
Journal of Machine Learning Research 7 (2006) 1045–1078 Submitted 2/06; Published 6/06

A Graphical Representation of Equivalence Classes
of AMP Chain Graphs

Alberto Roverato ROVERATO@UNIMORE.IT
Department of Social, Cognitive and Quantitative Sciences
University of Modena and Reggio Emilia
Viale Allegri 9
I-42100 Reggio Emilia, Italy
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Abstract

This paper deals with chain graph models under alternative AMP interpretation. A new represen-
tative of an AMP Markov equivalence class, called thelargest deflagged graph, is proposed. The
representative is based on revealed internal structure of the AMP Markov equivalence class. More
specifically, the AMP Markov equivalence class decomposes into finerstrong equivalenceclasses
and there exists a distinguished strong equivalence class among those forming the AMP Markov
equivalence class. The largest deflagged graph is the largest chain graph in that distinguished strong
equivalence class. A composed graphical procedure to get the largest deflagged graph on the basis
of any AMP Markov equivalent chain graph is presented. In general, the largest deflagged graph
differs from the AMP essential graph, which is another representative of the AMP Markov equiva-
lence class.

Keywords: chain graph, AMP Markov equivalence, strong equivalence, largest deflagged graph,
component merging procedure, deflagging procedure, essential graph

1. Introduction

This paper studies chain graph models under the alternative interpretation introduced by Andersson,
Madigan and Perlman (2001). In general, achain graph modelis a statistical model in which a chain
graph is used to represent the conditional independence structure defining the statistical model.
The vertices of the graph represent random variables and the conditional independence structure
is determined through the respectiveMarkov property. The class of chain graphs was introduced
and the original interpretation was given by Lauritzen and Wermuth (1984); see also Lauritzen and
Wermuth (1989). The mathematical theory of chain graphs was developed by Frydenberg (1990),
who formally defined the Markov property corresponding to the original interpretation. Following
the standard literature in this field, we will refer to this property as theLWF Markov property.
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More recently, another interpretation of chain graphs was introduced byAndersson, Madigan
and Perlman (1996); see also Andersson et al. (2001). This interpretation leads to an alternative
Markov property and we will refer to it as theAMPMarkov property.

Two different chain graphs may be equivalent with respect to a considered Markov property,
by which is meant that they define the same statistical model. The distinction between different
interpretations of chain graphs is reflected by the different concepts ofequivalence, namely the
LWF Markov equivalenceand theAMP Markov equivalence.

From a statistical perspective, the point of interest is a statistical model. However, if we repre-
sent a statistical model using an arbitrary graph in the respectiveMarkov equivalence class, then the
non-unique nature of graphical description may result in difficulties. Onetype of difficulty concerns
problems one can meet in structural learning of graphical models; see Section 2.3 of Chickering
(2002) for a review in the case of acyclic directed graphs. A solution to these problems may be
provided by a suitable choice of a uniquerepresentativeof each Markov equivalence class, that
is, of a particular element in that equivalence class. The choice of a suitable representative is also
important from the perspective of causal inference in chain graphs (Lauritzen, 2001, Section 11.2).

The problem of the representative choice has a natural solution in the LWFcase. Frydenberg
(1990) showed that every LWF equivalence class contains thelargest chain graph, which is the
graph with the largest amount of undirected edges within the LWF equivalence class. Furthermore,
every arrow in the largest chain graph is an arrow with the same direction in every chain graph from
the class. The largest chain graph is uniquely determined and can serve as a natural representative
of the LWF equivalence class. Moreover, there exist at least two procedures that transform every
chain graph into the largest chain graph of the respective LWF equivalence class Roverato (2005);
Volf and Studeńy (1999).

However, the situation is different in the AMP case. It is not clear what is anatural representative
of an AMP equivalence class and, in particular, the notion of the “largestAMP chain graph” makes
no sense. Andersson et al. (2001) proposed to represent an AMP equivalence class by a so-called
AMP essential graph. Every arrow in the AMP essential graph is either an arrow with the same
direction or an undirected edge in every chain graph from the equivalence class. Their terminology
was inspired by the case of acyclic directed graph models, in which case thecorresponding equiva-
lence class has a suitable representative called theessential graph(Andersson et al., 1997). Indeed,
if an AMP equivalence class contains an equivalence class of acyclic directed graphs, then the AMP
essential graph coincides with the respective essential graph; see Proposition 4.2 in Andersson and
Perlman (2006). However, as of now, there is no algorithm to construct the AMP essential graph,
as in the LWF case. Furthermore, in the case that the AMP equivalence class contains a completely
undirected graph, it may happen that the AMP essential graph has some arrows, and this unpleasant
phenomenon was already reported in Section 7 of Andersson et al. (2001).

The aim of this paper is to provide an alternative solution to the problem of unique graphical
representation of AMP equivalence classes. The point is that AMP equivalence classes have a more
complicated structure than LWF equivalence classes. We succeed in revealing this structure and
provide a representing graph as well as an algorithm for its construction.Our solution, called the
largest deflagged graph, is different from the AMP essential graph proposed in Andersson etal.
(2001). Nevertheless, if an AMP equivalence class contains an acyclicdirected graph then our rep-
resentative reduces to the essential graph of the corresponding equivalence class of acyclic directed
graphs. Moreover, it provides a better solution if the AMP equivalence class contains an undirected
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graph because then, as one would expect, that undirected graph coincides with our largest deflagged
graph.

These are the main contributions of the paper:

1. We introduce a new concept, namely, the concept ofstrong equivalenceof chain graphs. An
important observation is that every AMP equivalence class of chain graphs decomposes into
strong equivalence classes.

2. Every strong equivalence class has a unique representative given by the largest chain graph of
the class. We introduce a procedure, called thecomponent merging procedure, which starts
from any chain graphG and, by replacing arrows with undirected edges, finds the largest
graph in the class of chain graphs strongly equivalent toG.

3. There exists a unique distinguished strong equivalence class among those forming an AMP
equivalence class. Its elements have the largest amount of immoralities and theleast possible
amount of flags. We call the graphs in this class the maximally deflagged graphs, briefly the
deflagged graphs. We introduce a procedure, called thedeflagging procedure, which starts
from any chain graphG and, by replacing undirected edges with arrows, produces a deflagged
graphĜ AMP equivalent toG.

4. We propose to characterize every AMP equivalence class by means of the respectivelargest
deflagged graph. This representative can be constructed by applying the component merging
procedure to the chain grapĥG obtained by the deflagging procedure.

The next section recalls basic graphical concepts. Then, in Section 3, the main results in the
LWF case are recalled in order to let the reader see some analogy. In Section 4, we give an overview
of our new results and illustrate them by an example. The results on strong equivalence of chain
graphs are formulated in Section 5. They appear to be analogous to the results valid in the LWF
case. In Section 6, we present a deflagging procedure to get a deflagged graph in a given AMP
equivalence class. Section 7 contains some concluding remarks. Proofsof the main results are
moved to the Appendix.

2. Basic Concepts

In this paper we consider graphs that admit both directed edges, called arrows, and undirected
edges, called lines. Formally, given a non-empty finite setN, anarrow over N is an ordered pair
(a,b) of distinct elements ofN and aline overN is a subset{a,b} of N of cardinality two, that is,
an unordered pair of distinct elements ofN. A hybrid graphis a tripletH ≡ (N,A ,L ) whereN
is a finite non-empty set ofnodes, A a set of arrows overN andL a set of lines overN such that
no multiple edges are allowed, which means that if(a,b) ∈ A then(b,a) 6∈ A and{a,b} 6∈ L . To
express thatN is the set of nodes ofH we also say thatH is a hybrid graphover N.

Given a hybrid graphH, we will write a−→ b in H or b←− a in H to denote(a,b) ∈ A .
Analogously, we will writea−−−b in H or b−−−a in H if {a,b}∈ L . This notation is in accordance
with usual pictures. An ordered pair[a,b] of distinct nodes inH will be called anedgein H if a−→ b
in H, a−−−b in H or a←− b in H. Observe that[a,b] is an edge iff[b,a] is an edge: this means
that edges can be viewed as unordered pairs of distinct nodes. If[a,b] is an edge inH we also say
thata andb areadjacentin H.

1047



ROVERATO AND STUDENÝ

A set of nodesC⊆ N is connectedin H if, for every a,b∈C, there exists anundirected path
connecting them, that is, a sequence of distinct nodesa = c1, . . . ,cn = b, n≥ 1 such thatci −−−ci+1

in H for i = 1, . . . ,n−1. A (connectivity)componentin H is a maximal connected set inH with
respect to set inclusion. Evidently, components in a hybrid graph are pairwise disjoint.

Given a set of nodesA⊆ N in a hybrid graphH, the set ofparentsof nodes inA, denoted by
paH(A), is the set

paH(A)≡ {b∈ N ; b−→ a in H for some a∈ A} .

A descending pathin H from a nodea to a nodeb is a sequence of distinct nodesa= c1, . . . ,cn = b,
n≥ 1 such that eitherci −→ ci+1 in H or ci −−−ci+1 in H for i = 1, . . . ,n−1. If there exists a path
of this kind inH then we say thata is anancestorof b in H. The set of ancestors inH of nodes in a
setA⊆ N will be denoted by anH(A); observe that one hasA⊆ anH(A).

An undirected graphis a hybrid graph without arrows, that is,A = /0. A setK ⊆ N is complete
in an undirected graphH if, ∀a,b∈K, a 6= b, one hasa−−−b in H. Given a hybrid graphH overN,
the respectiveunderlying graphis an undirected graphHu overN such thata−−−b in Hu iff [a,b]
is an edge inH.

A directed graphis a hybrid graph without lines, that is,L = /0. A directed graphH is acyclic
if there is no directed cycle inH, that is, there is no sequence of nodesd0, . . . ,dn−1,dn = d0, n≥ 3
such thatd0, . . . ,dn−1 are distinct and,∀ i = 0, . . . ,n−1, di −→ di+1 in H.

