y {m{i}) — m(®)} - m{#". By Lemma 5.2 | € L(N). As
(=1) € L(N) C K(N) by Observation 5.2 m = m + (—1) € K(N). The facts [(}) = m() and
[({i}) = m({:}) for i € N imply that m is ¢-standardized. The uniqueness of the decomposition
follows from Observation 5.4 since L(N) N Ky(N) = L(N) N Sy(N). L]

The following lemma summarizes substantial facts concerning IC;(N) (for related con-

cepts see Section 10.8.2).

LEMMA 5.3 The set IC;(V) is a pointed rational polyhedral cone in RP(™) . In particular,
it has finitely many extreme rays and every extreme ray of K,(/N) contains exactly one
non-zero normalized imset (see p. 36). The set Ky(N) is a conical closure of this collection
of normalized imsets.

Proof: To evidence that K;(N) is a rational polyhedral cone observe that it is the dual
cone F* = {m € RPWM) ; (m, u) > 0 for u € F} to a finite set F C QF™), namely to

F=E(N)U{dy, —0p} U U{é{i}, —0gip -

1EN
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The fact that it is pointed, that is IC(N) N (—/C,(N)) = L(N) N S(N) = {0} follows
from Observation 5.4. All remaining statements of Lemma 5.3 follow from well-known
properties of pointed rational polyhedral cones gathered in Section 10.8.2. Observe that
every (extreme) ray of Cy(N) which contains a non-zero element of QP(™) must contain a
non-zero element of ZP™), that is a non-zero imset. But only one non-zero imset within
the ray is normalized. L]

5.2.1 Skeleton

Let us denote by Kj(N) the collection of non-zero normalized imsets belonging to extremal
rays of KCy(IN) and call this set the (-skeleton over N. It is empty in case |[N| = 1. The
first important observation concerning K9 (N) is the following one.

LEMMA 5.4 An imset u over N is structural iff it is o-standardized and (m,u) > 0 for
every m € Kj(N).

Proof: The necessity of the conditions follows from Observations 4.4 and 5.1(i). For
sufficiency suppose that u € ZP™) is o-standardized and (m,u) > 0 for any m € K(N).
The fact that u is o-standardized means that (m?" u) = 0 and (m3 u) =0 fori € N.
Hence, by Lemma 5.2 derive that (I,u) = 0 for every I € L(N). The fact [Co(N) =
con(K$(N)) (see Lemma 5.3) implies that (m,u) > 0 for every m € IC;(N). Hence, by
Observation 5.5 KC(N) = Ky(N) @ L(N) implies (m,u) > 0 for every m € IC(N), i.e. u
belongs to the dual cone IC(N)*. However, IC(N) was introduced as the dual cone E(N)*
in RP(M)- see Observation 5.1(iii). This says u € £(N)**, but £(N)** is nothing but the
conical closure con(£(N)) - see Section 10.8.2. Hence u € con(£(N))NZFP™N) and by Fact
from Section 10.8.2 u is a combination of elementary imsets with non-negative rational
coefficients. Therefore, it is a structural imset - see Section 4.2.3. L]

The following consequence of Lemma 5.4 will be utilized later.

CONSEQUENCE 5.2 Let u be a structural imset over N and (A, B|C) € T(N). Then
Al B|C [u]iff Vr € CJ(N) (r,uia,pjcy) > 0 implies (r, u) > 0.

Proof: Since both u and v = w4, |y are o-standardized, wy, = k- u — v is o-standardized
for every k € N. By Lemma 5.4 wy, is structural iff (r, k- u —v) > 0 for every r € ICj(N).
Thus, by definition of M, on p. 64 A 1L B|C [u] iff

dkeN Vre Kj(N) k- (ryu) > (rv). (5.7)
This clearly implies that
Vre K;(N) (ryoy >0 = (ryu) >0. (5.8)

Conversely, supposing (5.8) observe that Vr € KCj(N) there exists k., € N such that
k- {(r,u)y > (r,v) for any k € N, k > k,. Indeed, owing to Observation 5.1 k, = 1 in case
(r,v) = 0 and k, is the least integer greater than z:z; in case (r,v) > 0. As I7(NN) finite
one can put k = max {k.;r € K7(N)} to evidence (5.7). 0

An important auxiliary result is the following ’separation’ lemma.
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LEMMA 5.5 For every m € Kj(N) there exists a structural imset « € S(IN) such that
(m,uy = 0 and (r,u) > 0 for any other r € KJ(N) \ {m}. Moreover, for every pair
m,r € KJ(N), m # r there exists an elementary imset v € £(N) such that (m,v) =0
and (r,v) > 0. Consequently, M™\ M" # () # M" \ M™ for distinct m,r € Kj(N).

Proof: By Lemma 5.3 Ky(N) is a pointed rational polyhedral cone. It can be viewed as a
cone in RP<(M) wwhere P,(N) = {T C N, |T| > 2}. Observe that this change of standpoint
does not influence the concept of extreme ray and /-skeleton. One can apply Lemma from
Section 10.8.2 to the extreme ray generated by m. The respective ¢ € QP() can be
multiplied by a natural number to get u € Z”*("). This integer-valued function on P, (N)
can be extended to an o-standardized imset over N by means of the formulas

u({if) == > u(S) forieN, u(@)=-Y u(S).

S{iycs 5,540

As every element of Kj(N) is (-standardized the obtained imset u satisfies the required
conditions: it is a structural imset by Lemma 5.4. The existence of v € £(N) is a clear
consequence of the existence of u since n - u = Zveg(N) k, - v for some k, € Z*, n € N.
Indeed, linearity of scalar product and the fact (r, u) > 0 implies that k, > 0 and (r,v) > 0
for some v € £(N). Moreover, (m,v) = 0 by Observation 5.1. ]

However, the main lemma of this section is the following proposition.

LEMMA 5.6 A function m € Ky(N) is skeletal iff it is non-zero function belonging to an
extreme ray of K;(N).

Proof: For necessity suppose that m is skeletal. Then m # 0 because M™ # T(N). By
Lemma 5.3 write
m = Z Q- T for some a«, > 0. (5.9)
reks(N)

Since m # 0 there exists r € KCj(N) such that o, > 0. Linearity of scalar product with
help of Observation 5.1 says that (m,u) = 0 implies (r,u) = 0 for every semi-elementary
imset u over N. Thus M™ C M". The fact r € Kj(N) implies M" # T(N) by Lemma
5.2 and Observation 5.4. The assumption that m is skeletal forces M™ = M". By Lemma
5.5 at most one r € KJ(N) with M"™ = M™ exists. Thus, (5.9) says m = «, - r for some
r € Ky(N) and o, > 0.

For necessity suppose that m # 0 belongs to an extreme ray R of Ky(N). The fact
m # 0 implies by Lemma 5.2 with help of Observation 5.5 M™ # T(N). Suppose
that r is a supermodular function with M™ C M". The aim is to show that either
M" = M™ or M" = T(N). By Lemma 5.2 r is strongly equivalent an /(-standardized
supermodular function. Therefore assume without loss of generality r € Ky(N). The
assumption M™ C M" says (m,u) = 0 = (r,u) = 0 for every semi-elementary imset
w over N. Thus, by Observation 5.1 (r,u) > 0 implies (m,u) > 0. This means that
there exists k, € N with &, - (m,u) > (r,u). Since the class of semi-elementary imsets
is finite there exists & € N such that &k - (m,u) > (r,u) for every semi-elementary imset
uw over N. By linearity of scalar product and Observation 5.1 conclude that k- m — r is
supermodular. Since both m and r are ¢-standardized k-m—r € KCy(N). The assumption
that R is extreme ray of IC;(N) and decomposition k - m = (k- m — r) + r implies that
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r € R. Thus, r = a-m for & > 0. If @« = 0 then r = 0 says M" = T(N), if & > 0 then
necessarily M" = M™. L]

Hence the desired characterization of model equivalence classes of skeletal imsets is
obtained.

CONSEQUENCE 5.3 Every class of model equivalence of skeletal supermodular functions
over N is characterized by unique element of (-skeleton ICj(N) belonging to the class.
Given m € Kj(N) the respective equivalence class consists of functions

m=a-m+1l  where a>0, € L(N).

In particular, every skeletal function is model equivalent to a skeletal imset and Cj (V)
characterizes all skeletal functions.

Proof: Given a skeletal function r € KC(N) by Observation 5.5 and Lemma 5.2 find unique
strongly equivalent skeletal function 7 € ICy(NN) and apply Lemma 5.6 to find m € ICj(N)
and a > 0 with 7 = a- m. The fact that m is the unique model equivalent element of the
(-skeleton follows from Lemma 5.5. L]

5.2.2 Significance of skeletal imsets

One of the main results of this chapter is the following theorem which explains the sig-
nificance of the concept of /-skeleton.

THEOREM 5.1 There ezists the least finite set of normalized (-standardized imsets N'(N)
such that for every imset u over N

u is structural & w is o-standardized and (m,u) > 0 for every m € N (N). (5.10)
Moreover, N'(N) is nothing but ICj(N).

Proof: Lemma 5.4 says that ICj(V) is a finite set of normalized (-standardized imsets
satisfying (5.10). Let A (N) be any finite class of this type; the aim is to show that
KC5(N) € N(N). Suppose for contradiction that m € Kj(N)\ N (N). By Lemma 5.5
there exists a structural imset u over N such that (m,u) = 0 and (r,u) > 0 for any other
r € K3(N). Basic observation is that (s,u) > 0 for every s € N'(N),s # 0.

Indeed, (5.10) implies with help of Observation 5.1 that s is supermodular and there-
fore s € Ky(N). By Lemma 5.3 write s = ZTE]CZ}(N) a, -1 for a, > 0. Observe that oz > 0
for some 7 € KJ(N) \ {m} since otherwise s = a, - m for o, > 0 (as s # 0) and the fact
that both s and m are normalized imsets implies s = m which contradicts m ¢ N(N).
Hence, by Observation 5.1

(s,u) = Z - (ryu)y > ap - (F,u) > 0.

rekg(N)

Further step is to take an o-standardized imset w over N such that (m,w) < 0 and put
v = k- u+ w for every k € N. The inequality (m,vx) = (m,w) < 0 implies by Lemma
5.4 that vy is not a structural imset over N. On the other hand, for every 0 # s € N(N)
one has (s,u) > 0 and therefore there exists ks, € N with (s, vg,) = ks - (s, u) + (s, w) > 0.
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Figure 5.1: (-skeleton over N = {a,b, c}.

Since N'(N) is finite there exists k € N such that (s,v;) > 0 for every s € N(N). By
the fact that vy is o-standardized and (5.10) derive that vy is a structural imset which
contradicts the conclusion above. Thus, there is no m € Kj(N) \ N (N) and the desired
inclusion IC5(N) C N (N) was verified. ]

REMARK 5.4 The number of elements of /-skeleton Kj(N) depends on |N|. In trivial case
|IN| = 1 one has |K7(N)| = 0. The simplest non-trivial case |N| = 2 is not interesting
because |IC7(N)| = 1 then: the cone Kj(N) consists of a single ray generated by dy in
that case. However, in case N = {a, b, ¢} the /-skeleton has already 5 imsets (see Example
1 in [101]). Figure 5.1 gives their list. Thus, in case |N| = 3 one needs to check only 5
inequalities to find out whether an o-standardized imset is structural. In case |[N| = 4
(-skeleton has 37 imsets; Hasse diagrams of ten basic types of skeletal imsets are in the
Appendix of [116] - for the proof see [101]. However, the (-skeleton in case |[N| = 5 was
found by means of a computer; it has 117978 imsets - see [116] and

http://www.utia.cas.cz/user_data/studeny/fivevar.htm

for a related virtual catalogue. Note that the problem of suitable characterization of
skeletal imsets remains open - see Theme 4 in Section 8.1.2. A

REMARK 5.5 The name skeleton was inspired by the idea that the collection of extreme
rays of ICj (V) can be viewed as outer skeleton of the cone ICy(NN). T used this word in [108]
to name the least finite set of normalized imsets defining a pointed rational polyhedral cone
as its dual cone; that is the /-skeleton in case of the conical closure £(N). Another possible
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Figure 5.2: u-skeleton over N = {a, b, c}.

justification is that every independence model produced by a supermodular function is
intersection of submaximal independence models of this type (see Theorem 5.3) so that
'skeletal’ CT models form a certain ’generator’ of the whole lattice of CI models produced
by supermodular functions. Note for explanation that some authors interested in graphical
models [5, 7] use the word ’skeleton’ to name the underlying graph of a chain graph (see
Section 10.3, p. 154). A

REMARK 5.6 Asexplained in Remark 5.3 /-standardization is not the only possible way of
standardization of supermodular functions. An interesting fact is that all results gathered
in Section 5.2 can be achieved also for u-standardization and o-standardization. Thus, one
can introduce the u-skeleton K¢ (N) as uniquely determined (finite) collection of non-zero
normalized imsets belonging to extreme rays of the cone of u-standardized supermodular
functions K, (N). Analogously, the o-skeleton KS(N) consists of non-zero normalized
imsets from extreme rays of the cone of o-standardized supermodular functions /C,(V).
The point is that extreme rays of Ky(N), ICy(N) and IC,(N) correspond to each other;
they describe respective classes of model equivalent skeletal imsets.

Thus, given a skeletal imset m the corresponding element of /-skeleton m, can be
obtained as follows. Put

me =m—m(0) - m" + > {m(0) — m({i})} - mtH (5.11)

1EN

and then 'normalize’ my, i.e. put my, = k~' - m, where k is the greatest common prime
divisor of {m(S); S C N} (see Figure 6.4 for an example of m and the respective element
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of the (-skeleton). Given a skeletal imset m over N put

v(i) =m(N) —=m(N\{i}) forie N, z=-m(N)+> v(i),

1eEN

introduce _
My =m+ 2 -m® — Zu(z) - (5.12)
ieN
and normalize m,, to get the respective element of K¢ (N). Figure 5.2 shows u-skeleton
for N = {a, b, c}. Finally, given a skeletal imset m over N put

p(i)=2-3 m(S)—4-> m(S) forieN,

SCN S,ics
and
y=2-3 18] m(S) ~ (V] +1) - 32 m(S),
SCN SCN
Then the formula .
e, = 21N -m+y-m®T+Zu(i) it (5.13)
iEN

defines an o-standardized imset which after normalization yields the respective element
of the o-skeleton ICS(N). Figure 5.3 consists of Hasse diagrams of o-skeletal imsets over
N ={a,b,c}.

Note that the proof of result of Section 5.2 for alternative standardization are analo-
gous. The only noteworthy modification is needed in the proof of Lemma 5.5 in case of
o-standardization. The cone K(N) is viewed as a cone in R”(V) and after application of
Lemma from Section 10.8.2 the respective ¢ € QP is multiplied to get u € ZPWN). Then
the formula (5.13) with u in place of m defines the desired o-standardized imset over N.
Remaining arguments are analogous. A

5.3 Description of models by structural imsets

Semi-graphoid induced by a structural imset was introduced already in Section 4.4.1 on p.
64. The aim of this section is to relate those semi-graphoids to semi-graphoids produced
by supremodular functions introduced in Section 5.1.1. The first observation is this.

OBSERVATION 5.6 Let m be a supermodular function over N and u a structural imset
over N. Then (m,u) =0 iff M, C M™.

Proof: Supposing (m,u) = 0 and (4, B|C) € M, there exists k € N such that k-u—u4 p|cy €
S(N). Write

0=k <m7u> = <m7k ’ U> = <mak CU = U(A,B\C’)> + (mau(A,B\C’)>'

By Observation 5.1 both terms on the right-hand side of this equality are non-negative and
must vanish. Thus, (m,u4 p|cy) = 0 which means (A, B|C) € M™. Conversely, supposing
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Figure 5.3: o-skeleton over N = {a,b, c}.

My © M™ write by (4.2) nou = 3, cey) kv forn € N, k, € Z*. For every v = u(; jix) € E(N)
such that k, > 0 observe (i, j|K) € M, and deduce (m,v) =0 by M, C M™. In particular,

n-(m,u) = Z ky - (m,v) =0,

veE(N)
which implies (m,u) = 0. L]

An important auxiliary result is the following.

LEMMA 5.7 Given a structural imset u over N one has M, = (), . M" = M™ where

R={rekyN;M,CM} and m=>)» r.

reR

Proof: The fact M, C ﬂreR M is evident. For converse inclusion use Consequence 5.2:
if (A, B|C) € T(N)\ M, then there exists r € Kj(N) such that (r,ua,p|c)) > 0 and
(r,u) = 0. By Observation 5.6 M, C M". Thus, r € R and (A, B|C) & M".

The inclusion (), . M" € M™ follows from the fact m = Y . 7 by linearity of scalar
product, the converse inclusion can be derived similarly with help of Observation 5.1.[]

Substantial fact is the following proposition.
CONSEQUENCE 5.4 Given M C T(N) the following four condition are equivalent:

(i) M = M™ for a supermodular function m over N,
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(i) M = M, for a combinatorial imset u over N,
(iii) M = M, for a structural imset u over N,

(iv) M = M™ for a supermodular (-standardized imset m over N.

Proof: For (i)=(ii) put u = >_ 4 pjcyers Ua,B/c)- As a combination of semi-elementary
imsets is u a combinatorial imset. For every (A, B|C) € M observe that u — ua p|c)
is a combinatorial imset and therefore A Il B|C [u]. Thus M C M,. For converse
implication observe (m,u) = 0 and use Observation 5.6. The implication (iii)=(iv) is an
easy consequence of Lemma 5.7, (ii)=(iii) and (iv)=(i) are evident. ]

Now, the main result of this chapter can be easily derived.

THEOREM 5.2 Let P be probability measure over N with finite multiinformation. Then
there exists a structural imset u over N such that P is perfectly Markovian with respect
to u, that is Mp = M,.

Proof: By Consequence 5.1 on p. 73 there exists a supermodular function m over N such
that Mp = M™. By Consequence 5.4 M™ = M,, for a structural imset u over N. []

REMARK 5.7 Going back to the motivation account from Section 1.1 Theorem 5.2 means
that structural imsets solve satisfactorily theoretical question of completeness. The answer
is affirmative, every CI structure induced by a probability measure with finite multiinfor-
mation can be described by a structural imset. On the other hand, natural price for this
achievement is that structural imsets describe some ’'superfluous’ semi-graphoids. That
means, there are semi-graphoids induced by structural imsets which are not induced by
discrete probability measures as Example 4.1 on p. 66 shows (the left-hand picture of Fig-
ure 6.1 depicts the respective structural imset). In particular, another theoretical question
of faithfulness from Section 1.1 has negative answer.

However, mathematical objects which ’answer’ affirmatively both faithfulness and
completeness question are not advisable because they cannot solve satisfactorily prac-
tical question of implementation (see Section 1.1, p. 9). These objects must be difficult
to handle by a computer as the lattice of probabilistic CI models is quite complicated.
For example, in case of 4 variables there exists meet-irreducible models which are not
coatoms (= submaximal models) [107] which makes implementation complicated. The
asset of structural imsets is that the lattice of models induced by them is fairly elegant
and gives a chance of efficient computer implementation. A

5.4 Galois connection

The relation of both methods of description of CI models mentioned in this chapter can
be lucidly explained with help of the view of theory of 'formal concept analysis’. This
approach, developed in [28], is a specific application of theory of complete lattices on
(conceptual) data analysis and knowledge processing. Because of its philosophical roots
formal concept analysis is very near to human conceptual thinking. The most important
mathematical notion behind this approach is a well-known notion of Galois connection.
This view helps one to interpret the relation of structural imsets and supermodular imsets
(functions) as a duality relation. T hope that presentation with help of Galois connection
will make theory of structural CI models easy understandable for readers.
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5.4.1 Formal concept analysis

Let me recall basic ideas of Chapter 1 of [28]. Formal context consists of the following
items:

e the set of objects (E,
e the set of attributes A,
e binary incidence relation & C (E x A between objects and attributes.

If (x,y) € S forx € (B, y € A then write x Sy and say that the object x has the attribute
y. In general, Galois connection is defined for a pair of posets ([8], Section 6 of Chapter
IV). However, in treated special case, Galois connection can be introduced as a pair of
mappings between power sets of (E and & (which are posets with respect to inclusion):

XCE — Xt ={yeE; 23Sy forevery zr € X},
YCE — Y'={zxe@; zJyforeveryy e Y}.

Thus X7 is the set of attributes common to objects in X while Y is the set of objects
which have all attributes in Y. Clearly, X; C X, implies X7 D X7 and Y; O Y, implies
Y® C Y. The consequence is that the mapping X — X"? is a closure operation on
subsets of (E and the mapping Y — Y is a closure operation on subsets of .

By a formal concept of the context ((E, /&, Y) is understood a pair (X,Y") with X C (E,
Y C A, X" =Y and Y= X. Theset X is called the extent and the set Y the intent of the
concept. Observe that the concept is uniquely determined either by its extent, that is the
list of objects forming the concept or by its intent which is the list of attributes (= prop-
erties) which characterize the concept. It reflects two different philophical-methodological
ways of defining concepts: constructive and descriptive definitions.

One says that the concept (Xi,Y)) is a subconcept of the concept (Xo,Y5) and writes
(X1, Y1) < (X5, Y3) if X7 C X,. Basic properties of Galois connection and the definition
of notion formal concept implies that X; C X, iff Y7 D Y5. Thus, the class of all
concepts of a given context ((E, /E, ¥) is a poset ordered by the relation <. In fact, it is a
complete lattice (see Theorem 3 in Chapter 1 of [28]) where supermum and infimum (of
two concepts) are defined as follows:

(XL )V (Xe,Y2) = (X UXy)™, ¥iNYy),
(X0, V) A (X, 1) = (XN Xy, (VUYR)®).

The lattice is called the concept lattice.

REMARK 5.8 Note that it follows from the properties of Galois connection that the above
mentioned concept lattice is order-isomorphic to the poset {X C (E; X = X"} ordered
by inclusion C. Thus, the lattice can be described only in terms of objects with help of
the closure operation X — X" on subsets of (E. However, for analogous reason the same
concept lattice is order-isomorphic to the poset {Y C &;Y = Y*} ordered by reversed
inclusion D. This means that the lattice can be described dually in terms of attributes
and the respective closure operation Y — Y as well: this closure operation induces
ordinary inclusion ordering C on {Y C A;Y = Y} (see Section 10.2). Thus, the same
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Figure 5.4: Galois connection - informal illustration.

mathematical structure can be described from two different points of view, in terms of
objects or in terms of attributes. This again corresponds to two different methodological
methods how to describe relations between concepts. The message of Section 5.4 is that
the relation between description of CI models in terms of structural imsets and in terms
of supermodular functions is just the relation of this kind. On the other hand, the role of
objects and attributes in a formal context is evidently exchangeable. See Figure 5.4 for
illustration. A

5.4.2 Lattice of structural models
Let us introduce the class U(N) of structural independence models
UN)={M C T(N); M = M, for a structural imset u over N} . (5.14)

Consequence 5.4 implies that it coincides with the class of formal independence models
produced by supermodular functions

UN)={MCT(N); M= M" for a supermodular function m over N}.  (5.15)

The class U(N) is naturally ordered by inclusion C. The main result of this section
says that U(N) is a finite concept lattice. Indeed, the respective formal context can be
constructed as follows:

E=E(N), E=K)(N)and uIm iff (m,u) =0 foru e E(N),m € K;(N). (5.16)

Figure 5.5 gives an example of this formal context in case N = {a,b,c}. The following
theorem summarizes the results.

THEOREM 5.3 The poset (U(N),C) is a finite concept lattice which is, moreover, both
atomistic and coatomistic. The null of U(N) is T;(N), the model induced by zero struc-
tural imset. The atoms of U(N) are just the models induced by elementary imsets M.,
v € E(N). The coatoms of U(N) are just the models produced by skeletal supermodular
functions M™, m € Kj(N). The unit of U(N) is T(N), the model produced by any
modular set function | € L(N).
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B = Kj(N)

| On | 2 0n + 0up + e + b

On +0ab | On + 0uc | On + O

U(b,cla) ° ° °
Ua,cl|by ° ° °
U(a,b|c) ° ° °
U(a,b|0) ° ° °
U(a,c|0) ° ° °
U (b,c|p) ° ° °

@E = £(N)

Figure 5.5: Formal context (5.16) in case N = {a, b, c}.

Proof: The first observation is that (NV) is a complete lattice. Indeed, it suffices to show
that every subset of #(V) has infimum (see Section 10.2). Let us use (5.15) for this pur-
pose. Given supermodular functions my, ..., m,,n > 1 the function m = >, m; defines
a supermodular function such that M™ = (_, M™:. This follows from Observation 5.1.
Infimum of the empty subset of U(N) is T(N) (see Lemma 5.2).

The second observation is that {M,;v € £(N)} is supremum-dense in U(N):

VM eU(N) M=sup{M,:ue Q} where Q= {u k) € E(N); (i,j|K) € M}. (5.17)

Indeed, evidently M, C M for every v € Q (c.f. Lemma 4.5). On the other hand,
supposing K € U(N) satisfies M, C K for every v € Q every elementary independence
statement from M belongs to K. Then by Lemma 2.2 conclude M C K which implies
(5.17).

The third observation is that {M™;m € KCj(N)} is infimum-dense in U (N):

VM eUN) M=inf{M™;m e R} where R={re L;(N);MCM"}. (5.18)

Indeed, by (5.14) one can apply Lemma 5.7 to M and observe that M = [ .o M™.
This clearly implies (5.18). To show that (U(N),C) is even a concept lattice one can
use Theorem 3 in Chapter 1 of [28]. The theorem says that to show that U(N) is order-
isomorphic to the concept lattice of a formal context ((E, &, <) it suffices to show that
there exist mappings v : (E — U(N) and 0 : £ — U(N) such that

(a) y((E) is supremum-dense in U (N),
(b) §(AE) is infimum-dense in U(N),
(c) uSm < y(u) C d(m) for every u € (E, m € A.

Let us introduce the formal context by means of (5.16) and define v and § as follows:
v ascribes M, to every v € E(N) (see p. 64) and § ascribes M™ to every m € Kj(N)
(see p. 72). The condition (a) follows from (5.17), the condition (b) from (5.18) and the
condition (c) follows directly from Observation 5.6. Thus, U (N) is a concept lattice.
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The next observation is that 7,(N) is the null of #/(N). By Observation 4.7 T,(N) €
U(N), by Lemma 4.6 it is a semi-graphoid and therefore 7;(N) C M.

To show that every M,,, v € £(N) is an atom of U(N) observe by (5.14) M, € U(N)
and assume M € U(N), M C M,. If v = wu k) then by Lemma 4.5 obtain M, =
{(i, J|K), (j,i|K)} UTs(N). As M is a semi-graphoid 7T,(N) C M. If M # T;(N) then
either (i, j|K') or (j,i|K) belongs to M which implies by symmetry property M, C M.
The above mentioned fact implies with help of (5.17) that #(NV) is an atomistic lattice.

The fact that 7(N) is the unit of U(N) is evident: 7 (N) € U(N) by Lemma 5.2. To
show that every M*, s € K7(N) is a coatom of U(N) observe M* € U(N) by (5.15) and
assume M € U(N), M* C M. By (5.14) and Lemma 5.7 write M = (), .r M" where
R={re C;(N);M CM"}. f R\ {s} # 0 then M* C M C M" for some r € Kj(N),
r # s which contradicts the fact M*\ M" # () implied by Lemma 5.5. Therefore R C {s}:
if R = then M = T(N), if R = {s} then M = M?*. The above fact implies together
with (5.18) that ¢(V) is a coatomistic lattice.

To evidence that {M,;v € E(N)} are all atoms of U (N) realize that every atom is join-
irreducible and use the well-known fact that every supremum-dense set must contain all
join-irreducible elements (see Section 2.4.2 in Chapter 1 of [28]). Indeed, {M,,v € E(N)}
is supremum-dense in U (N) by (5.17). Analogously, the fact that {M™;m € K7(N)} are
all coatoms of U(N) follows from (5.18) and the fact that every infimum-dense subset
must contain all meet-irreducible elements, in particular coatoms. Ll

REMARK 5.9 However, the formal context (5.16) is not the only option. For example, one
can alternatively take combinatorial imsets in place of (E and combinations of /-skeletal
imsets with non-negative integer coefficients in place of & (but the incidence relation is
defined in the same way like in (5.16)). The second option is to put (E = S(N) and
E = K(N)NZPW) (see Figure 7.11 for illustration). The third option is (E = con(£(N))
and £ = K;(N). Moreover, one can consider alternative standardization instead of (-
standardization (see Remark 5.3). Specific combined option is (E = £(N) and £ = IC(N).

