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ceed the number of nodes (= variables). On the otherhand, the number of tests needed to verify validity of em-bedded Bayesian network is exponential in the number ofvertices, in general [5].In this paper, we would like to start systematic studyof the concept of complexity of a structural model. Thus,in the second section, we de�ne this concept for a generalmodel of conditional independence structure, not only forgraphical model. In fact, we distinguish several types ofcomplexity, depending on the family of models into con-sideration, namely the family of probabilistic models, pos-itive probabilistic models, semi-graphoids, and graphoids.Di�erent types of complexity may coincide for some mod-els (especially for certain graphical models). In the thirdsection we propose a method how to simplify calculationof complexity of a considered structural models based onthe concept of dominant conditional independence state-ments introduced in [11]. This point of view leads to analternative method of mathematical description and com-puter representation of the mentioned structural models.In the fourth section (Conlusions) we indicate connectionof the concept of complexity and the concept of dimensionof a model, that is (informally) the number of free realparameters which are necessary to specify a probabilitydistribution complying with the model [7].2 BASIC CONCEPTSWe will consider the concept of complexity of a modelwithin several di�erent families of structural models. In-stead of giving a speci�c de�nition for each particularframework of models we have decided to introduce theconcept of complexity with respect to an abstract familyof structural models.2.1 Abstract closure operationLet us recall some basic de�nitions from theory of com-plete lattices (see [1], section 4.1).



524 M. STUDEN�YDefinition 1 Suppose that T is a �nite non-empty set.By a closure operation on subsets of T we understand amapping c which assigns a set c(A) � T to every A � Tand which is1. extensive: A � c(A) for every A � T ,2. idempotent: c(c(A)) = c(A) for every A � T ,3. isotone: c(A) � c(B) whenever A � B � T .The closure of a set A � T is then the set c(A). A subsetA � T is then called closed (with respect to c) if A = c(A),or equivalently A = c(B) for some B � T . Thus, any suchclosure operation c induces a family Fc of closed subsetsof T .Such a framework is su�ciently general. Every particularfamily of structural models treated in this paper can beconsidered as a family of closed subsets with respect tocertain closure operation. Nevertheless, families of closedsubsets can be introduced without the concept of closureoperation. Let us mention another concept from latticetheory ([3], section II.7).Definition 2 A family F of subsets of a �nite non-emptyset T is called a Moore family if T 2 F and F is closedunder intersection, that isA \ B 2 F whenever A;B 2 F :We leave it to the reader to verify the following lemma(see also [3]).Lemma 1 Let T be a �nite non-empty set.(i) Supposing c is a closure operation on subsets of T thefamily Fc is a Moore family of subsets of T .(ii) Every Moore family F of subsets of T induces a clo-sure operation cF de�ned by the formula:cF(A) =\ fB ; A � B 2 F g for every A � T :Moreover, F is the family of closed subsets withrespect to cF .We introduce the concept of complexity within this ab-stract framework.Definition 3 Suppose that c is a closure operation onsubsets of a �nite set non-empty T . A generator of aclosed set A � T is any set B � T such that c(B) = A. Ifmoreover no proper subset of B is a generator of A, thenB is called a basis of A. A set B � T is called a minimal-cardinality basis of A if it is a generator of A and there isno generator C of A such that card (C) < card (B). Com-plexity of a closed set A � T (with respect to c), denotedby comc(A), is the number of elements of a minimal-cardinality basis of A, that iscomc(A) = min fcard (B) ; B � T and c(B) = A g :

