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The basic idea of an algebraic approach to learning Bayesian network (BN) structures is to
represent every BN structure by a certain uniquely determined vector, called the standard
imset. In a recent paper [18], it was shown that the set S of standard imsets is the set of
vertices (=extreme points) of a certain polytope P and natural geometric neighborhood for
standard imsets, and, consequently, for BN structures, was introduced.

The new geometric view led to a series of open mathematical questions. In this paper, we
try to answer some of them. First, we introduce a class of necessary linear constraints on
standard imsets and formulate a conjecture that these constraints characterize the poly-
tope P. The conjecture has been confirmed in the case of (at most) 4 variables. Second,
we confirm a former hypothesis by Raymond Hemmecke that the only lattice points (=vec-
tors having integers as components) within P are standard imsets. Third, we give a partial
analysis of the geometric neighborhood in the case of 4 variables.

� 2010 Elsevier Inc. All rights reserved.
1. Motivation

The motivation for this research is learning Bayesian network (BN) structures from data by the method of maximization
of a quality criterion (=score and search method). By a quality criterion is meant a real function Q of a BN structure (=of a
graph G, usually) and of a database D. The value Q(G,D) should say how much the BN structure given by G is good to explain
the occurrence of the database D. For further details about the score and search approach to structural learning Bayesian nets
see [5] and recent papers [6,13].

The basic idea of an algebraic and geometric approach to this topic, proposed in Chapter 8 of [15] and then developed in
[18], is to represent the BN structure given by an acyclic directed graph G by a certain vector uG having integers as compo-
nents, called the standard imset (for G). The point is that then every reasonable criterion Q for learning BN structures (score
equivalent and decomposable one) is an affine function (=a linear function plus a constant) of the standard imset. More spe-
cifically, one has
QðG;DÞ ¼ sQ
D � ht

Q
D ;uGi;
where sQ
D is a real number, tQ

D a vector of the same dimension as the standard imset uG (these parameters both depend
solely on the database D and the criterion Q) and h*, *i denotes the scalar product. The vector tQ

D is named the data vector
(relative to Q).
. All rights reserved.
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The main result of [18] is that the set of standard imsets over a fixed set of variables N is the set of vertices (=extreme
points) of a certain polytope P. Thus, as every reasonable quality criterion Q can be viewed as (the restriction of) an affine
function on the respective Euclidean space (of higher dimension), the task to maximize Q over BN structures is equivalent to
the task to maximize an affine function over the above-mentioned polytope P.

This maximization problem has been treated thoroughly within the linear programming community. A classic tool to
solve linear programming problems is the simplex method [11]. One of possible interpretations of this method is that it is
a kind of a search method, in which one moves between vertices of the polytope along its edges (in the geometric sense)
until an optimal vertex is reached. This motivated the concept of the geometric neighborhood for standard imsets, and, con-
sequently, for BN structures.

Several open mathematical questions have been mentioned in the conclusions of [18]. They are motivated by the above-
mentioned intention to apply linear programming methods in the area of learning BN structures. This paper is devoted to
three of them.

2. Basic concepts

2.1. Learning BN structures

Throughout this paper we assume that N is a non-empty finite set of variables. Every variable i 2 N is assigned a finite set
of possible values, the individual sample space Xi. To avoid trivial cases and consequent troubles we assume jXijP 2 for any
i 2 N.

Let DAGS(N) denote the collection of all acyclic directed graphs having N as the set of nodes. The (discrete) Bayesian net-
work (BN) is a pair (G,P), where G 2 DAGS(N) and P is a probability distribution on the joint sample space XN �

Q
i2NXi which

(recursively) factorizes according to G [10]. Given G 2 DAGS(N), the respective statistical model of a Bayesian network struc-
ture is the class of all distributions P on XN that factorize according to G. In this paper, we use the phrase BN structure (de-
scribed by G) to name this statistical model.

Note it may happen that two different graphs over N describe the same BN structure. Thus, one is usually interested in
describing the BN structure by a unique representative. A classic such graphical representative is a special chain graph, called
the essential graph [1]. However, in our algebraic approach, we use an algebraic representative instead, called the standard
imset (see below). There is a polynomial algorithm for transforming the standard imset into the essential graph and con-
versely [17].

Learning BN structures is done on the basis of data, assumed in the form of a complete database D : x1, . . . ,xd of the length
d P 1, which is a sequence of elements of the joint sample space XN. Let DATA(N,d) denote the collection of all databases
from XN of the length d. A quality criterion (for learning BN structures) is a real function Q on DAGS(N) � DATA(N,d). Given
an observed database D 2 DATA(N,d), the learning procedure based on Q consists in maximizing the function G ´ Q(G,D)
over G 2 DAGS(N). Thus, the value Q(G,D) should somehow evaluate how the statistical model determined by G fits the data-
base D. We refer for the related concept of (statistical) consistency of a quality criterion to [10, Section 8.4.2].

However, there are other technical requirements on quality criteria raised in connection with computational methods for
their maximization. A criterion is (additively) decomposable [5] if it is the sum of contributions that correspond to factors in
the factorization according to the graph and score equivalent [3] if it ascribes the same value to graphs describing the same
BN structure. There are several examples of quality criteria that meet these requirements. A kind of standard example of such
a criterion is Schwarz’s Bayesian information criterion (BIC) [12], but there is also a bunch of Bayesian quality criteria [16].

2.2. Elementary concepts from polyhedral geometry

Let us consider a real Euclidean space RK , where K is a non-empty finite set. The points in this space are vectors v = [vs]s2K

with v s 2 R. The scalar product of two vectors v;x 2 RK of this type is the number
1 Act
hv;xi �
X
s2K

v s � xs:
Given V # RK , a convex combination of its elements is a finite sum
P

tat � vt , where vt 2 V, at P 0 for all t and
P

tat ¼ 1. A set
V # RK is called convex if it is closed under convex combinations and bounded if there exists c > 0 such that �c 6 vs 6 c for any
s 2 K and v = [vs]s2K 2 V.

