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COMPLEXITY OF STRUCTURAL MODELS
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Abstract

Complexity of a model of conditional independence struc-
ture is introduced as the least cardinality of a generat-
ing set. Four basic types of complexity are distinguished
which depend on the type of generating. A method of
calculation of complexity of a given conditional indepen-
dence model is proposed. The method is based on a more
effective way of representation of the model by means of
a list of dominant conditional independence statements.
Prospects of the proposed approach are discussed in the
end.
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1 INTRODUCTION

The most of structured models used in probabilistic rea-
soning and in multivariate statistics, especially graphical
models, are models of probabilistic conditional indepen-
dence structure. Verification of validity of such a stuc-
tural model is based on statistical conditional indepen-
dence tests. This leads to natural questions. Which con-
ditional independence tests should be performed in order
to verify the validity of a given structural model? Are
there any superfluous tests? How many tests are needed?
Thus, the (minimal) number of needed tests somehow re-
flects the complexity of verification of such a model on
basis of statistical data. That is the main motive of our
effort to investigate related theoretical questions.

In fact, similar questions were already studied in the
framework of graphical models. It was shown in [13] that
the number of conditional independence tests needed to
verify validity of a Bayesian network model does not ex-
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ceed the number of nodes (= variables). On the other
hand, the number of tests needed to verify validity of em-
bedded Bayesian network is exponential in the number of
vertices, in general [5].

In this paper, we would like to start systematic study
of the concept of complexity of a structural model. Thus,
in the second section, we define this concept for a general
model of conditional independence structure, not only for
graphical model. In fact, we distinguish several types of
complexity, depending on the family of models into con-
sideration, namely the family of probabilistic models, pos-
itive probabilistic models, semi-graphoids, and graphoids.
Different types of complexity may coincide for some mod-
els (especially for certain graphical models). In the third
section we propose a method how to simplify calculation
of complexity of a considered structural models based on
the concept of dominant conditional independence state-
ments introduced in [11]. This point of view leads to an
alternative method of mathematical description and com-
puter representation of the mentioned structural models.
In the fourth section (Conlusions) we indicate connection
of the concept of complexity and the concept of dimension
of a model, that is (informally) the number of free real
parameters which are necessary to specify a probability
distribution complying with the model [7].

2 BASIC CONCEPTS

We will consider the concept of complexity of a model
within several different families of structural models. In-
stead of giving a specific definition for each particular
framework of models we have decided to introduce the
concept of complexity with respect to an abstract family
of structural models.

2.1 Abstract closure operation

Let us recall some basic definitions from theory of com-
plete lattices (see [1], section 4.1).
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DEFINITION 1 Suppose that T is a finite non-empty set.
By a closure operation on subsets of 7" we understand a
mapping ¢ which assigns a set ¢(4) C T to every A C T
and which is

1. extensive: A C ¢(A) for every A C T,

2. idempotent: ¢(c(A)) = ¢(A) for every A C T,

3. isotone: ¢(A4) C ¢(B) whenever AC BCT.

The closure of a set A C T is then the set ¢(A). A subset
A C T is then called closed (with respect to ¢) if A = ¢(A4),
or equivalently A = ¢(B) for some B C T. Thus, any such
closure operation ¢ induces a family F, of closed subsets
of T.

Such a framework is sufficiently general. Every particular
family of structural models treated in this paper can be
considered as a family of closed subsets with respect to
certain closure operation. Nevertheless, families of closed
subsets can be introduced without the concept of closure
operation. Let us mention another concept from lattice
theory ([3], section IL.7).

DEFINITION 2 A family F of subsets of a finite non-empty
set T is called a Moore family if T € F and F is closed
under intersection, that is

ANBeF whenever A,B € F.

We leave it to the reader to verify the following lemma
(see also [3]).

LeEMMA 1 Let T be a finite non-empty set.

(1) Supposing c is a closure operation on subsets of T" the
family F. is a Moore family of subsets of T'.

(ii) Every Moore family F of subsets of T induces a clo-
sure operation cx defined by the formula:

c]:(A):ﬂ{B;ACBEf} for every ACT.

Moreover, F is the family of closed subsets with
respect to cr.

We introduce the concept of complexity within this ab-
stract framework.

