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Abstract

In this article, we consider the computational aspects of deciding whether a conditional indepen-
dence statement t is implied by a list of conditional independence statements L using the indepen-
dence implication provided by the method of structural imsets. We present two algorithmic
methods which have the interesting complementary properties that one method performs well to
prove that t is implied by L, while the other performs well to prove that t is not implied by L. How-
ever, both methods do not well perform the opposite. This gives rise to a parallel algorithm in which
both methods race against each other in order to determine effectively whether t is or is not implied.

Some empirical evidence is provided that suggests this racing algorithms method performs con-
siderably better than an existing method based on so-called skeletal characterization of the respective
implication. Furthermore, unlike previous methods, the method is able to handle more than five
variables.
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1. Introduction

Conditional independence (CI) is a crucial notion in statistics [6,4] and in many calculi
for dealing with knowledge and uncertainty in artificial intelligence [11,12]. A powerful
formalism for describing probabilistic CI structures is provided by the method of struc-
tural imsets [17]. In this algebraic approach, CI structures are described by certain vectors
whose components are integers, called structural imsets. An important question is to
decide whether a CI statement is implied by a set of CI statements. The method of struc-
tural imsets offers a sufficient condition for the probabilistic implication of CI statements.
The offered inference mechanism is based on linear algebraic operations with (structural)
imsets. The basic idea is that every CI statement can be translated into a simple imset and
the respective algebraic relation between imsets, called independence implication, forces the
probabilistic implication of the respective CI statements. Techniques were developed in
[15] to test the independence implication through systematic calculation of certain inner
products. However, these techniques are for some computational reasons applicable only
when there are up to five variables involved.

For reasoning with CI statements involving more than five variables one may resort to
making strict assumptions. For example, one can assume that the considered CI structure
is graph isomorphic for a class of graphs such as directed acyclic graphs (DAG) [11,18],
undirected graphs (UG) [4,8], chain graphs (CG) [3,19], etc. Then CI inference from a
set of CI statements, a so-called input list, of a special form can be made as follows.
The list is used to construct a graph and CI statements are read from the graph through
the respective graphical separation criterion. However, the assumption that a CI structure
is graph isomorphic may be too strong in many cases and only special input lists can be
processed anyway. Using the method of structural imsets, many more CI structures can
be described than with DAGs, UGs or CGs.

Many other graphical formalisms representing CI structures have been proposed for
which it is not quite clear whether a particular efficient input list can be designed such that
exactly all statements represented in the graph can be derived from the list. For example,
generalized directed graphs [13], IDAGs [2], reciprocal graphs [10], joint response chain
graphs [5], covariance graphs [9], alternative chain graphs [1] and others. What these meth-
ods have in common with DAGs, UGs and CGs is that their representative power (with an
increasing number of variables) tends to be lower than those of structural imsets – see Sec-
tion 3.6 in [17].

However, the computational effort required for inference using structural imsets when
more than five variables are involved is not clear at present. Fortunately, they have some
properties that we can exploit. First, a relatively easy sufficient condition for independence
implication is that a certain corresponding linear combination of imsets can be decom-
posed into so-called elementary imsets. The existence of this decomposition can be found
relatively quickly. On the other hand, to prove that the decomposition does not exist
requires trying all potential decompositions, which often takes a long time. Second, there
exists a method to show that the independence implication does not hold. It suffices to find
a certain vector, called a supermodular function, such that its inner product with the respec-
tive combination of structural imsets is negative. These supermodular functions can be
generated randomly. This only allows us to disprove independence implication of imsets,
not to disprove probabilistic implication of the respective CI statements. However, if
the obtained supermodular function is a multiple of a multiinformation function of a
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probability distribution [17] then it also allows us to disprove probabilistic implication of
the respective CI statements. Thus, we have one method that allows us to find a proof that
a statement is implied, and one method to find a proof that a statement is not implied.
However, both methods perform poorly in proving their opposite outcome. This gives rise
to a race: both methods are started at the same time and the method that returns its out-
come first also returns a proof whether the statement of interest is implied or not.

