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Abstract. Irrelevance relations are sets of statements of the form: given that the ‘value’
of 7 is known, the ‘values’ of ¥ can add no further information about the ‘values’” of X.
Undirected Graphs (UGs), Directed Acyclic Graphs (DAGs) and Chain Graphs (CGs) were
used and investigated as schemes for the purpose of representing irrelevance relations. It is
known that, although all three schemes can approximate irrelevance, they are inadequate in
the sense that there are relations which cannot be fully represented by anyone of them.

In this paper annotated graphs are defined and suggested as a new model for graphical
representation. It is shown that this new model is a proper generalization of the former
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models: any irrelevance relation that can be represented by either one of the previous
models can also be represented by an annotated graph, and there are relations that can be
represented by an annotated graph but cannot be represented by either one of the former
models. The question of whether this new model is powerful enough to represent all the
irrelevance relations, as well as some other related questions, is still open.

Keywords: irrelevance relation, graphoid, (regular) annotated graph, membership algo-
rithm, annotation algorithm

1. Introduction

1.1. Motivation

Any system that reasons about knowledge and beliefs must make use of information about
dependencies and relevancies. If we have acquired a body of knowledge Z and wish to assess
the truth value of a proposition X, it is important to know whether it would be worthwhile to
consult another proposition Y, which is not in Z. In other words, before we examine Y, we
need to know if its value can potentially generate new information relative to X, information
not available from Z.

Many Al systems approach this problem in ad-hoc ways. These systems, though computa-
tionally convenient, are semantically sloppy. They often yield surprising and counterintuitive
conclusions - see [5].

The other approach to the problem of dealing with irrelevance, as with any other notion
involving uncertainty, is to handle it within probability theory, which is an appropriate math-
ematical framework. The problem with this approach is that it cures the problem of lack of
semantics, but introduces computational inefficiency.

The goal of the theory of graphoids is to make probabilistic systems operational by making
relevance relationships explicit. The theory developed may have some applications to relational
databases too. The representation has to be made in a way which will make it easy to identify
the facts which are irrelevant and therefore can be neglected, or, even better, make it easy to
identify the relevant facts, which must be considered.

The paper introduces new ways of storing the information included in irrelevance relations
in graphs, via a semantical interpretation of graph’s cutsets - to be described in the text. While
the size of irrelevance relations is usually exponential in the number of variables involved, the
graphs themselves are polynomial constructs.

1.2. Organization

The rest of the paper is organized as follows. In the next section we present the background
needed for our discussion. The original results of this paper appear in Section 3. Sections 4, 5
and 7 contain technical proofs and an example concerning our annotation algorithm. In Section
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6.1 we show that our results are a proper improvement upon the previous related works. In
Section 6.2 we state some open problems which arise from these new results.

2. Background

As the subject is relatively new (but developing fast) we will try to make our presentation self
contained. This section is an introductory section providing the basic definitions and prerequi-
sites. Readers who have been already exposed to the subject may skip this part and proceed
directly to Section 3.

2.1. Graphoids

Throughout the paper V will denote a finite non-empty set of attributes. These attributes will
be represented in the sequel by vertices of graphs and will mainly represent random variables.

Assuming that X,Y C V the juxtaposition XY will often denote the union X UY. A
singleton subset {v} of the set of attributes V' will be denoted by v. We will often deal with
triplets (X, Z,Y) of disjoint subsets of V. The set of all such triplets will be denoted by 7 (V)
and every single such triplet will be called a triplet over V.

Let I be a subset of 7 (V). We shall sometimes denote the fact that the triplet (X, Z,Y) is in
I'by I(X,Z,Y). A graphoid over V is a set of triplets over V satisfying the following properties.
Sometimes we will refer to those properties as axioms.

0) I1(0,2,Y) Trivial property
(1) I(X,Z,)Y)=1(Y,Z, X) Symmetry

(2) I(X,Z,YW)=I1(X,Z,Y)NI(X,Z,W) Decomposition
(3) I(X,Z,YW)=I(X,ZY,W) Weak Union

(4) (X, ZY W)NI(X,Z,)Y)= (X, Z,YW) Contraction

B) (X, ZY W)YNI(X,ZW,Y) = I(X,Z,YW) Intersection

Given a subset [ of 7 (V') the graphoid closure of I, to be denoted by gr([), is understood to
be the class of all triplets over V' that can be derived from triplets in I by consecutive application
of the graphoid properties. Trivially ¢r(I) is a graphoid.

The relation of conditional relevance with respect to probability theory was defined by Lau-
ritzen [2]. One can interpret conditional irrelevance as conditional independence. Given a joint
probability distribution P over a (finite) set of random variables V', the random variables X and
Y are irrelevant when 7 is known if P(x y|z) = P(x|z) - P(y|z) for all possible values x,y,z of
random variables XY, 7. We will say that a relation I C 7 (V) is induced by a distribution P
over V if a triplet (X, Z,Y) is in [ if and only if X, Z and Y satisfy the above relation.

The well-known fact [4] is that any relation I induced by a probability distribution satisfies
the properties (0) - (4) above, and if the distribution P is strictly positive then the induced
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Figure 1. Non-chordal undirected graph.

relation is a graphoid. It has been shown, however, by Studeny [7] that the above set of axioms
is not complete for relations induced by probabilistic distributions.

Remark 2.1. Triplets of the form (0, 7,Y) and (X, Z,0) will be called ‘trivial’ and could be
omitted throughout the paper. But we decided to incorporate them for the sake of completeness.

2.2. Representation by Undirected Graphs

Consider an Undirected Graph (UG) as a way of representation of an irrelevance relation I C
T(V). Supposing that G is an UG over V (that is a graph having V as its set of vertices), a
triplet (X, Z,Y) € T(V) is represented in G if every path in (7 from a vertex in X to a vertex
in Y is intercepted by a vertex in Z (or equivalently, the set Z is a cutset between X and
Y). Of course, if either X or Y is empty, then no such path exists and the triplet (X, 7,Y) is
represented in G trivially. The set of triplets represented in G is denoted by I(G). Consider
for example the graph shown in Figure 1. The two vertices x and z separate between y and w
and therefore the triplet (y,zz,w) is represented in the graph. In addition, the vertices y and
w separate between z and z and therefore the triplet (z,yw, z) is represented as well. No other
triplet (except for symmetrical images of these two triplets and trivial triplets) is represented in
the graph. Thus

I(G)=A{(y,zz,w), (z,yw, z) + their symmetrical images + trivial triplets } .

Pearl and Paz [4] gave a characterization of the properties of ternary relations induced by
UGs by means of properties of graphoid type. A relation can be represented by an UG if and
only if it satisfies the following mutually independent axioms.
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0) 1(0,2Y) Trivial Property
(1) I(X,Z,)Y)=1(Y,Z, X) Symmetry

(2) I(X,Z,YW)=I1(X,Z,Y)NI(X,Z,W) Decomposition
(5) (X, ZY WINT(X,ZW,Y) = 1(X,Z,YW) Intersection

6) I(X,Z,Y)= [(X,ZW,Y), W CV\XYZ Strong Union
(M) I(X,Z2,Y)=1(X,Z,w)VI(w,Z)Y), we V\XYZ Transitivity

Remark 2.2. 1. The symbol w in (7) denotes a singleton element of V.

2. The properties above are clearly valid for the set of triplets represented by an UG. Axiom
(7) is a contrapositive form of connectedness transitivity, stating that if X is connected to
a vertex w and w is connected to Y then X is connected to Y. Axiom (6) states that if Z
is a vertex cutset separating X from Y, then adding more vertices W to Z leaves X and
Y still separated. Axiom (5) states that if X is separated from Y with W removed and X
is separated from W with Y removed, then X must be separated from both Y and W.

3. The Strong Union axiom (6) implies with help of (2) the Weak Union axiom (3) from
Section 2.1. Similarly, (5) and (6) imply the Contraction axiom (4) and also the converse
of Axiom (2) which is

8) I(X,Z,Y)YNI(X,Z,W)=1(X,Z,YW) Composition

meaning that I is completely defined by the set of triplets (a, 7, b) in which a and b are
singleton elements of V.

Since the properties (0), (1), (2), (5), (6), (7) together imply the properties (0), (1), (2), (3),
(4), (5) the collection of triplets represented in an UG is a graphoid. On the other hand, these
two systems of axioms are not equivalent. Consider, for example, the attribute set V' = {a, b, ¢}
and the graphoid I over V consisting of the triplets (a,0,¢), (¢, 0, a) and trivial triplets. It does
not satisfy (6). Note that a similar situation occurs in the well-known example with two coins
and a bell from the book [5]. Therefore, there are graphoids which cannot be induced by UGs.

A triplet ¢t over a set of attributes V of the form (a,V'\ {a, b}, ) where a,b € V are distinct,
will be called a simple and saturated triplet. If G is an UG over V, then such a triplet is
represented in G if and only if {a,b} is not an edge in G. The claim below can be proved on
basis of Theorem 3 from [4].

Claim 2.1. Let G be an undirected graph over V', M be a graphoid over V. If all simple and
saturated triplets represented in GG are in M, then I(G) C M.

The advantage of graphs for graphoid representation is evident. The representation of a
graph requires a polynomial number of bits in the number of its vertices, but the number of
triplets which can be represented by it is usually exponential.
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Figure 2. Directed acyclic graph.

2.3. Representation by Directed Acyclic Graphs

A second way of representing graphoids is by Directed Acyclic Graphs (DAGs). The definition
of the representation of a triplet in such a graph is more complex and it takes into consideration
the possibility of directing the arcs. There are three ways that a pair of arrows may meet at a

vertex:

e tail to tail, z + z — y,
e head to tail, v — z — y,

e head to head, z — z + y.

Definition 2.1. 1. Two arrows meeting head to tail, or tail to tail at node u are said to be

blocked by a set Z of vertices if u is in Z.

2. Two arrows meeting head to head at node u are blocked by Z if neither w nor any of its

descendants is in Z.

3. An undirected path 7 in a DAG G is said to be d-separated by a subset Z of the vertices
if at least one pair of successive arrows along 7 is blocked by Z.

4. Let X,Y and Z be three disjoint sets of vertices in a DAG (. 7 is said to d-separate X
from Y if all paths between X and Y are d-separated by Z.

For example, in the graph shown in Figure 2, the triplet (z,y, ) is represented as the set {y}
d-separates between the vertices z and z. On the other hand, the triplets (z,w, z) and (z, yu, )
are not represented in the graph.

This way of graphoid representation has limitations as well. It has been shown by Pearl and
Verma [6] that a necessary (but not sufficient) condition for a graphoid to be induced by a DAG
is that it satisfies the following independent properties:
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(0) I(0,2,Y) Trivial property

() IX,Z2,Y)=1(Y,Z X) Symmetry

(2a) I(X,Z,YW)e (X, Z,Y)ANI(X,Z,W) Composition - Decomposition
3) X, Z2,YW)=I(X,ZY,W) Weak union

4 IX,ZY,WYANI(X,Z2,Y)=I(X,Z,YIW) Contraction

(5) X, ZY,WYANI(X,ZW,)Y) = I(X,Z,YW) Intersection

9) X, ZVANIX, Zw,Y)=> (X, Z,w)VI(w,Z,Y) Weak transitivity

(10)  I(z,zw,y) AN (z, 2y, w) = Iz, z,y) V I(z,w,y) Chordality

Lower case letters stand for singleton elements of V. These properties imply but are not equiva-
lent to the graphoid axioms. Therefore, there are graphoids which cannot be induced by DAGs.

2.4. Comparison of the Two Approaches

As we have seen in the previous two sections, both ways of graphoid representation, by UGs and
DAGs, have limitation. There are graphoids that cannot be represented by either one of them.
Moreover, no one of the two classes of models is stronger than the other. The example of a
graphoid mentioned in Section 2.2 (after Remark 2.2) can be represented by a DAG with three
vertices a, b, ¢ and arrows from a to b and from ¢ to b. Thus, the triplet (a,(, ¢) is represented,
but the triplet (a,b,c) is not represented in that DAG. As mentioned before, this graphoid
cannot be represented by an UG.

On the other hand, the graphoid represented by the diamond shaped graph in Figure 1
cannot be represented by a DAG. The graph is non-chordal, and the represented graphoid does
not satisfy the Chordality axiom (10).

2.5. The Chain Graph Models

A class of models that generalizes both UG models and DAG model, the class of Chain Graph
(CG) models, was used by Frydenberg [1]. We shall provide a brief discussion of this approach
model in Section 6.

3. Annotated Graphs

3.1. Definitions and Notation

The following definitions will be required in the sequel.

An element over a set of attributes V' is a couple k = (D(k), R(k)) of disjoint subsets of V,
where D(k) is either the empty set or a two-element subset of V' and is called the domain of the
element. The second entry of the element, R(k), is called the range of the element. An element
is degraded if its domain is empty, D(k) = 0, otherwise it is non-degraded. An element is called
void if its range is empty, R(k) = 0. The collection of all elements over V' will be denoted by
E(V). Supposing that K C E(V) the symbol R(K) will denote the union J{R(k);k € K}. An
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annotated graph over V is a couple (G, K) where (G is an undirected graph over V' and K is a
subset of E (V).

Let G be an undirected graph over V. By a non-trivial path in G we understand a path
connecting at least 3 nodes. For a non-empty subset T of V we define the restricted graph of
G to T (or in short the restriction of G to T') as a graph over T', denoted by G, whose edges
are determined by the following requirement: (u,v) is an edge in GT if there exists a path
in G between u and v which is outside 7"\ {u, v} (or equivalently through the set of vertices

{u, v} U (VAT)).

Remark 3.1. If {u,v} C T is an edge in ¢, then it forms a (trivial) path between u and v of
length 1 which is evidently outside 7"\ {u, v}, and therefore (u,v) is an edge in GT. But there
may be edges in G which are not edges in G. Thus, in general, we can only say that the classic
induced subgraph of G for T' (usually denoted by G'1) is only a subgraph of the restricted graph
GT (nothing more).

The significance of the restricted graph is explicated by the following lemma.

Lemma 3.1. Let GG be an undirected graph over a set of attributes V and let T be a non-empty
subset of V.. Then a triplet (X, Z,Y) over T is represented in G if and only if it is represented
in the restricted graph G7T.

Proof:

The set of triplets [ over T represented in G satisfies the properties (0), (1),(2),(5), (6), (7).
Therefore, I can be perfectly represented by a graph over T (i.e. by a graph representing all the
triplets in [ and only those triplets - see Section 2.2). It was shown in [4] that such a graph is
uniquely determined by its subset of triplets of the form (a, T\ {a,b},b). It is easy to see and it
is left to the reader to show that the triplets of the above form are represented in the restricted
graph G if and only if they are represented in G. O

Let k € E(V) be an element over V and §) # T C V. In case D(k) C T we define the
restricted element of k to T' (or shortly the restriction of k to T'), denoted by kT as an element
over T with D(kT) = D(k) and R(kT) = R(k)NT. Given that (G, K) is an annotated graph
over V and T is a non-empty subset of V, the restricted annotated graph to T is the graph
(GT,KT) where KT = {l € E(T); there exists k € E(V) with kT = [}.

A nest of undirected graphs is a sequence Iy, ..., F,,,n > 1 of undirected graphs such that
F; is a subgraph of F;4; fore=1,...,n—1.

The rest of this paper is devoted to two basic polynomial algorithms and the proof of their
correctness. The first algorithm, the membership algorithm, defines the semantics of annotated
graphs, i.e. a triplet is represented in a given annotated graph if and only if the membership
algorithm when applied on that graph results in a “yes” answer. It will be assumed however
that the annotated graphs processed by the algorithm have certain properties and the annotated
graphs satisfying those properties will be called regular annotated graphs. It will be shown,
in Section 4 that the relations represented in regular annotated graphs via the membership
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algorithm are graphoid relations. The second algorithm, the annotation algorithm, creates an
annotated graph out of a nest of graphs. It will be shown in Sections 5 and 7 that the resulting
annotated graph is regular, and that the graphoid relation represented by it is equal to the
graphoid closure of the relations represented by the individual graphs in the nest. While the
algorithms themselves are quite simple, the proof of their correctness is long and intricate. We
choose therefore, for the benefit of the reader, to describe the algorithms first and postpone the
proofs to the subsequent sections.

3.2. Membership Algorithm

As mentioned in the previous section, the annotated graphs input to the algorithm will be
assumed to be “regular”. It is not necessary at this point to define the regularity conditions,
and we will do this in the sequel. It will also be shown in the sequel that regular annotated
graphs have the following properties (see Lemma 4.1 in Section 4.1). If (G, K) is a regular
annotated graph, then Yk, € K, D(k) N R(l) # 0 implies that R(k) C R(l). Furthermore, the
binary relation “<” over K defined by I < k if [D(k) N R(l) # 0 or k =[] is a partial ordering
on K. Before presenting the algorithm itself, we need also the following definitions.