Observe that every generator of a closed set A � T is asubset of A (since the closure operation is extensive).2.2 Structural modelsThe topic of this paper are models of conditional inde-pendence structure.Definition 4 Suppose that N is a �nite non-empty setof variables. Then the symbol T (N) denotes the class oftriplets hA;BjCi of pairwise disjoint subsets of N wherethe �rst two components, A and B, are non-empty. Sym-metric image of a triplet u = hA;BjCi is the triplethB;AjCi denoted by sym(u). By an (abstract) indepen-dency model over N we understand a subset of T (N).Let us remark that a triplet hA;BjCi 2 T (N) is meantto represent the following conditional independence state-ment: the variables in A are independent of the variablesin B under condition that the values of the variables inC are known! The symbol j is used to separate the con-ditioned area which is allowed to be empty.Let us recall how an independency model is induced by adiscrete probability distribution of a given set of variablesN . Note that throughout the paper we limit ourselves todiscrete probability distributions although an analogousde�nition can be given in the case of continous randomvariables.Convention 1 For sake of brevity we will often use thejuxtaposition UV to denote the union U [ V of sets ofvariables U; V � N .Definition 5 A probability distribution over a �nitenon-empty set N will be speci�ed by a collection of �-nite non-empty sets fXi; i 2 Ng and by a functionP : Yi2NXi ! [0; 1] with XfP (x); x 2 Yi2NXig = 1 :It is called positive if P (x) > 0 for every x 2Qi2N Xi.Whenever ; 6= A � N and P is a probability distributionover N its marginal distribution on A is a probabilitydistribution PA (over A) de�ned as follows:PA(a) =XfP (a;b); b 2 Yi2NnAXig for a 2Yi2AXi :We accept the conventions PN � P , P ;(�) � 1.Having hA;BjCi 2 T (N) and a probability distributionP over N we say that A is conditionally independent ofB given C with respect to P and write A ?? B jC [P ] ifPABC(a;b; c) � PC(c) = PAC(a; c) � PBC(b; c)for every a 2 Qi2AXi, b 2Qi2B Xi, c 2Qi2C Xi.An independency model I � T (N) is called a probabilistic
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Figure 1: Relationships among structural models.model over N if there exists a probability distribution Pover N inducing it, that isI = f hA;BjCi 2 T (N) ; A ?? B jC [P ] g:It is called a positive probabilistic model over N if thereexists a positive distribution over N inducing it. Thefamily of probabilistic models over N will be denoted byFpro(N) and the family of positive probabilistic modelsover N by Fpos(N).Several authors have independently emphasized some ba-sic properties of (positive) probabilistic models.Definition 6 An independency model I � T (N) iscalled a semi-graphoid over N if it satis�es the follow-ing properties:1. symmetry: hA;BjCi �! hB;AjCi,2. decomposition: hA;BCjDi �! hA;CjDi,3. weak union: hA;BCjDi �! hA;BjCDi,4. contraction: [hA;BjCDi& hA;CjDi] �! hA;BCjDi.Such formal records in the form of 'inference rules' shouldbe understood as follows: if I contains the triplet(s) be-fore the arrow, then I contains also the triplet after thearrow. An independency model is called a graphoid if itis a semi-graphoid and moreover satis�es5. intersection: [hA;BjCDi& hA;CjBDi] �! hA;BCjDi.The family of semi-graphoids over N will be denoted byFsem(N) and the family of graphoids over N by Fgra(N).The facts mentioned in the following lemma are well-known - see [2, 8, 6]. Figure 1 illustrates the situation.Lemma 2 Any probabilistic model is a semi-graphoid andany positive probabilistic model is a graphoid.For page limitation we omit de�nitions of usual graphicalmodels, that is structural models induced by undirected

