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OF CHARACTERIZATION
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Certain algebraic relation between multiinformation and conditional mutual information
is established. It is shown to be applicable to the problem of characterization of conditional
independence relations arising in connection with probabilistic expert systems. More concretely,
a new axiom of these relations is derived. Some auxiliary results have their own significance: the
characterization of marginally continuous measures in Proposition 1 and the information theoretical
significance of the conditional product of measures mentioned in Consequence 3.

Introduction

The main concept of this paper is a certain generalization of the concept of
mutual information, namely the so-called multiinformation. Simply, multiinformation
is the relative entropy of the simultaneous distribution of a finite collection of random
variables with respect to the product of the distributions of individual random
variables. It is nonnegative and vanishes iff the corresponding random variables are
independent. So, similarly as the mutual information which can serve as a measure
of dependence of two random variables (see [13]), multiinformation enables us to
characterize the level of dependence of more than two random variables. From this
point of view it was studied by Perez in [8].

There are several papers belonging to information theory which indirectly
handle multiinformation. For example, in [1] the studied algorithm IPFP converges
to such probability measure which minimizes multiinformation in some given family
of measures having prescribed marginals. As statistical properties of multiinformation
are concerned, they are investigated in [12].

In this paper we want to show that multiinformation is also useful in apparently
remote spheres. Namely, its certain “algebraic” properties can be applied to the
problem of characterization of conditional independence relations (we shall use the
abbreviation CIR here). This problem arises in connection with probabilistic expert
systems, i.e. expert systems based on principles of probability theory.
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The first section contains the definitions of the basic concepts and recalls some
facts used later. Note that we take multiinformation as a characteristic of a probability
measure; those who prefer to speak about random variables can regard the probability
measure as the distribution of the corresponding variables. Moreover, we subjoin a
proposition which establish an interesting equivalence connection between marginally
continuous measures and measures that can be formed by a dominated kernel.

In the second section the conditional product of measures is defined and some
facts about it are mentioned. :

The third section deals with the concept of conditional mutual information
which is defined by means of the concept of conditional product of measures. In
Consequence 1 the fundamental formula for the conditional mutual information is
given.

The fourth section considers both multiinformation and conditional mutual
information as a set function on subsets of the index set. An important algebraic
connection between them is established there.

Finally, the mentioned connection is applied in the last section. The problem
of characterization of conditional independence relations (CIR’s) is formulated there
and it is shown how it is possible to utilize multiinformation.

1. Basic definitions, auxiliary concepts and results

Given measurable spaces (X, %), (Y, %) and a probability measure R on
(X x Y, Z x%) the marginal measure (or simply the marginal) of R on (X, %) is
defined by

R¥(A)=R(AxY), Ae4.

We denote it by the symbol of the original measure having as upper index the symbol
of the corresponding space.

Let us suppose that two probability measures P and Q on a measurable space
(X, Z) are given. In case P<Q we take some function f: X —<0, ) (it means that
f is defined everywhere on X and has all values finite and nonnegative) which is a
version of the Radon-Nikodym derivative dP/dQ and define the relative entropy of
P w. r. to Q (we use the abbreviation w. r. instead of “with respect”) as the integral:

H(P,0)= jxln f(x)dP(x).

€

Since P{x e X; f(x)=0} =0, it is not essential what is In (0). Evidently, the value of
H(P, Q) does not depend on the choice of a version of dP/dQ. In case P« Q we put
H(P, Q)= oo. In this paper we denote relative entropy by the letter H.
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Relative entropy is always nonnegative and vanishes iff P=Q. Moreover, if %
is a sub-g-algebra of 2 and P or § is the restriction of P or Q on % (respectively),
then H(P, Q)< H(P, Q). Especially, it follows for every pair of probability measures
P, Q on a product (X x Y, & x %):

H(P*,Q*)<H(P, Q). (1)

These basic properties are well known, see e.g. [10] or [9].
If P is a probability measure on a product (X x Y, 2 x %) then the mutual
information between X and Y is defined as the relative entropy of P w. r. to P* x P¥,
Analogously, given a finite nonempty collection of measurable spaces (X;, Z;),

ie N and a probability measure P on ( 11X, I1 ”I,) we define the multiinformation
ieN ieN
of P as the relative entropy of P w. r. to the product of its one-dimensional marginals:

M(P)=H<P, 11 P"").

ieN

In this paper multiinformation is denoted by the letter M.