Definition 3.1. Suppose that (G, K) is a regular annotated graph, and k,[ € K. We say that
k dominates | and write [ < k or k > [ if D(k) N R(I) # 0. Observe that [ < k implies [ # k
since R(k) N D(k) = 0 for every element k over V. An element is called a dominant element of
K if there is no element in K which dominates k (equivalently, &k is a maximal element of K
with respect to the partial ordering < mentioned above).

Remark 3.2. Note that, it follows from the definition, a degraded element cannot dominate
another element, but it can be dominated by other elements. On the other hand, degraded
elements may be dominant (this happens when they are not dominated).

Definition 3.2. Let (G, K) be a regular annotated graph with K # (). We say that a sequence
w=(k1...,k,),n>1of all elements in K is a scenario for K if the following three conditions

hold.

(a) Whenever k; > k; then ¢ < j.
(b) Every element of K is included in w.
(c) Non-degraded elements are not repeated in w.

It follows from the above conditions that the first element of a scenario for K must be a
dominant element of K. Note that degraded elements can be repeated in a scenario.
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The membership algorithm

0. Input: (G,K) a regular annotated graph over a finite non-empty set of vertices V', and
t=(X,Z,Y) a triplet over V.

w

. Initiation: Construct a scenario w for K such that every element of K is included in it
exactly once, and such that any element [ € K with R(I) N XY Z = () precedes in w all
elements k € K with R(k) N XY Z # (. { This is possible due to the fact that < is a
partial ordering and R(I)N XY Z =0 # R(k) N XY Z implies that ={ k > [ } as otherwise
R(k) C R(l).}

Deletion: Remove from K all elements r € K with R(r) N XYZ # () and at the same

time cancel those elements in w. { Thus, w is shortened by cutting off all elements in the
sequence after the last element [ € K with R(()N XYZ =0.}

. Testing: If K is empty, then test whether ¢ is represented in the resulting undirected graph

and halt with “yes” or “no”, depending on the result of the test.

. Processing: K is not empty. Pick the first element p € K in w {pis a dominant element }

and perform the following 3 steps. Let us put S = R(p).

4.1

Degradation: For every non-degraded element s € K such that there exists a non-
trivial path in G between the nodes of D(s) through D(s)US\ R(s), replace the element
s = (D(s), R(s)) by its degraded version (), R(s)) both in K and w. If § = (0, R(s))
was already in K before Step 4.1, just remove s from K and degrade it in w. { This
step may result in repetition of degraded elements in w even though such repetition
is not possible in the set K. }

4.2 Restriction: Replace the annotated graph by its restriction to V'\ S and at the same

4.3

time replace in w every element by its restriction to V' '\ S. { Note that in this step
the processed element p is changed into an void element. }

Reduction: For every non-degraded void element [ in K (i.e. whenever R(l) = () #
D(l)) remove the edge connecting the vertices in D(I) from the graph G, if such an
edge exists. Then remove all void elements (including degraded ones) from K and
cancel them in w. { The processed element p € K is deleted in this step. After this
step all the elements in K have non-empty range. }

5. Go to 3.

3.3.

Annotation Algorithm

Let G be an undirected graph over V and let k = ({a,b},U) be a non-degraded element over
V. The symbol 7(a,b|U||G) will denote the set of all vertices y € V' \ {a, b} such that for both
x € {a,b}, there is a path in G between & and y through {2z} U U. The basis of the annotation
algorithm is the following annotation procedure.
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F1 : F2 : F3 : (@)
a a /‘\x
}Oc dO\ //Oc do\‘//m
O O O
b b b

Figure 3. A nest of UGs.

Definition 3.3. Let ([, L) be an annotated graph over V with no degraded element. Let F
be an undirected graph over V U B, where V N B = (, such that H is a subgraph of F'. The
annotated graph (G, K) over VU B denoted by Annot ((H, L) : F) is defined as follows. { Recall
that degraded elements are elements of the form (0, U), where U C V .}

A1l. G is derived from F' by removing from [ all edges (u,v) such that u,v € V| (u,v) is not
an edge in H and 7(u,v|B||F) = 0. Set K = 0.

A2. Insert 'new’ elements in K as follows: for every pair of vertices u,v € V,u # v, such that
(u,v) is not an edge in H and U = 7(u,v|B||F) # 0, create a (non-degraded) element
({u, v}, U) and insert it into K.

A3. Add to K elements created from elements in L by ’expanding’ as follows. For every element
({u,v}, W) € L add to K the expanded element ({u,v},T) where T' = 7(u, v|W U B||F).
{ Note that in standard case of a regular annotated graph (H, L) it holds W C T and
therefore we are entitled to say that ({u, v}, W) is expanded into ({u,v},7). }

The annotation algorithm

Input: A nest of undirected graphs Fy, Fo..., F,, n > 1.

Start from (G, K1) with Gy = Fy and Ky = 0.

Construct (G, K;) = Annot((Gi—1, K;—1) : I}) fori=2,...,n.
Output: (G, K) = (G, K,,).

As mentioned before, it will be shown in the sequel that the annotated graphs, obtained by
the annotation algorithm, are regular, that the relations represented (via the membership algo-
rithm) by regular annotated graphs are graphoid relations and that the graphoid closure of the
relations represented by the individual UG’s in a nest of UG’ s is identical to the graphoid rela-
tion represented by the regular annotated graph derived from the given nest by the annotation
algorithm. We will also show that not every regular annotated graph representing a graphoid
relation can be derived from a nest of UG’s.

3.4. Example

Consider the nest of UG’s given in Figure 3. Every F; in the nest is a subgraph of Fi41, ¢ = 1,2 as
requested. Applying the annotation algorithm to the above graphs, we get (K is the annotation
of Gy):
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G2 . a
do\i/yoc
O

b

Figure 4. The second iteration of the annotation algorithm.

e First iteration (G4, Ky) with G; = Fy and Ky = 0.

e Second iteration (Gg, K3) with (g as in Figure 4 and Ky = {({«¢, b}, {d})}. The edge (a,c)
is removed from I, to get G5 since 7(a, c[{d}||F;) = 0 (Step A1), the element ({a,b}, {d})
is added to K3 since 7(a, b|{d}|Fz) = {d} (Step A2).

e Third iteration (G's, K3) with G's = F3 and

Kz ={({a,b},{d;¢}), ({a,c},{e}), ({e;d},{e}) }.

No pair (u,v) such that (u,v) is an edge in F3 but not in Gy satisfies 7(u, v|{e}||F3) =0,
and therefore no edge is removed from F3 in order to get G's. Since 7(a, c|[{e}||F5) = {e}
and 7(c,d|{e}||F5) = {e} the elements ({a,c}, {e}) and ({c,d}, {e}) are added to K3
(Step A2). Moreover, 7(a, b|{d, e}||F5) = {d, e} and therefore the element ({a,b}, {d}) of
K is expanded into the element ({a,b}, {d,e}) in K3 (Step A3).

Notice that, in K3, the element ({c,d}, {e}) dominates the element ({a,b}, {d,e}). Thus,
the only dominant elements of K3 are ({a,c}, {e}) and ({c,d}, {e}). Suppose we want to test
whether the triplet (a,bd, c) is represented in (G'3, K3) then we go through the following steps
of the membership algorithm:

o w= ({a,c}, {e}), ({c,d}, {e}), ({a,b}, {d,e}) (Step 1 - Initiation).

e Remove the element ({a,b}, {d,e}) from K3 and from w (Step 2 - Deletion).
e The condition of Step 3 does not hold, as K3 # (.

e Process the element ({a,c}, {e}) (Step 4).

4.1 Does not apply.

4.2 The graph G5 is changed into the complete graph G% over {a,b, ¢, d} and the ranges
of both remaining elements are set to (). Thus, the next iteration is (G%, K%) with

K3 ={({a,c},0), {c, d},0) }.
4.3 The edges (a,c) and (¢, d) are now removed from G% which is then transformed into

4 = G5. All elements are removed from K% to get KY = 0 and cancelled in the

scenario.

e Returning to Step 3 we find that the triplet (a,bd, ¢) is represented in G4 = (3 so that
the algorithm halts with a “yes” answer.
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Notice that the given triplet is not represented in any of the individual UG’s in the original
nest, but as a result of the “yes” answer given by the membership algorithm, we know that it is
represented in the graphoid closure of the relations represented by Fip, I3 and Fs.

Remark 3.3. The reader can verify that the graphoid represented by the annotated graph
(G3, K3) cannot be represented by an UG or a DAG since axioms (6) and (9) are not fulfilled.
Another example of such an annotated graph will be given in Section 5.3.

4. Proofs

As mentioned earlier, this section of the paper is devoted to proofs. The order of the proofs
does not follow the order of the exposition, and the most complex parts are postponed to
Section 7. We provide first the definition of regularity for annotated graph, then we show that
regular annotated graphs represent graphoids and can be tested, polynomially, for membership
of individual triplets.

4.1. Regular Annotated Graphs

The concept of annotated graphs introduced in the previous section is too general. In fact, we
will restrict our attention to a special class of annotated graphs, which satisfy certain regularity
conditions. The conditions seem technical at first sight, but they express important general
properties shared by the annotated graphs we deal with.

Definition 4.1. Suppose that (G, K) is an annotated graph over V. We say that an edge (u, v)
in (G, K) is K-durable (or simply durable) if there is no element in K whose domain is {u, v}.
We say that an annotated graph (G, K) is regular if it satisfies the following three conditions.

(R1) Vk € K, Yu € R(k), Yv € D(k),
there exists a path in GG between u and v through {v}U R(k) composed of K-durable edges
which is completely outside R(K,) where K, ={l € K; u ¢ R(l)}.

(R2) Vk,l € K such that D(k) = D(l) # 0 there exists ¢ € K with D(q) = D(k) and
R(q) = R(k) UR(l).

(R3) Vk,l € K, V path wy,...,w,, n > 2 in G through {wy,w,} U R(k) such that w, €
RO\ R(k), w, € V\ R(k), and (w1, w,,) is not a K-durable edge in G, there are indices
1 <i<j<nand g€ K such that D(¢) = {w;, w;} and {wp, : 71 < h < j} C R(q).

Remark 4.1. The condition requiring that (wy, w,) is not a K-durable edge means that either
(w1, w,,) is not an edge or, if it is, there is an element r € K such that D(r) = {wq, w,}.

The conditions (R1), (R2), (R3) are independent of each other. For example, to show that
(R1) (R2) # (R3) consider the annotated graph in Figure 5, to show that (R1) (R3) # (R2)
take the annotated graph in Figure 6, and to show that (R2) (R3) # (R1) use the annotated
graph in Figure 7.
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G K: ({a,b},{d})
a c ({a,b},{c,d})
3
O——0O0——=0ce
b d
Figure 5. Annotated graph without (R3) property.
G K: ({a,b},{c})
a ¢ ({a,b},{d})
Q>—<Q
O——=0O
b d
Figure 6. Annotated graph without (R2) property.
G K: ({a,b},{c})
a
O
Oc
O
b
Figure 7.

Annotated graph without (R1) property.
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Lemma 4.1. Let (G, K) be an annotated graph satisfying (R1). Then
(R4) Vk,l e K D(k)nR(l) # 0 implies that R(k) C R(l).

Furthermore, the binary relation < over K defined by | < k if [D(E)NR(I) # 0 or k =1] is a
partial ordering on K. Notice that | < k implies R(k) C R(l).

Proof:

Assume that k,1 € K,D(k)n R(l) # (. Since D(k) N R(k) = 0 one has § # D(k) N R(l) C
R()\R(k) and toshow R(k) C R(l) it remains to verify R(k) C R(l). Suppose for a contradiction
that R(k)\ R(l) # 0. Then choose u € R(k)\ R(l),v € D(k)NR(l) and apply (R1) to find a path
between u and v outside R(K,). Since u ¢ R(l) it should be outside R({), but v, its last node,
is in R(l) by our assumption which is a contradiction. Thus, (R4) was verified and [ < k implies
R(k) C R(l). Evidently, the relation < is reflexive. To verify that it is antisymmetric, consider
k,l € K such that [ < k and k # I. Then D(k) N R(l) # 0 implies by (R4) that R(k) C R(l).
Thus, R(1) \ R(k) # 0 forces that =(k < [). To prove transitivity consider k,l,s € K with
s = | < k. We must show that s < k. But s < [ implies R(l) C R(s) which together with
D(k) N R(l) # 0 means that D(k) N R(s) # 0, what is needed. 0

The following lemma deals with the concept of dominance introduced in Definition 3.1.

Lemma 4.2. Let (G, K) be an annotated graph satisfying (R2) and (R3). Suppose that p,s € K
are given such that p is a dominant element of K and s dominates some element of K (no matter
which one). Then there exists ¢ € K with D(q) = D(s), R(s) C R(q) and there is no non-trivial
path in G between the nodes of D(q) through D(q) U R(p) \ R(q).

Proof:

Clearly s is a non-degraded element. Put K, = {r € K; D(r) = D(s)}. Since K, is finite
and non-empty (s € K,) by consecutive application of (R2) find ¢ € K, with R(¢) = R(K.).
Therefore R(s) C R(q). Suppose by contradiction that there exists a path wyq,...,w,, n > 3
in G between the nodes of D(q) = {wy,w,} through D(¢) U (R(p) \ R(¢)). Since s € K
dominates some [ € K, we can assume, without loss of generality, that wy; € R(I) \ R(p) and
w, € V '\ R(p) (note that D(¢) N R(p) = 0 since p is a dominant element of K). Then one
can use (R3) to find k € K with D(k) = {w;,w;} and {wp;i < h < j} C R(k) for some
1 < i< 7 <n. Since pis a dominant element, we have that ¢ = 1 and j = n necessarily. Thus
ke K, and 0 # {ws,...,w,_1} C R(k) C R(K.) = R(q). This contradicts the assumption that
{wz, ..., w,—1} C R(p) \ R(q). 0

4.2. Properties of the Membership Algorithm

We refer now to the algorithm presented in Section 3.2. We will show that the algorithm
preserves the regularity of the annotated graphs from iteration to iteration. In the initiation
step and before the first iteration the elements in the set K at input are ordered into a special
sequence called scenario. After this sequence is set, it becomes a free parameter of the algorithm
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and the algorithm becomes fully deterministic. No further free choices are allowed in subsequent
iterations, and the sequence of elements constructed at initiation is no longer dependent on the
tested triplet ¢.

We would like to mention here that the formulation of the algorithm as given in Section
3.2 renders the algorithm more complex than necessary. This formulation is needed in order to
simplify some of the proofs. Some modifications, rendering the algorithm more efficient, will be
shown in the sequel. Let us add a few remarks concerning the given definition of the algorithm.

1. Notice that the processing of an element p € K in Step 4 may also eliminate other elements
of K.

2. Notice that all parts of Step 4 depend on S = R(p) only! It is immaterial whether p is
degraded or not. In fact, for every regular annotated graph (G, K) over V and every set
S CV with D(k) NS = 0 for every k € K, the concept of processing of the set S can be
introduced. This means that the Steps 4.1, 4.2 and 4.3 are performed while the operations
with w are ignored. This formal point of view will be useful later.

3. The reader may consider it superfluous to construct a scenario consisting of all elements
of K, in Step 1, since the end part of that sequence is immediately cut off in Step 2. The
suitability of this formal step will also become clear in the sequel (proof of Theorem 4.2).

Observation 4.1. After every step of the membership algorithm, (G, K) is an annotated graph
and w satisfies the first two conditions in the definition of a scenario.

Proof:

The only doubts can occur in the restriction step 4.2. But, since p was a dominant element
of K before this step (in fact, p was a dominant triplet of K already before the degradation
step 4.1 and degradation preserves that situation), we know that the set V' \ R(p) includes all
domains of elements in K before restriction. Therefore, for arbitrary [,s € K we know that
[VAR(®) dominates sV \E(®) if and only if [ dominates s, and the obtained sequence w of restricted
elements will satisfy the conditions (a) and (b) in the definition of the scenario. 0

Observation 4.2. If a triplet ¢ over the set of vertices of the last iteration is already repre-
sented in an iteration (G, K,w) of the membership algorithm (that means  is represented in the
undirected graph G generated at that iteration), then it is represented in its last iteration, too.

