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Abstract
The notion of a (discrete) coherent lower probability corresponds to a game-theoretical concept
of an exact (cooperative) game. The collection of (standardized) exact games forms a pointed
polyhedral cone and the paper is devoted to the extreme rays of that cone, known as extreme exact
games. A criterion is introduced for testing whether an exact game is extreme. The criterion leads
to solving simple linear equation systems determined by (the vertices of) the core polytope (of the
game), which concept corresponds to the notion of an induced credal set in the context of imprecise
probabilities. The criterion extends and modifies a former necessary and sufficient condition for
the extremity of a supermodular game, which concept corresponds to the notion of a 2-monotone
lower probability. The linear condition we give in this paper is shown to be necessary for an exact
game to be extreme. We also know that the condition is sufficient for the extremity of an exact
game in an important special case. The criterion has been implemented on a computer and we have
made a few observations on basis of our computational experiments.

Keywords: extreme exact game; coherent lower probability; core; credal set; supermodular game;
2-monotone lower probability; min-representation; oxytrophic game.

1. Introduction

The notion of a coherent lower probability and that of an induced credal set (of discrete probability
distributions) are traditional topics of interest in the theory of imprecise probabilities. These notions
correspond to game-theoretical concepts of an exact game and its core (polytope), widely used in the
context of cooperative coalition games. The analogy is even broader: a lower probability avoiding
sure loss corresponds to a weaker concept of a balanced game while a 2-monotone lower probability
(= capacity) corresponds to a stronger concept of a supermodular game, named also a convex game.

The discrete case is considered here: the sample space (= frame of discernment) for distributions
is a fixed finite set N having at least two elements. The elements of N correspond to players in the
context of cooperative game theory and to random variables in yet another context of probabilistic
conditional independence structures. The collection of coherent lower probabilities on N , where
n = |N |, is a polytope in a 2n-dimensional real vector space, while the set of non-negative exact
games is a pointed polyhedral cone whose extreme rays are generated just by extreme points of that
polytope. This paper offers a method to test whether a ray is extreme in the cone of exact games,
which implicitly gives a method to test extreme coherent lower probabilities.

Some effort to develop criteria to recognize the extremity of an exact game was exerted earlier
by Rosenmüller (2000, § 4 of chapter 5) in his book on game theory. He offered one necessary
and one sufficient condition for the extremity based on a min-representation of the exact game;
however, these conditions have a limited scope because they are applicable only in quite special
situations. Nevertheless, in this paper we follow the idea of min-representation and propose a more
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general criterion based on the list of vertices of the respective core, which provides a standard
min-representation of any exact game. Our condition is always necessary for the extremity of an
exact game and we conjecture it is also sufficient, which is the case in a certain special case.

Being motivated by questions raised by Maass (2003), Quaeghebeur and de Cooman (2008)
became interested in extreme lower probabilities and computed these in the case of small n = |N |.
Antonucci and Cuzzolin (2010) considered an enlarging transformation of a credal set with a finite
number of extreme points, when the respective (coherent) lower probability is computed and then a
larger credal set is induced by the lower probability. Note that their second step, namely representing
a coherent lower probability by the vertices of the induced credal set, corresponds to our standard
min-representation of an exact game.

It is always useful to be aware of the correspondence between concepts from different areas.
For example, Wallner (2005) confirmed a conjecture by Weichselberger that the credal set induced
by a (coherent) lower probability has at most n! vertices. However, the same result was achieved
already by Derks and Kuipers (2002) in the context of cooperative game theory. They also made an
interesting observation that whenever a core of an exact game has n! vertices then it has the maximal
number of 2n − 2 facets and gave an example of a game in the relative interior of the exact cone
whose respective core does not have the maximal number of n! vertices.

The criterion we offer here is a modification of the criterion from (Studený and Kroupa, 2016),
where a necessary and sufficient condition was provided for a supermodular game being extreme
in the cone of (standardized) supermodular games. That result was motivated by the research on
conditional independence structures (Studený, 2005), in which context extreme supermodular games
encode submaximal structural conditional independence models. The supermodular criterion leads
to solving a simple linear equation system determined by certain combinatorial structure (of the
core), which concept was pinpointed earlier by Kuipers et al. (2010). The difference here is that
testing the extremity in the supermodular cone leads to one linear equation system, while testing the
extremity in the exact cone may require solving several such equation systems.

