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Certain algebraic relation between multiinformation and conditional mutual information
is established. It is shown to be applicable to the problem of characterization of conditional
independence relations arising in connection with probabilistic expert systems. More concretely,
a new axiom of these relations is derived. Some auxiliary results have their own significance: the
characterization ofmarginally continuous measures in Proposition I and the information theoretical
significance of the conditional product of measures mentioned in Consequence 3.

lntroduction

The main concept of this paper is a certain generalization of the concept of
mutual information, namely the so-called multiinformarion. Simply, multiinformation
is the relative entropy of the simultaneous distribution of a frnite collection of random
variables with respect to the product of the distributions of individual random
variables. It is nonnegative and vanishes iff the corresponding random variables are
independent. So, similarly as the mutual information which can serve as a measure
of dependence of two random variables (see [13]), multiinformation enables us to
characterize the level of dependence of more than two random variables. From this
point of view it was studied by Perez in [8].

There are several papers belonging to information theory which indirectly
handle multi information. For example, in [1] the studied algorithm IPFP converges
to such probability measure which minimizes multiinformation in some given family
of measures having prescribed marginals. As statistical properties of multiinformation
are concerned, they are investigated in [12].

In this paper we want to show that multiinformation is also useful in apparently
remote spheres. Namely, its certain "algebraic" properties can be applied to the
prob|em of characterization oÍ conditional independence relations (we shall use the
abbreviation CIR here). This problem arises in connection with probabilistic expert
systems, i.e. expert systems based on principles of probability theory.
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The first Section contains the deÍinitions of the basic concepts and recalls some
facts used later. Note that we take multiinformation as a characteristic of a probability
measure; those who prefer to speak about random variables can regard the probability
measure as the distribution of the corresponding variables. Moreover, we subjoin a
proposition which establish an interesting equivalence connection between marginally
continuous measures and measures that can be formed by a dominated kernel.

In the second section the conditional product of measures is dehned and some
facts about it are mentioned.

The third section deals with the concept of conditional mutual information
which is defined by means of the concept of conditional product of measures. In
Consequence I the fundamental formula for the conditional mutual information is
given.

The fourth section considers both multiinformation and conditional mutual
information as a set function on subsets of the index set. An important algebraic
connection between them is established there.

Finally, the mentioned connection is applied in the last section. The problem
of characterization of conditional independence relations (CIR's) is formulated there
and it is shown how it is possible to utilize multiinformation.

l. Basic definitions, auxiliary concepts and results

Given measurable spaces (X, ,r), Í, E) and a probability measure R on
(XxY ťx9\ the marginal measure (or simply tbe marginat) oÍ R on (X, ť) is
deÍ.tned by

Rt(1) :R( .4  x  Y) ,  Aet r .

We denote it by the symbol of the original measure having as upper index the symbol
of the corresponding space.

Let us suppose that two probability measures P and Q on a measurable space
ě, r) are given. In case P 4Q we take some function f : X.-+(0, m) (it means that
/ is defined everywhere on X and has all values f,rnite and nonnegative) which is a
version of the Radon-Nikodym derivative dPldQ and deÍine the relatiue entropy of
P w. r. to Q $e use the abbreviation w. r. instead of "with respect") as the integral:

H (P ,  O: |n Ík)dP(x)'

Since P{x eX' f(x):a}:0, it is not essential what is ln(0). Evidently, the value of
H(P,Q) does not depend on the choice of a version oÍ dPldQ.In case P{Q we put
H(P,Q): o. In this paper we denote relative entropy by the letter H.

j
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Re|ative entropy is a|ways nonnegative and vanishes if,ť P:Q. Moreover, if &
is a sub-o-algebra of ff and F or Qis the restriction of P or Q on U (respectively),
then H(F, A)<ne, Q). Especially, it follows for every pair of probability measures
P, Q on a product (X x \ ť xQ/):

H(Pr ,Q\<H(P,Q) .  (1)

These basic properties are well known, see e.g. !01 or [9].
If P is a probability measure on a product (X x Y, ť xw) then tbe mutual

information between X and Yis defined as the relative entropy of P w. r. to Px x PY.
Analogously, given a finite nonempty collection of measurable spaces (X,, ť,),

i e N and a probability measure r on ( fl X,,lI I, ) we dehne the mukiinformation
\  i € N  i e N  /

of P as the relative entropy of P w. r. to the product of its one-dimensional marginals:

/ \
M(P) :u(  P , [ J  P" ' )

\ í..i, /
In this paper multiinformation is denoted by the letter M.