Proof:

The undirected graph is changed only in Steps 4.2 and 4.3 of the algorithm. By Lemma 3.1 the
restriction step 4.2 preserves representation of a triplet { = (X, Z,Y) with XYZ C V' \ R(p).
In the reduction step 4.3 only some edges can be possibly removed from the undirected graph.
This change also preserves representation of a triplet in the graph. O

Remark 4.2. It follows from the previous observation that we can make the membership algo-
rithm more efficient by modifying Step 3 as follows:

3. Testing (modified): Test whether the triplet ¢ is represented in G. If the answer is “yes”,
then stop. Otherwise continue untill K is empty.
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4.3. Basic Results

Lemma 4.3. After every step of the membership algorithm, (G, K) is a reqular annotated graph
and w is a scenario for K.

Proof:

Evidently, the described situation holds after Step 1. We need to show that the situation is
preserved during Steps 2 and 4. Owing to Observation 4.1, we have only to show that (R1),
(R2), (R3) are preserved and that non-degraded elements are not repeated in the sequence w,
after those steps.

Now the deletion step 2 represents only the removal of an element r € K with R(r)N XY Z #
(0, the undirected graph G is not changed. To verify (R1) assume that after the deletion (= Step
2),one has k € K,u € R(k)and v € D(k), for some k, u v. Then this was also the case before the
deletion. Based on condition (R1) we know that the vertices u and v were connected by a path
through {v} U R(k) made of K-durable edges outside of R(K,) (before the deletion step). But
durable edges, before the deletion remain durable after it, while R(K,) can only be decreased.
Therefore, the condition described in (R1) remains valid after the deletion step 2.

To verify (R2), we notice that if k,1 € K with D(k) = D(l) # 0 after the deletion step,
then the same holds before deletion. Therefore an element ¢ € K such that D(q) = D(k) and
R(q) = R(k) U R(l) was present in K before deletion (by (R2)). Now, both R(k) and R({) do
not intersect XY 7 and therefore R(q) N XY Z = () implying that ¢ remains in K after Step 2.

To verify (R3) suppose that the premises of (R3) are satisfied after the deletion step 2 (see
the formulation of (R3)). One can verify that the premises of (R3) are valid also before deletion,
implying the existence of ¢ € K such that D(q) = {w;, w;} and {wy,,i < h < j} C R(g) for some
1 <i<j<n (where wy,...,w, is the assumed path). If k,[ € K were the assumed elements
before deletion, then one has either D(¢) N R(l) # 0 (in case i = 1) or D(q) N R(k) # 0 (in case
2 < ¢). Hence, by Lemma 4.1 (property (R4)) one can derive that R(q) C R(k)U R(l) was valid
before the deletion step. Since both R(k) and R(l) do not intersect XY Z, ¢ is preserved in K
during Step 2.

Evidently, Step 2 does not create repetitions of elements.

Suppose that in Step 4 an element p € K, which is a dominant element of K, is processed.
Then Step 4.1 degrades only some non-degraded elements s € K, namely those for which there
exists a non-trivial path in G between nodes of D(s) through D(s)U(R(p)\R(s)). The undirected
graph ¢ is unchanged.

The verification of (R1) after the degradation Step 4.1 can be made in a similar way as it
was made in the case of the deletion Step 2: durable edges before degradation remain durable
after degradation and R(K,) is unchanged for every node u.

To verify (R2) suppose that one has k,l € K with D(k) = D(l) # ( after degradation.
Then the same situation occurs before degradation, and one can find ¢ € K with D(q) = D(k)
and R(q) = R(k) U R(l) (before degradation). Suppose for a contradiction that ¢ is degraded
during Step 4.1, which means that there was a non-trivial path in G between the nodes of
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D(q) = D(k) through D(q) U (R(p) \ R(¢)). Since R(k) C R(q), the path also went through
D(k)uU (R(p) \ R(k)), what contradicts the assumption that k is a non-degraded element after
the degradation step 4.1. Thus, ¢ can not be changed during degradation.

To verify (R3), suppose that its premises are satisfied after the degradation step 4.1 with
respect to (possibly degraded) elements k,l € K. Then the premises of (R3) were also satisfied
before degradation and with respect to the original versions k,! € K (one has either k=kork
is a degraded version of a non-degraded element k, similarly for [ and 7). Thus, (R3) guarantees
that a non-degraded element s € K with D(s) = {w;, w;} and {wy; i < h < j} C R(s) for some
1 <1< j<ncanbefound (wy,...,w, is the assumed path - see the formulation of (R3)). Now,
one can see that s dominates either k or [, before degradation (one can repeat the arguments
we used when we verified that (R3) is preserved during Step 2). Thus, the assumptions of
Lemma 4.2 for p,s € K were fulfilled before degradation implying the existence of ¢ € K with
D(q) = D(s), R(s) C R(q) such that ¢ is not degraded during Step 4.1. Thus, ¢ € K satisfies
both D(q) = {w;, w;} and {wp;¢ < h < j} C R(q) and is preserved during the degradation step.

Evidently, Step 4.1 does not create repetition of non-degraded elements in w.

The restriction step 4.2 (with respect to a dominant element p € K) represents the restriction
of the undirected graph G to V'\ R(p) and replacement of every element k € K by its restriction
EV\R(p)

To verify the validity of (R1) suppose that we have, after Step 4.2, a restricted element
ke KY\B®) ¢ R(k) and v € D(k). Then before restriction there was k € K such that
EVAR(®) = | with w € R(k)\ R(p), v € D(k) C V \ R(p). By the property (R1) we were able
to find a path between u and v in G through {v} U R(k) composed of K-durable edges which
is outside R(K,). Since u ¢ R(p), one has that R(p) C R(K,) and all the paths belong to
V' \ R(p). Therefore, the path is also a path in the restricted graph GV\E®) through {v}U R(l%)
Moreover, as the domains of elements were not changed by the restriction step, durable edges
in V' \ R(p) remain durable. Also R(K,) was only diminished during this step. Therefore the
property (R1) remains valid also after Step 4.2.

To verify (R2), suppose that after restriction we have two restricted elements ke KV\E®)
with D(k) = D(l) # 0. Then there exist k,[ € K with k = kV\E®) and [ = [V\E®), Since D(k) =
D(l) # 0, we can find by (R2) an element ¢ € K with D(¢) = D(k) and R(q) = R(k) U R(l).
But the restriction of ¢ to V' \ R(p) results in an element § with R(§) = R(k) U R(]).

To verify (R3), suppose that the premises of (R3) are satisfied after Step 4.2, that is we have
two restricted elements &, and a path wy, ..., wp,n > 2 in the restricted graph GV \E(®) from
wy € R(I)\ R(k) to w, € V\ (R(p) U R(k)) through {wy,w,} U R(k) such that either {w;,w,}
is not an edge in GV\E() or there exists a restricted element 7 with D(7) = {w;,w,}. Let
k,l € K be two elements of K (before restriction), such that k = kY \R(®) and [ = [V\E(®), One

must consider two subcases.

o If the whole path wy ..., w, consists of edges in the original graph G, then one can verify
that the premises of (R3) for k,! and wq, ..., w, are satisfied before Step 4.2 and find
by the application of (R3) the required ¢ € K (see the formulation of (R3)). Then the
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corresponding restricted element ¢*\(?) is the desired element verifying (R3) after Step
4.2.

e On the other hand, if (w;, w;41) is not an edge in G for some 1 < ¢ < n — 1, then by
the definition of the restricted graph, there exists a path wy,...,up, h > 3 in G between
uy = w; and up = wiqq through {uy,un} U R(p). Moreover, u; = w; either belongs to
R()\ R(p) (if ¢ = 1) or to R(k) \ R(p) (if 2 < i < n —1). Thus, one can apply (R3)
either to the couple p,l € K and wuy, ..., up or to the couple p, k € K and uq, ..., up to find
q € K with D(¢) = {w*, uj+} for some 1 < ¢* < j* < h. Since p is a dominant element
of K, necessarily * = 1 and j* = h. Therefore, D(q) = {u1, up} = {w;, wiy1}. Then the
corresponding restricted element ¢ \E(?) is the desired element verifying (R3) for wy, ..., w,
with j = ¢4 1.

This completes the verification of (R3).

To show that non-degraded elements are not duplicated in w after the restriction step 4.2,
suppose for a contradiction that there are different non-degraded elements k,! € K (before Step
4.2) whose restrictions to V' \ R(p) coincide, i.e., kY \(®) = [VAR() Thus, consider the situation
before the restriction step and put

K.={s€K: D(s)=D(k) and R(s)\R(p) = R(k)\ R(p)}

Evidently, k,! € K. and, by consecutive application of (R2), we can find ¢ € K with D(q) = D(k)
and R(q) = R(K,). Clearly, ¢ € K.. Since k and [ differ but can be interchanged, one
can assume, without loss of generality, that R({) \ R(k) # 0 and one can find and fix some
we Rig)\ R(K).

Now, for both vy, v € D(¢q) = D(k) one can find by (R1) (for ¢) a path in GG between u and
v; (¢ = 1,2) through {v;} U R(q) which is outside R(k) (since k € K,!). However, such a path
must pass through {v;} U R(p) (since ¢ € K, implies that R(q)\ R(p) C R(k)). So, for both
v; € D(q) (¢ = 1,2) there exists a path in G between v and v; through {v; }U(R(p)\ R(k)). These
two paths can be joined and possibly shortened to obtain a non-trivial path in G' between nodes
of D(k) = D(gq) through D(k) U (R(p) \ R(k)). This situation occurs before Step 4.2, that is
after Step 4.1. One can easily see that such a path in G exists also before Step 4.1 which implies
that k& was necessarily degraded in the degradation Step 4.1 which contradicts the assumption.

The reduction Step 4.3 represents the removal of void elements from K and in G the removal
of edges which are possibly domains of those removed elements.

To verify validity of (R1), suppose that k € K, v € R(k), v € D(k) after reduction. Then
this is the case also before the reduction, and by (R1) one can find a corresponding path in GG
made of K-durable edges which is outside R(K,) (before reduction). As Step 4.3 removes only
non-durable edges, the path will remain in the graph after the reduction. Since K was reduced,
durable edges remain durable and R(K,) is unchanged during Step 4.3. Therefore, the property
(R1) holds also after the reduction step.

To verify (R2) suppose, that after reduction, there are two elements k,l € K with D(k) =
D(l) # 0. Then this situation was present also before the reduction and, by property (R2), one
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can find ¢ € K with D(q) = D(k) and R(¢q) = R(k) UR(l). Now R(k) # 0 implies that R(q) # 0
and ¢ is saved during the reduction step.

To verify the validity of (R3), assume that the premises of (R3) are satisfied after the
reduction step 4.3 (see the formulation of (R3)). To check that they are also satisfied before
the reduction, notice that the only disputable case is that where (wq, w,) is not an edge after
Step 4.3, although it is an edge before the reduction. Necessarily, {wy, w,} is a domain of a
non-degraded void element before reduction. Thus, by property (R3), applied before reduction,
we can find ¢ € K with D(¢) = {w;, w;} and {wp;i < h < j} C R(q) for some 1 < i< j < n.
The case R(q) = 0 requires that j = i 4 1 and the edge (w;,w;41) has to be removed during
reduction contrary to our assumption that the path wy, ..., w, exists in the graph after it. So,
necessarily ¢ is saved during Step 4.3.

Evidently, Step 4.3 does not create duplication of elements in w.

O

In fact, we have shown in the previous proof that the regularity conditions (R1), (R2), (R3)
are saved during processing of the set S = R(p) for a dominant element p € K. Since processing
of the empty set makes no change (except Step 4.3) one can conclude the following.

Consequence 4.1. Let (G, K) be a regular annotated graph over V. If S =0 or S = R(p) for
a dominant element p € K, then the processing of S results in a regular annotated graph over

VA S.

Lemma 4.4. Let (G, K) be a regular annotated graph, p,q,r € K where p,q are dominant
elements of K, R(r) C R(p)U R(q), u,v € V\ R(r), u# v such that {u,v} N (R(p) U R(q)) # 0.
If (u,v) is an edge in GV\RO) | then (u,v) is an edge in G.

Proof:

Without loss of generality suppose that u € R(q) (otherwise one can interchange u and v and also
interchange p and ¢). By the definition of GV\R() there exists a path wy ..., w,, n > 2in G with
w = wy, v = w, through {wy,w,} U R(r). Suppose, by contradiction, that (u,v) = (w1, w,) is
not an edge in (G and, by application of (R3) (for [ = ¢,k =r), find s € K with D(s) = {w;, w;}
for some 1 <i < j < n. Since ¢t <n — 1, one has w; € R(¢q) U R(r) C R(p) U R(g). This implies
that s dominates either p or ¢, which contradicts the assumption that p and ¢ are dominant.
Thus, necessarily, (u,v) is an edge in G. 0

Lemma 4.5. Let (G, K) be a reqular annotated graph and wy,wy two scenarios for K which
differ only in the order of the first two elements p,q € K, that is:

Wit Py, 5154045 Sn and W2 i q,PyS1yees Sy N 2 0.

(it is understood that if n = 0 then no element of K succeeds p and q both in wy and in
wq ). Then the application of two iterations of the membership algorithm to (G, K,w;) and to
(G, K,wq) results in the same intermediary output (G, K., wi).
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Proof:

We need to show that after the processing of p and ¢ the resulting annotated graph (G, K.)
is the same for both wy and w;y. The fact that the resulting scenario w, coincides is evident, as
the mutual order of the remaining elements is not changed, with some of the elements possibly
degraded, restricted or removed.

If the processing of p and ¢ are performed on wy, then we must consider the following
consecutive six steps: degradation for p, restriction for p, reduction (for p), degradation for
¢V \B(®) | restriction for ¢"\F(®) reduction (for qV\R(p)).

Note that if R(¢) C R(p) then the last 3 steps do not apply since the element ¢"\F(®) is
already cancelled in the reduction step (for p). Similarly, if the iterations are performed on w,
we must consider the six steps derived from the above six steps when p is interchanged with ¢.
Evidently, with both w; and wy the set of nodes of the resulting graph after the processing of p
and ¢ is V'\ (R(p) U E(q)).

We prove first that the resulting set of elements K. is identical with both w; and wy. Due
to symmetry between wy and ws, it suffices to show that if an element k is degraded or removed
with wy, then it is degraded or removed with w, correspondingly. Notice that, owing to the fact
that p, ¢ are dominant, one has D(k) N R(p) = 0 = D(k) N R(q). We distinguish 3 cases:

(i) If k& is removed (with wy) in one of the 2 reduction steps, then necessarily R(k) C R(p)UR(q).
Then k£ is removed also with wy as well, in one of the two reduction steps.

Assume now that %k is not removed. Then

(ii) If k is degraded (with wy) in the degradation step for p, then there exists a non-trivial
path 7 in G between nodes of D(k) through D(k) U (R(p) \ R(k)). Supposing that = is
through D(k) U R(q) the element k is also degraded (with ws) in the degradation step for
g. Otherwise 7 contains a node from R(p) \ (R(k)U R(gq)), and during the restriction to
V\ R(q) (with w;) it is shortened to a non-trivial path in GV \¥9) between nodes of D(k) =
(V) through D(k) U R(p) \ (R(k) U R(g)) = D(YVEO) U R(pV\RE) \ RV,
Therefore £V \R(9) is degraded (with wy) in the degradation step for p¥ \(4),

(iii) If k is degraded (with wy) in the degradation step for ¢V \{(*), then there exists a non-trivial
path 7 in GVVE®) between nodes of D(k) through D(k) U R(q) \ (R(k) U R(p)) . Since
for every edge (u,v) of © one has {u,v} N R(q) # 0, one can use Lemma 4.4 (for r = p)
to show that 7 is a path in G. Thus, 7 is a path in G between nodes of D(k) through
D(k)U (R(q)\ R(k)) and the element k is degraded in the degradation step for ¢ with ws.

So, an element k£ € K is removed with wy iff it is removed with wy and similarly for degradation.
But, if k& is not removed, then k or its degraded version is restricted to V' \ (R(p) U R(q)).
Therefore, the obtained set of elements K, is the same with both wy and ws.

In the second part of the proof, we will verify that the resulting undirected graph G, over
V\ (R(p)UR(q)) is the same with both w; and wy. Thus, suppose that u,v € V'\ (R(p) UR(q)),
u # v. We distinguish between 4 cases (which are symmetric with respect to p and ¢) and show,
say with wq, that in two of the cases, necessarily (u,v) is an edge in G« and in remaining two
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cases, necessarily (u,v) is not an edge in G. Since the cases are symmetric with respect to p
and ¢, the same conclusions will be obtained with ws.

Set £ ={l € K; D(l) ={u,v} and R(l) C R(p)UR(q) }. Let P denote the collection of all
paths in G between w and v through {u,v}U R(p) U R(q). The 4 cases are considered below.