On the other hand, the formal context (5.16) is distinguished in a certain sense. The-
orem 5.3 implies that every object of (5.16) defines a join-irreducible concept and every
attribute of (5.16) defines a meet-irreducible concept. Thus, the context (5.16) is re-
duced in sense of Definition 24, Chapter 1 in [28]. Formal context of this type is unique
for a given finite concept lattice up to respective isomorphism of formal contexts (see
Proposition 12 in Chapter 1 of [28]). A

Another point of view on the lattice (U(N), C) is the following. It order-isomorphic
to the class of structural imsets S(N) factorized with respect to corresponding facial
equivalence (see Chapter 6). This understanding is suitable from computational point of
view since the operation of supremum in the lattice corresponds to summing of structural
imsets; see Consequence 6.1 in Section 6.2.1. A dual point of view is also possible: elements
of ICo(N) N ZPMN) factorized with respect to the corresponding equivalence can be taken
into consideration. The following observation says that infimum is realizable by means of
summing supermodular functions (imsets).

OBSERVATION 5.7 Let R be a finite set of supermodular functions over N. Then
inf {M™;m € R} = m M™ = M" where r = Z m. (5.19)

mER meR
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Proof: To show M" C M™ for m € R take (A, B|C) € M", write 0 = (r,u4p|c)) =
Y mer{m,ua pjcy) and use Observation 5.1(ii). The same equality can be used to show that,
for every supermodular function s over N, the requirement M C M™ for m € R implies

M C M. 0

REMARK 5.10 The lattice U(N) is also order-isomorphic to a face lattice (see Section
0.3 in [28]) namely the lattice of faces of a certain polyhedral cone. For example, one
can take the cone con(£(N)) C RPN). Another option is the cone Kf(N) endowed with
reverse inclusion D, respectively the cones ICJ(N), KS(N). In fact, original terminology
from [108] was motivated by this point of view (see Remark 6.2 on p. 93). A

ExAMPLE 5.1 The lattice Y(N) has only 1 element in case |[N| = 1, namely T(N) =
7T5(N) and only 2 elements in case |N| = 2, namely 7,(N) and 7 (N). However, it has
22 elements in case N = {a,b,c}: the respective Hasse diagram is shown in Figure 5.6.
Every node of the diagram contains a schematic description of the respective independence
model with help of elementary independence statements. Note that Figure 5.6 also shows
the lattice of semi-graphoids over {a, b, ¢} as they coincide with structural independence
models in this case. In fact, every structural model over {a, b, c} is even a CI model. The
number of structural models over 4 variables is 22108 [106]. &

OBSERVATION 5.8 Let u be a structural imset over N with |N| = 3. Then there exists a
discrete probability measure P over N such that M, = Mp.

Proof: This is an easy consequence of the fact that (U(N),C) is coatomistic (see Theorem
5.3) and Lemma 2.9 from Section 2.3.7. Six respective constructions of perfectly Markovian
measures for the unit and coatoms of U (N) (see Figure 5.6) were already given: see Observation
2.2, Observation 2.3, Example 2.1 and Example 2.2. L]

REMARK 5.11 This is to explain the relation of this theory to polymatroidal description
of CI model used in [66]. Polymatroid is defined as a non-decreasing submodular function
h : P(N) — R such that h() = 0. Some polymatroids can be obtained as multiples
of entropy functions of discrete measures relative to the counting measure mentioned in
Remark 4.4 - see [61]. The formal independence model induced by a polymatroid A consists
of (A, B|C) € T(N) such that (h,u pjcy) = 0. Since —h is a supermodular function,
there is no difference between the model induced by a polymatroid h and the model
produced by the supermodular function —hA. Thus, models induced by polymatroids are
just the structural independence models. There is an one-to-one correspondence between
certain polymatroids and u-standardized supermodular function - see §5.2 in [116]. A
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bJ.I_c|(0- -bJ.I_c|a

aJ_Lc|(D- -aJ_Lc|b

aJ_Lb|(D- -aJ_Lb|c

Figure 5.6: Concept lattice of CI models over N = {a,b, ¢} (rotated).
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Chapter 6

Markov equivalence

This chapter deals with implication and equivalence problem for structural imsets. First,
the question how to understand the concept of Markov equivalence (and implication) is
discussed and two types of equivalence are compared. The rest of the chapter is devoted
to the stronger type of equivalence, called the facial equivalence and to the respective
implication between structural imsets. Two characterization of facial implication, which
are analogous to graphical characterization of Markov equivalence mentioned in Chapter
3, are given and related implementation tasks are discussed.

6.1 Two concepts of equivalence

Basically, there are two different ways of defining the concept of Markov equivalence for
graphs which appear to be equivalent in case of classic graphical models, e.g. UG models,
DAG models and CG models - see Sections 3.1 - 3.3. The first option is distribution equiv-
alence which is the requirement that the classes of Markovian measures over N within a
certain distribution framework coincide. By a distribution framework is understood a class
¥ of probability measures over N. Thus, distribution equivalence is always understood
relative to a distribution framework.

The second option is model equivalence which is the requirement that the induced
formal independence models coincide. This type of equivalence is not related to a dis-
tribution framework. Clearly, because of the definition of Markovian measure, model
equivalence implies distribution equivalence. The converse is true in case of faithfulness
(see Section 1.1 p. 8). That is, if a perfectly Markovian measure within the considered
distribution framework W exists for every graph (from the respective class of graphs)
then distribution equivalence relative to ¥ implies model equivalence. This is the case of
classic chain graphs relative to the class of discrete measures (see Section 3.3) and the
case of alternative chain graphs relative to the class of non-degenerate Gaussian measures
(see Section 3.5.5). Nevertheless, distribution and model equivalence coincide even under
weaker assumption that the considered class of measures is perfect for every graph (see
Remark 3.2 on p. 38). On the other hand, if the distribution framework is somehow lim-
ited then it may happen that model and distribution equivalence differ. For example, it
happens in case that the class ¥ of measures with prescribed one-dimensional marginals
P; on fixed measurable spaces (X;, X;), i € N is considered and Py is a degenerated mea-
sure for every k € M, M C N which means that Py(A) € {0,1} for every A € X}.. Then
i Il j| K [P] for every P € ¥ and (i,j|K) € £(N) with i € M (use Lemma 10.1) and
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one can show that all undirected graphs over N which have the same induced subgraph
for N'\ M are distribution equivalent.

REMARK 6.1 Note that one may consider even the third type of equivalence of graphs,
namely the parametrization equivalence. This approach is based on the following interpre-
tation of some types of graphs, e.g. ancestral graphs [85] and joint-response chain graphs
[18]. Every edge of a graph of this type represents a real parameter, a specific distribution
framework W (usually the class of non-degenerate Gaussian measures over N) is consid-
ered and every collection of edge-parameters determines uniquely a probability measure
from W factorized in a particular way. Every graph of this type is then identified with
the class of parametrized distributions which often coincides with the class of Markovian
distributions within ¥ (e.g. in case of maximal ancestral graphs [85]). Two graphs can be
called parametrization equivalent if their classes of parametrized distributions coincide. Of
course, parametrization equivalence substantially depends on the considered distribution
framework and may not coincide with distribution (Markov) equivalence - for example in
case of general ancestral graphs [85].

The mentioned point of view motivates a general question whether (some) structural
imsets may lead to a specific way of parametrization of the corresponding class of Marko-
vian distribution (see Direction 4 in Chapter 8). A

However, in usual situations distribution and model equivalence coincide which means
that the concept of Markov equivalence of graphs is unambiguously defined. Then the task
to characterize Markov equivalence in graphical terms is correctly set. Several solutions
of this general equivalence question (see Section 1.1, p. 8) were exemplified in Chapter
3. The aim of this chapter is to examine the same equivalence question for structural
imsets. The problem is that in case of structural imsets one has to distinguish two above
mentioned types of Markov equivalence and choose one of them as a basis of further study.

6.1.1 Facial and Markov equivalence

Two structural imsets u, v over N are facially equivalent if they induce the same CI model,
i.e. M, = M,. Then one writes u = v. Let ¥ be a class of probability measures over N
and W(u) denotes the class of Markovian measures with respect to u relative to W:

U(u)={P € ¥; Al B|C [P] whenever (4, B|C) € M, }. (6.1)

Two structural imsets v and v over N are Markov equivalent relative to W if ¥(u) = U(v).
The following observation is evident.

OBSERVATION 6.1 Facially equivalent structural imsets are Markov equivalent relative
to any class ¥ of probability measures over N.

Clearly, Markov equivalence relative to U implies Markov equivalence relative to any
subclass ¥ C W. Natural question is whether the converse of Observation 6.1 holds for
a reasonable class W. The answer is negative even for the class of marginally continuous
measures which involves the widest class of measures for which the method of structural
imsets is safely applicable, namely the class of measures with finite multiinformation (see
Section 4.1). This is illustrated by the following example.
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Figure 6.1: Two Markov equivalent structural imsets which are not facially equivalent.

EXAMPLE 6.1 There exist two structural imsets over N = {a, b, ¢,d} which are Markov
equivalent relative to the class of marginally continuous probability measures over N but
which are not facially equivalent. Consider the imsets (see Figure 6.1)

U = Ufcdl{ap}) + Uabl) T Uapl{c}) T Uap{apy and U =1u~+ Uqpfed}) -

Clearly, M, C M, but (a,b|{c,d}) € M, \ M, as shown in Example 4.1. On the
other hand, by Consequence 2.1 every marginally continuous measure P over N which is
Markovian with respect to u satisfies a L b|{c,d} [P]. Hence, one can show that P is
Markovian with respect to u iff it is Markovian with respect to v. O

In fact, the above mentioned phenomenon is a consequence of the fact that structural
imsets do not satisfy the faithfulness requirement from Section 1.1 - see Remark 5.7 on p.
83. However, in case |[N| < 3 every structural imset has a discrete perfectly Markovian
measure over N - see Observation 5.8. In particular, if |[N| < 3 then facial equivalence
coincides both with Markov equivalence relative to the class of discrete measures and
with Markov equivalence relative to the class of measures with finite multiinformation
(use Observation 6.1).

In the rest of this chapter attention is restricted to facial equivalence and related
facial implication. One reason is that facial implication is not adulterated by considering
a specific class of distributions W. Therefore, one has a better chance that the respective
deductive mechanism can be implemented on a computer. Moreover, in my opinion,
facial equivalence represents pure theoretical basis of Markov equivalence. Indeed, it will
be shown later (see Lemma 6.3) that for a reasonable distribution framework ¥ every
Markov equivalence class relative to ¥ decomposes into facial equivalence classes and just
one of these classes consists of "W-representable’ structural imsets, that is imsets having
perfectly Markovian measures in W. Thus, to describe CI structures arising within ¥ one
can limit oneself to structural imsets of this type and facial equivalence on the considered
subclass of stuctural imsets coincides with Markov equivalence relative to W.
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6.2 Facial implication

Let u, v are structural imsets over N. One says that u facially implies v and writes u — v
if M, C M,. Observe that u is facially equivalent to v iff u — v and v — wu.

REMARK 6.2 This is to explain the motivation of above terminology. The adjective ’fa-
cial’ was used already in [108] to name the respective deductive mechanism for structural
imsets. This was motivated by an analogy with the theory of convex polytopes where
the concept of face has a central role [12]. Indeed, one can consider the collection of all
faces of the cone con(E(N)) and introduce the following implication of structural imsets:
u implies v if every face of con(£(N)) which contains u contains also v. The original defi-
nition of facial implication of structural imsets used in [108] was nothing but modification
of this requirement. It appeared to be equivalent to the condition M, C M,: one can
show this using the results from [108], although it is not explicitly stated there. A

6.2.1 Direct characterization of facial implication

LEMMA 6.1 Let u,v are structural imsets over N. Then u — v iff
34l e N [-u—wv is astructural imset, (6.2)
which is under assumption that v is a combinatorial imset equivalent to the requirement
dk €N k-u—v is a combinatorial imset . (6.3)

Proof: Suppose u — v and write n - v = Zweg(N) ky - w where n € Nk, € Z*. If
kw > 0 and w = u k) then (i, j|K) € M, C M,. Thus, there exists /,, € N such that
by u—w€S(N). Put I =37 cen)ry>0Fw " lw and observe that
l-u—v=(_(-u—n-v)+(n—-1)-v= Z kw - (ly-uv—w)+(n—1)-veSN)

wEE(N),kw>0

since S(NN) is closed under summing. Thus, (6.2) was verified. Conversely, suppose (6.2)
and consider (A, B|C) € M,. Find k € N such that k- v — w4 ey € S(N). As S(N) is

closed under summing conclude
(k-l) “U — UWA,B|C) = k- (l-u—v) + (k-v _U(A,B|C>) € S(N),

which implies (A, B|C') € M,,.

Evidently (6.3) implies (6.2). On contrary, suppose (6.2) and that v is a combinatorial
imset. Take n € N such that n- (I-u—v) is combinatorial and put k =n-1. Asv € C(N)
and C(N) is closed under summing k-uv—v =n-(l-u—v)+ (n—1)-v is a combinatorial
imset. L]

REMARK 6.3 Basic difference between (6.2) and (6.3) is that testing whether an o-
standardized imset is combinatorial is decidable in finitely many steps and the number of
these steps is known! Indeed, if an o-standardized imset w = k - u — v is combinatorial,
then the degree deg (w) can be directly computed by Observation 4.3. It is the number of
elementary imsets which have to be summed to obtain w. The only combinatorial imset of
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Figure 6.2: Structural imsets v and 2 - u — v from Example 6.2.

degree 0 is the zero imset and an imset w with deg (w) = n € N is combinatorial iff there
exists an elementary imset w; j k) such that w —w j k) is a combinatorial imset of degree
n — 1. Since the class of elementary imsets is known testing can be done recursively.

Note that one can modify the proof of Lemma 6.1 to show that (6.3) is equivalent to
u — v even in case that v is a structural imset such that

dk,ne€N n-v and (n-k—1)-v are combinatorial imsets . (6.4)

The condition (6.4) is formally weaker than the requirement that v is a combinatorial
imset. However, their difference may appear to be illusory. So far, I do not know an
example of a structural imset which is not a combinatorial imset - see Question 7. A

A natural question is how big the number [ € N from (6.2) could be. The following
example shows that it may happen that [ > 1.

EXAMPLE 6.2 There exists a combinatorial imset u over N = {a,b,c,d} and a semi-
elementary imset v such that 2 - u — v is a structural imset (and therefore v — v) but
u — v is not a structural imset. Put

U = Ulaplp) T Wa,eld) T Ue,db) T Uibdle) T Uadlbe) T Ulpelad) s ¥ = Ua,bed|0) (6.5)
and observe that

20U =0 =20 UWapedp) = Uapbld) T Ua.cld) T Ua,dp) T
Uiedlp) T Updle) T Uipield) + (6.6)
U(b,clady T U(b,d|ac) T U(c,d|ab)
is a combinatorial imset (see Figure 6.2 for illustration) and therefore u — v. To see that
u —v is not a structural imset (see the left-hand picture of Figure 6.3 for illustration) con-
sider the multiset m, shown in the right-hand picture of Figure 6.3. It is a supermodular
multiset by Observation 5.1(iii). As (m.,u —v) = —1 the imset u — v is not a structural
imset by Observation 5.1(i).

On the other hand, one has u — w for an elementary imset w = w, qp. Indeed, one
has

U= W = Ua,bel0) T Ubseld) T Ubdlac) T U(e,dlab)
which means that the constant [ from (6.2) can be lower in this case. &
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Figure 6.3: The imsets u — v and the supermodular multiset m, from Example 6.2.

REMARK 6.4 Example 6.2 shows that verification whether a semi-elementary imset is
facially implied by a structural imset requires multiplication of the structural imset by 2
at least. Note that later Consequence 6.4 in Section 6.3.2 can be modified by replacing
the class of elementary imsets by the class of semi-elementary imsets to get an upper
estimate of the constant in (6.2) in this case. One can show using the results of [101] that
in case |[N| =4

max { (r,w); r € K;(N), w is a semi-elementary imset over N } = 2
which implies then that 2 is the minimal integer [, satisfying
Vu € S(N) v semi-elementary imset over N u — v iff [,-u—v € S(N).
Note that one has [, =1 in case |N| < 3 for the same reason. A
The following consequence of Lemma 6.1 was already announced in Section 5.4.2.
CONSEQUENCE 6.1 Let QO be a finite set of structural imsets over /N. Then

sup {My;ue Qy =M, forv= Zu (6.7)

ueQ

where the supremum is understood in the lattice (U(N), C).

Proof: To show M, C M, for u € Q take (A, B|C) € M,, find k € N such that
k-u—upicy € S(N) and write

k-v—u<A,B|C>:k- Z w—l—(k-u—u<A,B|0>)€S(N).
we\{u}

To show, for every structural imset w over N, that the assumption M, C M, for u € Q
implies M, C M, use Lemma 6.1. Indeed, the assumption means that [, € N with
ly - w—u € S(N) exists for every u € Q. Put [ = > 1, and observe [ - w — v =

Y weollu-w—u) € S(N). Il
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REMARK 6.5 The definition of facial implication can be extended as follows. A (finite) set
of structural imsets Q facially implies a structural imset w (write @ — w) if M,, C M
for every structural independence model M such that (J,.o M, € M. However, by
Consequence 6.1 this condition is equivalent to the requirement M,, C sup,.o M, = M,
where v = ) o u. Thus, the extension of facial implication of this type is not needed
because it is covered by the current definition of facial implication. A

6.2.2 Skeletal characterization of facial implication
LEMMA 6.2 Let u,v are structural imsets over N. Then u — v iff
Vm e K)(N) (m,v) >0 = (m,u) >0, (6.8)
which is equivalent to the condition
(m,v) >0 = (m,u) >0 for every supermodular function m over N. (6.9)
Moreover, the condition (6.8) is also equivalent to the requirement
l.-u—v€&S8(N) whenever [, € N such that [, > (r,v) for every r € K;(N). (6.10)

Proof: Evidently (6.9) = (6.8). Conversely, if (6.8) then observe by Lemma 5.3 and Ob-
servation 5.1(i) that (m,v) > 0 implies (m, u) > 0 for every (-standardized supermodular
function m € IC;(N). However, every supermodular function is strongly equivalent to a
function of this type by Lemma 5.2 which means that (6.9) holds.

By Lemma 6.1 u — v iff the condition (6.2) holds. However, by Lemma 5.4 it is
equivalent to the condition

AleN YmeKK)(N) [-{m,u) > (m,v), (6.11)
which implies (6.8). The next step is to show that (6.8) implies
Vm e K;(N) [, (m,u) > (m,v) for [, €N from (6.10). (6.12)

Indeed, if m € KJ(N) such that (m,v) < 0 then [, - (m,u) > 0> (m,v) by Observation
5.1(iii). If m € Kj(N) such that (m,v) > 0 then (6.8) implies (m,u) > 0. However, as
both m and u are imsets (m, u) € Z and therefore (m,u) > 1 and the assumption about
I, implies [, - (m,u) > I, > (m,v). The condition (6.12) then implies [, -u — v € S(N) by
Lemma 5.4. Thus, (6.8)=(6.10). Since IC7(N) is finite [, € N satisfying the requirement
from (6.10) exists which means that (6.10) implies v — v by Lemma 6.1. ]

The role of the way of standardization of supermodular functions is not substantial in
the above result. One can easily derive an analogous result with the u-skeleton respectively
with the o-skeleton in place of the ¢-skeleton by a similar procedure (see Remark 5.6).

It follows from Lemma 6.1 that one has u — w4 pjoy for a structural imset u over
N and (A, B|C) € T(N) iff (A, B|C) € M,. Therefore Lemma 6.2 can be viewed as
an alternative criterion of testing whether a disjoint triplet over N is represented in a
structural imset over N. Note that Lemma 6.1 is suitable in the situation one wants
to confirm the hypothesis that v — v while Lemma 6.2, namely the conditions (6.8)
and (6.9), is suitable in the situation one wants to disprove v — wv. This is illustrated
by Example 6.3 below. Well, the relation of these two criteria of facial implication is
analogous to the relation of moralization and d-separation criteria in case of DAG models
(see Section 3.2).
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Figure 6.4: Strongly equivalent elements of the u-skeleton and the ¢-skeleton.

EXAMPLE 6.3 Suppose N = {a, b, c,d}, consider the combinatorial imsets u and v from
(6.5) in Example 6.2 and a semi-elementary imsets w = w(qcqpy- The fact v — v was
verifed in Example 6.2 using direct characterization of facial implication, namely by means
of the condition (6.3) of Lemma 6.1 with £ = 2. To disprove u — w consider supermodular
imset mi*M (see p. 34) which is shown in the left-hand picture of Figure 6.4. Observe
(miH w) = 1, (m{*H u) = 0 and apply Lemma 6.2, the condition (6.9), to see that
—(u — w). Note that m{*" belongs to the u-skeleton K2(N) and the corresponding
element of the /(-skeleton (see Remark 5.6) is in the right-hand picture of Figure 6.4. <

An easy consequence of Lemma 6.2 is the following criterion of facial equivalence of
structural imsets.

CONSEQUENCE 6.2 Let u, v be structural imsets over N. Then u = v iff
Vm e KC;(N) (m,u) >0 iff (m,v) >0, (6.13)

which is equivalent to the condition that (m,u) > 0 < (m,v) > 0 for every supermodular
function m over N.

Note that the skeletal criteria of testing facial implication and equivalence are effective
in particular in case |[N| < 4 since |y (N)| is small in this case - see Remark 5.4. They are
still implementable in case |[N| = 5; a computer program which realizes facial implication
of elementary imsets over five-element set can be found at

http://www.utia.cas.cz/user_data/studeny/fivevar.htm .
As the (-skeleton is not at disposal in case |N| > 6 the only available criterion in that

case is the criterion from Lemma 6.1.

6.2.3 Adaptation to a distribution framework

Let us consider a class ¥ of probability measures over N (a distribution framework) which
satisfies the following two conditions:

for every P € W there exists a structural imset u over N such that M, = Mp, (6.14)
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for every pair P, () € U there exists R € ¥ such that Mp = Mp N My. (6.15)

There are at least three examples of distribution frameworks satisfying these two natu-
ral conditions: the class of measures with finite multiinformation, the class of discrete
measures and the class of positive discrete measures (see Theorem 5.2 and Lemma 2.9).
The goal of this section is to show that after suitable restriction of the class of structural
imsets facial equivalence and Markov equivalence relative to ¥ coincide.

A structural imset u over N is representable in W, shortly W-representable, if there
exists P € ¥ which is perfectly Markovian with respect to u, i.e. M, = Mp. Evidently,
every structural imset which is facially equivalent to a W-representable structural imset
is W-representable as well. The class of W-representable structural imsets over N will be
denoted by Sy(N).

LEMMA 6.3 Let U be a class of probability measures over N satisfying (6.14) and (6.15)
and u € S(N). Then the class of structural imsets Markov equivalent to u relative to
¥ is the union of a finite collection U of facial equivalence classes ordered by relation
—. Moreover, the poset (U, —) has the greatest element which is the only class of facial
equivalence o € U consisting of W-representable imsets.

Proof: The first claim of the lemma follows easily from Observation 6.1. Let us put
M = Npey(uy Mp where ¥(u) is defined by (6.1) and

d={PecWV; Al B|C[P] whenever (A, B|C)e M}.

The inclusion ¥(u) C & follows directly from the definition of M. The fact M, C M
implies ® C ¥(u) and therefore & = ¥(u). As T(N) is finite the set {Mp; P € ¥(u)}
is also finite and one can show by repetitive application of the assumption (6.15) that
R € ¥(u) such that Mp = M exists. By (6.14) a structural imset v with M,, = Mp = M
exists, which means ® = ¥(v). Thus, u and v are Markov equivalent relative to W. As
R € ¥ is perfectly Markovian with respect to v the imset v is W-representable.

Suppose that w € S(N) such that U(w) = ¥(u) and observe that

My, C () Mp= (] Mp=M=M,.

Pe¥(w) PcU(u)

Thus v — w and the class p of imsets facially equivalent to v is the greatest element of
(U, —). If w is U-representable then ) € ¥ with M,, = M exists and Q € ¥V (w) = ¥(u)
which implies M C Mg = M,, C M. Hence, M,, = M = M, which says w = v. O

REMARK 6.6 Note that (J,—) is even a join semi-lattice. Indeed, v — @w — w and
U(w) = ¥(v) implies ¥(w) = ¥(v) for v,w,w € S(N). Hence, ¥(u + w) = ¥(v) for
structural imsets u, w with ¥(u) = ¥(w) = ¥(v) where v € S(N) belongs to the greatest
element @ of U mentioned in Lemma, 6.3. By Consequence 6.1 M, ., = M, V M,, which
means that u + w represents the join of v and w in (U, —). On the other hand, (U, —)
need not be closed under the operation of meet in the lattice of structural imsets.

It may happen that O consists of one class of facial equivalence only. This means
that the class of imsets Markov equivalent to u coincides with the class of imsets facially
equivalent to u. For example, this phenomenon is quite common in case |N| = 4 for the
class of discrete measures over N: one has 18300 Markov equivalence classes and 22108
facial equivalence classes then [106, 107]. A
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The following fact immediately follows from Lemma 6.3.

CONSEQUENCE 6.3 Let ¥ be a class of probability measures over N satisfying (6.14) and
(6.15). Consider the collection of W-representable structural imsets Sy (N) over N. Facial
and Markov equivalence relative to U coincide for imsets from Sg(N).

In the considered case the class Sy (V) satisfies both the requirements of faithfulness
and the requirement of completeness relative to the class of CI structures arising within
¥ which were mentioned in Section 1.1. Thus, a theoretical solution of those problems is
at disposal but a practical question how to recognize imsets from Sy (/N) remains to be
solved then.

REMARK 6.7 The idea of implementation of respective deductive mechanism on a com-
puter is as follows. Except usual algebraic operations with structural imsets one needs to
implement an additional operation which ascribes the respective W-representable struc-
tural imset v € Sy (V) to every structural imset u € S(N). Suppose that uy, ..., u,, n > 1
are structural imsets which represent input pieces of information about CI structure in-
duced by an unknown distribution P which is known to belong to a given distribution
framework U (a subclass of the class of measures with finite multiinformation which sat-
isfies (6.15)). The sum u = Y." , u; then represents aggregated information about CI
structure of P. But within the considered distribution framework ¥ over more can be de-
duced: one should find the respective v € Sy(NN) which represents necessary conclusions
of input pieces of information about CI structure of any P € .

Nevertheless, possible inherent complexity of the problem of description of the lattice of
CI structures arising within ¥ cannot be avoided. Indeed, implementation of the operation
ascribing respective v € Sy(N) to every u € S(N) may appear to be complicated (see
Remark 5.7 for analogous consideration). Hopefully, the presented approach helps to
decompose the original problem properly. A

6.3 Testing facial implication

This section deals with implementation tasks connected with direct characterization of
facial implication.

6.3.1 Testing structural imsets

The first natural question is how to recognize a structural imset. One possible method
is given by Theorem 5.1 but, as explained in Remark 5.4, that method is not feasible
in case |[N| > 6. Thus, only the direct definition of structural imset is available in
general. Therefore one needs to know whether the corresponding procedure is decidable.
As explained in Remark 6.3 testing of combinatorial imsets is quite clear. One needs to
know whether the natural number by which a structural imset must be multiplied to get
a combinatorial imset is somehow limited.

LEMMA 6.4 There exists n € N such that

V imset u over N u € S(N) iff n-u € C(N). (6.16)
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Proof: One can apply Theorem 16.4 from [90] with says that every pointed rational
polyhedral cone C' C R", n. > 1 has a (unique) minimal integral Hilbert basis generating
C that is (minimal) finite set B C Z" such that

VeeCnz" m:Zky-y for some k, € Z*
yeB

and con(B) = C (which implies B C (). One can apply this result to the rational
polyhedral cone con(£(N)) € RP™) which is pointed by Observation 4.1 as (m.,t) > 0
for every non-zero t € con(£(N)). Moreover, by Fact from Section 10.8.2 an imset u over
N belongs to con(E£(N)) iff it is structural. Thus, a finite set of structural imsets H (V)
exists such that

VueSN) u= Z ky - v for some k, € Z7". (6.17)

VEH(N)

One can find n(v) € N for every v € H(N) such that n(v) - v is a combinatorial imset and
put n = [[,cpn) n(v). Clearly, n-v € C(N) for every v € H(N) and (6.17) implies that
n-u € C(N) for every u € S(N). ]

Natural question is what is the minimal n € N satisfying (6.16). I do not know the
answer in case |[N| > 5 (see Theme 12 on p. 143). But if |[N| < 4 then n = 1: let me
formulate as a separate observation the main result of [101].