In this paragraph (X,' i l,(YU) are measurable spaces and R is a probabil ity
measure on (X x \ !1, xqU).By a representatiue of conditional probability on (Y U)
w. r. to (X, f) we shall understand every mapping K: Q x X-(0, 1) such that for
each BeU thefunction xr-rK(Blx)is a variant of conditional probabil ity of the set
B given the o.algebra Í, i.e. f.measurab|e function satisfying:

K(Blx)dRx(x):R(,a x B) f o reach  Ae f f .

We shall use the abbreviation c. p. instead of "conditional probability". Note that (2)
can be formulated equivalently as follows:

'Í' 
o('). K(BIx)dRx(x): 

( ' ' ,)Jx,,o@)dR(x, l)

for each 9: X.-+(0, l) ť-measurable.

The existence of a representative of c. p. is a trivial consequence of the Radon-Nikodym
theorem. Indeed' for each Bew the function At+R(A xB) is a measur €  on(X, ff)
which is absolutely continuous w. r. to Rx. Evidently, representatives of c. p. are
determined uniquely in the framework of this equivalence:

K -K ,  i í r  K (B Ix ) : I ( ' (B Ix )  f o r  Rx -a .e .  xeX  fo reve ry  BeU .

(2)'Jo

(3)
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We shall use the symbol Rr1" to denote an arbitrary representative of c. p., i.e. the
symbol of the original measure having as lower index the separate symbols of the
respective spaces.

A representative K of c. p. on (Y , E) w. r. to (X, tr) is called regular iff for each
x e X the function Br-+K (B I x) is a probability measure on (Y U). In case there exists
a regular representative of c. p. on (Y, U) w. r. to (X' 9ť,) we shall say that c. p' on
(\ o.y) w. r. to (X,.ť) is regular.

In this paragraph we suppose measurable spaces (X, f) and ({ U) are given.
By stochastic (or Markov) kernel from (X, fi) to (Y % we understand a collection
?:|P,:xeX) of probability measures on(YU) such that foreach BeU the function
xr--+P,(B) is #-measurable. This concept is also known as a crossing probability or
as a channel (in information theory, especially).

We shall say that a kernel g:{P,; xeX} is dominated iff there exists a
probability measure r on (Y, U) such that for each x e X P,4r.

Given a kernel ? : {P,; x e X} from (X, g) to (\ U) and a probability measure
Q on(X,.%) we can def ine a probabi l i ty measure Q* I on(X xY ff xU)by:

Q*  ?@x  B ) : '!nP ' (B)dQ@) Aeť,  BeU

and by the standard extension argument (see [4], III.2.1). We shall say that Q and
? form the measure Q * 9.Note that (4) can be extended as follows:

Q* 0(c):,1*r,{c,1dg1r1 cetr xo!

where C,: {y. Y: (x, y)e C}. Especially:

Q, r " (C) :0  i f f  P , (C , ) :0  fo r  Q-a .e .xeX.  (5)

Remark l. a) LeÍ us point out an interesting connection' Supposing that R is
a probability measure on (X x \ 9ť' x U),we can easily.derive that R:0 * 3 for some
probability measure Q on (X, ť) and some kernel 3 Írom (X , g) to (Y U) iÍÍ the
c. p. on (Y, g) w. r. to (X, g) is regular.

b) Further, we note the known fact that the assumption saying that Y is a
separable complete metric space and U is the o-algebra of its Borel subsets suÍIices
for regularity of c. p. on (Y U) w. r. to (X, g) (see [4], it follows from the consequence
of V.4.4). Especially, it holds for finite Ywith U:exp Y.