(a) Assume that P = (). Then (u,v) is not an edge in G..

Indeed (with wy): Suppose for a contradicition that (u,v) is an edge in Gy. Since (u,v) is not
an edge in (7, it must have been created as an edge in one of the restriction steps. Owing to the
assumption (P = () it could not have been created (with w;) during restriction for p. Thus, it
was created during restriction for § = ¢ \F(?), Thus, before its creation there was a path 7 (in
the corresponding undirected graph) between w and v through {u,v} U R(§). The same path
7 occurs evidently after restriction for p. Hence, before restriction for p there was a path 7’
between u and v through {u,v} U R(p) U R(q). This path =" evidently occurs before degradation
for p contradicting our assumption that P = (.

(b) Assume that P # () and £ = (. Then (u,v) is an edge in G..

Indeed (with wq): Since P # () before degradation for p there was a path 7 between u and v
through {u, v} U R(p) U R(q). This path exists also after the degradation and during restriction
for p it is shortened to a path 7’ between u and v through {u, v} U R(§) where § = ¢V \F(®), This
path 7’ could be disconnected during reduction (for p) only if one of its edges is a domain of an
element s € K with R(s) C R(p). This is impossible if 7’ contains a node of R(q) (otherwise
s dominates ¢). Moreover, if #’ consists of the edge (u,v) then this is also impossible since we
assume that & = (). Thus, 7’ exists also after degradation for ¢ and during restriction for ¢
it is shortened to the edge (u,v). The edge (u,v) cannot be recancelled during reduction (for
¢) since otherwise one derives that before degradation for p there was an element s € K with
D(s) = {u,v} and R(s) C R(p) U R(q) contradicting our assumption that & = (.

In the next two cases assume that & # @ and denote T = J{R(l);! € £}. Evidently, T C
R(p) U R(q) and by consecutive application of (R2) one can show that there exists k € £ with
R(k) =T, and we will restrict our attention to this element k.

(c) Assume that P # () # £ and every path from P is through {u,v} UT. Then (u,v) is not
an edge in G..

Indeed (with wq): We distinguish two subcases.

(c1) T\ R(p) # 0.
Of course, k£ was an element in the corresponding annotated graph before degradation
for p. It follows from the assumption (c) that &k is not degraded during the processing
of p. Thus, k is restricted in the restriction step for p to k = kV\E®), Owing to (cl) k
remains an element also after reduction (for p). To show that k persists unchanged also
after degradation for § = ¢"\E(?) suppose, for a contradiction, that before degradation for
¢ there was (in the corresponding undirected graph) a non-trivial path = between u and

v through {u,v} U R(§) outside R(k) = T\ R(p) . Evidently, 7 was in the graph also
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before reduction for p. To show that 7 existed also before restriction for p one can use
Lemma 4.4 (with r = p): every edge of 7 hits R(q). Hence, 7 existed in the graph also
before degradation for p, contradicting our assumption (c). Thus, necessarily, k remains
a non-degraded element and during restriction for ¢ it is changed into an element with
empty range (recall that ' C R(p)UR(q)). Therefore, during reduction (for ¢) the possible
edge {u, v} is cancelled.
(2) T C R(p).

By the same arguments as in (c1) one derives that k remains a non-degraded element after
degradation for p. The difference is that during restriction for p it is directly restricted
to an void element. This implies that after reduction (for p), (u,v) is not an edge in the
corresponding graph. This remains evidently true also after degradation for § = ¢V \F(®),
Suppose by contradiction, that after restriction for § it is again an edge. That means that
before the restriction there was a path = (in the corresponding graph) between u and v
through {u,v}UR(g). Since (u,v) was not an edge before restriction for ¢, 7 is non-trivial.
Then one can show by the same arguments as in (cl1) that = was a path in the graph
already before degradation for p contradicting our assumption (c) (recall that 7' C R(p)
now).

The last case is the following one.

(d) Assume that P # () # £ and there exists a path from P containing a node outside {u, v}UT.
Then (u,v) is an edge in G..

Indeed: One can deduce using Lemma 4.4 (with r = k) that there exists a non-trivial path in P
which is completely outside R(k) =T (if w;, ..., w; is a subpath of that considered path between
w; € R(p) U R(q) \ R(k) and w; € V' \ R(k) such that {wp;i < h < j} C R(k) then (w;, w;) is
an edge in GV\E(*) and therefore in G and the considered path can be shortened).

Thus (with w;) we can distinguish two subcases.

(d1) There exists a non-trivial path from P outside 1" through {u, v} U R(p).
Then during degradation for p every element [ € & is degraded (since R({) C T for
every [ € £). On the other hand, the path mentioned in (d1) is evidently saved during
degradation for p and during restriction for p is shortened to the edge (u,v). This edge
can be removed only in one of the reduction steps. But this is not possible since otherwise
one derives that after degradation for p there exists a non-degraded element [ € £.
(d2) There exists a path from P outside 7" which contains a node in R(q) \ R(p).
Then one can use the same arguments as in the beginning of (d) and show, using Lemma
4.4 (this time with r = p), that there exists a non-trivial path from P outside T'U R(p).
This path 7 is saved during processing of p. This implies that after degradation for
G = ¢"\F(®) there is no element [ in the corresponding annotated graph with D(lN) = {u,v}
and R(l) C R(§) (otherwise before degradation for p there was [ € £ with [ = (V\F()

and hence R(l) C R(l) C T, i.e., the existence of ® before degradation for ¢ implies a
contradictory conclusion, that [ was degraded at the degradation step). Moreover, 7 is
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saved also during degradation for ¢ and in restriction for ¢ it is shortened to the edge (u, v).
This edge cannot be removed during reduction (for §) since otherwise after degradation
for § there exists an element [ with D(I) = {u, v} and R(l) C R().

g

Theorem 4.1. Let (G, K) be a regular annotated graph over V and t = (X, Z,Y) a triplet
over V. Then the resulting graph obtained by the membership algorithm (in Step 3) does not
depend on the choice of the scenario made in Step 1. In particular, the result of the membership
algorithm does not depend on that choice.

Remark 4.3. Notice, however, that the above mentioned graph does depend on ¢, or more
exactly on the set XY Z.

Proof:

It suffices to show that for every couple of scenarios p, ¢ which are suitable for ¢ (which means that
the elements whose range does not intersect XY Z precede the elements whose range intersect
XYZ - see Step 1 of the membership algorithm) there exists a sequence of scenarios p =
Wi, ...,wp = 0, h > 1 for K which are suitable for ¢ such that Vi = 1,..., h — 1 scenarios w; and
w;41 differ only in the order of two consecutive elements, that is

Wi i1y ey T'my Py Gy 815 4005 Sp

Witl 2715 -3 "ms 45 Py S15 -+ Sn

where m,n > 0 (if m = 0 then no element precedes p and ¢ in both sequences, if n = 0 then no
element succeeds p and ¢ in both sequences).

Indeed, the deletion step 2 and the processing of the elements rq, ..., 7, gives the same
resulting annotated graph with both w; and w;1q. This graph is a regular annotated graph by
Lemma 4.3. The only difference between the iterations of the membership algorithm is in the
order of (possible restrictions of) p and ¢ in the corresponding scenarios. If either p or ¢ is
removed during the processing of ry,...,r,, then these scenarios coincide. If both p and ¢ are
saved (and possibly degraded or restricted), then we can apply Lemma 4.5 to the annotated
graph obtained after processing ry,...,r,,. Hence, the iterations of the membership algorithm
before the (possible) processing of s; already coincide. Thus, the resulting annotated graph is
the same with both w; and w; 1.

Therefore, in order to verify the claim concerning the existence of a sequence of scenarios
Wiy ey Wy, b > 2 suppose that

g 117 ceey lg7 lg_|_17 ceey lm—l—n—l—?

p=w1: llv ---7lg7 g+1 "'7lm+n+2

where [y, ..., [, are elements whose range does not intersect XY Z. Thus (since both ¢ and p are
suitable for t) {ly,...,l;} = {1, ..., l;} and we can pay attention to [y, ..., [, only.
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The idea is that if two consecutive elements p and ¢ in a scenario for K do not dominate each
other, then by their mutual exchange we obtain another scenario for K. Thus, we can obtain o
from p = wy by gradual mutual exchange of consecutive elements which do not dominate each
other. Supposing L. le in a sequence w; which already coincides with /1, ...,{; in o for some
0< f<g—1lwecanfind f+1<e<gwithl, = ly41. Suppose non-trivial case f+1 < e; then
lN6 precedes le_H, ...,l~6_1 in o, and none of these elements dominates lNS. Since these elements
precede [, in w;, [, does not dominate them either. Thus, [, can be gradually “moved forward”
to obtain a scenario wj,j > 7 such that I, .., le.|_1 in w; coincides with /y,...,{y4; in o. O

4.4. Induced Independency Model

On basis of Theorem 4.1, we are entitled to give the following definition. Given a regular
annotated graph (G, K) over V' the independency model induced by it, denoted by I(G, K),
consists of those triplets over V' which are represented in (G, K) according to the membership
algorithm.

Theorem 4.2. Let (G, K) be a regular annotated graph over V.. Then I(G,K) is a graphoid
over V.

Proof:

We have to show that I(G, K) satisfies the graphoid properties (0)-(5). The trivial property
(0) is evident: no matter which scenario for testing a triplet t = (0, Z,Y’) over V is chosen, t is
represented in every undirected graph over V/ where YZ C V' C V.

To verify Intersection (5) assume that triplets t; = (X, ZY, W) and t; = (X, ZW.Y) are
represented in (G, K). We must show that { = (X, Z, YW) is represented in (G, K). Since 1,2
and t3 involve the same set of vertices XY ZW, one can choose in Step 1 of the membership
algorithm a scenario w for K which is simultaneously suitable for ¢, f3 and ¢3. Thus, the resulting
undirected graph GG’ from Step 3 of the membership algorithm is the same for ¢1,#; and 5. Since
{1 and ty are represented in G’ and I(G’) is a graphoid, f5 is represented in G’. Therefore, t3 is
represented in (G, K).

The arguments showing that Symmetry (1) and Weak Union (3) hold are the same as in the
case of Intersection.

To verify Decomposition (2), assume that {; = (X, Z,YW) is represented in (G, K). We
must show that ¢ = (X, Z,Y) is represented in (G, K) as well. One can simply construct a
scenario for K (in which every element of K occurs just once) of the form w = (wq,ws,ws)
where wy involves k& € K with R(k) N XYZW = 0, w; involves | € K with R(())NW #
and R(I)N XYZ = (), and w; involves s € K with R(s) N XYZ #  (this is possible owing
to Lemma 4.1). Thus w is a scenario which is simultaneously suitable for testing t; and to.
The main difference between testing those triplets using w is that in the deletion step 2 (of the
membership algorithm) in case of testing 3, only elements from w3 are removed, while in case of
testing ¢; both elements from w, and ws are removed. However, during processing of elements
from wy, the algorithm both in case of testing £; and in case of testing £, behaves in the same
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way with regard to the changes in the undirected graph and in wy! According to the assumption
t; is represented in the graph G* obtained after processing of elements from wy. Since I(G?) is
a graphoid, 7, is represented in G as well. Thus, by Observation 4.2 £, is represented also in
the graph G7,j > i obtained after processing elements from w; and w,. Hence #, is represented
in (G, K).

To verify Contraction (4) let us assume that triplets ¢; = (X, ZY, W) and t, = (X, Z,Y)
are represented in (G, K). We must show that ¢t3 = (X, Z,YW) is represented in (G, K) as
well. One can again construct a scenario w = (wq,ws,ws) for K as described in the preceding
case (Decomposition). Let (G™, K™, w™), m > 1 be the corresponding sequence of iterations
of the membership algorithm for testing ¢y, where G™ is over V™ C V. As explained in the
preceding case the assumptions imply that 1 is represented in the graph G i > 1 obtained
after processing elements from wy and ty is represented in the graph G7,j > i obtained after
processing of elements from w; and wy. Since 1(GY) is a graphoid containing ¢;, it contains the
triplet t™ = (X, YZ, W N V™) for every m > ¢. Thus, owing to Observation 4.2, the triplet ™
(over V™) is represented in G™ for every m > 1.

To show that ¢, is represented in G' it suffices to verify that whenever ¢, is not represented
in G™ for i < m < j then it is not represented in G™*!. By Lemma 4.3 we already know that
(G™, K™) is a regular annotated graph and (G™%! K™%!) is obtained from it by processing of
a dominant element p € K™. Moreover, we know that every [ € K™ originates from ws and
therefore R(I)NW # § = R({) N XY Z. The fact that ¢, is not represented in G™* means that
there exists a path 7 in G™ from a node z € X to a node y € Y which is outside Z. The path
7 is evidently saved during the degradation step for p (of the membership algorithm) and in
the restriction step for p it is shortened to a path x’. Suppose for a contradiction that 7’ is
disconnected in the reduction step (for p) by removal of its edge (u,v). One can assume without
loss of generality that « is closer to  in 7 than v, and therefore the section of # between z
and u is a path in G™ outside Y Z. Thus, before reduction (for p) an element [ exists such that

D(l) = {u,v} and R(l) = 0. Hence, there exists [ € K™ with D({) = {u,v} and § # R(l) C R(p).
Take w € R(HNW C WNV™ and by application of (R1) to ! € K™ find a path in G™ between
w and w through {u} U R(l). This path is evidently outside YZ and can be merged with the
above mentioned section of 7 to get a path in G between z € X and w € W NV™ which is
outside Y Z. This contradicts the fact that the triplet ¢ is represented in G™. Therefore, the
path 7/ cannot be disconnected in the reduction step (for p) and there exists a path in G™*!
between € X and y € Y which is outside Z. Thus, ¢, is not represented in G™*!,

Therefore, both t; and t, are represented in G°. Since I(G') is a graphoid, t3 is represented
in G*. Hence, t3 is represented in (G, K). 0

Definition 4.2. We say that two regular annotated graphs over the same set of vertices are
equivalent if their induced graphoids coincide.

Observation 4.3. Let (G, K) and (G, L) be regular annotated graphs over V such that L =
K U {r} where r is a degraded element over V. Then I(G,K)=I(G,L).
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Proof:
Let (X, Z,Y) be a triplet over V and w = (wy,ws) a scenario for K such that w; contains all
elements [ € K with R()NXYZ = 0 and w, contains all elements k € K with R(k)NXY Z # (.
One can distinguish two cases:
In case R(r) N XY Z # () consider a scenario @ = (wy,ws,r) for L. Then, after the deletion
step 2 the iterations of the membership algorithm based on (G, K,w) and (G, L,&) coincide.
In case R(r)NXYZ = () consider a scenario @ = (w, r,wy) for L. After the deletion step the
only difference between iterations of the membership algorithm based on (G, K,w) and (G, L, )
is an additional degraded element r € L which is processed after K. But the processing of r is
nothing but restriction to V'\ R(r) (the degradation and reduction steps are empty!). In either
case, owing to Lemma 3.1 (X, Z,Y) is represented in (G, K) iff it is represented in (G,L). O

It is easy to verify that the regularity conditions (R1)-(R3) are saved during removal of a
degraded element. Hence, Observation 4.3 implies the following.

Consequence 4.2. Let (G, L) be a regular annotated graph over V and r € L a degraded
element. Then (G, L \ {r}) is an equivalent regular annotated graph. In particular, every
regular annotated graph can be replaced by an equivalent regular annotated graph without
degraded elements.

Remark 4.4. One can show using Lemma 4.3, Theorem 4.1 and Consequence 4.2 that the
membership algorithm can be modified substantially in Step 4.1. The degradation step can be
replaced by the following removal step.

4.1 Removal: If s € K is an element such that there exists a non-trivial path in G between
nodes of D(s) through D(s) U (S \ R(s)), then remove s from K and cancel it in w.

We leave it to the reader to verify that this simplification is valid.
The case of adding a degraded element is treated in the following lemma.

Lemma 4.6. Let (G, K) be a regular annotated graph over V and let r be a degraded element
over V with R(r) = B such that

(a) Vke K, Yue R(k), Yve B, if(u,v)is an edge in G, then v € R(k).

(b) V path wy,...,w,, n>3 in G through {wy,w,} U B such that wy,w, € V\ B and
(w1, w,,) is not K-durable edge in G, there exists ¢ € K such that D(q) = {w,w,} and
{wp; 1 < h <n}C R(q).

Then (G, K U{r}) is an equivalent regular annotated graph.

Proof:
First, we need to show that the condition (R1) for (G, K) can be strengthened as follows.

