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1. Introduction

Bayesian networks are popular graphical models, used widely both in statis-
tics and artificial intelligence; see the books by Lauritzen1 and Pearl2 .
These statistical models of conditional independence structure are ascribed
to acyclic directed graphs whose nodes correspond to (random) variables in
consideration. An important topic is learning Bayesian network structure
(BN structure), which is determining the (most suitable) statistical model
on the basis of observed data; see the book by Neapolitan3 for details.



November 16, 2011 9:14 WSPC - Proceedings Trim Size: 9in x 6in osaka11-shhl

2

Although there are learning methods based on statistical conditional
independence tests, contemporary methods are based on maximization of
a suitable quality criterion, also named score function. It is a function
Q(G, D) of the (acyclic directed) graph G and the data D, evaluating how
good the graph G is to explain the occurrence of the observed data D.
A kind of a standard example of such a criterion is Schwarz’s4 Bayesian
information criterion (BIC), which is obtained by modifying (= subtracting
a penalty term from) the maximized log-likelihood score. However, there are
also many other “marginal likelihood” criteria, also named Bayesian scores,
that are motivated by a Bayesian viewpoint; see Refs. 3 and 5. The learning
task then consists in maximizing G 7→ Q(G, D), given the data D.

The basic idea of an algebraic and geometric approach to this topic,
proposed in Studený6 and later developed by Studený, Vomlel and Hem-
mecke7 , is to represent the BN structure given by an acyclic directed graph
G by a certain vector uG having integers as components, called the stan-
dard imset (for G). Note that the number of components of that vector is
exponential in the number of (random) variables in consideration.

The point is that then every usual criterion Q for learning BN structure
(namely, a score equivalent and additively decomposable one; see Refs. 8
and 9 for these concepts) becomes an affine function of the standard imset
(= differs from a linear function by a constant). The main result in Ref. 7
says that the set of standard imsets is the set of vertices (= extreme points)
of a certain polytope. This opens the way to apply efficient methods of poly-
hedral geometry (linear and integer programming) in this area. However,
to do so one has to solve several open mathematical problems related to
the above mentioned polytope, some of which were partially answered in
Studený and Vomlel10 .

In a conference contribution by Studený, Hemmecke and Lindner11 an
idea of an affine transformation was presented, which leads to an alternative
vector representative of the BN structure, called the characteristic imset.
Its main advantage is that it is always a zero-one vector. Moreover, we have
found recently that Jaakkola, Sontag, Globerson and Meila12 also came with
the idea of application of methods of linear programming (combined with
machine learning approaches) to learning BN structure.

The goal of this paper is to make an overview of our recent results
concerning this topic (from recently published or submitted papers) and
relate them also to the approach by Jaakkola et al.12 . Besides that we
present some further minor results, which we have not published so far.



November 16, 2011 9:14 WSPC - Proceedings Trim Size: 9in x 6in osaka11-shhl

3

In Sec. 2 we recall basic concepts. Section 3 gives the summary of recent
results. Section 4 is particularly devoted to the concept of characteristic
imset; besides recalling basic results on it from Hemmecke, Lindner and
Studený13 we prove here a few additional useful facts. In Sec. 5 we show
that the concept of a characteristic imset allows one to give simple and ele-
gant proofs of some (formerly known) complexity results on learning special
classes of BN structures. Section 6 brings a few new results on the concept
of geometric neighborhood for BN structures, which was introduced in Ref.
7. Section 7 contains notes about our recent computational experiments. In
Conclusions we outline our future research plans.

2. Basic concepts

We tacitly assume that the reader is familiar with basic concepts from poly-
hedral geometry. We only recall briefly the definitions of concepts mentioned
above, but skip their statistical motivation.

Throughout the paper N is a finite non-empty set of variables; to avoid
the trivial case we assume |N | ≥ 2. In statistical context, the elements of
N correspond to random variables in consideration; in graphical context,
they correspond to nodes.

2.1. Graphical concepts

Graphs considered in this paper have a finite non-empty set of nodes N

and two types of edges: directed edges, called arrows or arcs, denoted by
i→ j respectively j ← i, and undirected edges. No loops or multiple edges
between two nodes are allowed.

A graph is undirected if all its edges are undirected. Given a graph G, its
underlying graph Ḡ is an undirected graph obtained from G by the removal
of the directions of arrows. A graph is directed if all its edges are arrows. A
directed graph is acyclic if it has no directed cycle.

The set of parents of a node i, denoted by paG(i), is the set of nodes
j ∈ N such that j → i in G. An immorality in a graph G is an induced
subgraph (of G) for three nodes {a, b, c} in which a → c ← b and a and b

are not adjacent. A set of nodes C ⊆ N is a clique (or a complete set) in G

if every pair of distinct nodes in C is connected by an undirected edge. The
degree degG(i) of a node i ∈ N in an undirected graph G is the number of
nodes adjacent to i in G.

An undirected graph is called chordal, if every (undirected) cycle of
length at least four has a chord, that is, an edge connecting two non-
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consecutive nodes in the cycle. Note that an undirected graph is chordal if
and only if all its edges can be directed in such a way that the result is an
acyclic directed graph without immoralities; see Sec. 2.1 in Lauritzen1 . A
forest is an undirected graph without undirected cycles. A connected forest
over N is called a spanning tree.

2.2. Learning Bayesian network structure

In statistical context, to each variable (= node) i ∈ N is assigned a fi-
nite (individual) sample space Xi (= the set of possible values); to avoid
technical problems assume |Xi| ≥ 2, for each i ∈ N . A Bayesian network
(BN) structure ascribed to an acyclic directed graph G (over N) is formally
the class of discrete probability distributions P on the joint sample space∏

i∈N Xi that are Markovian with respect to G. Here P is Markovian with
respect to G if it satisfies conditional independence restrictions determined
by the respective separation criterion; see Lauritzen1 or Pearl2 .

Different acyclic directed graphs over N could be Markov equivalent,
which means they define the same BN structure. The classic graphical
characterization of (Markov) equivalent acyclic directed graphs, provided
independently by Frydenberg14 and Verma and Pearl15 , says that they are
equivalent if and only if they have the same underlying graph and the same
immoralities; for the proof see Andersson, Madigan and Perlman16 .

The classic unique graphical representative of a BN structure is the
essential graph G∗ of the respective (Markov) equivalence class G of acyclic
directed graphs: one has a → b in G∗ if this arrow occurs in every graph
from G and it has an undirected edge between a and b in G∗ if one has
a→ b in one graph and b→ a in another graph (from G).