If a probability measure P on a product (X xY ť xU) satisfies P4PX xPY,
then it is called marginally continuous. Evidently, this condition is necessary for
Íiniteness of the mutual information between X and Y The following lemma leads
to some characterization of marginally continuous measures in Proposition 1.

(4)
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Lemma I.Let(X,g),(Y 9) be measurable spaces,,t a probability measure on
(X, g), Í on (y' U) and' p on (X xY, g'xU).Then !4).xt lff pX <A and there exists
a kernel 9:{P,;xeX} from (X, %) to (Y &) such that p:?tx]'*3 and for each
xeX í t  ho lds  P ' ( t .

Proof. a) In case tl4Axt we can take such a version L: X x ř.-r(0, oo) of
dpld(A x r) that

, , r , : , J ,  L (x ,y)  h(y)<a xe  X .

Evidently, / is a version ot d(px)1il.. We define k(x, y): l- t(r) . L(x, y) if l(x) > 0 and
k(x, y): l, otherwise. Finally, we put:

P , (B) : , [ rU( r ,y )h(y)  xeX,Ber ! .

It makes no problem to verify that 3:{P,; *eX} is the desired kernel.
b) The suÍficiency can be seen using (5). For C e % xU there|ation (2 x t) (C):0

implies t(C'):g for /,-a.e. xeX. So P'(C'):0 Íor px-a.e. xeX' i.e. 0ř)*g(C):0. l

Proposition L Let (X, g), (Y, &) be measurable spaces. Then the following
conditions on a probability measure p on (X x Y, ť xU) are equivalent:

(a) p is marginally continuous
(b) there exist a probability measure ), on (X, %) and a probability measure r

on (Y, U) such tbat p4).xt
(c) p can be formed by a dominated kernel from (X, fl to (Y, U).
Proof. Directly from Lemma I we conclude that (b) implies (c). Conversely, if

p:Q*? where Q is a measure on (X, tr) and 3 is tbe mentioned kernel, then
necessarily Q:p*. So, we can take 1:px in Lemma I to show that (c) implies (b).
In fact we have just proved that p4tr x r implies p4tlx x r. Replacing oÍ (X, 9ť') by
(Y,0!) we get that pš), x t implies !4)'xpr. so, let us take 7: px here and see that
(b) implies (a). The converse is trivial. I

Note that Proposition 1 yields a suÍficient condition for regularity of c. p., which
is not of topological nature (see Remark 1).

2. Conditional product of measures

DeJinition I.Let(X, g),(Y,q),(2,9) be measurable spaces and P a probability
measure on (X x Y xZ, ť xU xt). We shall say that P is a conditional product on
X x Y under condition Z iff it holds

P1 ,y1 fAxB|z ) :  P*1 lA | z ) .Py1 lB | z )  f o r  P z -a .e .  zeZ \  ( ó )
f o r e a c h  A e T .  B e U .  I
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Naturally, we write P'." instead oÍ(Px,z)4z. Evidently, the validity of (6)does
not depend on the choice of representatives of c. p. Further, it is easy to see that (6)
is equivalent to:

P (AxBxC ) : P a r(Al z)' P a 2(B I z) d Pz (z)

ea ch  Ae9 t ,  BeU ,  Ce5 .

We use this terminology in order not to impair analogy with the "unconditional"
case: a probabil ity measure R on (X xY, # xU) is the product of its marginals Rx
and RY iffin the probabil ity space (X x Y,ff xU, R) the o-algebras ť xU, and ff, xU
are independent (ff', U', 5' are respectively trivial o-algebras on X x Y x Z). Analo-
gously, (6) means that in the probability space (X x Y x 2,9[ xU x 5, P) the o-algebras
9[xU'xt' and 9['xU x9' are conditionally independent given the o-algebra
9ť, xU, x 5 (see [5], chapter vII' $ 25.3).

Remark 2. The usual "unconditional" product of measures can be viewed as a
special case of the conditional product. Indeed, supposing that ť is the trivia|
o-algebra on Z, a measure P on (X xYxZ, tr xU x 5)is a conditional product on
X x Yunder condition Z ifÍ PxxY - Px x PY.