The following section introduces formal terminology and the fundamentals for CI infer-
ence using structural imsets. The racing algorithms are described in Section 3 where many
more smaller optimizations are mentioned as well. Section 4 presents experiments that
were performed to get an impression of the run-times of various variants of inference algo-
rithms. We conclude with some final comments and directions for further research.
2. Terminology

Let N be a set of variables {x1, . . . ,xn}, n P 1, as will be assumed throughout the paper.
Let X and Y be subsets of N. We will use XY to denote the union of X and Y and XnY to
denote the set of variables that are in X but not in Y. Further, if x is a variable in N then x

will also denote the singleton {x}.

2.1. Conditional independence

Let P be a discrete probability distribution over N and X, Y, Z pairwise disjoint subsets
of N. We say that X is conditionally independent of Y given Z if P(xjyz) = P(xjz) for all
configurations x, y, z of values for X, Y, Z with P(yz) > 0. We write then X � YjZ [P]
or just X � YjZ, and call it a CI statement. It is well-known that CI follows some simple
rules, known as the semi-graphoid axioms [11] defined as follows (X,Y,Z,W � N are pair-
wise disjoint):

Symmetry X � Y jZ ) Y � X jZ;
Decomposition X � WY jZ ) X � Y jZ;
Weakunion X � WY jZ ) X � W jYZ;

Contraction X � W jYZ & X � Y jZ ) X � WY jZ:

The problem we address in this paper is the following inference problem. Let L be a set of
CI statements (over N), called an input list and t is a CI statement X � Y jZ outside L.
Does L imply t? More formally, is it true that for any discrete distribution P for which
all statements in L are valid necessarily t is valid as well? This is a probabilistic implication

of those CI statements, sometimes denoted by L � t. The semi-graphoid axioms do not
cover this implication. For example,

X � Y jWZ & W � ZjX & W � ZjY & X � Y j; () ð1Þ
() W � ZjXY & X � Y jZ & X � Y jW & W � Zj; ð2Þ

is also a valid rule – see p. 16 in [17]. In fact, there is no complete set of rules of this
kind describing relationships between probabilistic CI statements [14]. A more power-
ful formalism to describe the properties of CI is provided by the method of structural
imsets.
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2.2. Imsets

An imset over N (abbreviation for integer-valued multiset is an integer-valued function
on the power set of N. It can be viewed as a vector whose components, indexed by subsets
of N, are integers. Given X � N, we use dX to denote the identifier imset, that is, dX(X) = 1
and dX(Y) = 0 for all Y � N, Y 5 X. An imset associated with a CI statement X � YjZ is
uhX,YjZi = dXYZ + dZ � dXZ � dYZ. The imset associated with an input list L is then
uL ¼

P
t2Lut.

The basic technique for inference of a statement t from an input list L using the method
of structural imsets is based on the following property. If k Æ uL (for some natural number
k 2 N) can be written as ut plus the sum of some imsets associated with CI statements then
t is implied by L. This conclusion can be derived from results of [17]; however, in this
paper, we intentionally omit technical details. For example, if the list L consists of a single
statement X �WYjZ and t is X � YjZ, we have (with k = 1)

k � uL ¼ dWXYZ þ dZ � dXZ � dWYZ

¼ ðdXYZ þ dZ � dXZ � dYZÞ þ ðdWXYZ þ dYZ � dXYZ � dWYZÞ
¼ ut þ uhX ;W jYZi:

Thus, X �WYjZ implies t and we have derived the decomposition rule of the semi-gra-
phoid axioms. Note that any statement in the decomposition on the right-hand side can
be swapped for t, so those statements are implied too. This means that above we have
derived weak union as well.

An elementary imset is an imset associated with an elementary CI statement x � yjZ,
where x, y are singletons; namely uhx,yjZi = dxyZ + dZ � dxZ � dyZ. It is convenient to
denote the set of elementary imsets over N by EðNÞ or simply E. A structural imset is
an imset u that can be decomposed into elementary imsets when multiplied by a positive
natural number, that is,

n � u ¼
X
v2E

kv � v

for some n 2 N and kv 2 Zþ. Note that every structural imset induces a whole CI structure
through an algebraic criterion, which is omitted here. The attraction of the method of
structural imsets is that every discrete probabilistic CI structure can be described in this
way – see Theorem 5.2 in [17].