The concept of achain graph(CG) can be introduced in two equivalent ways. Note that we are
going to use the abbreviationCG in the rest of the paper. The first definition is that a CG is a hybrid
graphH whose components can be ordered to form a chain, that is, a sequenceC1, . . . ,Cm, m≥ 1
such that

• if a−−−b in H thena,b∈Ci for somei,

• if a−→ b in H thena∈Ci ,b∈Cj with i < j.

Note that this is the reason for which some authors call the components in a CGchain components.
A consequence of this definition is that every CG has aterminal component, that is, a component
T such that there is no arrowa −→ b in H with a ∈ T. The other definition is that a CG is a
hybrid graphH without semi-directed cycles. A semi-directed cycle of the lengthn is a sequence
of nodesd0, . . . ,dn−1,dn = d0 with n≥ 3 such thatd0, . . . ,dn−1 are distinct,d0 −→ d1 in H and,
∀ i = 1, . . . ,n−1, eitherdi −→ di+1 in H or di −−−di+1 in H. See Lemma 2.1 in Studený (1997) for
the proof of equivalence of both definitions of a CG. It is easy to see thatevery undirected graph
and every acyclic directed graph is a CG.

Given a hybrid graphH overN and /0 6= A⊆ N, the induced subgraphof H for A, denoted by
HA, is the graphHA ≡ (A,A ∩ (A×A),L ∩P (A)), whereP (A)≡ {B; B⊆ A}. We will deal with a
few special induced subgraphs. Acomplexin a hybrid graphH is an induced subgraph ofH of the
form a−→ c1 −−− . . . −−−cs←− b, s≥ 1, which means that no other edge between distinct nodes
{a,b,c1, . . . ,cs} is present inH. An example of a complex is shown in the left-hand picture of
Figure 1. A special case of a complex is animmorality, which is a configurationa−→ c←− b in H
wherea,b,c are distinct nodes and[a,b] is not an edge inH. An example of an immorality is shown
in the middle picture of Figure 1. Two CGsG andH over N will be calledcomplex equivalent
iff they have the same underlying graph and complexes. Given a CGG, the class of CGs that are
complex equivalent toG will be denoted byG .
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Figure 1: A complex, an immorality and a flag.

A flag in a hybrid graphH is another induced subgraph ofH for three nodes, namelya−→
c−−− b wherea,b,c are distinct nodes and[a,b] is not an edge inH. An example of a flag is shown
in the right-hand picture of Figure 1. Atriplex in a hybrid graphH is a pair〈{a,b},c〉 such that
eithera−→ c←− b is an immorality inH, a−→ c−−−b is a flag inH or a−−−c←− b is a flag
in H. All three different versions of a triplex are shown in Figure 2. Two CGsG andH over N
will be called triplex equivalentiff they have the same underlying graph and triplexes. Note that
coincidence of triplexes is understood as follows. If, for instance,a−→ c←− b is an immorality
in G then it need not be an immorality inH but it has to be one of three versions of the triplex
〈{a,b},c〉. Given a CGH, the class of CGs that are triplex equivalent toH will be denoted byH.

3. Representation of LWF Equivalence Classes

In this section we recall known results concerning the LWF case. The aim isto help the reader to
realize the analogy between these former results and our new results on strong equivalence of CGs
presented in Section 5. Moreover, an overview of the results in the LWF case will indicate what is
the main difference from the AMP case, which is reported in Section 4.

3.1 Largest Chain Graph in a LWF Equivalence Class

In this paper, we omit the formal definition of LWF Markov property and LWFMarkov equivalence;
this can be found in Frydenberg (1990). Instead, we recall Frydenberg’s graphical characterization
of LWF equivalence of CGs (see Proposition 5.6 in Frydenberg, 1990). He showed that two CGs
over the same set of nodes are LWF Markov equivalent iff they are complex equivalent.

The second crucial point is that every LWF equivalence class is endowed with a natural partial
ordering. Supposing thatH = (N,AH ,LH) andG = (N,AG,LG) are two LWF equivalent CGs, we
say thatH is larger thanG if AH ⊆ AG, that is

a−→ b in H impliesa−→ b in G, (1)

a bc a bc a bc

(i) (ii) (iii )

Figure 2: Three different versions of the triplex〈{a,b},c〉.
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for every paira andb of distinct nodes inH. Observe that the fact thatG andH have the same
underlying graph necessitates thatLG⊆ LH , that is

a−−−b in G impliesa−−−b in H, (2)

which meansH has ‘more’ lines thanG. One can easily show that the relation defined by (1) is a
partial ordering on every LWF equivalence class; we will writeH ≥G if (1) is fulfilled.

Third, Frydenberg also showed (Proposition 5.7 of Frydenberg, 1990) that every LWF equiv-
alence classG has the largest element with respect to this ordering, that is,G∞ ∈ G such that for
everyG in G one hasG∞ ≥G. Thus, this graphG∞, named thelargest chain graphof G , can serve
as a natural representative ofG .

3.2 Feasible Merging of Components

The last important point is that there are procedures which allow one to getthe largest CGG∞ ∈ G
on the basis of any CGG∈ G from the LWF equivalence class. At least three procedures of this
kind have been presented in the literature; however, two of them are methodologically equivalent.

One of them could be a procedure based on Theorem 3.9 of Volf and Studeńy (1999). The basic
idea is that some arrows in a CGG∈ G are indicated as ‘protected’ arrows. Then all arrows inG
which are not ‘protected’ are replaced with lines and the largest chain graphG∞ of G is obtained.

Another procedure, called thepool-component rule, was presented in Section 5 of Studený
(1997). The basic idea is that there is an elementary operation of merging components in a CG
whose result is an LWF equivalent CG. By consecutive application of thisoperation, the respective
largest chain graph can be obtained. However, the formal description of that elementary operation
given in Studeńy (1997) is still awkward.

The third procedure is described in Roverato (2005). Its basic idea is essentially the same;
an elementary step of that procedure consists of merging components of an‘insubstantial’ meta-
arrow, that is, of the bunch of arrows between two certain components. It is shown in Section 4 of
Roverato (2005) that, by consecutive application of that elementary step,the respective largest CG
is obtained. One can show that the elementary operations presented in Studený (1997) and Roverato
(2005) are equivalent (see Studený et al., 2006), but the formal description of the operation presented
in Roverato (2005) is much more elegant from the mathematical point of view. We decided to take
it as the basis of the following definitions.

Definition 1 (meta-arrow)
Let G be a CG. A pair of components(U,L) in G such that there exists an arrow a−→ b in G with
a∈U and b∈ L determines ameta-arrowin G. More specifically, the meta-arrow is the collection of
all arrows a−→ b with a∈U and b∈ L. The component U will be called theupper componentand
the component L thelower component(of the meta-arrow). We will occasionally use the notation
U ⇉ L.

Note that the above notion is a minor modification of the concept of a meta-arrowfrom Roverato
(2005). The essential difference is that in Definition 1 we require that atleast one arrow exists from
a member ofU to a member ofL, while in Roverato (2005) a possibly empty collection of arrows
from U to L was allowed. Thus, the concept of a meta-arrow used in this paper coincides with the
concept of a non-empty meta-arrow from Roverato (2005). Since empty meta-arrows play no role
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Figure 3: Two examples of feasible merging. The vertices belonging to the set K from (i) are filled
in and arrows of the meta-arrowU ⇉ L are bold.

in a CG, we have decided to simplify our terminology. Our additional assumption also implies that
the considered componentsU andL are different.

Definition 2 (merging of components)
Bymerging of componentsin a CG G we understand the following operation applicable to G. Given
a pair of components(U,L) which defines a meta-arrow, we replace all arrows of the meta-arrow
U ⇉ L with lines and say that the resulting hybrid graph G′ is obtained by merging of components
U and L; more specifically, bymergingof the upper component U and the lower component L.

Note that the above terminology was inspired by terminology from Studený (2004). In general,
the result of the operation of merging components in a CG need not be a CG. However, there are
sufficient conditions for this; one of them is as follows.

Definition 3 (feasible merging)
Let (U,L) be a pair of components in a CG G that defines a meta-arrow in G. We say that merging
of components U and L isfeasible(in G) if the following two conditions hold:

(i) K ≡ paG(L)∩U is a complete set in G,

(ii) ∀ b∈ K paG(L)\U ⊆ paG(b).

Note that the assumption that(U,L) defines a meta-arrow implies that the setK in (i) is a non-
empty set. Two examples of feasible merging are shown in Figure 3.
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It is shown in Section 4 of Roverato (2005) that a hybrid graphG′ obtained from a CGG by
feasible merging of its components is a CG complex equivalent toG; actually, it is shown there that
the requirements (i) and (ii) together establish a necessary and sufficientcondition for this. In fact,
that is the reason we decided to name this operation with CGs “feasible merging of components’’
because the condition ensures that one remains in the same LWF equivalence class of CG after the
merging operation. Moreover, it is also proven in Roverato (2005) that, by repeated application of
this operation to a CGG∈ G , the respective largest CGG∞ ∈ G is obtained.

4. Representation of AMP Equivalence Classes

In this section we reveal the internal structure of AMP Markov equivalence classes. First, we recall
the graphical characterization of AMP equivalence. Then we introducea special kind of equivalence
of CGs, calledstrong equivalence, such that every AMP equivalence class decomposes into strong
equivalence classes. Basic results on strong equivalence are postponed to Section 5. The next
step is to introduce a specialflag orderingbetween strong equivalence classes within a fixed AMP
equivalence class. We show that the smallest element with respect to that ordering exists and,
finally, we propose to represent the whole AMP equivalence class by a natural representative of that
distinguished strong equivalence class, calledlargest deflagged graph.

4.1 Graphical Characterization of AMP Equivalence

The formal definitions of AMP Markov property and AMP Markov equivalence are omitted; they
can be found in Andersson et al. (2001). Here we recall graphical characterization of AMP equiv-
alence given by Andersson et al. (2001, Theorem 5). They showedthat two CGs over the same
set of nodes are AMP Markov equivalent iff they are triplex equivalent. An example of an AMP
equivalence class is given in Figure 2. A further, less trivial, example containing ten CGs is given
in Figure 4.