graphs, acyclic directed graphs or chain graphs. Let usremark that all mentioned graphical models are positiveprobabilistic models [12].A basic construction of discrete probability distribution(see [4], Theorem 6) allows to show the following facts.For every pair of probability distributions P;Q over Nthere exists a distribution R over N such thatA ?? B jC [R] i� fA ?? B jC [P ] & A ?? B jC [Q] gfor every hA;BjCi 2 T (N). If both P and Q is positive,then R can be chosen positive as well. We leave it to thereader to verify the following consequence.Lemma 3 For every �nite non-empty set N , the familiesFpro(N), Fpos(N), Fsem(N), Fgra(N) are Moore familiesof subsets of T (N).Structural models of (conditional independence) arise alsoin other (non-probabilistic) calculi for dealing with un-certainty in arti�cial intelligence [9]. Typically, the cor-responding family of structural models is a Moore family,and every structural model is a semi-graphoid. Then, theconcept of complexity can be considered within such aframework and the method described in the next sectioncan be used. On the other hand, the most of families ofgraphical models are not Moore families. In this paperwe consider only four families of structural models men-tioned in Lemma 3. By Lemma 1 four di�erent closureoperations on subset of T (N) can be introduced.Convention 2 Given a �nite non-empty set N the clo-sure operation on subsets of T (N) induced by Fpro(N),Fpos(N), Fsem(N), Fgra(N), respectively are denoted bypro, pos , sem, gra, respectively and named the prob-abilistic, positive probabilistic, semi-graphoid, graphoidclosure operation, respectively.Given I � T (N), gra(I) can be equivalently introducedas the set of those triplets from T (N) which are deriv-able from the triplets in I by consecutive application ofgraphoid inference rules. Similarly for the semi-graphoidclosure. Moreover, the relationships depicted in Figure 1imply that sem(I) � gra(I); pro(I) � pos(I) for everyI � T (N). Hence, one can derive the following conse-quences.Lemma 4 LetN be a �nite non-empty set and I � T (N).(i) If I is a graphoid, then every semi-graphoid genera-tor of I is a graphoid generator of I and thereforecomgra(I) � comsem(I).(ii) If I is a probabilistic model, then each semi-graphoidgenerator of I is a probabilistic generator of I andcompro(I) � comsem(I).



526 M. STUDEN�Y(iii) If I is a positive probabilistic model, then everygraphoid generator of I and every probabilistic gen-erator of I is a positive probabilistic generator of Iand compos(I) � min f comgra(I); compro(I) g .In general, the inequalities are strict. However, an equal-ity may occur. For example, it was proved in [12] thatcompro(I) = comsem(I) whenever compro(I) � 2. Wespeak about relative completeness (of semi-graphoid in-ference rules) in similar cases.To conlude this section let us explain how the conceptof complexity is related to the problem of veri�cation ofvalidity of a structural model mentioned in Introduction.Given a structural model M over N (typically a graph-ical model) and a probability distribution P over N themodel M is considered to be valid for P (or P complieswith M, or in terminology of [6] M is an independencymap of P ) if A ?? B jC [P ] for every hA;BjCi 2 M.Thus, compro(M) is the minimal number of conditionalindependence statements to be tested to show that Mis valid for P in case of a general probability distribu-tion. However, in case of a positive distribution P it iscompos(M).3 DOMINANT TRIPLETSIn this section we propose a more e�ective way of com-puter representation of a semi-graphoid. Certain order-ing on T (N) is introduced and every semi-graphoid canbe described by the list of its maximal elements with re-spect to the ordering. We propose how to implement thesemi-graphoid (and graphoid) closure provided that ourstructural knowledge is encoded in this way. Then weshow that the task of calculation of complexity of a semi-graphoid can be simpli�ed using this point of view.3.1 Semi-graphoid closureLet us recall a concept introduced in [11]. Figure 2 illus-trates the situation.Definition 7 Suppose that hA;BjCi; hX;Y jZi 2 T (N).If X � A, Y � B and C � Z � ABC, then we writehX;Y jZi � hA;BjCi and say that hA;BjCi dominateshX;Y jZi. The relation � is evidently a partial orderingon T (N). If M � T (N), then the maximal elements ofM with respect to � are called the dominant triplets ofM.An alternative phrase 'dominant conditional independen-ce statement' can be used in case that M is interpretedas a model of conditional independence structure. Evi-dently, if u; v 2 T (N) and u � v, then u can be derived