In this paragraph (X, %), (Y, %) are measurable spaces and R is a probability
measure on (X x Y, Z x%). By a representative of conditional probability on (Y, %)
w. r. to (X, Z) we shall understand every mapping K: % x X —<0, 1) such that for
each B e % the function x—K(B|x) is a variant of conditional probability of the set
B given the g-algebra %, i.e. Z-measurable function satisfying:

| K(B|x)dR¥(x)=R(AxB) foreach AeZ. )

xeA

We shall use the abbreviation c. p. instead of “conditional probability”. Note that (2)
can be formulated equivalently as follows:

| 9(x)K(BIx)dR¥x)= [  g(x)dR(x,y)

xeX (x,y)eX XB (3)

for each ¢g: X—{0,1) Z-measurable.
The existence of a representative of c. p. is a trivial consequence of the Radon-Nikodym
theorem. Indeed, for each Be % the function A—R(A4 x B) is a measure on (X, %)

which is absolutely continuous w. r. to R*. Evidently, representatives of c. p. are
determined uniquely in the framework of this equivalence:

K~K' iff K(B|x)=K'(B|x) for R*-ae. xeX forevery Be%.
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We shall use the symbol Ry x to denote an arbitrary representative of c. p., i.e. the
symbol of the original measure having as lower index the separate symbols of the
respective spaces. ]

A representative K of c. p. on (Y, %) w. 1. to (X, Z) is called regular iff for each
x € X the function B—K(B|x) is a probability measure on (Y, %). In case there exists
a regular representative of c. p. on (Y, %) w. 1. to (X, Z) we shall say that c. p. on
(Y, %) w. r. to (X, Z) is regular.

In this paragraph we suppose measurable spaces (X, Z) and (Y, %) are given.
By stochastic (or Markov) kernel from (X, Z) to (Y, %) we understand a collection
P ={P,; xe X} of probability measures on (Y, %) such that for each Be % the function
x—P (B) is Z-measurable. This concept is also known as a crossing probability or
as a channel (in information theory, especially).

We shall say that a kernel Z={P,; xe X} is dominated iff there exists a
probability measure 7 on (Y, %) such that for each xe X P <.

Given a kernel Z={P,; x € X} from (X, Z) to (Y, %) and a probability measure
0 on (X, Z) we can define a probability measure Q * 2 on (X x Y, Z x %) by:

Q*?(AxB)= [ P.(B)dQ(x) AeZ, Be¥ 4)
xeA
and by the standard extension argument (see [4], II1.2.1). We shall say that Q and
P form the measure Q * 2. Note that (4) can be extended as follows:

Q*2(C)= [ P(CHdQ(x) CeXx¥

xeX
where C,={yeY; (x, y) e C}. Especially:
Qx2C)=0 it "P(C)=0--for (-ae- xeX; (5)

Remark 1. a) Let us point out an interesting connection. Supposing that R is
a probability measure on (X x Y, Z x %), we can easily. derive that R =Q * 2 for some
probability measure Q on (X, %) and some kernel £ from (X, Z) to (Y, %) iff the
c.p.on (Y, %) w.r to (X, %) is regular.

b) Further, we note the known fact that the assumption saying that Y is a
separable complete metric space and % is the g-algebra of its Borel subsets suffices
for regularity of c. p. on (Y, %) w. r. to (X, ) (see [4], it follows from the consequence
of V.4.4). Especially, it holds for finite Y with % =exp Y.

If a probability measure P on a product (X x Y, & x %) satisfies P < PX x PY,
then it is called marginally continuous. Evidently, this condition is necessary for
finiteness of the mutual information between X and Y. The following lemma leads
to some characterization of marginally continuous measures in Proposition 1.
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Lemma 1. Let (X, Z), (Y, %) be measurable spaces, A a probability measure on
(X, Z), ton(Y,%)and pon (X xY,Z x%). Then u< A x 7iff u* <1 and there exists
a kernel Z={P_;xe X} from (X, Z) to (Y, %) such that u=(u*)+ 2 and for each
x€ X it holds P, <t.

