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Abstract

The integer linear programming approach to structural learning of decomposable graphical models led us earlier to
the concept of a chordal graph polytope. An open mathematical question motivated by this research is what is the
minimal set of linear inequalities defining this polytope, i.e. what are its facet-defining inequalities, and we came up
in 2016 with a specific conjecture that it is the collection of so-called clutter inequalities. In this theoretical paper
we give an implicit characterization of the minimal set of inequalities. Specifically, we introduce a dual polyhedron
(to the chordal graph polytope) defined by trivial equality constraints, simple monotonicity inequalities and certain
inequalities assigned to incomplete chordal graphs. Our main result is that the vertices of this polyhedron yield the
facet-defining inequalities for the chordal graph polytope. We also show that the original conjecture is equivalent to
the condition that all vertices of the dual polyhedron are zero-one vectors. Using that result we disprove the original
conjecture: we find a vector in the dual polyhedron which is not in the convex hull of zero-one vectors from the dual
polyhedron.
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1. Introduction

The source of motivation for this paper is learning decomposable graphical models, which are assigned to chordal
undirected graphs. These are fundamental graphical statistical models [1] and one of the reasons for this is that their
elegant mathematical properties are at the core of the well-known method of local computation [2]. Decomposable
models can also be interpreted as special cases of Bayesian network models [3] assigned to directed acyclic graphs.5

In particular, most of the methods for structural learning of decomposable models follow the standard methods for
learning Bayesian networks [4]. We are specifically interested in the integer linear programming (ILP) approach to
structural learning of decomposable models. This approach is a special case of the score-based approach: methods of
ILP are used with the goal to maximize some additively decomposable score, like the BIC score [5] or the BDeu score
[6]. The idea behind the ILP approach is to encode graphical models by vectors whose components are integers in10

such a way that the standard scores turn into linear functions of the vector representatives, up to a constant term. Note
that the number of components of such vectors is inevitably exponential in the number of nodes of graphs. There are
also different ways to encode Bayesian network models by vectors and these ways were compared in [7].

The specific ILP approach to learning of decomposable models discussed in this paper is based on encoding
the models by vectors named characteristic imsets; these vectors were earlier introduced and tested in the context15

of learning Bayesian networks [8, 9]. This mode of representation leads to a particularly elegant way of encoding
chordal graphs. Nonetheless, an additional invertible linear mapping, named superset Möbius inversion in this paper,
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allows one to transform characteristic imsets into other vector representatives which have only a few non-zero com-
ponents; these components correspond to cliques and separators of the graphs and are, therefore, close to junction tree
representations of the graphs considered by other authors (see Section 1.2 below).20

The so-called chordal graph polytope was formally defined by two of us in a 2016 conference paper [10] as the
convex hull of all characteristic imsets for chordal graphs over a fixed set N of nodes, |N | ≥ 2. This polytope had
been introduced even earlier under a longer name by Lindner [11] in her 2012 thesis, where she derived some basic
observations on it.

We have also introduced in [10] special linear clutter inequalities valid for the vectors in the polytope, which25

correspond to singleton-containing clutters (= classes of inclusion incomparable sets, alternatively named Sperner
families or anti-chains) of subsets of N. Moreover, it was shown in our later 2017 journal paper [12] that each clutter
inequality is facet-defining for the chordal graph polytope; that is, it belongs to the minimal set of linear inequalities
defining the polytope. Note in this context that we do not distinguish between an inequality and its multiple by a
positive factor and that the uniqueness of the minimal defining set of linear inequalities is relative to the affine (=30

shifted linear) space generated by the polytope.
Let us explain here the motivation for characterizing the minimal set of inequalities delimiting the chordal graph

polytope. Assuming that one has such a theoretical characterization of this polytope at one’s disposal one would be
able to re-formulate common statistical learning tasks for decomposable models in the form of linear programming
(LP) problems instead of in the form of ILP problems, as is the present state of art. The main point here is that35