The set P # RK of all convex combinations of points in a finite set V # RK is called a polytope. If all components of vectors in
V are rational numbers, that is, V # QK , then P is called a rational polytope. A special case of a polytope is a line-segment
connecting vectors x; y 2 RK :
½x; y� � fa � xþ ð1� aÞ � y; a 2 ½0;1�g:
A polyhedron is the set of points x 2 RK that satisfy a finite number of linear inequality constraints, which are the require-
ments of the form hv,xi 6 b, where v 2 RK and b 2 R. A linear equality constraint is then the requirement hv,xi = b.1
ually, this is a pair of inequality constraints: hv,xi 6 b and h�v,xi 6 �b.



M. Studený, J. Vomlel / International Journal of Approximate Reasoning 52 (2011) 627–640 629
A well-known result in polyhedral geometry says that a set P # RK is a polytope iff it is a bounded polyhedron [11, Cor-
ollary 7.1c]. Note that the classic version of the simplex method is applicable to the task to find maximum/minimum of a lin-
ear function x ´ hv,xi over x 2 P, where P is a polyhedron and v 2 RK [11, Chapter 11].

A vertex (=an extreme point) of a polytope P is a point x 2 P which cannot be written as a convex combination of elements
in Pn{v}.2 An edge of a polytope P is a line-segment [x,y], where x, y are distinct vertices of P and the set Pn[x,y] is convex. The
vertices and edges of a polytope are quite important in linear programming because the simplex method applied to a polytope P

can be interpreted as a kind of search method in which one moves between the vertices of P along its edges, for details see [11,
Section 11.1].

A conical combination of elements in V # RK is a finite sum
P

tat � vt , where vt 2 V and at P 0 for all t. A set C # RK is a cone
if it is closed under conical combinations. A rational polyhedral cone is the set C of all conical combinations of points in a finite
set V # QK ; we say then that C is spanned by V. A cone C is pointed if there exists non-zero v 2 RK such that hv,xi > 0 for any
non-zero x 2 C.

2.3. Imsets

The method of structural imsets was proposed in [15] to provide an universal (mathematical) tool for describing proba-
bilistic conditional independence structures. In the context of graphical models, it leads to an algebraic approach to learning
BN structures.

An imset u over N is an integer-valued function on PðNÞ � fA; A # Ng, the power set of N. It can be viewed as a vector
whose components are integers, indexed by subsets of N. Any real function m : PðNÞ ! R will be analogously interpreted
as a real vector (=identified with an element of RPðNÞ). Thus, an imset is nothing but an element of ZPðNÞ, called a lattice point
in RPðNÞ in the context of integer programming [11].

A trivial example of an imset is the zero imset, denoted by 0. Given A # N, the symbol dA will denote the following basic
imset:
2 Equ
3 Equ
4 An
dAðBÞ ¼
1 if B ¼ A;

0 if B – A;

�
for B # N:
Since {dA;A # N} is a linear basis of RPðNÞ, any imset can be expressed as a combination of these basic imsets with integers as
coefficients.

An elementary imset (over N) is an imset of the form
uha;bjCi ¼ dfa;bg[C þ dC � dfag[C � dfbg[C ;
where C # N and a, b 2 NnC are distinct. In our algebraic approach [15], it encodes an elementary conditional independence
statement a � bjC. The class of all elementary imsets over N will be denoted by EðNÞ; it is a finite subset of RPðNÞ. The cone
spanned by EðNÞ will be denoted by RðNÞ. It is a pointed rational polyhedral cone in RPðNÞ.

An imset will be called combinatorial if it is a linear combination of elementary imsets with non-negative integers as coef-
ficients.3 The degree of a combinatorial imset u, denoted by deg(u), is the number
degðuÞ ¼ hm�;ui �
X
S # N

m�ðSÞ � uðSÞ; ð1Þ
where m�ðSÞ ¼ 1
2 � j S j �ðj S j �1Þ for S # N. It is shown in [15, Proposition 4.3] that deg(u) is the sum of coefficients in the

decomposition of u into elementary imsets; in particular, this sum only depends on u, not on a particular combination of
elementary imsets yielding u.

An imset which is a combination of elementary imsets with non-negative rational coefficients will be called structural.4

Note that these imsets are the tools for describing probabilistic conditional independence structures [15]. There exists a struc-
tural imset over N with jNj = 5 which is not combinatorial [8].

2.4. Algebraic approach to learning BN structures

Given G 2 DAGS(N), the standard imset for G is given by the formula:
uG ¼ dN � d; þ
X
i2N

dpaGðiÞ � dfig[paGðiÞ
� �

; ð2Þ
where paG(i) = {j 2 N; j ? i in G} denotes the set of parents of i in G. Note that terms in (2) can both sum up and cancel each
other. Nevertheless, it follows from the definition that uG has at most 2 � jNj non-zero values. Hence, the memory demands
for representing standard imsets in a computer are polynomial in jNj.
ivalently, Pn{v} is convex.
ivalently, a combinatorial imset is a sum of elementary imsets with allowed repetition of summands.
equivalent characterization is that a structural imset is a lattice point within the cone RðNÞ.
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An important observation is that, for G, H 2 DAGS(N), one has uG = uH iff they describe the same BN structure [15, Corollary
7.1]. In particular, the standard imset for G 2 DAGS(N) is a unique (algebraic) representative of the corresponding BN struc-
ture. Note that every standard imset is combinatorial; actually, it is a sum of elementary imsets (see Lemma 2 in Section 5 of

this paper).5 The degree of a standard imset uG for G 2 DAGS(N) equals jNj
2

� �
� r, where r is the number of arrows in G [15, Lemma

7.1].
Now, Lemmas 8.3 and 8.7 from [15] together say that every score equivalent and decomposable criterion Q must have the

form
5 Con
6 [15
QðG;DÞ ¼ sQ
D � ht

Q
D ; uGi for G 2 DAGSðNÞ;D 2 DATAðN;dÞ; d P 1; ð3Þ
where the constant sQ
D 2 R and the vector tQ

D 2 RPðNÞ do not depend on G. The formulas for the data vector tQ
D relative to some

basic quality criteria Q have been derived in [15,16].