Given a CGH, let us consider the setH of all CGs triplex equivalent toH. If we consider the
partial ordering of CGs inH defined by (1) then it may be the case that the largest CG inH does
not exist. This is illustrated in Figure 2, where none of the three graphs is larger than the others, but
also in Figure 4.

This is the main difference between the case of LWF equivalence and the case of AMP equiva-
lence. In the LWF case, the key role is played by the ordering of CGs defined by (1). The result on
the existence and uniqueness of the largest CG with respect to this ordering in each LWF equiva-
lence class reported in Section 3 makes this object a natural representative of the LWF equivalence
class. In the representation of an AMP equivalence class, the orderingdefined by (1) also plays
an important role, even though its use in this case is more subtle than in the LWF case. What is
important is that every AMP equivalence class decomposes into some finer equivalence classes.

4.2 Definition of Strong Equivalence

Our decomposition of a given AMP equivalence class is based on the distinction betweentriplex
edges, namely the arrows and lines that belong to a triplex, and non-triplex edges.More specifi-
cally, if two triplex equivalent CGs have identical triplex edges, then we saythat they are strongly
equivalent.
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Figure 4: An example of an AMP equivalence class. The boxes represent strong equivalence
classes. They are ordered by the flag ordering. There exists a uniquelargest graph within
every strong equivalence class. The largest deflagged graph has vertices filled in.
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Definition 4 (strong equivalence of chain graphs)
Let G,H be CGs over N. We say that they arestrongly equivalentiff

[a] G and H have the same underlying graph,

[b] an immorality a−→ c←− b occurs in G iff it occurs in H,

[c] a flag a−→ c−−−b occurs in G iff it occurs in H.

It is easy to see that strongly equivalent CGs have the same complexes. Inparticular, they are
both complex equivalent and triplex equivalent. On the other hand, two CGswhich are both LWF
and AMP Markov equivalent need not be strongly equivalent as shown, for example, by the graphs
(i) and(ii) in Figure 2.

Given a CGH, the class of CGs that are strongly equivalent toH will be denoted byH . In
Figure 4, strong equivalence classes are represented by boxes. Note that, since all the graphs inH
have the same triplex edges, it makes sense to say thata−→ c is a triplex arrow inH if a−→ c is a
triplex arrow in every CG fromH , and similarly for triplex lines. We are going to show in Section
5 that, similarly to the LWF case, every strong equivalence classH has a unique largest element.
We also present a special component merging procedure to get the largest element on basis of any
graph inH there.

Strong equivalence is an equivalence relation that induces a partition of any AMP equivalence
classH of CGs. We will denote the set of all strong equivalence classes includedin H by H ≡
{H ;H ⊆H}.

4.3 Flag Ordering

Interestingly, the relation (1) restricted to triplex edges defines a partial orderingbetweenstrong
equivalence classes fromH.

Definition 5 (flag larger)
Let H be an AMP equivalence class andH ,G ∈H. We say thatH is flag largerthanG and write
H � G if the following condition holds:

whenever a−→ b is a triplex arrow inH then a−→ b in G . (3)

Observe that (3) and the factG ,H ∈H imply that

whenevera−−−b is a triplex line inG thena−−−b in H . (4)

Hence,H � G � H for H ,G ∈ H implies thatH andG have the same triplex edges, that is,
G = H . This allows one to see that the relation� is indeed an ordering onH. Another point is that
(4) means thatH has ‘more’ triplex lines thanG . In particular, ifH � G then every flag inG is
a flag of the same type inH . For this reason, we will refer to the ordering defined by (3) as to the
flag orderingof strong equivalence classes. In Figure 4 we illustrated this ordering bydashed lines.
Note that there exists the smallest element with respect to flag ordering. It is anatural distinguished
strong equivalence class withinH and, now, we prove its existence.

Proposition 6 Given an AMP equivalence classH, there exists a unique strong equivalence class
H ↓ ∈H such thatH � H ↓ for all H ∈H.
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Proof As H is finite and� is an ordering onH it suffices to show that, for everyG ,H ∈ H,
there existsF ∈ H with G � F andH � F . ChooseG ∈ G andH ∈ H and construct a hybrid
graphF with the same underlying graph asG (andH) in this way: a−→ b in F iff either a−→ b
in G or [a−−−b in G anda−→ b in H]. Lemma 4 in Andersson et al. (2001) says thatF is a
CG which is triplex equivalent toG (andH). Let F denote the strong equivalence class of CGs
containingF . Thus,F ∈ H and the factG≥ F impliesG � F . The conclusionH � F can be
verified directly: ifa−→ b is a triplex arrow inH (= in H ) then the fact thatH andG are triplex
equivalent implies that eithera−→ b in G or a−−−b in G which both givesa−→ b in F (= in F ).

4.4 Deflagged Graphs and Essential Flags

Given an AMP equivalence classH, the symbolH ↓ will be used to denote the least strong equiva-
lence class inH with respect to�. The graphs inH ↓ will be calledmaximally deflagged graphsor,
briefly, deflagged graphs.

In the example in Figure 4, both triplexes in the deflagged graphs are immoralities. However,
in general, not all triplex edges inH ↓ have to be arrows. Some flags appear to be essential for the
specification of the setH and, therefore, their lines are shared by all graphs fromH. An example
is given in Figure 5 where a single graph, which has two flags, forms the whole AMP equivalence
class.

Figure 5: An example of a pair of essential flags.

Definition 7 (essential flag)
Let H be an AMP equivalence class. If a−→ b−−−d is a flag in H for every H∈ H then we say
that it is anessential flagin H.

Actually, deflagged graphs can equivalently be introduced as follows.

Proposition 8 Given an AMP equivalence classH, one has G∈ H ↓ iff G ∈H and every flag in G
is an essential flag inH.

Proof To verify the necessity of the condition, consider a flaga−→ b−−−c in G andH ∈ H ∈H.
Then the assumptionH � H ↓ ∋G implies by (4) that the triplex lineb−−−c in G is also inH. As
〈{a,c},b〉 is a triplex both inG andH it allows one to derivea−→ b in H. Thus,a−→ b−−−c is
a flag in everyH ∈H.

For sufficiency, assume thatG∈H only has essential flags. LetG ∈H be the strong equivalence
class containingG. We are to show thatH � G for everyH ∈H. Consider a triplex arrowa−→ b
in H . It has to be a part of a triplex〈{a,c},b〉. Since it has to be a triplex inG the only option
which excludesa−→ b in G is thata−−−b←− c in G. However, then it is an essential flag inH

anda−−−b←− c in H . This contradicts the assumption and one necessarily hasa−→ b in G .
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4.5 Largest Deflagged Graph

Let us summarize. AMP equivalence classes can effectively be handledby first considering their
natural partition into strong equivalence classes (partially ordered by�), and then by dealing with
the CGs in every strong equivalence class (partially ordered by≥). In this way, it is possible to
identify unambiguously a graph inH by first considering the flag-smallest strong equivalence class
and then by taking the largest graph within that class.

Definition 9 (largest deflagged graph)
The graph H↓ is thelargest deflagged graphof an AMP equivalence classH if

(i) H ↓ ∈ H ↓,

(ii) H ↓ ≥ H for all H ∈ H ↓.

In Figure 4, the ordering of CGs within strong equivalence classes is illustrated by means of dotted
lines. The largest deflagged graph is emphasized by means of vertices filled in.

Recall that the existence of the strong equivalence classH ↓ was proven in Proposition 6 whereas
the existence and uniqueness of the largest CG inH ↓ is shown in Section 5. Furthermore, in Section
6, we provide a deflagging procedure which, starting from any CGG in an AMP equivalence class
H, returns a CĜG in H ↓. Then a component merging procedure from Section 5 can be applied to
Ĝ to get the largest deflagged graphH↓.

5. Strong Equivalence

This section is devoted to basic results on strong equivalence of CGs. These results are analogous
to the results on LWF Markov equivalence recalled in Section 3. More specifically, we prove the
existence of the largest CG within each strong equivalence class, introduce the respective elementary
operation ascribing a larger strongly equivalent CG to a CG, and show that the largest CG in a strong
equivalence class is attainable by this operation.

5.1 Largest Chain Graph in a Strong Equivalence Class

In this subsection we show the existence of the largest CG within a strong equivalence class. The
first step for this is a direct construction of the supremum of two CGs with a shared underlying
graph with respect to the orderingH ≥ G defined by (1). Note that the construction was already
mentioned without further details in Frydenberg (1990). The constructionutilizes the following
auxiliary concept.

Definition 10 (cyclic arrow)
Given a hybrid graph H, we say that an arrow a−→ b in H is acyclic arrowin H if b ∈ anH(a).
An equivalent formulation is that there exists a semi-directed cycle in H containing a−→ b.

Lemma 11 Let us consider the class E of all CGs over N with a prescribed underlyinggraph
E, ordered by the relation≥ defined by (1). Then every pair of graphs G and H from E has the
supremum G∨H in (E,≥). It can be obtained directly in two steps.

1. Define a hybrid graph G∪H over N as follows

a−→ b in G∪H iff both a−→ b in G and a−→ b in H ,
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and a−−−b in G∪H for remaining edges in E.

2. Replace all cyclic arrows in G∪H with lines and obtain G∨H.

Proof It is easy to see that(E,≥) is a partially ordered set. We need to show thatG∨H ∈ E,
G∨H ≥G, G∨H ≥ H and, whenever there isF ∈ E with F ≥G,H thenF ≥G∨H.

The fact thatG∨H is a CG was proven as Consequence 2.5 in Volf and Studený (1999). Hence,
it is clear thatG∨H ∈ E and thatG∨H is larger than bothG andH.

To show thatF ≥ G∨H for F ∈ E with F ≥ G,H, consider an arrowa−→ b in F in order to
verify a−→ b in G∨H. Sincea−→ b in G∪H, it suffices to showb 6∈ anG∪H(a). Suppose for
contradiction that there exists a descending pathρ : b = c1, . . . ,cn = a, n≥ 2 in G∪H. There is no
1≤ i ≤ n−1 with ci ←− ci+1 in F , as otherwiseci ←− ci+1 in G∪H. Thus,ρ is a descending path
in F which contradicts the assumption thatF is a CG.