LP problems are polynomially solvable whereas ILP problems are NP-hard. Thus, while a number of highly efficient
methods are available to solve LP problems, the methods for solving ILP problems are based on repeated solving of LP
problems and may be computationally impractical. A theoretical characterization of facets of a domain polytope can
also be utilized to design an efficient implementation of the cutting plane method, which is one of standard methods
to solve ILP problems.40

Following the observations from [10, 12] we have raised a natural chordal graph conjecture there, saying that the
minimal set of inequalities defining the chordal graph polytope consists of the clutter inequalities and one additional
lower bound inequality which requires the non-negativity of the component for N. The conjecture has been confirmed
computationally in case |N | ≤ 5 and since then we have been trying quite intensively either to confirm or disprove it.

Note that if the conjecture had been confirmed then it would have established a kind of duality relationship between45

two important combinatorial categories, namely between chordal undirected graphs over N and clutters of subsets of
N containing singletons. Therefore, the raised question was also of fundamental theoretical importance from the point
of view of combinatorics. The conjecture was, however, refuted in the case |N | = 6 in our recent conference paper
[13] and this journal paper is an extended version of that conference contribution containing complete proofs of all
stated results.50

1.1. Highlights in this paper

Specifically, below we introduce a certain bounded polyhedron in [0, 1]P(N), where P(N) is the power set of
N, specified by a few elementary monotonicity inequalities and certain special inequalities assigned to incomplete
chordal graphs over N. The main result of the paper is that the vertices of this dual polyhedron yield all facet-defining
inequalities for the chordal graph polytope; thus, they give rise to the minimal set of inequalities characterizing it.55

A further observation is that the original chordal graph conjecture is equivalent to the condition that all vertices of
the dual polyhedron are zero-one vectors. We also show that the zero-one vertices of the dual polyhedron correspond
to singleton-containing clutters of subsets of N. In fact, each of these vertices is the indicator of supersets of sets in
such a clutter; that is, it is the indicator of the set filter generated by such a clutter. The latter observation allows us to
disprove the original chordal graph conjecture: we find a vector in the dual polyhedron for |N | = 6 which is not in the60

convex hull of the indicators of above-mentioned set filters.
Thus, an optimistic conjecture that facets of the chordal graph polytope over N correspond to special systems

of subsets of N was refuted. On the other hand, the findings from this paper do not ruin completely the hope in
characterizing facets of the chordal graph polytope and their use in the ILP approach to learning decomposable models
– see the discussion in Conclusions.65
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1.2. Other approaches to learning decomposable models
Our approach is not the only ILP approach to learning of decomposable models. Other authors have used vector

representatives of these models different from ours. Sesh Kumar and Bach [14] employed special codes for junction
trees that correspond to chordal graphs, while Pérez, Blum and Lozano [15, 16] used zero-one vector encodings of
certain special coarsenings of maximal hypertrees. Note in this context that they all have been interested in learning70

decomposable graphical models with a given clique size limit.
There are also approaches to structural learning of decomposable models which are not based on ILP but some

of them use encodings of junction trees as well. Corander et. al. [17] employed a constraint satisfaction approach
and expressed their search space of models in terms of logical constraints. Kangas, Niinimäki and Koivisto [18, 19]
applied the idea of decomposing junction trees into subtrees and used methods of dynamic programming. Rantanen,75

Hyttinen, and Järvisalo [20] have then employed a branch and bound method and integrated dynamic programming
as well.

Let us note in this context that the above mentioned superset Möbius inversions of characteristic imsets are nat-
urally related to the junction tree representatives of decomposable models used both by Sesh Kumar and Bach [14]
and by Kangas, Niinimäki and Koivisto [18, 19]. They are also linearly related to the so-called standard imsets for80

chordal graphs from [21, § 7.2.2]. We emphasize those links here because the coefficients of the inequalities assigned
to chordal graphs in our dual formulation of the problem are just components of these vector representatives (up to a
multiplicative factor).