2.5. Geometric view on learning BN structures

Let us take a geometric view on the set of standard imsets over a fixed set of variables N, denoted by S:
S � fuG; G 2 DAGSðNÞg# RPðNÞ:
To avoid misunderstanding recall that distinct G, H 2 DAGS(N) may give rise the same standard imset uG = uH but S contains
just one vector for any group of graphs describing the same BN structure. Theorem 4 in [18] says that S is the set of vertices of
a rational polytope P # RPðNÞ. This polytope P will be called the standard imset polytope in the sequel. It follows from (3) that
the task to maximize Q over G 2 DAGS(N) is equivalent to the task to minimize the linear function u#htQ

D ;ui over P.
The idea of application of linear programming methods in the area of learning BN structures led to the concept of geo-

metric neighborhood for BN structures. More specifically, two standard imsets u, v 2 S will be called geometric neighbors if
the line-segment connecting them in RPðNÞ is an edge of the standard imset polytope P.

It has been shown in [18, Theorem 5] that the well-known inclusion neighborhood, used widely in current computational
methods for learning BN structures, like the GES algorithm [5], is strictly contained in the geometric one. Moreover, it follows
from [15, Corollary 8.4] that standard imsets u, v 2 S correspond to inclusion neighbors iff their difference w = u � v is either
an elementary imset or its multiple by �1.

The importance of the concept of geometric neighborhood is based on the fact that, for any affine function Q on RPðNÞ, a
local maximum of Q in u 2 S with respect to the geometric neighborhood must be the global maximum of Q over P [18, The-
orem 6]. In particular, this holds for any reasonable quality criterion Q for learning BN structures.

The following research goals have been expressed in Conclusions of [18].

	 Describe the linear constraints on the points in P. A complete characterization of these constraints would provide a poly-
hedral description of P, required by the classic version of the simplex method.
	 An interesting conjecture by Raymond Hemmecke was that the only lattice points within P are standard imsets.
	 Describe the differential imsets for geometric neighbors, that is, imsets of the form uG � uH, where G, H 2 DAGS(N) are such

that uG and uH are geometric neighbors.

These questions concern the complexity of a potential future linear programming procedure for maximizing a quality cri-
terion Q. In this paper we partially answer some of them.

3. Necessary linear constraints

In this section, we summarize all linear constraints on standard imsets we are aware of. Of course, they give necessary
conditions on the points in P.

3.1. Overview of the constraints

We classify our linear constraints into three groups, denoted (A), (B) and (C). First, the fact that every standard imset is
combinatorial [15, Lemma 7.1] implies that it belongs to the cone RðNÞ generated by elementary imsets. This simple obser-
vation gives two kinds of necessary linear conditions on the points in P: the equality constraints, denoted by (A), and the
remaining inequality constraints, denoted by (B).

(A) Equality constraints
If u 2 S then the following two conditions are valid6:
versely, every elementary imset is the standard one for some G 2 DAGS(N).
, Proposition 4.4] says that every structural imset is o-standardized, which basically means that (A.1) and (A.2) are valid, cf. [15, p. 40].



Table 1
Numbers of non-specific inequality constraints.

jNj 2 3 4 5

Number of extreme rays 1 5 37 117978

7 See
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X
S; S # N

uðSÞ ¼ 0; ðA:1Þ

8a 2 N
X

S; a2S # N

uðSÞ ¼ 0: ðA:2Þ
This means that S, and, therefore, P as well, belongs to a linear subspace of RPðNÞ of the dimension 2jNj � jNj � 1. In particular,
a kind of conventional dimensionality reduction is useful.

Specifically, we will interpret (A.1) and (A.2) in this way: u 2 S is uniquely determined by its values u(S) for S # N with
jSjP 2. The remaining values are then determined in two steps as follows:

	 8a 2 N uðfagÞ ¼ �
P

S;a2S;jSjP2uðSÞ,
	 uð;Þ ¼ �

P
S;S – ;uðSÞ.

In the sequel, we are interested in describing standard imsets in this way and formulate the other constraints accordingly.

(B) Non-specific inequality constraints
The inequality constraints on the points in the coneRðNÞ are related to supermodular functions. A function m : PðNÞ ! R

is called supermodular iff
mðC [ DÞ þmðC \ DÞP mðCÞ þmðDÞ for every C;D # N:
An equivalent definition is that hm,viP 0 for every elementary imset v over N, see [15, Proposition 5.1]. This observation
gives a (formally infinite) set of inequality constraints on the points in RðNÞ, and, therefore, on any standard imset u:
hm;uiP 0 for every supermodular function m : PðNÞ ! R: ðBÞ
Nevertheless, the point is that this condition can equivalently be formulated in the form of a finite number of linear inequal-
ity constraints. First, without loss of generality one can assume that m(S) = 0 for S # N with jSj 6 1. Second, the class of these
special supermodular functions is a pointed rational polyhedral cone and has, therefore, finitely many extreme rays.7 Every
such extreme ray has unique lattice point representative with the property that its components have no common prime divisor.
Thus, the class of these representatives, denoted by K}‘ ðNÞ and called the ‘-skeleton in [15], establishes a finite set of normalized
inequality constraints:
8m 2 K}‘ ðNÞ hm; uiP 0:
These (representatives of) extreme rays have been computed for jNj 6 5 using linear programming packages [14]. It seems
that the number of these extreme rays grows super-exponentially with jNj; their numbers for jNj 6 5 are in Table 1. It looks
like none of these inequality constraints on points in P is derivable from the other constraints (including those mentioned in
subsequent subsection (C)).

A standard example of a supermodular function is the identifier mA" of the class of supersets of A # N given by:
mA"ðSÞ ¼
1 if A # S;

0 otherwise:

�

Thus, an easy consequence of the condition (B) is the following constraint:
8A # N hmA";ui �
X

S;A # S

uðSÞP 0: ð4Þ
However, if the constraints (A) are valid, (4) is non-trivial only for sets A with jAjP 2.

(C) Specific inequality constraints
The results of [17] led to a series of specific linear inequality constraints on standard imsets, that is, the constraints that

are not valid for all points in the cone RðNÞ. These constraints are related to ‘‘ascending” classes of sets. We say that a class
A#PðNÞ of subsets of N is closed under supersets if
8S 2 A if S # T # N then T 2 A:

To avoid vacuous constraints and a trivial consequence of (A.1) we consider only non-empty classes of non-empty sets. This
gives the following series of constraints:
[15, Section 5.1.2 and Lemma 5.3] for both these claims.