Another (unique) representative is the pattern pat(G) of arbitrary G in
G, which is obtained from the underlying graph of G by directing (only)
those edges that belong to immoralities (in G). It is a less informative
representative than the essential graph because there could be arrows in
the essential graph which do not belong to any immorality (= are not
arrows in the pattern).

Learning a BN structure means (the task) to determine it on the ba-
sis of an observed (complete) database D (of length ` ≥ 1), which is a
sequence x1, . . . , x` of elements of the joint sample space; the database D

is called complete if all components of the elements x1, . . . , x` are known.
A quality criterion is a real function Q of two variables: of an acyclic di-
rected graph G and of a database D. The learning procedure consists in
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maximizing the function G 7→ Q(G, D) for given fixed D. Since the aim
is to learn a BN structure, the criterion should be score equivalent, which
means, Q(G, D) = Q(H,D) for any pair of Markov equivalent graphs G, H

and for any database D; see Bouckaert8 . A standard technical requirement,
see Chickering9 , is that the criterion has to be (additively) decomposable,
which means, it can be written as follows:

Q(G, D) =
∑
i∈N

qi| paG(i)(D{i}∪paG(i)), (1)

where DA denotes the projection of the database D to the space
∏

i∈A Xi

(for ∅ 6= A ⊆ N) and qi|B for i ∈ N , B ⊆ N \ {i} are real functions.

Finally, let us remark that the essential graph G∗ of an acyclic directed
graph G is an undirected graph if and only if G has no immorality. This al-
lows one to show that an undirected graph is the essential graph (for a class
of Markov equivalent acyclic directed graphs) if and only if it is chordal.
Hence, learning decomposable models, which are undirected graphical mod-
els ascribed to chordal graphs, see Lauritzen1 , can be viewed as learning
BN structure with the restriction to (chordal) undirected essential graphs.

2.3. Algebraic approach to learning

An imset over N is a vector in Z2|N|
, whose components are indexed by

subsets of N . Traditionally, all subsets of N were considered, although in
Sec. 4 we also consider imsets with a restricted domain.

To emphasize that components of considered vectors are indexed by
subsets of N we will use notation like RP(N) or ZP(N), where P(N) ≡
{A; A ⊆ N} is the power set of N . Every vector in RP(N) can be written
as a (real) combination of basic vectors δA ∈ {0, 1}P(N):

δA(T ) =
{

1 if T = A ,

0 if T ⊆ N, T 6= A ,
for T ⊆ N (if A ⊆ N is fixed).

This allows us to write formulas for imsets. Given an acyclic directed graph
G over N , the standard imset for G is given by

uG := δN − δ∅ +
∑
i∈N

{
δpaG(i) − δ{i}∪paG(i)

}
, (2)

where the basic vectors can cancel each other. The standard imset is a
unique algebraic representative of the corresponding BN structure because
uG = uH if and only if G and H are Markov equivalent; see Corollary 7.1
in Studený6 . The convex hull of the set of all standard imsets over N is the
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standard imset polytope, denoted below by P. The main result in Studený,
Vomlel and Hemmecke7 is that none of the standard imsets is a convex
combination of others; thus, they are vertices of P.

A special case of the standard imset is the elementary imset

u〈a,b|C〉 := δ{a,b}∪C+δC−δ{a}∪C−δ{b}∪C , a, b ∈ N, a 6= b, C ⊆ N \{a, b},

encoding an elementary conditional independence statement a ⊥⊥ b |C,
meaning that the variables a and b are independent conditionally the
set of variables C. Indeed, one has u〈a,b|C〉 = uG for an acyclic directed
graph G which has only one missing edge between a and b and satisfies
paG(a) = paG(b) = C. The cone E in RP(N) spanned by elementary im-
sets plays an important role in the algebraic approach to the description
of conditional independence structures; see Studený6 . The imsets within E

describe the conditional independence structures and any standard imset
belongs to the cone E, too.

An important result from the point of view of an algebraic approach
to learning BN structure is that any score equivalent and decomposable
quality criterion (= score function) Q has the form

Q(G, D) = sQD − 〈t
Q
D, uG〉 , (3)

where 〈∗, ∗〉 denotes the scalar product, and both sQD ∈ R and tQD ∈ RP(N)

only depend on the database D and the chosen quality criterion; see Lem-
mas 8.3 and 8.7 in Studený6 . The vector tQD is named the data vector
(relative to Q). Note that the formulas for the data vector relative to the
BIC and the “marginal likelihood” criteria are available; see Refs. 6 and 5.

In particular, the task to maximize Q is equivalent to finding the opti-
mum of a linear function over the standard imset polytope.

3. Summary of recent results

The above optimization problem has been treated thoroughly within the
linear programming (LP) community. The intention to apply LP methods
in the area of learning BN structure motivated several open mathematical
questions concerning the standard imset polytope P.

3.1. Towards the outer description of the polytope

A standard tool to solve LP problems is the simplex method; see Schrijver17 .
In order to apply the (classic) simplex method, one needs an explicit outer
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description of the polytope via finitely many linear inequalities, that is, the
characterization in the form of a polyhedron.

As concerns the standard imset polytope P, for |N | = 3 and |N | = 4 a
minimal such system has 13 and 154 inequalities, respectively. However, it
is already a challenge to existing software packages to find such a minimal
inequality description of P for |N | = 5 (given by 8782 vertices). Thus, for
general |N |, the only hope is a good guess (= conjecture about) what is the
outer description of P in general.

One of our research directions was to (try to) classify necessary linear
inequality constraints on P. In Studený and Vomlel10 the case |N | = 4 was
analyzed and the constraints characterizing u ∈ P in this case were classified
into three classes, namely:

• |N |+ 1 trivial equality constraints of the form∑
T⊆N

u(T ) = 0, ∀ j ∈ N
∑

T⊆N : j∈T

u(T ) = 0 . (4)

• Inequality constraints that correspond to (standardized) extreme
supermodular functions. Because these inequalities are valid for
any vector in the cone E spanned by elementary imsets, not just
for standard imsets, they were named non-specific inequality con-
straints. They have the form

〈m, u〉 ≡
∑

T⊆N

m(T ) · u(T ) ≥ 0 , (5)

where m is a (representative on an extreme standardized) super-
modular function. Here, by a supermodular function is meant a real
function m on P(N) (≡ a vector in RP(N)) such that

m(E ∪ F ) + m(E ∩ F ) ≥ m(E) + m(F ) for every E,F ⊆ N.