1.3. Structure of this paper
In this paper we omit the concepts related to statistical learning of graphical statistical models because these85

concepts are not needed to present our result; the reader can find them in [12]. We assume that the reader is familiar
with elementary concepts from polyhedral geometry which can be found in standard textbooks like [22], [23] or [24].

In Section 2 we recall basic definitions and facts. In Section 3 we introduce the concept of a dual polyhedron and
formulate our theoretical results; their proofs are, however, moved to Appendices. Those results allow us to disprove
the chordal graph conjecture, which is done by means of Example 7 in Section 4. In Conclusions (Section 5) we90

summarize our findings and discuss potential future research directions.
Let us recall here what is the addition of the present paper compared to the original conference paper [13]. Because

of a page limit for [13] the proofs of some crucial results were skipped there or replaced by sketchy hints only. In this
paper detailed proofs are given; particularly concerning substantial Example 7 and (newly proved) Theorem 2. To
make the paper better to follow we have also incorporated new examples in Section 2.3 illustrating the role of clutter95

inequalities. The open questions from Conclusions are also new.

2. Basic concepts

Let N be a finite set of variables which correspond to the nodes of our graphs and in the statistical context are
interpreted as random variables. To avoid the trivial case we assume n := |N | ≥ 2. Let P(N) := {S : S ⊆ N} denote
the power set of N. We call a subset S ⊆ N a singleton if |S | = 1. Given a set system L ⊆ P(N), the symbol

⋃
L will100

denote the union of sets from L. Given a predicate P, the symbol δ (P) will denote the zero-one indicator of P, that is,
δ (P) = 1 if P holds and δ (P) = 0 if P does not hold.

2.1. Chordal graphs
An undirected graph G over N (= a graph G having N as the set of nodes) is called chordal if every cycle in G of

length at least 4 has a chord, that is, an edge connecting non-consecutive nodes in the cycle. A set S ⊆ N is complete105

in G if every two distinct nodes from S are connected by an edge in G. The maximal complete sets with respect to
inclusion are called the cliques of G. A (chordal) graph G over N is complete if N is a clique, otherwise it is called
incomplete.

A well-known equivalent definition of a chordal graph is that the collection of its cliques can be ordered into a
sequence C1, . . . ,Cm, m ≥ 1, satisfying the running intersection property (RIP):

∀ i ≥ 2 ∃ j < i such that S i := Ci ∩

⋃
`<i

C`

 ⊆ C j .
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The sets S i = Ci ∩ (
⋃
`<i C`), i = 2, . . . ,m, are the respective separators. The multiplicity νG(S ) of a separator S is the

number of indices 2 ≤ i ≤ m such that S = S i; the separators and their multiplicities are known not to depend on the110

choice of the ordering satisfying the RIP, see [21, Lemma 7.2]. In the sequel, the collection of cliques of G will be
denoted by C(G) and the collection of its separators by S(G).

A junction tree for G is a hypertreeJ having C(G) as the set of hypernodes inJ and satisfying the condition that,
for every pair C,K ∈ C(G), the intersection C ∩ K is contained in every clique on the (unique) path between C and
K in J . Another equivalent definition of a chordal graph is that it is an undirected graph which has a junction tree;115

see [2, Theorem 4.6]. A hyperedge between C and K in a junction tree J can be labeled by the intersection C ∩ K
and another well-known fact is that the labels of these hyperedges are just the separators of G and every separator S
occurs as many times in the junction tree J as its multiplicity νG(S ).

2.2. Characteristic imsets for chordal graphs and the chordal graph polytope
Given a chordal graph G over N, the characteristic imset of G is a zero-one vector cG whose components are

indexed by subsets S of N:

cG(S ) =

{
1 if S is a complete set in G,
0 for the remaining S ⊆ N.