What is an added value of this contribution is that we have also implemented both criteria and
provide a web platform for testing the extremity of a supermodular/exact game in the respective
cone for reasonably limited number of players. Of course, this can also be used to test the extremity
of coherent lower probabilities. However, we have intentionally chosen to deal with games because
this approach allows one to utilize the profits of integer arithmetics implementation.

In our paper we assume that the reader is familiar with basic concepts in polyhedral geometry,
namely a polytope (= bounded polyhedron) and its faces/facets/vertices. The structure of the paper
is as follows. In the next section (§ 2) we recall basic concepts and facts. In § 3 the concept of a
min-representation of an exact game and the question of its uniqueness are discussed. After that our
criterion is formulated (§ 4). In Conclusions (§ 5) we give a few remarks based on our computational
experiments. The Appendix contains some proofs.

2. Notation, basic definitions and facts

Let N be a finite non-empty set of variables, |N | ≥ 2, and P(N) := {S : S ⊆ N} its power
set. The symbol RN will denote the set of real vectors whose components are indexed by elements
of N . Analogously, RP(N) is the collection of real functions on P(N) (= vectors with components
indexed by subsets of N ). Given S ⊆ N , the vector χS ∈ RN will denote the zero-one indicator
of S. Given v, x ∈ RN , their scalar product will be 〈v, x〉 :=

∑
i∈N vi · xi.
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2.1 Game-theoretic concepts

By a (cooperative) game we will understand a set function m ∈ RP(N) with m(∅) = 0.

Definition 1 (core, exact game, supermodular game)
Let m : P(N)→ R, m(∅) = 0, be a game. Its core is a polytope in RN defined by

C(m) := {x ∈ RN :
∑
i∈N

xi = m(N) & ∀S ⊆ N
∑
i∈S

xi ≥ m(S) } .

The symbol extC(m) will be used to denote the set of extreme points (= vertices) of C(m). A game
m is balanced if C(m) 6= ∅. A balanced game is called exact if

∀S ⊆ N ∃x ∈ C(m)
∑
i∈S

xi = m(S) .

A game m is supermodular if it satisfies the supermodularity inequalities

∀C,D ⊆ N m(C) +m(D) ≤ m(C ∪D) +m(C ∩D) .

A game m is called `-standardized (` stands for “lower”; in game theory = zero-normalized) if
m(S) = 0 for any S ⊆ N , |S| ≤ 1. Denote the class of exact `-standardized games by E`(N).

A well-known fact is that any supermodular game, named traditionally convex in game theory,
is exact (Csóka et al., 2011, § 4). A non-negative exact gamem normalized bym(N) = 1 is nothing
but a coherent lower probability; see (Walley, 1991, Corollary 3.3.4).

The fact that, for any S ⊆ N , {x ∈ C(m) :
∑

i∈S xi = m(S) } is a face of C(m) allows one
to observe that any exact game m satisfies a formally stronger condition

∀S ⊆ N ∃x ∈ extC(m)
∑
i∈S

xi = m(S) . (1)

Indeed, every face of a polytope is the convex hull of extreme points of the whole polytope contained
in the face. A necessary condition for the exactness of a game m is that it is superadditive:

∀A,B ⊆ N A ∩B = ∅ m(A) +m(B) ≤ m(A ∪B) .

Indeed, given disjoint A,B ⊆ N there exists x ∈ C(m) with m(A ∪ B) =
∑

i∈A xi +
∑

i∈B xi
and one has both m(A) ≤

∑
i∈A xi and m(B) ≤

∑
i∈B xi. In particular, any `-standardized exact

game is non-decreasing with respect to inclusion and non-negative.
It can be derived from results in (Csóka et al., 2011, § 3) that the collection of exact games

is a rational polyhedral cone. Thus, non-negative exact games on P(N) form a pointed rational
cone and the same holds for E`(N). Degenerate non-negative exact games are superset indicators
for singletons in N , which correspond to crisp degenerate probabilities in the context of imprecise
probabilities. Since any non-negative exact game can be written as the sum of an `-standardized
exact game and of a conic combination of these degenerate exact games the question of testing the
extremity in the cone of non-negative exact games reduces to testing the extremity in E`(N).

Definition 2 (extreme exact game)
An `-standardized exact game m : P(N)→ R is extreme if it generates an extreme ray of E`(N).