Definition 2. Let (X, f), (Y, g), (2, g) be measurable spaces, Q*,, and

Qy, z be consonant probability measures, respectively, on X x Z and on Y x Z, i.e.
(Q*, r) '  : (Qr,  r) '  .

In case there exists a measure P on (X x Y x Z, tr xU x 5) having Q*,, and

Qv , z as marginals which is moreover a conditional product on X x Yunder condition
Z, we sha|| call it the conditional product oÍ Qx, z and Q,,,.

Proposition 2. Under assumptions of DeÍinition 2 it holds:
a) The conditional product oÍ Qx, z and QY , z is determined uniquely.
b) Supposing that Q*,, has regular c. p. on (X, z) w. r. to (2, z) or that Qy,7

has regular c. p. on (Y, ň w. r. to (Z, z)) there exists the conditional product of Qx,z
and Qr,r .

Since measures having the same marginals on X x Z have the same set of
representatives of c. p. on (X, 9[) w. r. to (2, 5), we can show the first part of Proposi-
tion 2 using (7). For the prooí of the second part we refer to the translator's remarks
to chapter 3 of [l0].

Combining Propositions 1 and 2b we See the known íact mentioned in [10]
(p. 56)' namely: supposing that Q,,,(or Qv " z)in Deíinition 2 is marginally continuous,
there exists the conditional product oÍ Qx, z and QY , z.

(7),!,
for



STUDENÝ: MULTlINFoRMATloN AND PRoBLEM oF cHARAcTERlzAT|oN oF c|R

Nevertheless, under assumptions of Definition 2 the conditional product of
Qr,, and Qv,z may not exist, moreover it holds:

Proposition 3. There exist measurable spaces (X, r), (Y' Ú!)' (Z, 5) and a
probabi|ity measure P on (X x Y x Z, ff xÚ! x g) such that the conditional product
oÍ Px, z and Py'z does not exist.

For the proof we refer to [l 1], where the desired example is constructed.

3. Conditional mutual information

DeJinition 3. Let (X, g), \E),(2, g) be measurable spaces and P a probability
measure on (X x Yx Z, ť xU x %\ In case there exists the conditional product of
Px'z and PY'z (denoted by P), we put:

C(X: YIZ): H(P, P).

In the opposite case we put C(X; Y1Z): m. The number C(X; YIZ) we shall call the
conditional mutual information between X and Y under condition Z.

The following lemma is a trivial consequence of the basic properties of the
relative entropy:

Lemma 2. Under assumptions of Definition 3 it holds C(X; YIZ)>-0. Moreover,
C(X; YIZ):O iff P is a conditional product on X x Yunder condition Z.

The well-known notion of mutual information can be viewed as a special case
of conditional mutual information, if we take t as the trivial o-algebra on Z (cf.
Remark 2). Indeed, it must hold

p:pxxY,  pz  and P:px  x  pY x  pz  and H(p ,P) :p1px 'Y ,px  x  pr \ .

The following lemma we need for the proof of the fundamental formula (10)
in Consequence l:

Lemma -]. Under assumptions of DeÍinition 3 we denote R:PY x Px,Z.
a) If Py,z<PY xPz, then there exists the conditional product P oÍ Px,z and

Pv ' z .Moreover ,P4Randthereex i s tsa funct ion  k :YxZ- -+(O,co)wh ich i savers ion
oÍ d(PY,z)ld(PY x Pz)and viewed as a function on X x Yx Z aversion of dPldR'

b) The following two conditions are equivalent:

P<R, (g)

PY,z <PÍ x Pz and there exists the conditiona| product)

P of Px'z andPv'z which, moreover, satisfres p<P. 
] 

(9)
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We shall not prove this lemma. The proof can be found in [2] (pp. !1-44), Sv1
with the proviso that one must be careful whether the conditional product of
measures exists. Namely, in the mentioned paper there is an erroneous consideration
leading to the conclusion that the existence of P suffrces for the existence of the
conditional product of Px'z and PY " z (more exactly, the set function (2.7.7) is not
countably additive). It was said in Proposition 3 that the mentioned conclusion is
wrong.