Thus, cG is formally a vector in RP(N) whose components for the empty set and singletons have always the value 1.
Nonetheless, the roles of the empty set and singletons in our later linear inequalities for characteristic imsets differ.
While the component for the empty set plays no role in our inequalities, it is useful to distinguish between components
for different singletons because this step allows us to identify our inequalities with certain set systems; see later
Example 2 to illustrate that. Therefore, we will understand every characteristic imset as a vector c in the linear space
RP(N)\{∅} belonging to its affine subspace

A := { c ∈ RP(N)\{∅} : c({i}) = 1 for all i ∈ N}

specified by those equality constraints. Let us introduce the chordal graph polytope DN over N as follows:

DN := conv ( {cG : G chordal graph over N} )

where conv (·) denotes the convex hull. Since A is the affine hull of DN the dimension of DN is 2n − n − 1, where120

n = |N |. This is because for any A ⊆ N with |A| ≥ 2 one has cG ∈ DN for the (chordal) graph G having cliques A and
{i} for i ∈ N \ A; see also [12, § 2.5].

2.3. Clutter inequalities and the chordal graph conjecture
By a clutter we mean any set system L ⊆ P(N) such that the sets in L are inclusion incomparable:

if L,R ∈ L then L ⊆ R implies L = R.

Note that the union
⋃
L of sets in a clutter need not be the whole set N. A (set) filter is a set system F ⊆ P(N) closed

under supersets:
if S ∈ F and S ⊆ T ⊆ N then T ∈ F .

Clutters and filters are in mutual correspondence: any clutter L generates a filter L↑ := {T ⊆ N : ∃ L ∈ L L ⊆ T }
and conversely, given a filter F , the class Fmin of inclusion minimal sets in F is a clutter generating F . Note that a125

clutter of non-empty sets contains a singleton iff the corresponding filter contains a singleton.

Notational convention In our examples, clutters of subsets of N will be denoted by the lists of sets in the clutters
separated by straight lines. The sets are encoded by lists of their elements without commas. Thus, for example, a
clutter L = { {a, b}, {a, c}, {d} } will be denoted by |d|ab|ac|. With a little abuse of notation, we will also use the
symbol for a clutter to identify the corresponding filter. Thus, λ|d|ab|ac| ∈ RP(N) will denote the indicator of the filter130

generated by the clutter |d|ab|ac|. Chordal graphs over N will be analogously denoted by (all) their cliques separated
by colons; thus, the empty graph over N = {a, b, c, d} will be denoted by a : b : c : d and the graph a − b − c − d will
be denoted by ab : bc : cd.
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Definition 1 (clutter inequality). Given a clutter L ⊆ P(N) which contains at least one singleton the corresponding
clutter inequality for c ∈ A ⊆ RP(N)\{∅} has the form

1 ≤
∑
∅,B⊆L

(−1)|B|+1 · c
(⋃
B
)
. (1)

Recall that because we assume c ∈ A one has to substitute c(L) = 1 in (1) whenever L ⊆ N is a singleton. Note also
that the inequality for a clutter consisting of only one (singleton) set is superfluous: then L = {L} with L ⊆ N, |L| = 1,135

and (1) holds with equality since c ∈ A.

One can re-write (1) in a standardized form:

1 ≤
∑
∅,S⊆N

κL(S ) · c(S ) where κL(S ) =
∑

∅,B⊆L :
⋃
B=S

(−1)|B|+1 for any S ⊆ N. (2)

This rewriting implies that the coefficients κL(−) have to vanish outside the class U(L) := {
⋃
B : ∅ , B ⊆ L } of

unions of sets from L. As shown in [12, Lemma 1], they can be computed recursively within this class as follows:

κL(S ) = 1 −
∑

T∈U(L): T⊂S

κL(T ) for any S ∈ U(L).

Hence, κL(L) = 1 for L ∈ L. The example below illustrates the procedure.

Example 1. Take N = {a, b, c, d} and a clutter L specified by |d|ab|ac|. The fact that κL(L) = 1 for L ∈ L gives
κL({a, b}) = κL({a, c}) = κL({d}) = 1. The remaining elements in U(L) are {a, b, c}, {a, b, d}, {a, c, d}, and N. The
recursive formula above applied to {a, b, c} yields

κL({a, b, c}) = 1 − κL({a, b}) − κL({a, c}) = 1 − 1 − 1 = −1 .