A function m on the power set of N will be called supermodular if m(XY) +
m(X \ Y) P m(X) + m(Y) for every pair of sets X,Y � N. An equivalent definition is that
the inner product of m with any elementary imset is non-negative

hm; vi �
X
Z�N

mðZÞ � vðZÞP 0 for every v 2 E:

Observe that a necessary condition for an imset u to be structural is hm,uiP 0 for every
supermodular function m.

Let u, v be structural imsets over N. We say that u independence implies v and write
u N v if there exists k 2 N such that k Æ u � v is a structural imset. This terminology is
motivated by the fact that u N v actually means that u encodes more CI statements than
v – see Lemma 6.1 in [17]. If v 2 E then the constant k 2 N can be supposed lower than a
limit kmax depending on the number of variables jNj – see Lemma 4 in [16]. However, the
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value of the exact limit kmax for jNjP 6 is not known. It follows from results of [15] that
kmax = 1 if jNj 6 4 and kmax = 7 if jNj = 5.

Now, we can reformulate our inference problem. Given an elementary CI statement t

and an input list (of elementary CI statements) L we are going to test whether uL N ut.
We have already mentioned that this is a sufficient condition for probabilistic implication
of t by L. However, in general, uL N ut is not a necessary condition for L � t.

Example. Assume {a,b,c,d,e} � N and put

L ¼ fa � bjcd; a � cjde; a � djbe; a � ejbcg:
We are interested in the question whether these statements are implied by L;

1. a � bjde,
2. a � cjbe,
3. a � bjcde, and
4. a � bjce.

The semi-graphoid axioms do not give any new statements apart from the symmetric
versions. Thus, they are not of any help. However, using structural imsets, we can write
(with k = 1)

k � uL ¼ uL ¼ uha;bjcdi þ uha;cjdei þ uha;djbei þ uha;ejbci

¼ ðdabcd þ dcd � dacd � dbcdÞ þ ðdacde þ dde � dade � dcdeÞ
þ ðdabde þ dbe � dabe � dbdeÞ þ ðdabce þ dbc � dabc � dbceÞ
¼ ðdabde þ dde � dade � dbdeÞ þ ðdabce þ dbe � dabe � dbceÞ
þ ðdabcd þ dbc � dabc � dbcdÞ þ ðdacde þ dcd � dacd � dcdeÞ
¼ uha;bjdei þ uha;cjbei þ uha;djbci þ uha;ejcdi:

Thus, the first and second statement (a � bjde and a � cjbe) are indeed implied by L.
However, the third statement a � bjcde is not independence implied by L since

uha,bjcdei = dabcde + dcde � dacde � dbcde and no term dX with abcde � X occurs anywhere in
uL. So, there is no way to decompose k Æ uL into a sum containing dabcde. In more details,
consider a supermodular function mabcde" �

P
Z;abcde�ZdZ . The inner product of mabcde"

with uL is zero, while its inner product with ut � uha,bjcdei is 1. In particular,

hmabcde"; k � uL � uti ¼ k � hmabcde"; uLi � hmabcde"; uti ¼ k � 0� 1 ¼ �1;

and k Æ uL � ut is not a structural imset for any k 2 N. Therefore, it cannot be written as a
sum of elementary imsets.

Likewise, the fourth statement a � bjce is represented by uha,bjcei = dabce + dce �
dace � dbce and no term dZ with Z � ce occurs in uL. Thus, the fact that mce# �P

Z;Z�cedZ is a supermodular function allows us to show that a � bjce is not independence
implied by L.