The preceding construction can be utilized to prove that every strong equivalence class of CGs
is a join semi-lattice with respect to≥.

Proposition 12 Let G and H be strongly equivalent CGs over N. Then their supremum G∨H is
strongly equivalent to them as well.

Because the proof is technical, it is moved to the Appendix. Proposition 12 has the following
consequence.

Corollary 13 Given a strong equivalence classG of CGs over N, there exists G† ∈ G which is the
largest CG inG .

Proof SinceG is a finite set, one can apply Proposition 12 repeatedly to get the supremum ofall
graphs inG . Of course, it is the largest CG inG .

5.2 Legal Merging of Components

In this subsection we introduce an elementary operation that produces a strongly equivalent CG
when applied to a CG. Here is the definition.

Definition 14 (legal merging of components)
Let (U,L) be a pair of components in a CG G that defines a meta-arrow. We say that merging of
components U and L islegal(in G) if the following three conditions hold:

[i] K ≡ paG(L)∩U is a complete set in G,

[ii] ∀b∈ K paG(L)\U = paG(b),

[iii] for every d∈ L one haspaG(L) = paG(d).

Evidently, the conditions [i]-[iii] imply the conditions (i)-(ii) from Definition 3. Inbrief, every
legal merging (of components in a CG) is feasible. In Figure 3, (M1) is an example of feasible
merging that is not legal whereas (M2) is an example of legal merging. IfG is a CG without flags
then the condition [iii] is always fulfilled and [ii] takes a simpler form:
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[ĩi] paG(L)\U = paG(U).

Thus, the operation from Definition 14 generalizes the operation of legal merging of components
(of a CG without flags) from Studený (2004). The requirement [i]+[̃ii] also coincides with the
condition from Roverato (2005) demanding that the arrowhead of the meta-arrowU ⇉ L is strongly
insubstantial.

Proposition 15 Let G be a CG over N, and(U,L) be a pair of its components which defines a meta-
arrow. Then the conditions from Definition 14 are satisfied iff the graph G′ obtained by merging of
components U and L is a CG strongly equivalent to G; of course, it is (strictly) larger than G.

The proof is moved to the Appendix. Note that one has to replace the whole collection of arrows
between components with lines; otherwise the obtained graph would not be a CG. This is the reason
why legal merging is indeed an elementary operation yielding a larger and strongly equivalent CG.

5.3 Component Merging Procedure

An important fact is that the largest CG in a strong equivalence classG can be obtained from any
CG inG by consecutive application of the operation of legal merging of components. Actually, we
show the following, formally stronger, result.

Proposition 16 Let G and H be strongly equivalent CGs over N such that H≥G. Then there exists
a finite sequence G≡ F1, . . . ,Fm≡H, m≥ 1 of CGs over N such that, for every i= 1, . . . ,m−1, the
graph Fi+1 is obtained from Fi by legal merging of components.

The proof is technical and it is moved to the Appendix. Proposition 16 has thefollowing conse-
quence.

Corollary 17 Given a strong equivalence classG of CGs over N and G∈ G , the largest CG G† in
G is attainable from G by a series of legal mergings.

Proof We simply putH = G† in Proposition 16.

6. Deflagging Procedure

In this section we describe a procedure to construct a deflagged graphĜ starting from any CGG
in the respective AMP equivalence classH. We proceed as follows. First, we introduce alabeling
algorithm that assigns some labels to endings of lines inG. Second, we introduce adirecting
algorithmwhich, on the basis of those labels, replaces certain lines inG with arrows. In this way,
we get a CG which is both triplex equivalent toG and flag-smaller thanG. Finally, we provide a
deflagging procedure which consists of repeated application of these twoalgorithms. We show that
the result is a deflagged graph.
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(a) ⇒

x

(b) ⇒

x

(c)

x

x ⇒

x

x

x

Forbidden configurations

Figure 6: Three blocking rules from the labeling algorithm.

6.1 Labeling Algorithm

Let G = (N,A ,L ) be a CG. Alabeled graph Gℓ = (N,A ,L ℓ) is a graph obtained by ascribing a
pair of labels to every line{a,b} ∈ L . The labels on a linea−−−b correspond to endings of the
line: one of them is associated witha and the other withb. We use two different kinds of labels: a
blocking label denoted by a cross, ‘x’, and a label denoted by a dot, ‘•’, to be read as ‘free’. Thus, if
the blocking label is associated witha on a−−−b then we will say that the line isblocked at aand
write a−x−− b in Gℓ. On the other hand, the notationa−•−− b in Gℓ will mean that the line isfree at
a. The intuition behind the terminology is as follows. A blocked ending at a nodea will mean that
the line cannot be replaced with an arrow directed toa, for otherwise we would get a graph outside
H. A free ending ata will mean that no such conclusion has been derived so far.

Consequently, a labeled CG has three types of lines: two symmetric forms−x−−x and −•−−• , and
an asymmetric form−x−−• . Let us emphasize that we only consider labeled graphs in which all lines
have both endings labeled. However, in our notation, labels need not be explicitly indicated. For
instance, the notationa−−−x b in Gℓ will mean that eithera−x−−x b in Gℓ or a−•−−x b in Gℓ.

The labeling algorithm, whose pseudo-code is given in Algorithm 1, produces a special labeled
versionGℓ of a given CGG. Initially, all lines are replaced with labeled lines with free endings.
Then, threeblocking rules, illustrated in Figure 6, are repeatedly applied until they are not applica-
ble. Each blocking rule modifies just one ending of one line: a free ending isblocked. In this way,
we get a labeled CG in which noforbidden configuration(see Figure 6) is present. The labelling
algorithm is the first step of the overall deflagging procedure and in the following step some lines
of G are replaced by arrows; thus, the reader can possibly understand that the three forbidden con-
figurations actually correspond to three unwanted operations: (a) corresponds to cancellation of a
triplex, (b) to creation of a triplex and (c) to creation of a semi-directed cycle(of the length 3).
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Algorithm 1 Pseudo-code for theLabelingAlgorithm (G).
1: input a CGG = (N,A ,L )
2: put i = 0
3: initialize Gℓ

i = (N,A ,L ℓ) by replacing every linea−−−b in G by a−•−−• b in Gℓ
i

4: while at least one forbidden configuration is present inGℓ
i do

5: i = i +1
6: Gℓ

i = modify Gℓ
i−1 by applying one of the following rules (see also Figure 6):

(a) if a−→ b−−−• c in Gℓ
i−1 anda andc are not adjacent thenb−−−x c in Gℓ

i
(b) if a−−−b−•−− c in Gℓ

i−1 anda andc are not adjacent thenb−x−− c in Gℓ
i

(c) if a−−−x b−−−x c−•−− a in Gℓ
i−1 thenc−x−− a in Gℓ

i
7: end while
8: returnGℓ = Gℓ

i

The point is that the result of the labelling algorithm is invariant with respect tothe order in
which the blocking rules are applied.

Proposition 18 For any CG G, the labeled graph Gℓ=LabelingAlgorithm (G) is unique. This
means that the output of the labeling algorithm does not depend on the ordering in which the three
blocking rules are applied.

The proof can be found in the Appendix. In the rest of the paper,Gℓ will always denote the
labeled version ofG resulting from the application of Algorithm 1. An example of application of
the labeling algorithm is given in Figure 7.

Note that Algorithm 1 is specified so that just one single label is changed in one iteration. This
is useful in the proofs of the results of this section, but may be inefficient inpractice. A more
efficient implementation of the procedure can be achieved by applying the rules (a) and (b) first in a
multi-step, and then only applying the rule (c) iteratively. This follows from Proposition 18 and the
fact that the application of the rules (a) and (b) does not depend on the result of previous iterations
of Algorithm 1.

6.2 Directing Algorithm

Thedirecting algorithm, described in Algorithm 2, is the second building block of the deflagging
procedure. It replaces some (labeled) lines with arrows in order to possibly reduce the number of
flags in the original CG. More precisely, every line of the forma−x−−• b is replaced with the arrow
a−→ b and then the labels on other lines are removed.

Algorithm 2 Pseudo-code for theDirectingAlgorithm (Gℓ).

1: input a labeled CGGℓ = (N,A ,L ℓ)
2: Gℓ

∗ = modify Gℓ by applying the following rule:

a−x−−• b in Gℓ ⇒ a−→ b in Gℓ
∗

3: G′= unlabeled version ofGℓ
∗

4: returnG′

We show that if the directing algorithm is applied to the result of the labeling algorithm then an
AMP equivalent graph is obtained.
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Figure 7: An example of the application of the labeling algorithm to be read following the number-
ing. Initially, all lines of G are replaced with labeled lines with free endings. Then, in
every pair of successive pictures, a forbidden configuration is highlighted and the corre-
sponding rule is applied.
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Theorem 19 Let G be a CG, Gℓ denote the labeled graph obtained from G by Algorithm 1, and G′

the graph resulting from Gℓ by Algorithm 2. Then G′ is a CG which is triplex equivalent to G.

The proof is relatively long and we have placed it in the Appendix. Clearly,one hasG≥ G′

and, hence,G � G ′ for the respective equivalence classes. Moreover, one hasG 6= G′ unless no
line is replaced with an arrow in the directing phase. An example of the application of the directing
algorithm will be shown in the next section.

6.3 Overall Procedure

The application of the above algorithms to a CGG produces a graphG′ in the same AMP equiva-
lence class such thatG≥ G′. However,G′ still need not be a maximally deflagged graph and one
can then apply the same procedure toG′. In Algorithm 3, we provide the pseudo-code of the over-
all deflagging procedure which consists in repeated application of both algorithms until no line is
replaced with an arrow during the directing phase. Its result will be denoted by Ĝ.