OBSERVATION 6.2 If |[N| < 4 then the class of structural imsets over N coincides with
the class of combinatorial imsets over V.

REMARK 6.8 The least n € N satisfying (6.16) may appear to be too high. Alternative
approach to direct testing structural imsets could be based on the concept of minimal
integral Hilbert basis H(/N) mentioned in the proof of Lemma 6.4 (see Theme 11). It
follows from the proof of Theorem 16.4 of [90] that #(N) has the form

H(N)={veSN); v#0 & —[v=wv, + vy where v;,v5 € S(N), vy # 0 # v5] }.

The fact that every elementary imset generates an extreme ray of con(€(N)) allows to
derive £(N) C H(N). Of course, H(N) = E(N) if |[N| < 4 by Observation 6.2. The
idea is to characterize H(N) in general. Then every imset u over N can be effectively
tested whether it can be written as a combination of imsets from (V) with non-negative
integral coefficients. Indeed, one can modify the procedure described in Remark 6.3. A

6.3.2 Grade

Another natural question arising in connection with Lemma 6.1 is whether there exists
[ € N such that

VueSIN) ve&(N) u—w iff [-u—veS(N). (6.18)
The answer is yes. Evidently, if [ € N satisfies (6.18) then every " € N, I’ > [ satisfies

it as well. Therefore one is interested in minimal [ € N satisfying (6.18) which appears
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to depend on N. Actually, it depends on |N| only because of inherent one-to-one cor-
respondence between £(N) and (M), respectively between S(N) and S(M) for sets of
variables N and M of the same cardinality. The following number is a good candidate
for the minimal [ € N satisfying (6.18).

Supposing |N| > 2 let us call the grade, denoted by gra(N), the natural number

gra(N) = max { (r,w); r € Kj(N) we&E(N)}. (6.19)
Evidently, gra(N) depends on |N| only. Lemma 6.2, the condition (6.10), implies this:

CONSEQUENCE 6.4 If |N| > 2 then [ = gra(N) satisfies (6.18).

Consequence 6.4 leads to an effective criterion of testing facial implication of elemen-
tary imsets in case |N| < 4 which utilizes the fact that structural and combinatorial
imsets coincide in this case.

CONSEQUENCE 6.5 Suppose that 2 < |N| < 4, u is a structural imset over N and v an
elementary imset over N. Then u — v iff u — v is a combinatorial imset.

Proof: The first observation is that if |[N| < 4 then (m,v) € {0,1} for every m € Kj(N)
and v € E(N) - see [101]. Thus, gra(N) = 1 and by Consequence 6.4 one has u — v iff
u —v € §(N) which is equivalent to u — v € C(N) by Observation 6.2. m

However as shown in [116] gra(N) = 7 in case |N| = 5. In fact, an example from
Section 4.3 of [116] shows that the minimal natural number [ for which (6.18) holds is
just 7 in case |[N| = 5. The question what is the minimal [ € N satisfying (6.18) (c.f. p.
143) is partially answered by the following lemma.

LEMMA 6.5 Suppose that |[N| > 2. Then the minimal [, € N satisfying
VuelC(N)Vve&EN) u—wv iff l,-u—veSN) (6.20)
is the upper integer part of

S max {(m,w); w € E(N)}
gra.(N) = max e {mw); w e E(N) (mw) £0T° (6:21)

Proof: To show that every [, € N with [, > gra, (V) satisfies (6.20) the procedure from
the proof of Lemma 6.2 can be used. The only modification is that in case m € ICj(N)
with (m,u) > 0 the fact u € C(N) implies (m,u) > min {{(m,w); w € E(N) (m,w) # 0}
which allows to write

l, - {m,u) > gra,(N) - min (m,w) > max (m,w) > (m,v).

weE(N),(m,w)#0  weE(N)
To show that for every [ € N with [ < gra,(N) there exists a combinatorial imset u and
an elementary imset v such that u — v and [-u—v € S(IV) choose and fix m € KCj(N) for
which the maximum in (6.21) is achieved. Then choose w = u(; jjxy € £(N) minimizing
non-zero value (m,w), w € £(N) and v € £(N) maximizing (m,w) for w € E(N). By
Consequence 5.4 a 4 € C(N) with M™ = M, exists. Put v = @ 4+ @. By Lemma 6.1
M" = Mz C M,. As (i,j|K) € M, \ M™ the fact that m is a skeletal imset (see
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Section 5.2) implies M, = T(N) O M, which means u — v. On the other hand, by
Observation 5.6 (m, ) = 0 and therefore
(m,v) _ (m,v)

| < gra,(N) = (5 = ) implies (m,[-u—wv) <0,

which means [ - u — v ¢ S(N) by Lemma 5.4. [

REMARK 6.9 Note that the type of the skeleton is not material in the above result. In
fact, the /-skeleton can be replaced either by the u-skeleton or by the o-skeleton and the
respective constant gra,(N) has the same value. Indeed, it follows from Consequence 5.3
that for every skeletal supermodular function m there exists o > 0 such that (m,u) =
a- (m,u) for every u € £(N) where m € ICj(N) is the unique model equivalent element of
the (-skeleton. Thus, the ratios maximalized in (6.21) are invariants of classes of model
equivalence of skeletal imsets. Note that if |[N]| <5 then

VmeK)(N) min {(m,u); u€ E(N) (m,u)y #0} =1, (6.22)

which implies that gra(N) = gra,(N) in this case. Thus, if the hypothesis (6.22) holds in
general (see Question 8) then gra(NN) is the least | € N satisfying (6.18) by Consequence
6.4 and Lemma 6.5. Note that an analogue of (6.22) holds for |N| < 5 and the u-skeleton
(because of the operation of reflection mentioned on p. 131 or in Section 5.1.3 of [116])
but not for the o-skeleton. This is maybe the main difference between o-standardization
and /(-standardization. JAN

6.4 Invariants of facial equivalence

This section deals with some of those attributes of structural imsets which are either
invariable with respect to facial equivalence or characterize classes of facial equivalence.

Let u be a structural imset over N. By effective domain of u denoted by D; is
understood the class of sets T C N such that " C T C S for some S, S C N with
u(S"),u(S) > 0, that is D} = (D} )* N (D). Recall that U, = (D;)* is nothing but the
upper class of u from Section 4.2.3. The region of u, denoted by R,, is the class of subsets
of N obtained as follows:

Ro= U KK jK,ijK} = |J  {C,AC,BC,ABC}. (6.23)
(i,j| K)eMuNTe(N) (A,B|CYEM\T5(N)

Note that the equality of the unions in (6.23) over the class of elementary triplets and
over the class of all non-trivial triplets can be easily derived from the fact that M, is a
semi-graphoid (Lemma 4.6) by means of Lemma 2.2 on p. 16.

LEMMA 6.6 Given a structural imset u over N one has R, C D}. If u,v € S(N) such
that v = v then U, = U,, D, = D; and R, = R,. Moreover, S & R, for S C N iff
w(S) = 0 for every w € S(N) which is facially equivalent to w.
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Figure 6.5: Two structural imsets with the same effective domain but different regions.

Proof: To show R, C D} consider elementary triplet (i, j|K) € M, and find k € N with
k-u—ug iy € S(N). As (m"5T w; sixy) > 0 by Observation 5.1 k- (m“%T, u) > 0. Hence,
u(T) > 0 for some ijK C T C N which means K,iK,jK,ijK € (D})*. Analogously,
(m™ ug jiky) > 0 implies (m™ u) > 0 and u(S’) > 0 for some S’ C K which means
K,iK,jK,ijK € (DJ)". The next observation is that S € ((D;)¥)™® iff (m ", u) > 0
and (m"T u) = 0 for every T D S. Indeed, S € ((D})*)™ means u(S) > 0 and u(T) =0
for T > S by Observation 4.5 (£, C U,) and one can show by reverse induction on |T|
that u(T) = 0 for every S C T C N iff (mT" u) = 0 for every S C T C N. Analogous
arguments allow to show that S € ((D})")™n iff (m*, u) > 0 and (mT+, u) = 0 for every
T C S (replace C by D). However, by Consequence 6.2 and Observation 5.1 the conditions
(mAT u)y > 0, (m* u) =0, (m* u) >0, (m™ u) =0 for A C N are invariable with
respect to facial equivalence. Therefore, U, and D; are invariable as well. Analogous
claim about R, is evident because of its definition in terms of M,,.

To show that S & R, implies u(S) = 0 write n-u =} ¢y ky-v wheren € N, k, € Z*
and observe (i, j|K) € M, whenever k, > 0 for v = u k). As S € R, one has v(S) =0
for every v € £(N) of this kind which implies n - u(S) = 0. The consideration holds for
any w € S(N) with u = w in place of u. Conversely, suppose S € R,, take elementary
triplet (i, j|K) € M, with S € {K,iK,jK,ijK} and observe that w = u + k - u(; k) is
facially equivalent to u for every k& € N by Lemma 6.1. One can find k£ € N such that
w(S) # 0. ]

However, the effective domain and the region of a structural imset may differ as the
following example shows.

EXAMPLE 6.4 There exist two structural imsets u,v over N = {a, b, ¢,d} with the same
effective domain but different regions. Consider the imset u = w4y +%(q,4/) Shown in the
left-hand picture of Figure 6.5 and the imset v = (. 4ja) + U(a|cy Shown in the right-hand
picture of Figure 6.5. The set {a,d} belongs to the effective domain D} = D; and to the
region R, but it does not belong to the region R,.

On the other hand, regions and effective domains of structural imsets over N coincide
in case |[N| < 3 (c.f. Section 7.5.1 and Figure 7.8). &
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REMARK 6.10 The significance of the concept of effective domain is that it allows to re-
strict the considered class of elementary imsets when one tests whether an o-standardized
imset is combinatorial - see Remark 6.3. Indeed, if u = ZUEE(N) k, -v with k, € Z*
then for every v = w ; k) with k, > 0 one has (i, j|K) € M, and therefore by Lemma
6.6 K,iK,jK,ijK € R, C D,. Thus, a reduced class of elementary imsets v = u j x)
satisfying K,iK, jK,ijK € D can be considered. Observe that the effective domain D;,
can be identified directly on basis of u. This is the main difference from the region R,
which gives even stronger restriction of the class of considered elementary imsets but the
region cannot be immediately recognized only on basis of u. It is a characteristics of the
respective class of facially equivalent structural imsets and can be identified on basis of
the imset only partially as mentioned in Lemma 6.6.

However, by Observation 4.3 one can compute the corresponding level-degrees of u for
[ =0,...,|N|—2 which may result in further restriction of the class of considered imsets
- in particular if some of the level-degrees vanish. A

Effective domains are attributes of structural imsets which allow to distinguish imme-
diately imsets which are not facially equivalent. A natural question whether there exists
a complete collection of invariant properties of similar type in sense that for every pair of
structural imsets u and v over N at least one property of this type exists in which they
differ. Consequence 6.2 gives a positive answer to this question. Indeed, every skeletal
imset m € KCj(N) is associated with an invariant attribute of a structural imset u over
N, namely the fact whether the scalar product (m,u) vanishes or not. The collection of
these attributes is complete in the above mentioned sense.

However, as explained in Remark 5.4 this criterion does not seem feasible in case
|N| > 6. Therefore, one is interested in invariants analogous to the effective domain or
in relatively simple characteristics of facial equivalence like the region - see Direction 3 in
Chapter 8. For example, if |[N| < 3 then a completely distinguishing class of attributes
is the effective domain together with the minimal lower classes (see Section 7.4.2) or the
pattern (see Section 7.5.1).
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Chapter 7

The problem of representative choice

This chapter deals with the problem of choice of suitable representative within a class
of facially equivalent structural imsets. It is an advanced subtask of general equivalence
question mentioned in Section 1.1 studied in the framework of structural imsets - an
analogous question has already been treated in graphical frameworks - see Chapter 3 (the
concept of essential graph and the concept of the largest chain graph). A few principles
of representative choice are introduced and discussed in this chapter. Special attention is
devoted to the representation of graphical models by structural imsets. The last section
describes some other ideas whose aim is unique description of structural models.

7.1 Baricentral imsets

An imset uw over N is called baricentral if it has the form

. 1
u= Z w or equivalently u = 5 Z Ua,b|C)- (7.1)
weE(N),u—w (a,b|CYEMLNTE(N)

Evidently, every elementary imset is baricentral and every baricentral imset u is a combi-
natorial imset with the degree |[{w € £(N);u — w}|. Moreover, the definition implies that
every class of facial equivalence of structural imsets contains exactly one baricentral imset.
Nevertheless, semi-elementary imset need not be baricentral. Given a semi-elementary im-
set uia,poy for (A, B|C) € T(N) the respective facially equivalent baricentral imset even
need not be its multiple of despite the fact that the formulas

deg(uapy) = Al [Bl [{w € E(N); wapicy — w}| = |A[ - |B]- 2417121171 (7.2)
suggest that it may be the case.

EXAMPLE 7.1 There exists a semi-elementary imset v over N = {a, b, ¢, d} such that no
multiple k - v, k& € N is a baricentral imset. Put v = uq peq) - see the left-hand picture
of Figure 7.1. Then u — w € E(N) iff w = uqecy where e € {b,c,d}, C C {b,c,d} \ {e}
(c.f. Lemma 2.2). The respective baricentral imset u is shown in the right-hand picture of
Figure 7.1. Observe that 12 = deg(u) = 4 - deg(v) but u # 4 - v since the level-degrees of
u and v are not proportional: deg(v,l) =1 for [ =0, 1,2 while deg(u,0) = deg(u,2) = 3
and deg(u, 1) = 6. On the other hand, u =3 v + upje) + U(a,cldy + Uia,dpp)- O
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Figure 7.1: Respective non-proportional semi-elementary and baricentral imsets.

The significance of baricentral imsets consists in the fact that testing facial implication
between them is very simple.

OBSERVATION 7.1 Let u,v are baricentral imsets over N. Then v — v iff u — v is a
combinatorial imset.

Proof: If u — v then v — w implies u — w for every w € £(N) and u—v € C(N) follows from
(7.1). The converse follows from Lemma 6.1. L]

Note that testing combinatorial imsets is clear (see Remark 6.3). Analogous result
holds if v is replaced by a semi-elementary imset (see Consequence 7.4 below). In partic-
ular, the whole induced model M, can be easily identified on basis of a baricentral imset
w over N (i.e. without 'multiplication’).

REMARK 7.1 The terminology ’baricentral imset’ was inspired by geometric idea that
the class of structural imsets which are facially implied by v € S(NV) is nothing but the
class of imsets belonging to the cone con({w € £(N);v — w}) (c.f. Remark 6.2 on p.
93). Thus, a (minimal) balanced combination of all extreme imsets of this cone forms the
'baricentre’ of the cone.

Natural question is what is the number of baricentral imsets over N. A rough upper
estimate can be obtained as follows. Suppose n = |[N| > 2 and S C N, |S| = k. Then
a limited number of w € £(N) takes a non-zero value w(S) € {—1,+1}. In particular,
by (7.1) every baricentral imset u over N takes the value u(S) in a finite set L(S) C Z
which depends on k = [S| only. Concretely, L(S) = {~k(n — k),..., (5) + (*,*)} for
2<k<n—2LS)={0,...,(2)} for k € {0,n} and L(S) = {-n +1,..., @=1r=2]
for k € {1,n — 1}. Thus, |L(S)| = (}) + 1 for every S C N. Since baricentral imsets are
o-standardized it suffices to know their values for 2" — n — 1 sets only. Therefore, every
baricentral imset can be represented as a function on {S C N;|S| > 2} taking values in

L(S) for every S. The number of these functions is
ﬁn = {(g) + 1}2”—71—1

which serves as an upper estimate of the number of baricentral imsets over N and therefore
of the number of structural models over N.
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The following gives an indirect comparison of memory demands when a structural
model over N is represented either in the form of a baricentral imset or ’directly’. By
Lemma 2.2 every semi-graphoid M over N is determined by M N 7;(N). Thus, owing to
symmetry property (see p. 15) it can be represented as a function on £(N) taking value
in a two-element set. As |£(N)| = (}) - 2"~2 the number of these functions is

YV = 2n~(n—1)-2"*3

One has ﬂg = 72, 53 =28 > 96 — V3, 54 =7 > 224 — Y4 and 55 = 11%6 > 280 — Vs On
the other hand 3, < 22" n-1) < o(3)2* — v, for n > 6 so that "asymptotically’ the
number of considered integral functions on {S C N;|S| > 2} is lower than the number
of binary functions on £(N)! Only (n — 2) bits suffices to represent elements of L(S) for
S C N in case n > 6 which means that memory demands are slightly lower in case of
representation by baricentral imsets. A

On the other hand, the actual number of baricentral imsets (i.e. structural models) for
n = 2,3,4 are much lower than the estimates from Remark 7.1 - see Example 5.1. The
lattice of baricentral imsets over {a, b, c} (ordered by —) is shown in Figure 7.2.

Baricentral imsets provide quite good solution of the problem of representative choice
from computational point of view. However, the question of getting respective baricentral
imset from any given structural imset remains to be solved satisfactorily. For example,
formulas ascribing respective baricentral imsets to graphical models are needed (see Theme
3 in Chapter 8). Relative disadvantage of baricentral imsets is that they do not seem to
offer easy interpretation in comparison with ’standard’ imsets for DAG models mentioned
below.

7.2 Standard imsets

Some classic graphical models can be represented by certain ’standard’ structural imsets
which seem to exhibit important characteristics of the models. These standard repre-
sentatives of graphical models may differ from baricentral representatives and seem to
be more suitable from the point of view of interpretation. They are introduced in this
section together with relevant basic facts. Note that the motive of later Sections 7.3 and
7.4 is to find out whether these exceptional representatives reflect some deeper principles
so that the concept of standard imset could be extended even beyond the framework of
graphical models.

7.2.1 Translation of DAG models

Let GG be an acyclic directed graph over N. By a standard imset for G will be understood
the imset ug over N given by

Ug =0y — 0p + Z 617&@(0) — 5CUP&C,~(C)' (7.3)
ceEN

LEMMA 7.1 Let G be an acyclic directed graph over N. Then the imset u = ug is a
combinatorial imset and M,, = Mg. Moreover, deg(ug) = - |N|- (|N| — 1) — |A(G)]
where |A(G)| is the number of arrows in G.
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Figure 7.2: Baricentral imsets over N = {a, b, ¢} (rotated).
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Proof: Consider a fixed ordering aq, ..., a,, n > 1 of nodes of G consonant with direction
of arrows and the corresponding causal input list (see Remark 3.4)

(aj,ar...aj-1 \ pag(a;j) | pag(a;)) forj=1,...,n. (7.4)

Introduce u; as the semi-elementary imset corresponding to the j-th triplet from (7.4) for
j=1,...,n and write

w= Z Uj = Z 0far,a;} = Oarmaj—1} — Oa;pala;) + Opa(a;) = Ua
j=1 j=1

since almost all terms 6{(11,“,,,1].} are cancelled. Thus, ug is a combinatorial imset and the
substitution of deg(u;) = j — 1 — [pag(a;)| into deg(u) = >77_, deg(u;) gives the desired
formula for deg(uq). Note that the formula above implies that 7, u; actually does not
depend on the choice of causal input list.

Since M, is a semi-graphoid containing (7.4) the result from [119] saying that Mg
is the least semi-graphoid containing (7.4) implies Mg C M,. For converse inclusion
use the result from [31] implying that a discrete probability measure P over N with
Mg = Mp exists and Theorem 5.2 saying that v € S(N) with Mp = M, exists. Since
the list (7.4) belongs to M one has v — u; for j = 1,...,n and therefore by Lemma 6.1
v— 2?21 u; = u which means M,, C M, = M. ]

REMARK 7.2 In fact, it was shown in the proof of Lemma 7.1 that ug € Sg(N) where ¥
is the class of discrete measures over N (c.f. Section 6.2.3). A

Standard imsets appear to a suitable tool for testing Markov equivalence of acyclic
directed graphs.

CONSEQUENCE 7.1 Let GG, H be acyclic directed graphs over N. Then Mg = My if
and only if ug = ugy.

Proof: By Lemma 7.1 ug = ug = Mg = Mpy. The converse implication is shown in
[42] as Consequence 3.1 concluding Remark 2 there. ]

REMARK 7.3 Every semi-elementary imset over NV is a standard imset for an acyclic
directed graph over N. Indeed, given (A, B|C') € T(N) consider a total ordering of nodes
of N in which the nodes of C' precede the nodes of A which precede the nodes of B and
these precede the nodes of N\ ABC. Take an undirected graph over N in which every
pair of distinct nodes is a line except pairs [a, b] where a € A, b € B. Consider a directed
graph G which has this undirected graph as the underlying graph and has the direction
of arrows consonant with the total ordering above. Then it makes no problem to see by
the procedure in the proof of Lemma 7.1 that ug = wu4,B|c)- A
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7.2.2 Translation of decomposable models

Decomposable models, that is independence models induced by triangulated undirected
graphs form an important class of graphical models - see Section 3.4.1. Let H be a
triangulated undirected graph over N and C is the class of all its cliques. By standard
imset for H will be understood the imset uy over N given by

ug =6x+ Y (=165 (7.5)
p£BCC

It is shown below that uy is a combinatorial imset (Consequence 7.2), the next lemma
helps to compute uy efficiently.

LEMMA 7.2 Let H be a triangulated undirected graph over N and o: C4,...,C,, m > 1
is a sequence of (all) its cliques satisfying the running intersection property (see (3.1) on

p. 45). Then
i=1 1=2

where S; = C; N (U].<i C;) for i = 2,...,m are respective separators. In particular, the
right-hand side of (7.6) does not depend on the choice of p and can also be written as

follows:

cec SeSs

where C is the class of cliques of H, S is the class of separators and w(S) denotes the
multiplicity of a separator S € S.

Proof: The idea is to verify (7.6) by induction on m = |C|. It is evident in case m < 2.
If m > 3 then put ' =C\ {C,}, T =JC" and H' = Hy. Observe that C1,...,Cy,_1 is a
sequence of all cliques of H' satisfying the running intersection property. Write by (7.5)

Cm€eBCC

Running intersection property says S,, = Cy,, N (|J
allows to write

Z (_1)‘3‘ '508 = Z {(_1)|A| '5ﬂA - (_1)|Al '5nAn0k} = —dc,, + 50mr1c,c

CmeBCC Con €ACC\{Cy}

i<m C;) C Cy for some k < m. This

where the last equality holds because every term in braces vanishes whenever |A| > 2:
the inclusion A C Cp, N (U, ., C5) € Ck says (VAN Cr = [ A. Hence, by (7.8) and
the induction hypotheses applied to H' (over T') get

UH:(SN—(ST-F((ST— 5C-+ 6Si)_60m+65m,

which gives (7.6). 0
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REMARK 7.4 Note that (7.7) implies that the product formula induced by uy (see Section
4.3) is nothing but well-known formula (3.2) characterizing Markovian measures with
respect to triangulated graphs mentioned in Section 3.4.1. Thus, this classic result can
be viewed as a special case of Theorem 4.1 on structural imsets. A

Decomposable models can be viewed as DAG models (see Figure 3.6). The reader
may ask whether ’standard’ translation of DAG models and decomposable models leads
to the same imset. Positive answer is given by the following lemma.

LEMMA 7.3 Let H be a triangulated graph over N and C',...,C,,, m > 1 is a sequence
of its cliques satisfying the running intersection property. Put R; = C; \ U, C; for
1 = 1,...,m and consider a total ordering of nodes of N in which nodes of R; precede
nodes of R;yy forv =1,...,m — 1. Let GG is an acyclic directed graph over N having
H as the underlying graph such that the direction of arrows in G is consonant with the

constructed total ordering of nodes. Then Mg = My and uy = ug.

Proof: The first observation is this:
VeeN Ya,b€pag(c) a#b = [a,b] is an edge in G. (7.9)

Indeed, ¢ € R; for uniquely determined [ < m. If a € pag(c) then a € U, R; = U, C;
and {a, c} belongs to a clique of H. Let C; be the first clique in the sequence C1,...,C,,
containing {a, c}. Necessarily i <[ as otherwise a,c € C;N(U;, C;) € Cin(U;.; Cj) = Si
and by the running intersection property a,c € S; C C} for k < ¢ which contradicts the
definition of C;. However, as ¢ ¢ C; for j < i necessarily ¢ = I. Hence, pag(c) C C; which
implies (7.9).

Now, both G and H can be viewed as (classic) chain graphs over N with the same
underlying graph (see Section 3.3). To show Mg = My by well-known graphical char-
acterization [25] (see p. 44) it suffices to show that they have the same complexes. But
H has no complexes and G as well because of (7.9).

The equality ug = uy can be derived using (7.6) in Lemma 7.2. Indeed, if di, ..., d!
is the chosen ordering within R;, i = 1,..., m then (7.3) gives

m dﬁr m
ug =0y — Op + Z Z {0pa(a) — daqupaa)} = On — dp + Z {ds, —d¢, }
i=1 d=di i=1

(where Sy = 0) as pag(di) = S; and d} U pag(d}) = Cj for i = 1,...,m and all remaining
terms within the inside sum are cancelled. []

CONSEQUENCE 7.2 Let H be a triangulated undirected graph over N. Then u = upy is a
combinatorial imset, Mgy = M, and u coincides with the standard imset for any acyclic
directed graph G for which Mg = My.

Proof: This follows directly from Lemma 7.3, Lemma 7.1 and Consequence 7.1. L]

REMARK 7.5 Because of Remark 7.2 the preceding consequence implies that uy € Sg(N)
where W is the class of discrete measures over N. A
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Figure 7.3: Two distinct equivalent imsets of the least degree.

7.3 Imsets of the least degree

One of possible approaches to the choice of representative from a class of facially equivalent
structural imsets g is to choose a combinatorial imset of the least degree (see Section 4.2.2
p. 59 for this concept). Note that o contains combinatorial imsets by Consequence 5.4.
The definition of degree implies that only finitely many combinatorial imsets over a fixed
set N with prescribed degree exists. In particular, the set of combinatorial imsets of
the least degree in g is finite. By an imset of the least degree will be understood a
combinatorial imset u which has the least degree within the class of combinatorial imsets
v with M, = M,. Nevertheless, the class ¢ may contain more than one imset of the least
degree.

ExXAMPLE 7.2 There exists a class of facially equivalent structural imsets over N =
{a,b,c} which has two different imsets of the least degree. Consider the class o of
w € S(N) with M, = T(N). Then both u = Ulpcla) T U(aple) T Uaelpy and v =
Uiaple) T Uaclpy + Upepy (they are shown in Figure 7.3) have the least degree 3 within the
class of combinatorial imsets from . Observe that £, = {a, b, c}* while £, = {ab, ac, bc}*.
Note that the fact that u and v are all imsets of this kind can be verified using the pro-
cedure described later in Section 7.3.2. &

LEMMA 7.4 Standard imset for an acyclic directed graph G over N is an imset of the
least degree.

Proof: Let v € C(N) with v = u where u = ug. To verify
deg(v) > deg(u) = | {(a,b) € N x N; a # b, [a,b] is not an edge in G } |

(see Lemma 7.1) write v = >_ oy kw - w for k,, € Z" and show that for every a,b € N,
a # b such that [a, b] is not an edge in G' there exists w = uqpxy € £(N) with k,, > 0 for
some K C N\ ab. Indeed, otherwise (m,v) = 0 for m = m®" as (m,w) > 0 for w € £(N)
iff w = w(p k) for some K C N\ ab. Hence, by Observation 5.6 M, C M™. But the
moralization criterion (see Section 3.2) says (a, b | pas(a)pag (b)) € Mg\ M™ = M, \ M™
which implies a contradictory conclusion M, # M,,. L]

The previous lemma implies by Remark 7.3 this fact.
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CONSEQUENCE 7.3 Every semi-elementary imset is an imset of the least degree.

The method of finding of all imsets of the least degree within a given equivalence class
mentioned in Example 7.2 is based on the fact that every imset of this type determines
a certain minimal generator of the respective induced independence model. The method
uses a computer program and its theoretical justification is given in the rest of this section.

7.3.1 Strong facial implication

Let u,v be combinatorial imsets over N. Let us say that u strongly facially implies v and
write u ~ v if u — v is a combinatorial imset. Clearly, v ~» v implies u — v by Lemma
6.1. The relation ~ is a partial ordering on C(N) (for antisymmetry use Observation
4.4). Tts advantage in comparison with — is that it can be easily tested (see Remark 6.3).