Note that the fact that both mabcde" and mce# are multiples of multiinformation
functions for discrete distributions over N implies that neither a � b jcde nor a � b jce is
probabistically implied by L. We again omit details why it is so.
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In fact, the preceding example can be generalized, as in the following lemma (see the
Appendix for a proof).
Lemma 2.1. Let {v} [ UW � N, U \W = ;, v 62 UW, jWjP 1 and p :W # W be a permu-

tation of W. Then

8w 2 W ; v � wjUW n pðwÞw () 8w 2 W ; v � pðwÞjUW n pðwÞw:
Indeed, we put v = a, U = ;, W = {b,c,d,e} and consider the following permutation

p :b! e! d! c! b to get the above conclusion.
3. Algorithms

This section introduces algorithms for testing the implication uL N ut. In Section 3.1,
we revisit a method based on skeletal characterization of structural imsets from [17] and
optimize the method. In Section 3.2, an algorithm for verification of uL N ut is presented
based on searching a decomposition of k Æ uL � ut into elementary imsets. Section 3.3 con-
centrates on a method of disproving uL N ut by exploiting properties of supermodular
functions. Section 3.4 combines the two previous methods by letting them race against
each other and the one that returns its outcome first has a proof whether uL N ut or not.

3.1. Skeletal characterization of independence implication

We will only consider the implementation details here. Technical details and motivation
of this approach can be found in Section 6.2.2 of [17]. This skeletal characterization is
based on a particular set of imsets called the ‘-skeleton, denoted as K}

‘ ðNÞ. It follows from
Lemma 6.2 in [17] that, for this particular set of imsets, we have uL N ut iff

for all m 2K}
‘ ðNÞ if hm; uti > 0 then hm; uLi > 0: ð3Þ

Recall that the inner product hm,ui of a function m : PðNÞ ! R and an imset u is defined
by
P

S�N mðSÞ � uðSÞ. Thus, to conclude uL N ut, we just need to check the conditions in (3)
for all imsets in the ‘-skeleton.2 It can be used to check which elementary imsets over five
variables are implied in this sense by a user defining the input list.

The ‘-skeleton for five variables consists of 117,978 imsets, which break into 1319 per-
mutational types with each involving at most 120 imsets. Thus, checking whether uL N ut

requires at most 117,978 operations [15]. However, if t is not implied by L, we might find
out far earlier that (3) does not hold for a particular imset in K}

‘ ðNÞ. By ordering skeletal
imsets such that imsets that are more likely to cause violation in (3) are tried earlier, the
required time can be minimized. These are the imsets m 2K}

‘ ðNÞ with many zeros in
fhm; vi; v 2 Eg. Thus, sorting skeletal imsets on basis of this criterion helps to speed up
the inference. The second auxiliary criterion is the number of sets S � N with u(S) = 0.

Unfortunately, the skeletal characterization approach is hard to extend to more
than five variables. First, because finding all elements of the ‘-skeleton for more than five
variables is computationally infeasible. Second, because it appears that the size of the
2 An applet at http://www.utia.cas.cz/user_data/studeny/VerifyView.html uses this method.

http://www.utia.cas.cz/user_data/studeny/VerifyView.html
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‘-skeleton grows extremely fast with a growing number of variables. Therefore, we will
consider different approaches to perform the inference in the rest of the paper.

3.2. Verification algorithm

If an imset u is a combination of elementary imsets u ¼
P

v2Ekv � v, kv 2 Zþ then we say
that it is a combinatorial imset. This is a sufficient condition for an imset to be structural
and it is an open question if it is also a necessary condition [17]. The method to verify
uL N ut presented in this section is based on testing whether u � k Æ uL � ut is a combina-
torial imset for some k 2 N.

Testing whether u is combinatorial can be done recursively, by checking, for each v 2 E,
whether u � v is combinatorial. Obviously, this naive approach is computationally demand-
ing and it requires some guidance and extra tests in order to reduce the search space.

There are a number of sanity checks we can apply, before starting the search. First of
all, let t be X � YjZ, then uL N ut implies the existence of a set W � XYZ with uL(W) > 0.
This can be shown by Proposition 4.4 from [17] where we use mA" with A = XYZ. Another
sanity check is as follows. Whenever u is a structural imset and S � N a maximal set with
respect to inclusion satisfying u(S) 5 0 then u(S) > 0. Likewise, u(S) > 0 for any minimal
set satisfying u(S) 5 0 – see Lemma 6.5 in [17].