It is standardized if m(T ) = 0 whenever |T | ≤ 1.
• Inequality constraints corresponding to classes ∅ 6= A ⊆ P(N) of

sets that are closed under supersets, which have the form∑
T∈A

u(T ) ≤ 1 . (6)

Because they are valid specifically only for standard imsets, they
were named specific inequality constraints.

Note that the set of standardized supermodular functions is a pointed ra-
tional polyhedral cone in RP(N), and, therefore, has finitely many extreme
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rays. Thus, (5) gives in fact only finitely many linear inequality constraints
on u ∈ P. The problem is that one has to compute those extreme rays, which
is a difficult computational task; their representatives in case |N | ≤ 5 were
computed in Ref. 18.

We conjecture that the above constraints already characterize the poly-
tope P and the current task is either to confirm or disprove this conjecture
for |N | = 5. Nevertheless, even if the conjecture is confirmed for general
|N | it only gives an implicit polyhedral description of P because one has to
compute/characterize the extreme supermodular functions and specify all
classes of subsets of N closed under supersets.

A weaker version of the conjecture was that the only lattice points
in the polyhedron specified by those inequalities are the standard imsets.
Actually, this weaker version of the conjecture has recently been confirmed;
see Sec. 3.4.

3.2. Geometric neighborhood

One of possible interpretations of the simplex method is that it is a kind of
search method, in which one moves between vertices of the polytope along
its edges (in the geometric sense) until an optimal vertex is reached. This
motivated in Studený, Vomlel and Hemmecke7 the concept of the geometric
neighborhood for standard imsets, and, consequently, for BN structures, or
even, for particular acyclic directed graphs.

Specifically, two standard imsets are called geometric neighbors if the
line segment connecting them is a 2-dimensional face (= a geometric edge)
of the polytope P. Another research direction was to compute the geometric
neighborhood for a small number of variables and (try to) interpret it.

We succeeded to compute the geometric neighborhood for |N | = 3, 4, 5.
As a by-product we compared it for |N | = 3 with the well-known inclusion
neighborhood, see Neapolitan3 , which is at the core of current machine
learning search techniques (for maximization of a quality criterion), like
the so-called GES algorithm; see Chickering9 . It was shown in Ref. 7 that
the inclusion neighborhood is always contained in the geometric one.

Our computations suggest that, for most standard imsets, there are
many more geometric neighbors than the inclusion neighbors. This obser-
vation has a simple but notable consequence from the statistical point of
view: the GES algorithm may fail to find the global maximum of the quality
criterion. Actually, we think that this is an inevitable defect of the inclusion
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neighborhood, which may occur whenever a special strong statistical data
faithfulness assumption is not guaranteed; for details see Ref. 7.

The result of our analysis of the geometric neighborhood in the case
|N | = 4 was an electronic catalogue of types of geometric neighbors in
Ref. 19, meant as a step towards a deeper analysis of the geometric neigh-
borhood. We would like to find out whether one can describe geometric
neighborhood in graphical terms. For further recent findings see Sec. 6.

3.3. Lattice points in the polytope and affine transformation

We were interested in the question of how “thick” the standard imset poly-
tope P is. Therefore, R. Hemmecke made some computations to find out
whether there exists a lattice point in its interior for |N | ≤ 5 and the answer
to this question was negative.

This led to a conjecture that every lattice point in the standard imset
polytope is already a standard imset. In Ref. 10 this conjecture was con-
firmed. The original proof of this result in the manuscript of that paper
was quite long and complicated. Later discussions among the authors of
the present paper led to a much simpler proof, which was then also used in
the final version of Ref. 10.

The key idea is to apply certain one-to-one linear transformation which
ascribes lattice points to lattice points. The point is that the images of
standard imsets are vectors, whose components are zeros and ones. As there
is no lattice point in the interior of the zero-one hypercube, the above
statement is immediate; we repeat the proof in Sec. 4, see Corollary 4.1.

In Studený, Hemmecke and Lindner11 we observed that further modifi-
cation of that linear transformation is useful. Specifically, we may subtract
the result of the linear transformation from the constant 1-vector and get
an affine transformation. The image of the standard imset uG by that affine
transformation, called the characteristic imset (for G) and denoted by cG,
then appears in some aspects to be even better algebraic BN structure
representative than the standard imset.

In Hemmecke, Lindner and Studený13 we show that the characteristic
imsets have many elegant properties, suitable for intended application of
integer programming methods to learning BN structure. They are also much
closer to the graphical description than standard imsets. Section 4 recalls
these arguments and adds some additional results.
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3.4. Integer programming approach

The idea of the application of methods of integer programming (IP), see
Schrijver17 , is to re-formulate the task as an IP problem, that is, the task
to optimize a linear function over the lattice points within a polyhedron.
To this end one only needs to find a good polyhedral LP relaxation of the
polytope of our interest, which is a polyhedron containing the polytope such
that the lattice points within the polyhedron and the polytope coincide.
This is the way to avoid full polyhedral description of the polytope.

Actually, in Lindner20 an LP relaxation of the characteristic imset poly-
tope, defined as the convex hull of the set of all characteristic imsets, has
been suggested. Unlike the conjectured implicit polyhedral approximation
of the standard imset polytope P mentioned in Sec. 3.1, this LP relaxation
is explicit, which means all inequalities are completely specified and ready
to be applied (for arbitrary |N |).

Jaakkola, Sontag, Globerson and Meila12 have recently came with a
slightly different idea of how to apply the methods of linear and integer
programming to learning BN structures. They have used a straightforward
zero-one encoding of acyclic directed graphs and transformed the task of
maximizing the quality criterion to an IP problem, too. Nevertheless, they
combined the LP approach with various heuristic simplifications and other
machine learning methods.

The components of their vector-codes are indexed by pairs (i|B), where
i ∈ N and B ⊆ N \ {i}. Given an acyclic directed graph G over N , the
respective vector ηG is defined as follows:

ηG(i|B) =
{

1 if B = paG(i), i ∈ N,

0 otherwise.

Moreover, they have provided an explicit polyhedral LP relaxation of their
polytope, defined as the convex hull of the set of vectors ηG for acyclic
directed graphs.