Proof. a) In case u<Axt we can take such a version L: X x Y—<0, c0) of
dp/d(A x 1) that

Ix)= jy L(x, y) dt(y) < 0 xeX.
ye

Evidently, I is a version of d(u*)/di. We define k(x, y)=1"'(x)- L(x, y) if I(x)>0 and
k(x, y)=1, otherwise. Finally, we put:

P.(B)= | k(x,y)dt(y) xeX,Bed.
YEB
It makes no problem to verify that Z={P,; x € X} is the desired kernel.
b) The sufficiency can be seen using (5). For C € Z x % the relation (4 x ) (C)=0
implies 7(C,)=0 for A-a.e. xe X. So P,(C,)=0 for p*-ae. xe X, ie. W )*2(C)=0. MW

Proposition 1. Let (X, Z), (Y, %) be measurable spaces. Then the following
conditions on a probability measure u on (X x Y, & x %) are equivalent:

(a) p is marginally continuous

(b) there exist a probability measure 4 on (X, Z) and a probability measure t
on (Y, %) such that u<ixrt

(c) u can be formed by a dominated kernel from (X, Z) to (Y, %).

Proof. Directly from Lemma 1 we conclude that (b) implies (c). Conversely, if
u=0Q * 2 where Q is a measure on (X, %) and 2 is the mentioned kernel, then
necessarily Q=u*. So, we can take A=u* in Lemma 1 to show that (c) implies (b).
In fact we have just proved that u <A x t implies u < u* x 7. Replacing of (X, Z) by
(Y, %) we get that p< A x t implies u< 4 x . So, let us take A= pu* here and see that
(b) implies (a). The converse is trivial. |

Note that Proposition 1 yields a sufficient condition for regularity of c. p., which
is not of topological nature (see Remark 1).

2. Conditional product of measures

Definition 1. Let (X, Z), (Y, %), (Z, Z) be measurable spaces and P a probability
measure on (X x Y x Z, ' x % x Z). We shall say that P is a conditional product on
X x Y under condition Z iff it holds

PyxyiA % Bl2)= Py, /Al|z)" Py(Blz) for PZae. zeZ}

(6)
foreach Ae%, Be%.
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Naturally, we write Py, instead of (P**?)y,,. Evidently, the validity of (6) does
not depend on the choice of representatives of c. p. Further, it is easy to see that (6)
is equivalent to:

P(AXBXE)= j PXlZ(Alz)-PY|Z(B|z)dPZ(z)
zeC (7)
for each. Ae4, Be¥,.CeZ.

We use this terminology in order not to impair analogy with the “unconditional”
case: a probability measure R on (X x Y,  x %) is the product of its marginals R¥
and RY iff in the probability space (X x Y, Z x %, R) the o-algebras & x %’ and ¥’ x ¥
are independent (27, %', &' are respectively trivial g-algebras on X x Y x Z). Analo-
gously, (6) means that in the probability space (X x Y x Z, & x % x &, P) the o-algebras
X x¥Y xZ'" and Z'x% x %' are conditionally independent given the o-algebra
X' x%' x % (see [5], chapter VII, § 25.3).

Remark 2. The usual “unconditional” product of measures can be viewed as a
special case of the conditional product. Indeed, supposing that & is the trivial
g-algebra on Z, a measure P on (X x YX Z, & x% x %) is a conditional product on
XY under condition: Z iff P2 <'=PX <P,

Definition 2. Let (X, %), (Y, %), (Z, %) be measurable spaces, Qy,, and
Qy xz be consonant probability measures, respectively, on X x Z and on Y x Z, i.e.

(Qx x Z)Z = (QY % Z)Z-

In case there exists a measure P on (X X Y X Z, & x % x &) having Qy ., and
Qy « z as marginals which is moreover a conditional product on X x Yunder condition
Z, we shall call it the conditional product of Qx ., and Qy ;.