It can be derived from the fact that E`(N) is a rational cone that any extreme `-standardized
exact game is a multiple of an integer-valued function m : P(N) → Z. In particular, when testing
the extremity of an exact game one can limit oneself to integer-valued functions.
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3. The concept of a min-representation

A useful property of an exact game is that it can be represented as the minimum of a finite collection
of additive games. Specifically, every x ∈ RN defines an additive game

x ∈ RP(N) by the formula x(S) :=
∑
i∈S

xi for any S ⊆ N,

and every exact game can be obtained as the set-wise minimum of a finite collection of such additive
games. This leads to the following concept.

Definition 3 (regular min-representation)
We say that m ∈ RP(N) has a min-representation (by additive functions) if a non-empty finite set
R ⊆ RN exists such that

∀S ⊆ N m(S) = min
x∈R

∑
i∈S

xi . (2)

Every x ∈ R is then assigned the corresponding tightness class of sets

T mx := {S ⊆ N : m(S) =
∑
i∈S

xi } . (3)

We say that a min-representationR ⊆ RN of a game m is regular if, for any x ∈ R,

(i)
∑

i∈N xi = m(N), and

(ii) the linear hull of {χS : S ∈ T mx } ⊆ RN is whole RN .

Note that an equivalent formulation of the regularity condition (ii) is that the only vector in RN
which is orthogonal to all vectors from {χS : S ∈ T mx } is the zero vector. There exists at least
one regular min-representation for every exact game.

Proposition 4 (min-representations of exact games)
A gamem ∈ RP(N) is exact iff it admits a min-representationR satisfying (i) for any x ∈ R. Every
exact game has a regular min-representation given by the list of vertices of its core: R = extC(m).
A min-representationR ⊆ RN of an exact game m is regular iffR ⊆ extC(m).

The proof of Proposition 4 is shifted to Appendix, §A.1. In particular, any exact gamem has the
largest regular min-representation which we consider to be a kind of standard min-representation
of m. Note that a simple example of a non-exact game exists which has a min-representation.

3.1 On uniqueness of regular min-representations

In general, one can have several regular min-representations of an exact game. On the other hand,
sometimes only one regular min-representation exists, which happens iff the next condition holds.

Definition 5 (oxytrophic game)
We say that an exact game m : P(N)→ R is oxytrophic if ∀x ∈ extC(m)

∃S ⊆ N with
∑

i∈S xi = m(S) such that ∀ y ∈ extC(m), y 6= x m(S) <
∑
i∈S

yi . (4)
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This relevant mathematical concept has already appeared in the literature and we have simply
taken over the terminology by Rosenmüller (2000, § 3 of chapter 5). The following gives an example
of an oxytrophic game, which is extreme in E`(N).

Example 1 Put N = {a, b, c, d} and consider R ⊆ RN consisting of 4 vectors (xa, xb, xc, xd),
namely (1, 1, 1, 1), (2, 2, 0, 0), (2, 0, 2, 0), (0, 2, 2, 0). Then the formula (2) gives

m(abcd) = 4, m(abc) = 3, m(abd) = m(acd) = m(bcd) = m(ab) = m(ac) = m(bc) = 2,

and m(S) = 0 for other S ⊆ N . One can verify by computation that R = extC(m), which
allows one to check the condition (4) for any x ∈ extC(m): (1, 1, 1, 1) has one respective set
S = abc, while (2, 2, 0, 0) has even two respective sets S = c and S = cd, etc. In particular, m is
oxytrophic. Moreover,m is also an example of an (extreme) exact game which is not supermodular:
m(ac) +m(bc) = 4 > 3 = m(abc) +m(c).

An interesting observation is that in case |N | = 3 the `-standardized oxytrophic games are just
the zero game and extreme exact games. However, in case |N | = 4 an extreme exact game exists
which is not oxytrophic. The next example is even a supermodular game.

Example 2 Put N = {a, b, c, d} and introduce m(abcd) = 2, m(abc) = m(abd) = m(acd) = 1,
and m(S) = 0 for other S ⊆ N . Then the core C(m) has seven vertices (xa, xb, xc, xd), namely
four substantial ones denoted by

R : (2, 0, 0, 0), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1),

and three additional ones, namely

(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1).