Specifically, besides elementary non-negativity constraints η(i|B) ≥ 0
for i ∈ N , B ⊆ N \ {i} and equality constraints

∑
B⊆N\{j} η(j|B) = 1 for

j ∈ N they introduced so-called cluster inequalities, which correspond to
sets C ⊆ N , |C| ≥ 2:

1 ≤
∑
i∈C

∑
D⊆N\C

η(i|D) . (7)

These inequalities somehow encode acyclicity requirements on the graph G.
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In Studený and Haws21 we have compared both approaches. We showed
that there exists a many-to-one affine map transforming ηG to the standard
imset uG. The characteristic imset cG is even a linear function of ηG:

cG(S) =
∑
i∈S

∑
B: S\{i}⊆B⊆N\{i}

ηG(i|B) for ∅ 6= S ⊆ N . (8)

We also succeeded to transform the inequalities provided by Jaakkola et
al. to the framework of standard/characteristic imsets and compared the
transformed inequalities with the inequalities from Sec. 3.1.

The elementary non-negativity and equality constrains for ηG are trans-
formed (exactly) to the specific inequality constrains for uG. The reader
may be surprised by the fact that the transformation raises the number of
inequalities. This is because of the many-to-one transformation; the fact
we have to wrestle with more inequalities describing basically the same
restriction is the price for having unique BN structure representatives.

The remaining cluster inequalities correspond to some of the non-specific
inequality constraints. Consequently, the implicit polyhedral approximation
of the standard imset polytope given by (4)-(6) is a tighter approximation of
P than the transformed explicit polyhedral approximation. An interesting
fact is that the some of the basic constraints cG(S) ≤ 1 for the characteristic
imsets are not implied by the transformed inequalities for ηG.

Another non-trivial important observation from Ref. 21, which will be
a basis of a future journal paper submission, is that the transformed linear
inequalities define an LP relaxation of the standard/characteristic imset
polytope. In particular, because the polyhedron specified by (4)-(6) is con-
tained in this (transformed) LP relaxation of the standard imset polytope,
it is also an LP relaxation of P. Thus, the weaker version of the conjecture
from Sec. 3.1 has been confirmed.

Because in Ref. 20 another LP relaxation of the characteristic imset
polytope has been suggested, this opens the way to the application of ad-
vanced IP methods in this area. We hope the use of characteristic imsets
in learning Bayesian networks can bring saving memory demands in com-
parison with the use of zero-one vector codes from Ref. 12.

4. Characteristic imsets

In this section we introduce the notion of a characteristic imset and prove
some useful facts about it. Throughout the section we use a special notation
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for the class of subsets of N having at least two elements:

P2(N) ≡ {A; A ⊆ N, |A| ≥ 2} ,

and ZP2(N) is then the set of imsets with the domain restricted to P2(N).

Definition 4.1. Given an acyclic directed graph G over N , let uG be the
standard imset for G. We introduce a vector pG ∈ ZP2(N) by

pG(S) :=
∑

X⊆N : S⊆X

uG(X) for S ⊆ N, |S| ≥ 2,

and call it the (upper) portrait of uG or, simply, of G. Moreover, the vector

cG := 1− pG ∈ ZP2(N), given by cG(S) = 1− pG(S) for S ∈ P2(N),

will be called the characteristic imset of G.

Characteristic imsets are unique representatives of Markov equivalence
classes. This is because the standard imsets are unique representatives and
the portrait map is a linear map that is invertible. The inverse map is given
by the well-known Möbius inversion formula; see Bender and Goldman22 .
In fact, both maps assign lattice points to lattice points!

Characteristic imsets have remarkable properties and, as we will show
below, their entries directly encode the underlying undirected graph and
the immoralities of the given acyclic directed graph.

Theorem 4.1. Let G be an acyclic directed graph over N . For any S ⊆ N ,
|S| ≥ 2 we have cG(S) ∈ {0, 1} and cG(S) = 1 iff there exists some i ∈ S

with S \ {i} ⊆ paG(i). In particular, cG ∈ {0, 1}P2(N).

Proof. Consider the defining formula (2) for the standard imset. For any
S ⊆ N , |S| ≥ 2, the value pG(S) can be computed as

pG(S) =
∑

X⊆N : S⊆X

uG(X) = 1 +
∑

i∈N : S⊆paG(i)

1−
∑

i∈N : S⊆paG(i)∪{i}

1 .

Hence, we get

cG(S) = 1− pG(S) =
∑

i∈N : S⊆paG(i)∪{i}

1−
∑

i∈N : S⊆paG(i)

1

=
∑

i∈N : S⊆paG(i)∪{i},i∈S

1 =
∑

i∈S: S\{i}⊆paG(i)

1 .

For fixed S, assume that there are two different elements i, j ∈ S with
S \ {i} ⊆ paG(i) and S \ {j} ⊆ paG(j). This implies both i ∈ paG(j)
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and j ∈ paG(i). The simultaneous existence of the arcs i → j and j → i,
however, contradicts the assumption that G is acyclic. Therefore, for each
S ⊆ N , there is at most one i ∈ S with S \ {i} ⊆ paG(i). Consequently,

cG(S) =
∑

i∈S: S\{i}⊆paG(i)

1 ∈ {0, 1},

and, thus, cG ∈ {0, 1}P2(N).

Corollary 4.1. For any N , the only lattice points in the standard imset
polytope and in the characteristic imset polytope are their vertices.

Proof. The statement holds for any zero-one polytope and thus, in partic-
ular, also for the characteristic imset polytope. Moreover, the portrait map
and its inverse, the Möbius map, are linear mappings between uG and cG

that map lattice points to lattice points. Thus, the result holds also for the
standard imset polytope.

Given a chordal undirected graph H, the corresponding characteris-
tic imset cH can be introduced as the characteristic imset of any acyclic
directed graph G, whose essential graph is H. The observation that char-
acteristic imsets are unique representatives of Markov equivalence classes
makes the definition correct.

Corollary 4.2. Let H be an undirected chordal graph over N . Then, for
S ⊆ N , |S| ≥ 2, we have cH(S) = 1 if and only if S is a clique in H.

Proof. As H is the essential graph of an acyclic directed graph K which
has no immorality, we can direct the edges of H in such a way that we
obtain an equivalent acyclic directed graph G without an immorality. To
show the forward implication, let S ⊆ N , |S| ≥ 2 be given with cH(S) = 1.
As cH(S) = cG(S) = 1, there exists some i ∈ S such that S \ {i} ⊆ paG(i).
Assume now, for a contradiction, that there are two nodes j, k ∈ S \ {i}
that are not adjacent by an edge in G (and hence j and k are not adjacent
in H). Then, however, j → i ← k is an immorality in G, a contradiction.
Hence, all nodes in S \{i} must be pairwise connected by an edge in H. As
they are all connected in H by an edge to i, S is a clique in H.