Algorithm 3 Pseudo-code for theDeflaggingProcedure (G).
1: inputG = (N,A ,L )
2: j = 0
3: initialize Ĝ j = G
4: repeat
5: j = j +1
6: Ĝℓ

j−1 = LabelingAlgorithm(Ĝ j−1)

7: Ĝ j = DirectingAlgorithm(Ĝℓ
j−1)

8: until Ĝ j is equal toĜ j−1

9: returnĜ = Ĝ j

SinceG has a finite number of lines, the procedure will return a result in finitely many steps.
An example of the application of the deflagging algorithm is given in Figure 8. Note that, in this
example,Ĝ is already the largest deflagged graph from Figure 4; however, this is not true in general.

x

x x

x

x

x

x

xx

G = Ĝ0 Ĝℓ
0 Ĝ1 Ĝℓ

1 Ĝ2 Ĝℓ
2 Ĝ = Ĝ3

Figure 8: An example of the application of the deflagging procedure, where G is the top left graph
in Figure 4. Note that the first application of the labeling algorithm, to obtainGℓ

0 from
Gℓ, is detailed in Figure 7.

We are to show that̂G is a deflagged graph, that is,Ĝ in H ↓ whereH ↓ is the class of deflagged
graphs in the respective AMP equivalence class. It follows from Algorithm 3 thatĜ is such that the
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directing algorithm does not direct any line if applied to the labeled version ofĜ. This means, every
line in Ĝℓ is either of the type−•−−• or of the type−x−−x .

Proposition 20 Let G be a CG such that there is no line of asymmetric form−x−−• in its labeled
version Gℓ. Then, every line a−−−b in G such that a−x−−x b in Gℓ is a line in every CG F which is
triplex equivalent to G.

The proof is again postponed to the Appendix. Proposition 20 is not valid if the assumption on
G is omitted. A counterexample is given in Figure 8 whereG = Ĝ0 andF = Ĝ. A consequence of
Proposition 20 is that every flag in̂G is an essential flag.

Corollary 21 Given a CG G, the grapĥG = DeflaggingProcedure(G) is a deflagged graph,
formally Ĝ in H ↓.

Proof By Theorem 19,Ĝ belongs to the same AMP equivalence classH asG. Owing to Propo-
sition 8, we need to show that ifa−→ b−−−d is a flag inĜ then it is an essential flag. By the
blocking rule (a)a−→ b−−−d in Ĝ impliesa−→ b−−−x d in Ĝℓ. Since there are no lines of the
form −•−−x in Ĝℓ, it necessitatesa−→ b−x−−x d in Ĝℓ. It follows from Proposition 20 thatb−−−d
in H for everyH ∈H. As a−→ b−−−d has to correspond to a triplex inH, one can conclude that
a−→ b−−−d in H.

Note that the arguments in the proof above actually imply that a simple sufficient condition for
a CG to be deflagged is that its labelled version has no line of asymmetric form.

7. Conclusions

This paper is devoted to the problem of choosing a graphical representative of the statistical model
ascribed to a CG under AMP interpretation. As a matter of fact, any CG from the respective AMP
Markov equivalence class provides a graphical representative of the corresponding model. However,
a representative only makes sense if it complies with some properties that uniquely identify it within
each class. Furthermore, in the framework of structural learning, the usefulness of a graphical
representative is related to the availability of procedures which can be practically dealt with. That
means, for instance, that an implementable construction procedure to obtain the representative (on
the basis of any other graph in the Markov equivalence class) should beat our disposal.

Nevertheless, from the point of view of interpretation, a representativeshould be chosen on the
basis of the information carried with respect to the corresponding statisticalmodel. Hereafter, we
address the issue of the information contained in the largest deflagged graph, which is the represen-
tative for an AMP chain graph model we have proposed.

Andersson et al. (2001, Theorem 4) showed that, for a CGH, the AMP and the LWF Markov
properties coincide iffH has no flags. Thus, if there exists a CG without flags inH then formal
distinction between the two Markov properties is not necessary. In this case, all the results derived
in the LWF case can be applied. For instance, the useful factorization of conditional densities into
‘potentials’ given by Frydenberg (1990, Theorem 4.1(iii) ) can be applied in the AMP case only
with respect to CGs without flags. Clearly, there is a strong connection between the set of CGs
without flags and the setH ↓ of deflagged graphs. More specifically,H has a CG without flags iff
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there are no essential flags inH. In this case, the class of deflagged graphsH ↓ is just the class of
CGs without flags inH. Conversely, if there exists some essential flag inH ↓ then one can conclude
that there is no CG inH for which the two Markov properties coincide. Because deflagged graphs
only contain essential flags, they eliminate the ambiguity resulting from the non-unique graphical
representation of triplexes, and allow an immediate comparison with the LWF case.

The above reasons justify our restriction to the class of deflagged graphs. Now we justify the
choice of the largest deflagged graph inH ↓. If H ↓ contains no flags thenH↓ is the largest CG
without flags inH. Thus, if H contains an undirected graph then the largest deflagged graphH↓

coincides with that undirected graph. Analogously, ifH contains an acyclic directed graphD then
H↓ coincides with the essential graphD∗ for D (Andersson et al., 1997; Studený, 2004; Roverato,
2005). We remark that the AMP essential graphH∗ proposed by Andersson et al. (2001) is a de-
flagged graph (see Andersson and Perlman, 2006, Lemma 3.2(a) ) so that H∗ ≤H↓. Nevertheless, in
general, the largest deflagged graphH↓ is different from the AMP essential graphH∗: for instance,
if H contains an undirected graph thenH∗ may even have some arrows (see Andersson et al., 2001,
Figure 14).

Another issue related to the problem of representative choice is the topic ofcausal discovery in
CGs (see Section 11.2 of Lauritzen, 2001). This is a controversial topic (see Section 3 of Dawid,
2002, for more discussion). The disputable question is whether one can identify some causal rela-
tionships between variables on the basis of data. Nevertheless, what we think that what is generally
accepted in the field of causal discovery is the following proposition:

If data are “generated” from a distribution which is “faithful” with respectto a CG and
if an arrowa−→ b is not invariant across the respective Markov equivalence class, then
onecannotreveal possible causal relationship froma to b on basis of data.

In short, one cannot make causal discovery betweena andb if there is anundirectededge betweena
andb in at least one of the chain graphs from the Markov equivalence class,or if there are two chain
graphs such thata−→ b in the one of them first andb−→ a in the latter one. On the other hand, if
an arrowa−→ b is invariant across the respective Markov equivalence class then causal discovery
could be possible. Consequently, from the point of view of causal discoveryin chain graphs, a
good representative of a Markov equivalence class should indicate that the corresponding edge is
not an invariant arrow by the presence of a line. Standard representatives in the LWF case, such as
the largest CGs (Studený, 1997), the essential graphs for acyclic directed graphs (Andersson et al.,
1997), and theB -essential graphs (Roverato and La Rocca, 2006), are fully informative from this
point of view because they have the largest number of lines and, furthermore, they contain an arrow
if and only if it is invariant. As the examples in Figures 2 and 4 show, a CG with thisproperty may
not exist in an AMP equivalence class and therefore both the AMP essential graph and the largest
deflagged graph may contain some arrows that are not invariant. However, the largest deflagged
graph is more informative than the AMP essential graph because it is a larger chain graph and,
therefore, it has more lines.

We have not mentioned this explicitly but, in this paper, we have actually provided an algo-
rithmic characterization of the largest deflagged graphs. More specifically, a CG G is the largest
deflagged graph iff it is again obtained by the consecutive application of two procedures: the de-
flagging procedure is applied toG and the component merging procedure to its resultĜ.
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The results of the paper also lead to some natural open problems. For instance, we would like
to know whether the converse of Proposition 20 is valid. More specifically,does the deflagging
procedure identify all essential lines inH as double-blocked lines? Further conjecture is that the
AMP essential graph is obtained if the deflagging procedure is applied to thelargest deflagged
graph. Another issue is as follows. We know that both LWF and AMP Markov equivalence are
associated to Markov properties for CGs. Is there any Markov property for CGs which gives rise to
the strong equivalence of CGs?
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Appendix A. Proofs

Proof of Proposition 12

Throughout the proof we assume thatG andH are strongly equivalent CGs. LetG∪H andG∨H
denote the graphs introduced in Lemma 11. We start with an auxiliary observation.

Fact 1 Let d0−→ d1 be a cyclic arrow in G∪H andρ : d0,d1, . . . ,dm≡ d0, m≥ 3 a semi-directed
cycle in G∪H containing it which cannot be shortened (to a semi-directed cycle in G∪H containing
d0−→ d1 of the length l< m). Then d2−→ d1 in one of the graphs G and H while d0−→ d2 in the
other graph.

Proof SinceG is a CG, there exist 2≤ j ≤mwith d j−1←− d j in G and the same conclusion holds
for H. Let us put

s= min{2≤ j ≤m; d j−1←− d j either inG or in H }.

Let us, without loss of generality, assume thatds−1←− ds in G. Thend0, . . . ,ds−1 is a descending
pathG. Moreover, observe thatd1, . . . ,ds is necessarily a descending path in the other graph, namely
in H. This impliess< m for otherwiseρ is a semi-directed cycle in a CGH.

The next step is to verify that[ds−2,ds] is an edge inG∪H. This is because otherwiseds−→
ds−1←− ds−2 is an immorality inG or ds−→ ds−1 −−−ds−2 is a flag inG, which, by strong equiv-
alence ofG andH, implies thatds −→ ds−1 in H and this contradicts the assumption thatρ is a
semi-directed cycle inG∪H.

Since H is a CG andds−2,ds−1,ds a descending path inH, one has eitherds←− ds−2 or
ds−−−ds−2 in H, and, therefore, inG∪H.

Thus, necessarilys= 2; otherwiseρ could be shortened inG∪H by the edge[ds−2,ds] to get
a shorter semi-directed cycle containingd0 −→ d1 which would contradict its definition. Thus,
d2 −→ d1 in G. The facts thatH is a CG,[d0,d2] = [ds−2,ds] is an edge inH, d0 −→ d1 in H and
eitherd1−→ d2 or d1 −−−d2 in H imply thatd0−→ d2 in H.
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Fact 2 There is no cyclic arrow a−→ c in G∪H which belongs either to an immorality a−→ c←−
b or to a flag a−→ c−−−b in G∪H.