Analogously, κL({a, b, d}) = κL({a, c, d}) = −1. Finally, N has all other sets inU(L) as proper subsets which gives

κL(N) = 1 − κL({a, b, c}) − κL({a, b, d}) − κL({a, c, d}) − κL({a, b}) − κL({a, c}) − κL({d}) = 1 + 3 − 3 = 1 .

Taking into consideration that c({d}) = 1 one gets from (2):

1 ≤ c({a, b}) + c({a, c}) + 1 − c({a, b, c}) − c({a, b, d}) − c({a, c, d}) + c(N) ,

which can be re-written in the form

c({a, b, c}) + c({a, b, d}) + c({a, c, d}) ≤ c({a, b}) + c({a, c}) + c(N) .

The next example is to illustrate that singletons are needed to distinguish between different (clutter) inequalities.

Example 2. Assume N = {a, b, c, d}. Then both the inequality c(abc) ≤ c(ab) and the inequality c(abd) ≤ c(ab) are
facet-defining for the chordal graph polytope DN . Although these two different inequalities do not involve singletons,140

to distinguish between them we associate them, by the procedure from Example 1, with different clutters |c|ab| and
|d|ab| which do involve the singletons. We hope that this example shows the reader why it is useful to distinguish
between components of characteristic imsets c for different singletons even though we have a natural convention that
c({i}) = 1 for i ∈ N.

The next two examples are to illustrate how the clutter inequalities work.145
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Example 3. Take N = {a, b, c, d} and a clutter L specified by |a|b|c|d|. The procedure from Example 1 leads to the
inequality

c({a, b}) + c({a, c}) + c({a, d}) + c({b, c}) + c({b, d}) + c({c, d}) + c({a, b, c, d})
≤ 3 + c({a, b, c}) + c({a, b, d}) + c({a, c, d}) + c({b, c, d}) .

In the case of a chordal graph G determined by ad : abc the substitution of the respective characteristic imset cG gives
4 ≤ 3 + 1, which means the inequality holds with equality. On the other hand, if one considers a non-chordal graph
H over N “determined” by ab : bc : cd : ad, that is, a graph with a pure 4-cycle, then the substitution of the indicator150

of complete sets in H in the inequality gives 4 ≤ 3 + 0, which is an invalid inequality. Thus, the clutter inequality
corresponding to |a|b|c|d| can possibly be interpreted as an inequality which excludes cycles of the length 4. Recall
from [12, § 5.1] that this inequality was earlier known as the cluster inequality corresponding to a 4-element set.

One can analogously interpret the clutter inequality specified by |a|b|c|, that is, the cluster inequality corresponding
to {a, b, c}, as an inequality forbidding a 3-cycle over {a, b, c}. This straightforward interpretation, however, makes155

sense only in case of zero-one vectors c. To forbid fractional vectors “hiding” cycles additional clutter inequalities are
needed.

Example 4. Take N = {a, b, c, d} and a clutter L specified by |c|d|ab|. The respective clutter inequality has the form

c({c, d}) + c({a, b, c}) + c({a, b, d}) ≤ 1 + c({a, b}) + c({a, b, c, d}) .

In the case of a chordal graph G determined by ad : abc the substitution of the respective characteristic imset cG gives
1 ≤ 1 + 1; thus, the inequality does not hold with equality but with the surplus 1. Let us note in this context that the
surplus of the inequality given by a clutter L if applied to the characteristic imset of a chordal graph G has an elegant160

interpretation in terms of (any) junction tree J for G. Specifically, it is related to the number of components of a
certain sub-forest of J determined by L; see later formula (7) and the proof of Lemma 1 in Appendix A for details.
On the other hand, if one considers a fractional vector c∗ := 1

3 · cG + 2
3 · c

′, where G is the chordal graph specified by
a : b : c : d and c′ is the “zero-one indicator” of subsets in cd : abc : abd then the substitution of c∗ in the considered
inequality gives 2 ≤ 1 + 2

3 , which is an invalid inequality. Note in this context that this is the only clutter inequality165

for N which excludes the fractional vector c∗ from DN .