To show the converse, let S ⊆ N be a clique in H. Note that in G, being
an acyclic directed graph, the set S must contain a node i such that, for all
j ∈ S \ {i}, the edge between i and j in H is directed towards i in G. But
then S \ {i} ⊆ paG(i) and, therefore, cH(S) = 1 by Theorem 4.1.
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Applying this observation to special undirected chordal graphs, namely
to undirected forests, we obtain the following characterization.

Corollary 4.3. Let H be an undirected forest having N as the set of nodes.
Then, for S ⊆ N , |S| ≥ 2, we have cH(S) = 1 if and only if S is an edge
in H, or, in other words,

cH =
(

χ(H)
0

)
,

where χ(H) denotes the characteristic vector of the edge-set of H.

Indeed, the only cliques of cardinality at least two in a forest are its
edges. A similar result, in fact, holds for any acyclic directed graph G.

Corollary 4.4. Let G be an acyclic directed graph over N and Ḡ its un-
derlying undirected graph. Then for any two-element subset {a, b} ⊆ N , we
have cG({a, b}) = 1 if and only if a → b or b → a is an edge in G, or, in
other words,

cG =
(

χ(Ḡ)
?

)
,

where ? denotes the remaining components of cG.

Proof. This is an easy consequence of Theorem 4.1. If cG(S) = 1 for
S = {a, b} then the only i ∈ S with S \ {i} ⊆ paG(i) are either a or b.

Thus, cG is an extension of the characteristic vector χ(Ḡ) of the edge-set
of Ḡ, which motivated our terminology. Let us now show how to convert
cG back to the pattern graph pat(G) of G.

Theorem 4.2. Let G be an acyclic directed graph over N and a, b ∈ N are
distinct nodes. Then the following holds:

(i) a, b ∈ N are adjacent (= connected by an edge) in G if and only if
cG({a, b}) = 1, otherwise cG({a, b}) = 0.

(ii) a → b belongs to an immorality in G if and only if there exists some
i ∈ N \ {a, b} with cG({a, b, i}) = 1 and cG({a, i}) = 0. The latter
condition implies cG({a, b}) = 1 and cG({b, i}) = 1.

Proof. The condition (i) follows from Corollary 4.4. For (ii) assume that
a→ b← i is an immorality in G. Then cG({a, b, i}) = 1 by Theorem 4.1 and
the necessity of the other conditions follows from (i). Conversely, provided
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that cG({a, b, i}) = 1, one of the three options a → i ← b, i → a ← b and
a → b ← i (with possible additional edges) occurs. Now, cG({a, i}) = 0
implies that a and i are not adjacent in G, which excludes the first two
options and implies a→ b← i must be an immorality.

Corollary 4.5. Given an acyclic directed graph G, the characteristic imset
cG is determined uniquely by its values for sets of cardinality 2 and 3.

Proof. By Theorem 4.2 these values determine both the underlying graph
and immoralities in G. In particular, they determine the pattern pat(G).
As explained in Sec. 2.2, this uniquely determines the BN structure and,
therefore, the respective standard and characteristic imsets.

More specifically, the components of cG for |S| ≥ 4 can be derived
iteratively from the components for |S| ≤ 3 on the basis of the following
lemma. A further simple consequence of the lemma below is that the entries
for |S| ≥ 4 are not linear functions of the entries for |S| ≤ 3.

Lemma 4.1. Let G be an acyclic directed graph over N , and S ⊆ N ,
|S| ≥ 4. Then the following conditions are equivalent.

(a) cG(S) = 1,
(b) there exist |S| − 1 subsets T of S with |T | = |S| − 1 and cG(T ) = 1,
(c) there exist three subsets T of S with |T | = |S| − 1 and cG(T ) = 1.

In the proof, by a terminal node within a set T ⊆ N we mean i ∈ T

such that there is no j ∈ T \ {i} with i→ j in G.

Proof. The implication (a) ⇒ (b) follows from Theorem 4.1; (b) ⇒ (c) is
trivial. To show (c)⇒ (a) we first fix a terminal node i within S. Now, (c)
implies there exist at least two sets T ⊆ S, |T | = |S| − 1 which contain i.
Let T̃ be one of them. Since cG(T̃ ) = 1 by Theorem 4.1, there exists k ∈ T̃

with j → k for every j ∈ T̃ \ {k}. If i 6= k, then i→ k, which contradicts i

to be terminal in S. Thus, i = k. Since, those two sets T cover S one has
j → i for every j ∈ S \ {i} and Theorem 4.1 implies cG(S) = 1.

Theorem 4.2 allows us to reconstruct the essential graph for G. Indeed,
the conditions (i) and (ii) directly characterize the pattern graph pat(G).
However, in general, there could be other arrows in the essential graph.
Fortunately, there is a polynomial graphical algorithm transforming pat(G)
into the corresponding essential graph G∗. More specifically, Theorem 3 in
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Meek23 says that provided pat(G) is the pattern of an acyclic directed graph
G the repeated (exhaustive) application of the orientation rules from Figure
1 gives the essential graph G∗.

q
q

q? q
q

q?
=⇒ q

q
q-?

@
@ q

q
q-?

=⇒
q q

q q��

@@

@@R

���
q q

q q��

@@

@@R

���
=⇒

-
@

@R

-

Fig. 1. Orientation rules for getting the essential graph.

Finally, we wish to point out that Theorems 4.1 and 4.2 directly lead to
a procedure for testing whether a given vector c ∈ ZP2(N) is a characteristic
imset for some (acyclic directed graph) G over N . Using both theorems, one
first constructs a candidate pattern graph, then a candidate essential graph,
and then from it a candidate acyclic directed graph G. It remains to check
whether the characteristic imset of G coincides with the given vector c.

5. Complexity of learning (special) chordal graphs

A lot of research effort in machine learning community has been devoted
to deriving complexity results on learning BN structure, analyzing differ-
ent optimization strategies, scoring functions and representations of data.
For example, Chickering, Heckerman and Meek24 showed the large-sample
learning problem to be NP-hard even when the distribution is perfectly
Markovian. Similarly, Chickering25 showed learning BN structure to be NP-
complete when using a certain Bayesian score. This remains to be valid even
if the number of parents is limited to a constant.