(R1*) Vk € K, Yu € R(k), Yv € D(k), there exists a path u = wqg,...,w,, = v, m > 1
in G through {v} U R(k) composed of K-durable edges such that K,, C K,, whenever
0<i<j<m(where K, ={l€ K; w¢ R(l)} forany welV).
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Indeed, let us consider k € K and v € D(k) fixed. In fact, we verify (R1*) by ’reverse’ induction
on the cardinality of K,. Thus, suppose that u € R(k) is such that for every # € R(k) with
K, C K, was (R1*) already verified (it involves the case when u has maximal K, within R(k)).
By (R1) find a respective path u = z,,...,2, = v with K,, = K, C K,, for i = 1,...,s.
Find minimal 1 < j < s such that K, # K, (observe that k € K, \ K,) and put w; = z; for
t=0,...,j. Since K;, = ... = K,,_, C K,, our claim follows in case j = s. In case j < s,
we apply the induction hypothesis to z; and find a path z; = yo, ...,y = v between z; and v
satisfying the requirements of (R1*). Put w;4; = y; for i = 1,...,r. Then wy,..., w;y, is the
required path between u and v satisfying the requirements of (R1*).

To verify (R1) for (G, K U{r}) consider fixed k € K U{r}, u € R(k) and v € D(k). Then
k € K and using (R1%*) for (G, K) find the corresponding path 7 : u = wo, ..., w, =v, m > 1.
The condition (a) implies that v ¢ B (one has w,,—1 € R(k) and (w,,_1,v) is an edge in G).
In case u ¢ B, one can always shorten 7 to a path outside B satisfying (R1*). The reason is
that for every 0 < i < j < m such that w;, w; ¢ B and 0 # {wy,; ¢ < h < j} C B necessarily
(w;, w;) is a K-durable edge in G: otherwise the condition (b) implies the existence of ¢ € K
with D(q) = {w;, w;} and {wp; ¢ < h < j} C R(q) and the fact ¢ € K, \ K,,,, contradicts
the condition from (R1*). The shortened path then satisfies the requirements from (R1) for
(G, KU{r}).

The condition (R2) for (G, K U{r}) easily follows from (R2) for (G, K).

To verify (R3) for (G, K U {r}) consider k,l € K U {r} and the path wy,...,w,, n > 2
mentioned in the premise of (R3). The case k,[ € K is covered by (R3) for (G, K). In case
k € K and [ = r the condition (a) implies n = 2 (otherwise wy € R(k), w; € B implies
wy € R(k)) in which case (R3) is trivial. In case k = r, [ € K the required conclusion of (R3)
follows from the condition (b).

Thus, (G, K U{r}) is a regular annotated graph and Observation 4.3 can be applied. 0

5. Annotation Algorithm - Additional Proofs

In this section we continue by showing that the annotation algorithm produces a regular anno-
tated graph, such that the graphoid represented by it is identical to the graphoid closure of the
graphoids induced by the individual graphs of the input nest (the proof of the last statement is
moved to Section 7). However, this section contains an illustrative example as well.

5.1. Properties, Observations and Consequences

In this section we recall, for the benefit of the reader, the basic definitions and procedures
involved in the annotation algorithm and prove the properties of the resulting annotated graph
in a sequence of observations, consequences and lemmas. Recall that the symbol 7(a,b|U||G)
stands for the set of vertices y € V' \ {a, b} such that for both = € {a,b}, there is a path in G
between & and y through {z} U U. The following facts follow easily from the definition.
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Observation 5.1. Whenever the symbols below are defined it holds that:

(i) 7(a, b|UNG) € U,
(ii) 7(a,b|U||G) C 7(a,b|W||G)  whenever U C W,

(iii) 7(a,b|U||G) C 7(a,b|U||F)  whenever G is a subgraph of F,

(iv) uw € 7(a,b|U||G), v € U, (u,v) is an edge in ¢ = v € 7(a,b|U||G).

To make the starting exposition of the annotation procedure clear and elegant we omitted its
deeper assumptions in Definition 3.3. However, throughout this section we will use these assump-
tions systematically. Therefore we repeat the definition together with all relevant assumptions.

Annotation procedure. Let (H, L) be a regular annotated graph over V without degraded
elements and without void elements. Let I' be an undirected graph over VUB (where VNB = ()
such that H is a subgraph of F. We construct an annotated graph (G, K) over V U B denoted
by Annot ((H, L) : I) as follows.

A1l. The graph G is obtained from F' by removal of those edges (u,v) in F' such that u,v €
V., (u,v) is not an edge in H and 7(u,v|B||F) = 0.

A2. Some elements of K are newly created: for every couple of vertices u,v € V, u # v such
that (u,v) is not and edge in H and 7(u,v|B||F) # 0 consider a non-degraded element
({w, v}, U) with U = 7(u, v| B||F') and insert it into /' (which was empty before Step A2).

A3. The other elements of K are created by expanding elements of L: for each ({u,v}, W)€ L
incorporate into K the element ({w,v},T) where 7' = 7(u, v|W U B||F).

Observation 5.2. Under the assumptions of the annotation procedure one has:

(i) G is a subgraph of F,

(i) H is a subgraph of G,

(iii) if £ € K is created by expanding [ € L, then D(k) = D(l) and R(l) = R(k)NV,
(iv) k € K is newly created iff R(k) C B,

(v) forevery k € K, 0 # D(k) CV and R(k) # 0.

Proof:

The fact (i) is evident from the construction. To prove (ii) notice that whenever (u,v) is
an edge in H, then it is an edge in F' and cannot be removed in Step Al. To verify (iii)
notice that Observation 5.1 (i) implies R(k) C R(l) U B. Hence R(k) NV C R(l). To verify
R(l) C R(k) NV use the regularity condition (R1) for (H, L): it implies R(I) C 7(D({)|R(D)||H).
Since H is a subgraph of F, by Observation 5.1 (iii), (ii) 7(D()|R([)|H) C 7(D()|R(D||F) C
T(D(D)|R() U B||F) = R(k). Hence R(l) C R(k). To verify (iv) observe that necessity of
R(k) C B is trivial by Observation 5.1 (i). The sufficiency follows from the assumption that
every element of L has a non-empty range by means of (iii). The condition (v) also follows from
the construction and from (iii). 0

We will often utilize the following ‘transitivity principle’ which is a consequence of Observa-
tion 5.1 (iv) and Observation 5.2 (i).
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Observation 5.3. Suppose that (G, K) = Annot ((H,L) : F) under the assumptions of the
annotation procedure. Then Vk € K, Yu € R(k), Vv € B, if (u,v) is an edge in I or GG, then
v € R(k). { Notice that in this case (u,v) is an edge of F' iff it is an edge of (. }

Observation 5.4. Suppose that (G, K) = Annot ((H,L) : F) under the assumptions of the
annotation procedure. Let & € K be created by expanding of [ € L. Then V v € R(k) NV,
Vv € D(k), there exists a path in G between w and v through {v} U (R(k) N V) composed of
K-durable edges which is outside R(K,,). In particular, R(k) NV = 7(D(k)|R(k) N V||G).

Proof:
Let us fix u € R(k)NV = R(l) and v € D(k) = D(l) (see Observation 5.2 (iii)). According to
(R1) for (H, L) find a path 7 in H between u and v through {v} U R(l) = {v} U (R(k) N V)
composed of L-durable edges and outside R(L,). By Observation 5.2 (ii) it is a path in . Since
7 is a path in H the vertices of its edges cannot be domains of newly created elements of K
(see Step A2 of the annotation procedure). Thus, by Observation 5.2 (iii) its L-durable edges
are also K-durable. Owing to Observation 5.2 (iv) 7 is outside the range of all newly created
elements of K. If r € K, is created by expanding 7 € L, then by Observation 5.2 (iii) 7 € L,
and 7 is outside R(r).

The second claim in Observation 5.4 follows from Observation 5.1 (i) and the first claim. O

Observation 5.5. Suppose that (G, K) = Annot ((H,L) : F) under the assumptions of the
annotation procedure. Let [ be a non-degraded element over V such that either R(l) = () or
l e L. Then 7(D(D)|R(l)U B||F) = 7(D()|R(l) U B||G). In particular, for {a,b} C V we have
that 7(a, b|B||F) = 7(a, b| B||G).

Proof:

By Observation 5.1 (iii) and Observation 5.2 (i) 7(D({)|R([)U B||G) C 7(D()|R(l)U B||F). Let
us consider u € 7(D(I)|R(l) U B||F). By Observation 5.1 (i) v € R({)U B. In case u € R(l)
use Observation 5.2 (iii) and Observation 5.4 and then Observation 5.1 (ii) to infer that R(l) =
T(DO)|R()G) C (D()|R(I)U B||G). In case v € B for both v € D(I) there exists a path 7, in
F from u to v through {v}UR([)UB. Let w, be the first node of 7, outside B. Since every edge
of the section of 7, between u and w, hits B by Step A1 of the annotation procedure, this section
is a path in G as well. Therefore, in the subcase w, € R(l) one has w, € 7(D({)|R(l) U B||G)
and repeated application of Observation 5.1 (iv) gives v € 7(D(l)|R(l) U B||G). In the subcase
w, = v for both v € D(l) one gets directly v € 7(D()|B||G) and by Observation 5.1 (ii)
uw e T(D)|R()U B||G).

The second claim of the lemma is a special case when R(I) = 0. a

Consequence 5.1. Suppose that (G, K) = Annot((H, L) : F) under the assumptions of the
annotation procedure. Then for every k € K either R(k) NV = () or the element [ over V' with
D(l) = D(k) and R(l) = R(k)NV belongs to L. Moreover, R(k) = 7(D(k)|(R(k)NV)UB||G) =
T(D(k)|(R(k)nV) U B||F).
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Proof:
In case R(k)NV = () by Observation 5.2 (iv

~—

k is newly created and by Step A2 of the annotation
procedure R(k) = 7(D(k)|B||F) = 7(D(k)|(R(k)NV)UBJF). Then by Observation 5.5 R(k) =
F(D(R)|BIF) = (D) BIG) = (DI)I(R(E) N V) U B|G).

If R(k)NV # (0, then by Observation 5.2 (iv) k is created by expanding [ € L and Observation
5.2 (iii) can be applied. Step A3 says R(k) = 7(D(l)|R({)UB||F) and by Observation 5.5 applied
to [ derive R(k) = 7(D(l)|R({) U B||G). Then substitute R({) = R(k) N V. a

o=

Consequence 5.2. Suppose that (G, K) = Annot((H, L) : F) under the assumptions of the
annotation procedure. Let wy,...,w,, n > 2 be a path in G through {wy,w,} U B such that
wy, w, € V and either (wq, w,) is not an edge in H or there exists s € K with D(s) = {wy, w,}.
Then there exists ¢ € K such that D(q) = {wy,w,} and {wy; 1 < h < n} C R(q).

Proof:
First, consider the case when (wy,w,) is not an edge in H. If n = 2, then necessarily
7(wy, we| B||F) # 0 as otherwise in Step A1 of the annotation procedure (w1, ws) is removed and
it is not an edge in G. If n > 3, then 0 # {wy; 1 < h < n} C 7(wy, w,|B||G) C 7(wy, w,|B||F)
by Observation 5.1 (iii) and Observation 5.2 (i). In either case 7(wy, w,|B|/F) # 0, and there-
fore, in Step A2 of the annotation procedure an element ¢ € K with D(q) = {wy,w,} and
{wp; 1 < h < n} C 7wy, w,|B||F) = R(q) is newly created.
Second, suppose that there exists s € K with D(s) = {wy, w,}. Write by Observation 5.1 (ii)
and Consequence 5.1 {wp; 1 < h < n} C 7(wy, w,|B||G) C 7(wy, w,|(R(s)NV)UB||G) = R(s).
a

Lemma 5.1. Let (H, L) be a regular annotated graph over V without degraded and void el-
ements, and F be an undirected graph over V U B such that H is a subgraph of F. Then
(G, K)= Annot((H, L) : F) is a regular annotated graph without degraded and void elements.

Proof:
Owing to Observation 5.2 (v) one has to show that (G, K) is a regular annotated graph.

To verify (R1) for (G, K) consider a fixed k € K, v € R(k), v € D(k). One can distinguish
two cases. In case u € R(k)NV by Observation 5.2 (iv), k is created by expanding and the desired
conclusion can be derived by means of Observation 5.4. In case u € R(k)N B by Consequence 5.1
there exists a path in G between u and v through {v} U (R(k)NV)U B. Let w be the first node
of the path (on the way from u to v) which is outside B and p its section between u and w. Since
every edge of p hits B Observation 5.2 (v) implies that everyone of its edges is K-durable. Since
u € R(k), Observation 5.3 enables us to show that every node of p with the possible exception
of w belongs to R(k). Moreover, Observation 5.3 also implies for every [ € K and every node x
of p that # € R(l) implies v € R(l). Therefore p is outside R(l) for every [ € K, and K, C K.
Altogether, p is a path in G between w and w through {w} U R(k) composed of K-durable edges
and outside R(K,). If w = v we have finished. Otherwise w € R(k) NV and by Observation 5.4
there exists a path 7 in GG between w and v through {v} U (R(k) N'V) composed of K-durable
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edges and outside R(K,). Since K, C K, 7 is outside R(/K,) and can be merged with p to
get the desired path. Thus, (R1) for (G, K) was verified .

To verify (R2) for (G, K) consider k,l € K with D(k) = D({). In case one of them, for exam-
ple [, is newly created, then by Consequence 5.1 and Observation 5.1 (ii), R(l) = 7(D(l)|B||G) C
T(D(D)|(R(k)NV)UB||G) and the conclusion of (R2) is trivial. In case k, [ are created by expand-
ing k,l € L then, by (R2) for (H, L), there exists § € L with D(¢) = D(I) and R(q§) = R(kE)UR(]).
Let ¢ € K be created by expanding . Then, by Consequence 5.1 and Observation 5.1 (ii), derive
RUUR() = (D) (R(HNV)UBIIG)Ur (DI (ROAVIUBIIG) € 7(DII(R(@)NV)UBIIG) =
R(q). To show that R(¢q) C R(k)UR({) consider v € R(q) = 7(D())|(R(k)NV)U(R([)NV)UB||G).
If w € V then, by Observation 5.1 (i) either v € R(k)NV or v € R([)NV. If u € B, then for both
v € D(I) there exists a path 7, in G between w and v through {v}U(R(k)NV)U(R([)NV)UB.
Let w, be the first node of 7, outside B. In case w, = v for both v € D(l) one has
w e T(D()|B||G) Cr(DD|(R(k)nV)U B||G) = R(k) by Observation 5.1 (ii). In case w, # v
for some v € D(l) either w, € R(k)NV or w, € R(l) N V. Hence, by Observation 5.3 the
conclusion u € R(k) or v € R(l) can be derived. Thus, R(¢) = R(k) U R(l) and (R2) for (G, K)

was verified.

To verify (R3) for (G, K) let us consider k,l € K and a path 7 : wy,...,w,, n > 2in G
satisfying the conditions of the premise of (R3). Suppose that 7 is non-trivial since otherwise
the conclusion of (R3) is evident. Then wy,w, € V since otherwise, by Observation 5.3, a
contradictory conclusion {wy, w,}NR(k) # 0 can be derived. Since wy € R(I)NV, by Observation
5.2 (iv), L is created by expanding [ € L. First, let us consider an edge (w;, wiy1) = (u,v) of
7 with u,v € V. Suppose for a while that it is not an edge in H. Then 7(u,v|B|F) # 0 as
otherwise (u,v) is not an edge in G owing to Step A1l of the annotation procedure. Thus, in
Step A2 of the annotation procedure an element ¢ € K with D(q) = {u,v} = {w;, wis1} is
created and the desired conclusion of (R3) for (G, K) holds. Thus, we can assume without loss
of generality that every edge of 7 belonging to V is an edge in H as well. We can also assume
that every such an edge is K-durable as otherwise the conclusion of (R3) already holds. Second,
suppose for a while that 1 < < j < n are such that w;,w; € V and {wy; i < h < j} C B. In
case {w;, w;} is not an edge in H or in case there exists s € K with D(s) = {w;, w;} Consequence
5.2 can be applied to derive the desired conclusion of (R3) for (G, K) directly. Otherwise 7 can
be shortened to a path 7’ in H (and by Observation 5.2 (ii) also in &) all whose edges are
K-durable. The assumption that {wy, w,} is not a K-durable edge in G implies that 7’ is non-
trivial. Hence, R(k) NV # @ and by Observation 5.2 (iv) k is created by extending k € L. The
assumption that (wq,w,) is not a K-durable edge in G means that either (wq,w,) is not an
edge in G or there exists r € K with D(r) = {wy,w,}. The former case implies by Observation
5.2 (ii) that (wq,w,) is not an edge in H. In the latter case either r is newly created and
(w1, w,) is not an edge in H again (see Step A2 of the annotation procedure), or there exists
7 € L with D(f) = {wy,w,}. In either case (wq,w,) is not an L-durable edge in H. Thus,
the conditions assumed in the premise of (R3) for (H, L) with respect to k,l € L and 7’ are
fulfilled. Hence, there exists ¢ € L satisfying the conclusion of (R3) for (H, L). It is extented
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to ¢ € K. Notice that whenever 1 < ¢ < j <mn, w;,w; € V and T;; = {wp; ¢ < h < j} C B,
then {w;, w;} N R(q) # ( implies by Observation 5.3 that T;; C R(q). Thus, one can show that
q satisfies the conclusion of (R3) for (G, K).