OBSERVATION 7.2 Every imset u of the least degree is minimal with respect to ~» within
the class {v € C(N); v =u}.

Proof: If u # v are combinatorial imsets and v ~» v then deg(u) — deg(v) = deg(u —v) > 0 as
the only combinatorial imset of degree 0 is the zero imset. L]

However, the question whether the converse implication holds remains open (see Ques-
tion 4 on p. 129).

7.3.2 Minimal generators

The point is that imsets satisfying the condition from Observation 7.2 correspond to
specific minimal generators with respect to a closure operation on subsets of X = T (N)
(see Section 10.2 p. 153 for related definitions). Indeed, the class U (N) is a closure system
of subsets of X = T (N) by Observation 5.7 and one can introduce the respective closure
operation cly () on subsets of T(N). Thus, by the structural closure of G C T(N) is
understood the least structural model containing G defined by

dum(@) = () M  for GCT(N).

GCMEU(N)

A set G C T(N) is called a structural generator of M € U(N) if M = clyn)(G); if
moreover G consists of elementary triplets G C T.(N) then it is called an elementary
generator of M. A structural (elementary) generator of M is called minimal if no its
proper subset is a structural generator of M. As every structural model M over N is a
semi-graphoid by Lemma 2.2 M N T,(N) is an elementary generator of M. This implies
the following observation.

OBSERVATION 7.3 Every structural model M over N has minimal elementary generator.

REMARK 7.6 Note that the concept of (minimal) generator can be understood with re-
spect to arbitrary closure operation on subsets of 7 (N), for example with respect to
semi-graphoid closure operation or any closure operation introduced by means of syntac-
tic inference rules of semi-graphoid type. The concept of complerity of a model (with
respect to a closure operation) which can be introduced as the least cardinality of a
generator appears to be an interesting characteristic of the model [114]. A
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The following lemma provides a method of finding all imsets of the least degree.

LEMMA 7.5 Let M be a structural model over set N endowed with a total ordering <
and ¢ = {v € C(N); M, = M}. Then every minimal element u of @ with respect to ~»
has the form
U= ky-w  where k, € {0,1} (7.10)
(V)

wel

and G = {(i, j|K) € Te(N) 5 kuy ey =1 @ < j} is a minimal elementary generator of M.
Proof: Write u = 3 oy kw - w where k,, € Z*. 1If k, > 2 for some w € E(N)
then w — w € C(N) is facially equivalent to v and u ~ u — w. Therefore necessarily
(7.10) holds and G is in one-to-one correspondence with elements of £(/N) having non-
zero coefficients there. To show that G is a structural generator of M consider M' € U(N)
with G € M'. As it is a semi-graphoid M,, € M’ for w = u jixy, (i,j|K) € G and by
Consequence 6.1 M, C M'. Thus M, C clyn)(G) and the converse inclusion follows
from M, € U(N) and G C M,,. To show that no proper subset F C G is a generator
introduce v = Y7 i xye 5 Wi jiiey € C(N). Observe that clyv)(F) = M, (by an analogous
procedure). If clyn)(F) = M, then v = v and u ~ v # u which contradicts the
assumption. L]

In case |[N| < 4 all minimal elementary generators of a structural model M over N
can be found by a computer program written by my colleague P. Bocek [9]. Thus, owing
to Observation 7.2 given M € U(N) the list of imsets of the least degree inducing M
can be obtained by reducing the list of imsets u satisfying (7.10). Reduction is sometimes
necessary as the following example shows.

EXAMPLE 7.3 There exists a structural model M over {a,b,c,d} and an elementary
generator G C M N T,(N) such that v = z(i,j\K)Eg u(; j|k) is not an imset of the least
degree. Let us consider the independence model from Example 3.1 on p. 41 (restriction
of a DAG model). Then both imsets

U = U(a,d|o) t U(a,cld) T U(b,da) U = Ug,elp) T Uip,d0) T Uadlb) T Ua,d|c)

are defined by means of minimal elementary generators of M but 4 = deg(v) > deg(u) = 3
(the imsets are shown in Figure 7.4). Note that v = u + w(, 49y and u + v is a baricentral
imset. Moreover, u is the unique imset of the least degree among facially equivalent imsets
while v is an imset with the least lower class (see Section 7.4.2) among facially equivalent
imsets. &

The following consequence easily follows from Lemma 7.5, the definition of baricentral
imset and Consequence 7.3.

CONSEQUENCE 7.4 If u is a baricentral imset over NV and v is an imset of the least degree
with © — v then v —v is a combinatorial imset. In particular, for every (A4, B|C) € T(N),
(A, B|C) € M,, iff u — ua,p|cy is a combinatorial imset.
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Figure 7.4: Imset of the least degree respectively with the least lower class.

7.4 Width

Recall that the lower class £, of a structural imset u is contained in the upper class U,
(see Section 4.2.3, p. 60) but they differ for non-zero u. Moreover, by Consequence 4.3
marginals of Markovian measures for sets in £, determine the marginals for sets in U,.
The upper class is an invariant of facial equivalence (see Section 6.4) but the lower class
is not as demonstrated by Example 7.2. In the considered example, the imset shown
in the left-hand picture of Figure 7.3 tells more about which marginals determine the
whole Markovian measure in comparison with the imset shown in the right-hand picture
of Figure 7.3. Thus, facially equivalent imsets need not be equiinformative from this point
of view. This consideration motivates an informal concept of width of a structural imset

w which is the class U, \ L, .

7.4.1 Determining and unimarginal classes

Let us take more general view on some results of Section 4.4. Suppose that M is a
structural model over N. The upper class U = U, of subsets of N and the class of
probability measures over N which are Markovian with respect to v do not depend on
the choice of u € S(N) with M,, = M; they are determined by M only.

A descending class D C U of subsets of N will be called determining for M if the
only descending class £ with D C £ C U such that AC, BC € £ = ABC € & for every
(A, B|C) € M is the class € = U. A descending class D C U will be called unimarginal
for M if every pair of Markovian measures over N (with respect to u € S(INV) satisfying
M = M,) whose marginals for sets from D coincide has the same marginals for sets from
U. Evidently, whenever D C U is determining resp. unimarginal then every descending
class D' with D C D' C U is determining resp. unimarginal as well. Therefore, one
is interested in minimal determining classes for M, that is determining classes D C U
for M such that no proper descending subclass D' C D is a determining class for M.
In particular, T am interested in the question for which M the least determining class
(resp. the least unimarginal class) for M exists which is the (unique) determining (resp.
unimarginal) class D C U, i.e. one has D C D’ for every descending determining (resp.
unimarginal) class D' C U. DAG models appear to be examples of structural models of
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this type (see Section 7.4.3).
OBSERVATION 7.4 Every determining system is unimarginal.

Proof: If D C U is determining and P, Q Markovian measures then put £ = {S € U; P = Q°}
and observe that D C £ and AC,BC € & = ABC € & for every (A,B|C) € M (use the
‘uniqueness principle’ mentioned in the proof of Consequence 4.3). L]

Recall that Consequence 4.2 says that the lower class £, is a determining class for
M, whenever u € S(N). Thus, one can summarize implications as follows:

lower class = determining class = unimarginal class. (7.11)

Note that a determining class need not be a lower class (see Example 7.4) and the question
whether every unimarginal class is determining remains open - see Question 10 on p.
146. However, it is known that these concepts essentially coincide for DAG models (see
Consequence 7.5 in Section 7.4.3).

REMARK 7.7 The concept of unimarginal class can be alternatively introduced as a con-
cept relative to a distribution framework W. Then every unimarginal class relative to ¥
is unimarginal relative to any subframework ¥’ C W. But unimarginal classes may differ
for different frameworks. Given a distribution framework ¥ and a structural model M
one can ask what are minimal unimarginal classes for M relative to U (see Theme 20 in
Chapter 8). A

7.4.2 Imsets with the least lower class

A structural imset u € S(N) is called an imset with the least lower class if L, C L,
for every v € S(N) with v = v. Some classes of facial equivalence contain imsets of
this type, for example the imset u from Example 7.2 on p. 112. On the other hand, as
subsequent example shows there are classes of facial equivalence which do not have these
imsets but several imsets with minimal lower class, i.e. imsets v € S(N) such that no
facially equivalent v € S(N) with £, C £, exists.

EXAMPLE 7.4 There exists a structural model M over N = {a, b, ¢, d} such that

e the collection p = {u € S(N); M,, = M} has three imsets with distinct minimal
lower classes,

e 16 distinct minimal determining classes for M exist and none of them is a lower
class for any u € p.

Introduce M C T(N) and a class of elementary imsets IC as follows
M={(ABIC)e T(N); [Cl =1}, K= {uujx) € E(N); K| =1}

Observe that M = M™ for the supermodular imset m shown in the left-hand picture
of Figure 7.5 and £ = {w € £(N); M,, € M}. Introduce a combinatorial imset u =
Y wex Fw - w where

o 4 iff w = wpry € K or w = upqr) € K,
Y 1 1 for remaining w € K,
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{b,d}

{b} {c} {d}

Figure 7.5: Multiset producing M and respective imset with minimal lower class.

(u is shown in the right-hand picture of Figure 7.5). Since M, N T(N) = M™ N T(N)
by Lemma 2.2 M, = M. The first step to show that u is an imset with minimal
lower class is an observation that for every v € S(N) with M, = M one has v(S) < 0
for some S € S = {abc,ab,ac}. Indeed, put K' = {ugaqry € E(N); |K| > 1} write
n-v =2y ch-w where n € N, [,, € Z* and observe that [, > 0 for some w € K’
because (m2 w) = 0 for w € K\ K" while (m®", w) > 0 for w € K’ (use Observation 5.6
to derive contradiction with the assumption M, = M in case [,, = 0 for w € K'). Put
5= geg 0s and observe (s, w) < 0 for w € K and (s,w) = —1 for w € K. This implies
n - (s,v) <0 and the desired conclusion.

Analogous observation can be made for any class S’ consisting of a three-element
subset of N and a pair of its two-element subsets. If v € S(N) satisfies M, = M and
L, C L, then the observation above necessitates v(ac) < 0 and one can derive analogously
v(ad),v(be),v(bd) < 0 which implies £, = £,. Therefore u is an imset with minimal lower
class and permutation of variables gives two other examples of facially equivalent imsets
with distinct minimal lower classes.

On the other hand, the class D; = {ab,bc,cd}* is a determining class for M as
(a,clb), (b,d|c), {a,d|bc) € M. One can show that D; is minimal and an analogous
conclusion can be made for any class obtained by permutation of variables either from D,
or Dy = {ab, ac,ad}*. This list of minimal determining classes for M can be shown to be
complete. &

7.4.3 Exclusivity of standard imsets

The standard imset ug for an acyclic directed graph G appears to be an exclusive imset
within the class of structural imsets v with M, = M. The first step to show that it is
an imset with the least lower class is the following lemma.

LEMMA 7.6 Let M be a structural model over N, p = {u € S(N); M, = M} and
U=U, for (any) u € p. If S € U has the form S = ¢TI where ¢ € N and

Mn{{a,c|]K) € T(N);ae T} =0=Mn{{(a,b|K) € T.(N);a,be T ce K} (7.12)

then every (descending) unimarginal class for M contains S.
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Proof: The first observation is that any probability measure P = @ x [, NS P; where
Q) is a probability measure over S with Q7 = [Licr @i and P;,Q; are arbitrary one-
dimensional probability measures is Markovian with respect to v € g. Indeed, by Lemma
2.2 it suffices to verify M N T (N) C Mp. Suppose (a,b|K) € MNT(N). If a ¢ S then
a 1L N\ al|0 [P]implies a 1L b| K [P], analogously in case b & S. If a,b € S then (7.12)
implies a,b € T and ¢ € K so that a 1L N\ ac|® [P] implies a 1L b| K [P] as well. The
second step is a construction: put X; = {0,1} and define a pair of probability measures

Q1, Q2 on Xg = Hies Xi:

27151 4 ¢ if > o x;is even
. — =15 . — €S ’
Ql([xz]ZES) 2 QZ([xz]ZGS) { 27\S| — e if Zies 7 is Odd,

where 0 < & < 2751, Then put P; =Q); x HZ.GN\S P; for j = 1,2 where P; are some fixed
probability measures on X;, i € N\ S. Observe that both P; and P, is Markovian with
respect to u € p, P7 # Py and PE = PL whenever L C N, S\ L # 0.

Finally, suppose for contradiction that S & D where D C U is an unimarginal class for
M. This implies P/ = P} for L. € D and therefore P/ = PJ for L € U which contradicts
the fact S € U. L]

CONSEQUENCE 7.5 Given an acyclic directed graph G over N the lower class £, for
u = ug is the least unimarginal and the least determining class for M. In particular,
U 18 an imset with the least lower class.

Proof: By (7.11) and Lemma 7.1 is £, a determining resp. unimarginal class for Mq. If
D is a lower class for v € S(IV) with M, = Mg resp. a determining class for Mg then it
is an unimarginal class for Mg by (7.11). Lemma 7.6 can be then used to verify £, C D.
Indeed, if S € LM then S € U, by Observation 4.5 and S = c¢pag(c) for some ¢ € N
by (7.3). The moralization criterion (see Section 3.2) allows to verify that the condition
(7.12) for T = pag(c) is fulfilled for M = Mg. ]

REMARK 7.8 Thus, the standard imset u¢ for an acyclic directed graph G over N is both
an imset of the least degree (see Lemma 7.4) and an imset with the least lower class. Note
that a computer program [9] helped to show that in case |N| < 4 the converse holds, i.e.
the only imset satisfying these two conditions is the standard imset uq (for a given graph
(). The question whether these two requirements determine standard imsets for acyclic
directed graphs in general remains open - see Question 9 on p. 145. A

An interesting feature of the standard imset u for a DAG models is that it vanishes
outside £, UU**. On the other hand, a lot of other equivalent structural imsets with
the same lower class exist, sometimes even imsets which take only strictly positive values
in R, \ L,. The following example shows that imsets of this kind need not exist.

EXAMPLE 7.5 There exists a DAG model M over N = {a, b, ¢, d} such that no u € S(N)
with the least lower class £, among imsets with M, = M is strictly positive on R, \ L,
(for the notion of range R, see Section 6.4). Consider a directed graph G shown in the left-
hand picture of Figure 7.6, the corresponding standard imset is in the right-hand picture.
Put s = 04c+04ca and observe that one has (s, u(; jjxy) = 0 for every (i, j|K) € MaNT(N).
This implies (s,v) = 0 for every v € S(N) with M, = Mg. Since ac,acd € R, \ L,
it implies v(ac) = v(acd) = 0 for every v of this kind which moreover satisfies £, = L,,.
Note that an analogous consideration can be made for § = dpq + dgpa- &
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Figure 7.6: An acyclic directed graph and the respective standard imset.

7.5 Other ways of representation

This section describes further ideas how structural models can be possibly represented.
It is only a rough outline of those approaches which look promising and which have to be
examined in more details.

7.5.1 Pattern

Recall that one of feasible methods of representing a class of Markov equivalent acyclic
directed graphs is to use a graph which is not an acyclic directed graph but which somehow
exhibits common features of the graphs within the equivalence class - see Section 3.2, p.
41. This motivated an analogous idea in the framework of structural imsets.

OBSERVATION 7.5 Let M be a structural model over N, p = {u € S(N); M, = M}.
Then the set {u(S); u € p} for S C N has one of the following four forms:
{0}, Z,{m,m+1,...} for some m € Z* and {...,—1 — 1, -1} for some [ € Z*.

Proof: If S ¢ R, for u € p then {v(S);v € p} = {0} by Lemma 6.6. If S € R, then
w = ug iy with (i, j|K) € M NT(N) and w(S) # 0 exists by (6.23). Observe that for every
u € p and k£ € N one has u + k- w € p which leads to the remaining cases. L]

Pattern of a structural imset u over N can be introduced as an undirected graph which
has the region R, as the set of nodes and the set of lines is the collection of pairs of the
form {K,iK},{iK,ijK} for some (i,j|K) € M, N T:(N). Moreover, the nodes of the
pattern have assigned symbolic values depending on the class p of v € S(N) with u = v:

V(S)=+ if {v(S);vep}CZ,
V(S)=— if {v(S);veptCZ ={-1;leZ},
V(S)==+ if {v(S);ve€ p}=727.

The symbolic function V can be formally extended to P(N) by putting

V(S)=0 if {v(S);v e p}={0}.
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Figure 7.7: Patterns of imsets from Example 7.6.

An evaluated pattern is obtained by modification in values of V: one writes +m where
m = min{v(S); v € p} instead of + and —I where [ = min{—v(S); v € p} instead
of —. Note that the signs + and — are kept to distinguish the cases V(S) = +0 (i.e.
m = 0) and V(S) = =0 (i.e. [ = 0) from the case V(S) =0 (i.e. {v(S); v € p} = {0}).
Observe that (evaluated) patterns characterize classes of facial equivalence. Note that
symbolic functions V distinguish all classes of facial equivalence if |[N| < 3 - see Figure
7.8 for illustration. On the other hand, this is not true in general as the following example
shows.

EXAMPLE 7.6 There exist structural imsets over N = {a, b, ¢,d} which are not facially
equivalent but which have the same symbolic function. Let us put

U = U(q,c|0) + U(b,c|0) + Uec,d|ab) » v=1u-+ U(a,b|0) -

The pattern of u is in the left-hand picture and the pattern of v in the right-hand picture
of Figure 7.7. ¢

REMARK 7.9 The question whether patterns distinguish all classes of facial equivalence
remains open (see Direction 3). The following modification of the concept of (evaluated)
pattern can possibly cure the problem if the answer is negative. More general values of the
symbolic function can be considered. One can distinguish between 'upper plus’ (denoted
by 4) and the 'lower plus’ (denoted by +):

V(S) =4 if 3(i,j|K) € M,NT(N) with ijK = S,
V(S)=+ if 3(,j|K) € M, NT(N) with K = S.

Alternatively, one can turn the pattern into a graph with directed and bidirected edges.
Indeed, every (i, j|K) € M, N T.(N) generates four arrows iK — ijK, jK — ijK,
1K — K, jK — K and every pair of arrows S — T and T" — S can be replaced by a
bidirected edge S <> T. A
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Figure 7.8: Symbolic functions over N = {a, b, c} (rotated).
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7.5.2 Dual description

Two approaches to the description of independence models by imsets were distinguished
in Chapter 5. Every structural model is induced by a structural imset and produced by a
supermodular imset (see Consequence 5.4) and both methods can be viewed as mutually
dual approaches. As mentioned before Observation 5.7 (p. 87) one can take a dual point of
view and describe structural models as independence models produced by /-standardized
supermodular imsets.

Dual baricentral imsets

One can introduce an analogue of facial equivalence and implication for /-standardized
supermodular imsets: m € KC,(N) N ZPWN) implies r € ICo(N) N ZPN) if M™ C M” and
they are equivalent if they produce the same model. Moreover, every imset of this kind is a
non-negative rational combination of /-skeletal imsets (see Lemma 5.3) so that these play
the role which is analogous to the role of elementary imsets within the class of structural
imsets (c.f. Theorem 5.3). Following this analogy an (-standardized supermodular imset
m over N will be called a dual baricentral imset if it has the form.

m = > r. (7.13)

rekg(N), MmCM?

The corresponding poset of dual baricentral imsets is shown in Figure 7.9.

Coportraits

Let me explain dual perspective in more details with help of the concept of Galois con-
nection from Section 5.4. It was explained there (p. 85) that the poset of structural
models (U(N),C) can be viewed as a concept lattice given by the formal context (5.16).
More specifically, it follows from Lemma 2.2 that every structural model M over N is in
one-to-one correspondence with a set of elementary imsets over N, namely with

{v e E(N); v =uy Ky where (i,j|K) € MNT(N) }. (7.14)

In particular, every u € S(N), respectively m € KC;(N) N ZP™) corresponds through M,
respectively through M™ to a subset of (E = E(N):

E, ={vel&(N);v=ujjry, (4,j|K)e M} ={ve&(N);u—rv}, (7.15)
Em ={v e E(N); v =1ugjky, (1,7 K) € M} ={v e E(N); (m,v) = 0}. '
Thus, every structural model can be identified with a set of objects of the formal context
(5.16). In fact, it is an extent of a formal concept so that structural models correspond
more or less to the description in terms of objects. However, as explained in Remark
5.8 every formal concept can be also described by means of its intent, i.e. in terms of
attributes. In this case the set of attributes is the (-skeleton & = K7(N) which motivates
the following definition.

By coportrait of a structural imset u over N will be understood the set of skeletal
imsets H,, given by

H,={r € K)(N); (r,u) =0}. (7.16)
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Figure 7.9: Dual baricentral imsets over N = {a, b, ¢} (rotated).
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Indeed H, = {r € K}(N); (r,v) = 0 for every v € &,} which means that H, is nothing
but £. As &£ = &, the pair (&,,H,) is a formal concept in sense of Section 5.4.1.
By Consequence 6.2 two structural imsets are facially equivalent iff they have the same
coportrait. Thus, every class of facial equivalence is uniquely represented by the respective
coportrait. The lattice of all coportrait over 3 variables is shown in Figure 7.10.

REMARK 7.10 This is to explain terminology. The idea of dual description of a structural
model was presented already in [108] where the concept of portrait of u € S(N) was
introduced as the set of skeletal imsets

{r e KJ(N); (r,u) > 0}. (7.17)

Thus, coportrait #,, is nothing but the relative complement of (7.17) in Iy (V') which moti-
vated my terminology here. Provided the ¢-skeleton is known (7.17) and (7.16) are equiin-
formative but the concept of coportrait seems more natural from theoretical point of view
(in light of Galois connection). Despite this fact I decided to keep former terminology and
do not rename things. The reason why I preferred in [108] (7.17) to (7.16) was my antici-
pation that for | V| > 2 the relative occurence of zeros in {{(m,u);m € KJ(N),u € E(N)}
exceeds the relative occurence of non-zero values (which seem to be true in explored cases).
Practical consequence should be that portraits have less cardinality than coportraits for
structural imsets inducing ’a lot of” independence statements. A

Nevertheless, the method of dual description of structural models is limited to the
situation when the skeleton is known. Of course, as explained in Remark 5.6 the type of
the skeleton is not substantial since the use of the u-skeleton resp. the o-skeleton instead
of the /-skeleton leads to an ’isomorphic’ concept of portrait and coportrait.

Global view

Of course, owing to Consequence 5.4 and (7.15) every coportrait can also be written in
the form H™ = (£™)> where m € K,(N)NZP™), Note that one can show analogously to
the proof of Lemma 6.1 that

H™ ={re K;(N); k-m—r & KyN) for some k € N}.

Therefore, the mutual relation of a structural imset v and the corresponding set of ele-
mentary imsets £, given by (7.15) is completely analogous to the mutual relation of an
(-standardized supermodular imset m and the corresponding set of /-skeletal imsets H™.
The global view on all four above mentioned approaches to the description of a structural
model is indicated by Figure 7.11. One can use

1. a set of elementary imsets,
2. a structural imset,
3. a set of /-skeletal imsets,

4. an l-standardized supermodular imset.
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-5N+5bc
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2'5N+6ab+6ac+6bc

[]
on - -6N+6ab

Figure 7.10: Coportraits of structural imsets over N = {a, b, c} (rotated).
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E' = Ky(N)uzPW)

non-negative
rational
combination

— B = K$(N)

,_@7

incidence relation (m,u) =0

can be extended to a wider context

E = S(N)

Figure 7.11: Extension of Galois connection for structural models - illustration.

Recall that the set of elementary imsets can be viewed as direct translation of the con-
sidered structural model, the structural imset is obtained by non-negative rational com-
bination of elementary imsets, the set of skeletal imsets is obtained by Galois connection
and the supermodular imset by non-negative rational combination of skeletal imsets.

Let me emphasize that unlike the case of general Galois connection described in Section
5.4.1 additional superstructure of summing elementary respectively skeletal imsets is at
disposal. This fact allows to describe (and later implement) respective relation among
formal concepts (namely the relation ’be a subconcept’) with help of algebraic operations,
more precisely by means of arithmetic of integers! This is the main asset of the described
approach.

Dual minimal generators

However the dual approach exhibits some different mathematical properties. One can
introduce an analogue of the concept of combinatorial imset, i.e. an imset which is a
non-negative integral combination of /-skeletal imsets. But there is no analogue of the
concept of degree for imsets of this type: the sum of two /-skeletal imsets from the first
line of Figure 5.1 on p. 79 equals to the sum of three /-skeletal imsets from the second
line of Figure 5.1.

Nevertheless, one can introduce an analogue of the concept of strong facial implication
(see Section 7.3.1) and prove an analogue of Lemma 7.5. Indeed, following the idea
indicated in Remark 5.8 one can introduce the lattice of coportraits

W(N)={H CK;(N); H=H, foruecS(N)}
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and observe that it coincides with the collection of closed sets with respect to a closure
operation on subsets of & = IC7(NV)

H— H® ={m e K;(N); (m,v) =0 for v € E(N) with (r,v) =0 for every r € H }.

One can show then that imsets minimal with respect to the 'dual strong facial implication’
correspond to minimal generators with respect to this closure operation on subsets of
KC(N). An interesting fact is that in case |[N| = 3 every class of respective equivalence
of imsets of above type has unique minimal imset in the described sense. In other words,
no analogue of Example 7.2 is valid for dual representation if |[N| < 3. Moreover, the
corresponding dual baricentral imset is a multiple of the 'minimal’ imset in that case.
Well, perhaps the dual approach indeed exhibits better mathematical properties in this
sense than the approach based on structural imsets. Nevertheless, I tend to believe that
the phenomenon mentioned above is a coincidence and not a general feature of the dual
approach (see Theme 6).
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Chapter 8

Open problems

The goal of this chapter is to gather open problems and present a few topics omitted in
the previous chapters. Open problem are classified according to the degree of vagueness in
three categories. Questions are clear inquiries formulated as mathematical problems. For-
mal definitions of related concepts were given and expected answer is yes or no. Themes
(of research) are wider areas of mutually related problems. Their formulation is slightly
less specific (but still in mathematical terms) and they may deserve some clarification of
involved concepts. Directions (of research) are very wide groups of problems with recog-
nized common motivation source. They are formulated quite vaguely and may become a
topic of research in forthcoming years. The secondary criterion of classification of open
problems is their topic: the division of this chapter into sections was inspired by the
motivation account from Section 1.1.

8.1 Unsolved theoretical problems

In this section open problems concerning theoretical groundings are gathered. Some of
them were already mentioned earlier. They are classified by their topics.

8.1.1 Miscellaneous topics
Distributions
There are several open problems related to Sections 4.1 and 6.2.3.

QUESTION 1 Let P and () are probability measures over N defined on the a product of
measurable spaces (Xy, Xn) = [[,c 5 (X, &;) which have finite multiinformation (p. 24).
Has their convex combination a- P+ (1 —«)- @, a € [0, 1] finite multiinformation as well?

THEME 1 Is there any (direct) formula for the multiinformation function of a non-dege-
nerate CG measure (see p. 54) in terms of their canonical or moment characteristics?
Alternatively, is there any (iterative) method of its computing?

Note that owing to Lemma 2.7 equivalent formulation of Theme 1 is to find a formula
for entropy of a CG measure P with respect to [ ], s where {y;; i € N} is the standard
reference system for P (see p. 62). I am more likely sceptical about the existence of a
direct formula of this kind. The following natural question, motivated by the results of
Section 6.2.3, concerns Gaussian distribution framework.
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QUESTION 2 Let P, be non-degenerate Gaussian measures on RY (see p. 165). Is there
a non-degenerate Gaussian measure R on RY such that Mz = Mp N Mg?

Graphs

Further open problems are related to Chapter 3. The following problem, named the
”inclusion problem” in [42] can be viewed as an advanced subtask of the equivalence task
(see Section 1.1).

THEME 2 Let G, H be acyclic directed graphs over N (see p. 154). Is there any graphical
characterization of the inclusion Mg C My (see Section 3.2)7 Is it possible to charac-
terize Mg C My in terms of a simple algebraic relation of standard imsets ug and ug

(p. 107)?

Note that suitable graphical characterization of Markov equivalence (i.e. of Mg =
M) was found (p. 40) and T would appreciate an analogous solution of Theme 2 which
is in terms of invariants of Markov equivalence. The following question concerning fac-
torizably equivalent chain graphs was already mentioned in Section 3.3.

QUESTION 3 Let (Xy, Xn) = [[;,cn(Xi, &i) be a fixed sample space with non-trivial X;
for every i € N. Let G, H be (classic) chain graphs over N (p. 154) such that Mg = My
(see p. 43). Does the class of factorizable measures on (Xy, Xy) with respect to G (see
Remark 3.7 on p. 45) coincide with the class of factorizable measures with respect to H?