Our conjecture was that all facet-defining inequalities for DN were as follows.

Conjecture 1 (chordal graph conjecture). For any n = |N | ≥ 2, the least set of inequalities for c ∈ A defining DN

consists of the lower bound inequality 0 ≤ c(N) and the inequalities (1) for those clutters L of subsets of N that
contain at least one singleton and at least one another set.170

Note that the conjecture was confirmed computationally for |N | ≤ 5.

2.4. Two different Möbius inversions
The linear transformations of vectors (with components indexed by subsets of N) considered in this paper are

based on a well-known combinatorial inclusion-and-exclusion principle, which is usually interpreted as a special case
of (generalized) Möbius inversion formula [25, § 3.7]. Thus, we follow common combinatorial terminology and call175

these transformations Möbius inversions. Nevertheless, we have to distinguish two different transformations of this
kind.

Given a vector c ∈ RP(N), its superset Möbius inversion is the vector m ∈ RP(N) given by

m(T ) :=
∑

S : T⊆S

(−1)|S \T | · c(S ) for any T ⊆ N. (3)

The inverse formula to (3) is c(S ) =
∑

T : S⊆T m(T ) for any S ⊆ N, which is easy to verify by a direct substitution and
re-arranging sums. Note that in both formulas we sum over supersets of the set for which we compute the value. By
[12, Lemma 3], the superset Möbius inversion of the characteristic imset cG of a chordal graph G over N has the form

mG(T ) =
∑

C∈C(G)

δ(T = C) −
∑

S∈S(G)

νG(S ) · δ(T = S ) for T ⊆ N . (4)
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Every linear inequality for cG can be re-written in terms of its superset Möbius inversion mG and conversely;
however, the relation of the respective coefficient vectors is given by another Möbius inversion. Specifically, given a
vector λ ∈ RP(N) its subset Möbius inversion is given by

κλ(S ) :=
∑

T : T⊆S

(−1)|S \T | · λ(T ) for any S ⊆ N . (5)

Note that the inverse formula to (5) is λ(T ) =
∑

S : S⊆T κλ(S ) for any T ⊆ N and that we sum over subsets in both
these formulas. Provided that λ ∈ RP(N) is a coefficient vector for a linear inequality and the vector m ∈ RP(N) is the
superset Möbius inversion of a vector c ∈ RP(N) one has:180 ∑

T⊆N

λ(T ) ·m(T ) =
∑
S⊆N

κλ(S ) · c(S ) , which particularly implies (6)

1 ≤
∑
T⊆N

λ(T ) ·m(T ) ⇐⇒ 1 ≤
∑
S⊆N

κλ(S ) · c(S ) .

The verification of this fact can be done by direct substitution into the formulas and re-arranging the sums; it is left
to the reader. A special case of the equivalence in (6) is a standard re-writing of the clutter inequalities in terms of
superset Möbius inversion mG from [12, Lemma 2]. Specifically, given a clutter L ⊆ P(N) (containing a singleton),
consider the indicator λ ∈ RP(N) of the filter L↑ generated by L. Then the subset Möbius inversion κλ of λ is just the
coefficient vector κL of the respective clutter inequality:

1 ≤
∑
T⊆N

δ(T ∈ L↑) ·mG(T ) ⇐⇒ 1 ≤
∑
S⊆N

κL(S ) · cG(S ) . (7)

In our later dual formulation of the problem we are going to assign certain linear inequalities to incomplete chordal
graphs G over N. The coefficients of those inequalities are given by slightly modified superset Möbius inversions mG;
specifically, given an incomplete chordal graph G over N, we introduce a vector mG ∈ RP(N) as follows:

mG(N) = −1 and mG(S ) := mG(S ) for remaining S ⊂ N. (8)

Note for a reader interested in earlier occurrences of concepts defined here in the literature that the vector mG given
by (8) is nothing else than (−1) multiple of the standard imset for the chordal graph G as introduced in [21, § 7.2.2].