Table 2
Numbers of specific inequality constraints.

jNj 2 3 4 5

Number of classes 4 18 166 7579

8 For
9 The
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X
S2A

uðSÞ 6 1 for any system ; – A# fS # N; j S jP 1g closed under supersets: ðCÞ
Note that, unlike the number (B)-constraints, the number of constraints in (C) seems to grow only exponentially with jNj;
their numbers for jNj 6 5 are given in Table 2. Actually, these constraints are in correspondence with hierarchical log-linear
models over N. This is because every class of sets closed under supersets is determined by the collection of its minimal sets,
which is a class of incomparable sets. Hierarchical log-linear models [9] also correspond to classes of incomparable subsets of
the class {A # N; jSjP 1}, namely to those whose union is N.

Nevertheless, the list of conditions in (C) is not reduced completely. Some of these constraints are superfluous because
they follow from the other ones combined with (A) and (B).8 More specifically, after the reduction one has 1 specific inequality
constraint for jNj = 2, 8 constraints for jNj = 3 and 117 for jNj = 4. Moreover, each of the (C)-constraints can be, owing to (A.2), re-
formulated equivalently in a ‘‘normalized” form
X
S2B

kS � uðSÞ 6 1 for some B# fS # N; j S jP 2g and kS 2 Z n f0g:
It looks like none of the constraints for A# fS # N; j S jP 2g is superfluous, while if A contains a singleton then both cases
can occur: either the respective inequality constraint is superfluous or it is non-derivable from the others.9

Lemma 1 (the necessity of specific constraints).
If u 2 S is a standard imset over N then the condition (C) is valid.
Proof. The proof is based on some results from [17]. One can proceed by the induction on jNj. If N is a singleton then, by (A.1)
and (A.2), the only u 2 S is the zero imset, which satisfies (C).

If jNjP 2, we use the reduction steps from [17, Section 6]. Let us exclude the trivial case of the zero imset. A non-zero
imset u 2 S is either adapted, which means u(N) – 0, or it is not adapted, that is, u(N) = 0.
	 If u is not adapted then Corollary 5.1 and Lemma 6.2 in [17] imply there exists a set ;– Mu 
 N, called the core of u, such
that u(S) = 0 for S # N with SnMu – ; and the restriction of u to PðMuÞ is a standard imset over Mu. Now, given a system A
from (C), A \ PðMuÞ is a system of subsets of Mu closed under supersets, and, by the induction hypothesis,

X
S2A

uðSÞ ¼
X

S2A\PðMuÞ
uðSÞ 6 1;
which verifies the induction step.
	 If u is adapted then [17, Lemma 6.3 including preceding explanation] implies that there exist sets ;– M, T 
 N such that

M [ T = N, the imset ~w � u� dN þ dT þ dM � dT\M vanishes for S # N with SnM – ; and the restriction w of ~w to PðMÞ is a
standard imset over M. That means
u ¼ ~wþ dN � dT � dM þ dT\M|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
v

:

Given a class A from (C), the set system A \ PðMÞ is a class of subsets of M closed under supersets, and, by the induction
hypothesis one has
X

S2A

~wðSÞ ¼
X

S2A\PðMÞ
wðSÞ 6 1:
To verify the induction step we distinguish two subcases:

– If M R A, then, since A is closed under supersets, A \ PðMÞ is empty, which even says
P

S2A ~wðSÞ ¼
P

S2A\PðMÞwðSÞ ¼ 0.
As T \M R A, the special form of the imset v ¼ u� ~w implies that

P
S2AvðSÞ ¼

P
S2AdNðSÞ � dTðSÞ is either 1 or 0 (as

N 2 A). Thus,
P

S2AvðSÞ 6 1 and, by summing,
P

S2AuðSÞ ¼
P

S2A ~wðSÞ þ
P

S2AvðSÞ 6 0þ 1 one gets what is desired.
example, if A ¼ fS # N; a 2 Sg for some a 2 N, then (A.2) gives
P

S2AuðSÞ ¼ 0 6 1.
latter case may happen for jNj = 5.
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– If M 2 A then it is enough to show
P

S2AvðSÞ 6 0. One can either have T \M 2 A, in which case T;M;N 2 A andP
S2AvðSÞ ¼ 1� 1� 1þ 1 ¼ 0, or one can have T \M R A, in which case one writesX

S2A
vðSÞ ¼

X
S2A

dNðSÞ|fflffl{zfflffl}
1

�dTðSÞ � dMðSÞ|fflffl{zfflffl}
1

¼
X
S2A
�dTðSÞ 6 0:
This concludes the proof. h
3.2. Conjecture about the linear constraints

The constraints (A)–(C) from Subsection 3.1 have several consequences, which are, perhaps, not evident at first sight. One
of them is that every standard imset u 2 S is bounded from below: u(S) P �1 for any S # N. These consequences are formu-
lated in Appendix A.

We have shown that (A)–(C) are necessary constraints on the points in P, but we also have some reasons to hope that they
are sufficient to characterize the standard imset polytope P. More specifically, we have verified for jNj 6 4 that the conditions
(A)–(C) characterize P. Thus, we dare to formulate the following hypothesis.

Conjecture 1. The linear constraints (A)–(C) together give a necessary and sufficient condition on a vector u 2 RPðNÞ to belong to P.

It seems to be a challenge to existing software either to confirm or disprove Conjecture 1 for jNj = 5. Actually, for this rea-
son, we do not know the exact number of (C)-constraints (=after a complete reduction) in case jNj = 5.

4. Lattice points in the standard imset polytope

Another related question concerning the polytope P is how ‘‘thick” it is. More specifically, we may ask whether there ex-
ists a lattice point in its interior. Raymond Hemmecke made some computations to find out whether such a point exists in
the case jNj 6 5 and the result was negative. This led him to a hypothesis that every lattice point in the standard imset poly-
tope is already a standard imset. In this paper, we confirm the hypothesis as a consequence of the inequality constraints from
Section 3.