To guide the search, for each elementary imset v 2 E, we define the deviance of v from a
non-zero imset u as follows. Let maxcard(u) be the cardinality of the largest set S � N for
which u(S) 5 0. It follows from the notes above that if u is structural then u(S) P 0 when-
ever jSj = maxcard(u). Then, with v = uhx,yjZi,

devðvjuÞ ¼
1; jxyZj < maxcardðuÞ or uðxyZÞ 6 0;P
S�N
jvðSÞ � uðSÞj; otherwise:

8<
:

Thus, the deviance of v from a combinatorial imset u is finite only if dxyZ has a positive
coefficient in u and no set larger than jxyZj has a positive coefficient in u. We pick the ele-
mentary imset with the lowest deviance first. Observe that if u is a non-zero combinatorial
imset then v 2 E with finite dev(vju) exists.

The deviance is defined in such a way that the elementary imsets that cancel as many of
the non-zero values in u as possible are tried before the imsets that cancel out fewer of the
non-zero values. For example, let u = uha,bcjdi + uha,bjdi = dabcd + 2dd � 2dad � dbcd +
dabd � dbd and v1 = uha,cjbdi = dabcd + dbd � dabd � dbcd then dev(v1ju) = 8 while v2 =
uhc,djabi = dabcd + dab � dabc � dabd has the deviance dev(v2ju) = 10. Furthermore
v3 = uha,bjdi has infinite deviance since jabdj = 3 while maxcard(u) = 4. Finally, v4 = uhb,cjdei
has infinite deviance as u(bcde) = 0. Therefore, v1 will be tried before v2, while v3 and v4

will not be tried at all in this round.
Thus, the deviance leads our search in a direction where we can hope to find a proper

decomposition. Obviously, if t is not implied by L, the verification algorithm can spend a
long time searching through the complete space of all possible partial decompositions.

3.3. Falsification algorithm

Falsification is based on supermodular imsets. By a supermodular imset we understand
an imset which is a supermodular function.
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Theorem 3.1. An imset u is structural iff hm, uiP 0 for any supermodular function m andP
S;S�T uðSÞ ¼ 0 for any T � N with jTj 6 1.
Proof. The necessity of the conditions is easy since they both hold for elementary imsets
and can be extended to structural imsets. The sufficiency follows from Theorem 5.1 in [17]
which claims that the same holds for a finite subset of the class of supermodular functions,
namely the ‘-skeleton K}

‘ ðNÞ. h

So, we can exploit Theorem 3.1 to disprove uL N ut by constructing non-negative
supermodular imsets randomly and taking their inner products with uL and ut. If we find
a supermodular imset m such that hm,uLi = 0 and hm,uti > 0 then we can observe
hm,k Æ uL � uti < 0 for any k 2 N and conclude that :ðuL * utÞ. A random supermodular
imset m can be generated by first generating a ‘base’ imset mbase and then by modifying it
to ensure the resulting imset is supermodular. We randomly select the size n of the base,
then randomly select n different subsets S1, . . . ,Sn of N and assign mbase ¼

P
S2fS1;...;SngkS � dS

where kS are randomly selected integers in the range from 1 to 2jNj. Selecting larger values
of the coefficients kS would not make difference. On the other hand, they also would not
help.

Now, mbase needs to be modified to ensure that the obtained function m is supermod-
ular. We perform the following operation on mbase. Let S1; . . . ; S2jN j be an ordering of the
subsets of N with Sj � Si) j 6 i. For i = 1, . . . , 2jNj define m(Si) to be the maximum of
mbase(Si) and m(Sinx) + m(Siny) � m(Sinxy) for all x,y 2 Si. This ensures that hm,viP 0
for all v 2 E and we have constructed an imset m which is supermodular.

Note that this technique can be used to disprove uL N ut but it cannot be used to prove
it. At best, an impression could be given about the chance that not uL N ut. However, we
have not explored this venue, but instead proceeded by combining this algorithm with the
one in the previous section.