DEFINITION 3 Suppose that ¢ is a closure operation on
subsets of a finite set non-empty 7. A generator of a
closed set A C T is any set B C T such that ¢(B) = A. If
moreover no proper subset of B is a generator of A, then
B is called a basis of A. A set B C T is called a minimal-
cardinality basis of A if it is a generator of A and there is
no generator C of A such that card (C') < card (B). Com-
plexity of a closed set A C T (with respect to ¢), denoted
by com.(A), is the number of elements of a minimal-
cardinality basis of A, that is

com.(A) = min {card(B); BC T and ¢(B) = A}.
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Observe that every generator of a closed set A C T is a
subset of A (since the closure operation is extensive).

2.2 Structural models

The topic of this paper are models of conditional inde-
pendence structure.

DEFINITION 4 Suppose that IV is a finite non-empty set
of variables. Then the symbol T(N) denotes the class of
triplets (A, B|C) of pairwise disjoint subsets of N where
the first two components, A and B, are non-empty. Sym-
metric image of a triplet u = (A, B|C) is the triplet
(B, A|C) denoted by sym(u). By an (abstract) indepen-
dency model over N we understand a subset of T (N).

Let us remark that a triplet (4, B|C'Y € T(N) is meant
to represent the following conditional independence state-
ment: the variables in A are independent of the variables
in B under condition that the values of the variables in
C are known! The symbol | is used to separate the con-
ditioned area which is allowed to be empty.

Let us recall how an independency model is induced by a
discrete probability distribution of a given set of variables
N. Note that throughout the paper we limit ourselves to
discrete probability distributions although an analogous
definition can be given in the case of continous random
variables.

CONVENTION 1 For sake of brevity we will often use the
juxtaposition UV to denote the union U UV of sets of
variables U,V C N.

DEFINITION 5 A probability distribution over a finite
non-empty set N will be specified by a collection of fi-
nite non-empty sets {X;;¢ € N} and by a function

P: [ Xi = [0,1] with » {P(x);x€ [[Xi}=1.
iEN iEN
It is called positive if P(x) > 0 for every x € [[;cn Xi.
Whenever ) # A C N and P is a probability distribution
over N its marginal distribution on A is a probability
distribution P4 (over A) defined as follows:

PAa)=> {P(ab); be J[ Xi} forae [[X;.
IEN\A €A

We accept the conventions PN = P, P?(—) = 1.

Having (A, B|C) € T(N) and a probability distribution
P over N we say that A is conditionally independent of
B given C with respect to P and write A 1L B|C [P] if

PABO(aabvc) 'PC(C) = PAC(aac) 'PBC(bac)

for every a € [[;c 4 Xi, b € [[;c5 Xi, € € [[;c0 X
An independency model Z C T(N) is called a probabilistic
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Figure 1: Relationships among structural models.

model over N if there exists a probability distribution P
over N inducing it, that is

T = {(A,B|C) € T(N); Al B|C[P]}.

It is called a positive probabilistic model over N if there
exists a positive distribution over N inducing it. The
family of probabilistic models over N will be denoted by
Fpro(N) and the family of positive probabilistic models
over N by Fpos(N).

Several authors have independently emphasized some ba-
sic properties of (positive) probabilistic models.

DEFINITION 6 An independency model Z C T(N) is
called a semi-graphoid over N if it satisfies the follow-
ing properties:

1. symmetry: (4, B|C) — (B, A|C),

2. decomposition: (4, BC|D) — (A, C|D),

3. weak union: (4, BC|D) — (A, B|CD),

4. contraction: [(A, B|CD) & (A,C|D)] — (A, BC|D).
Such formal records in the form of ’inference rules’ should
be understood as follows: if Z contains the triplet(s) be-
fore the arrow, then 7 contains also the triplet after the
arrow. An independency model is called a graphoid if it
is a semi-graphoid and moreover satisfies

5. intersection: [(A, B|CD) & (A,C|BD)] — (A, BC|D).
The family of semi-graphoids over N will be denoted by
Fsem (IN) and the family of graphoids over N by Fgpe (V).

The facts mentioned in the following lemma are well-
known - see [2, 8, 6]. Figure 1 illustrates the situation.

LEMMA 2 Any probabilistic model is a semi-graphoid and
any positive probabilistic model is a graphoid.