The vectors in R satisfy (4): S = bcd for (2, 0, 0, 0), S = ad for (0, 1, 1, 0), S = ac for (0, 1, 0, 1)
and S = ab for (0, 0, 1, 1). However, the remaining 3 vertices of C(m) do not satisfy (4) and m is
not oxytrophic. On the other hand, every regular min-representation involves R and vectors in R
provide a min-representation of m. Thus,R is the least regular min-representation of m.

On the other hand, an exact game can have several inclusion-minimal regular min-representations
(see later Example 5). The following example shows that an oxytrophic game need not be extreme.

Example 3 Put N = {a, b, c, d} and m(abcd) = 2, m(S) = 1 for S ⊆ N , |S| = 3, while
m(ab) = m(cd) = 1, and m(S) = 0 for other S ⊆ N . Then R = extC(m) has four vectors
(xa, xb, xc, xd), namely (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1) and (1, 0, 1, 0). The vectors in R satisfy
(4): S = ac for (0, 1, 0, 1), S = ad for (0, 1, 1, 0), S = bc for (1, 0, 0, 1) and S = bd for (1, 0, 1, 0).
Thus, m is oxytrophic. On the other hand, m is the sum of two other supermodular games m1 and
m2, where m1 is the indicator of supersets of ab and m2 is the indicator of supersets of cd.

4. The criterion: a conjecture and results

Assume now that m ∈ E`(N) is an `-standardized exact game. Then the core C(m) consists of
non-negative vectors and the same holds for its vertices: extC(m) ⊆ [0,∞)N . In this section we
formulate our linear core-based criterion.
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4.1 Some arrangement

To formalize our conjecture let us choose and fix an auxiliary index set Υ for the vertices of the core
of m and imagine (= have) the vertex set extC(m) arranged in the form of a real array x ∈ RΥ×N

whose rows are indexed by Υ and columns by N :

x := [x(τ, i) ]τ∈Υ,i∈N ∈ RΥ×N where extC(m) = { [x(τ, i)]i∈N : τ ∈ Υ }.

Recall that the minimization formula (2) for R = extC(m) means that m is obtained by set-wise
minimization in the array x over its rows:

∀S ⊆ N m(S) = min
τ∈Υ

∑
i∈S

x(τ, i) .

In this context, the tightness classes (3) correspond to elements of Υ:

Tτ := {S ⊆ N : m(S) =
∑
i∈S

x(τ, i) } for any τ ∈ Υ.

For computational and implementation reasons, it is advisable to consider a special big zero-one
tightness array encoding all tightness classes. This indicator array ι has rows indexed by Υ and
columns by subsets of N :

ι := [ ι(τ, S) ]τ∈Υ,S⊆N ∈ {0, 1}Υ×P(N) where ι(τ, S) =

{
1 if m(S) =

∑
i∈S x(τ, i),

0 otherwise.

Note that ι serves as computer encoding of the concept of a combinatorial core structure mentioned
in (Studený and Kroupa, 2016). By Proposition 4, the concept of a regular min-representation of m
corresponds in this context to a special subset of the set of rows, namely Γ ⊆ Υ satisfying

∀S ⊆ N m(S) = min
τ∈Γ

∑
i∈S

x(τ, i) . (5)

To test whether Γ ⊆ Υ satisfies (5) one can consider the restricted tightness array ιΓ ∈ {0, 1}Γ×P(N)

to rows in Γ and check whether each column in ιΓ contains least one 1. Thus, a computer can be
used to find all inclusion-minimal regular min-representations of m on basis of ι.

4.2 The linear equation systems

Every regular min-representation Γ ⊆ Υ satisfying (5) can be ascribed a system of linear constraints
on the respective sub-array specified by rows in Γ:

yΓ = [ y(τ, i) ]τ∈Γ,i∈N ∈ RΓ×N .

Specifically, the constraints are as follows:

(a) ∀ τ ∈ Γ ∀ i ∈ N with {i} ∈ Tτ y(τ, i) = 0 ,

(b) ∀S ⊆ N, |S| ≥ 2, ∀ τ, ρ ∈ Γ with S ∈ Tτ ∩ Tρ
∑

i∈S y(τ, i) =
∑

i∈S y(ρ, i) .