In this section, we deal with learning decomposable models interpreted
as BN structures, see Sec. 2.2, and also derive some complexity results.
What is special here is that we use as a tool for derivation of our complexity
results characteristic imsets, introduced in Sec. 4. The point is that the
characteristic imsets bring a clear insight into the learning task, and, thus,
simplify the complexity considerations. We do not claim that the complexity
observations themselves are strikingly new; we more likely offer elegant and
simple proofs in comparison with the original machine learning treatments.
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Our assumptions

The input to the learning problems we consider is a prescribed undirected
graph K over N and an evaluation oracle for the score function Q. The
goal of the learning problem is then to learn an acyclic directed graph G

over N that maximizes the quality criterion and whose essential graph is an
(undirected) subgraph of K of a certain type. In particular, we are interested
in learning undirected forests and spanning trees with and without degree
bounds and learning undirected chordal graphs.

We wish to point out here that we make minimal assumptions on the
database D and on the quality criterion to be optimized. We only assume
that the database D over N is complete and the quality criterion (= score
function) we require to be score equivalent and decomposable.

In fact, instead of having D and an explicit score function available,
we only assume that we are given an evaluation oracle (depending on D)
that, when queried on G, returns the value Q(G, D) of the quality criterion.
Clearly, especially for larger databases D, computing a single score function
value Q(G, D) may be expensive. By assuming we are given an evaluation
oracle, we give a constant cost to score function evaluations in our complex-
ity results below. It also implicitly means that the (large or small) number
of data items in D will be irrelevant for our complexity considerations.

Finally, we remind the reader that under our assumptions the learning
of the best acyclic directed graph G for D becomes the problem of max-
imizing a certain linear functional, depending on D only, over the set of
characteristic imsets; see Sec. 2.3 and Sec. 4.

5.1. Learning undirected forests and spanning trees

By Corollary 4.3, we know that every acyclic directed graph whose essential
graph is an undirected forest H has

(
χ(H)

0

)
as its characteristic imset. Thus,

the problem of learning the best undirected forest is equivalent to maximiz-
ing a linear functional over such vectors

(
χ(H)

0

)
which in turn is equivalent

to finding a maximum weight forest H as a subgraph of K. The same ar-
guments hold for learning undirected spanning subtrees of K. These are
two well-known combinatorial problems that can be solved in polynomial
time via greedy-type algorithms; see, for example, Sec. 40 in Schrijver26 .
We conclude the following statement.

Lemma 5.1. Given an undirected graph K = (N, E(K)) and an evaluation
oracle for computing Q, the problems of finding a maximum score subgraph
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of K that is

(a) a forest,
(b) a spanning tree,

can be solved in time polynomial in |N |.

Although K is a part of the input, we need not state the complexity
dependence with respect to the encoding length of K explicitly here, since
the encoding length 〈K〉 is at least |N |. Moreover, we have 〈K〉 ∈ O(|N |2).

Chow and Liu27 provided a polynomial time procedure (in |N |) for
maximizing the maximized log-likelihood score which finds an optimal de-
pendence tree (= a spanning tree). The core of their algorithm is the greedy
algorithm and they apply it to a non-negative objective function. For their
result, the complexity of computing the probabilities from data (and hence
the objective/score function) is also omitted. A similar result was obtained
by Heckerman, Geiger and Chickering28 for the Bayesian scores. Our result
combines all of these previous results by only supposing a decomposable
and score equivalent quality criterion.

We wish to point out here that the well-known GES algorithm, see Refs.
29 and 9, designed to learn general BN structure, could be modified in a
straightforward way to learn undirected forests (among the subgraphs of
K). Then the first phase of this new GES-type algorithm coincides with
the greedy algorithm to find a maximum weight forest, the second phase of
the algorithm cannot remove any edge. Thus, the modified GES algorithm
always finds a best undirected forest in time polynomial in |N |.

5.2. Learning forests and trees with a degree bound

Although the problems of learning undirected forests and spanning trees
are solvable in polynomial time, learning an undirected forest/spanning tree
with a given degree bound degG(i) ≤ k for any i ∈ N , where 2 ≤ k < |N |−1,
is NP-hard. For k = 1 this problem coincides with the well-known problem
of finding a maximum weight matching in K, which is, in the general case,
solvable in polynomial time; see Sec. 30 in Schrijver26 . However, for k ≥ 2,
the situation is different.

Theorem 5.1. Given an undirected graph K = (N, E(K)), an evaluation
oracle for computing Q and a constant k ∈ Z with 2 ≤ k < |N | − 1, the
following statements hold.

(i) The problem of finding a maximum score subgraph of K that is a forest
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and fulfils the degree bounds deg(i) ≤ k, ∀i ∈ N , is NP-hard in |N | for
any fixed score function Q representable by a (strictly) positive vector.

(ii) The problem of finding a maximum score spanning tree of K that fulfils
the degree bounds deg(i) ≤ k, ∀i ∈ N , is NP-hard in |N | for any fixed
score function Q.

As 〈K〉 ∈ O(|N |2), we have again omitted the explicit dependence on 〈K〉.

Proof. We deduce part (ii) from the following feasibility problem. In Sec.
3.2.1 of Garey and Johnson30 , the following task has been shown to be
NP-complete by the reduction to the Hamiltonian path problem:

Bounded degree spanning tree

Instance: An undirected graph K and a constant 2 ≤ k < |N | − 1.
Question: Is there a spanning tree for K in which no node has
degree exceeding k?

Part (i) now follows by considering the subfamily of problems in which the
respective linear objective χ(H) 7→ qᵀχ(H) (representing Q) is given by a
vector q with (only strictly) positive components and, thus, every optimal
forest (with the bounded degree) is a spanning tree. Hence, the problem of
finding a maximum-weight forest (with a given degree bound) is equivalent
to finding a maximum-weight spanning tree (with a given degree bound).
As the feasibility problem for the latter is NP-complete, part (i) follows.

We wish to remark that Meek31 showed a similar hardness result for
learning paths, that is, spanning trees with upper degree bound k = 2 for
the maximized log-likelihood score, BIC and Bayesian scores.

5.3. Learning chordal graphs

Undirected chordal graph models are the intersection of Bayesian network
models and undirected graph models, known as Markov networks; see Sec.
3.4.1 in Ref. 6. Here, we show that learning these models is NP-hard.