In either case, (R3) for (G, K) was verified. Hence, (G, K) is a regular annotated graph. O

Lemma 5.2. Let (H, L) be a regular annotated graph over V without degraded and void el-
ements, let I/ be an undirected graph over V U B such that H is a subgraph of F. Put
(G,K) = Annot((H,L) : F). Then a triplet over V is represented in (G, K) if and only if
it is represented in (H, L). In particular, I(H,L) C I(G,K).

Proof:

Let us consider the annotated graph (G, K U {r}) where r is a degraded element over V U B
with R(r) = B. By Lemma 5.1 (G, K) is a regular annotated graph. The condition (a) in
Lemma 4.6 then follows from Observation 5.3. The condition (b) in Lemma 4.6 follows from
Consequence 5.2: if {wy,w,} is not a K-durable edge in G, then either there exists s € K
with D(s) = {wy,w,} or {wy,w,} is not an edge in ¢ in which case it is not an edge in H by
Observation 5.2 (ii). Thus, by Lemma 4.6 derive (G, K)=I(G, KU {r}).

Suppose that a triplet (X, Z,Y) over V is tested by the membership algorithm. One can
consider a scenario w for (G, K U {r}) of the form w = (r,w;) where w; is a scenario for
(G, K) suitable for testing (X, Z,Y). Since R(r) = B, r cannot be dominated and therefore it
is dominant. Then, during processing of the element r, in the degradation step 4.1 no other
element is degraded. This follows from Consequence 5.1. The range of newly created element is
in B and they do not satisfy the degrading condition for R(r) = B. If the domain of an expanded
element is connected to a vertex in B then that vertex will be in the element’s expanded range
so the degrading condition does not hold for it. In the restriction step 4.2, G is restricted to
GV In the reduction step 4.3 just the elements ¢ € K with R(¢q) C B (that is exactly the newly
created elements of K - see Observation 5.2 (iv)) are removed and their domains are removed
from GV. It follows from the annotation procedure and Observation 5.2 (ii) (i) that (u,v) is
an edge in H if and only if it is an edge in GV and there is no newly created ¢ € K with
D(q) = {u,v}. Thus, the resulting graph after processing r is just H. By Observation 5.2 (iii)
elements created by expansion are restricted to the original elements in L. Therefore (X, Z,Y)
is represented in (G, K U{r}) iff it is represented in (H, L). 0

5.2. Basic Result about the Annotation Algorithm

The input of the annotation algorithm is a nest of undirected graphs, that is a sequence
Fy...,F,, n > 1 of undirected graphs such that F; is a subgraph of F;4q for¢e=1,...,n — 1.
Let us denote by V; the set of nodes of F; and put B; = V;\ V,_y for i =1,...,n (by definition
Vo= 10).

The first iteration of the annotation algorithm is an annotated graph (G, K1) where Gy = I}
and K; = (. Evidently, it is a regular annotated graph (without degraded and void elements)
and (G is a subgraph of F;.
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The next iterations of the annotation algorithm are defined by induction: we put (G}, K;) =
Annot((Gi—1, Ki—1) : F}) for i = 2,...,n. The assumptions of the annotation procedure will be
always fulfilled: by Lemma 5.1 (G, K;) is a regular annotated graph without degraded and void
elements, and by Observation 5.2 (i), GG; is a subgraph of F;, and therefore a subgraph of Fiy1,
for i =2,...,n— 1. Thus, we have the following result.

Theorem 5.1. Suppose that Fy ..., F,, n > 1 is a nest of undirected graphs and (G;, K;), i =

1,...,n the sequence of iterations of the corresponding annotation algorithm. Then, for ¢« =
1,...,n, (G4, K;) is a regular annotated graph without degraded elements and without void ele-
ments.

Remark 5.1. There are regular annotated graphs which cannot be obtained as a result of the
annotation algorithm. For example, every annotated graph (G, K') produced by this algorithm
satisfies the following condition (strengthening of (R2)):

(R2*) Vk,l € K with D(k) = D(l), either R(k) C R(l) or R(l) C R(k).

Observation 5.6. Under the assumptions of the annotation algorithm V1 < ¢ < j < n, K; is
obtained from K; by ’restriction’ to V; and removal of void elements, i.e. K; consists of those
elements [ over V; such that there exists [ € K; with D(I) = D(I) C V; and R(l) = R(I)NV; # 0.
In particular, Vj=1,...,n, Yk € K;, R(k)nVy; =0.

Proof:

The claim is trivial when ¢ = j. In case j — ¢ = 1 one has (G}, K;) = Annot((G;, K;) : F;) and
by Observation 5.2 (iv) every newly created element k € K; = K;1; satisfies R(k) NV, = 0.
Thus, the statement for j —¢ = 1 follows from Observation 5.2 (iii)(v). The case j—¢ > 2 can be
derived by induction on j — ¢ since the above mentioned operations of restrictions and removal
are transitive. O

Lemma 5.3. Suppose that Fy,...,F,, n > 1 is a nest of undirected graphs and (G;, K;) 1 =
1,...,n are iterations of the corresponding annotation algorithm. Consider S C V,, such that
S =0 orS=R(k) for some k € K,. If there exists 1 <m < n and ¢,d € V,;; \ S, ¢ # d such
that

(a) (¢, Vi \ Sed,d) € 1(Fy,),
(b) Ye=m+1,....,n 7(c,d|B||F;) C S,

then the triplet (c,V,, \ Sed, d) belongs to gr (I(F,,) U...UI(F,)).

Proof:

First, let us notice that S satisfies the following transitivity principle: Vi = 2,...,n if u €

SNV, veB; and (u,v) is an edge in F;, then v € S. Indeed, since S # ) in this case there

exists k € K, with S = R(k). By Observation 5.6 there exists k € K; with R(k) = SNV;. Then

Observation 5.3 applied to (G, K;) = Annot((G;_1, K;_) : F;) implies that v € R(k) = SN V;.
Let us show by induction on ¢ = m,...,n that t; = (¢, V;\ Sed, d) € gr(I(F,)U...UI(F})).

For ¢ = m it follows from (a). Let us fix m < i < n and put M = gr({(F,)U...UI(F)). We
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must show that the induction assumption t;_y € gr({(Fy,)U...UI(F;_;)) C M implies that
t; € M. Define C' as the set of vertices u € B; \ S such that there exists a path in F; between
¢ and u through {c} U (B;\ S) and put A = V,_1\ Sed, D = B;\ SC. Then C satisfies the
following transitivity principle: if u € ¢C, v € B; \ S and (u,v) is an edge in F}, then v € C.

We show first that ¢ = (¢, Ad, D) € I(F;). Suppose for a contraction that there exists a path
in F; between ¢ and v € D through {c,v}UC U (SNV;). Thus, v € B; \ S and there exists
uw € cC'U(SNV;) such that (u,v) is an edge in F;. If w € ¢C', then the transitivity principle for
C'implies v € C' which contradicts the fact v € D. If uw € (SNV;), then the transitivity principle
for S implies v € S which also contradicts the fact v € D. In either case we have shown ¢ € M.

We verify now that ¢ = (d, ADc¢,C') € I(F;). Suppose for a contradiction that there exists a
path in F; between d and v € C' through {d, v} U (SNV;). Thus, there exists u € {d} U (SNV;)
such that (u,v) is an edge in F;. If u € SNV, then the transitivity principle for S implies
v € S which contradicts the fact v € C. If v = d, then the fact that v € C' implies that
v € T(c,d|B;|| F;) by definition, and the condition (b) implies v € S which again contradicts the
fact that v € C'. In either case, we have shown that ¢t € M.

Since M is a graphoid, the facts t;_; = (¢,A,d) € M and t = (¢, Ad, D) € M imply
by Contraction (4) that (¢, A, Dd) € M. Hence by Weak Union (3) (¢, AD,d) € M and by
Symmetry (1) (d,AD,c) € M. This together with the fact ¢ = (d, ADc¢,C') € M implies by
Contraction that (d, AD,cC) € M. Hence, by Weak Union (d, ADC,c) € M and by Symmetry
ti = (¢, ADC,d) € M. This concludes the induction step. O

Definition 5.1. We say that a nest of undirected graphs Fy,..., F,, n > 1is reqular if
Vi=2,...,n, Yu,v € Vi_y, if (u,v)is an edge in F; but not in F;_y, then 7(u,v|B;||F;) £ 0.

We leave it to the reader to verify that this is a necessary and sufficient condition for a
nest of undirected graphs not to be modified during the annotation algorithm, i.e. F; = G, for
t=1,...,n. The following lemma says that we can limit our attention to regular nests.

Lemma 5.4. Let I,...,F,, n > 1 be a nest of undirected graphs and (G;, K;), i =1,...,n
the sequence of graphs generated by the corresponding annotation algorithm. Then Gq,...,G,
1s a regular nest of undirected graphs, moreover the annotation algorithm applied to G4, ...,G,
results in the same sequence of iterations and

Vi=1,...,n gr({(G1)U...UI(Gy) =gr(I(F1)U...UI(F)).

Proof:
Observation 5.2 (i) implies that G;_; is a subgraph of G; for i = 2,...,n. To show that
Gy,...,,G, is a regular nest, suppose for a contradiction that there exists ¢ € {2,...,n} and

{u,v} € Vi_y such that (u,v) is an edge in G; but not in G;_y and 7(u,v|B;||G;) = 0. Then
by Observation 5.5 7(u, v|Bj||F;) = 7(u,v|B;||G;) = 0. Thus, in Step Al of the annotation
procedure (G, K;) = Annot((Gi—1, K;_1) : F}) the edge (u, v) in F; is removed which contradicts
the fact that it is an edge in Gj.
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Now put G} = Gy, K{ = 0 and define by induction (G4, K!) = Annot((G’_,, K|_,) : G})
for ¢ = 2,...,n. It suffices to show by induction that (G, K!) = (G, K;) fori =1,...,n. By
definition, this is true for i = 1. Let us consider 1 < ¢ < n. Then in Step Al of the annotation
procedure (G4, K!) = Annot((G!_,, K]_,) : G;) owing to the induction assumption G/_, = G;_
and, by the regularity condition for Gy, ..., G, no edge is removed and therefore G: = ;. Then,
in Step A2 of the annotation procedure (G, K]) = Annot((G’_,, K!_,) : G;), the respective
assumptions u, v € Vi_y, u # v, (u,v)is not an edge in G._; and 7(u, v|B;||G;) # 0 are equivalent
to the respective assumption in Step A2 of the procedure (G}, K;) = Annot((Gi—1, K;—1) : F}).
Indeed, one has G!_; = G;_; and Observation 5.5 for (G;, K;) = Annot ((Gi—1, Ki—1) : F;)
implies that 7(u, v|B;||G:) = 7(u, v|B;|| F;). Thus, the same elements are newly created. In Step
A3 for every ({u,v},L) € K/_; = K;—y (the induction assumption), Observation 5.5 implies
T(u,v|L U B;||G;) = 7(u,v|L U B;||F;) and the element is expanded in the same way. Thus,
K! = K; and we have shown that the annotation algorithm for G4, ...,G, and Fi,..., F, gives
the same output.

By Observation 5.2 (i) G; is a subgraph of F; for ¢ = 1,...,n. Thus I(F;) C I(G;) and hence
gr(I(F1)U.. .UI(F})) Cgr({(G)U...Ul(Gy)) for i = 1,...,n. To verify the converse inclusion
it suffices to show that I(G;) C gr({(F1)U...UI(F})) for j =1,...,n. Itis evident for j = 1. In
case j > 2 put M = gr(I(Fy)U...UI(F})). Since M is a graphoid by Claim 2.1 applied to G; we
need to show that every triplet of the form ¢ = (¢, V; \ ed, d) such that ¢,d € V;, ¢ # d and (¢, d)
is not an edge in G, belongs to M. We can apply Lemma 5.3 with n = j and .S = (). Since (¢, d)
is not an edge in G, by Observation 5.2 (ii) it is not an edge in G; for 1 <7 < j. In particular,
it is not an edge in Fy = ;. Now put m = max {1 <7 < j; (c¢,d) is not an edge in F;}. Thus,
(¢,d) is not an edge in F),, and therefore (¢, Vi, \ ¢d, d) € I(F,). Moreover, (c,d) is an edge in
F; for : = m+1,...,4. Since it is not an edge in G; for m 4+ 1 < ¢ < j, by Step Al of the
annotation procedure (G, K;) = Annot((Gi_1, K;_1) : I}) necessarily 7(c,d|B;||F;) = (. Thus,
the conditions (a)(b) of Lemma 5.3 hold and t € gr({(F,,)U...UI(F;)) C M. The proof is
complete. O

5.3. Example and Main Result

The nest of four undirected graphs Gi,...,G4 shown in Figure 8 is regular since every edge
(u,v) in Gipq with u,v € V; is an edge in Gy, i = 1,2, 3. It has been annotated according to the
annotation algorithm. Here £k is expanded k! for i = 1,2 and k! is expanded to k; for i = 1,2, 3.
Notice the following:

1. k4 and ky are dominant in Ky and kg = k3, kg > ki so R(k4) C R(k3) and R(ks) C R(k1).
(see Lemma 4.1).

2. ks and ky have the same domain and R(ks) C R(ki). The same is true for k5 and k7. It
illustrates property (R2x) mentioned in Remark 5.1.

3. R(k;) O R(k!) O R(k!) for ¢ = 1,2. It illustrates Observation 5.6.

4. A scenario for (G4, K4) must start either with k4 or with k; (dominant elements). If it
starts with k9, then it must continue with k4. If it starts with k4, then all the possible
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Figure 9. The second iteration of the membership algorithm.
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Figure 10. The last iteration of the membership algorithm.

permutations of the remaining elements are allowed. All in all, there are therefore 8

scenarios for (G4, Ky).

Assume that we want to check whether the triplet ¢ = (¢, bu, a) is represented in (G4, K4)
according to the membership algorithm. Since R(k1)N{a,b,c,u} = {u} the only deleted element
is k1. We may therefore have only the following 3 scenarios after the deletion step:

W = (k47 k37 k2)7 Wy = (k47 k27 k3)7 w3 = (k27 k47 k3) .

Notice that if ko is processed before ks (as in the last 2 scenarios) the element k3 (or its restricted
version) is degraded at Step 4.1 for ky (or its restricted version). So, if we choose wy; we get,
after one iteration the graph G with annotation K = {k}, k%}, and after two iterations, the
graph (H, L) in Figure 9 (with a degraded element in L). Its processing results in the graph in
Figure 10 with no element.

If we choose wy then the graph in Figure 10 is also derived after 3 iterations. As it is easy
to see, ¢ is represented in this graph, therefore t € I(Gy, Ky4) and ¢t € gr(I(G1) U...UI(Gy)).
Indeed (c, b, a) is represented in G, (¢, ba, u) is represented in Gz, by Contraction (4) we derive
(¢,b,au) and by Weak Union (3) we get (c,bu,a).

We are now ready to state the main result of our paper.
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Theorem 5.2. Suppose that Fy, ..., F,, n > 1 is a nest of undirected graphs. Let (G, K;), i =
1,...,n be the sequence of iterations of the corresponding annotation algorithm for this nest.
Then

Gy, K,) =gr(I(Gh)U...UI(G,))=gr(I(F1)U...UI(F,)).

The proof of the above theorem is quite long and it is given after Section 6.

6. Discussion

6.1. Annotated Graphs as a Mode of Representation

Trivially, annotated graphs include UGs which correspond to the particular case where the nest
of UGs consists of a single graph.

DAGs can also be represented as annotated graphs. It follows from a theorem of Pearl and
Verma [6] that every DAG represents the graphoid closure of a set of triplets (stratified protocol)
of the form {(v;, p(v;), a(vi)); 2 < ¢ < n} where vy,...,v, is a sequence including all vertices of
the DAG ordered in compliance with the directionality of the edges in the DAG, p(v;) is the set
of ‘parent’ vertices of v; and a(v;) is the set of remaining vertices preceding v;. Now it is easy to
show that the above set of triplets (stratified protocol) can be represented as a nest of graphs.