Proof For a contradiction, suppose that at least one such cyclic arrow exists.Choose a semi-directed
cycle ρ : d0,d1, . . . ,dm≡ d0, m≥ 3 in G∪H of shortest possible length among all semi-directed
cycles containing an arrow of this kind. Assume thatd0 = a−→ c = d1 is that arrow inG∪H and,
using Fact 1, observe thatd2−→ d1 in one of the graph, say inG, while d0−→ d2 in the other graph
H.

Consider the induced subgraph over{a,c,b}mentioned in the formulation of Fact 2. As[a,b] is
not an edge inG∪H whereas[d0,d2] = [a,d2] is an edge inH, one hasd2 6= b. Observe thatc←− b
or c−−−b in G. Indeed, otherwisec−→ b in G implies¬(c−→ b in H) by the assumption of Fact
2, andH has either an immoralitya−→ c←− b or a flaga−→ c−−−b. By strong equivalence of
G andH, G has the same induced subgraph for{a,c,b}, which contradicts the factc−→ b in G. By
interchange ofG andH derive thatc←− b or c−−−b in H as well.

This allows one to see that[b,d2] is an edge inG∪H as otherwise the induced subgraph ofG
for {d2,d1 = c,b} havingd2−→ d1 coincides, by strong equivalence ofG andH, with the subgraph
of H and the conclusiond2 −→ d1 in H contradicts the assumption thatρ is a semi-directed cycle
in G∪H. Sinceb,c,d2 is a descending path inH one has eitherb−→ d2 or b−−−d2 in H.

Thus, H has either an immoralityd0 −→ d2←− b or a flagd0 −→ d2 −−−b. SinceG and
H are strongly equivalent,G has the same induced subgraph for{d0,d2,b}. Of course, the same
conclusion holds forG∪H andd0−→ d2 is an arrow inG∪H belonging to a triplex.

Hence, it is impossible thatm> 3 as otherwiseρ can be shortened tod0,d2, . . . ,dm = d0 by a
cyclic arrowd0 −→ d2 of the considered type which contradicts its definition. However, ifm= 3
then the factd3 ≡ d0 −→ d2 in G∪H contradicts the assumption thatρ is a semi-directed cycle in
G∪H.

Observe easily by contradiction that ifG andH are strongly equivalent then

[d] if a−→ c both inG and inH then an induced subgrapha−→ c−→ b occurs inH iff it occurs
in G.

This observation is used in the proof of the following fact and also later.

Fact 3 There is no cyclic arrow c−→ b in G∪H which belongs to an induced subgraph a−→
c−→ b in G∪H.

Proof For a contradiction, suppose that such an arrow exists. Choose a semi-directed cycle
ρ : d0,d1, . . . ,dm≡ d0, m≥ 3 in G∪H of shortest possible length among all semi-directed cycles
containing an arrow of this kind. More specifically, assume thatd0 = c−→ b = d1 in G∪H. By
Fact 1 observe that one can assumed2−→ d1 in G andd0−→ d2 in H. One has eitherd2←− d1 or
d2 −−−d1 in H for otherwised2−→ d1 in G∪H contradicts the assumption thatρ is a semi-directed
cycle. Asa−→ c in H whereasd2←− d0 = c in H, one hasa 6= d2.

Observe, by contradiction, that[a,d2] is not an edge inG∪H. Indeed, otherwisea−→ c =
d0−→ d2 in a CGH impliesa−→ d2 in H andH has either an immoralitya−→ d2←− d1 or a flag
a−→ d2 −−−d1. Thus,G has the same subgraph for{a,d2,d1} which contradicts the factd2−→ d1

in G.
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Thus,H has an induced subgrapha−→ c= d0−→ d2, which implies, by the condition [d] men-
tioned above Fact 3, thatG has the same induced subgraph. In particular,G∪H has this induced
subgraph as well. Thus, necessarilym≤ 3 for otherwiseρ can be shortened inG∪H by d0−→ d2

to get a shorter cycle of the required type. Ifm= 3 thend3 = d0 −→ d2 in G∪H implies a contra-
dictory conclusion thatρ is not a semi-directed cycle inG∪H.

Now, the proof of Proposition 12 follows directly from Lemma 11 and Facts 2 and 3. SinceG
andH are strongly equivalent an immorality or a flag inG occurs also inH and, therefore, inG∪H.
By Fact 2 it is preserved inG∨H. Conversely, ifa−→ c←− b is an immorality inG∨H then it is
also inG. If a−→ c−−−b is a flag inG∨H thena−→ c both inG and inH. The optionc←− b
in one of the graphsG andH is excluded because then the graph has an immoralitya−→ c←− b,
which is saved inG∨H. If c−→ b in both graphs thenG∪H has an induced subgrapha−→ c−→ b.
By Fact 3 the arrowc−→ b remains inG∨H which contradicts the assumption. Thus,c−−−b either
in G or in H and this implies, by their strong equivalence, that the flaga−→ c−−−b is in G.

Proof of Proposition 15

This proposition is analogous to the result on LWF equivalence and feasible merging given in The-
orem 8 of Roverato (2005). It says this:

Given a CGGand a meta-arrowU ⇉ L in G, the conditions (i) and (ii) from Definition 3
form together a necessary and sufficient condition for the graphG′ obtained by merging
U andL to be a CG which is complex equivalent toG.

In fact, we utilize this result in our proof of Proposition 15. Recall that the condition [i] from
Definition 14 is identical to the condition (i) from Definition 3 and the condition [ii] from Definition
14 is stronger than (ii) from Definition 3.

Proof First, we are going to verify the necessity of the conditions [i]-[iii]. Since strong equivalence
of CGs implies their complex equivalence the necessity of conditions (i)-(ii) follows from Theorem
8 in Roverato (2005). The conditions [i] and (i) are identical, but [ii] is stronger than (ii). Indeed,
[ii] requires equality of sets paG(L) \U and paG(b) for every b ∈ K whereas (ii) only requires
paG(L)\U ⊆ paG(b).

Thus, to verify [ii] it suffices to show

• ∀b∈ K paG(b)⊆ paG(L)\U .

Suppose for contradiction thatb∈ K anda∈ paG(b) exists witha 6∈ paG(L)\U . Thend ∈ L exists
such thatb−→ d in G. Of course,a 6= d and, sinceG is a CG, the optionsa←− d anda−−−d in G
cannot occur. The optiona−→ d is excluded by the assumptiona 6∈ paG(L)\U . If [a,d] is not an
edge inG thenG has an induced subgrapha−→ b−→ d while G′ has a flaga−→ b−−−d which
contradicts the assumption that they are strongly equivalent.

The next step is to verify the necessity of the condition

[ĩii] for every d ∈ L one has paG(L)⊆ paG(d),

which is an equivalent formulation of [iii]. Let us fixd∈ L. Givenb∈ paG(L), to show thatb−→ d
in G two cases can be distinguished.
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• b∈U , that is,b∈ K.
Then there existsg ∈ L with b−→ g in G. If g 6= d then one can consider a pathb−→
g−−− . . . −−−d in G and its shorteningρ which cannot be shortened any more. If[b,d] is not
an edge inG thenG has a flagb−→ e−−− f composed of nodes ofρ. This contradicts the
assumption thatG andG′ are strongly equivalent since one hasb−−−e in G′ by definition of
merging. Thus,[b,d] is an edge andb−→ d in G sinceG is a CG.

• b∈ paG(L)\U .
Observe thata∈ K exists by Definition 1 andb−→ a follows from (ii). Moreover, one has
a−→ d in G by the previous case. If[b,d] is not an edge thenG has an induced subgraph
b−→ a−→ d while G′ has a flagb−→ a−−−d which contradicts the assumption that they
are strongly equivalent. Thus,[b,d] is an edge, namelyb−→ d in G becauseG is a CG.

This concludes the proof of the necessity of conditions [i]-[iii].

Second, we prove the sufficiency of those conditions. Since they imply the conditions (i)-(ii)
from Definition 3, it follows from Theorem 8 in Roverato (2005) thatG′ is a CG which is complex
equivalent toG but strictly larger. In particular,G andG′ have the same immoralities and, to show
that they are strongly equivalent, it suffices to verify that they have identical flags.

If a−→ b−−−d is a flag inG then we are to show that it is a flag inG′. The only option which
avoids the desired conclusion isa∈U andb∈ L. However, thend ∈ L and by [iii] observea−→ d
in G which contradicts the assumption.

If a−→ b−−−d is a flag inG′ then the factG′ ≥ G impliesa−→ b in G and the only option
which avoids the desired conclusion thata−→ b−−−d is a flag inG is that [b,d] was modified.
There are basically two cases.

• If b∈ L andd ∈U thena−→ b←− d is an immorality inG and, because of complex equiv-
alence of graphs, also inG′. This contradicts the assumption.

• If b ∈ U andd ∈ L then observeb ∈ K and by [ii] a ∈ paG(b) ⊆ paG(L) \U . By [iii] get
a∈ paG(d) which contradicts the assumption.

Thus, the sufficiency proof is finished.

Proof of Proposition 16

Basic observation which is needed is as follows.

Fact 4 Let E,F,G be CGs over N with the same underlying graph such that E≥ F ≥ G and the
following condition holds for any c∈ N:

[e] if there exists a∈ N with a−−−c in E and a−→ c in F then for every b∈ N with c−−−b in
F one has c−−−b in G.

If E and G are strongly equivalent then F is strongly equivalent to them as well.
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Note that the conclusion of Fact 4 need not be valid if the condition [e] is omitted: consider
N = {a,b,c}, E an undirected graph witha−−−c−−−b, F a CG witha−→ c−−−b andG a directed
graph witha−→ c−→ b.

Proof We can show thatF is strongly equivalent toE. If a−→ c←− b is an immorality inE then
E≥ F implies that it is an immorality inF . Conversely, ifa−→ c←− b is an immorality inF then
F ≥G implies that it is an immorality inG and, therefore, inE.

If a−→ c−−−b is a flag inE, then it is a flag inG which impliesc−−−b in F by F ≥G. Since
a−→ c in F by E ≥ F the graphF has a flaga−→ c−−−b.