Proposition 2. Under assumptions of Definition 2 it holds:

a) The conditional product of Qy ., and Qy ., is determined uniquely.

b) Supposing that Qy ., has regular c. p. on (X, z) w. . to (Z, %) or that Qy, ,
has regular c. p. on (Y, ) w. 1. to (Z, «)) there exists the conditional product of Qy .,
and Oy ;.

Since measures having the same marginals on X x Z have the same set of
representatives of c. p. on (X, &) w. r. to (Z, Z), we can show the first part of Proposi-
tion 2 using (7). For the proof of the second part we refer to the translator’s remarks
to chapter 3 of [10].

Combining Propositions 1 and 2b we see the known fact mentioned in [10]
(p. 56), namely: supposing that Q . ; (or Qy « ;) in Definition 2 is marginally continuous,
there exists the conditional product of Qy ., and Qy ..
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Nevertheless, under assumptions of Definition 2 the conditional product of
Oxxz and Qy ., may not exist, moreover it holds:

Proposition 3. There exist measurable spaces (X, %), (Y, %), (Z, Z) and a
probability measure P on (X x Y X Z, & x % x %) such that the conditional product
of PX*Z and PY*Z does not exist.

For the proof we refer to [11], where the desired example is constructed.

3. Conditional mutual information

Definition 3. Let (X, %), Y, %), (Z, Z) be measurable spaces and P a probability
measure on (X x Yx Z, & x% x Z). In case there exists the conditional product of
P*¥*Z and PY*Z (denoted by P), we put:

C(X;Y|Z)=H(P, P).

In the opposite case we put C(X; Y]Z)= co. The number C(X; Y|Z) we shall call the
conditional mutual information between X and Y under condition Z.

The following lemma is a trivial consequence of the basic properties of the
relative entropy:

Lemma 2. Under assumptions of Definition 3 it holds C(X; Y|Z)=0. Moreover,
C(X; Y|Z)=0iff P is a conditional product on X x Y under condition Z.

The well-known notion of mutual information can be viewed as a special case
of conditional mutual information, if we take 2 as the trivial o-algebra on Z (cf.
Remark 2). Indeed, it must hold

P=P¥*¥xP® and "P=P*xP"XP* and " H(P, P)=H(P** ", P* x P").

The following lemma we need for the proof of the fundamental formula (10)
in Consequence 1:

Lemma 3. Under assumptions of Definition 3 we denote R = PY x P¥*Z,

a) If PY*?< PY x P%, then there exists the conditional product P of PX*Z and
PY*%_ Moreover, P < R and there exists a function k: Yx Z—<0, co) which is a version
of d(PY*#)/d(P¥ x P%) and viewed as a function on X x Yx Z a version of dP/dR.

b) The following two conditions are equivalent:

P<R, (8)

PY*Z < PY x PZ and there exists the conditional product} o)

P of PX*Z and PY*Z which, moreover, satisfies P<P.
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We shall not prove this lemma. The proof can be found in [2] (pp. 42-44), but
with the proviso that one must be careful whether the conditional product of
measures exists. Namely, in the mentioned paper there is an erroneous consideration
leading to the conclusion that the existence of P suffices for the existence of the
conditional product of PX*Z and PY*Z (more exactly, the set function (2.7.7) is not
countably additive). It was said in Proposition 3 that the mentioned conclusion is
wrong.

In this paper we extended the definition of conditional mutual information in
order to preserve the general validity of relation (16) mentioned below.

Consequence 1. Under assumption of Definition 3 it holds
HIP, P x P " O=CiX Y1 Z)+ HIP )5 P x P (10)

Proof. If (8) does not hold, then according to Lemma 3b both sides of (10) are
infinite. In case (8) holds, we use Lemma 3a and fix the function k: Yx Z—<0, o0)
mentioned there. Further, according to Lemma 3b we may consider some version
L X x Yx Z—<0, o0) of dP/dP. So, k being considered as a function on X x Yx Z, the
product k- [ is a version of dP/dR. Finally, integrating the identity

In(k-l)=In(k)+1In (]) (where In0= — o0)

with respect to P, we get (10). |

4. Multiinformation viewed as a set function

In the remaining two sections we shall consider the following situation.
A finite nonempty collection of measurable spaces

(X;, ), ieN is given. If A<= N is nonempty, we shall
write (X 4, ,) instead 0f< IT1x. [1 Q’i>.
ieA icAd
Further, a probability measure P on (X, Zy) is given.
For the sake of brevity, the marginal of P on (X ,, & ,) will be
\denoted by P4.