It is not difficult to observe that the starting restricted array xΓ ∈ RΓ×N satisfies the constraints
(a)-(b); this is because these constraints are determined by xΓ through ιΓ. Informally, the conjecture
is that the extremity means that, for any min-representation Γ, the equation system (a)-(b) has unique
solution up to a real multiple.
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Conjecture 6 An `-standardized exact game m ∈ E`(N) is extreme in E`(N) iff, for every Γ ⊆ Υ
satisfying (5), every real solution yΓ ∈ RΓ× N to (a)-(b) is a multiple of xΓ ∈ RΓ× N , that is,

∃β ∈ R ∀ τ ∈ Γ ∀ i ∈ N y(τ, i) = β · x(τ, i) .

The constraints (a)-(b) for fixed Γ ⊆ Υ can be written in the form of a matrix equality

CΓ · yΓ = 0, where CΓ is an appropriate constraint matrix with entries in {−1, 0,+1}.

The rows of CΓ encode the constraints and its columns correspond to the elements of Γ ×N . The
matrix is sparse: every constraint of type (a) is encoded by a row with one non-zero component
while any constraint of type (b) for S ⊆ N , |S| ≥ 2, is encoded by a row containing |S|-times a
component +1, |S|-times a component −1 and 0 otherwise.

The number of rows can be economized because some of the constraints of type (b) follow from
the others. For example, whenever S ⊆ N , |S| ≥ 2, belongs to Tτ ∩Tρ∩Tσ for different τ, ρ, σ ∈ Γ
then only two constraints∑

i∈S
y(τ, i)−

∑
i∈S

y(ρ, i) = 0 and
∑
i∈S

y(τ, i)−
∑
i∈S

y(σ, i) = 0

are enough. Therefore, if λ(S), for S ⊆ N , denotes the number of 1’s in the respective column of
the tightness array ιΓ, then the economized number of rows in CΓ is∑

S⊆N : |S|=1

λ(S) +
∑

S⊆N : |S|≥2

[λ(S)− 1] .

Testing of the condition from Conjecture 6 for fixed Γ ⊆ Υ can be realized by computing the nullity
of the matrix CΓ, which is the dimension of the space of solutions yΓ to CΓ · yΓ = 0. Any solution
to (a)-(b) is a multiple of xΓ iff the nullity is 1; otherwise the nullity exceeds 1.

The following observation is useful to avoid testing all regular min-representations.

Proposition 7 Given an `-standardized exact gamem ∈ E`(N) assume the situation from § 4.1 and
take Γ ⊆ Υ satisfying (5). If every real solution yΓ ∈ RΓ× N to (a)-(b) is a multiple of xΓ ∈ RΓ× N

then the same holds in case of any Σ such that Γ ⊆ Σ ⊆ Υ.

The proof of Proposition 7 is shifted to Appendix, §A.2. The consequence of this observation
is that to test the condition from Conjecture 6 it is enough to consider only the inclusion-minimal
regular min-representations; this simplification may spare the computational time. What we have
actually shown in the proof of Proposition 7 is that

whenever Γ ⊆ Υ satisfies (5) and Γ ⊆ Σ ⊆ Υ then null (CΓ) ≥ null (CΣ) ≥ 1 ,

meaning that the nullity (of constraint matrices) achieves its maximal value at one of the inclusion-
minimal regular min-representations; see later Example 4 for illustration.
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4.3 Our theoretical results

Proposition 8 Given a non-zero game m ∈ E`(N), the condition from Conjecture 6, that is,

∀Γ ⊆ Υ satisfying (5), every real solution yΓ ∈ RΓ× N to (a)-(b) is a multiple of xΓ ∈ RΓ× N ,

is necessary for m being extreme in E`(N).

The proof of Proposition 8 is shifted to Appendix, §A.3. Another comment is that, in case m is
a supermodular function, a necessary and sufficient condition for its extremity in the supermodular
cone is that the condition from Conjecture 6 holds for the largest set Γ = Υ (Studený and Kroupa,
2016). The relation is illustrated by the next example.

Example 4 Put N = {a, b, c, d}, m(abcd) = 4, m(S) = 2 for S ⊆ N with |S| = 3, m(S) = 1 for
any S ⊆ N with |S| = 2 except m(cd) = 0 and m(S) = 0 for remaining S ⊆ N . One can easily
verify that m is a supermodular game. The core R = extC(m) consists of 13 vertices. To confirm
that m is extreme in the supermodular cone one can use our method: the nullity of the respective
constraint matrix CΥ is 1. However, this is not the only Γ ⊆ Υ with null (CΓ) = 1; there exists
Σ ⊂ Υ with |Σ| = 9 such that null (CΓ) = 1 iff Σ ⊆ Γ ⊆ Υ.