Theorem 1. If u 2 P \ ZPðNÞ then u 2 S.
Proof. Let us denote P�ðNÞ ¼ fA # N; j A jP 2g. The basic idea is to introduce a special linear transformation L from RP�ðNÞ to
RP�ðNÞ. More specifically, any u 2 RP�ðNÞ is assigned LðuÞ ¼ v 2 RP�ðNÞ by the formula
vðSÞ ¼
X

T;S # T # N

uðTÞ for S 2 RP�ðNÞ: ð5Þ
To show that L is a one-to-one mapping define a mapping M which maps v 2 RP�ðNÞ to MðvÞ ¼ w 2 RP�ðNÞ:
wðAÞ ¼
X

S;A # S # N

ð�1ÞjSnAj � vðSÞ for A 2 RP�ðNÞ: ð6Þ
To see that M is the inverse of L, given A 2 RP�ðNÞ, we substitute (5) into (6) and change the order of summation:
wðAÞ ¼
X

S;A # S # N

ð�1ÞjSnAj �
X

T;S # T # N

uðTÞ ¼
X

T;A # T # N

uðTÞ �
X

S;A # S # T

ð�1ÞjSnAj ¼
X

T;A # T # N

uðTÞ � dAðTÞ ¼ uðAÞ:
Thus, L is a one-to-one linear mapping. Moreover, it has the property that both L and its inverse M maps lattice points to
lattice points: this follows from (5) and (6).

Nevertheless, L can be viewed as a linear mapping from the linear subspace of RPðNÞ specified by (A.1) and (A.2) (see
Section 3.1). This linear subspace includes the polytope P. Since a linear mapping preserves convex combinations, the image
of P by L is a polytope whose vertices are images of vertices of P, that is, of standard imsets. Now, as explained in subsection
(B) of Section 3.1, the condition (4) is valid for any standard imset. In particular, given u 2 S, its image L(u) has non-negative
components hmA",ui for A # N, jAjP 2. Moreover, as A ¼ fT; A # T # Ng is closed under supersets, one has, by (C),
LðuÞðAÞ ¼

P
S2AuðSÞ 6 1. In particular, L(u)(A) 2 {0,1} for any A # N, jAjP 2, which means L maps S into f0;1gP�ðNÞ. There is

no lattice point in the interior of the hypercube ½0;1�P�ðNÞ, which implies the same holds for P. h
Remark. The reader may be interested in the history of proving Theorem 1. The original proof, which we had mentioned in
our WUPES 2009 contribution, was quite long and complicated. It was based on technical details of the reconstruction
algorithm from [17]. However, later e-mail discussion with Raymond Hemmecke and Silvia Lindner, in connection with
another paper [4], had an important side-effect. All of us have realized the potential of the transformation L given by (5),
which makes it possible to simplify things substantially. Actually, our further (joint) research topic will be whether the
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transformation L (possibly followed by another one) can lead to a simpler algebraic representative of a BN structure [19].
Another comment is that the key tools in our final proof, the transformation given by (5) and its inverse (6), well-known
in much more general context as Möbius inversion [2], has numerous applications in the area of uncertainty processing in
artificial intelligence, see the survey [7].

In light of Theorem 1 one can formulate a weaker version of the conjecture from Section 3.2:

Conjecture 2. The constraints (A)–(C) together form a necessary and sufficient condition on an imset u 2 ZPðNÞ to be a standard
imset (over N).

Indeed, if Conjecture 1 is true then, by Theorem 1, Conjecture 2 holds as well. However, it is not clear at this moment
whether the proof of Conjecture 2 is enough to confirm Conjecture 1. Perhaps the polyhedron specified by inequalities
(A)–(C) has, for some jNjP 5, vertices that are not lattice points.

On the other hand, Conjecture 2 could be easier to prove. Actually, we believe we can offer a method to verify a hypothesis
like that. The idea is to use an algorithmic characterization of standard imsets from [17, Section 7.4]. This seems to allow one
to verify the conjecture by induction on jNj; for details see Section A. However, it may be the case that (A)–(C) is not a com-
plete list of linear constraints on S for jNjP 5. Then additional constraints may be added to that list and one can try to verify
the modified conjecture by the same method.
5. A catalogue of differential imsets over 4 variables

The result of our analysis of the geometric neighborhood in the case jNj = 4 is an electronic catalogue. Actually, it is a cat-
alogue of differential imsets for pairs of geometric neighbors. To describe the catalogue we need a few auxiliary observations.

5.1. Some auxiliary concepts and results

Given a differential imset w = u � v for u, v 2 S it follows from the formula (1) that the degree difference deg(u) � deg(v)
does not depend on the choice of the pair u, v 2 S yielding w. This number seems to be quite important characteristic of w.

We say that two imsets u, v over N are permutation equivalent (PE) if there exists a bijection p : N ? N such that, for all
A # N, it holds u(A) = v (p(A)), where p(A) = {p(i); i 2 A}. Each class of permutation equivalent imsets will be called a PE class.
From the point of view of our analysis it is not necessary to distinguish between permutation equivalent differential imsets.
Every PE class can be described by an arbitrary representative.

Evidently, if w = u � v is a differential imset for u, v 2 S then �w = v � u is a differential imset, too. Again, from the point of
view of our analysis it is not necessary to distinguish between w and �w. Therefore, we keep only one of these in the cat-
alogue. If the degree difference is non-zero we choose w = u � v with deg(u) > deg(v). That means, our catalogue only con-
tains (PE representatives of) differential imsets with non-negative degree difference.

An important question is how to express differential imsets. An elegant solution is offered below.

Lemma 2. Every standard imset is a combination of elementary imsets with coefficients + 1 (and 0).
Proof. Consider an auxiliary notation: given a triplet of sets hi,BjCi, where B, C # N are disjoint and i 2 NnB [ C, we
introduce10:
10 In t
11 Tha
uhi;BjCi ¼ dfig[B[C þ dC � dfig[C � dB[C :
Observe that uhi,BjCi is a sum of (distinct) elementary imsets of the form uhi,jjKi, where j 2 B and C # K # N. Indeed, if B = ;
then uhi,BjCi = 0 and if B – ; then we order its elements in a sequence j1, . . . , j‘ , ‘ P 1 and get
uhi;BjCi ¼ uhi;j1 jCi þ uhi;j2 jC[fj1gi þ � � � þ uhi;j‘ jC[fj1 ;...;j‘�1gi:
Given G 2 DAGS(N), let us fix an ordering r of its nodes that is consonant with the direction of arrows in G.11 It has been
shown in [15, proof of Lemma 7.1] that the standard imset uG can be written as follows:
uG ¼
X
i2N

uhi;prer;GðiÞjpaGðiÞi;
where prer,G(i) denotes the set of predecessors of i in r that are not in paG(i). As mentioned above, each summand
uhi;prer;GðiÞjpaGðiÞi is a sum of distinct elementary imsets uhi,jjKi where j precedes i in r. These groups of elementary imsets are
disjoint for distinct i’s. Thus, uG can be written as a sum of distinct elementary imsets (=a combination with coefficients + 1
and 0). h
he triplets, we use a shorthand i to denote {i}.
t means, if a ? b in G then a precedes b in r.
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A consequence of Lemma 2 is the following observation.