—_

2]
-~
A

Definition 4. Assuming (S), we define for nonempty 4 <= N:
1,[A]=M(P%).

Moreover, for empty 4 we put I,[0]=0.
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From basic properties of relative entropy we easily conclude that assuming (S)

the function I,,: exp N —<0, oo ) satisfies:
AcB implies 1,[A]=<1,[B] (11)
if card A< 1 then 1,[A4]=0. (12)

Definition 5. Assuming (S), we define for every ordered triplet (A4, B, C) of
disjoint subsets of N the number I [A; B|C]€<0, o). If all the sets 4, B, C are
nonempty, then we define it as the conditional mutual information between X , and
X p under condition X (logically it is computed from P4“Bv€) je.

I[A4; B|C]=C(X 4; Xp| X().

For empty C and nonempty 4, B we define I.[A4; B|] as the mutual information
between X , and X, ie.

L EABI Ol =P =" P4 <P7).
Finally, in case that A or B is empty we put:

1[0; B|C]1=0 and [I[A4;0|C]=0.

Lemma 4. Assuming (S), the function I, satisfies (4, B, C are supposed to be
disjoint):

1[4; B|C]=1[B; A|C] (13)
0<I[4;B|C] (14)

1[4; BUC|9]=1.[4; BIC]+1.[4; C|0] (15)

if A'cA, BcB, then I[A,B|C]<I[A;B|C]. (16)

Proof. (13) and (14) are easy consequences of the definition; (15) follows directly
from (10) and (13). (16) is trivial in case I.[A; B|C]=o0. In the opposite case there
exists the conditional product of P4“¢ and P2 €. It makes no problem to verify that
its restriction onto X .., p . ¢ is the conditional product of P#"“€ and P?“€. So (16)
follows from (1). [ ]

The substantial relation between I,, and I, is established by the following
statement.
Proposition 4. Assuming (S), it holds for every D, E = N (not necessarily disjoint):

1,[DUE]+1,[DNE]=1,[D]+1,[E]+I[E\D; D\E|DAE]. 17)
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Proof. a) First we prove (17) for disjoint D and E. So, if D and E are nonempty
(otherwise trivial), then we denote Q,= [1P* for nonempty A=N. In case

ied
PPYE £ PP x PE it is, according to Proposition 1, PPV £Qpx Qr=0Qp . So, both
1,[DUE] and I [E\D; D\E|DNE] are infinite and (17) holds. Analogously we proceed
in case P°«Q, or PE4Q; (using (11)). So, we can suppose P’ <Q,, PE<Q; and
PPYE < PP« PE. We take a version f: X p—<0, o0) of d(P”V)/d(P” x PE), a version
h: X ,—<0, o) of dPP/dQ,, and a version g: X ;—<0, 0) of dP¥/dQy. The proof we
conclude similarly as the proof of Consequence 1.
b) Now we suppose arbitrary D, E. According to part a) we see:

1,[DUE]=1,[E\D]+1,[D]+1[E\D; D|¢]
1,[E]l=1,[E\D]+ I,,[DnE]+I[E\D; DNE|9].
So, for the proof of (17) it suffices to prove the identity:
I[E\D; D|0]=1.E\D; D\E|DnE]+I[E\D; DnE|$].

We simply put A=E\D, B=D\E, C=DnE in (15). |
Consequence 2. Assuming (S), the function I,: exp N —{0, o0) is convex (or
supermodular), i.e. it holds:

I[DUE]+1,[DAE121,[D]+1,[E] foreach D,EcN. (18)

Proof. (14) implies I .[E\D; D\E|DNE]20. We add I,,[D]+1,(E) to both sides
and use (17). [

So, Consequence 2 leads to the following question.