Chain graphs (CGs) were introduced by Lauritzen and Wermuth [3] and developed by Fry-
denberg [1]. They generalize both DAGs and UGs as a mode of representation of irrelevance
relations. Basically, they can be described as acyclic graphs whose edges may be directed or
undirected. The structure of a CG is defined by the underlying undirected graph and by an
ordered partition of its vertices called a chain C = (V(1),V(2),---,V(m)). An edge in the un-
derlying graph which connects between a vertex in V(i) and a vertex in V' (j) such that 7 < j is
directed from V (i) to V/(j). The other edges in the underlying graph remain undirected. Repre-
sentation in CGs is defined in a way which is similar to the definition of representation in DAGs.
In [1] a ‘moralization criterion’ for representing triplets in a CG is described. In [8] an equivalent
c-separation criterion for CGs is described which generalizes the d-separation criterion for DAGs
[5]. It follows from the above mentioned papers that irrelevance relations induced by CGs can
be represented as the graphoid closure of a nest of UGs. Therefore, irrelevance relations induced
by CGs can be represented by annotated graphs as well. The reader is referred to above papers
for a more detailed exposition (see Remark 6.1).

We will show now by an example that annotated graphs properly include the above three
modes of representations. Consider the annotated graph in Figure 11. This regular annotated
graph represents the set of triplets

{(a,b,¢),(a,0,c)+ symmetrical images + trivial triplets } .

The above set (which is closed under the graphoid axioms) is not closed under Transitivity (7):
(a,0,¢) # (a,0,b)V (b,0,c) and therefore cannot be represented by an UG. Tt is not closed under
Weak transitivity (9): (a,0,¢) A (a,b,¢) & (a,0,b) Vv (b,0,¢) as well and therefore it cannot be
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G K: ({a,c},{b})
b

9/0\9

Figure 11. Simple regular annotated graph.

represented by a DAG. The above mentioned set of triplets cannot be represented by a CG for
the same reason.
As the final example consider the probability distribution given by the table below.

X ojfojojo|1|1|1]1
y Ofo0|1]1]0]0|1]]1
z of1]of1|o|1|0]|1

P(xyz) [0 |[X]0|Lt]o0o]0|%

For every valuation x, y, z of attributes z,y, z we have that P(x) = P(y) = P(z) = % and

P(xy) = P(xz) = P(yz) = 1, but P(xyz) has both positive and zero values. It is therefore
easy to verify that the relation induced by this probability distribution is

I={(z,0,y), (,0,2), (y,0,2) + symmetrical images + trivial triplets }.

This relation cannot be represented by an UG since it does not satisfy Strong union axiom (6)
(otherwise I(x,0,y) = I(x,z,y)). The relation cannot be represented by a DAG either, since a
DAG over V = {z,y, z} with an edge ¢ — b does not represent the triplet (a,®,b) and the DAG
with no edge is in fact an UG. We can show in a similar way that it cannot be represented by a
CG. It can be represented, however, by the annotated graph given in Figure 12. Notice that this
annotated graph cannot be derived from a nest of graphs. Indeed, it is not a regular annotated
graph since it does not satisfy (R1). Despite the fact that < is not a partial ordering on K in
this case, one can formally apply the membership algorithm with an arbitrary sequence w of all
elements of K and obtain the relation induced by the above given probability distribution. This
example points to the possibility of extending the results in this paper into a more general case.

Remark 6.1. The fact that chain graph representation satisfies the graphoid axioms is shown
in [8]. The fact that the irrelevance relation induced by a CG is the graphoid closure of a special
nest of UGs (namely the nest Gy,...,G, where G; is the moral graph of the induced graph
Gyyu.ov fori=1,.. .,m) can be derived from Consequence 3.1 of that paper.
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G- K ({z,9},{z})
x ({z, 2}, {y})
/Q\ ({y, 2}, {=})
O——=0
Yy z

Figure 12. Non-regular annotated graph.

a a
O O O—

=O—0O=
cO—O=
=O—0O=~

O O——=O
c b

Figure 13. A lattice of UGs.

6.2. Open problems

1. Is it possible to extend the annotation algorithm or procedure so as to represent more
general sets of graph (including e.g. lattices of graphs)?
Consider, for example, the sequence of graphs given in Figure 13 which is not a nest
according to our definition. The graphoid closure gr (I(G1)U...UI(G4)) can be represented
by the regular annotated graph from Figure 14 which cannot be obtained by means of the
annotation algorithm.

2. Find a minimal set of conditions such that any given annotated graph satisfying them is
the result of the annotation algorithm when applied to a nest of UGs.

3. Can two annotated graphs over the same set of vertices be combined in a meaningful way
under operations induced by the graphoid axioms?

G K: ({a,b},{c})

a ({aa b}a {d})
C‘)— ({aab}a{ca d})
O—

C

Figure 14. Regular annotated graph without (R2*) property.
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4. Characterize the class of graphoids representable by annotated graphs in terms of axioms
of the type described in Section 2.

5. Characterize annotated graphs that represent irrelevance relations induced by probability
distributions.

6. Given a probabilistic distribution find an annotated graph which is an I-map of the distri-
bution in a optimal way.

7. Proof of Theorem 5.2

This section contains observations and lemmas leading to the proof of Theorem 5.2.

Observation 7.1. Let (F,.J) be a regular annotated graph over V and S C V such that either
S = R(l) for a dominant element [ € J or S = (. Let (F*,.J*) be derived from (F,.J) by the
processing of S. Then for every u,v € V '\ 'S, u # v; (u,v) is an edge in F* if and only if the
following two conditions hold:

[a] there exists a path in I between u and v through {u,v}U S,
[b] every ¢ € J with D(q) = {u,v} and R(q) C S is degraded during Step 4.1 (for ).

Proof:

Suppose that (u,v)is an edge in F*. It is an edge before the reduction step 4.3 as well. Therefore,
before the restriction step (and hence before the degradation step) the path mentioned in [a]
exists. Suppose for contradiction that the condition [b] is not valid, i.e. there exists an element
q € J with D(q) = {u,v} and R(¢q) C S which is not degraded in Step 4.1 (for S). Then, in
the restriction step it is changed into a non-degraded element with empty range. Thus, in the
reduction step (u,v) is cancelled as an edge which contradicts the assumption that (u,v) is an
edge in F™*.

Conversely, suppose that both [a] and [b] hold. Then the path mentioned in [a] exists also
after the degradation step. Moreover, owing to [b], after the degradation step no element ¢ with
D(q) = {u,v} and R(q) C S exists. Thus, after the restriction step, (u,v) is an edge in the
graph and there is no element ¢ with D(¢) = {u,v} and R(q) = (. Therefore, the edge is not
removed during the reduction step and (u,v) is an edge in F™. a

7.1. Commutativity Lemma

The proof of Theorem 5.2 is based on a special ‘commutativity lemma’ saying that the steps
of the annotation algorithm and the membership algorithm commute. The assumptions of this
lemma (Lemma 7.2) are quite complex and are described below.

Assumptions and notation for the commutativity lemma.

Let (H, L) be a regular annotated graph over V without degraded element and void elements.
Let F' be an undirected graph over VU B (assuming that V' N B = @) such that H is a subgraph
of F. Denote (G, K) = Annot((H,L): F). Let S C VU B be a set such that either S = R(k)
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for a dominant element k € K or S = (). Denote by (G*, K*) the annotated graph derived from
(G, K) by the processing of S followed by the removal of resulting degraded elements. Similarly,
denote by (H*, L*) the annotated graph derived from (H, L) after the processing of SNV and
the removal of the resulting degraded elements.

Remark 7.1. Lemma 5.1 implies that (G, K) is a regular annotated graph without degraded
and void elements. Consequences 4.1 and 4.2 imply that (G*, K*) is also a regular annotated
graph without degraded and void elements. Observation 5.2 (iv) (iii) makes it possible to show
that SNV = R(l%) for a dominant element & € L or SNV = (). Thus, by Consequences 4.1 and
4.2, (H*, L*) is also a regular annotated graph without degraded and void elements.

Observation 7.2. Under assumptions of the commutativity lemma suppose that u,v € V' \ S,
uw # v. Then every path p in G between u and v through {u,v} U .S which hits SNV can be
shortened to a (non-trivial) path in H between u and v through {u,v} U (SN V).

Proof:

It suffices to show for every section ¢ = x1,...,2; = d, ¢ > 2 of p such that ¢,d € V and
Ta,...,x;—1 ¢ V that (¢,d) is an edge in H. Suppose for a contradiction that it is not the case.
Then (¢, d|B||F) # 0. Indeed, it is trivial in case ¢ > 3 since (G is a subgraph of F. In case i = 2,
i.e. (¢,d)is an edge in G, this follows from Step A1 of the annotation procedure, since otherwise
the edge (¢, d) has to be removed from F during the step. The fact T = 7(c, d|B||F) # 0 implies
that during Step A2 of the annotation procedure, an element ¢ € K with D(q) = {¢,d} and
R(q) = T is newly created. However, the assumption that p hits SNV implies that {c,d} NS #£ ()
so that ¢ dominates k. But S = R(k) for a dominant element k € K which contradicts the fact
that ¢ dominates k. O

Observation 7.3. Under assumptions of the commutativity lemma suppose that [ € K is
created by expanding [ € L. Then [ is degraded in the degradation step of processing of S if
and only if [ is degraded in the degradation step of processing of SN V.

Proof:
Suppose that [ is degraded, that is there exists a non-trivial path in H between nodes of D(lN)

through D({) U (SN V) \ R(l). Owing to Observation 5.2 (ii) (iii) it is a non-trivial path in G
between nodes of D(I) = D(I) through D() U (SN V) \ (R()NV) C D{)U S\ R(I). Thus,
l € K is degraded in the degradation step of processing of S.

Conversely, suppose that [ € K is degraded, that is there exists a non-trivial path p in G
between nodes of D(!) through D(l) US\ R(l). To show that p hits SNV suppose for a contra-
diction that it is a path through D(/)U B. Then by Observation 5.1 (ii) and Consequence 5.1 its
internal nodes belong to 7(D(1)|B||G) C 7(D()|(R([)NV) U BJ||G) = R(l) which contradicts the
fact that p is outside R(l). Thus, p has to hit SNV and by Observation 7.2 can be shortened
to a non-trivial path in H between nodes of D(I) = D(l) through D(I) U (S N V). Of course, the
shortened path is outside R(I) C R(l) (see Observation 5.2 (iii)). Therefore, [ is degraded in the

degradation step of processing of SN V. O
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Observation 7.4. Under assumptions of the commutativity lemma suppose that [ € K is newly
created in the annotation procedure (G, K) = Annot((H,L) : F'). Then [ is degraded in the
degradation step of processing of S if and only if there exists a path in H between nodes of D(!)
through D(l)U (SN V).

Proof:

We know by Observation 5.2 (v) that D(l) C V. It follows from Step A2 of the annotation
procedure that D(l) is not an edge in H. Therefore, if there exists a path in H between nodes
of D(l) through D(I) U (SN V), then it is a non-trivial path. By Observation 5.2 (ii) (iv) it is
a non-trivial path in G between nodes of D(l) through D(l)U (SNV) C D([)U S\ R(l). Thus,
l € K is degraded in the degradation step of processing of .S.

Conversely, suppose that [ is degraded, that is there exists a non-trivial path p in G between
nodes of D({) through D({) U S\ R(l). Then p has to hit SNV as otherwise by Consequence
5.1 its internal nodes belong to 7(D(l)|B||G) = R(l) which contradicts the assumption. By
Observation 7.2 p can be shortened to the desired path in H. O

Lemma 7.1. Under assumptions of the commutativity lemma H* is a subgraph of G*.

Proof:
Suppose that u,v € V \ S and (u,v) is an edge in H*. According to Observation 7.1 where
(F,J)=(H,L), V=V and § = SNV the following two conditions hold.

(a) there exists a path in H between u and v through {u,v}U (SN V),
(b) every [ € L with D(lN) = {u,v} and R(ZN) C SNV is degraded during Step 4.1 for SN V.

Owing to Observation 5.2 (ii) the condition (a) implies:
(a') there exists a path in G between w and v through {u,v}US.
Moreover, the following condition holds:
(b') every | € K with D(l) = {u, v}, R(l) C S is degraded during the degradation step for .

Indeed, in case R([)N'V =0, [ is newly created in the procedure (G, K) = Annot((H,L) : F)
by Observation 5.2 (iv), and the condition (a) implies according to Observation 7.4 that [ is
degraded. In case R(I)NV # 0, [ is created by the expansion of [ € L with D(I) = {u,v} and
R(l) € SNV (see Observation 5.2 (iii)). Then the condition (b) implies by Observation 7.3
that [ is degraded and (b') is verified. Tt remains to use Observation 7.1 where (F,.J) = (G, K),
V =V UBand S = S to show that the conditions (a'), (b') imply that {u,v} is an edge in

G™. O

Observation 7.5. Under the assumptions of the commutativity lemma VI € L, Vu € R(l)\ S,
Vv € D(I), there exists a path simultaneously in G and G* from u to v through {v} U R(])\ 5.
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Proof:

It follows from the annotation procedure (G, K) = Annot((H, L) : F) that there exists k € K
created by the expanding of [ € L and by Observation 5.2 (iii) R(l) = R(k) NV. Let us apply
Observation 5.4 to k € K, u € R([)\S = (R(k)NV)\ S and v € D(I) = D(k) to find a path p in
G between v and v through {u}U (R(k)NV) composed of K-durable edges and outside R(K,).
If SNV =0, then p is evidently outside S. In case SNV # () consider p € K with R(p) = S.
Since u ¢ R(p), p is outside R(p) = S. Thus, the path p will remain in the graph after the
degradation and restriction steps of processing of S. Moreover, since it is made of K-durable
edges it cannot be disconnected in the reduction step of processing of S. Therefore, p is also a
path in G™. O

Observation 7.6. Under assumptions of the commutativity lemma suppose that [ is a non-
degraded element over V such that either [ € L or D(I)NS = = R(l). Then one has
T(DOIRN UV B[[G)\ S = 1(DO[(R)\ S) U (B S)[G7).

Proof:
First, it follows from the assumptions and Observation 5.3 that .S satisfies the following transi-
tivity principle: if # € S, y € B and (2,y) is an edge in G, then y € S.

Let us suppose that v € 7(D({)|R([)UB||G)\S. Then by Observation 5.1 (i) v € (R([)UB)\S.
Let us consider a fixed v € D(I). Then, by definition, there exists a path p in G from u to v
through {v}UR([)U B. In case u € R(I)\ S the existence of the desired path in G* from u to v
through {v} UR()\S C {v}U(R()\S)U(B\Y9) follows from Observation 7.5. In case u € B\ S
denote by z, the first node of p outside B. Then the section of p between w and z, is outside
S owing to the above mentioned transitivity principle for S. Since all its edges intersect B, by
Observation 5.2 (v) all its edges are K{-durable. Hence, the section of p between u and z, remains
unchanged during processing of S. So, it is a path in G*. Thus, in case z, = v for both v € D()
the statement w € 7(D(1)|B\ S||G*) C (D) |(R(I)\ S)U (B\ 9)||G*) is verified. If 2, # v for
some v € D(I), then 2, € R(I)\ S and we already know that x, € 7(D(I)|(R(I)\ S)U(B\S)||G*).
Then by repeated application of Observation 5.1 (iv) derive that every node of the section of p
between , and u belongs to 7(D({)|(R(I)\ S) U (B\ 9)||G*).

Conversely, suppose that v € 7(D(()[(R()\ S) U (B\ 9)||G*). Then by Observation 5.1 (i),
w e (R(I)UB)\S. Let us consider a fixed v € D(l). By definition, there exists a path 7 in G*
from u to v through {v} U (R([)\ S)U (B\S). In case u € R(I)\ S the existence of the desired
path in G from u to v through {v} U R()\ S C {v}U R(l) U B follows from Observation 7.5. If
u € B\ S denote by w, the first node of 7 outside B. Evidently, every edge of the section of =
between u and w, is an edge of the graph before the reduction step of processing of S. To show
that every edge {z, w} of the section is an edge in the graph also before the restriction step of
processing of S, suppose for a contradiction that there exists a non-trivial path in G' between
z and w through {z,w} U S. Then, the fact {z,w} N B # () implies by the above mentioned
transitivity principle {z,w} NS # @ which contradicts the fact that = is outside S. Thus, the
section of m between u and w, exists in the graph before processing of S, that is, it is a path in G.