For page limitation we omit definitions of usual graphical
models, that is structural models induced by undirected
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graphs, acyclic directed graphs or chain graphs. Let us
remark that all mentioned graphical models are positive
probabilistic models [12].
A basic construction of discrete probability distribution
(see [4], Theorem 6) allows to show the following facts.
For every pair of probability distributions P, over N
there exists a distribution R over N such that

AU B|CIR] if {AULB|CIP]& A1 B|C[Q]}
for every (A4, B|C) € T(N). If both P and @ is positive,
then R can be chosen positive as well. We leave it to the
reader to verify the following consequence.

LEMMA 3 For every finite non-empty set N, the families
Fpro(IN), Fpos(N), Fsem(N), Fgra(N) are Moore families
of subsets of T (V).

Structural models of (conditional independence) arise also
in other (non-probabilistic) calculi for dealing with un-
certainty in artificial intelligence [9]. Typically, the cor-
responding family of structural models is a Moore family,
and every structural model is a semi-graphoid. Then, the
concept of complexity can be considered within such a
framework and the method described in the next section
can be used. On the other hand, the most of families of
graphical models are not Moore families. In this paper
we consider only four families of structural models men-
tioned in Lemma 3. By Lemma 1 four different closure
operations on subset of 7 (V) can be introduced.

CONVENTION 2 Given a finite non-empty set N the clo-
sure operation on subsets of 7 (V) induced by Fpro(N),
Fpos(IN), Fsem(N), Fora(N), respectively are denoted by
pro, pos, sem, gra, respectively and named the prob-
abilistic, positive probabilistic, semi-graphoid, graphoid
closure operation, respectively.

Given Z C T(N), gra(Z) can be equivalently introduced
as the set of those triplets from 7 (N) which are deriv-
able from the triplets in Z by consecutive application of
graphoid inference rules. Similarly for the semi-graphoid
closure. Moreover, the relationships depicted in Figure 1
imply that sem(Z) < gra(Z),pro(Z) < pos(Z) for every
Z C T(N). Hence, one can derive the following conse-
quences.

LEMMA 4 Let N be a finite non-empty set and Z C T(N).

(1) If Z is a graphoid, then every semi-graphoid genera-
tor of 7 is a graphoid generator of Z and therefore
com gre (Z) < coMgery (I).

(ii) If 7 is a probabilistic model, then each semi-graphoid
generator of 7 is a probabilistic generator of Z and
coypro(Z) < comgen, (7).
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(iii) If Z is a positive probabilistic model, then every
graphoid generator of 7 and every probabilistic gen-
erator of 7 is a positive probabilistic generator of 7
and comyp,,(Z) < min { comgp,(Z), compro(Z) }.

In general, the inequalities are strict. However, an equal-
ity may occur. For example, it was proved in [12] that
compro(Z) = comgem(Z) whenever compn,(Z) < 2. We
speak about relative completeness (of semi-graphoid in-
ference rules) in similar cases.

To conlude this section let us explain how the concept
of complexity is related to the problem of verification of
validity of a structural model mentioned in Introduction.
Given a structural model M over N (typically a graph-
ical model) and a probability distribution P over N the
model M is considered to be valid for P (or P complies
with M, or in terminology of [6] M is an independency
map of P) if A 1l B|C[P] for every (4,B|C) € M.
Thus, comypr,(M) is the minimal number of conditional
independence statements to be tested to show that M
is valid for P in case of a general probability distribu-
tion. However, in case of a positive distribution P it is

comypes (M).

3 DOMINANT TRIPLETS

In this section we propose a more effective way of com-
puter representation of a semi-graphoid. Certain order-
ing on T (N) is introduced and every semi-graphoid can
be described by the list of its maximal elements with re-
spect to the ordering. We propose how to implement the
semi-graphoid (and graphoid) closure provided that our
structural knowledge is encoded in this way. Then we
show that the task of calculation of complexity of a semi-
graphoid can be simplified using this point of view.

3.1 Semi-graphoid closure

Let us recall a concept introduced in [11]. Figure 2 illus-
trates the situation.

DEFINITION 7 Suppose that (4, B|C),(X,Y|Z) € T(N).
If XCA Y CBandC CZ C ABC, then we write
(X,Y|Z) < (A, B|C) and say that (A, B|C') dominates
(X,Y|Z). The relation < is evidently a partial ordering
on T(N). If M C T(N), then the maximal elements of

M with respect to < are called the dominant triplets of
M.