Problem 1. We know that, assuming (S), function I,, satisfies (12) and (18) ((11)
follows from them). Can it be conversed? More precisely, whether these conditions
on a function I:exp N—<0, co) suffice for the existence of measurable spaces and
probability measure described in (S) such thatil—1

The last consequence shows some information-theoretical significance of the
conditional product of measures.

Consequence 3. Let (X;, Z;), i€ N be measurable spaces and {4, B, C} some
decomposition of N (finite, nonempty sets). Let u and t be consonant probability
measures, g on (X 4,¢ La00), Ton (Xpocs Zpuc) Further, we denote

®={P; P is a probability measure on Xy, M(P)<oo, PAYC g R Sl ¥

Then a) ®#9 iff M(u) <o and M(t)<co.
b) Supposing @ #§, there exists the conditional product of yu and t and
minimizes the multiinformation on &.
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Proof. If ®+#@, then M(u) and M(z) are finite according to (11). Conversely,
let M(u) and M(z) be finite. We deduce that u< [] p x [] 4" and by Proposition 1
ied ieC

and Remark la we see that c. p. on (X4, £, W. 1. to (X¢, Z¢) is regular. So,
Proposition 2 yields the existence of the conditional product P of y and . Evidently,
for this measure I [A; B|C]=0 and, according to Proposition 4, it is M(P)= M(u)+
+ M(t)— M(u€)< 00, 50 P € ® and ® #§. Moreover, by (17) and (14) applied to another
Q € ® we deduce M(Q)= M(u)+ M(t)— M(u€)= M(P). &

5. Application to the problem of characterization of CIR’s

Definition 6. Assuming (S), we define a ternary relation I(.,.|.) having as the
domain all ordered triplets (A, B, C) of mutually disjoint subsets of N. If both 4
and B is nonempty, then I(4; B|C) holds iff P4“27€ is the conditional product of
PA°€ and PBC (for empty C it means PAV2= P4 x PP). If A or B is empty, then we
postulate that I(A4; B|C) holds. We shall call this relation the conditional independence
relation corresponding to P and shall use the abbreviation CIR.

Note that CIR determines the conditional dependence relation D as its
complementary relation (i.e. D(A4; B|C) holds iff I(4; B|C) does not hold). Now, what
is the problem of characterization of CIR’s?

Problem 2. Let N be nonempty finite set. The problem is to find all independent
properties (axioms) of a ternary relation I (defined on all ordered triplets of disjoint
subsets of N) which together yield a necessary and sufficient condition for the existence

of finite spaces X, i= N and of a probability measure P on [] X; such that I coincides
ieN
with the CIR corresponding to P.

In this form the CIR was introduced by Pearl in [6] and his previous papers.

But restricts to strictly positive measures. In the mentioned paper five properties of
CIR’s are formulated. The first one is the axiom of symmetry:

I(A; B|Cy=I1(B; A|C). (A.1)

Three other axioms can be integrated into the following one:

1(A; BUC|D)<>[1(A; B|CuD) A I1(4; C|D)]. (A.2)
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These two axioms hold without the assumption of strict positivity of the
measure, while the last property:

[1(4; B|CuUD) A I(4; C|BuD)]=I(A; BUC|D) (19)

does not so (i.e. it is not relevant to Problem 2).

Pearl expressed the completeness conjecture, i.e. (A.1), (A.2), (19) is the solution
of Problem 2 modified by the demand that P must be strictly positive. The rest of
Pearl’s paper is concerned with graphical representations of probabilistic knowledge
that are possible owing to (A.1), (A.2), (19).