If w, = v for both v € D(I), then it says u € 7(D(l)|B\S||G) C 7(D()|R(L)UB||G)\S. If w, # v
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for some v € D({), then w, € 7(D(l)|R(l) U B||G) and repeated application of Observation 5.1
(iv) implies that u € 7(D(l)|R(l) U B||G). a

The desired commutativity lemma follows.
Lemma 7.2. Under assumption of the commutativity lemma (G*, K*) = Annot((H*, L*) : G*).

Proof:

By Consequences 4.1 and 4.2 (H*, L*) is a regular annotated graph over V'\ S without degraded
and void elements. By Lemma 7.1 G* is an undirected graph over (V \ .S)U (B \ ) such that
H~ is a subgraph of G™. Thus, the assumptions of the annotation procedure are fulfilled and we
can introduce (G, K.) = Annot((H*, L") : G¥).

To show that G. = G* it suffices to verify that in Step Al of the annotation procedure
(G, K.) = Annot((H*, L*) : G*) no edge is removed. That is, whenever u,v € V' \ S such that
(u,v) is an edge in G* but not in H*, then we must show that 7(u,v|B\ S||G*) # 0. Since it
is not an edge in H* by Observation 7.1 where (F,J) = (H,L), V =V and S = SNV derive
that one of the following two conditions holds.

(¢) There is no path in H between u and v through {u,v} U (SN V).
(d) There exists [ € L with D(l) = {u,v} and R(l) C SNV which is not degraded during
processing of SN V.

Let us show that both conditions imply that
(d’) there exists k € K with D(k) = {u,v} and R(k) NV C S which is not degraded during

processing of 5.

The implication (d) = (d’) follows easily from Observation 7.3 with help of Observation 5.2 (iii).
To show that (d’) holds also in case of (¢) we first verify that 7(u, v|B||F) # (). By Observation
7.1 where (F,J) = (G, K), V. =V UB, S = S the fact that (u,v) is an edge in G* implies that
there exists a path p in G' between u and v through {u,v}U.S. The path p does not hit SNV
as otherwise by Observation 7.2, it can be shortened to a path in H through {u,v}U (SNV)
which contradicts (c¢). Thus, p is a path in G through {u,v} U B. If it is non-trivial, by
Observation 5.2 (i) derive § # 7(u,v|B||G) C 7(u,v|B||F). Otherwise (u,v) is an edge in G
but not in H (by (c)) and by Step Al of the annotation procedure (G, K) = Annot((H, L) : F)
necessarily () # 7(u, v|BJ||F). In either case, in Step A2 of the procedure an element k € K with
D(k) = {u,v} and R(k) = 7(u, v|B||F) is newly created. By Observation 5.2 (iv) R(k)NV =0
and by Observation 7.4 k is not degraded during processing of S. Thus, the condition (d)
was verified. The element k € K from (d’) is therefore changed in the restriction step of the
processing of S into an element k with D(k) = {u,v} and R(k) = R(k)\ S. Since (u,v)
is an edge in G* necessarily R(k)\ S # 0, as otherwise (u,v) is removed from the graph in
the reduction step of processing of 5. Thus by Consequence 5.1 and Observation 7.6 write
0% R(k)\ S = 71(u,v|(R(k)yNV)UB|G)\ S = 7(u,o[(R(k)Nn V) \ S)U (B\ S)||G*). This
completes the proof that G, = G*.
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Suppose that ¢ € K,. We must show that ¢ € K*. By Consequence 5.1 applied to (G, K.) =
Annot((H*, L*) : G*) derive that R(¢) = 7(D(q)|(R(g) N V)U(B\ 9)||G*) (we know R(¢g)NV =
R(g) N (V'\S)). We distinguish the following two cases.

(e) There exists [ € L with D(l) = D(¢) and R(l)\ 'S = R(q) NV which is not degraded during
processing of SNV.

(f) Every [ € L with D(l) = D(q) and R(I)\ S = R(q) NV is degraded during processing of
Snv.

In the case (e) holds by Step A3 of the annotation procedure (G,K) = Annot((H,L) : F)
there exists k € K with D(k) = D(I) and R(k) = 7(D(l)|R({) U B||F’). By Observation 7.3 k
is not degraded during processing of 5. Thus, after the restriction step of processing of S an
element k* with D(k*) = D(k) and R(k*) = R(k) \ S is obtained. One can write according to
Observations 5.5 and 7.6: R(k*) = R(K)\S = 7(D())|R(OHUB|F)\S = 7(D(D)|R(HUBJ||G)\S =
F(DMIRD\ ) U (B $)IG7) = r(DDI(R(g) 1 V) U (B\S)G7) = Rlg) # 0. Thus, 1 is
saved during the reduction step of processing of S and during subsequent removal of degraded
elements. Therefore k* = ¢ belongs to K*.

In case the condition (f) holds, observe that R(¢) NV = (). Indeed, otherwise by Observation
5.2 (iv) (iii) for (G, K.) = Annot((H*, L*) : G*) there exists [* € L* with D(I*) = D(q) and
R(I*) = R(¢)NV and this implies that there exists [ € L with D(I) = D(I*) and R(I*) = R([)\ S
which is not degraded during processing of S N'V. However, this contradicts the condition
(f). The fact R(¢) NV = ( then implies by Observation 7.6 and Observation 5.5 R(q) =
T(D(q)|B\ S||G*) = 7(D(q)|B||G) \ S = 7(D(q)|B||F) \ S. Moreover, by Observation 5.2 (iv)
applied to (G, K.) = Annot((H*, L*) : G*) the element ¢ was newly created. In particular,
by Step A2 of the annotation procedure, the vertices in D(q) are not an edge in H*. Hence,
Observation 7.1 where (F,J) = (H,L), V=V, § = SNV can be used to show that there is no
path in H between nodes of D(g) through D(¢)U (SNV). Indeed, otherwise by Observation 7.1
there exists [ € L with D(l) = D(q) and R(l) C SNV which is not degraded during processing
of SNV. Since R({)\ S =0 = R(¢g) NV in this case, it contradicts the condition (f). Thus the
vertices in D(q) do not form an edge in H and () # R(q) C 7(D(q)|B||F') implies that in Step A2
of the annotation procedure (G, K) = Annot((H, L) : F') an element k € K with D(k) = D(q)
and R(k) = 7(D(q)|B||F) is newly created. By Observation 7.4, it is not degraded during
processing of 5. During the restriction step it is changed into an element £* with D(k*) = D(k)
and R(k*) = R(k)\ S = 7(D(¢)|B||F)\ S = R(q) # 0. Thus, k* is saved during the reduction
step and removal of degraded elements. Therefore k* = ¢ belongs to K™.

Suppose that k* € K*. We must show that k* € K. By definition of (G*, K*) there exists
k € K with D(k) = D(k*) and R(k*) = R(k) \ S such that k is not degraded during processing
of S. Write by Consequence 5.1 and Observation 7.6 R(k)\ S = 7(D(k)[(R(E)NV)UBJ||G)\ S =
T(D(E)|(R(E)NV)\S)U(B\ |G = 7(D(E)|(R(E*)NV)U(B\S)||G*). Now, we distinguish
two cases.

In case R(k*) NV # 0 by Observation 5.2 (iv) there exists | € L with D(l) = D(k) and
R(l) = R(k) N V. According to Observation 7.3, [ is not degraded during processing of SN V.
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Thus, after the restriction step of processing of SNV there exists an element {* with D({*) = D(I)
and R(I) =R\ (SNV)=(R(E)NV)\ S = R(k*)NV # 0. Therefore [* is saved during the
reduction step and subsequent removal of degraded elements. Since [* € L*, in step A3 of the
annotation procedure (G, K) = Annot((H*, L*) : G*) an element ¢ € K, with D(¢) = D(l*)
and R(q) = 7(D(*)|R(I*) U (B\ 9)||G*) is created. Substitute R(I*) = R(k*) NV and use the
formula above: R(q) = 7(D(k*)|(R(K*)NV)U(B\S)||G*) = R(k*). Thus, ¢ = k* and therefore
k€ K.

In case R(k*) NV = ( we show that the vertices in D(k) do not form an edge in H*.
If R(k) NV # 0, then by Observation 5.2 (iv), there exists [ € L with D(l) = D(k) and
R(l) = R(k)nV. By Observation 7.3, [ is not degraded during processing of SNV. Hence, after
the restriction step an element [* with D({*) = D(l) and R(I*) = R([)\(SNV) = (R(k)NV)\S =
R(k*)NV = (. Thus, in the reduction step of processing of SNV the edge between the vertices in
D(I*) = D(l) is cancelled. Therefore the vertices do not form an edge in H*. If R(k)NV = (), then
we verify that the vertices D(k) do not form an edge in H* by contradiction. Indeed, otherwise
by Observation 7.1 where (F,J) = (H, L), V =V, § =S8NV derive that there exists a path in
H between nodes of D(k) through D(k) N (SN V). In this subcase by Observation 5.2 (iv), k is
newly created and one can apply Observation 7.4 for (G, K) = Annot((H, L) : F)) to derive that
k is degraded during processing of S. This contradicts the assumption about k. In either case,
the vertices D(k*) = D(k) do not form an edge in H* and ) # R(k*) = 7(D(k*)|B\ S||G”).
Thus, in Step A2 of the annotation procedure (G, Ki) = Annot((H*,L*) : G*) an element
q € K, with D(q) = D(k*) and R(q) = 7(D(k*)|B\ S||G*) is newly created. Hence ¢ = k* and
k* e K.. a

7.2. Summary of Results about Annotation Algorithm

Throughout this subsection suppose that G, ..., G,, n > 1is aregular nest of undirected graphs
and (G4, K;), t =1,...,n the sequence of iterations of the corresponding annotation algorithm.
Let us denote by V; the set of nodes of GG; and put B; = V;\ V,_y fori=1,...,n (by definition
Vo = 0). The assumption of the regularity implies that the nest of the graphs is not changed
during the annotation algorithm.

Consequence 7.1. Under the above assumptions above gr(/(G1) N...UI(Gy)) C I(Gn, Ky).

Proof:

By Theorem 5.1, (G, K;) is a regular annotated graph without degraded and void elements for
i =1,...,n. Moreover, by Lemma 5.2 I(G;_1, K;,—1) C I(G;, K;) for i = 2,...,n. However,
it follows from the description of the membership algorithm and Observation 4.2 that Vi =
1,...,n I(G;) CI(G;, K;). Altogether, I(G1) U...UI(G,) C I(Gy, K,,). Since (G, K,) is a

graphoid by Theorem 4.2, the desired conclusion follows easily. O

The converse inclusion will be proved by induction on the number of elements of K,,. We
start with a simple observation.
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Observation 7.7. Suppose that, under the assumption of this subsection, K, = (. Then

(G K) Cgr(I(GU...UT(Gy)).

Proof:
It follows from Step 3 of the membership algorithm that in case K, = () one has I(G,, K,) =
I(G,). Thus I(G,) C I(G)U...UI(G,) Cgr({(G)U...UI(G)). O

The basis of the induction step is the following lemma.

Lemma 7.3. Under the assumption of this subsection suppose that p = ({a,b}, ) is a dominant
element of K,,. Let us denote by (G, K}) the annotated graph obtained from (G, K;) by process-
ing of SNV, and subsequent removal of degraded elements for i = 1,...,n. Then (G, K¥) is a
result of the annotation algorithm applied to G, . .., G% (in particular, it is a regular nest of undi-
rected graphs), K, has less elements than K,,, and Vj = 1,...,n I(G7) C gr(I(G1)U.. UI(G;)).

Proof:
One can show by repeated application of Observation 5.2 (iv) (iii) that Vi = 1,...,n either
S NV; = R(k;) for a dominant elements k; € K; or SNV; = (. Thus, by Theorem 5.1, the

assumptions of the commutativity lemma are fulfilled for every ¢ = 2,...,n with (H,L) =
(Gi—1, Ki—1), F =G, V =V,_1, B= B; and SNV, instead of S. Repeated application of
Lemma 7.2 makes it possible to show by induction on j = 2,...,n that (G;7 K]*) is a result of
the annotation algorithm applied to G7,...,,Gj.

Since (G%, K7) is obtained from (G, K,,) by processing of S = R(p) the element p is surely
removed in the reduction step of the processing. Hence, K has less number of elements than
K,, (the number of elements cannot be increased by the considered change).

The last part is trivial for 5 = 1. Indeed, owing to Observation 5.6, S NV; = @ and since
processing of the empty set makes no change G7 = G1. For 1 < j < n denote by M; the set of
triplets over V; \ S which belong to ¢r(/(Gy)U...UI(G;)). Evidently, it is a graphoid over
V;\ S and by Claim 2.1 applied to G7 it suffices to show that for every ¢, d € V \ S, ¢ # dsuch
that (¢, d) is not an edge in G the triplet t = (¢,V;\ Sed, d) belongs to M;. We distinguish two
cases. If there is no path in G; between ¢ and d through {c,d} U (SN V), then t € I(G;) and
therefore t € M;.

If there exists a path in G; between ¢ and d through {c,d} U (S NV;), then it is unchanged
during the degradation step of processing of S N V; and in the restriction step is shortened to
the edge (c,d). Since (c,d) is not an edge in G7, obtained after the reduction step, an void
element having {c,d} as domain was in the annotated graph before reduction. This implies
that there exists an element ¢ € K; such that D(q) = {¢,d} and R(¢q) C SN V; which is not
degraded during processing of SNV;. Observe that R(¢q) # 0 by Theorem 5.1 and R(¢)NV; =0
by Observation 5.6. Set m = max{i = 1,...,7; R(¢)NV; = 0}. We are going to apply
Lemma 5.3 to the nest Gq,...,G; (n = j) and SNV, in place of S. It follows from the
description of the annotation algorithm that there exists 1 < m < j — 1 such that in the
annotation procedure (G41, Kpt1) = Annot((G,, Ki) @ Gig1), an element ¢ € K41 with
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D(G) = D(q¢) and R(G) = R(¢) N V41 is newly created. This implies (Step A2 of the annotation
procedure) that (c,d) is not an edge in G,,. Suppose for a contradiction that there exists a
path 7 in G,, between ¢ and d through {¢,d} U (SN V,,). Then it is a non-trivial path and
since G, is a subgraph of G and R(q) NV, = 0 it is a path in G between ¢ and d through
{c,d}uU (SNV;)\ R(q) which contradicts the fact that ¢ is not degraded during processing of
SNV;. Hence (¢, Vi,\Sed, d) € 1(G,). Moreover, it follows from the description of the annotation
procedure together with Observation 5.1 (ii) that Vi =m +1,...,5 7(c,d|By||G:) C R(¢q) N V;.
Since R(q) C SNV; the condition (b) from Lemma 5.3 is also fulfilled. Thus, the lemma implies
t=(c,V;\Scd,d) € gr(I(Gy,)U...UI(G;)). Hence, t € M; and the conclusion was verified. O

Lemma 7.4. Under the assumptions of this subsection
(G, K,) Cgr(I(G1)U...UI(G,)).

Proof:

By Observation 7.7 the statement is valid if K, = (). Suppose now that K, has j elements,
where 7 > 1, and we have already proved the statement of the lemma for every regular nest of
undirected graphs G7,...,G% producing an annotated graph (G7, K) where K has at most
7 — 1 elements.

Take a triplet t = (X, Z,Y) € (G, K,); put M = gr(1(G1)U...UI(G)). If XYZNR(k) #
() for every k € K,, then in the deletion step of the membership algorithm every element of
K, is deleted, and t is represented in G,,. Thus, t € I(G,) C M. If there exists k € K,
with XY Z N R(k) = 0, then one can find (see Lemma 4.1) a dominant element p € K, with
XYZn R(p) = 0. One can construct a scenario w for (G,,, K,,) suitable for testing (X, Z,Y)
which starts with p. It follows from the description of the membership algorithm that ¢ is
represented in the graph (G%, K) obtained from (G, K,,) by processing of S = R(p).

Since (G, K}) is a result of the annotation algorithm applied to G7,...,G% by Lemma 7.3,
by the induction hypothesis t € I(G},, K) C gr ({(G7)U...UI(G})). However, Lemma 7.3 also
says [(G7) C M for every j = 1,...,n. Therefore I(G7) U...UI(G}) C M and since M is a
graphoid gr(I(G7)U...UI(Gy)) C M. Hence, t € M and the induction step was made. 0

Thus, Consequence 7.1 and Lemma 7.4 together imply that whenever G, ...,G,, is a regular
nest of undirected graphs and (G;, K;), ¢ = 1,...,n are iterations of the corresponding annota-
tion algorithm, then I(G, K,,) = ¢gr({(G1) U...UI(G,)). So, Theorem 5.2 follows from this
fact and from Lemma 5.4.
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