A C BX Z Y'&$%'&
$
%'&$%Figure 2: Triplet hA;BjCi dominates triplet hX;Y jZi.from v by means of symmetry, decomposition and weakunion and therefore u 2 sem(fvg). It imples easily:Lemma 5 If I is a semi-graphoid over N and D is theclass dominant triplets of I, thenI = fu 2 T (N) ; u � v for some v 2 D g :Typically, the class D of dominant triplets of a semi-graphoidM is much smaller than the semi-graphoid. Wepropose the representM in memory of a computer by thelist of elements of D. Note that u 2 D i� sym(u) 2 D;this leads to a further reduction of memory demands.Definition 8 Suppose that u = hA;BjCi 2 T (N) andv = hI; J jKi 2 T (N). Provided that C n IJK = ; =K nABC and A\ I 6= ; 6= (J nC)[ (B \ IJK) we de�neu ? v 2 T (N) as followsu ? v = hA \ I ; (J n C) [ (B \ IJK) jC [ (A \K) i :Lemma 6 Let I be a semi-graphoid over N . If u; v 2 Iand u ? v is de�ned, then u ? v 2 I.Proof: Under notation from De�nition 8 u dominates thetriplet u0 = hA\I; B\IK jC[ (A\K)i and v dominatesthe triplet v0 = hA \ I; J n C j (B \ IK) [ C [ (A \K)i.Thus, u0; v0 2 I and hence, by contraction u ? v 2 I.Lemma 7 Let D � T (N) such that(a) 8u 2 D sym(u) 2 D,(b) 8u; v 2 D if u?v is de�ned, then 9w 2 D u?v � w.Then I = fu 2 T (N) ; u � v for some v 2 D g is a semi-graphoid over N .Proof: I is evidently closed under symmetry, decomposi-tion and weak union. Suppose that t = hX;Y jZi 2 I andw = hX;W jY Zi 2 I. Thus, there exists hA;BjCi 2 Dwhich dominates t and v = hI; J jKi 2 D which domi-nates w. Hence, X � A, Y � B, C � Z � ABC, X � I ,W � J , K � Y Z � IJK. We leave it to the reader toverify by contradiction that C n IJK = ; = K n ABC



COMPLEXITY OF STRUCTURAL MODELS 527and directly that A \ I 6= ; 6= (J n C) [ (B \ IJK) andhX;YW jZi � u ? v.Semi-graphoid closure procedure Let M � T (N)be a starting iteration. Every next iteration will be ob-tained by the following three steps.1. Add sym(u) to M whenever u 2M, sym(u) 62 M,2. add u ? v to M whenever u; v 2 M, u ? v is de�nedand u ? v 62 M,3. remove from M all non-dominant triplets of M.We stop the procedure when two successive iterations co-incide.Theorem 1 Suppose that N is a �nite non-empty setand M � T (N). Then the procedure above stops after�nitely many iterations and results in the class of domi-nant triplets of sem(M).Proof: For every iteration Mi, i � 0 putIi = fu 2 T (N) ; u � v for some v 2Mi g :Evidently, M � Ii � Ii+1 for i � 0. Since T (N) is�nite Ii = Ii+1 for some i � 0. But Mi is nothingbut the class of dominant triplets of Ii for i � 1. ThusDj = Dj+1 for some j � 1. By Lemma 7 Ij is a semi-graphoid containingM and therefore sem(M) � Ij . Theinclusion Ij � sem(M) can be proved by induction on jby means of Lemma 6 where I = sem(M).Note that one can implement the graphoid closure proce-dure in a similar way. It su�ces to consider an additionaloperation on T (N). Under assumptions from De�nition8 de�ne:u�v = hA\I; (J\ABC)[(B\IJK) j (C\IK)[(K\AC) iprovided that C n IJK = ; = K n ABC and A \ I 6=; 6= (J \ABC) [ (B \ IJK). We leave the details to thereader.3.2 Complexity calculationLemma 8 Let Fc(N) be a Moore family of subsets ofT (N) such that Fc(N) � Fsem(N), and c is the corre-sponding closure operation on subsets of T (N). If I 2Fc(N), D is the class of dominant triplets of I, and Gis a generator of I (with respect to c), then there existsB � D, a generator of I (with respect to c) such thatcardB � cardG.Proof: The set I � T (N) is a semi-graphoid, � is apartial ordering on I, and D is the set of maximal el-ements of I with respect to �. Thus, for every t 2 G