In this paper we extended the defrnition of conditional mutual information in
order to preserve the general validity of relation (16) mentioned below.

Consequence 1. Under assumption of Definition 3 it holds

H(p, pY x p*' z)- C(x; ylz) + H(p' " ' ,  pv x pz). (10)

Proof.If (8)does not hold, then according to Lemma 3b both sides of (10) are
infinite. In case (8) holds, we use Lemma 3a and Íix the function k:YxZ--,(0,a)
mentioned there. Further, according to Lemma 3b we may consider some version
l: X x Yx Z-+(0, a) of dPldP. So, k being considered as a function on X x Yx Z, the
product k' I is a version of dPldR. Finally, integrating the identity

ln( /< ' ) : ln (k)+ ln( I )  (where  ln0: -m)

with respect to P, we get (10).

4. Mu|tiinformation viewed as t s€t function

In the remaining two sections we shall consider the following situation.
A Íinite nonempty co|lection of measurable spaces

(X,, %,), i e N is given. If ,4 c N is nonempty, we shall
/ \

write (X", 
") 

instead of I fl X,, ll I, l.
\ i e , r  i e A  /

Further, a probability measure P on (Xn, fn) is given.
For the sake of brevity, the marginal of P on (X ̂ , ť ̂ ) wi|| be
denoted by Pn.

DeJinition 4. Assuming (S), we define for nonempty ,4 c N:

I^lAl:M(P^).

Moreover, for empty / we put 1.[0]:0.

I

(s)
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From basic properties of relative entropy we easily conclude that assuming (S)
the function /.:exp N-(0, o) satisfres:

DeJinition 5. Assuming (S), we define for every ordered triplet (A, B, C) of
disjoint subsets of N the number I"IA; BlCfe(O, m). If all the sets .,{, B, C are
nonempty, then we deÍine it as the conditional mutual information between X ̂  and
X" under condition X6 (ogically it is computed from PAuBuc),i.e.

I,lA: BlCf :C(X i X rlXr).

For empty C and nonempty A, B we deÍine 1.[,4; B|0] as the mutual information
between Xnand Xr, i .e.

I,lA; Bl[f : H(PA'B, PA x P\.

Finally, in case that A or B is empty we put:

I" l0;BIC):O and I, lA;t lCf:O.

Lemma 4. Assuming (S), the function 1. satisÍies (A, B, C are supposed to be
disjoint):

AcB implies I^LAl<l^lBl

if card ,4 š l then I^|A):0.

I"lA; BlCf :I"IB; AlCl

0<I"lA;BlCf

I 
"lA; 

Bv ClQl : I,LA; Bl C) + I "lA; 
Cl[l

i f A'cA, B'cB, then I,fA',8' lcf<l"LA;BlC1.

( 1 1 )

(r2)

(1 3)

(14)

(1s)

(16)

Proof,(|3) and (l4) are easy consequences ofthe deÍinition; (15) follows directly
from (10) and (13). (16) is trivial in case I"IA;BIC):co. [n the opposite case there
exists the conditional product o1 pewc and PB'c. It makes no problem to verify that
its restriction onto Xr.,",,. is the conditional product o1 p't'wc and PB'uc. So (16)
follows from (1). I

The substantial relation between 1- and 1" is established by the following
statement.

Proposition 4. Assuming (S), it holds for every D, E c N (not necessarily disjoint):

I^lDvEl* I^lDaE): I-lD)+ l-lE)*l.[E\D; D\ElDnE]. (17)
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Proof. a) First we prove (17) for disjoint D and E. so, if D and E are nonempty