If a−→ c−−−b is a flag inF , thenF ≥G impliesa−→ c in G. We first verifya−→ c in E by
excluding two other variants of the edge[a,e] in E. SinceE ≥ F the casea←− c in E is excluded.
The casea−−−c in E is also excluded, this time owing to the condition [e] from the assumption of
Fact 4. Indeed, [e] saysc−−−b in G, which implies thata−→ c−−−b is a flag inG and, therefore,
in E, which contradicts the assumptiona−−−c in E. Thus,a−→ c in E and the aim is to show
c−−−b in G. It can be shown by contradiction.

• If c←− b in G thena−→ c←− b is an immorality inG and, therefore, inE, which implies,
by E ≥ F , a contradictory conclusionc←− b in F .

• If c−→ b in G thena−→ c−→ b is an induced subgraph inG. By the condition [d] mentioned
above Fact 3 applied toG andE, it is also an induced subgraph inE. The assumptionE ≥ F
then implies a contradictory conclusionc−→ b in F .

Hence,a−→ c−−−b is a flag inG, and therefore inE.

The main step is the following ‘sandwich lemma’.

Fact 5 Let G,E be strongly equivalent CGs, E≥ G, E 6= G. Then there exists a CG F which is
strongly equivalent to G and E, such that E≥ F ≥G and E is obtained from F by legal merging of
components.

Note that the idea of the proof of this proposition is analogous to the proof ofTheorem 7 in
Roverato (2005).

Proof SinceE ≥ G, every component inE is the union of components inG and the assumption
E 6= G implies that there exists a componentC in E containing at least two components inG. As
GC is a CG one can find a terminal componentT in it. By the constructionC\T 6= /0 and there is an
arrow fromC\T to T in G. Let us construct a hybrid graphF from E by replacement of all lines
betweenC\T andT in E by arrows fromC\T to T. Observe the following facts.

{a} F is a CG.
Assume for contradiction thatF has a semi-directed cycleρ. SinceFN\C = EN\C is a CG and
FC is a CG by construction,ρ has an edge betweenN\C andC, namely an arrow. This arrow
is also an arrow inE (with the same direction); the other arrows ofρ either are kept inE or
become lines, the lines ofρ retain inE. Therefore,ρ has to be a semi-directed cycle inE,
which contradicts the assumption.
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{b} E ≥ F ≥G andF 6= E.
The factE ≥ F is evident. To seeF ≥ G observe that ifa−→ b in F then eithera−→ b in
E in which caseE ≥G impliesa−→ b in G, or a−−−b in E. In the latter casea∈C\T and
b∈ T which also implies, by the definition ofT, thata−→ b in G.

{c} C\T is a connected set inF and, therefore, it is a component inF .
Indeed, suppose for contradiction that distincta,b∈C\T exist which are not connected by
an undirected path inFC\T = EC\T . SinceC is a connected set inE, one can construct a path
ã−→ c1 −−− . . . −−−cm←− b̃, m≥ 1 in F with somec1, . . . ,cm ∈ T and ã, b̃∈C\T such
that [ã, b̃] is not an edge inF . This path has the same form inG and can be shortened to a
complex inG. This complex is not inE which contradicts the assumption thatE andG are
strongly equivalent since strong equivalence implies complex equivalence.

{d} F is strongly equivalent toG andE.
This follows from Fact 4 owing to{a} and{b}. The condition [e] from Fact 4 holds because
of the construction ofF : if a−−−c in E anda−→ c in F thenc∈ T andc−−−b in F implies
b∈ T for which reasonc−−−b in G.

Now, the conclusion thatE is made ofF by legal merging of components is easy to see. The condi-
tion {c} implies that bothC\T andT are components inF andE is obtained fromF by merging
of the upper componentU ≡C\T and the lower componentL ≡ T. SinceE andF are strongly
equivalent is follows from Proposition 15 that the merging is legal.

Now, the proof of Proposition 16 is easy. The required sequenceG= F1, . . . ,Fm = H, m≥ 1 can
be constructed backwards by consecutive application of Fact 5 toG andE≡ Fi to getFi−1 = F until
Fi−1 is the graphG. Of course, one starts withFm = H, wherem−1 is the difference between the
numbers of components ofG andH.

Proof of Proposition 18

Assume for contradiction that two different orderings of applications of blocking rules leads to two
different labeled graphsGℓ(1) and Gℓ(2). Since they only differ in their labels, one can assume
without loss of generality thatGℓ(1) has at least one blocked label that is ‘free’ inGℓ(2). Let us fix
a sequence of iterationsGℓ(1)

0 ,Gℓ(1)
1 , . . . ,Gℓ(1)

n = Gℓ(1), n≥ 2 leading toGℓ(1). Let Gℓ(1)
i be the first

graph in this sequence which has a blocked label that is ‘free’ inGℓ(2), saya−x−− d ∈ Gℓ(1)
i and

a−•−− d ∈Gℓ(2). In particular,b−x−− c in Gℓ(1)
j for j < i impliesb−x−− c in Gℓ(2).

We now show thata−x−− d ∈ Gℓ(1)
i and a−•−− d in Gℓ(2) implies thatGℓ(2) has a forbidden

configuration, which contradicts the assumption. There are three possiblecases.

1. If a−x−− d in Gℓ(1)
i is blocked ata by the rule (a) then there exists a vertexb such thatb−→

d −−−a is a flag inG (cf. Algorithm 1). In particular,b−→ d −−−• a in Gℓ(2) is a forbidden
configuration inGℓ(2).

2. If a−x−− d in Gℓ(1)
i is blocked ata by (b) then there exists a vertexb with b−−−a−−−d in G,

while [b,d] is not an edge inG. Thenb−−−a−•−− d is a forbidden configuration inGℓ(2).
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3. If a−x−− d in Gℓ(1)
i is blocked ata by the rule (c) then there exists a vertexb such that the

following forbidden configuration

x

x

a

b d

appears inGℓ(1)
i−1 . As mentioned above, blocking labels inGℓ(1)

j for j < i also occur inGℓ(2).

Thus, that forbidden configuration is also present inGℓ(2).

Proof of Theorem 19

Throughout the proof we assume thatG is a CG,Gℓ the labeled version ofG obtained fromG by
the labeling algorithm andG′ the hybrid graph obtained fromGℓ by the directing algorithm. The
overall aim is to show thatG′ is a CG triplex equivalent toG. To improve the readability of the
proof, we split it into more elementary facts. The first goal is to show thatG′ has no semi-directed
cycle of the length 3. This is the main step to show that it has no semi-directed cycles at all, that is,
it is a CG. Finally, we prove thatG′ is triplex equivalent toG.

We start with two auxiliary facts.

Fact 6 If there is a semi-directed cycle in G′ then it is undirected in G.

Proof Assume for contradiction thatρ : d0, . . . ,dn−1,dn = d0, n≥ 3 is a semi-directed cycle inG′

which has an arrowd0 −→ d1 in G. SinceG is a CG, there exists an arrowdi−1←− di , 2≤ i ≤ n
in G. Basic observation is that arrows inG are kept inG′ with the same direction. In particular,
d0−→ d1 anddi−1←− di in G′, which contradicts the assumption thatρ is a semi-directed cycle in
G′.

Fact 7 If ρ : a,b,d,a is a semi-directed cycle of the length 3 in G′ with a−→ b in G′ then it corre-
sponds to the following configuration in Gℓ:

x

a

b d

(5)

Proof By Fact 6,ρ consists of lines inG. As a−→ b in G′, it follows from Algorithm 2 thatρ
corresponds to the following configuration

x

a

b d

in Gℓ. We only need to show thatρ cannot occur in either of the following two configurations inGℓ:
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x

x

a

b d

or
x

x

a

b d

(A) (B)

Consider the case (A) and observe thata−−−d also has to have a blocked ending atd in Gℓ.
Indeed, otherwise by Algorithm 2a−→ d in G′ andρ is not a semi-directed cycle inG′, which
contradicts the assumption. Hence, we have

x
x

x

a

b d

in Gℓ. Now, it follows from Algorithm 1 thatb−−−d has a blocked ending atd. Indeed, otherwise
a forbidden configurationb−−−x a−−−x d −•−− b of type (c) exists inGℓ. Thus, the situation is as
follows:

x

x
x

x

a

b d

Again, b−−−d has a blocked ending atb for otherwise, by Algorithm 2,b←− d in G′ contradicts
the assumption thatρ is a semi-directed cycle. Thus,Gℓ

{a,b,d} looks like

xx

x
x

x

a

b d

which is, however, also impossible becausea−−−x d −−−x b−•−− a is a forbidden configuration of
type (c) inGℓ. Hence, the configuration (A) cannot occur. Using the same kind of reasoning, it is
also easy to check that the configuration (B) inGℓ is impossible. This is left to the reader.

Fact 8 G′ has no semi-directed cycle of the length 3.

Proof Suppose for contradiction thatG′ has a semi-directed cycle of the length 3. Thus, the set
A ′ of arrows inG′ belonging to (at least one of) those cycles is assumed to be non-empty. By Fact
6, every arrowe−→ f in A ′ corresponds to a linee−−− f in G, and, therefore, by the directing
algorithm, to a labeled linee−x−−• f in Gℓ. Let us fix a sequenceGℓ

0, . . . ,G
ℓ
n, n≥ 1 of labeled CGs

generated by the labeling algorithm. Clearly, everye−→ f in A ′ is assigned the unique 1≤ i ≤ n
such thate−x−− f in Gℓ

i ande−•−− f in Gℓ
j for j < i. Let a−→ b denote that arrow inA ′ which has

assigned the least suchi. In particular, ife−x−− f in Gℓ
i−1 thene−→ f does not belong toA ′.

Let us fix a semi-directed cycleρ : a,b,d,a of the length 3 inG′ containinga−→ b. By Fact
7, the subset of vertices{a,b,d} corresponds to the configuration (5) inGℓ and, because of the
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construction ofGℓ, also inGℓ
i . Now, we show that the occurrence of (5) inGℓ

i leads to contradiction
because the linea−•−−• b in the previous iterationGℓ

i−1 cannot be blocked ata by any of the blocking
rules from Algorithm 1.