there exists dt 2 D such that t � dt. Let us choose and�x dt for every t 2 G and put B = fdt ; t 2 G g. Thefact t � dt implies t 2 sem(fdtg) � sem(B) and henceG � sem(B). The inclusion Fc(N) � Fsem(N) impliesthat sem(B) � c(B) (see Lemma 1). Thus, G � c(B) andtherefore I = c(G) � c(c(B)) = c(B) � c(I) = I (sinceG is a generator of I, c is isotone and idempotent andI 2 Fc(N)). Hence c(B) = I.Lemma 8 with help of Lemma 1 implies directly:Theorem 2 Let N be a �nite non-empty set and c aclosure operation on subsets of T (N) such that everyI � T (N) closed with respect to c is a semi-graphoidoverN . Then for every I 2 Fc(N) there exists a minimal-cardinality basis (with respect to c) composed of domi-nant triplets of I.4 CONCLUSIONSLet us summarize the paper. A mathematical conceptof complexity of a structural model was introduced. Itreects intuitive intention to quantify di�culty of statis-tical testing of the model (see the end of Section 2). Theconsidered structural models are semi-graphoids. A nat-ural way of economical record of a semi-graphoid is thelist of its dominant triplets. We have proposed a methodhow to implement the semi-graphoid and graphoid clo-sure in case that structural models are represented in acomputer in this way (see Section 3.1). Moreover, com-plexity of a model can be found merely on basis of thelist of its dominant tripletes (see Section 3.2). In fact,the aim of the paper is to establish theoretical principlesfor future deeper research. Let us indicate three possibledirections in exploration.4.1 Computer calculation of complexityLet us consider a closure operation c on subset of T (N)introduced by means of 'inference rules' mentioned in Def-inition 6. The semi-graphoid and graphoid closure oper-ations are bright examples but one can consider furtherinteresting case. For example, the probabilistic closureoperation in case cardN � 4 can be viewed in this way[10]. Such a type of closure operation can be easily im-plemented on a computer. Therefore, one can think ona computer program which for every I � Fc(N) com-putes comc(I). The program can also �nd all minimal-cardinality bases of I or even all bases of I. Such a pro-gram can be utilized in solving problems indicated below.



528 M. STUDEN�Y4.2 Dimension of a modelGiven a probabilistic model M over N and a collectionof �nite non-empty sets fXi; i 2 Ng let us consider theset P(MjfXi; i 2 Ng) of probability distributions P overN which have Qi2N Xi as prescribed domain and com-ply with M. Formally, it is a subset of d-dimensionalreal vector space, where d = card Qi2N Xi, speci�ed bya collection of polynomial equations which correspond toconditional independence statements from M (see De�-nition 5, several equations may correspond to one con-ditional independence statement). Algebraic dimensionof P(MjfXi; i 2 Ng) is then the dimension of a realvector space 'isomorphic' to it, that is the number ofparameters needed to parametrize P(MjfXi; i 2 Ng).Settimi and Smith [7] tried to compute dimension of sev-eral simple graphical models by 'solving' the system ofabove mentioned equations. This task is complicated bythe fact that many equations (conditional independencestatements) are superuous. In fact, only equations cor-responding to conditional independence statements takenfrom a probabilistic basis of B of M are su�cient. Thus,a computer program searching for a suitable basis of agiven model M can simplify the above mentioned task.4.3 Graphical modelsMany theoretical questions connected with the concept ofcomplexity of a graphical model are open. It was alreadymentioned that usual graphical models are positive prob-abilistic models, and therefore all four types of complexityintroduced in this paper are de�ned for them. We wouldlike to compare di�erent types of complexity of graphicalmodels. For example, we conjecture that for decompos-able models (i.e. undirected graph models described bychordal graphs) all four kinds of complexity coincide. Onthe other hand, we have an example of a non-chordalundirected graph model for which the semi-graphoid andgraphoid complexity di�er. We wish to �nd exact formu-las for (or a method of exact calculation of) complexityof common graphical models. Finally, we would like tocompare di�erent classes of graphical models from thepoint of view of complexity. For example, the undirectedgraph models seem to be more complex than the modelsdescribed by acyclic directed graphs (from the point ofview of probabilistic complexity).References[1] Birkho� G., Lattice Theory. American MathematicalSociety Colloquim Publications volume XXV, NewYork 1951.
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