An alternative phrase ’dominant conditional independen-
ce statement’ can be used in case that M is interpreted
as a model of conditional independence structure. Evi-
dently, if u,v € T(N) and u < v, then u can be derived
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Figure 2: Triplet (A, B|C) dominates triplet (X, Y| Z).

from v by means of symmetry, decomposition and weak
union and therefore v € sem({v}). It imples easily:

LEMMA 5 If 7 is a semi-graphoid over N and D is the
class dominant triplets of Z, then

T ={ueT(N);u<vforsomeveD}.

Typically, the class D of dominant triplets of a semi-
graphoid M is much smaller than the semi-graphoid. We
propose the represent M in memory of a computer by the
list of elements of D. Note that u € D iff sym(u) € D;
this leads to a further reduction of memory demands.

DEFINITION 8 Suppose that u = (A, B|C) € T(N) and
v = (I, J|K) € T(N). Provided that C \ IJK = ) =
K\ABC and ANI #0# (J\C)U(BNIJK) we define
uxv € T(N) as follows

uxv = (ANI, (J\C)U(BNIJK)|CUANK)).
LEMMA 6 Let Z be a semi-graphoid over N. If u,v € T
and u x v is defined, then u xv € 7.

Proof: Under notation from Definition 8 u dominates the
triplet ' = (ANI,BNIK |CU(ANK)) and v dominates
the triplet o' = (ANI,J\C|(BNIK)UC U (ANK)).
Thus, u',v' € T and hence, by contraction uxv € Z. []

LEMMA 7 Let D C T(N) such that

(a) Yu e D sym(u) € D,

(b) Yu,v € Dif uxv is defined, then Jw € D uxv < w.

Then Z = {u € T(N); u < v for some v € D} is a semi-
graphoid over N.

Proof: 7 is evidently closed under symmetry, decomposi-
tion and weak union. Suppose that t = (X,Y|Z) € 7 and
w = (X,W|YZ) € Z. Thus, there exists (A4, B|C) € D
which dominates ¢t and v = (I, J|K) € D which domi-
nates w. Hence, X CA, Y CB,CCZ C ABC, X C I,
W cJ, KCcYZ cCIJK. We leave it to the reader to
verify by contradiction that C'\ IJK = ) = K \ ABC
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and directly that ANT # 0 # (J\ C)U (BNIJK) and
(X,YW|Z) < u*v. L]

SEMI-GRAPHOID CLOSURE PROCEDURE Let M C T(N)
be a starting iteration. Every next iteration will be ob-
tained by the following three steps.

1. Add sym(u) to M whenever u € M, sym(u) ¢ M,

2. add u*v to M whenever u,v € M, u*v is defined
and uxv € M,

3. remove from M all non-dominant triplets of M.

We stop the procedure when two successive iterations co-
incide.

THEOREM 1 Suppose that N is a finite non-empty set
and M C T(N). Then the procedure above stops after
finitely many iterations and results in the class of domi-
nant triplets of sem(M).

Proof: For every iteration M;, i > 0 put
Zi={ueT(N);u=vfor some v e M;}.

Evidently, M C Z; C Z;yq for i > 0. Since T(N) is
finite Z; = Z;11 for some i > 0. But M; is nothing
but the class of dominant triplets of Z; for ¢ > 1. Thus
Dj = Djq1 for some j > 1. By Lemma 7 Z; is a semi-
graphoid containing M and therefore sem(M) C Z;. The
inclusion Z; C sem(M) can be proved by induction on j
by means of Lemma 6 where Z = sem(M). L]

Note that one can implement the graphoid closure proce-
dure in a similar way. It suffices to consider an additional
operation on 7(N). Under assumptions from Definition
8 define:

wov = (ANI, (JNABC)U(BNIJK) | (CNIK)U(KNAC))

provided that C \ IJK = (0 = K\ ABC and ANIT #
0 # (JNABC)U(BNIJK). We leave the details to the
reader.

3.2 Complexity calculation

LEMMA 8 Let F.(N) be a Moore family of subsets of
T(N) such that F.(N) C Fsem(N), and ¢ is the corre-
sponding closure operation on subsets of T(N). If 7 €
Fe(N), D is the class of dominant triplets of Z, and G
is a generator of Z (with respect to ¢), then there exists
B C D, a generator of Z (with respect to ¢) such that
card B < card G.