Structural imsets

There are some unsolved problems related to Chapter 7.

THEME 3 Let G be a chain graph over N (see p. 154). Is there any direct formula for
the baricentral imset u over N (see p. 105) with M, = M? Can every supermodular
function m over N (see p. 71 and 72) be effectively 'translated’ into a baricentral imset u

over N with M, = M™?

DIRECTION 1 Develop an effective criterion which decides whether a given structural
imset is a baricentral imset.

QUESTION 4 Let p be a class of facially equivalent structural imsets over N (see p. 91)
and v € p be a combinatorial imset minimal with respect to strong facial implication ~»
(see p. 113). Is u an imset of minimal degree in ?

8.1.2 Classification of skeletal imsets
Basic problem related to skeletal imsets (see Section 5.2) is the following one.
THEME 4 Is there any suitable characterization of skeletal imsets which allows to find the

skeleton KCj(N) for any finite non-empty set of variables N7 How does |K7(N)| depend
on |N|?
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Note that [86] offers a characterization of extreme supermodular functions but the
result is more likely a criterion whether a given /-standardized supermodular function is
skeletal (more precisely, it can be used for this purpose). However, the criterion does
not seem suitable for the purpose of computer implementation. Therefore, the result of
[86] does not solve the problem of finding the skeleton for every N. A promising idea
how to tackle the problem is indicated in the rest of Section 8.1.2. A related task is
the task to classify submaximal structural models. One can fix a way of standardization
of skeletal imsets (see Remark 5.6) as submaximal structural models are in one-to-one
correspondence with the elements of the respective skeleton. Every permutation 7 : N —
N of variables can be extended to a permutation of the power set 7 : P(N) — P(N)
and this step allows one to introduce permutable equivalence on the class of skeletal
imsets: any skeletal imset m is equivalent in this sense to the composition mz (see also
[116]). Of course, every permutation of skeletal imsets defines a permutation of respective
produced independence models. Basic way of classification is division of the class of
(standardized) skeletal imsets into classes of permutable equivalence. Every equivalence
class then represents a type of a skeletal imset. For example, 5 standardized skeletal
imsets decompose into 3 types in case |N| = 3, 37 imsets decompose into 10 types in case
|N| =4 and 117978 imsets decompose into 1319 types in case |N| = 5.

Level equivalence

Nevertheless, perhaps even more precise way of classification of skeletal imsets exists.
Suppose that m € IC(V) is a skeletal imset over N; let respective symbols my, m, and m,
denote the respective model equivalent element of the /-skeleton, the u-skeleton and the
o-skeleton obtained by formulas from Remark 5.6 (p. 80-81). Thus, m (more precisely,
the respective class of model equivalent skeletal imsets) defines a certain equivalence on
the class of subsets of V:

VSSTCN S~,T & [me(S)=meT), meS)=me(T) and m,(S) =m,(T)]. (8.1)

The equivalence classes of ~,, could be interpreted as areas in which these standardized
skeletal imsets have the same values; in other words, they correspond to levels of values.
In fact, I conjecture that the following hypothesis is true.

QUESTION 5 Let m € Kj(N), m' is model equivalent skeletal imset over N (see p. 72)
and S,T C N such that S ~,, T. Is then necessarily m/(S) = m/(T)?

REMARK 8.1 As recognized in case |N| = 4 the o-standardized representative m, cannot
be omitted in (8.1) and m,(S) = m,(T) is often equivalent to S ~,, T for S,T C N.
It seems that m, resp. m, can be omitted in (8.1) but not both. Therefore I think that
o-standardization is the best standardization for the purpose of level equivalence. A

Two skeletal imsets over N will be called level equivalent if they induce the same
equivalence on subsets of P(N).

OBSERVATION 8.1 Let m' m? are level equivalent skeletal imsets over N and 7 is a

permutation of N (extended to P(N)). Then m'm and m?r are level equivalent.

130



Proof: This is a hint only. Given a skeletal imset m over N, put r = mm and observe with
help of formulas from Remark 5.6 that r, = myn, r, = my,7 and r, = m,m. Hence, for every
S,T C N one has S ~, T iff 7(S) ~p, 7(T') which implies the desired fact immediately. L]

REMARK 8.2 Further interesting operation with supermodular functions can be intro-
duced with help of specific self-transformation ¢ of P(N):

t(S)y=N\S forevery SCN.

Given a supermodular function m over N one can introduce z = m: and observe (see
Section 5.1.3 in [116]) that z is also a supermodular function over N called the reflection
of m. Indeed, the reflection of z is again m. Moreover, one can show using the formulas
from Remark 5.6 that z, = my¢, 2z, = myt and z, = m,t. Consequently, for every S, T C N
one has S ~, T iff 1(S) ~,, ¢(T). An interesting fact is that in case |[N| < 4 one has
S~ TN\ S~ N\T for every m € IC(N) (see Example 8.1 below). In particular,
m and z are level equivalent in this case. Nevertheless, the question whether the above
hypotheses holds in general is open. A

QUESTION 6 Let m € K$(N) and S,T7 C N such that S ~,, T. Is then necessarily
N\ S ~p N\ T?

Supertypes

Natural consequence of Observation 8.1 is that the concept of permutable equivalence can
be extended to classes of level equivalence. Then every class of this extended permutable
equivalence decomposes into several classes of level equivalence which decompose into
individual (standardized) skeletal imsets. Thus, every class of permutable equivalence of
this kind represents a supertype. For example, two supertypes exists in case |N| =3 and
five supertypes in case |[N| = 4. An interesting fact is that every equivalence (8.1) on
P(N), |N| = 4 defined by a skeletal imset m can be described by means of at most two
‘cardinal’ criteria which distribute sets S C N to their equivalence classes (= levels) on
basis of the cardinality of the intersection of S with one or two given disjoint subsets of
N. Every equivalence on P(N) of this kind is therefore determined by a certain system of
disjoint subsets of NV having at most two components. This is illustrated by the following
example.

ExAMPLE 8.1 One can distinguish five types of ’cardinal’ criteria distributing subsets S
of N = {a,b,c,d} to levels which correspond to five supertypes of skeletal imsets.

1. The criterion |SN{a,b}| divides P(N) into 3 levels - see the upper picture of Figure
8.1. The corresponding class of level equivalence has 1 standardized imset but the
class of permutable equivalence has 6 classes of level equivalence. Therefore, the
respective supertype involves 6 standardized skeletal imsets.

2. The criterion |S N {a,b,c}| divides P(N) into 4 levels - see the lower picture of
Figure 8.1. The corresponding class of level equivalence has 2 imsets, the class of
permutable equivalence has 4 classes of level equivalence. Hence, the supertype
involves 8 imsets. An example of a skeletal imset of this type is in Figure 6.4 where
both /-standardized and u-standardized versions are given.
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3. The criterion |S N {a, b, c,d}| divides P(N) into 5 levels - see the upper picture
of Figure 8.2. The corresponding class of level equivalence has 3 imsets while the
corresponding class of permutable equivalence has just one level equivalence class.
Thus, the supertype involves 3 imsets.

4. Composed criterion [[S N {a,b,c}|, |SN{d}|] divides P(N) into 8 levels - see the
lower picture of Figure 8.2. The corresponding class of level equivalence has 2
imsets, the class of permutable equivalence has 4 classes of level equivalence and
the supertype involves 8 imsets. An example of an imset of this kind is m, in the
right-hand picture of Figure 6.3.

5. Composed criterion [ |SN{a,b}|, [SN{c,d}|] divides P(N) into 9 levels - see Figure
8.3. The corresponding class of level equivalence has 4 imsets while the correspond-
ing class of permutable equivalence has 3 classes of level equivalence. The supertype
involves 12 imsets; an example is the imset my from Figure 4.3. &

Endeavour described in Section 8.1.2 can be summarized as follows.

THEME 5 Can classification of supertypes of skeletal imsets by cardinal criteria be ex-
tended to a general case?

Moreover, in case of succesful solving of Themes 4 and 5 the following open problem
may appear to be interesting.

THEME 6 Find out whether an /-standardized supermodular imset producing a structural
model M over N which is minimal with respect to dual strong facial implication (see p.
127) is uniquely determined. If yes, is the respective dual baricentral imset (p. 122) its
multiple?

8.2 Operations with structural models

This section is an overview of basic operations with structural models. It is shown how
they can be realized with help of operations with imsets (either with supermodular or
with structural ones).

8.2.1 Reductive operations

These operations assign a model over T, () # T C N to a structural model over N.

Contraction
Suppose M C T(N), D #T C N and X C N\ 7. The model

Mrx = {{4,B|C) e T(T); (A, B|CX) € M} (8.2)
will be called the contraction of M to T conditioned by X.

OBSERVATION 8.2 If M € U(N) then My x € U(T).
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S N {a, b}

1S N {a,b,c}]
a,b,c a,b, {a,c, , €

Figure 8.1: Cardinality criteria and respective levels for N = {a,b, ¢, d}.
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SN {a,b,c,d}|

[[S N {a,b,c}, [SN{d}] NG

Figure 8.2: Further cardinality criteria and respective levels for N = {a, b, ¢, d}.
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[[S N {a,b}], 1SN {c,d}]

Figure 8.3: The last cardinality criterion and respective levels for N = {a, b, ¢, d}.

Proof: Given m € RP(N) define mr|x € RP(T) by the formula
mpx(S) =m(SUX) for SCT,

and observe (mg|x,ua p|cy) = (M, ua,Bjcx)) for every (A, B|C) € T(T). By Observation 5.1
derive that m € (V) implies mp x € K(T). The equality above also implies (4, B|C) € M™TIX
iff (A, B|CX) € M™. ]

Thus, conditioned contraction corresponds to linear operation m — mqg)x with pro-
ducing supermodular functions (imsets).

REMARK 8.3 Note that the model My x given by (8.2) was named minor of a semi-
graphoid M over N in [66] while the term ’contraction’ was confined to the case X = N\T
there. Moreover, the operation (8.2) applied to various graphical models was systemati-
cally treated in [85] and [45] under name 'marginalizing and conditioning’. My terminology
is a compromise which reflects the idea that the operation (8.2) is simultaneously con-
traction and conditioning and fits best other names of operations with structural imsets
mentioned below. A

Restriction

Recall that the restriction Mz of M C T(N) to ) # 7T C N was already introduced on
p. 15 as M NT(T). Of course, Mrp is nothing but contraction Mgy conditioned by the
empty set. Hence, Observation 8.2 implies this.
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CONSEQUENCE 8.1 If M € U(N) and ) # T C N then My € U(T).

Note that it was shown in the proof of Observation 8.2 that the restriction of M
corresponds to the restriction of producing supermodular function, i.e. (M™)y = M™T
where

mr(S) =m(S) for every S C T and m € IC(N).

On the other hand, an analogous statement for inducing structural imsets does not hold
as the following example shows.

EXAMPLE 8.2 There is no linear operation with structural imsets which corresponds to
the restriction of induced structural models. Put N = {a,b, ¢} and T = {a,b}. Take
U = Ulgepy and W = Ugp. By Lemma 4.5 (M,)r = (My)r = T45(T). On the other
hand, v + w = (g pepy Which means (M,,)r = T(T). Supposing there exists a linear
mapping
ueS(N) — ur e S(T)

such that (M,)r = M, observe that that v = 0 = wy (use Lemma 6.1 and Observation
4.4 to conclude that the only structural imset over 7" inducing 7,(7') is the zero imset).
By linearity of the mapping derive (v + w)r = 0 which contradicts (Myi)r = T (T). &

The preceding example motivates the next open problem.

THEME 7 Let u be a structural imset over N and () ## 7" C N. Is there any direct formula
for a structural imset inducing (M,,)r is terms of u?

One can distinguish two versions of the problem. First, one can be interested in an
algebraic formula which provides at least one structural imset over 7" inducing (M,,)r for
any u € S(N). Second, one may wish to have an expression for the baricentral imset of
M on basis of the baricentral imset of M € U(N). Nevertheless, both desired formulas
must be non-linear as demonstrated by Example 8.2.

REMARK 8.4 Restriction of every CI model induced by a probability measure P over N
to ) £ T C N is a CI model over T induced by the respective marginal PT. In fact,
conditioned contraction Myx of a CI model M C T(N) induced by a discrete measure
over N (where X C N\ T) is a CI model induced by a discrete measure over T' [61]. A

Other special operations

Given M C T(N) and ) # T C N by the full-conditioned contraction is understood the
model
M, ={(A,B|C)eT(T); VX CN\T (A, B|ICX)e M}.

Clearly, M, = ﬂXCN\T M x and Observation 8.2 implies with help of Observation 5.7
the following fact.

CONSEQUENCE 8.2 If M € U(N) and ) # T C N then My, € U(T).
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The consideration above also implies that full-conditioned contraction corresponds to
the following linear operation with producing supermodular functions:

m € RPN myp(S) = Z m(K) for every S CT.

K,KNT=S

REMARK 8.5 The restriction of a structural imset u over N to P(T) where ) #T C N
need not be a structural imset. For example, consider N = {a,b,c}, T = {a,b} and
U = Ug,clq)- Nevertheless, it is a structural imset if v vanishes outside P(T). This fact can
be verified using Lemma 5.4 and Observation 5.1 with help of an observation that every
supermodular function over 7" can be extended to a supermodular function over N - see
the mapping (8.5) defined below. A

Nevertheless, the same linear mapping can be interpreted as a mapping assigning a
structural imset over T' to a structural imset over N named contraction :

u€RPM s y(S) = Z u(K) for SCT. (8.3)

K,KNT=S
OBSERVATION 8.3 If u € S(N), 0 # T C N then uyr € S(T'). Moreover,

M ={{ANT,BNT|CNT); (A B|C) e M, } C Mirp=M

u[ry -

Proof: The first fact follows from linearity of the mapping (8.3) and the formula {u4 oy }i7] =
uanr,Brr|cnry for any (A, B|C) € T(N). If (A, B|C) € M, then k- u — uy gjcy € S(N) for
some k € N and & - uir) — {uga |y }ir) € S(T) says (ANT,BNT|CNT) € My, U]

On the other hand, the inclusion can be strict as the following example shows.

ExAMPLE 8.3 There exists a structural imset u over N and ) # T C N with M, #
M. Put N = {a,b,c,d}, T = {a,b,c} and u = wigpp) + Wapleay- Then wp = v pen
but (a, be|d) & Miz,. In fact, My, is not a semi-graphoid as (a, b|0), (a, blc) € Miz. <&

This motivates the next hypothesis.

THEME 8 Let M = M, for u € S(N) and ) # T C N. Is it true that My = My,
where w7y is given by (8.3) coincides with the structural closure (see p. 113) of M, =
{(ANT,BNT|CNT); (A B|C) € M}? Find out whether My is a CI model induced
by a discrete probability measure over T" provided that M is a CI model induced by a
discrete probability measure over N.

8.2.2 Expansive operations

These operations assign a model over N to a structural model over T, () # T C N. Main
attention is devoted to extensions, that is operations which assign a model over N to
M € U(T) whose restriction is again M. These expansive operations are pinpointed.
Another type of expansive operation is a [ift which can be viewed as a counterpart of
(conditioned) contraction.
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Solid extension

Given ) #T C N, M C T(T) the model so (M, N) over N given by
so(M,N)={(A,BIC)e T(N); (AnT,BNT|ICNT) e M} (8.4)

will be called the solid extension of M to N.

OBSERVATION 8.4 If M € U(T) then so(M,N) € U(N) and so (M, N)pr = M.

The proof is based on a special linear extensive operation which assigns an extension m
to every supermodular r over 7'

re K(T) — m(S)=r(SNT) forSCN. (8.5)

Proof: Observe that the mapping from (8.5) is linear and (m,u 4 pcy) = (7s UianT,BAT|CAT))
for every (A, B|C) € T(N). Hence, m € IC(N) by Observation 5.1. Supposing M € U(T) by
(5.15) there exists r € I(T') with M = M". Observe that so (M, N) = M™. []

REMARK 8.6 Note that the solid extension of a CI model M induced by a probability
measure over 1" is a CI model again, the respective probability measure P over N has
the form P = @ x [];c N\TR where () induces M and P; are probability measures on
arbitrary measurable spaces (X;, X;), i € N\T. Moreover, the solid extension is a maximal
extension in sense that so(M,N) C M' € U(N), (M')r = M implies M' = so (M, N).
Indeed, it suffices to verify that (A, B|C) ¢ M' = (ANT,BNT|ICNT) e M"
since (A,C\T|CNT) € so(M,N) C M" and M' is a semi-graphoid by contraction
property derive (A, B(C'\T)|C NT) € M’ and hence by weak union and symmetry
(ANT,BNT|CNT) e M. On the other hand, the solid extension need not be unique
maximal extension. For example, consider N = {a,b,c}, T = {a,b} and M = T,(T).
Then M' = M, with © = wgpjey + Uaelpy + Up,clay 1S another maximal M' € U(N) with
(M) = M. A

Lift
Given ) #T C N, X C N\ T and M C T(T) the model

li(M, N : X) = To(N) U { (A, BJOX); (A, B|C) € M} (8.6)

will be called the [ift of M to N conditioned by X. Basic observation is that the operation
of lift corresponds to the following linear mapping from R”(™) to RPN) which assigns a
structural imset v[V, X] over N to a structural imset v over 7"

v(SNT) if S\T =X,

0 S\ T £ X, for any SC N . (8.7)

v e RPM — [N, X](S) = {

LEMMA 8.1 Suppose that ) # T C N, X C N\ T. The mapping given by (8.7) is
a linear mapping such that v[N, X| € S(N) whenever v € S(T). Moreover, it holds
li(M,, N : X) = Myy,x}- In particular, li (M, N : X) € U(N) whenever M € U(T) and
one has {Ili (M, N : X)}px = M.
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Proof: Observe that dp[N, X| = dpx for D C T which implies by linearity of (8.7)
ua,Bicy [N, X] = uia,pjoxy for every (A, B|C) € T(T). This gives the first two statements
of the lemma. As M,y x) is a semi-graphoid it contains 74(N). If (A, B|C) € M, then
k-v—wuupjcy € S(T) for some k € N and by linearity & - v[N, X| — w4 gcxy € S(N)
which means (A, B|CX) € Myy,x]- The converse inclusion My x; € li(M,, N : X)
can be shown in three steps.

L. (A, B|D) € T(N)\ Ts(N), ~{X S D} = (A4, B|D) & My x).
Indeed, use Lemma 6.2: (mDP¥, u(a,B|p)) > 0 while (mP¥ v[N,X]) =0as X\ S #0 for
every S C D.

2. (A, B|D) € T(N)\Ts(N), ~{ABD CTX} = (A, B|D) & My x.
Indeed, again use Lemma 6.2: (mABDT,u(A’B‘DQ > 0 while (mABPT [N, X]) = 0 as
S\T # X for every S D ABD.

3. (A,B|C) e T(T)\ M, = (A, B|CX) & Myn,x]-
By Lemma 6.2 a supermodular function r over T' with (r,u4 p|cy) > 0 and (r,v) = 0
exists. Let m be its extension given by (8.5). It is a supermodular function over N,
<m7u<A,B|CX)> = <T7U<A,B|C>> >0 and (’I’I’L,’U[N, X]) = (Tav> = 0.

Thus, if (A, B|D) € Mynx1\Ts(N) then X € D and ABD C T'X by 1. and 2. Therefore
(A,B|D) = (A, B|CX) where (A,B|C) € T(T) and (A, B|C) € M, by 3. The next
statement then follows from (5.14); the equality {Ili (M, N : X)}px = M is trivial. [

Ascetic extension

Given ) AT C N, M C T(T) the model as (M, N) over N given by
as(M,N) = T,(N)uM (8.8)

is called the ascetic extension of M to N. It is nothing but the lift Ii (M, N : X) with
X = (). Lemma 8.1 therefore implies this.

CONSEQUENCE 8.3 If M € U(T') then as (M, N) € U(N) and as (M, N)r = M.

It follows directly from (8.8) that the ascetic extension is the least extension of M €
U(T) in sense that M’ € U(N), (M')r = M implies as (M, N) C M’'. Let me remind
that the proof of Lemma 8.1 implies that the ascetic extension is realized by means of a
linear operation with inducing structural imsets, namely by means of the mapping

v(S) ifSCT,

CN.
0 otherwise , for every 5 € N

v e RPD — u(S) = {

Note that one can show with help of Lemma 2.9 that the ascetic extension of a CI model
induced by non-degenerate discrete measure over T is a CI model (over N).
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Cellular extension

Given ) #T C N, M C T(T) the model ce (M, N) over N given by
co(M,N) = To(N)U{ (4, BICX); (A,BIC)e M XCN\T}  (89)

is called the cellular extension of M to N. In fact, ce(M,N) = Uxcpp i(M, N : X).
Basic observation is that the cellular extension corresponds to a linear mapping from
RP() which assigns a structural imset u over N to a structural imset v over T°:

v e RPD — w(S)=v(SNT) for SC N. (8.10)

LEMMA 8.2 Suppose M C T(T) and ) # T C N. The mapping given by (8.10) is a
linear mapping which assigns u € S(N) to v € S(T). Moreover, M, = ce(M,, N). In
particular, ce (M, N) € U(N) whenever M € U(T') and ce (M, N)r = M.

Proof: It follows directly from (8.10) and (8.7) that u = >~y ,v[V, X]. Thus, u €
S(N) by Lemma 8.1 and M,n x; € M, by Lemma 6.1 for every X C N\ T. The
converse inclusion M,, C ce (M,, N) can be shown in two steps.

1. ({U,VIW)e T(N), U\T#0#V = (UVIW)d& M,.
Indeed, choose i € U\ T, j € V and use Lemma 6.2: (m,up,ywy) > 0 and (m,u) =
> xcwr{m, v[N, X]) = 0 for m = m™T. To verify the last equality use Observation 5.6
and show M,y x; € M™: one has (m,u4 pjcx)) = 0 for every (A, B|C) € M, and
X C N\ T according to Lemma 8.1. This is clear whenever : € CX, in case i ¢ CX the
assumption 1 € T O AB implies i ¢ ABCX.

2. (UVIW)eT(N), UVvCT, ({UVWNT)¢g M, = (UVIW)¢ZM,.
Indeed, by Lemma 6.2 find a supermodular function r over T' with (r, u v ywnry) > 0 and
(r,v) = 0. Define a supermodular function m over N by (8.5) and observe (m, w,y ) =
(ryuwyiwary) > 0 with (m,u) =3 vcnr Do ger MK X) - u(KX) = 3"y cpp(r,v) =0.
This implies (U, V|W) ¢ M,, by Lemma 6.2.

Thus, if (U, V|W) € My \ T5(N) then U,V C T by 1. and (U, V|IW NT) € M, by 2. To
derive further statement use (5.14); the last formula is trivial. ]

REMARK 8.7 This is to explain my reasons for the chosen terminology. The reader can
observe on basis of (8.8), (8.9) and (8.4) that

as(M,N) C ce(M,N) Cso(M,N) forevery M CT(T).

The inclusions may be strict as Example 8.4 below shows. The fact that as (M, N) is the
least extension of M motivated the adjective "ascetic’ and the fact that so (M, N) is one of
maximal extensions of M (see Remark 8.6) motivated the adjective ’solid’. The adjective
‘cellular’ was motivated by the fact that ce (M, N) is composed of several different ’cells’,
namely li M, N : X) for X C N\ T. A

EXAMPLE 8.4 There exists M € U(N), ) # T C N whose ascetic, cellular and solid

extensions differ. Put N = {a,b,c}, T' = {a,b} and M = M, where u = uyyp. Then
{a,blc) € ce(M,N)\ as(M, N) and (c, ab|0) € so(M,N)\ ce (M, N).
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8.2.3 Accumulative operations

The aim to represent ’big’ structural models effectively in memory of a computer moti-
vates the need for suitable definition of decomposition of a structural model into ’less-
dimensional” models.

Localization of UG models

The following intuitive consideration does not pretend preciseness, it serves as a motiva-
tion account only (some results cited below can be even misinterpreted). Final goal is
to achieve an analogue of the result from [63] saying that every UG model has canonical
decomposition into prime UG submodels. In fact, well-known concept of decomposition of
undirected graphs from [53] is behind this approach. Recall that if G is an undirected graph
over N and (A, B|C) € T(N)\ 75(N) such that C' a complete set in G and A Il B|C [G]
(p. 37) then the pairs of undirected graphs (G ac, Gpc) is called a proper decomposition
of G. The graphs G s¢ resp. G can have possibly further proper decompositions which
means that every UG model Mg can be gradually decomposed into UG submodels with
no proper decomposition which can be named prime UG submodels of Mg. In my view,
the result of [63] can be paraphrased as follows: for every undirected graph G over N a
unique triangulated supergraph H over N (see p. 45) exists whose cliques correspond to
(maximal) subsets of N defining prime UG submodels of Mg. Therefore, various com-
putational operations with Markovian measures with respect to GG can be done ’locally’ -
within prime UG submodels. I believe that well-known method of local computation ap-
plied mainly to DAG models [17] has analogous source of justification. Therefore I hope
that these ideas can be extended to more general structural models. Suitable concept of
decomposition of a structural model based on an accumulative operation with structural
models is needed. One of possible proposals is mentioned below.

Composition

Given (A, B|C) € T(N) and M!' € U(AC), M? € U(BC) such that M} = MZ by the
composition of M and M? will be understood the structural model M!® M? over ABC
given by

M ®@ M? = clyapey(as (M, ABC) U as (M?, ABC) U {(4, B|C)}). (8.11)

In words, both M! and M? are embedded into U(ABC) by the ascetic extension, then
(A, B|C) is added and the structural closure operation (see p. 113) is applied. Tt follows
from the definition that M' @ M? € U(ABC). Natural question related to the concept
of conditional product from [21] is the following one.

THEME 9 Suppose (A, B|C) € T(N), M! € U(AC), M? € U(BC) with M}, = MZ.
Is it true that (M! @ M?)ac = M! and (M' @ M?)gc = M?? Can the domain of
the operation ® defined by (8.11) be restricted suitably so that the axioms of conditional
product from [21] are fulfilled for it then?

Structural decomposition

Let M be a structural model over N and U,V C N such that UV = N. One says that M
decomposes into My and My or that (M, My ) forms a structural decomposition of M if
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M = My @ My,. The decomposition is proper if U\ V # () # V' \U. A structural model
will be called indecomposable if it has no proper structural decomposition. Note that
(Mu)vavy = (My)yar which means that the composition My @ My is always defined.
Clearly, a necessary condition for the existence of structural decomposition (M, My) is
U\V I V\U|UNV [M] (see p. 15). In particular, M = T,(N) is an indecomposable
model. As My resp. My can be again decomposed one can obtain gradually a full
decomposition of M into indecomposable models. Unfortunately, the hypothesis that
every structural model has unique full decomposition of this type into "prime’ components
is false. Indeed, consider the model from Example 7.4: one has Mg . ® Mypg = M =
Mcd @ Myeq and every Mg with S C N, |S| = 3 is indecomposable.

THEME 10 Let G be an undirected graph over N and (A, B|C') € T(N) \ 75(N) defines
a proper decomposition of G. Is ((Mg)ac, (Mg)pe) a structural decomposition of M7
Has any CG model (see p. 43) unique minimal ’canonical’ decomposition into maximal
indecomposable submodels?

It may be the case that uniqueness of ’canonical’ decomposition cannot be achieved
even under possible additional standardization requirements. This would confirm that
the concept of structural decomposition is not suitable for the purpose mentioned earlier
(p. 141). Then one should look for another type of decomposition (based on another
accumulative operation with structural imsets) which generalizes decomposition of UG
models.

DIRECTION 2 Develop an analogue of the method of local computation for structural
models based on conveniently defined concept of decomposition of structural models.
Find sufficient conditions for decomposition of this type which can be verified by statistical
tests or on basis of expert knowledge. Develop an analogy of Shenoy’s pictorial method
of valuation networks [92, 89] for local representation of structural imsets and Markovian
measures in memory of a computer.

Well-known results about factorization of maximum-likelihood estimators [53, 17]
should be generalized then as well.

8.3 Implementation tasks

These open problems are motivated by the task to implement facial implication on a
computer. The most important question is probably the next one.

QUESTION 7 Is every structural imset u over N already a combinatorial imset over N
(see p. 59)?

If the answer to Question 7 is negative then the following two problems become topics
of immediate interest.