Lemma 3. Every differential imset w = u � v for u, v 2 S is a combination of elementary imsets with coefficients + 1 and �1 (and

0). Moreover, there exists a combination with at most jNj
2

� 	
non-zero coefficients.

A differential imset w = u � v for u,v 2 S is a combinatorial imset iff it is a (possibly empty) combination of elementary imsets
with coefficients +1, that is, the sum of elementary imsets without repetition; the number of summands is deg(u) � deg(v) then.
Proof. The first claim is evident from Lemma 2. To prove the remaining claims the following graphical view is useful. Let us
imagine the ‘‘inclusion neighborhood” graph: an undirected graph over S in which u, v 2 S are adjacent nodes iff they cor-
respond to inclusion neighbors. Then u � v is (±1)-multiple of an elementary imset (see Section 2.5) and the degree differ-
ence deg(u) � deg(v) is either +1 or �1 (cf. Section 2.3). In particular, the graph is special: its nodes are grouped into layers
that correspond to the degree of standard imsets and edges are only between successive layers.

An important auxiliary observation is this: given K, L 2 DAGS(N) such that uL � uK is a non-zero combinatorial imset there
exists an ‘‘ascending” path uK = v1,v2, . . . ,v‘ = uL, ‘ � deg(uL) � deg(uK) + 1 in the above graph, that is, vi+1 is one layer above vi

for i = 1, . . . ,‘ � 1. Indeed, the premise means that the statistical model of a BN structure (see Section 2.1) described by L is
contained in the one described by K [15, Lemma 8.6]. Then Chickering’s transformational characterization of this inclusion
[5] says there exists a sequence of K = G1, . . . ,Gn = L 2 DAGS(N), n P 2 such that " i = 1, . . . ,n � 1 either Gi+1 gives the same
statistical model as Gi or Gi+1 is obtained from Gi by a removal of one arrow (cf. [15, Lemma 8.5]). If Gi+1 and Gi give the same
statistical model then uGiþ1

¼ uGi
(see Section 2.4). If Gi+1 is obtained by the removal of an arrow a ? b in Gi, then, by [15,

Proposition 8.3], uGiþ1
� uGi

is an elementary imset of the form uha, bjCi where C # Nn{a,b}. That means, uGiþ1
is an inclusion

neighbor of uGi
which is one layer above it. Thus, the existence of the ascending path was verified. Moreover, the summands

in the corresponding decomposition uL � uK ¼
P‘�1

i¼1 ðv iþ1 � v iÞ must be distinct elementary imsets, because they (graph-
ically) correspond to the removals of different arrows.

This already implies the third claim. If w = u � v is a non-zero combinatorial imset then the above-mentioned ascending
path from v to u of the length deg(u) � deg(v) defines the desired decomposition of w into distinct elementary imsets. If w is
the zero imset, it is an empty combination of elementary imsets with coefficients +1. The converse implication in the third
claim is trivial.

To show the second claim, about the maximal number jNj
2

� 	
of summands, assume without loss of generality that neither

w = u � v nor �w = v � u is a combinatorial imset, for otherwise the above claim already implies what is required. Given any
u 2 S, the auxiliary observation above implies there exists an ascending path from the zero imset 0 to u and an ascending

path from u to the the imset u* of the highest degree.12 If we denote m � degðu�Þ ¼ jNj
2

� 	
then the former path has the length

deg(u) and the latter m � deg(u); their concatenation has the length m.
Thus, given distinct u,v 2 S, consider both an ascending path qu from 0 to u* through u and an analogous path qv through

v. Now, the upper part of qv (=the section from v to u*) cannot share any node with lower part of qu (=the section from 0 to u)
for otherwise an ascending path from v to u exists in the inclusion neighborhood graph, which contradicts the assumption
that w = u � v is not a combinatorial imset. Analogously, the upper part of qu does not meet the lower part of qv. In particular,
the concatenation of qu and qv is a pseudo-cycle of the length 2m, which can be shortened to a cycle containing both u and v
(of the length at most 2m). Thus, at least one part of the cycle is a path between u and v of the length at most m. Moreover,
the obtained path between u and v consists of two monotone parts (in sense of the degree).

Therefore, the above path u = u1,u2, . . . ,ut = v, 2 6 t 6m + 1 defines a decomposition of the corresponding differential
imset
12 Thi
w � u� v ¼
Xt�1

i¼1

fui � uiþ1g;
where the summands are either elementary imsets or their multiples by � 1. This proves the second claim. h

In particular, every differential imset for a pair of geometric neighbors can be expressed in the described way, which we
have utilized in our catalogue.

5.2. Description of the catalogue

Our catalogue contains differential imsets w = u � v for those u, v 2 S that are geometric neighbors. It contains just one
representative for each PE class and only the imsets with a non-negative degree difference are kept there.
s is the standard imset corresponding to the empty graph.



Table 3
Numbers of pairs of geometric neighbor, differential imsets and PE classes.

Degree difference Pairs of neighbors Differential imsets PE classes

0 2894 927 88
1 4248 1359 144
2 1296 505 71
3 80 40 16
Total 8518 2831 319
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We classified those differential imsets w using three criteria:

	 the degree difference for w,
	 the squared Euclidean length of w, that is,

P
S # NwðSÞ2, and

	 the number of non-zero imset values, that is, j{S # N;w(S) – 0}j.

In the case jNj = 4, the degree differences (for geometric neighbors) are integers between 0 and 3. The values of the
squared Euclidean length are even numbers between 4 and 22. The numbers of non-zero imset values are integers between
4 and 12.

There are 8518 ordered pairs (u,v) of geometric neighbors. As explained above, for each couple of ordered pairs (u,v) and
(v,u), we have chosen only one differential imset out of w = u � v and �w = v � u. In this way, we got 2831 differential im-
sets; they constitute 319 PE classes. Table 3 gives these numbers for each degree difference.