Theorem 5.2. Given an undirected graph K = (N, E(K)) and an eval-
uation oracle for computing Q, the problem of finding a maximum score
chordal subgraph of K is NP-hard in |N |.

Proof. We show that one can polynomially transform the following NP-
hard problem to learning undirected chordal graphs:
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Clique of given size

Instance: An undirected graph K and a constant 2 ≤ k ≤ |N | − 1.
Question: Is there a clique set in K of size at least k?

To this end we define a learning problem that would solve this problem. By
Corollary 4.2 we know that, for any chordal graph G, the entry cG(S) is
1 iff S ⊆ N is a clique; otherwise this entry is 0. Thus, the score function
value for G is determined by the values of the linear objective function
c 7→ qᵀc for the cliques S in G. In particular, we can define the values for
the cliques in such a way that when transforming the learning problem to
the problem of maximizing qᵀc over the characteristic imset polytope, the
entries q(S) are 0 when |S| < k and positive when |S| ≥ k. This implies
that the maximum score among all chordal subgraphs of K is positive iff
there exists a chordal subgraph in K containing a clique S of size |S| ≥ k.
This happens iff K has a clique of size at least k.

5.4. Learning chordal graphs with bounded size of cliques

Let us consider a variation of the previous task by introducing an upper
bound ` for the size of cliques. If ` ≤ 2, we get the problems of learn-
ing undirected forests/matchings, which we already know are solvable in
polynomial time; see Secs. 5.1 and 5.2.

For ` > 2, the corresponding problem is NP-hard already for a fixed
type of score function. This has been shown by Srebro32 for the maximized
log-likelihood score, as a generalization of the work by Chow and Liu27 .

6. Geometric neighborhood

In this section, we present a few facts concerning the geometric neigh-
borhood, introduced in Sec. 3.2 for BN structures, respectively for acyclic
directed graphs over N . Specifically, a pair of geometric neighbors corre-
sponds to a 2-face (= a geometric edge) of the standard imset polytope.
This allows us to derive the following characterization of geometric neigh-
bors of a full acyclic directed graph over N . This is any acyclic directed
graph over N , whose underlying undirected graph is complete (= N is a
clique in the underlying graph).

Theorem 6.1. An acyclic directed graph G over N is a geometric neighbor
of a full acyclic directed graph H over N if and only if G is full with the
exception of (just) one missing edge. In particular, the geometric neighbors
and the inclusion neighbors of H coincide.
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Proof. The standard imset for H is the zero imset uH ≡ 0. First, we ob-
serve that, for any elementary imset u〈a,b|C〉 (see Sec. 2.3), the line segment
in RP(N) connecting uH = 0 and u〈a,b|C〉 is a face of P; this means, they are
geometric neighbors. The observation follows easily from the well-known
fact that elementary imsets generate the extreme rays of the polyhedral
cone E spanned by elementary imsets; see, for example, Kashimura, Sei,
Takemura and Tanaka33 . Indeed, both the zero imset and every elemen-
tary imset belong to P and P is a subset of E.

The fact that there are no other 2-faces of P containing uH = 0 is also
a consequence of P ⊆ E. If the line segment [uH , v] for v ∈ P is a face
of P, then v is a conic combination of elementary imsets. It cannot be a
combination of more than one elementary imset, for otherwise [uH , v] is not
a face of P (as elementary imsets also belong to P).

Thus, the geometric neighbors of uH are elementary imsets, which corre-
spond to (acyclic directed) graphs with just one missing edge; see Sec. 2.3.
These are known to coincide with the inclusion neighbors of uH , respectively
of H; see Corollary 8.4 in Ref. 6.

Nevertheless, as explained in Sec. 4, the standard imset polytope P is
affine isomorphic to the characteristic imset polytope. In particular, the
geometric neighborhood can equivalently be introduced through character-
istic imsets: simply, the geometric neighbors correspond to 2-faces of the
characteristic imset polytope.

This leads to a method to prove that two (non-equivalent) acyclic di-
rected graph G and H over N are geometric neighbors, which appears to
be useful in some cases. Specifically, we can do so as follows: we construct a
vector q ∈ RP2(N) in such a way that the linear objective function c 7→ qᵀc

achieves its maximum over characteristic imsets for acyclic directed graphs
(over N) just in the graphs that are Markov equivalent either to G or H.

Using this method we can characterize geometric neighbors of the empty
acyclic directed graph (= the graph over N which has no edge). We show
that its geometric neighbors are graphs over N that have just one non-initial
node, that is, just one node i ∈ N with paG(i) 6= ∅.

Lemma 6.1. If H is the empty graph and G a graph (over N) with just
one node a ∈ N with paG(a) 6= ∅, then G and H are geometric neighbors.

Proof. Let’s assume paG(a) = {i1, . . . , im}, m ≥ 1 and put T ≡
{i1, . . . , im} ∪ {a}. Note that for all S ⊆ T such that a ∈ S and |S| ≥ 2,
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one has cG(S) = 1, otherwise cG(S) = 0. Define q ∈ RP2(N) as follows:

q(S) :=


−1 S ⊂ T, a ∈ S,

2m − 2 S = T,

−2 otherwise,

where ⊂ denotes strict inclusion. Observe that one has just 2m−2 ≥ 0 sets
S ⊂ T with a ∈ S and |S| ≥ 2. Hence, qᵀcG = 0. As cH = 0, qᵀcH = 0.

Let K be an acyclic directed graph over N which is a maximizer of
cK 7→ qᵀcK among acyclic directed graphs over N . To show it is Markov
equivalent either to H or G we distinguish two cases:

• If cK(T ) = 0, then because all other components of q are negative,
cK(S) = 0 for all S ⊆ N , |S| ≥ 2. Thus, K = H.
• If cK(T ) = 1, then a unique b ∈ T exists such that T \ {b} ⊆ paK(b).

Furthermore, for all 2m − 2 subsets S ⊂ T with |S| ≥ 2 and b ∈ S

it follows that cK(S) = 1. By the definition of q, for every such S,
q(S) ∈ {−1,−2}. Observe that K cannot have other edges except those
directed from T \ {b} to b. Indeed, if K has additional edges, then we
compare it with the graph K̃ having just the arrows from T \ {b} to
b and observe that qᵀcK̃ > qᵀcK , which contradicts the assumption
that K is a maximizer. Therefore, if b = a then K = G. If b 6= a but
m = 1 then K is the graph with the only arrow a → b while G is the
graph with the only arrow b→ a. Thus, K is Markov equivalent to G.
The case b 6= a and m ≥ 2 is not possible: it implies the existence of a
set S ⊂ T with |S| ≥ 2 and b ∈ S such that q(S) = −2. This means
qᵀcK < 0 contradicting the assumption that K is a maximizer.