On the other hand, m is not an extreme exact game for it can be written as the sum of the game

m1(abcd) = 2, m1(S) = 1 for S ⊆ N , |S| = 3, and m1(ac) = m1(bc) = m1(bd) = 1

(vanishing otherwise) and the game

m2(abcd) = 2, m2(S) = 1 for S ⊆ N , |S| = 3, and m2(ab) = m2(ad) = 1

(vanishing otherwise). Both m1 and m2 appear to be extreme in E`(N). The core C(m1) has
three vertices (xa, xb, xc, xd), namely (1, 1, 0, 0), (0, 1, 1, 0) and (0, 0, 1, 1), while C(m2) has four
of them: (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1) and (0, 1, 0, 1). The set R∗ := ext [C(m1) ⊕ C(m2) ],
where X ⊕ Y := {x + y : x ∈ X & y ∈ Y } denoted the Minkowski sum of sets X,Y ⊆ RN ,
defines a regular min-representation of m. The respective index set Γ∗ ⊆ Υ has 10 elements and
one can construct two different solutions yΓ∗ ∈ RΓ∗× N to (a)-(b) on the basis of the standard
min-representations of m1 and m2. Nevertheless, one even has null (CΓ∗) = 4 in this case.

However, Γ∗ does not provide the least regular min-representation of m. We found using a
computer 27 inclusion-minimal regular min-representations of 10 permutation types; 8 of them
have only four vectors (3 types) and 19 of them have five vectors (7 types). The nullities for the
above mentioned inclusion-minimal min-representations are 6 and 7, which is the maximal nullity.

We also achieved the following partial converse result, whose proof we skip due to lack of space.

Proposition 9 Given non-zero m ∈ E`(N) such that the least R ⊆ extC(m) satisfying (2) exists,
the condition from Conjecture 6 is sufficient for m being extreme in E`(N).

The idea of the proof of Proposition 9 is that different solutions to (a)-(b) are constructed on the
basis of standard min-representations of potential summands of m. Note that the condition from
Proposition 9 involves the special case of oxytrophic m ∈ E`(N). On the other hand, an extreme
exact game exists not having the least regular min-representation as the following example shows.
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Example 5 Put N = {a, b, c, d} and define m(abcd) = 3, m(abc) = m(abd) = m(ab) = 2,
m(acd) = m(bcd) = m(ac) = m(bc) = 1 with m(S) = 0 for remaining for S ⊆ N . Then the set
R = extC(m) has 5 vectors (xa, xb, xc, xd). Three of them satisfy the oxytrophy condition (4):

R : (2, 0, 1, 0), (0, 2, 1, 0), (1, 1, 0, 1),

and two of them not: (2, 1, 0, 0) and (1, 2, 0, 0). Adding of any of two other vectors to R turns it
into an inclusion-minimal regular min-representation.

5. Conclusions

We have prepared a web platform for testing the extremity of an `-standardized integer-valued exact
game, available at

http://gogo.utia.cas.cz:3838/exact-and-supermodular/ .

It also allows one to test the extremity of supermodular games in the supermodular cone.
We have tested our criterion on 41 permutation types of 398 extreme `-standardized exact games

over 4 variables; these were also earlier listed by Quaeghebeur and de Cooman (2008). What we
have found out is that 20 of these types are oxytrophic; one of them is mentioned in Example 1.
The remaining types are not, but for 19 of these the least min-representation exists; one of them is
mentioned in Example 2. We also found 2 types of extreme exact games for which two inclusion-
minimal regular min-representations exist; one of these 2 types is given in Example 5.