Proof: The set Z C T(N) is a semi-graphoid, < is a
partial ordering on Z, and D is the set of maximal el-
ements of 7 with respect to <. Thus, for every t € G
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there exists d; € D such that t < d;. Let us choose and
fix d; for every t € G and put B = {d;;t € G}. The
fact t < d; implies ¢t € sem({d:}) C sem(B) and hence
G C sem(B). The inclusion F.(N) C Fsem(N) implies
that sem(B) C ¢(B) (see Lemma 1). Thus, G C ¢(B) and
therefore Z = ¢(G) C ¢(c¢(B)) = ¢(B) C ¢(Z) = T (since
G is a generator of Z, ¢ is isotone and idempotent and
T € F.(N)). Hence ¢(B) = T. L]

Lemma 8 with help of Lemma 1 implies directly:

THEOREM 2 Let N be a finite non-empty set and ¢ a
closure operation on subsets of 7(NN) such that every
Z C T(N) closed with respect to ¢ is a semi-graphoid
over N. Then for every Z € F.(N) there exists a minimal-
cardinality basis (with respect to ¢) composed of domi-
nant triplets of 7.

4 CONCLUSIONS

Let us summarize the paper. A mathematical concept
of complexity of a structural model was introduced. It
reflects intuitive intention to quantify difficulty of statis-
tical testing of the model (see the end of Section 2). The
considered structural models are semi-graphoids. A nat-
ural way of economical record of a semi-graphoid is the
list of its dominant triplets. We have proposed a method
how to implement the semi-graphoid and graphoid clo-
sure in case that structural models are represented in a
computer in this way (see Section 3.1). Moreover, com-
plexity of a model can be found merely on basis of the
list of its dominant tripletes (see Section 3.2). In fact,
the aim of the paper is to establish theoretical principles
for future deeper research. Let us indicate three possible
directions in exploration.

4.1 Computer calculation of complexity

Let us consider a closure operation ¢ on subset of T(N)
introduced by means of ’inference rules’ mentioned in Def-
inition 6. The semi-graphoid and graphoid closure oper-
ations are bright examples but one can consider further
interesting case. For example, the probabilistic closure
operation in case card N < 4 can be viewed in this way
[10]. Such a type of closure operation can be easily im-
plemented on a computer. Therefore, one can think on
a computer program which for every Z C F.(N) com-
putes com.(Z). The program can also find all minimal-
cardinality bases of Z or even all bases of Z. Such a pro-
gram can be utilized in solving problems indicated below.
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4.2 Dimension of a model

Given a probabilistic model M over N and a collection
of finite non-empty sets {X;;i € N} let us consider the
set P(M|{X;;i € N}) of probability distributions P over
N which have [];. 5 X; as prescribed domain and com-
ply with M. Formally, it is a subset of d-dimensional
real vector space, where d = card [];cn X, specified by
a collection of polynomial equations which correspond to
conditional independence statements from M (see Defi-
nition 5, several equations may correspond to one con-
ditional independence statement). Algebraic dimension
of P(M|{X;;i € N}) is then the dimension of a real
vector space ’isomorphic’ to it, that is the number of
parameters needed to parametrize P(M|{X;;i € N}).
Settimi and Smith [7] tried to compute dimension of sev-
eral simple graphical models by ’solving’ the system of
above mentioned equations. This task is complicated by
the fact that many equations (conditional independence
statements) are superfluous. In fact, only equations cor-
responding to conditional independence statements taken
from a probabilistic basis of B of M are sufficient. Thus,
a computer program searching for a suitable basis of a
given model M can simplify the above mentioned task.

4.3 Graphical models

Many theoretical questions connected with the concept of
complexity of a graphical model are open. It was already
mentioned that usual graphical models are positive prob-
abilistic models, and therefore all four types of complexity
introduced in this paper are defined for them. We would
like to compare different types of complexity of graphical
models. For example, we conjecture that for decompos-
able models (i.e. undirected graph models described by
chordal graphs) all four kinds of complexity coincide. On
the other hand, we have an example of a non-chordal
undirected graph model for which the semi-graphoid and
graphoid complexity differ. We wish to find exact formu-
las for (or a method of exact calculation of) complexity
of common graphical models. Finally, we would like to
compare different classes of graphical models from the
point of view of complexity. For example, the undirected
graph models seem to be more complex than the models
described by acyclic directed graphs (from the point of
view of probabilistic complexity).
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