In order to understand better the geometric neighborhood we searched for an elegant description of differential imsets.
One possible solution is offered by Lemma 3: every differential imset over 4 variables can be written as a combination (with
coeficients +1 or �1) of at most 6 elementary imsets (out of 24 possible elementary imsets).

A complete catalogue of differential imsets over 4 variables with a detailed analysis for each differential imset is available
at:

http://staff.utia.cas.cz/vomlel/imset/catalogue-diff-imsets-4v.html
5.3. A simple example

As mentioned in Section 2.5, the classic inclusion neighborhood is contained in the geometric one and the inclusion
neighbors are geometric neighbors with the degree difference ±1.

One of our previous open questions was whether the converse holds. However, as one can deduce from Table 3, this is not
true for jNj = 4: there are 144 PE classes with the degree difference 1 while one has only 3 PE classes consisting of elementary
imsets.

A simple example of a differential imset w = u � v for geometric neighbors u, v 2 S with the degree difference 1 that is
not elementary is as follows:
w ¼ dfag � dfa;bg � dfc;dg þ dfb;c;dg;
where
u ¼ d; � dfa;bg � dfc;dg þ dfa;b;c;dg; v ¼ d; � dfag � dfb;c;dg þ dfa;b;c;dg:
5.4. Some preliminary observations

We used the catalogue of differential imsets referenced above to perform a preliminary analysis of the geometrical neigh-
borhood for jNj = 4. The first observation, somewhat surprising, was how different can be two geometrical neighbors graph-
ically. In the catalogue there are eight PE classes of differential imsets that corresponds to geometrical neighbors that differ
by as much as six edges. Their respective numbers in the catalogue are 29, 33, 35, 69, 255, 270, 286, and 292. At the same
time, these eight differential imsets are combinations of six elementary imsets with coefficients +1 and �1, which shows that

the upper bound jNj
2

� �
in Lemma 3 is tight for jNj = 4.
Fig. 1. An example of geometrical neighbors whose essential graphs differ by six edges.

http://staff.utia.cas.cz/vomlel/imset/catalogue-diff-imsets-4v.html
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In Fig. 1 we give an example of two essential graphs of (standard imsets that are) geometric neighbors and differ by six
edges. Their differential imset is
13 It is
14 Let
dfag þ dfbg � 2dfdg � dfa;bg þ dfc;dg � dfa;b;cg þ dfa;b;dg ¼ �uha;bj;i þ uha;dj;i þ uhc;djabi � uhb;cjadi þ uhb;djai � uha;cjdi:
For jNj = 4, the maximal number of pairs of standard imsets that are geometrical neighbors and give rise to the same dif-
ferential imset is sixteen. The corresponding differential imset13 is the elementary imset uhb,cjai, which has the number 89 in
the catalogue. This means geometrically that there are sixteen parallel edges of the standard imset polytope.

6. Conclusions

Let us mention some of our research goals motivated by the results reported here. First, we would like either to confirm or
disprove Conjecture 1 from Section 3.2 for jNj = 5. If this is confirmed for jNj = 5 we may try to verify its weaker version
Conjecture 2 from Section 4 for general jNj, by the method described in Appendix A.

The catalogue from Section 5 is meant as a step towards a deeper analysis of the geometric neighborhood. For example,
we would like to find out whether there is a graphical interpretation of the geometric neighborhood, namely whether
differential imsets (for geometric neighbors) correspond to some graphical operations with the corresponding essential
graphs. However, the example from Fig. 1 suggests that this may be quite difficult task. Indeed, these two graphs differ
completely in their adjacencies, and, despite that, they represent geometric neighbors.

Lemma 3, namely its second claim, may appear to be an important step to show that the inclusion of Bayesian nets can be
tested with polynomial complexity in jNj by an algebraic method proposed in [4].
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Appendix A. Basic consequences of the constraints

In this section, we gather basic consequences of the constraints (A)–(C) from Section 3. Then we explain what remains to
be done to verify Conjecture 2 by a method based on the procedure for testing standard imsets from [17].

Definition 1 (some basic terminology).
Given a non-zero u 2 ZPðNÞ satisfying (A)–(C), the set
Mu �
[
fS # N; uðSÞ– 0g;
will be called the core of u. If Mu = N then u will be called adapted. The class
T u ¼ fT # N; uðTÞ < 0g;

will be called the class of negative sets (in u) and the class
Lu ¼ fL # N; uðLÞ > 0 & ;– L – Mug;
the class of positive sets (in u).14 The symbols T max
u and Lmax

u will denote the classes of maximal sets (with respect to inclusion) in
T u and Lu, respectively.
Lemma 4 (basic observations). Let u 2 ZPðNÞ satisfy (A)–(C). If u – 0 then u (Mu) = 1 for the core Mu. In particular, u(N) 2 {0,1}.
Moreover, u (;) P 0 and
8S # T # N
X

K;S # K # T

uðKÞP �1: ðyÞ
In particular, u (S) P �1 for every S # N.
Proof. Let us put
Mu ¼ fL # N; 9T # N L # T & uðTÞ– 0g:
Thus, u – 0) Mu ¼
S
Mu – ;. Indeed, if u(;) – 0 then, by (A.1), there exists non-empty T # N such that u(T) – 0 and Mu

contains at least one non-empty set.
unique up to its permutations.
us emphasize that, by definition, we exclude both the core Mu and the empty set ; from the class of positive sets Lu .
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First, we observe S 2Mmax
u ) uðSÞP 1. Indeed, the constraint (B) implies (4), which gives uðSÞ ¼

P
T; S # T uðTÞP 0. But

0 – uðSÞ 2 Z implies u(S) P 1 then.
Second, observe that Mu has a unique maximal set. Put A ¼ fT # N; 9S 2 Mmax

u S # Tg and write by (C), respectively
by (A.1):
j Mmax
u j6

X
S2Mmax

u

uðSÞ ¼
X
S2A

uðSÞ 6 1:
Thus, the unique maximal set inMu is the core Mu. We already know u(Mu) P 1 and the converse inequality follows from (C),
respectively (A.1): uðMuÞ ¼

P
S2AuðSÞ 6 1.