3.4. Racing algorithms for a proof

Typically, the verification algorithm from Section 3.2 can quickly find a decomposition
of k Æ uL � ut into

P
v2Ekv � v, which proves that t is implied by L. Nevertheless, if

:ðuL * utÞ, the verification algorithm may spend a long time before it exhausts the whole
space of possible decompositions of k Æ uL � ut. However, the falsification algorithm from
Section 3.3 can find a supermodular imset m with hm,uti > 0 = hm,uLi, which proves ut is
not implied by uL. On the other hand, it will not be able to prove that uL N ut.

We can combine the two algorithms by starting two threads, one with the verification
algorithm and one with the falsification algorithm. The one that finds a proof first, returns
its outcome and stops the other thread. Fig. 1 illustrates the algorithm.

4. Experiments

We would like to judge the algorithms above on computational speed. However, it is
hard to get a general impression of the performance of the algorithms, because it depends
on a distribution of inference problems, which is unknown.

Still, we think we can get a representative impression of the relative performance of the
algorithms by generating inference problems randomly and measuring the computation



Fig. 1. Racing algorithms.

394 R.R. Bouckaert, M. Studený / Internat. J. Approx. Reason. 45 (2007) 386–401
speed. We generated inference problems over five variables so that we can compare the
performance of the skeleton-based algorithm from Section 3.1 with the others. All exper-
iments were performed on a PC with 2.6 GHz Celeron processor and 186 MB memory
running Linux. A thousand input lists each were generated by randomly selecting 3, 4
up to 10 elementary CI statements, giving a total of 8000 input lists. The algorithms
described in Section 3 were applied to this class of lists with each of the elementary CI
statements that were not in the list. This gave 1000 · 77 inference problems for input lists
with three statements, 1000 · 76 inference problems for input lists with four statements,
etc. In total, this created 1000 · ([80 � 3] + [80 � 4] + � � � + [80 � 10]) = 588.000 inference
problems over five variables.

4.1. Results

Fig. 2 shows the total number of elementary CI statements that are implied (labeled by
Accept) and not implied (labeled by Reject) grouped by the number of elementary CI state-
ments (3, 4 up to 10) in the input list. Naturally, the number of implied statements
increases with increased input list size. The total number decreases since the number of
imsets that is not in the input list decreases with growing input lists.
Fig. 2. Total number of rejects and accepts per experiment over five variables for various input list sizes. The size
of the input list is shown on the x-axis. The number of rejects, accepts and total of unknown elementary
statements is shown on the y-axis.
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the input list, and the y-axis the time. Sequences marked with an asterisk are results for the sorted testing.
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Fig. 3 shows the total run-times for running the experiments comparing skeleton-based
testing with sorted skeleton-based testing. We distinguish between run-time for accepts,
rejects and total because the run-time for accepts is not influenced by the order of skeletal
imsets as all of them need to be inspected. Indeed, run-times for accepts hardly differed
(run-times only slightly differ due to the fact that at random intervals garbage collection
and other processes were performed). Run-times for rejects are reduced by about one
order of magnitude so that total run-times are about halved. Thus, sorting the skeleton
indeed helps significantly.

Fig. 4 shows the striking difference in reject times for the racing algorithms method
from Section 3.4 and the skeleton-based method from Section 3.1, which clearly favors
the new method. Only input lists of size 10 are shown, but the shapes for input lists of
other size are the same.

The distribution of accept times shows a different picture, as illustrated in Fig. 5. The
graph for skeleton-based method shows just one peak around 6 s per elementary CI state-
ment, because that is how long it approximately takes to visit all skeletal imsets. The graph
Fig. 4. Distribution of reject times of sorted skeleton-based method and racing algorithms method for input lists
of size 10. The x-axis shows time, and the y-axis the number of elementary statements rejected in that time.



Fig. 5. Distribution of accept times of the sorted skeleton-based method and the racing algorithms method for
input lists of size 10. The x-axis shows time, and the y-axis the number of elementary statements accepted in that
time.