(otherwise trivial), then we denote Q^:nP{i} for nonempty AcN' In case

,o.n(pD x pE it  is,  according to Proposit ion 1, PD'D* QoxQa:Qp.o. So, both

I^lDvEfand I"[E\D; D\ElDnE] are infinite and (17) holds. Analogously we proceed

ií."," 
.,,4g,_or 

PE*Qr (using (11)). So, we can suppos€ Po4Q,, PE<Q, and

pDw n' 4 po ' Fi. w" take a versio n f : X,u,--+(0, m) oÍ d(PD. E)ld(PD x PE), a version

h: X,.-+(O, a) of dPDldQo and a version g: X,.-+(o, a) oÍ dPEldQ,. The proof we

conclude similarly as the proof of Consequence l'

b) Now we suppose arbitrary D, E. According to part a) we see:

I ̂ lDv Ef: I-[E\D] + 1-[D] + I'[AD; D | 0]

I-lE): t^78\Dl + I.[DnE] + /.[E\D; DaEl0)'

So, for the proof of (17) it sufftces to prove the identity:

I"[AD; D I o] : /.tE\D; D\E I DnEl + l"[E\D; D a Elo).

We simply put ,4:AD, B:D\E, C:DaE in (15)'  t

Consequence 2. Assuming (S), the function 1.: expN-(0, co) is convex (or

supermodular), i.e. it holds:

l^lDvEl l  l - lDa4f>1,[D] +I^lE) for each D,EcN '  (18)

Proof.( l4) impl iesI"[AD;D\E|DnE]Ž0.Weadd/'[D]+I^(E)tobothsides
and use (17). I

So, Consequence 2 leads to the following question'

Problem /. we know that, assuming (s), function 1. satisfies (12) and (18) (11)

follows from them). Can it be conversed? More precisely, whether these conditions

on a function /:expN--(O, co) suÍIice for the existence of measurable spaces and

probability measure described in (S) such that I: I ̂ '
The last consequence shows some information-theoretical signiÍrcance of the

conditional product of measures.
Consequence 3. Let (X,, %,),ieN be measurable spaces and {'4, B' C} some

decomposition of N (Íinite, nonempty sets). Let p and t be consonant probability

measures' p on (X ̂ u,, Í ou,), t on (X".., ť,.,). Further, we denote

iD:{P;P is a probabi l i ty measure on Xn, M(P)<ú,PAuc_lt,PBuc:t}.

Then a) o+0 itr M(ti<o and M(r\<o.
b) supposing .b+0, there exists the conditional product of p and t and

minimizes the multiinformation on @.
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Proof. Íf Q*9, then MQl) and M(t) are Íinite according to (1l). Conversely,

|et M(p) and M(t) be Íinite. We deduce that p ( fl p{i} 1 fl^ l{| and by Proposition 1

and Remark la we see that c. p. on (Xn, trn) w.r. to (X., ffr) is regular. So,
Proposition 2 yields the existence of the conditional product P of p and r. Evidently,
for this measure I,lA;BIC):O and, according to Proposition 4, it is M(l:n4611
+ M(r)_ M(p.) < co, so P e Ó and Q *0' Moreover, by (17) and (l4) applied to another
Qe iD we deduce M(Q)>M(ti+ M(r)- M(1tc): M(P). I

5. Application to the problem of characterization of CIR's

Definition ó. Assuming (S), we deÍine a ternary relation /(.'.l.) having as the
domain all ordered triplets (A, B, C) of mutually disjoint subsets of N. If both ,4
and B is nonempty, then /(,4; B|C) holds 7fÍ PÁwBwc is the conditional product of
PAuc and PB'c (for empty C it means pAwB-pA x PB). If A or B is empty, then we
postulate that I(A; BIC) holds. We shall call this relation the conditional independence
relation corresponding to P and shall use the abbreviation CIR.

Note that CIR determines the conditional dependence relation D as its
complementary relation (i.e. D(A;BIC) holds ifÍ I(A;B|C) does not hold). Now, what
is the problem of characterization of CIR's?

Problem 2.Let N be nonempty Íinite set. The problem is to ťrnd all independent
properties (axioms) of a ternary relation 1 (defined on all ordered triplets of disjoint
subsets of N) which together yield a necessary and suffrcient condition for the existence

of frnite spaces x', iÉ N and of a probability measure P on f| X, such that / coincides

with the CIR corresponding to P.