Therefore, the line segment connecting cH and cG is a face of the charac-
teristic imset polytope.

Theorem 6.2. The geometric neighbors of the empty graph H are just
those (acyclic directed) graphs G that have only one non-initial node.

Proof. By Lemma 6.1 we know all such G are geometric neighbors of H.
To show that these are the only neighbors of H it suffices to show that, for
any acyclic directed graph K over N , cK can be written as a non-negative
linear combination of vectors cG for such graphs G.

We prove it by induction on the number of non-initial nodes in K. If
there is only one node i ∈ N with paK(i) 6= ∅ then K has the form of G

and we are finished. If one has k ≥ 2 such nodes, then find a terminal node
a ∈ N in the graph K. Introduce a graph G over N whose only arrows
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are the arrows directed from paK(a) to a. Let us denote by L the graph
obtained from K by the removal of these arrows in G. It is easy to verify
that cK = cL+cG. Since L has smaller number of non-initial nodes than K,
by the induction hypothesis, cL is the desired combination of characteristic
imsets for geometric neighbors of H. Hence, the same conclusion for cK can
be derived.

7. Computational experiments

This section contains a few general notes on our preliminary computational
experiments based on the polyhedral approach. We plan to continue in the
experiments and, when finished, to prepare a paper devoted to them.

First, we comment on some common machine learning techniques used
to learn BN structure. A speedy method is the hill-climbing approach used
in the GES algorithm; see Meek29 and Chickering9 . However, as mentioned
in Sec. 3.2, this approach does not guarantee to find the global maximum
of the quality criterion Q. Silander and Myllymäki34 offered an approach
based on dynamic programming that already allows one to find the global
maximum; de Campos, Zeng and Ji35 were also interested in finding the
global maximum and came with the idea of the use of a (general) branch
and bound approach and the idea of the reduction of the search space, based
on a more detailed analysis of the particular form of local scores.

Jaakkola et al.12 already used an LP approach and also utilized the idea
of the search space reduction from Ref. 35. In the context of their approach,
see Sec. 3.4, this idea of pruning of the search space can be described
as follows. Consider the criterion Q in the form (1), where qi|B(D{i}∪B)
are the local scores. If the database D is such that, for some i ∈ N and
C ⊂ B ⊆ N \ {i} one has qi|C(D{i}∪C) > qi|B(D{i}∪B) then no optimal
acyclic graph G over N has paG(i) = B and one can, therefore, limit oneself
to codes η with η(i|B) = 0. If qi|C(D{i}∪C) ≥ qi|B(D{i}∪B) then at least
one optimal graph G satisfies paG(i) 6= B. Thus, provided that the aim is
to find just one optimal graph, one can also, without loss of generality, put
η(i|B) = 0. This allows one to reduce the number of components of η.

In our computational experiments, we represented BN structures by
characteristic imsets. However, because of the relation (8), we can also
exclude the component cG(S), S ∈ P2(N), provided one is sure that, for
each i ∈ S and B with S \ {i} ⊆ B ⊆ N \ {i} the component η(i|B) can be
put to zero. Thus, we have also represented Q(∗, D) in the form of a cache
of local scores qi|B(D{i}∪B), i ∈ N , B ⊆ N \ {i}.
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The general idea was to take the LP relaxation of the characteristic
imset polytope from Lindner20 , formulate the learning task as an IP prob-
lem and use the state-of-art software like CPLEX36 . However, three major
bottlenecks appear:

(1) exponentially many variables in |N |,
(2) exponentially many inequalities in |N |,
(3) computing the objective is time consuming.

To handle these problems we used the pruning method mentioned above
and combined it with the row-generation techniques and the branch-and-
bound method to solve the IP, see Sec. 24.1 in Schrijver17 . Besides learning
general BN structures, we made some experiments with learning chordal
graphs with a prescribed upper bound on the size of cliques.

The examples we analyzed were taken from the UCI-Machine learning
repository37 , were generated “randomly” and also taken from Ref. 12. The
main observation/conclusion from our experiments is that the pruning step
is crucial and reduces the total computation time tremendously.

8. Conclusions

To summarize, we offer a new method for analyzing the learning procedure
through an algebraic way of representing statistical models. Characteristic
imsets turn out to be very natural encodings of BN structures (= Markov
equivalence classes) that are much closer to the graphical description. From
the characteristic imset, the associated essential graph can easily be recon-
structed, since it directly encodes the pattern of this equivalence class.

Characteristic imsets allow one to reduce the combinatorial learning task
to a linear (integer) optimization problem that may/will lead to future ap-
plications of efficient (integer) linear programming methods and software in
this area. Moreover, they also offer elegant combinatorial proofs for known
results and allow one to establish new complexity results for learning re-
stricted BN structures such as undirected forests or spanning trees. These
proofs avoid special assumptions on the form of the quality criterion be-
sides the standard assumptions of score equivalence and decomposability.
The simplicity of these constructions gives a hope that characteristic im-
sets will be a very useful tool to unravel more interesting theoretical and
algorithmic results for the learning of BN structures that were hidden so
far due to a lack of a suitable way of encoding of BN structures.

In our future work, we plan to study further the standard imset and
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the characteristic imset polytopes, respectively. We will apply tools from
integer linear programming to learning BN structure. Although the linear
optimization problem is defined for 2|N |−|N |−1 variables, one can employ
pruning or prescribed size restrictions in practice to reduce the optimization
problem down to only a few hundreds or thousands of (integer) variables
even for |N | between 30 and 40. Indeed, our first preliminary computations
using characteristic imsets are very promising.
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5. M. Studený, Mathematical aspects of learning Bayesian networks: Bayesian

quality criteria, research report n. 2234, Institute of Information Theory and
Automation, Prague, December 2008.
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7. M. Studený, J. Vomlel and R. Hemmecke, International Journal of Approx-
imate Reasoning 51, 578 (2010).

8. R. R. Bouckaert, Bayesian belief networks: from construction to evidence,
PhD thesis, University of Utrecht, 1995.

9. D. M. Chickering, Journal of Machine Learning Research 3, 507 (2002).
10. M. Studený, J. Vomlel, International Journal of Approximate Reasoning 52,

627 (2011).
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