THEME 11 Given a finite non-empty set of variables N, find the least finite class H (V)
of structural imset such that

VueSIN) u= Z k,-v  for some k, € Z*.
)

vEH(N
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Recall that the existence of the class #(N), named minimal integral Hilbert basis of
con(E(N)) follows from Theorem 16.4 in [90]. One has E(N) = H(N) iff S(N) = C(N).

THEME 12 Given a finite non-empty set of variables N, determine the least n, € N such
that an imset over N is structural iff its multiple n, - u is a combinatorial imset, i.e.

Vuec ZPN ye S(N) & n,-ucC(N).
Determine the least n,, € N satisfying
Vue "™ uweS(N) & 3neNn<n,, n-ucC(N).
Find out how the values n, and n,, depend on |N].

Note that n,, < n, and I am not able to decide whether the inequality is strict. Indeed,
n, =14 n, =1< S(N) =C(N). Further important question concerns the ¢-skeleton.

QUESTION 8 Let KJ(N) be the f-skeleton over N (see p. 76) and £(N) the class of
elementary imsets over N (p. 57). Is the equality

min { (m,u); u € E(N) (m,u) #0} =1
fulfilled for every m € IC5(N)?

Note that the condition from Question 8 implies that gra(N) = gra,(N) (see p. 101).
The following problem becomes relevant in case both Question 7 and Question 8 have
negative answers.

THEME 13 How does depend the value of the least [ € N satisfying the condition
VueS(N) Yve&(N) u—v & l-u—veS(N) (8.12)

depend on |N|? Recall that facial implication — is defined on p. 93. Can one determine
gra(N) directly without finding the skeleton, i.e. without solving Theme 47

Recall that if either Question 7 or Question 8 has positive answer then the least [ € N
satisfying (8.12) is gra(N).

THEME 14 Is there the least [, € N such that
Vue S(N) Yve&(N) u—v & l,-u—veC(N)?

How does [, depend on |N| then? If there is no [, € N of this kind, find out, for a given
u € S(N), how the class of k € N satisfying

VoeE(N) u—v & k-u—veC(N)

looks? Is there a structural imset u € S(N) such that the condition (6.4) from Remark
6.3 is not fulfilled (that is n-u & C(N) or (k-n—1)-u & C(N) for every k,n € N)?
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THEME 15 Given a finite non-empty set of variables NV, is there [; € N such that
Vu € S(N) Vv semi-elementary imset over N u —v & l4-u—v € S(N),
respectively /4 € N such that
Vu € S(N) Vv semi-elementary imset over N u —v < ly-u—wv € C(N)?
How does I; respectively 4+ depend on |N| then?
The following open problem also concerns facial implication.

THEME 16 Is there any method of testing facial implication which combines direct and
skeletal criteria (see Lemma 6.1 on p. 93 and Lemma 6.2 on p. 96) and which is more
suitable for efficient implementation on a computer?

The above formulation is partially vague, let me specify what I have in mind in more
details. Direct criterion of facial implication u — v consists in testing whether k-u —v €
C(N) for some k € N. This can be tested recursively as mentioned in Remark 6.3.
However, plenty of ’transient’ imset obtained during ’decomposition’ procedure are not
combinatorial imsets. This can be often recognized immediately by means of Theorem 5.1
(which is behind the skeletal criterion of —) and save superfluous steps of the recursive
"decomposition’ procedure. The observation that a ’transient’ imset v is not combinatorial
can be made on basis of the fact that (m,v) < 0 for a 'standard’ supermodular imset m
over N, for example the imset mA" resp. m*+ for A C N (p. 34) or m for i = 0,...,|N|—2
(p. 57). The point is that one need not to have the whole skeleton at disposal! In fact,
Remark 6.10 is based just on observations of this type.

Memory demands

Another important problem is what are memory demands for representing a structural
imset in memory of a computer. Informally, by actual dimension of the class of structural
models U (N) is understood the 'minimal’ number of binary attributes of elements of U (V)
which can distinguish between every pair of distinct structural models.

OBSERVATION 8.5 The following inequality holds
[Iny [U(N)|] < actual dimension of U(N) < min{ |E(N)],|IC;(N)]}.

Proof: If s binary attributes distinguish between elements of U/(N) then s bites is enough to
represent all elements of U/ (N). Hence 2° > |U(N)| gives the lower estimate. The fact that
elementary, respectively skeletal imsets differentiate between structural models follows from
Lemma 2.2 resp. Consequence 6.2 L]

For example, the actual dimension of U(N) is 1 in case |N| = 2 as |U(N)| = 2 and
|E(N)| = |K7(N)| =1 (while in case |[N| = 1 one has |[U(N)| = 1 and E(N) = ) = £7(N)).
If |N| = 3 then |U(N)| = 22 gives lower estimate 5 = [ Ing |/(N)| | which is precise since
IKS(N)| =5 < 6 = |E(N)|. In case |[N| = 4 one has 2! < [U(N)| = 22108 < 2%
|E(N)| =24 and |K§(N)| = 37. Thus, Observation 8.5 implies:
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CONSEQUENCE 8.4 If |N| = 4 then the actual dimension of U(N) is between 15 and 24.

Note that the inequality |U(N)| < 2! in case |[N| = 4 means that one can perhaps
‘construct’ 15 awkward artificial attributes which differentiate between the elements of
U(N) (and perhaps they have even the form of "functions’ of 24 ’elementary’ characteris-
tics). However, I am interested in those characteristics or attributes which have reasonable
interpretation and can be generalized in sense that their generalization ’achieves’ the ac-
tual dimension of U(N) for |[N| > 5. In fact, I am interested in solution of the following
vaguely defined problem.

THEME 17 Given a non-empty finite set of variables NV, what is the least cardinality of a
set of interpretable binary attributes which differentiate between structural models over
N? How does it depend on |N|?

8.4 Interpretation and learning tasks

Open problems loosely motivated by ’practical’ questions of interpretation and learning
from Section 1.1 are gathered below.

8.4.1 Meaningful description of structural models

The following two open problems are motivated by the concept of standard imset for an
acyclic directed graph from Section 7.2.1

QUESTION 9 Let G be an acyclic directed graph over N (p. 154). Is it true that the
standard imset for G (see p. 107) is the only imset from the class of combinatorial imsets
inducing Mg which is simultaneously an imset of the least degree (p. 112) and an imset
with the least lower class (p. 116)?

Natural question is whether the concept of standard imset for a DAG model can be
generalized.

THEME 18 Is there any consistent principle of unique choice of representatives of classes
of facial equivalence (see p. 91) such that, for every acyclic directed graph G over N, the
standard imset uq is chosen from the class p = {u € S(N); M, = Mg}?

The above description is somewhat vague, let me specify more detailed hypotheses.
Suppose M € U(N), p = {v € S(N); M = M,} and U = U, for some v € p (it does
not depend on v € p - see Lemma 6.6 on p. 102). Let us put

L= U {L CU; L is a minimal lower class L, for v € p}

where minimality is understood with respect to inclusion (£, is defined on p. 60). Re-
spective hypotheses are that u € p with £, = L] exists for every M € U(N) and that
a combinatorial imset with the least degree among u € p N C(N) satisfying £, = L! is
determined uniquely. If they were true then ug is an imset of this kind for M = Mg
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where G is an acyclic directed graph over N (by Lemma 7.4 on p. 112 and Consequence
7.5 on p. 118). The hypotheses can be modified by considering the class

L2 = U {£ CU; L is a minimal determining class for M}
or the class

L= U {L CU; L is a minimal unimarginal class for M}
(see p. 115) in place of LL. Further open problem is motivated by Section 6.4.

DIRECTION 3 Look for necessary conditions for facial equivalence of structural imsets
formulated in terms of invariants of facial equivalence which are easy to verify and offer
clear interpretation. The aim is to find a set of these conditions which is able to distinguish
every pair of structural imsets which are not equivalent.

Desired complete set of interpretable invariants could then become a basis of alterna-
tive way of description of structural models which is suitable from the point of view of
interpretation.

8.4.2 Distribution frameworks and learning

Below mentioned problems concern more or less the distribution framework. In my view,
they are also related to general task of learning structural models (see Section 1.1, p. 9).

THEME 19 Let ¥ be a class of probability measures over N satisfying the conditions
(6.14) and (6.15) from Section 6.2.3. Let WU(u) denote the class of Markovian measures
with respect to u € S(NN) given by (6.1) on p. 91 and Sy (N) the class of WU-representable
structural imsets over N (p. 98). Is the condition

Vu,v€ Sg(N) uv—v & U(u) C ¥(v)
fulfilled then? Does it hold under additional assumptions on W?

QUESTION 10 Let M be a structural model over N, U = U, is the upper class of u €
S(N) with M,, = M and D C U is an unimarginal class for M (see Section 7.4.1, p.
115). Is then D necessarily a determining class for M?

The above question can also be formulated relative to a distribution framework ¥ (see
Remark 7.7 on p. 116).

THEME 20 Let Wy, U5 be classes of probability measures satisfying (6.14) and M be a
structural model over N. May it happen that minimal unimarginal classes for M relative
to W, and W, differ? More specifically, I am interested in the class of discrete measures
(p. 13) in place of ¥y and the class of non-degenerate Gaussian measures in place of W,

(p. 28).

The last two open problems are closely related to mathematical statistics. The first
one is the 'parametrization problem’.
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DIrRECTION 4 Find out for which structural imsets u over N and for which classes ¥ of
probability measures with prescribed sample space (Xy, Xn) = [[,c5(X;, &i) a suitable
parametrization of the class of Markovian measures W(u) with respect to u exists.

Note that T am interested in parametrization by means of "independent’ parameters i.e.
situations in which elements of W(u) are in one-to-one correspondence with parameters
belonging to a n-dimensional interval [0, 1]" for some n € N. Preferable parametriza-
tions are those in which parameters correspond to ’less-dimensional’ marginal measures.
Typical example is the parametrization of non-degenerate Gaussian measures which are
Markovian with respect to an acyclic directed graph [7, 85].

DIRECTION 5 Propose methods of learning structural models on basis of data (both sta-
tistical testing and estimation). Develop methods for statistical estimation of Markovian
measures with respect to a given structural imset within a given distribution framework
(i.e. fitting procedures).

I think that the most suitable methodological approach to statistical learning (of
structural models) is to introduce suitable distance on the set of probability measures
belonging to the considered distribution framework (with a fixed sample space). Then
one can compute the distance of the empirical measure (computed from data) and the
set of Markovian measures with respect to prospective structural imset. I hope that the
equivalence result from Section 4.5 (see p. 68), namely the product formula (p. 61), may
serve as a basis for some iterative fitting procedures.
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Chapter 9

Conclusions

The aim of this chapter is to summarize the method(s) of description of probabilistic
conditional independence (CI) structures mentioned in this work.

Chapter 3 is an overview of graphical methods of description of CI structures. These
methods are suitable from the point of view of interpretation and some of them are good
from the point of view of implementation (on a computer). However, they are not complete
in sense that they are not able to describe all (discrete) probabilistic CI structures (see
Section 3.6). Omission of this theoretical requirement may result in serious methodological
errors in practical learning procedures (see Section 1.1). This fact motivated an effort to
develop a non-graphical method of description of probabilistic CI structures by objects of
discrete mathematics which complies with the requirement of completeness.

The method of description of probabilistic CI structures by means of structural im-
sets described in Chapter 4 and in subsequent chapters meets the above requirement of
completeness for a quite wide class of distributions, namely for probability measures with
finite multiinformation (Theorem 5.2). The class of measures with finite multiinformation
involves three basic classes of distributions used in practice (in graphical modelling of CI
structures), namely the class of discrete measures, the class of (non-degenerate) Gaussian
measures and the class of (non-degenerate) CG measures (see Section 4.1).

Theorem 4.1 gives three equivalent definitions of a Markovian (probability) measure
P with respect to a structural imset u. The standard definition requires that every CI
statement 'represented’ in u is indeed valid CI statement with respect to P (see Section
4.4.2). The second equivalent definition is the requirement that P satisfies the product
formula induced by u (see Section 4.3). The product formula, which needs an auxiliary
concept of a reference system of dominating measures, is perhaps important from the
point of view of interpretation (of CI structures induced by structural imsets). First,
it generalizes the well-known product formula for decomposable models (see (3.2) on p.
45); this happens when one takes in place of u the standard imset for the respective
decomposable graph (see Section 7.2.2) Remark 7.4). Second, it can perhaps be viewed
as a loose analogue of formulas defining log-linear models. Third, the product formula
also illustrates how the uniqueness principle for Markovian measures with respect to a
structural imset works. The principle, formulated in Consequence 4.3, says that the
marginals of a Markovian measure P (with respect to a structural imset u) for the lower
class £, determine uniquely the marginals for the upper class i,. Indeed, in case of the
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standard imset induced by an acyclic directed graph (see Section 7.2) the upper class
corresponds to the collection of all marginals (including the measure P itself) and the
lower class describes the least possible collection of marginals determining (uniquelly)
the measure P - see Consequence 7.5 in Section 7.4.3. The third equivalent definition of
Markovian measure is the requirement that the scalar product of the multiinformation
function mp with u vanishes (see Section 4.5). This equivalent definition seems to be
important from the point of view of computer implementation and maybe from the point
of view of learning. Indeed, perhaps it can serve as a basis of a (future) learning method
which can determine the most suitable structural imset on basis of a statistical estimate
of the multiinformation function. However, the main significance is in bringing the point
of view of algebra. This may facilitate computer implementation of the method on basis
of arithmetic of integers.

The algebraic point of view is emphasized in Chapter 5. The multiinformation function
is known to be an (-standardized supermodular function (Consequence 2.2) and the cone
K¢(N) of ¢-standardized supermodular functions plays an important role in the presented
approach. More precisely, Ky(N) is a pointed rational polyhedral cone which implies
that it has finitely many extreme rays and every extreme ray contains just one non-
zero normalized (-standardized supermodular imset (Lemma 5.3) named ¢-skeletal imset.
Finite collection Kj(N) of (-skeletal imsets allows one to characterize dually structural
imsets as o-standardized imsets with non-negative scalar products with /-skeletal imsets
(Theorem 5.1); in fact ICf(NV) is the least collection of normalized /-standardized imsets
of this sort.

Every supermodular function defines a certain formal CI structure (see Section 5.1.1)
and an important fact is that the class of CI structures induced by structural imsets coin-
cides with the class of CI structures which can be described by supermodular functions.
The relation od these two different (but equivalent) methods of description of CI struc-
tures is characterized in Section 5.4 as a relation of duality. This is done with help of an
algebraic concept of Galois connection interpreted in light of the theory of formal concept
analysis [28]. The lattice of CI structures induced by structural imsets (or equivalently
those which can be described by supemodular functions) is shown to be a finite concept
lattice which is both atomistic and coatomistic (Theorem 5.3). Its atoms correspond to
known elementary (structural) imsets while its coatoms correspond to (-skeletal imsets.

Chapter 6 deals mainly with implementation of facial implication which corresponds
to the inclusion of induced CI structures. Two characterization of facial implication u — v
between structural imsets u,v are given. The first one (Lemma 6.1) characterizes it as
a ’direct’ arithmetical relation of v and v, namely that there exists [ € N such that
[ -u — v is a structural imset (resp. a combinatorial imset). The second one (Lemma
6.2) characterizes it with help of (-skeletal imsets (respectively supermodular functions),
namely by the requirement that u has non-zero scalar product with an /-skeletal imset (a
supermodular function) whenever v does so. The skeletal characterization then leads to
a characterization of facially equivalent structural imsets (Consequence 6.2).

To transform the task of computer implementation of facial implication into a standard
task of integer programming two observations are needed. The first observation (Conse-
quence 6.4) is that in testing u — v for a structural imset « and an elementary imset v
the number [ € N such that [ - u — v is a structural imset is limited by a constant. The
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constant depends on the cardinality of the set of variables N only and it has the value 1
in case |N| < 4 and 7 in case |N| = 5. A good candidate for the the least constant of this
type is the grade (see Section 6.3.2); the least constant of this kind for a combinatorial
imset u and an elementary imset v is found in Lemma 6.5. The second observation is that
in testing whether a given imset @ (e.g. [-u — v above) is a structural imset the coefficient
n € N such that n - @ is a combinatorial imset (i.e. a sum of known elementary imsets) is
also limited by a constant depending on the cardinality of N (Lemma 6.4). The constant
is 1 in case |N| < 4; there is a hope that it is 1 in general (see Question 7).

Further results of Chapter 6 allow to adapt the described method of description of CI
structures to a particular distribution framework, that is a class of probability measures
over N satisfying certain basic conditions (see Section 6.2.3).

Chapter 7 concerns the problem of choice of a representative of a class of facially
equivalent structural imsets. A good solution from the point of view of computer im-
plementation seems to be the baricentral imset (Section 7.1). Indeed, facial implication
between baricentral imsets is very simple: one has u — v for these imsets iff u — v is a
combinatorial imset (Observation 7.1). From the point of view of interpretation standard
imsets for acyclic directed graphs (Section 7.2.1) and for triangulated undirected graphs
(Section 7.2.2) seems to be suitable. First, they provide a simple translation of classic
graphical models into the framework of structural imsets. Second, they offer an alter-
native (non-graphical) method of testing Markov equivalence for acyclic directed graphs
(Consequence 7.1). Finally, they are exclusive for two theoretical reasons: standard im-
sets for acyclic directed graphs are combinatorial imsets of the least degree (Lemma 7.4)
and imsets with the least lower class (Consequence 7.5).

Chapter 8 is an overview of open problems. The most important problems from the
point of view of computer implementation of the method seem to be the question whether
structural imsets indeed coincide with combinatorial imsets (Question 7) and the task to
characterize (-skeletal imsets (Theme 4). Note that (-skeletal imsets are known in case
|N| <5 but not in general.

Well, the overall goal of the work was to present the method of description of prob-
abilistic CI structures by means of structural imsets. This involves motivation, the de-
scription of present state and an outlook represented by the list of open problems. This
non-graphical method removes inevitable limitation of graphical approaches and promises
a chance of computer implementation by transforming the problem into standard tasks
of integer programming. The work gives a theoretical solution; practical implemetation
requires further research. However, in case of successful solving the task of computer
implemetation the method can find wide application both in area of artificial intelligence
and in area of multivariate statistics.
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Chapter 10
Appendix

University graduates in mathematics should be familiar with the majority of the concepts and
facts gathered in this chapter. However, certain misunderstanding can occur in their exact
meaning and, moreover, graduates in other fields (e.g. computer science, statistics) may not be
familiar with all basic facts. Thus, to avoid misunderstanding and to facilitate reading T decided
to recall them here. Just to provide the reader with a reference source for well-known facts
which can be easily utilized with help of the Index.

10.1 Classes of sets

By a singleton is understood a set containing one element only, the symbol ) is reserved for the
empty set. The symbol § C T (also T O S) denotes that S is a subset of T (alternatively T'
is a superset of S) which involves the situation S = T'. However, strict inclusion is denoted as
follows: S C T or T O S means that S C T but S # T. The power set of a non-empty set X is
the class of all its subsets { T; T'C X}, denoted by P(X). The symbol |JD denotes the union
of a class D C P(X); the symbol (D the intersection of a class D C P(X). Supposing N is
a non-empty finite set (of variables) a class D C P(N) is called ascending if it is closed under
supersets, i.e.
VSTCN SeD, SCT = TeD.

Given D C P(N), the induced ascending class, denoted by DT, is the least ascending class
containing D, i.e.
D'={TCN;35c¢D SCT}.

Analogously, a class D C P(N) is called descending if it is closed under subsets, i.e.
VSTCN SeD, TCS = TeD,
and given D C P(N) the induced descending class D+ consists of subsets of sets in D, i.e.
DF={TCN;3SeD TCS}

A set S € D where D C P(N) is called a mazimal set of D VT € D SCT = S=T;
the class of maximal sets of D is denoted by D™2*. Clearly, D™ = (D)™ and DV = (D™ax)*,
Dually, a set S € D is called a minimal set of Dif YT €D T CS = S =T and D™" denotes
the class of minimal sets of D.

By a permutation of a finite non-empty set N will be understood a one-to-one mapping
m: N — N. It can be also viewed as a mapping on the power set P(N) which assigns w(S5) =
{m(z);z € S} to every S C N. Then given a real function m : P(N) — R the juxtaposition mm
will denote the composition of m and = defined by S — m(n(S)) for S C N.
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10.2 Posets and lattices

Partially ordered set (L, <), shortly a poset, is a non-empty set L endowed with a partial ordering
=, that is, a binary relation on L which is

(i)  reflexive: VeelL =<z,
(ii) antisymmetric: Vz,y € L z =<y, y<z = =1,
(iii) transitive: Vao,yz€L z=<y, y=2z = z=x2.

The phrase total ordering is used if moreover V z,y € L either x <y or y = z. Given z,y € L,
one writes z < y for x < y and = # y. If £ < y and there is no z € L such that z < z and
z < y then z is called a lower neighbour of y and y is an upper neighbour of x. Given M C L an
element z € M is a minimal element of M with respect to < if there is no z € M with z < =z,
y € M is a mazimal element of M with respect to =< if there is no z € M with z > .

Given M C L, the supremum of M in L, denoted by sup M and alternatively called the
least upper bound of M is an element of y € L such that z < y for every z € M but y < 3 for
each ¢y € L with z < g/ for every z € M. Owing to antisymmetry of <, the supremum of M is
determined uniquely if it exists. Given z,y € L, their join denoted by z V y is the supremum of
the set {z} U{y}. A poset in which every pair of elements has a join is called join semi-lattice.

Analogously, the infimum of M C L, denoted by inf M, called also the greatest lower bound
of M is an element of z € L such that x < z for every z € M but 2’ < z for each 2’ € L with
x' < z for every z € M. The meet of elements z,y € L, denoted by z A y is the infimum of the
set {x} U{y}. Lattice is a poset (L, <) such that for every z,y € L there exists both supremum
z Vy and infimum x Ay in L. A lattice is distributive if for every z,y,z € L

zA(yVz)=(xAy)V(rAz)and zV (yAz)=(zVy Az Vz2).

Typical example of a distributive lattice is a ring of subsets of a finite non-empty set IV, that
is a collection R C P(N) which is closed under (finite) intersection and union. In particular,
P(N) ordered by inclusion C is a distributive lattice.

Complete lattice is a poset (L, =) such that every subset M C L has the supremum and
infimum in L. Note that it suffices to show that every M C L has the infimum. Any finite
lattice is an example of a complete lattice. By the null element of a complete lattice L is
undestood the least element of L, that is zg € L such that zy < z for every z € L; it is nothing
but the supremum of the empty set in L. By the unit element is understood the greatest elements
of L, that is y; € L such that z < y; for every z € L. An element z of a complete lattice is
join-irreducible if © # sup{z € L; z < =} and meet-irreducible if x # inf{z € L;z < z}.
An element of a finite lattice is join-irreducible iff it has exactly one lower neighbour and it is
meet-irreducible iff it has exactly one upper neighbour. The set of join-irreducible elements in a
finite lattice (L, <) is the least set M C L which is supremum-dense which means that for every
x € L there exists M’ C M such that z = sup M’. Analogously, the set of meet-irrreducible
elements in L is the least set M C L which is infimum-dense, i.e. for every y € L there exists
M' C M with y = inf M'. Standard example of a join-irreducible element in a complete lattice is
an atom of L which is an upper neighbour of the null element of L. By coatom of L is undestood
a lower neighbour of the unit element of L. A complete lattice L is atomistic if the set of its
atoms is supremum dense in L; equivalently if the only join-irreducible elements are atoms. It is
coatomistic if the set of its coatoms is infimum dense in L, i.e. the only meet-irreducible elements
are coatoms.

Two posets (L1, =1) and (Lo, <o) are order-isomorphic if there exists a mapping ¢ : Ly — Lo
onto Lo such that

=1y & ¢(x) 29 ¢(y) forevery z,y € L.
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The mapping ¢ is then a one-to-one mapping between L; and Lo and it is called an order-
isomorphism. If the poset (L1, =7) is a complete lattice then (Lo, <2) is also a complete lattice
and ¢ is even (complete) lattice homomorphism which means that

d(sup M) =sup{p(z); z€ M} ¢(inf M) =inf{¢(z); z € M} forevery M C L;.

General example of a complete lattice can be obtained by means of a closure operation on subsets
of a set X, that is a mapping cl: P(X) — P(X) which is

(i) isotone: VSTCX SCT = clS)CclT),

(ii) extensive: VSCX ScCcls),

(iii) idempotent: V SC X cl(cl(S)) = cl(S).

A set S C X is called closed with respect to cl if S = cl(S). Given a closure operation cl
on subsets of X the collection K C P(X) of closed sets with respect to cl is closed under set
intersection:

DCK = ﬂDEIC (by convention ﬂD:XforD:(Z)).

Every collection K C P(X) satisfying this requirement is called a closure system of subsets of
X. The correspondence between ¢l and K is one-to-one since the formula

ce(S)=({TCX;SCTek} for SCX,

defines a closure operation on subsets of X having K as the collection of closed sets with respect
to clg (see Theorem 1 in [28]). The poset (K, C) is then a complete lattice in which

supch](UD) inszﬂD for every D C K.

Every complete lattice is order-isomorphic to a lattice of this type - see Proposition 3 in Chapter
1 of [28].

10.3 Graphs

A (classic) graph is specified by a non-empty finite set of nodes N and by a set of edges consisting
of pairs of elements taken from N. Several types of edges are mentioned in this work, but classic
graphs admit only two basic types of edges. An undirected edge or a line over N is an unordered
pair {a,b} where a,b € N, a # b (that is a two-element subset of N). A directed edge or an
arrow over N is an ordered pair (a,b) where a,b € N, a # b. Pictorial representation is clear:
nodes are represented by small circles and edges by corresponding links beween them. Note that
explicit requirement a # b excludes any loop, that is an edge connecting a node with itself (loops
are possible in some non-classic graphs).

A (classic) graph with mized edges over (a set of nodes) N is given by a set of lines £ over
N and by a set of arrows A over N. Supposing G = (N, L, A) is a graph of this kind one writes
‘a — bin G’ in case {a,b} € L and says that there exists a line between a and b in G. Similarly,
in case (a,b) € A one say that there exists an arrow from a to b in G and writes '’a — b in G’
or 'b <~ a in G’. Pictorial representation naturally reflects notation in both cases.

If either @ — b in G, a — b in G or a < b in G, then one simply says that [a,b] is an edge
in G. Note explicitly that this definition allows (for a pair of distinct nodes a,b € N) that each
of a — b, a — b and a < b are simultaneously edges in G! If ) # T C N, then the induced
subgraph of G for T is the graph G = (T, L1, Ar) over T where L1 (A7) is the set of those lines
(arrows) over T which are also in £ (in A). A hybrid graph over N is a graph with mixed edges
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G without multiple edges. That means, for an ordered pair of distinct nodes (a,b), a,b € N at
most one of three above mentioned options can occur.

A route from a node a to a node b (or between nodes a and b) in a graph G with mixed edges is
a sequence of nodes ¢1,...,¢, € N, n > 1 together with a sequence of edges €1,...,¢, 1 € LUA
(possibly empty in case n = 1) such that a = ¢, b = ¢, and ¢; is either ¢; — ¢;41, ¢; — ¢;41 or
c;i ¢ cipr fori=1,...,n—1. A route is called undirected if €; is ¢; — c;y1 fori=1,...,n—1,
descending if €; is either ¢; — ¢j11 or ¢; — c¢jyq for i = 1,...,n — 1 and strictly descending
ifn >2ande¢ is ¢g = ¢igp fore = 1,...,n — 1. In particular, every undirected route is a
descending route. A path is a route in which all nodes ¢y, ..., ¢, are distinct, a cycle is a route
where n > 3, ¢y = ¢, and ¢1,...,c,—1 are distinct (and €y is not a reverse copy of €1 in case
n =3). A directed cycle is a cycle which is a descending route and where ¢; is ¢; — ¢;41 at least
once. The adjectives undirected and (strictly) directed are used for paths as well.

A node a is a parent of a node bin G or b is a child of a if a — b in G; a is an ancestor of b
in G, dually b is a descendant of a if there exists a descending route (equivalently a descending
path) from a to b in G. The set of parents of a node b in G will be denoted by pac(b). Supposing
A C N the symbol ang(A) will denote the set of ancestors of the nodes of A in G. Analogously,
a is a strict ancestor (b is a strict descendant of a) if there exist a strictly descending route from
a to b. Similarly, a is connected to b in G if there exists an undirected route (equivalently an
undirected path) between a and b. Clearly, the relation "be connected’ is an equivalence relation
which decomposes N into equivalence classes, named connectivity components.