In this form the CIR was introduced by Pearl in [6] and his previous pap€rs.
But restricts to strictly positive measures. In the mentioned paper ťtve properties of
CIR's are formulated. The Íirst one is the axiom of symmetry:

I(A; BIC)+I(B; AIC).

Three other axioms can be integrated into the following one:

(4.1)

I(A; BvCID)+II(A; BICvD) n I(A;ClD)1. ( .2)
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These two axioms hold without the assumption of strict positivity of the
measure, while the last property:

LI(A;BlCvD) n I(A;CIBwD))+I(A;BvClD) (19)

does not so (i.e. it is not relevant to Problem 2).
Pearl expressed the completeness conjecture, i.e. (A.l), (4.2), (19) is the solution

of Problem 2 modified by the demand that P must be strictly positive. The rest of
Pearl's paper is concerned with graphical representations of probabilistic knowledge
that are possible owing to (4.1), (4.2), (19).

The desired solution of Problem 2 seems to be significant in the theory of
probabilistic expert systems. Let us mention the intensional expert system INES (see
[7]). According to this approach, the knowledge base of an expert system is modelled
by a multidimensional probability measure, while partial knowledges obtained from
experts are described by means of less-dimensional probability measures which should
be marginals of the mentioned multidimensional one. For capacity reasons it is usually
impossible to store the multidimensional measure in the memory of a computer. This
imperfection is solved by the help of so-called DSS's (dependence structure simplifica-
tions). These multidimensional measures are "formed successively as conditional
products of given less-dimensional measures". So, we have to store only those in the
memory. The choice of the DSS (i.e. of the order of making conditional products) is
made from a certain information-theoretical point of view.

The solution of Problem 2 would make possible some improvement. Since the
notion of conditional independence (or dependence) is easy to interpret we would be
able to determine the proper structure ofdependences and independences directly by
asking experts. By means of rhe solution of Problem 2 we would be able to decide
whether the statements of various experts are contradictory or whether there exists
a probabilistic model having the requisite dependences and independences (i.e. there
exists a CIR having prescribed dependences and independences).

Now, how to use the multiinformation? From Lemma 2 and DeÍinitions 5, 6
it is easy to see:

Proposition 5. Assuming (S), it holds for disjoint A, B, CcN:

I(A; BIC) tu6lds+1.[.4; BIC]:0. (20)

Further, according to (17)we can express I,lA;BlC) by means of the function
I. (in Problem2 X, are Íinite, so 1- is finite)' So, by this procedure we verify for
disjoint A, B, C, D:

I,lA; BlCv Dl + 1.[C; Dl Af + I "IC;D I 
B] + l"t,a; Bl fll : ]

:I, lC DlAvBl* I, lA; BIC)+ I, lA; BlDl + I, lC; Dl0f ')
(2r')
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Finally, from Proposition 5 we easily derive using (14):

(4.3)

Example. We can take N : ta, b, c, dj and construct a certain ternary relation
as follows:

l. I(a, blcd), I(c, dla), I(c, dlb), I(a, bl[) and symmetric independences hold
2. I(A; BIC) for empty .4 or B holds
3. no other independence holds.

The desired relation satisfies (A.l), (A.2), (19) but not (A.3).

So, using algebraic properties of multiinformation a new axiom (A.3) of CIR's
was derived and Pearl's completeness conjecture was disproved. Note that (A.1), (A.2)
can be derived similarly. Perhaps, it is possible to derive further axioms of CIR's
analogously.

Nevertheless, I do not know the complete solution of Problem 2. I would like
to ask readers for help. If somebody knows something relevant to this problem (maybe
the solution is known since, for example, the theory of Markov fields meets with
similar problems), I would like him (or her) to send me a reference or a reprint or
anv information. The similar wish concerns Problem l.

References

|' Csiszór,l.,l.divergence geometry of probability distributions and minimization problems. Ann' Probab.
3 (1975), pp. l4ó_l58.