In all 41 cases the necessary condition from Proposition 8 is valid: the nullities of the respective
constraint matrices are 1. Proposition 9 is applicable in great majority of 39 cases, when the least
regular min-representation exists. Thus, in these 39 cases our linear criterion allows one to confirm
the extremity. However, in the remaining 2 cases one cannot apply Proposition 9 to confirm the
extremity and an open question is whether our condition from Conjecture 6 is sufficient for the
extremity of an exact game in general.
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Appendix A. Proofs

A.1 Proof of Proposition 4

If m has a min-representation R satisfying (i) for any x ∈ R then (2) implies ∅ 6= R ⊆ C(m)
and the condition of exactness for m is evident. Conversely, given an exact game m we put R =
extC(m) and use (1) to observe that (2) holds with R in place of R. The regularity condition (i)
for R is evident. To verify (ii) consider a fixed x ∈ R = extC(m) and realize that the vectors in
V := {χS ∈ RN : S ∈ T mx } ∪ {−χN} belong to the (inner) normal cone of (the least face of
C(m) containing) the vector x defined by

Nx := { v ∈ RN : ∀y ∈ C(m) 〈v, y〉 ≥ 〈v, x〉 } ≡ { v ∈ RN : 〈v, x〉 = min
y∈C(m)

〈v, y〉 };
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indeed, for v = χS , S ∈ T mx , one has 〈v, y〉 =
∑

i∈S yi ≥ m(S) =
∑

i∈S xi = 〈v, x〉 for any
y ∈ C(m). The cone Nx is the conic hull of V , which observation can be derived from Farkas’s
lemma: if t ∈ RN is not in the conic hull of V then w ∈ RN exists such that 〈v, w〉 ≥ 0 for any
v ∈ V while 〈t, w〉 < 0. The former condition allows one to show that yε := x + ε · w belongs to
C(m) for some small 0 < ε. The latter one implies that 〈t, yε〉−〈t, x〉 = 〈t, yε−x〉 = ε·〈t, w〉 < 0,
implying that t 6∈ Nx.

The next observation is that, for any x ∈ C(m), x is a vertex of C(m) iff its normal cone Nx is
full-dimensional. This result holds for any polytope P ⊆ RN in place of C(m). To see why this is
the case the reader is advised to consult (Ziegler, 1995, § 7.1) for basic facts about the collection of
normal cones for a polytope P , named the normal fan of the polytope. It is easy to realize that the
lattice of normal cones is anti-isomorphic to the face-lattice of P . Specifically, the latter means, for
x, y ∈ P , that one has Ny ⊆ Nx iff F [y] ⊇ F [x], where F [x] denotes the least face of P containing
x ∈ P . To this end realize that, for any v ∈ Nx and z ∈ P , 〈v, x〉 = 〈v, z〉 iff v ∈ Nz , which allows
one to observe F [x] :=

⋂
v∈Nx

{z ∈ P : 〈v, x〉 = 〈v, z〉} = {z ∈ P : Nx ⊆ Nz}. Hence,

x is a vertex of P ⇔ F [x] = {x} ⇔ Nx is a maximal cone ⇔ Nx has the dimension |N |.

By the former observation, the linear hull of Nx is the linear hull of {χS : S ∈ T mx }, which
implies the condition (ii) for x ∈ R.

Thus, it follows from above arguments that any min-representation R ⊆ extC(m) is regular.
Conversely, given a regular min-representation R of m, its elements belong to the core of m and
the second regularity condition (ii) for x ∈ R implies that the respective normal cone Nx is full-
dimensional, which happens only in case x is a vertex of C(m).

A.2 Proof of Proposition 7

In case Γ ⊆ Σ ⊆ Υ, it is evident that whenever yΣ ∈ RΣ×N satisfies (a)-(b) with Σ then its
restriction yΓ ∈ RΓ×N to Γ × N satisfies (a)-(b) with Γ. The restriction mapping yΣ 7→ yΓ is
linear and we show that it is one-to-one (under the assumptions from § 4.1). Thus, we assume that
y1

Σ, y
2
Σ ∈ RΣ×N are two solutions to (a)-(b) with Σ such that their restrictions to RΓ×N coincide,

that is y1
Γ = y2

Γ, and we are going to show y1
Σ = y2

Σ.
Consider a fixed τ ∈ Σ \ Γ and our goal is to verify that y1(τ, i) = y2(τ, i) for any i ∈ N . To

this end, we show that, for any S ∈ Tτ one has
∑

i∈S y
1(τ, i) =

∑
i∈S y

2(τ, i) and then apply the
fact that the vectors {χS : S ∈ Tτ} linearly generate RN (see Definition 3 and Proposition 4). In
case S ∈ Tτ , S = {i}, use (a) for Σ to observe y1(τ, i) = 0 = y2(τ, i). In case S ∈ Tτ , |S| ≥ 2,
use the assumption that Γ ⊆ Υ satisfies (5) and find ρ ∈ Γ such that S ∈ Tρ. The constraints (b)
with Σ then imply ∑

i∈S
y1(τ, i)

(b)
=
∑
i∈S

y1(ρ, i) =
∑
i∈S

y2(ρ, i)
(b)
=
∑
i∈S

y2(τ, i) ,

which gives what is desired. Thus, if every solution to (a)-(b) with Γ is a multiple of xΓ then every
solution to (a)-(b) with Σ must be a multiple of xΣ.