An undirected graph is a graph containing only lines (that is A = 0), a directed graph is a
graph containing only arrows (that is £ = )). The underlying graph H of a graph with mixed
edges G = (N, L, A) is an undirected graph H over N such that « — b in H iff [a,b] is an edge
in G. A set A C N in an undirected graph H over N is complete if a — b for every a,b € A,
a # by a clique of H is a maximal complete subset of N.

A acyclic directed graph over N is a directed graph over N without directed cycles. It can
be equivalently introduced as a directed graph G whose nodes can be ordered in a sequence
ai,...,ag, k> 1 such that if [a;, a;] is an edge in G for ¢ < j, then a; — a; in G. A chain for a
hybrid graph G over N is a partition of N into ordered disjoint (non-empty) subsets By, ..., By,
n > 1 called blocks such that, if [a,b] is an edge in G with a,b € B; then a — b, and if [a, b] is an
edge in G with a € B;,b € Bj,i < j then a = b. A chain graph is a hybrid graph which admits
a chain. It can be equivalently introduced as a hybrid graph without directed cycles (see [110]
Lemma 2.1). Evidently, every undirected or acyclic directed graph is a chain graph.

Note that various other types of edges are used in advanced graphical approaches (see Section
3.5), e.g. bidirected edges, dashed lines, dashed arrows or even loops. From purely mathematical
point of view these edges can be also introduced as either ordered or unordered pairs of nodes,
but their meaning is different. Thus, because of different interpretation they have to be carefully
distinguished from the above mentioned ’classic’ edges. However, all the concepts introduced in
Section 10.3 can be naturally extended to the graphs allowing edges of additional types.

10.4 Topological concepts

Metric space (X, p) is a non-empty set X endowed with a distance p which is a non-negative real
function p : X x X — [0, 00), such that Vz,y, 2z € X one has

(i) p(z,y) =0iff z =1y,
(i) p(z,y) = p(y, x),

(iii) p(z,2) < p(z,y) + p(y, 2)-
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A set G C X is called open in (X, p) if for every x € G there exists ¢ > 0 such that the open ball
U(z,e) ={y € X; p(z,y) < €} with center z and radius € belongs to G. A set F C X is closed if
its complement X\ G is open. A metric space is separable if it has a countable dense set, that is
such a set S C X that Vo € X Ve > 0 there exists y € SNU(x,¢e). A metric space is complete
if every Cauchy sequence x1, o, ... of elements of X, i.e. a sequence satisfying Ve >0 dn €N
such that VEk,I > n p(xg, ;) < €, converges to an element z € X, i.e. Ve >0 3In € N such
that Vk>n  p(zg,z) <e.

Classic example of a separable complete metric space is an arbitrary non-empty finite set X
endowed with the discrete distance § defined as follows:

_J 0 ifzx=y,
Oz, y) = { 1 otherwise.

Another common example is the set of n-dimensional real vectors R, n > 1 endowed with the
Eucledian distance

for m:[Ila"'axn]a y:[ylayn]

The set of real numbers R with o(z,y) = |z — y| is a special case.

Topological space (X,7) is a non-empty set X endowed with a topology T which is a class
of subsets of X closed under finite intersection, arbitrary union, and involving both the empty
set () and X itself. Every metric space (X, p) is an example of a topological space because the
class of open sets in (X, p) is a topology. A topological space of this kind is called metrizable
and its topology is induced by the distance p. For instance, the set of real numbers R is often
automatically understood as a topological space endowed with FEucledian topology induced by
Eucledian distance. The product of topological spaces (Xi,71) and (Xo,72) is the Cartesian
product X; x Xy endowed with the product topology, that is the class of sets G C X; x Xy such
that V (z1,22) € G there exist Gy € 7, Gy € 7 with (z1,25) € G; X Gy C G. The product
[Licy(Xi,7i) of any finite collection (X;,7;), i € N, |[N| > 2 of topological spaces is defined
analogously. For example, R (n > 2) endowed with the topology induced by Eucledian distance
can be viewed as the product of topological spaces X; =R, i € {1,...,n}.

A real function f : X — R on a topological space (X, 7) is continuous if {z € X; f(z) < r}
belongs to 7 for every r € R.

10.5 Measure-theoretical concepts

Measurable space (X, X) is a non-empty set X endowed with a o-algebra X over X which is a class
of subsets of X involving X itself and closed under countable union and complement. Given a class
A of subsets of X, the least o-algebra over X containing A (i.e. the intersection of all o-algebras
containing A) is called the o-algebra generated by A and denoted by o(A). In particular, if
(X, 7) is a topological space, then the o-algebra generated by its topology is the Borel o-algebra
or the o-algebra of Borel sets. Trivial o-algebra over X is the class {0}, X}, that is the o-algebra
generated by an empty class. Given a measurable space (X, X) the class of all o-algebras S C X,
ordered by inclusion, is a lattice. Indeed, for o-algebras S, 7 C X, their supremum SV T is the
o-algebra generated by S U T, while their infimum S AT is simply the intersection SN T . The
product of measurable spaces (X1, X1) and (X, X3) is the Cartesian product X; x Xy endowed
with the product o-algebra X; x Xs which is generated by measurable rectangles, that is the sets
of the form A x B where A € &1 and B € Xy. The product ([[;cy Xi, [[;cn Ai) of arbitrary finite
collection of measurable spaces (X;, X;), i € N where |[N| > 2 is defined analogously.
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A real function f : X — R on a measurable space (X, X) is measurable (sometimes one
writes X-measurable) if {z € X; f(z) < r} belongs to X for every r € R. Typical example is
the indicator xa of a set A € X defined as follows:

(z) = 1 if z€A,
XAET= 0 if zeX\A.

Given a real measurable function f : X — R, its positive part f™ and negative part f— are
non-negative measurable functions defined by

fH(z) = max {f(z),0}, f (r)=max{—f(x),0} forze X,

and one has f = f* — f and |f|=f"+ f .

Non-negative measure on a measurable space (X, X) is a function p defined on X, taking
values in the interval [0, oo] (infinite values are allowed) which satisfies () = 0 and is countably
additive, that is the equality

o0
Jar=3 wa
i=1
holds for every countable collection of pairwise disjoint sets A, Aq,... in X. It is a finite
measure if ;1(X) < oo and a o-finite measure if there exists a sequence B1,Bg,... of sets in X

such that X = |J2; B; and u(B;) < oo for every ¢ € N. A trivial example of a finite measure is a
non-empty finite set X endowed with the counting measure v on (X, P(X)) defined by v(A) = |A|
for every A C X. Classic example of a o-finite measure is Lebesgue measure on R", n > 1,
endowed with the Borel o-algebra B™. This measure can be introduced as the only non-negative
measure A on (R™, B") ascribing to every n-dimensional interval its volume, that is

n n
Hrl,sz = H(si—ri) whenever r;, 5, ER, r; < s;,i=1,....,n.
=1 i=1

Probability measure is a measure p satisfying pu(X) = 1. It is concentrated on a set B € X if
w(B) =1 or equivalently p(X\ B) = 0. Two real measurable functions f and g on (X, X) equal
p-almost everywhere if p({z € X, f(x) # g(x)}) = 0. Then one writes f =g p-a.e. Clearly, it
is an equivalence relation.

The concept of integral is understood in sense of Lebesgue. Given a non-negative mea-
sure u on (X X)) this construction (described for example in [87] Chapter 1) assigns a value
fA ) from [0, 00|, called the integral of f through A with respect to p to every non-
negatlve measurable function f and arbitrary A € X' (f can be defined on A only). A real measur-
able function f on (X, X) is called p-integrable if the integral of its absolute value [y | f ()| dp(x)
is finite. Finite integral [, f(z)du(z) (i.e. a real number) is then defined for every p-integrable
function f and A € X. Note that supposing fis ,u integrable and ¢ is X-measurable function on
X one has f = g p-a.e. iff [, f(z)d = [p9(z) ) for every A € X (and g is u-integrable
in both cases). Note that in case (X X) (HzEN Xl’HzEN AX;) it is equivalent to apparently
weaker requirement that the equality of integrals holds for every measurable rectangle A only.
This follows from the fact that every two finite measures on (J];cn Xi, [[;cx &i) which equal on
measurable rectangles must coincide.

Sometimes, one needs to introduce (possibly infinite) integral even for a non-integrable real
measurable function f : X — R by the formula

/f ) du(o /f+ ) du(x /f
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provided that at least one of the integrals on the right-hand side is finite. Then one says that f is
p-quasi-integrable and the integral [, f(x)du(z) is defined as a value in the interval [—oo, +-00].
Let us refer for elementary properties of Lebesgue integral to [87], Chapter 1.

Supposing p and v are measures on (X, X) one says that v is absolutely continuous with
respect to pu and writes v < p if p(A) = 0 implies v(A) = 0 for every A € X. Basic measure-
theoretical result is Radon-Nikodym theorem (see [87], Sections 6.9 and 6.10).

Theorem Supposing v is a finite measure and p a o-finite measure on (X, X') such that v < p
there exists a non-negative p-integrable function f called Radon-Nikodym derivative of v with
respect to i such that

v(A) = /f(:z:) du(x) for every A€ X.
A

Moreover, one can show (using Theorem 1.29 in [87]) that, for every X-measurable function g
on X, g is v-integrable iff g - f is p-integrable and

/g(fE) dv(z) = /g(:z:) - f(z) du(x) for every A€ X .

A A

According to the remark above, Radon-Nikodym derivative is determined uniquely only within
equivalence p-a.e. One writes f = [dl—” to denote that a non-negative X'-measurable function f is
(a version of) Radon-Nikodym derivative of v with respect to p.

Product of o-finite measures p1 on (X1, X1) and pe on (Xo, X) is the unique measure pq X po
on (Xy x X9, X1 x X5) defined on measurable rectangles as follows:

(,ul X ,ug) (A X B) = Ml(A) . ,LLQ(B) whenever A € X, Be A5

Let us refer to [87] (Chapter 7, Example 7 and Sections 7.6, 7.7) for the proof of existence and
uniqueness of (necessarily o-finite) product measure p; X py. Product of finitely many o-finite
measures | [;cy /i, || > 2 can be introduced analogously. Another basic measure-theoretical
result is Fubini theorem (see [87], Section 7.8).

Theorem Let ;1 be a o-finite measure on (X;,X;) and us a o-finite measure on (Xg, Xs).
Suppose that f is a non-negative X] x Xp-measurable function on X; X Xo. Then the function
T — fx2 f(x1, o) dus(ze) is Xj-measurable, the function zo — le f(z1,29) duy (1) is Xo-
measurable and one has

/ F(1,22) d(ur x ji2) ([, 2]) =

X1 ><X2

://f(xl,@) dug(:vz)dm(m)Z//f(ﬁh,fm) dpi(z1) dpz(z2) .

Xy Xa X2 X1

Whenever f is u; X pe-integrable real function on X; X Xo the same conclusion holds with the
proviso that respective functions on X; are defined p;-almost everywhere (i = 1, 2).

By a measurable mapping of a measurable space (X, X) into a measurable space (Y,)) is
understood a mapping ¢ : X — Y such that for every B € ) the set t_1(B) = {z € X; t(z) € B}
belongs to A'. Note that a measurable function is a special case when Y is R endowed with the
Borel o-algebra. Every probability measure P on (X, X) then induces through t a probability
measure @ on (Y,)) defined by Q(B) = P(t_1(B)) for every B € Y.
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Two measurable spaces (X, X') and (Y, )) are isomorphic if there exists a one-to-one mapping
¢: X — Y which is onto Y and preserves countable union and complement. Then ¢()) = (),
¢(X) = Y and countable intersection and inclusion are also preserved. The inverse mapping
preserves these operations as well, and every measure p on (X, X') corresponds to a measure v
on (Y,)) defined by

v(B) = u(s-1(B)) for Be Y,

and conversely. For example, given measurable spaces (X1, A1) and (Xo, X2), the space (X, A')
is isomorphic to (X; x Xg, A7) endowed with the o-algebra

-)El E{AXXQ;AExl}gXIXXQ.

Supposing P is a probability measure on a measurable space (X, X) and A C X is a o-
algebra over X, the restriction of P to A will be denoted by PA. Given B € X, the conditional
probability of B given A with respect to P is an A-measurable function h : X — [0, 1] such that

P(ANB) = / h(z) dP(z) for every A € A. (10.1)
A

One can use Radon-Nikodym theorem with (X, A), u = P4, and v(A) = P(ANB) for A € A,
to show that a function h satisfying (10.1) exists and is determined uniquely within equivalence
PA.a.e. Let us write h = P(B|.A) to denote that a A-measurable function k : X — [0,1] is (a
version of) conditional probability of B given A. Let us mention (without proof) two equivalent
definitions of conditional probability. The first one, apparently weaker, says that h = P(B|.A) iff
the equality (10.1) holds for every A € G, where G C A is a class closed under finite intersection
such that o(G) = A. The second one, apparently stronger, says that h = P(B|.A) iff for every
non-negative A-measurable function g : X — R and A € A one has

/ o(x) dP(z) = / o) - h(z) dP(x) = / 9(x) - h(x) dPA(x).
ANB A A

It follows from the definition of conditional probability that whenever S C 7 C X are o-algebras,
and B € X then every S-measurable version of P(B|T) is a version of P(B|S). Sometimes, it
happens that a certain fact or the value of an expression does not depend on the choice of a
version of conditional probability. In this case the symbol P(B|.A) is used in the corresponding
formula to substitute arbitrary version of conditional probability of B given A (w.r.t. P).

Remark Having fixed just P on (X, X) and a o-algebra A C X by a regular version of con-
ditional probability given A is understood a function which ascribes to every B € X' a version
of P(B|A) such that, for every z € X, the mapping B — P(B|.A)(z) is a probability measure
on (X,X). Note that this concept is taken from [55], §26.1 and that a regular version of con-
ditional probability may not exist in general (e.g. Example VI.1.35 in [98]). However, under
certain topological assumptions, namely that X is a separable complete metric space and X is
the class of Borel sets in X, its existence is guaranteed (see either [98], Theorem VI.1.21 or [74],
Consequence of Theorem V.4.4). A

Supposing (i is a measure on the product of measurable spaces (X1 x Xa, X X X3) the marginal
measure v on (Xy, X;) is defined as follows:

v(A) = u(A x Xy) for every A € X .

Every A7-measurable function h on X; can be viewed as X; X Xp-measurable function on X; x Xo.
Then h is v-integrable iff it is p-integrable and

/ W) dul(zr, 22]) = / W) dv(e).

X1 ><X2 X1
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A real function ¢ : [0,00) — R is called convez if for all r, s € [0, 00) and « € [0, 1]
pla-r+(1—-a) s) <a o)+ 1-a) @s).
It is called strictly conver if this inequality is strict whenever r # s and « € (0, 1). Further basic

result is Jensen’s inequality (one can modify the proof from [87], Section 3.3).

Theorem Let 1 be a probability measure on (X, X), f : X — [0, 00) a u-integrable function and
¢ :]0,00) = R a convex function. Then

w/ﬂmwuns/wummmu
X X

In case ¢ is strictly convex the equality occurs if and only if f is constant u-a.e., more exactly
f(z) =k for p-a.e. z € X where k = [ f(x)du(z).

10.6 Conditional independence of o-algebras

Let A, B,C C X are g-algebras in a measurable space (X, X) and P is a probability measure on
it. One can say that A is conditionally independent of B given C with respect to P and write
A L B|C [P] if, for every A € A and B € B, one has

P(ANBIC)(z) = P(A|IC)(z) - P(B|C)(z)  for P‘-ae. z€X. (10.2)

Note (without proof) that an apparently weaker equivalent formulation is as follows. It suffices
to verify (10.2) only for A € A and B € B where A C A respectively B C B are classes closed

under finite intersection such that o(A) = A respectively o(B) = B.

LEMMA 10.1 Under the assumptions above A 1L B|C [P] occurs iff for every A € A there exists
a C-measurable version of P(A|BV C).

Proof: To show the necessity of the condition fix A € A and choose a version f of P(A|C).
Write for every B € B, C € C by definition of P(AN BJ|C) and (10.2)

P(ANBNC) = / P(ANB|C)(z) dP(z) = / P(A[C)(z) - P(B|C)(z) dP(z),
C C

and continue using the ’stronger’ definition of P(B|C) and the fact f = P(A|C)

| PAIC)@) - PEIO@ L@ = [ PO @) dPe) = [ f)dPa).
C BNC BNC
Since the class G = {BNC; B € B, C €} is closed under finite intersection and BV C = o(G),
by the 'weaker’ definition of P(A|B V C) conclude that f = P(A|BVC).
To show the sufficiency fix A € A and B € B. Take a C-measurable version f of P(A|BV C)
and observe f = P(A|C). Then write by the definition of P(ANB|C) and the fact f = P(A|BVC)
for every Ce C

/ P(ANBIC)(z) dP°(z) = P(ANBNC) = / f(z) dP(z),
C BNC
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and continue using the ’stronger’ definition of P(B|C) and the fact f = P(A|C)

/ f(z) dP(z) Z/f(:v)-P(BIC)(I) dP°(x) Z/P(AIC)(:B)-P(BIC)(I) dPC(x).
C

BNC C

Thus, the equality

/P(Am B|C)(z) dP°(x) = /P(A|C)(:z:)-P(B|C)(:z:) dPC ()
C C
was verified for every C € C which implies (10.2). []
The next lemma describes basic properties of conditional independence for o-algebras.

LEMMA 10.2 Supposing P is a probability measure on (X, X') and A, B,C,D,E,F,G C X are
o-algebras, it holds

(i) BCC = Al B|C[P],

(i) AL B|C[P] = B 1L A|C[P],

(iii) AU E|C[P], FCECCGCEVC = AL F|G [P,
(

iv) AL B|DVC[P, AL D|C[P] = AL BVD|C[P)].

Proof: The condition (ii) follows immediately from symmetry in (10.2). For other properties
use the equivalent definition from Lemma 10.1. For (i) realize that BV C = C and therefore
every version of P(A|BV C) is C-measurable. In case (iii) observe S=FVGCEVC =T. The
assumption A 1L & |C [P] implies, for every A € A, the existence of a C-measurable version of
P(A|T). Since C C G C S it is both G-measurable and S-measurable. Hence, it is a version
of P(A|S). The existence of a G-measurable version of P(A|S) means A 1l F |G [P]. To show
(iv) fix A € A and by A 1L B|DVC [P] derive the existence of (D V C)-measurable version f of
P(A|BV DV C). Similarly, by A 1L D|C [P] derive the existence of C-measurable version g of
P(A|D Vv C). Observe that f is a version of P(A|D V C) and by the 'uniqueness’ of P(A|D V C)
derive that f = g PPVC-a.e. Hence, f and g are equal PBYPVC_ae. and by ’uniqueness’ of
P(A|BV DV C) conclude that g is its version. This implies A Il BV D|C [P]. L]

CONSEQUENCE 10.1 Supposing P is a probability measure on (X, X) semi-graphoid properties
for o-algebras hold, that is one has for o-algebras A, B,C,D C X (the symbol of P is omitted):

1. triviality: A 1L B|C whenever BVC =C,
2. symmetry: ALl B|C = B 1 A|C,

3. decomposition: A 1L BVD|C = A1 D|C,
4. weak union: A UL BVD|C = AL B|DVC,

5. contraction: AU B|DVC & AL D|C = AL BVD|C.

Proof: Use Lemma 10.2; for decomposition use (iii) with &€ = BV D, F = D, G = C; for weak
union put £ = BV D, F =B, G =D VC instead. U]
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10.7 Relative entropy

Suppose that P is a finite measure and u a o-finite measure on a measurable space (X, X). In
case P < choose a version of Radon-Nikodym derivative %, accept the convention 0-1n0 =0

and introduce

(Pl = [ S ) 0 G @) duta). (10.3)

Provided that the function % -In % is pu-quasi-integrable we call the integral the relative entropy
of P with respect to p. Of course, quasi-integrability and the value of H(P|u) does not depend
on the choice of a version of %. It follows from the definition of Radon-Nikodym derivative
that H(P|u) can be equivalently introduced as the integral

H(P|p) = /ln j—];(x) dP(z), (10.4)
X

provided that In ‘fl—llj is P-quasi-integrable. Hence, the relative entropy of P with respect to y is
finite iff In ‘fi—i is P-integrable. Let us note that, in general P < i does not imply the existence
of the integral in (10.3) and in case H(P|u) is defined, it can take any value in the interval
[—00, +00]. However, when both P and p are probability measures (and P < ) the existence
of H(P|u) is guaranteed and it can serve as a measure of similarity of P to pu.

LEMMA 10.3 Supposing P and p are probability measures on (X, X) such that P < pu the
relative entropy of P with respect to p is defined and H(P|u) > 0. Moreover H(P|u) = 0 iff
P=pu.

Proof: Apply Jensen’s inequality to the case f = % and @(r) = r-Inr for r > 0, ¢(0) = 0.

Since P is a probability measure [, f(z) du(z) = 1 and ¢(1) = 0 gives the lower estimate.
Moreover, since ¢ is strictly convex H(P|u) = 0 iff f(z) =1 for p-a.e. z € X which is equivalent
to the requirement P = p. L]

Let us emphasize that the assumption that H(P|u) is finite involves the requirement P < p.

10.8 Finite-dimensional subspaces and cones

Throughout Section 10.8 the set of n-dimensional real vectors R",n > 1 is fixed. It is a topo-
logical space endowed with Eucledian topology. Given 2,y € R” and « € R the sum of vectors
x +y € R” and the scalar multiple - ¢ € R" are defined componentwisely. The symbol 0 de-
notes the zero vector which has 0 as all its components. Given A C R" the symbol —A denotes
the set {—z;x € A} where —z denotes the scalar multiple (—1) - &. The scalar product of two
vectors @ = [z;]"_; and y = [y;|; is the number (x,y) =37 | =i - y;.

10.8.1 Linear subspaces
A set L C R"™ is a linear subspace if 0 € L and L is closed under linear combinations, i.e.
Ve,yel Va,feR a-x+p-yel.

Every linear subspace of R is a closed set with respect to Eucledian topology. A set A C R"
linearly generates a subspace L C R" if every element of L is a linear combination of elements
of A, i.e.

Ve el EIBgAﬁnitesuchthatm:Zay-y for some oy € R, y € B.
y€eB
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By convention 0 is the empty linear combination which means that () linearly generates the
subspace {0}. A finite set A C R" is linearly independent if

Vay e R, yeA Zay-yzo = [ay = 0 for every y € A].
yeA

In particular, a set containing 0 is never linearly independent. Linear basis of a subspace L C R"
is any finite linearly independent set A C L which (linearly) generates L. Every linear subspace
L C R™ has a basis which is possibly empty in case L = {0}. Different bases of L have the same
number of elements called the dimension of L. The dimension is the number between 0 (for
L ={0}) and n (for L = R").

One says that a subspace L C R" is a direct sum of subspaces Li,Ls C R” and writes
L=Lio®LifLiNnLy ={0},L; CL, Ly CLandL; ULy generates L. Then every z € L can
be written in the form & = y + z where y € Ly, z € Ly and this decomposition of & is unique.
Moreover, the dimension of L is the sum of dimensions of Ly and Ly. The orthogonal complement
of a set A C R" is the set

Al = {z e R"; (x,y) =0 for every y € A}.

It is always a linear subspace. Moreover, for every linear subspace L C R” one has R* =L@ L+t
and L = (LY)*.

10.8.2 Convex cones

A set K C R" is a convez cone if 0 € K and K is closed under conical combinations, i.e.
Ve,ye K Va,6>0 a-z+0-yeK.

By closed convex cone is understood a convex cone which is a closed set with respect to Eucledian
topology on R™. An example of a closed convex cone is a linear subspace. Another example is
the dual cone A* to a set A C R" defined by

A* ={y e R"; (z,y) >0 for every & € A}.

This is a general example as K C R" is a closed convex cone iff K = A* for some A C R™ (see
Consequence 1 in [105]). Further example of a closed cone is the conical closure con(B) of a
non-empty set ) #B C R" (con()) = {0} by convention):

con(By={x e R"; z = Zaz-z for some a, > 0 and finite ) # C C B}.
zeC

Note that, con(B) = B** for every finite B C R" (see Fact 6 and Proposition 1 in [105]). A cone
con(B) with finite B called a polyhedral cone; by a rational polyhedral cone is understood the
conical closure of a finite set of rational vectors B C . Basic fact is that a set K C R is a
polyhedral cone iff K = A* for a finite A C R™. Analogously, K is a rational polyhedral cone iff
K = A* for a finite set of rational vectors A C Q" (see Proposition 5 in [105]). Note that these
facts can be viewed as consequences (or analogues) of a well-known result from convex analysis
saying that polytopes coincide with bounded polyhedrons. Let us call by a face of a polyhedral
cone K a convex cone F C K such that V z,y € K x4+ y € F implies z,y € F. Note that
this is a modification of the usual definition of a face of a closed convex set from [12] and the
definitions coincide for non-empty subsets F of a polyhedral cone K. One can show that a face
of a polyhedral cone is a polyhedral cone (c.f. Consequence 8.4 in [12]).
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A closed cone K C R" is pointed if KN(—K) = {0}. Apparently stronger equivalent definition
says that a closed cone K is pointed iff there exists y € R" such that (z,y) > 0 for every
x € K\ {0} (see Proposition 2 in [105]). By a ray generated by non-zero vector 0 # ¢ € R” is
understood the set Ry = {a- @ ; a > 0}. Clearly, every cone contains whole ray R with any of
its non-zero vectors 0 # & € R which then necessarily generates R. Given a closed convex cone
K CR" aray R C K is called extreme (in K) if

Ve,ye K x+yeR impliesz,y € R.

A closed cone K has extreme rays iff it is pointed and contains a non-zero vector 0 # x € K.
Moreover, every pointed closed convex cone K C R" is a conical combination of its extreme
rays, more exactly K = con(B) for every B C K such that M N (R\ {0}) # 0 for each extreme
ray R C K. Note that this fact can be viewed as a consequence of well-known Krein-Millman
theorem for bounded closed convex sets (see Proposition 4 in [105]). A pointed closed cone is a
polyhedral cone iff it has finitely many extreme rays. Moreover, it is a rational polyhedral cone
iff it has finitely many extreme rays and every its extreme ray is generated by a rational vector
(see Consequence 5 in [105]). Basic result of Section 5.2 are based on the following specific
property of pointed rational polyhedral cones.

Lemma Let K C R” be a pointed rational polyhedral cone and R is an extreme ray of K. Then
there exists ¢ € Q" such that (g,z) = 0 for any « € R and (gq,y) > 0 whenever 0 # y belongs
to other (extreme) ray of K.

Another useful fact is that every conical combination of integral vectors is necessarily a
rational conical combination (see Lemma 10 in [105]).

Fact Supposing B C Z" every x € con(B) N Z" has the form ¢ = )
ay > 0 for every y € B.

yeB Oy - Y where ay € Q,

10.9 Concepts from multivariate analysis

The concepts and facts mentioned in this section are commonly used in mathematical statistics,
in particular in its special area known as multivariate analysis. The proofs of the facts from
Section 10.9.1 can be found in textbooks of matrix calculus, for example [23], Chapters 1 and
2. The proofs of basic facts from Section 10.9.3 are in any reasonable textbook of statistics, see
e.g. [3], section V.1.

10.9.1 Matrices

Given non-empty finite sets IV, M by a real N x M-matrix will be understood a real function on
N x M, that is an element of RV*M  The corresponding values are indicated by subscripts so
that one writes 3 = (0;)ien,jem to explicate the components of a matrix % of this type. Note
that this approach slightly differs from classic understanding of the concept of matrix where the
index sets have settled pre-orderings, e.g. N = {1,2,...,n} and M = {1,...,m}. This enables
one to write certain formulas involving matrices in much more elegant way.

The result of matriz multiplication of an N x M-matrix ¥ and an M x K-matrix I' (where
N, M, K are non-empty finite sets) is an N x K-matrix denoted by X - T'. A real vector v over
N, that is an element of RN will be here understood as a column vector so that it should appear
in matrix multiplication with an NV X N-matrix 3 from left: ¥ -v. Null matriz or vector having
all components zero is denoted by 0; wnit matriz by I. An N x N-matrix ¥ = (0y;);jen is
symmetric if o;; = oj; for every 4,5 € N; regular if there exists (uniquely determined) inverse
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N x N-matrix ¥~ ! such that -2 ! =T = 2 !. 2. The transpose of ¥ will be denoted by
=7, the determinant by det(X).

By a generalized inverse of a real N x N-matrix 3 will be understood any N x N matrix 3~
such that ¥ - X7 - ¥ = 3. A matrix of this sort always exists, but it is not determined uniquely
unless ¥ is regular when it coincides with 71 (see [82], Section 1b.5). However, the expressions
in which generalized inverses are commonly used usually do not depend on their choice.