The desired solution of Problem 2 seems to be significant in the theory of
probabilistic expert systems. Let us mention the intensional expert system INES (see
[7]). According to this approach, the knowledge base of an expert system is modelled
by a multidimensional probability measure, while partial knowledges obtained from
experts are described by means of less-dimensional probability measures which should
be marginals of the mentioned multidimensional one. For capacity reasons it is usually
impossible to store the multidimensional measure in the memory of a computer. This
imperfection is solved by the help of so-called DSS’s (dependence structure simplifica-
tions). These multidimensional measures are “formed successively as conditional
products of given less-dimensional measures”. So, we have to store only those in the
memory. The choice of the DSS (i.e. of the order of making conditional broducts) is
made from a certain information-theoretical point of view.

The solution of Problem 2 would make possible some improvement. Since the
notion of conditional independence (or dependence) is easy to interpret we would be
able to determine the proper structure of dependences and independences directly by
asking experts. By means of the solution of Problem 2 we would be able to decide
whether the statements of various experts are contradictory or whether there exists
a probabilistic model having the requisite dependences and independences (i.e. there
exists a CIR having prescribed dependences and independences).

Now, how to use the multiinformation? From Lemma 2 and Definitions 5, 6
it is easy to see:

Proposition 5. Assuming (S), it holds for disjoint 4, B, C< N:

I(A; B|C) holds<>I [A4; B|C]=0. (20)

Further, according to (17) we can express I [4; B|C] by means of the function
I,, (in Problem 2 X; are finite, so I, is finite). So, by this procedure we verify for
disjoint A, B, C, D:

1.04; B|CUD]+1[C; D| A1+ L[C; D|B] +1[4; B|§] = } 21

=1[C; D|AuB]+1[A4; B|C]+1[4; B|D]+1[C; D|@].
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Finally, from Proposition 5 we easily derive using (14):

[1(4; B|CuD] A I(C; D|A) A I(C; D|B) A I(4; B|0)]<> (A3)
<>[I(C; D|AUB) A I(4; B|C) A I(A4; B|D) A I(C; D|9)]. '

Example. We can take N ={a, b, ¢, d} and construct a certain ternary relation
as follows:

1. I(a, b|cd), I(c, d|a), I(c, d|b), I(a, b|@) and symmetric independences hold
2. I(A; B|C) for empty A or B holds
3. no other independence holds.

The desired relation satisfies (A.1), (A.2), (19) but not (A.3).

So, using algebraic properties of multiinformation a new axiom (A.3) of CIR’s
was derived and Pearl’s completeness conjecture was disproved. Note that (A.1), (A.2)
can be derived similarly. Perhaps, it is possible to derive further axioms of CIR’s
analogously.

Nevertheless, I do not know the complete solution of Problem 2. I would like
to ask readers for help. If somebody knows something relevant to this problem (maybe
the solution is known since, for example, the theory of Markov fields meets with
similar problems), I would like him (or her) to send me a reference or a reprint or
any information. The similar wish concerns Problem 1.
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My abTHHHGOPMAIHS K NpodjieMa XapaKTepH3allHn OTHOIIEHHH
YCJIOBHOH HE3aBHCHMOCTH
M. CTYAEHBI
(TTpara)

VCTaHOBJIEHO HEKOTOPOE a/rebpanyeckoe COOTHOILEHHE MEXY MYJIbTHMH(POPMAILIHEH H yCIIOB-
HO#M MHpopmaumeii. [Toka3aHo, 4YTO 3TO COOTHOLICHHE NPUMEHHUMO K npobJieMe XapaKTepH3aluH
OTHOLUEHHH YCIOBHOH HE3aBUCHMOCTH, KOTOpasi BOSHUKAET B CBA3M C BEPOATHOCTHBIMU IKCIEPTHLIMH
cHcTemamu. BoJiee KOHKPETHO BbIBEIEHA HOBasi akCHOMa JUTs 9THX oTHowenui. Hekoropeie noaroro-
BHTEJIbHBIE PE3YJIbTAThI HMEIOT CAMOCTOATE/ILHOE 3HAYEHHE: XapAKTEPH3aIUsl MapTHHAILHO-HENIPEPhIB-
HBIX Mep B TeopeMme | M MHGOPMAIMOHHO-TEOPETHYECKOE 3HAYEHUE YCIOBHOIO NPOM3BEACHHA MEp,
YIOMSIHYTOE B CJIEICTBUH 3.
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