Table 1
Number of fails of the falsification algorithm with two different methods of generating random base imsets and
various input list sizes (times 1000 · kmax)

jLj Rnd 1 Rnd 2

1 1 2 3 4 5 20

3 1 0 0 0 0 0 0
4 19 2 0 0 0 0 0
5 57 18 3 6 2 3 1
6 147 50 37 24 18 16 5
7 243 92 61 39 46 42 21
8 429 189 144 124 109 95 48
9 423 195 138 112 97 92 46

10 547 299 239 201 192 193 110
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for the racing algorithms3 shows a peak close to 10 ms, that drops off pretty quickly.
Shapes for input lists of other size look very similar, though the tail gets thinner with
decreasing size of input lists.

An alternative approach is to only run the falsification algorithm and run it long
enough that the complete space of elementary statements is covered. Table 1 shows the
number of fails of the pure falsification algorithm. These are those elementary CI state-
ments that are not implied by the input list but the algorithm did not succeed to identify
them within a fixed time limit.

Two methods of generating random ‘base’ imsets were compared. The first method
draws weights from the interval 1–32 for randomly selected subsets, while the second
always selects 1. The second method appears far more effective in identifying rejections
as one can judge from the number of fails in the columns labeled 1 in Table 1. We also
looked at the impact of the number of randomly selected supermodular imsets on the
3 It is actually an enlargement of the graph for the verification algorithm since the falsification thread cannot
return acceptance.
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number of fails. Increasing this number decreases the failure rate, but the rate only drops
very slowly. Even when generating the same number of supermodular functions as the
number of skeletal imsets in the skeleton-based method, not all statements are correctly
classified.

Fig. 6 shows run-times of the racing algorithms method compared with pure falsifica-
tion algorithm (that is, without the verification part). While reject times are about a third
on average for pure falsification, non-reject times are about four times larger than the
accept times of the combined algorithm.

The same experiments as for five variables were performed with six variables, but obvi-
ously the skeleton-based algorithm was not applied on these problems. Apart from longer
run-times of the algorithms, all observation as for five variables were confirmed.

4.2. Available software

An applet shown in Fig. 7, available at http://www.cs.waikato.ac.nz/~remco/ci/Vefify-
View5.html, allows for efficiently posing queries for up to five variables. The user can enter
a set of elementary CI statements by clicking the statements in the applet which then turn
white. The elementary CI statements are organized by size such that elementary statement
of the form x � yjZ can be found in the rectangle with other statements over jxyZj vari-
ables. Rows and columns are labeled with sets that can be decomposed as xZ and yZ

respectively. The cross point of row xZ and column yZ contains statement x � yjZ. The
inference process is started by pressing the Go!-button and all statements not selected
are verified and turn red if they are not implied or green if they are. Fig. 7 shows the infer-
ence from the example in Section 2.2.

Variants of the racing algorithm for three, four and six variables are available via
http://www.cs.waikato.ac.nz/~remco/ci/index.html. A minor optimization is applied if a
statement t is implied by a list L and we have a decomposition

P
l2Lkl:ul � ut ¼

P
f2F uf

for a set of elementary statements F (and some positive integer constants kl). This implies
that all statements in F are implied by L as well, so they need not be verified individually
but the applet can be updated directly. The skeleton algorithm and sorted skeleton for five
Fig. 6. Racing algorithms vs. pure falsification algorithm. The size of the input list is shown on the x-axis; the
y-axis shows the time. Sequences marked with asterisk are results for the falsification.

http://www.cs.waikato.ac.nz/~remco/ci/VefifyView5.html
http://www.cs.waikato.ac.nz/~remco/ci/VefifyView5.html
http://www.cs.waikato.ac.nz/~remco/ci/index.html


Fig. 7. An applet for racing inference over five variables.
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variables and falsification algorithms for three up to six variables can also be accessed via
that page.

5. Conclusions

We considered the computational aspects of performing CI inference using the method
of structural imset, that is, deciding whether a CI statement t follows from an input list L

of CI statements in that sense. The existing skeleton-based algorithm [15] that allows infer-
ence with up to five variables was improved. We presented an algorithm for creating a con-
structive proof that t follows from L. Unfortunately, this method does not perform well if
t is not implied by L. Fortunately, we can prove t is not implied by L by randomly gen-
erating supermodular functions and testing whether the difference of inner products based
on L and t is negative. But this method cannot be used to give a conclusive proof that t is
implied by L. Together, these methods can race against each other on the same problem.