1. If b−•−−x a is blocked ata on basis of the rule (a) then there exists a vertexg∈N, not adjacent
to a, such thatg−→ b in G. If we add this arrow to the configuration (5) inGℓ above then we
obtain (possibly omitting an edge betweeng andd)

x

a

b d

g

Nodesg andd are necessarily adjacent for otherwiseGℓ has a forbidden configurationg−→
b−−−• d of the type (a). Actually, one hasg−→ d in G as otherwiseG has a semi-directed
cycleg,b,d,g. However, theng−→ d −−−• a is a forbidden configuration of type (a) inGℓ,
which is impossible.

2. If a−x−−• b is blocked ata on basis of the rule (b) then there exists a vertexg∈N, not adjacent
to b, such thatg−−−a in G. If we add this line to the configuration (5) inGℓ and obtain
(possibly omitting an edge betweeng andd)

x

a

b d

g

Nodesg andd have to be adjacent for otherwise a forbidden configurationg−−−a−•−− d of
the type (b) exists inGℓ. As G is a CG, one hasg−−−d in G. However, theng−−−d −•−− b
is a forbidden configuration of type (b) inGℓ, which is impossible.

3. If a−x−−• b is blocked ata on basis of the rule (c) then there exists a vertexg such that
b−−−x g−−−x a−•−− b in Gℓ

i−1. As g−−−x a and d −−−• a in Gℓ one hasg 6= d. Thus, the
following configuration occurs inGℓ, where the possible edge betweeng andd is omitted:

x

x
x

a

b d

g

The nodesg andd have to be adjacent for otherwiseg−−−a−•−− d would be a forbidden
configuration of type (b) inGℓ. SinceG is a CG, one hasg−−−d in G. The ending of
g−−−d at g in Gℓ has to be free as otherwised −−−x g−−−x a−•−− d would be a forbidden
configuration of type (c) inGℓ. Analogously, its ending atd in Gℓ is also free for otherwise
b−−−x g−−−x d −•−− b would be a forbidden configuration of type (c) inGℓ. Thus,g−−−d has
both endings free inGℓ and
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x
x

x

a

b d

g

To show thata−−−g is blocked atg in Gℓ recall thata−x−− g in Gℓ
i−1. If a−x−−• g in Gℓ

then Algorithm 2 implies thata,g,d,a is a semi-directed cycle inG′ (note thatd −−−• a in Gℓ

implies that eitherd −→ a or d −−−a in G′). This, however, means thata−→ g belongs to
A ′, which contradicts the choice ofa−→ b: as mentioned above, that choice ensures that if
e−x−− f in Gℓ

i−1 thene−→ f does not belong toA ′.

The conclusion thatg−−−b is blocked atb in Gℓ can be derived analogously. Ifg−x−−• b in Gℓ

then Algorithm 2 implies thatg,b,d,g is a semi-directed cycle inG′. Theng−→ b belongs
to A ′ which is not possible because of the factg−x−− b in Gℓ

i−1.

Hence, one has bothg−x−−x b andg−x−−x a in Gℓ, and the situation is as follows:

x
x x

x

x

a

b d

g

(6)

However, the configuration (6) has a subconfigurationa−−−x g−−−x b−•−− a which is a for-
bidden configuration of type (c) inGℓ. This contradicts the assumptions.

This completes the proof.

Fact 9 The graph G′ has no semi-directed cycle.

Proof We show that ifG′ has a semi-directed cycle of the lengthk+ 1, wherek≥ 3 then it has a
semi-directed cycle of the lengthl , 3≤ l ≤ k. This, together with Fact 8, implies what is desired.

Assume thatρ : a,b,g1, . . . ,gk−1,a, k≥ 3 is a semi-directed cycle inG′ with a−→ b in G′. By
Fact 6,a−−−b in G and Algorithm 2 implies thatρ corresponds to the following configuration

x

a

b g1

gk−1

in Gℓ, where the dotted connection stands for an undirected path and some edges are possibly
omitted. It follows from Algorithm 1 thata andg1 are adjacent inG for otherwiseg1 −−−b−•−− a
is a forbidden configuration of the type (b) inGℓ. As G is a CG,a−−−g1 in G and the situation is
as follows:

x

a

b g1

gk−1
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If either a←− g1 or a−−−g1 in G′ thena,b,g1,a is a semi-directed cycle of the length 3 inG′. On
the other hand, ifa−→ g1 in G′ thena,g1,g2, . . . ,gk−1,a is a semi-directed cycle of the lengthk in
G′.

Thus, we have verified thatG′ is a CG. The last step is to show that it is in the AMP equivalence
class containingG.

Fact 10 G′ is triplex equivalent to G.

Proof We already know thatG and G′ are CGs with the same underlying graph. Moreover, it
follows from the construction ofG′ thatG≥G′.

In particular, every immorality inG remains inG′. Thus, to verify that triplexes inG are also
in G′ it is enough to show that every flaga−→ b−−−d in G remains a triplex inG′. As a−→ b in
G′, the only option of canceling the triplex〈{a,d},b〉 is if b−→ d in G′. Then Algorithm 2 implies
a−→ b−x−−• d in Gℓ, which is, however, a forbidden configuration of type (a) inGℓ (cf. Algorithm
1).

Now, we show that triplexes inG′ are also inG. Realize thatG≥ G′ implies that an arrow
in G′ cannot be an arrow with the opposite direction inG. Thus, if a−→ b−−−d is a flag inG′

then, by (2), eithera−→ b−−−d or a−−−b−−−d in G. By Algorithm 2, the latter case means
a−x−−• b−−−d in Gℓ, which is a forbidden configuration of type (b). Analogously, ifa−→ b←− d
is an immorality inG′ that does not correspond to a triplex inG thena−−−b−−−d in G. Hence,
a−x−−• b−•−−x d in Gℓ, which is also a forbidden configuration of type (b).

Proof of Proposition 20

Recall thatG is a CG such that there is no line of the form−x−−• in its labeled versionGℓ. Let F be
a CG which is triplex equivalent toG. We are to show thata−−−b in F whenevera−x−−x b in Gℓ.
Suppose for contradiction that there exists (at least one) line of the forme−x−−x f in Gℓ such that
e−→ f in F . Thus, the setAF of arrowse−→ f in F of the forme−x−−x f in Gℓ is assumed to be
non-empty.

Let us fix a chain of componentsC1, . . . ,Cm, m≥ 1 in F . Let k be the highest 1≤ k≤m such
that there exists an arrowe−→ f from AF with f ∈Ck. Denote byA ′F the subset ofAF consisting
of arrowse−→ f with f ∈Ck. Clearly,A ′F 6= /0.

The next step is to fix a sequenceGℓ
0, . . .G

ℓ
n, n≥ 1 of labeled CGs generated by Algorithm 1.

Everye−→ f from A ′F is assigned unique 1≤ i ≤ n such thate−−−x f in Gℓ
i ande−−−• f in Gℓ

j for
j < i. Let a−→ b denote the arrow fromA ′F which has assigned the least suchi. Observe that this
choice ofa−→ b ensures that the following two conditions are valid.

(I) If b−→ d in F for some noded thenb−→ d does not belong toAF .

This is becauseb∈Ck. The fact thatC1, . . . ,Cm is a chain forF impliesd ∈Cl with l > k. However,
k was chosen so that no arrowe−→ f from AF with f ∈Cl for l > k exists.

(II) Whenevere−−−x f in Gℓ
i−1 thenA ′F does not containe−→ f .
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This follows from the choice ofi: a necessary condition fore−→ f to belong toA ′F is e−−−x f in
Gℓ

j only for j ≥ i, that is,e−−−• f in Gℓ
i−1.

Now, we are going to derive a contradictory conclusion thata−x−−x b cannot be blocked atb by
any of the blocking rules from Algorithm 1.

1. If a−x−−x b is blocked atb on basis of the blocking rule (a) then there exists a vertexd such
thatd −→ a−−−b in G andb is not adjacent tod. Hence,d −→ a−−−b is a flag inG. As
G andF are triplex equivalent,F has a triplex〈{b,d},a〉, which, however, contradicts the
assumptiona−→ b in F .

2. If a−x−−x b is blocked atb on basis of the blocking rule (b) then there exists a vertexd such
thata−−−b−−−d in G anda is not adjacent tod. This impliesb−→ d in F for otherwise
the facta−→ b in F implies that〈{a,d},b〉 is a triplex inF which is not inG. Moreover,
a−−−b−−−d in G implies, by the blocking rule (b) from Algorithm 1, thata−−−x b−x−− d
in Gℓ. BecauseGℓ has no lines of the form−x−−• this meansa−x−−x b−x−−x d in Gℓ. Thus,
b−→ d belongs toAF , contradicting the condition (I) above.

3. If a−x−−x b is blocked atb on basis of the blocking rule (c) then there exists a vertexd such
thata−−−x d −−−x b−•−− a in Ĝℓ

i−1. Thus, we have
x

x

xa b

d

in Gℓ. Since there is no line of the type−x−−• in Gℓ, we have

x

x

x

x

x xa b

d

(7)

in Gℓ, whereas the corresponding subgraph inF is

a b

d

(8)

where the dashed connection means that the nodes are adjacent. However, the configurations
(7) and (8) cannot coexist because any possible type of the edge betweend andb in F leads
to a contradiction.

• If d−→ b in F then (7) and the factb∈Ck imply d−→ b is in A ′F . As d −−−x b in Gℓ
i−1

this contradicts the condition (II) above.

• If d −−−b in F then d ∈ Ck and a −→ d in F for otherwiseF has a semi-directed
cycle. Hence, by (7)a−→ d belongs toA ′F . As a−−−x d in Ĝℓ

i−1 it also contradicts the
condition (II) above.

• If b−→ d in F then (7) givesb−→ d in AF contradicting the condition (I) above.

This concludes the proof.
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M. Studeńy, A. Roverato and S.̌Sťeṕanov́a. Two operations of merging components in a chain
graph. Submitted. Available electronically at
http://staff.utia.cas.cz/studeny/aa23.html, 2006.
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