A real symmetric N x N-matrix X is called positive semi-definite if v’ -2 - v > 0 for every
v € RN, and positive definite if v’ - X -v > 0 for every v € RV, v # 0. Note that 3 is positive
definite iff it is regular and positive semi-definite. In that case is £ 7! positive definite as well.
Given an N x N-matrix ¥ = (0y;)i,jen and A, B C N the symbol X 4.5 will be used to denote
A x B-submatriz, that is 3 4.5 = (04j)ica,jen. Supposing X is positive definite (semi-definite)
and A C N its main submatriz X 4.4 is positive definite (semi-definite) as well. Note that the
operation ¥ — X 4.4 plays sometimes the role of 'marginalizing’ (but only for positive semi-
definite matrices). On the other hand, supposing ¥ is only regular, ¥ 4.4 need not be regular.

Suppose that X is a real N x N-matrix, non-empty sets A,C' C N are disjoint and X¢.¢ is
regular. Then one can introduce Schur complement ¥ 4 as an A X A matrix as follows:

Sac=2aa—Zac (Bcc) ' Bea

with the convention X 9 = 3 4.4. Note that X 4c.4¢ is regular iff ¥4 (and Z¢.¢) is regular
and (2 40) ' = ((Bac.a0) ") a.a then. Moreover, the following *transitivity principle’ holds:
supposing A, B,C C N are pairwise disjoint and ¥ is an N x N-matrix such that both X¢c.c
and Y pc.pe is regular one has ¥, po = (EAB|C)A‘B. An important fact is that whenever X
is positive definite then ¥4 is positive definite as well. Thus, the operation ¥ ac.ac — X0
often plays the role of ’conditioning’ (for positive definite matrices only).

However, one sometimes needs to define "conditional’ matrix ¥ 4/ even in case that X¢.c
is not regular. Thus, supposing X is a positive semi-definite matrix one can introduce X4 by
means of generalized inverse (X¢.c)~ as follows

23A\C’ =344 — Bac- (20.0)7 -3c.A-

Note that this matrix does not depend on the choice of generalized inverse (use [82], Section
8a.2(v)) and that in case of positive definite matrix is coincides with the above mentioned
Schur complement. Therefore, the concept of ’conditioning’ is extended to positive semi-definite
matrices.

10.9.2 Statistical characteristics of probability measures

Remark Elementary concept of mathematical statistics is a random wvariable which is a real
measurable function ¢ on a certain (intentionally unspecified) measurable space (2,.4) where
Q is interpreted as the 'universum’ of elementary events and A as the collection of observable’
random events. Moreover, it is assumed that (£2,.A) admits a probability measure P. Then
every random vector, that is a finite collection of random variables £ = [¢;];en where |[N| > 2
induces on RN = T[,_y X; with X; = R, endowed with the Borel o-algebra BN (= the product
of Borel o-algebras on R in this case) a probability measure P called the distribution of &

P(A) =P ({w € Q; &(w) € A}) for every Borel set A C RY.

The measurable space (RY, BY) is then called the (joint) sample space. Note that ’generalized’
random variables taking values in alternative sample spaces (e.g. finite sets instead of R) are
sometimes considered as well.
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The area of interest of mathematical statistics is not the 'underlying’ theoretical probability
P but the induced probability measure P on the sample space. Indeed, despite the fact that text-
books of statistics introduce various numerical characteristics of random vectors, these numbers
actually do not characterize random vectors themselves but their distributions, that is induced
Borel probability measures on RY. The purpose of many statistical methods is then simply to
estimate these numerical characteristics from data. Definitions of basic ones are recalled this
section. A

Let P be probability measure on ([T,cy Xi, [Ley &) = (RY,BY) where |[N| > 2. Let z;
denote the i-th component (i € N) of a vector € RY . In case that, for every i € N, the function

x + 7;, € RV (which is BY-measurable) is P-integrable one can define the ezpectation as a
real vector e = (e;);en € RY having components

e = / x; dP(x) =/ y dP(y) for i e N.
RN X;

If moreover the function x — (z; — €;) - (x; — e;) is P-integrable for every i, j € N one defines
the covariance matriz of P as an N x N-matrix 3 = (0y;); jeny with elements

Oij = /(l’z —e€i) - (xj —e;) dP(x) = / (y —ei) - (z —e) dP{i’j}(y,z) for 7,7 € N.
RN XiXX]'

Alternative names are ’variance matrix’, ’dispersion matrix’ [82], or even ’variance-covariance
matrix’ [124]. Elementary fact is that covariance matrix is always positive semi-definite; the
converse is also valid (see the next section).

Supposing P has a covariance matrix 3 = (0y;); jen such that o;; > 0 for every i € N one can
introduce the correlation matriz T' = (p;;); jen by the formula

Note that the situation above occurs whenever X is regular (= positive definite) and T is then
a positive definite matrix with v; = 1 for every 2 € N.

Pij = for 4,5 € N.

10.9.3 Multivariate Gaussian distributions

Definition of a general Gaussian measure on RV is not straightforward. First, one has to
introduce one-dimensional Gaussian measure A (r,s) on R with parameters r,s € R, s > 0.
In case s > 0 one can do so by defining Radon-Nikodym derivative with respect to Lebesgue

measure on R
1 _@—r)?

- ex 2s for x € R.
\V2Ts P

In case s = 0 is N'(r,0) defined as the Borel measure on R concentrated on {r}.

Then supposing e € RY and ¥ is a positive semi-definite N x N-matrix (|N| > 1) one
can introduce the Gaussian measure N'(e, ) as a Borel measure P on R" such that, for every
v € RV, P induces through measurable mapping  — ' -v, £ € RY one-dimensional Gaussian
measure N'(v' -e,v’ - = -v) on R. Let us note that a measure of this kind always exists and
is determined uniquely by the requirement above. Moreover, P has then the expectation e and
the covariance matrix ¥. This indicates why parameters were designed in this way and shows
that every positive semi-definite matrix is the covariance matrix of a Gaussian measure.

flz) =
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Linear transformation of a Gaussian measure A'(e, ¥) by a mapping  — y+ A -z, € RV
where y € RM | A € RM*N | M| > 1 is again a Gaussian measure N'(y +A-e, A-X-AT). In
particular, the marginal of a Gaussian measure is again a Gaussian measure

P=N(E€X),0#ACN = P A=N(es,Taa). (10.5)

Note that this explains the interpretation of X 4.4 as a 'marginal’ matrix. Very important fact
is that independence is characterized by means of the covariance matrix

P=N(e,Z) ABCN AnB=0 = [P =pPAxPB if S,5=0]. (10.6)

In general, Gaussian measure A (e, X) is concentrated on a certain shifted linear subspace which
can be described as follows

{zeRY; VoeRY v . Z=0 = v -(z—e)=0}. (10.7)

In case X is regular, the subspace is whole RN and P = A(e, ) can be introduced directly by
its Radon-Nikodym derivative with respect to Lebesgue measure on RY

1 _@-eT.x " @-e
2

f(#) = === - exp

for z € RV .
(2m) IV -det (%)

This version of Radon-Nikodym derivative is strictly positive and continuous with respect to
Eucledian topology on RY. Moreover, it is the unique continuous version within the class
of all possible versions of Radon-Nikodym derivative of P with respect to Lebesgue measure
A. This simple fact motivates an implicit convention used commonly in statistical literature;
only continuous versions, called densities are taken into consideration. The convention is in
concordance with usual way of 'marginalizing’ since, for ) # A C N, by integrating continuous
density

@) = [ ) ) for s e,
Xn\a
one gets a continuous density again. This also motivates a natural way of definition of (contin-

uous) conditional density for disjoint A,C C N by the formula

fA|C(x|Z):j?.278)Z) for z € R, 2z € RC,

where the ratio is zero whenever fco(z) = 0 by convention, and the definition of conditional
measure for every z € RY

Prc(Alz) = /fA|C(x|z) dX s () for every Borel set A C R,
A

which appears to be a regular version of conditional probability on R given C. Let us emphasize
that just the acceptance of the convention above leads to its 'uniqueness’ for every z € RC. It
is again a Gaussian measure

P=NeX), ALCCN, ANC=0+#A =
Pyo(xz) = N(ea+Zac - (Bcc)™ - (2 —ec), Sa0) (10.8)

(see [82], Section 8a.2(v) ), called sometimes conditional Gaussian measure. Important feature
is that its covariance matrix does not depend on z. This maybe explains the meaning of Schur
complement ¥ 4|, sometimes called the conditional covariance matriz.
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However, conditioning can be introduced ’'uniquely’ even in case of degenerate Gaussian
measure for z € RY belonging to respective shifted linear subspace mentioned in (10.7). It is
again a Gaussian measure, given by (10.8) but (Z¢.c) ! is replaced by a generalized inverse
(2c.c)”. As shown in [82], section 8a.2(v), this conditional measure does not depend on the
choice of generalized inverse.

The last important fact is that in case ¥ is positive definite the measure P = N (e, X) has
finite relative entropy with respect to Lebesgue measure A on RY, namely

H(P|)) = ﬁ n(2r) — |—];7| _ % In(det(S)), (10.9)

see [82], section 8a.6 (note that Rao’s entropy is nothing but minus relative entropy).
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for alternative chain graphs 49
Eucledian
distance 155
topology 155
evaluated pattern 120
expectation vector 165
in Gaussian case 28
expansive operations for struc. models 137
ascetic extension as (M, N) 139
cellular extension ce (M, N) 140
solid extension so (M, N) 138
extent (of a formal concept) 84
extreme ray R, 163

F

face lattice 88
facial

facial equivalence v = v 91

facial implication u — v 93

strong facial implication ~» 113
factorizable equivalence 39 45
factorizable measure

after a class 22

w.r.t. an acyclic directed graph 41

w.r.t. a chain graph 45

w.r.t. an undirected graph 39
faithfulness task (motivation) 8
finite measure 156
fized-context independence statement 18
formal concept 84
formal context ((E, £, ) 84
Fubini theorem 157
functional dependence (model) 15
full-conditioned contraction M), 136
full-consistent set of relevance statements 42

G

Galois connection 84



Gaussian measure 28
definition N (e, ) 165
generalized inverse matrix 3~ 164
generated o-algebra o(A) 155
generator (minimal structural) 113
global Markov property 38
grade gra(N) 101
graph
chain graph 153
classic graph 154
directed graph 154
undirected graph 154
graphoid 27
greatest
greatest element of a lattice 152
greatest lower bound inf M 152

H

Hasse diagram 35

hidden variable 50

Hilbert basis 100
homomorphism of lattices 153
hybrid graph 153

I

identificator of a set 64, mAT, m4+ 34
identifier of (level-)degree m.,, m; 57
immorality 40
implementation task (motivation) 9
imset 34

of the least degree 112

represented in ¥ (= W-representable) 98

visualization 35

with the least lower class 116

with minimal lower class 116
incidence relation (of a formal context) 156
indecomposable structural model 142
indicator function x4 156
induced subgraph G'4 153
infimum inf M 152

infimum of o-algebra S A T 155
infimum-dense set 152
information-theoretical tools 27
input list 41
integers Z (non-negative Z1) 12
integrable function 156
integral (adjective) = related to integers
integral (noun) 156
intent (of a formal concept) 84
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interpretability task (motivation) 8
interpretation: causal 9
intersection
of a class (D 151
property (= ’axiom’ of independence
models) 27
inverse matrix 7! 163
generalized ¥~ 164
irreducible
join-irreducible, meet-irreducible 152
isomorphism
isomorphic measurable spaces 158
order-isomorphism 153

J

Jensen’s inequality 159
join z Vy 152
join of g-algebras S VT 155
join semi-lattice 152
join-irreducible 152
joint-response chain graphs 48
junction tree 46
juxtaposition
convention 12
notation for composition 151

L

largest chain graph 44
lattice 152

atomistic, coatomistic lattice 152

concept lattice 84

face lattice 88

lattice homomorphism 153
lattice conditional independence models 46
learning task (motivation) 9
least

least determining (unimarginal)

class 115

least element (of a lattice) 152

least upper bound sup M 152
Lebesgue measure A 156
level

level equivalence 130

level identifier m; 57

level of elementary imset &(N) 57
lift i (M, N : X) 138
line, undirected edge a — b 153
linear

linear generator 161



linear subspace, combination 161
linearly independent 162
LISREL model 48
local computation method 46
local Markov property 38
lower

lower class £, 60

lower neighbour 152
{-skeleton IC7(N) 76
l-standardization 35

l-standardized supermodular

functions ICo(N) 75

M

main submatrix 3 4.4 164
MAG 51
marginal density of P for A 20
continuous 63
marginal measure 12 158
marginal undirected graph G 38
marginally continuous probability
measure 19
Markov equivalence of
acyclic directed graphs 40
chain graphs 44
structural imsets 91
undirected graphs 39
Markov network 37
Markov property 38
Markovian measure with respect to
an acyclic directed graph 40
a chain graph 44
a structural imset 66
an undirected graph 38
matrix multiplication ¥ - T" 163
maximal sets of a class D™?* 151
MC graph 51

measurable
function 156
mapping 157
rectangle 155
space 155
measure
concentrated on a set 156

complying with a structural imset 67
countably additive, o-additive 156

degenerate Gaussian 29
discrete 13
discrete positive 27
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finite 156
Gaussian 28
induced by a measurable mapping 157
non-degenerate Gaussian 28
non-negative 156
positive 27
positive CG measure 54
o-finite 156
meet z Ay 152
of o-algebras S AT 155
meet-irreducible 152
membership algorithm (for annotated
graphs) 50
method of local computation 46
metric space 154
metrizable topology 155

minimal determining class 112
minimal sets of a class D™ 151
minimal structural generator 113
minor 132

model equivalence of
graphs 90
skeletal imsets 72
model
induced by a structural imset M, 64
produced by a supermodular function
M™ 72
structural model 85
with hidden variables 50
modular functions L(N) 73
moment characteristics of a CG measure 54
moral graph of
an acyclic directed graph 40
a chain graph 43
moralization criterion for
acyclic directed graphs 40
chain graphs 43

m-separation criterion 51

multiinformation 24
multiinformation function 26
multiple of a vector o - & 161
multiset 34

multivariate analysis 163
mutual information 26 (24)

N

natural numbers N 12



negative domain of an imset D, 34 positive semi-definite matrix 164

negative part positive part
of a function f~ 156 of a function f* 156
of an imset u~ 34 of an imset u™ 34
neighbour in a finite lattice potential 22
lower, upper 152 power set P(N) 151

node (of a graph) 153
non-decreasing function 74
non-degenerate Gaussian measure 28
non-negative integers Z* 12

normal distribution 28
normalization (of an imset) 36

prime models 141
prime UG submodels 141
probability distribution 18
terminology 18
probability measure 156

null element (of a lattice) 152 over N 12

null matrix. vector 0 163 problem of aziomatic characterization 17

number of elementary imsets 57 product
algebra 155

O formula (induced by an imset) 61
topology 155

ob]:ect (of discrete mathematics) 7 product of

object (of a formal context) 84 measurable space (X x Y, X x )) 155

open set 155

measures p X v 157
order-isomorphic 153

N topological spaces 155
orthogonal complement L~ 162 projection of z onto A, 74 20

o-skeleton KC5 (V) 80 proper decomposition of an undirected
o-standardization 35 graph 141

P p-separation criterion 49

Q

pairwise Markov property 38

PAG 51 quasi-integrable function 157
path 154

parametrization equivalence 91 R

parent 154 ‘

partial ancentral graph (PAG) 51 Radon—lec?dym

partial ordering < 152 derivative 157

pattern of theorem 157

rational numbers Q 12
rational polyhedral cone 162
random variable, vector 164

an acyclic directed graph 41
a class of facial equivalence 119

perfect class of measures 38 range R, 60
perfectly Markovian measure 38 ray Ry 163
permutable equivalence 130
perturbated relative entropy H(P|u : Q) 54 real numbers R 12
reciprocal graph 48
pointed cone 163 recursive causal graph 46
polyhedral cone 162 recursively factorizable measures 41
portrait 122 region of a structural imset R, 102
poset (L, <) 152 regular
positive definite matrix 164 annotated graph 50
positive domain of an imset D, 34 matrix 163
positive measure 27 version of conditional probability
positive CG measure 54 given A 158
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reference system 61

continuous 62

standard 62

universal 61
reflection (of a skeletal imset) 131
relative entropy H (P|u) 161
relevance statement over N 42
restriction of

an imset 137

an independence model My 15

a probability measure 158

ring of subsets 152
route 154

active route in a directed graph 40
running intersection property 45

S

sample space 164
scalar product

of imsets (m,u) 36

of vectors (x,y) 161
Schur complement ¥ 4 164

section (or a route) 43

semi-definite matrix 164

semi-elementary imset 58

semi-graphoid properties, axioms 15 (14)

semi-graphoid properties for

o-algebras 160

separable metric space 155

separation criterion for acyclic directed
graphs 40

separator (for decomposable models) 45

separoid 16

set of variables N 12

set identifier 54, mAT, mAt 34

simultaneous equation model 48

singleton 151

skeletal (supermodular) function 75

solid arrow, line 48

solid extension so (M, N) 138

standard imset
for an acyclic directed graph 107
for a triangulated undirected graph 110
standard reference system (for a CG
measure) 62
standardization (of a supermodular
function) 74-75
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strict
strict ancestor 154
strict inclusion (C, D) 151
strictly
strictly convex function 159
strictly descending route (path) 154
strong
strong completeness (of a graphical
criterion) 38
strong equivalence (of supermodular
functions) 73
strong facial implication ~ 113
dual strong facial implication 127
structural independence models U(N) 85
structural imsets S(N) 59
structural closure 113

subconcept (of a formal concept) 84
subgraph: induced 153
submatrix X 4.5 164

main submatrix 164
submaximal element of a lattice 152
subminimal element of a lattice 152
subset C 151
sum of vectors  + y 161
summary graph 50
superactive route in a chain graph 43
supermodular function 71 (26)

class of supermodular functions

K(N) 71

superset O 151
supertype (of a skeletal imset) 131
supremum sup M 152

of o-algebras SV T 155
supremum-dense set 152
symbolic function V 119
symmetric matrix 163
symmetry property (= ’axiom’ of

independence models) 15

T

topology 155

product topology 155

topology induced by a distance 155
topological space 155
transitive acyclic directed graph 47
transpose of a matrix &' 164
triangulated undirected graph 45
triplet over N disjoint 14



represented in a structural imset LIST OF ITEMS
Al B|C [u] 64
represented in a supermodular function

AL B|C [m] 72 Consequences
represented in a undirected graph Consequence 2.1 p. 23
Al B|C[G] 37 Consequence 2.2 p. 26
trivial independence statements T5(N) 16 Consequence 2.3 p. 30
trivial o-algebra 155 Consequence 2.4  p. 31
triviality property (= ’axiom’ of Consequence 2.5  p. 31
independence models) 15 Consequence 2.6  p. 33
type (of a skeletal imset) 130
Consequence 4.1  p. 56
U Consequence 4.2 p. 65
UG model 37 Consequence 4.3 p. 66
unconditioned independence statement 18 Consequence 5.1 p. 73
underlying graph 154 Consequence 5.2 p. 76
undirected Consequence 5.3 p. 78
edge (= line) @ — b 153 Consequence 5.4 p. 82
graph 154
route, path 154 Consequence 6.1 p. 95
unimarginal class (for a structural Consequence 6.2  p. 97
model) 115 Consequence 6.3  p. 99
union of a class |JD 151 Consequence 6.4 p. 101
unit element (of a lattice) 152 Consequence 6.5 p. 101
unit matrix I 163
universal reference system 61 Consequence 7.1 p. 109
upper class (for a structural imset) U, 60 Consequence 7.2 p. 111
upper neighbour (in a lattice) 152 Consequence 7.3 p. 113
u-skeleton K2 (N) 80 Consequence 7.5 p. 118
u—standardizajcion (of supermodular Consequence 8.1 p. 136
functions) 36 Consequence 8.2  p. 136
V Consequence 8.3  p. 139
Consequence 8.4 p. 145

variables N 12
continuous I' 54
discrete A 54

Consequence 10.1  p. 160

random variables 164 Conventions
vector 161
random vector 164 Convention 1 p. 20
Convention 2 p. 63
W
weak union property (= ’axiom’ of Directions
independence models) 15 o
width 115 Direction 1 p. 129
Direction 2 p. 142
7 Direction 3 p. 146
Direction 4 p. 147
zero vector 161 Direction 5  p. 147
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Examples

Example 2.1 p
Example 2.2 p
Example 3.1 p
Example 4.1 p
Example 5.1  p.
Example 6.1 p.
Example 6.2 p.
Example 6.3  p.
Example 6.4 p
Example 7.1 p
Example 7.2 p
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Example 7.4 p
Example 7.5 p
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Example 8.3 p
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Equation (6.12) p. 96 Equation (10.9) p. 167
Equation (6.13) p. 97
Equation (6.14) p. 98 .
Equation (6.16) p. 99 Figures
Equation (6.17) p. 100 Figure 1.1  p. 7
Equation (6.18) p. 100 Figure 1.2 p. 9
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THE LIST OF SYMBOLS

Simple conventional symbols

T

811 =S®80EA

> =
Y < ¥
A
Y

o

oo CIN——IA !
C U
on

symbol for absolute continuity of measures 157

symbols for conditional independence and dependence 14
symbol for conditional product 141

symbol for direct sum (of linear spaces 162)

symbol for the empty set 151

symbol for facial equivalence 91

symbol for facial implication 93

symbol for infinity

symbol for Lebegue integral 156

symbol for level equivalence induced by a skeletal imset m 130
symbols for meet (infimum) and join (supremum) 152 (155)
symbol for multiplication of matrices 163, (scalar) multiple 161
symbol for negation

symbols for partial ordering 152

symbols for product (in general)

symbol for set difference, e.g. A\ B

symbols for set inclusion 151

symbols for set union and intersection 151

symbol for strong facial implication 113

zero, zero imset 34

zero vector 161, null matrix 163

Composite conventional symbols

XXX % %
S—

*

et R VIR S S N e
* %

absolute value, cardinality 12

lower integer part: |a] =max{z € Z;z<a} foraeR
upper integer part: [a] =min{z € Z;a <z} fora € R
combination number: (}) = #”(n_k) forn,keN, k<n
line (undirected edge): a — b is a line between a and b 153
arrow (directed edge): a — b is an arrow from a to b 153
open interval, ordered pair 153

closed interval, edge in a graph 153

scalar product 36 161

set containing elements of the list *, ..., *

Symbols from other languages

b

XA
oA

4> @32 p

the set of attributes of a formal context 84
indicator of a set A 156

identificator of a set A 34

generic symbol for a set of discrete variables 54
generic symbol for a set of continuous variables 54
incidence relation of a formal context 84
(occasionally) Lebesgue measure 156

generic symbol for a symbolic function 119
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&E the set of objects of a formal context 84

s Ludolf’s constant, generic symbol for a permutation 151

P generic symbol for a single class of facial equivalence 98

Y the class of measures over N (distribution framework) 38 90-91 97
U (u) the class of Markovian measures with respect to u in ¥ 91
o- sigma = a generic symbol for countable infinite operation
o(A) o-algebra generated by a class of set A4 155

DIREND inverse and generalized inverse of a matrix 3 163

a8, XaB submatrix of a matrix X, Schur complement 164

N transpose of a matrix 3 and of a vector v 164

(§) generic symbol for a set of classes of facial equivalence 98
v counting measure 156

Symbols in alphabetic order

—A the set {—z; z € A} 161

AL, A* orthogonal complement of A, dual cone to A 162

(A, B|C) disjoint triplet over N 14

Al B|C [o] (conditional) independence statement 14 13 37 40 43 64 72
ATTB|C [o] (conditional) dependence statement 14

Al B|C [P] conditional independence for o-algebras 159

ang(A) the set of ancestors of a set A in a graph G 154
as(M,N) ascetic extension of a model M to N 139

C (occasionally) the set of cliques of an undirected graph 45
C(N) the class of combinatorial imsets over N 59

ce(M,N) cellular extension of a model M to N 140

cl generic symbol for a closure operation 153

clywy structural closure 113

DY, DT induced descending and ascending class 151

D}, D, positive and negative domain of an imset v 34

D; the effective domain of a structural imset u 102

g—z Radon-Nikodym derivative (density) of v with respect to pu 157
deg(u,l), deg(u) (level-) degree of a combinatorial imset u 59

det(3X) determinant of a matrix ¥ 164

E(N), &(N) the class of elementary imsets over N (of degree [) 57
exp the symbol for exponential function

fr, f positive and negative part of a function f 156

fa generic symbol for marginal density 20 166

fiA projection of a density f to A 20

fac generic symbol for conditional density 166

fe,s density of non-degenerate Gaussian measure N (e, X) 28
Gt induced subgraph of G for T' 153

G" marginal undirected graph 39

gra,(N), gra(N) (generalized) grade of the set of variables N 101

H(N) Hilbert basis of the cone con(E(N)) 100

Hy, coportrait of a structural imset 122

H(P|p) relative entropy of P with respect to p 161
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my, Mo
mr|x

Mm

Mo (MP7 MG; Mu)
Mr

Mir)

Mrix

M.

max, Dmax

min, D"

Q@-perturbated relative entropy of P with respect to p 54
entropy function 67

unit matrix 163

elementary triplet over N 16

elementary independence statement over N 16
infimum, the greatest lower bound 152

the class of supermodular functions over N 71

the class of /-standardized supermodular functions over N 75
the /-skeleton

the o-skeleton, the u-skeleton

generic symbol for ’lower’ standardization 35
the class of modular functions over N 73

the lower class of a structural imset u 60

lift of a model M to N conditioned by X 138
symbol for (natural) logarithm

identificators of supersets and subsets of a set A 34

(level-) degree identifiers 57 (59)

elements of the /-, u- and o-skeleton corresponding to m 80-81
multiinformation function induced by P 26

restriction of a supermodular function m to T 136

special supermodular functions 67 (Figure 4.3) 95 (Figure 6.3)
contraction of a function m to T' conditioned by X 135
independence model produced by a supermodular function m 72
independence model induced by o (P, G, u) 14 37 40 43 64
restriction of a model M to T' 15 135

model induced by the contraction ur of u € S(N) to T' 137
contraction of a model M to T' conditioned by X 132
full-conditioned contraction of a model M to T 136
maximum, the class of maximal sets in D 151

minimum, the class of minimal sets in D 151

generic symbol for a non-empty finite set of variables 12
the set of natural numbers 12

one-dimensional Gaussian measure 165

Gaussian measure with expectation e and covariance

matrix X 165 (28)
generic symbol for ’orthogonal’ standardization 35 75

generic symbol for a probability measure over N 12
marginal of a measure P (p) for a set A 12

restriction of P to a o-algebra A 158

the power set 151 (34)

conditional probability on X4 given C 12 (166)

its regular version (in Gaussian case 29)

conditional probability of B given A with respect to P 158
almost everywhere with respect to P (1) 156

the set of parents of a node b in a graph G 154

the set of rational numbers 12, rational vectors 162
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(R,B), (R*,B")

S
S(N)

uG, uH

uT

urr

U(A,B|C) W(i,j|K)
UN)
U(z,e)
W(N)

A

Xa

XA) XA

(X, X) (Xa, Xa)
Xp

X", Yo

zZ, 7+

7/P(N)

the set of real numbers 12, real vectors 155

the class of real functions on the power set P(N)

region of a structural imset u 102

range of a structural imset u 60

ray generated by a vector & 163

the space of real numbers (vectors) with Borel o-algebra 156 (28)

(occasionally) the class of separators of a triangulated graph 45
the class of structural imsets over N 59

the class of W-representable structural imsets over N 98

solid extension of a model M to N 138

supremum, the least upper bound 152

the class of disjoint triplets over N 14
the classes of trivial and elementary triplets 16

generic symbol for 'upper’ standardization 36 74
positive and negative part of an imset u 34
standard imsets for graphs G and H 107 110
restriction of an imset u to T 136

contraction of a structural imset u to T 137
(semi-) elementary imset 58 57

the upper class of a structural imset u 60

the class of structural models over N 85

ball with center z and radius € 155

the class of coportraits over N 126

projection of a configuration z onto a set A 20

generic symbol for a sample space for A 12

coordinate o-algebra for A 12, its isomorphic representation 13
generic symbol for a measurable space 155 conventional notation 12
trivial o-algebra 12 (155)

Galois connection 84

the set of integers, the set of non-negative integers 12
the class of imsets over N 34
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