The fact u(;) P 0 follows from (B) and from the observation that d; is a supermodular function: u(;) = hd;,uiP 0.
To see (�) realize that

P
K; S # K uðKÞP 0 by (4). Observe that the class
A ¼ fK; S # K & qðK # TÞg ¼ fK; S # K & K \ ðN n TÞ – ;g
is closed under supersets. Therefore, by (C),
P

K2AuðKÞ 6 1, which can be re-written as �
P

K2AuðKÞP �1. Hence,
X
K;S # K # T

uðKÞ ¼
X

K; S # K

uðKÞ �
X
K2A

uðKÞP 0� 1 P �1:
If one has T = S then (�) reduces to u(S) P �1. h
Corollary 1. If 0 – u 2 ZPðNÞ satisfies (A)–(C) then any T 2 T u is non-empty and T u ¼ fT # N; uðTÞ ¼ �1g.
Proof. By Lemma 4, u(;) P 0 gives ; R T u and u(T) P �1 for T # N implies the rest. h
Definition 2 (center). Given 0 – u 2 ZPðNÞ satisfying (A)–(C) let us introduce
Wu � fa 2 N;9 T; T 0 2 T u; T – T 0; a 2 T \ T 0g
and call it the center of u.
Lemma 5 (about the center).
Assume that 0 – u 2 ZPðNÞ satisfies (A)–(C). Then Mu ¼

S
T u ¼

S
T max

u and Wu ¼
S
Lu ¼

S
Lmax

u .
Proof. The inclusion
S
T u # Mu follows from the definition of the core Mu. To see the converse inclusion use the condition

(A.2):
8a 2 Mu 0 ¼
X
S;a2S

uðSÞ ¼
X

S;a2S&uðSÞ>0
uðSÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P1

þ
X

S2T u ;a2S

uðSÞ;
where we used u(Mu) = 1 (Lemma 4). Hence, there exists T 2 T u with a 2 T.
To show Wu #

S
Lu consider a 2Wu. This means
X

R; a2R & uðRÞ<0

uðRÞ 6 �2 and; by ðA:2Þ;
X

L; a2L & uðLÞ>0

uðLÞP 2:
As u(Mu) = 1, there exists L – Mu with u(L) > 0 and a 2 L. Thus, L 2 Lu and a 2 L #
S
Lu.

To show the converse inclusion
S
Lu # Wu consider a 2

S
Lu. Thus, L 2 Lu with a 2 L exists and, since
uðMuÞ ¼ 1; one has
X

L # N; a2L & uðLÞ>0

uðLÞP 2:
The condition (A.2) implies
P

R2T u ; a2RuðRÞ 6 �2. As u(T) = �1 for T 2 T u (by Corollary 1) it means a 2Wu. h
Lemma 6 (about positive and negative sets). If 0 – u 2 ZPðNÞ satisfies (A)-(C) and L 2 Lmax
u then jfT 2 T u; L # Tgj is either u (L) or

u (L) + 1. In particular, given L 2 Lu, there exists T 2 T max
u with L 
 T. Moreover, the following ‘‘sandwich” property is valid:
8S; T 2 T u if S 
 T then 9K 2 Lu S 
 K 
 T:
Proof. First, we show jfT 2 T u; L # TgjP uðLÞ. As L 2 Lmax
u and u(Mu) = 1, write using Corollary 1 and (C):
uðLÞ þ 1� jfT 2 T u; L # Tgj ¼
X

K;L # K&uðKÞ>0

uðKÞ þ
X

K;L # K&uðKÞ<0

uðKÞ ¼
X

K;L # K

uðKÞ 6 1:
Hence, uðLÞ þ 1� jfT 2 T u; L # Tgj 6 1 gives the desired inequality.
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Second, we show jfT 2 T u; L # Tgj 6 uðLÞ þ 1. By the condition (4), which follows from (B), write:
uðLÞ þ 1� jfT 2 T u; L # Tgj ¼
X

K;L # K

uðKÞP 0;
which gives the required inequality.
The ‘‘sandwich” property follows easily from (�). It says
X
K;S # K # T & uðKÞ>0

uðKÞ þ
X

K2T u ;S # K # T
uðKÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

6�2

¼
X

K;S # K # T

uðKÞP �1;
implying the existence of K with S # K # T and u(K) > 0. Of course, S – K – T. Thus, S 
 K 
 T allows us to deduce K 2 Lu. h
Definition 3 (final negative set).
Given a non-zero imset u 2 ZPðNÞ satisfying (A)–(C), a negative set T 2 T u will be called final (in u) if
T nWu – ; & T \Wu 2 Lu [ f;g:
The class of final negative sets in u will be denoted by T fin
u . If a negative set T 2 T u satisfies T \Wu = ; it is called isolated.
Corollary 2. If 0 – u 2 ZPðNÞ satisfies (A)–(C) then T fin
u # T max

u . Moreover, every isolated negative set is final. In particular, if Wu = ;
then T fin

u ¼ T u.
Proof. If T 2 T fin
u then consider a 2 TnWu. By the definition of the center Wu, the only set from T u covering a is T. Thus, there

is no strict superset of T in T u.
As any T 2 T u is non-empty (by Corollary 1) the second claim is evident. h

Now, we are able to describe how Conjecture 2 can perhaps be verified. One can use the procedure from [17, Section 7] for
testing whether a given imset is standard. It is a recursive procedure, based on successive decomposition of the tested imset
imset u over N. The reduction step allows one to transform the original task to the task to test another imset w over a smaller
set M 
 N. However, to perform that step one has to find a final negative set T in sense of Definition 3. Note that such
set always exists for a standard imset u over N; however, we omit the proof in this paper.

Thus, to verify Conjecture 2 by induction on jNj, one has to show the following:

	 to prove that any (adapted imset) u 2 ZPðNÞ satisfying (A)–(C) has a final negative set T,
	 to observe that the imset ~w ¼ u� dN þ dT þ dM � dT\M , where M = Nn(TnWu), vanishes outside PðMÞ,
	 to observe that (these observations imply) that

P
S # N juðSÞj 6 2 jNj holds any imset u satisfying (A)–(C),

	 to show that the restriction w of ~w to M satisfies (A)–(C).

This is basically what has to be done because the other tests in the procedure from [17, Section 7] are passed by u 2 ZPðNÞ

satisfying (A)-(C), as shown in this appendix.
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