Empirical evidence suggests the mode of the run-time of the racing algorithms method
is an order of magnitude less than the skeleton-based method. Furthermore, the new
method also works well for problems with six variables, unlike the old one. Though we
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have not verified this empirically yet, we expect our method to perform reasonably well
with more than six variables, given that the majority of problems over five and six vari-
ables in our experiments were solved in just a few miliseconds. However, the number of
statements in the input list needs to increase in order to have meaningful inferences,
thereby increasing the complexity of the problem and increasing run-times. An analysis
of accept times of the new method indicates that the verification algorithm sometimes can-
not find the decomposition efficiently. This suggests that it can benefit from further
guidance.

Some questions remain open, in particular finding an upper estimate on kmax (see Sec-
tion 2.2) for six and more variables. A good upper estimate can decrease the computa-
tional effort in proving t is not implied by L. The similarity of this inference problem to
other inference problems, which are known to be NP hard [7], suggests that the inference
problem is NP hard. A formal proof of this property would provide further justification of
using the heuristic approaches presented here.

Though the falsification algorithm cannot give a conclusive proof that an statement t is
implied by L, we found that it was often very good at finding all elementary CI statements
that are not implied by L in our experiments. This suggests that one can have some con-
fidence that the falsification algorithm can indicate statements that are possibly implied by
L. Deriving theoretical bounds on the probability that the falsification algorithm actually
correctly identifies such statements would be interesting, since this would allow us to quan-
tify our confidence.
Appendix. Proof of Lemma 2.1

We base our proof on the properties of the multiinformation function m � mP corre-
sponding to a (discrete) probability distribution P over N – see Section 2.3.4 in [17]. Alter-
natively, we can use the entropy function ĥP , defined by ĥP ðAÞ ¼ HðP AÞ, A � N, where PA

is the marginal of P for A and H is the symbol for Shanonn entropy. This function has
analogous properties – see Remark 4.4. in [17].

It follows from Corollary 2.2. in [17] that the assumption of Lemma 2.1
v � wjUWnp(w)w for any w 2W can be rewritten as the requirement hm,uhv,wjUWnp(w)wii =
0 for any w 2W. More specifically, we have

8w 2 W 0 ¼ mðvw½UW n pðwÞw�Þ þ mðUW n pðwÞwÞ � mðv½UW n pðwÞw�Þ

� mðw½UW n pðwÞw�Þ:

We sum this over W and observe that the following sum vanishes
X
w2W

fmðvUW n pðwÞÞ þ mðUW n pðwÞwÞ � mðvUW n pðwÞwÞ � mðUW n pðwÞÞg:

In this expression, we change the order of summation and get

0 ¼
X
w2W

mðvUW n pðwÞÞ þ
X
w2W

mðUW n pðwÞwÞ �
X
w2W

mðvUW n pðwÞwÞ

�
X
w2W

mðUW n pðwÞÞ:
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However, since p is a permutation one has
P

w2W mðS n pðwÞÞ ¼
P

w2W mðS n wÞ for any S

with W � S � N, in particular, for S = vUW and S = UW. Hence, we get

0 ¼
X
w2W

mðvUW n wÞ þ
X
w2W

mðUW n pðwÞwÞ �
X
w2W

mðvUW n pðwÞwÞ �
X
w2W

mðUW n wÞ:

We again change the order of summation and observe that the following sum vanishes
X
w2W

fmðvUW n wÞ þ mðUW n pðwÞwÞ � mðvUW n pðwÞwÞ � mðUW n wÞg:

This means 0 ¼
P

w2W hm; uhv;pðwÞjUW npðwÞwii. As hm,uhv,p(w)jUWnp(w)wiiP 0 for any w 2W, by
Corollary 2.2. in [17], the above equality means

8w 2 W hm; uhv;pðwÞjUW npðwÞwii ¼ 0;

and, again by Corollary 2.2. in [17], get v � p(w)jUWnp(w)w for any w 2W.
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