2. fiodpywuu, P. JI., ffiuar. Qoprr,ryrrxpooxa ocHosrroň Teop€Mh| llleguorra B Teopru rrH$oprr,taqux.
Ycnexrr MaTeM. HayK. |4 (1959)' ó, c. 3_104. (In Russian, translation: Ann. Math. Soc. Translation 33,
2, pp.323438).

3. Halmos, P. R., Measure Theory. D. v. Nostrand Comp. Inc., New York 1950.
4. N eueu,J.,Bases mathematiques du calcul des probabilités. Masson et Cie, Paris l964 (in French, Russian

translation: Mup' Mocxaa l9ó9).
5, Loéue, M', Probability Theory. D. v. Nostrand Comp. Inc., New York l9ó0.
6. Pearl, J ., Markov and Bayes networks. Technica| Report CSD 8ó0024' R.,t6I' october l986, University

of California, Los Angeles.
7, Perez, A,, Jiroušek, R., Constructing an intensional exp€rt systcm (INES). Medical Decision Making:

diagnostic strat €gies and expert systems, North Hol|and 1985' pp. 307_315'
8. Perez, A., e-admissible simplifications ofthe dependence structure ofa set random variables. Kybernetika

13 (19'17), pp. 439-449.
9. Perez,u{., Notions généralisees d'incertitude, d'entropie et d'information du point de vue de la théorie

des martingales. Trans. of the l-st Prague Confcrence on Information Thcory, Statistical Decision
Function, Random Processes (l95ó)' Prague l957' pp. l83-208 (in French).

lt(A; BlCvDl n 1(C; DIA) n I(C; DIB) n /(,4; Blp)le ]
+p(C; DIAvB) n I(A;BlC) n I(A;BlD) n I(C:DlDl. j



|ó STUDENÝ: MULTrtNFoRMATtoN AND PRoBLEM oF cHARAcTERlzATIoN oF cIR

10. pinsker.M. S., Information and Information Stability of Random Variables and Processes. Translation

from Russian by A. Feinstein, Holden.Day, San Francisco l9ó4. (The original: HHQopuauur n

uuQoptuaurronnar ycrpoňunocrt c,ryvaňnux BeJIBqI{H ll npoueccoB' AxaÁeuur Hayx CCCP, Mocxna

l9ó0).
||. Casouoe, B. B., Orner Ha oAnH nonpoc P. JI'.{o6pyuuHa. Teopnr neporrrrocreň rt ee npuMeHeBle

9 (1964), 1, c. 180-181.
|2.Studený, M.' Asymptotic behaviour of empirical multiinformation. Kybernetika 23(1987)'2'pp.|2+|35.
|3' Zvároíó, J., Informační míry statistické závislosti a výběrové vlastnosti zobecněné entropie řádu a.

Thesis, Prague 1973 (in Czech).

My.ntrrrmQopMaqnÍ lr npo6neMa xapaxTeprr3al|rrrr oT||oIueHHň

ycJ|oB[oň [e3aB[ct|MocT|f
M. CTYAEHbI

(IIPara)

Ycrarrollego He1oTopoe alre6parrvecroe cooTnoueHne MexAy MynbTurrnQopuauneň rr ycnoB-

Hoř nrr$opuaqneň. floxarauo' qTo 3To cooTHouteHl{e npnMeHI{Mo x npo6leve xapar(Tepx3auuu

orHoruegnň ycloruoň He3aDl{cHMocTH' KoTopa' Bo3HI'KaeT B cBt3ll c Bepo'THocTHbIMl,l 3KcnepTHbIMH

cncTeMaMu. 6o.nee xorrxperno BhrBeÁeHa HoBa' axcuoMa ÁJI' )Ttlx oruouerruň. Hexoropue noAroTo-

BBTeJII'HbIe p€3ynbTaTH HMetoT caMocToíTeJIř'Hoe 3HaqeHHe: xapal(Tep}r3au[' MaprnHa"nbHo-HenpepblB-

HbIx Mep B TeopeMe l rr xaQopvaur'oHHo-Teop€TuqecKoe 3HaqeHue ycJloBHoro npoH3BeÁeHlrÍ Mep'

ynoM'HyToe s c'eÁcrsnr' 3.
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