A.3 Proof of Proposition 8

To verify the necessity of the condition it is enough to show that its negation implies that m is a
convex combination of m1,m2 ∈ E`(N) none of which is a multiple of m.
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For this purpose assume, under the situation described in § 4.1, that there exists Γ ⊆ Υ satisfying
(5) such that the equation system (a)-(b) has a solution y ∈ RΓ× N which is not a multiple of
xΓ ∈ RΓ× N . Note that the facts m 6= 0 and (5) imply that xΓ 6= 0.

The first observation is that, for any y ∈ RΓ× N satisfying (a)-(b), an `-standardized game
t ∈ RP(N) exists such that

∀ γ ∈ Γ ∀S ∈ Tγ t(S) =
∑
i∈S

y(γ, i) . (6)

To this end realize that (a)-(b) for y together imply the next consistency condition

∀S ⊆ N ∀ τ, ρ ∈ Γ with S ∈ Tτ ∩ Tρ
∑
i∈S

y(τ, i) =
∑
i∈S

y(ρ, i) .

Since (5) implies P(N) =
⋃
γ∈Γ Tγ , one can correctly define t using (6). This game t is uniquely

determined through (6); moreover, the function y ∈ RΓ×N 7→ t ∈ RP(N) is linear by definition.
Finally, the fact that m is `-standardized together with the condition (a) for y imply that t must be
`-standardized, too.

Consider the line L in RΓ×N passing through y and xΓ, namely the vectors

zε := (1− ε) · xΓ + ε · y for any ε ∈ R .

Observe that L does not contain the zero vector in RΓ×N as otherwise y is a multiple of xΓ. As
vectors in L satisfy (a)-(b), `-standardized games qε, ε ∈ R, exist such that

∀ ε ∈ R ∀ γ ∈ Γ with S ∈ Tγ
∑
i∈S

zε(γ, i) = qε(S) .

The next step is to show that, for sufficiently small |ε|, one has

∀ γ ∈ Γ with S 6∈ Tγ
∑
i∈S

zε(γ, i) > qε(S) , (7)

which implies, for those small |ε|, that

qε(S) = min
γ∈Γ

∑
i∈S

zε(γ, i) for any S ⊆ N.

This implies that zε(γ, ∗) ∈ RN , γ ∈ Γ, belong to the core C(qε); in particular, qε ∈ E`(N).
To ensure (7) for small |ε|, consider a fixed γ ∈ Γ and S ⊆ N , S 6∈ Tγ , and choose π ∈ Γ such

that S ∈ Tπ, by (5). The definitions of Tγ and Tπ then imply

0 <
∑
i∈S

xΓ(γ, i) − m(S) =
∑
i∈S

xΓ(γ, i) −
∑
i∈S

xΓ(π, i) .

This allows one to write∑
i∈S

zε(γ, i) − qε(S) =
∑
i∈S

zε(γ, i) −
∑
i∈S

zε(π, i)

= (1− ε) ·

(∑
i∈S

xΓ(γ, i)−
∑
i∈S

xΓ(π, i)

)
︸ ︷︷ ︸

>0

+ ε ·

(∑
i∈S

y(γ, i)−
∑
i∈S

y(π, i)

)
,

323
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and observe that the limit of this expression with ε tending to zero is positive. Therefore, after
considering all pairs (γ, S), γ ∈ Γ, S 6∈ Tγ , (7) is ensured for sufficiently small |ε|.

Thus, there exists 0 < ε such that both r := (1− ε) ·m+ ε · t and s := (1 + ε) ·m− ε · t belong
to E`(N). Clearly, m = 1

2 · r+ 1
2 · s. Neither r nor s is a multiple of m as otherwise the linearity of

the one-to-one correspondence y ∈ RΓ×N ↔ t ∈ RP(N) implies that the line L contains the zero
vector in RΓ×N , which is not the case.
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