3. Dual formulation of the problem

We assign the following inequality for vectors λ ∈ RP(N) to any incomplete chordal graph G over N:∑
C∈C(G)

λ(C) −
∑

S∈S(G)

νG(S ) · λ(S ) − λ(N) ≥ 0 , (9)

that is, 〈mG, λ〉 :=
∑
S⊆N

mG(S ) · λ(S ) ≥ 0 using the formulas (4) and (8) .

Definition 2 (dual polyhedron to the chordal graph polytope). Let us define the dual polyhedron P ⊆ RP(N) as the185

set of vectors λ ∈ RP(N) satisfying

• λ(∅) = 0, λ(N) = 1,

• simple monotonicity inequalities λ(N) − λ(N \ {i}) ≥ 0 for i ∈ N, and

• the above inequalities (9) for all incomplete chordal graphs over N.

Remark This is to explain the motivation for our terminology. There is a concept of duality for polytopes, which is190

one of the standard concepts in polyhedral geometry, see [26, § 10]. More specifically, two polytopes are dual to each
other if their face-lattices (= the lattices of their faces) are anti-isomorphic. Each polytope has a dual polytope in this
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sense [26, Theorem 10.2]; a standard such construction is based on the concept of a “polar” set [27, Corollary 2.13].
The duality condition implies that the vertices of one polytope are in one-to-one correspondence to the facets of the
other polytope. And this property was our motivation: with a little abuse of terminology we call the above defined set195

P the dual polyhedron to the chordal graph polytope because, as one can show (see Theorem 1 below) that its vertices
are in one-to-one correspondence to facets of the dominant facet of the chordal graph polytope DN , determined by
the lower bound inequality; this dominant facet of DN is the convex hull of all (characteristic imsets of) incomplete
chordal graphs over N. Because the set P is defined in terms of inequalities we call it a polyhedron rather than a
“polytope”, by which is meant the convex hull of finitely many vectors. Note that, as we show below (Lemma 1), P is200

a bounded polyhedron, and, therefore, a polytope, by a fundamental result in polyhedral geometry [26, Corollary 8.7].

We prove in Appendix A the following.

Lemma 1 (basic facts on the dual polyhedron).
Every λ ∈ P is non-decreasing relative to inclusion: λ(S ) ≤ λ(T ) whenever S ⊆ T. In particular, the set P ⊆ [0, 1]P(N)

205

is a non-empty bounded polyhedron. One has λ ∈ {0, 1}P(N) ∩ P iff λ is the indicator of a singleton-containing filter
F ⊆ P(N) with ∅ < F . Moreover, {0, 1}P(N) ∩ P ⊆ ext (P), where ext (P) denotes the set of vertices (= extreme points)
of P.

Thus, indicators of non-degenerate singleton-containing filters are always vertices of the dual polyhedron. Note
that these are all the vertices of P in the case |N | ≤ 5, a fact which was confirmed computationally.210

Example 5. Consider the case N = {a, b, c}. Then the dual polyhedron P has dimension 6 = 23 − 2 and is specified
by 10 inequalities breaking into 4 permutational types. One has 3 simple monotonicity inequalities of the form
λ(N) ≥ λ(N \ {i}) and 7 inequalities assigned to incomplete chordal graphs falling into 3 permutational types: i : j : k,
i : jk, and i j : ik. The number of vertices of P is also 10 and they fall into 4 permutational types. All of them are the
indicators of singleton-containing filters; their types are (denoted by) |i|, |i| jk|, |i| j|, and |i| j|k|.215

Here is the main result of the paper, proved in Appendix B.

Theorem 1 (dual characterization of the chordal graph polytope).
Assume |N | ≥ 2. Let ext (P) denote the set of vertices of the dual polyhedron. Given c ∈ A, one has c ∈ DN if and only
if c(N) ≥ 0 and the inequalities ∑

S⊆N

κλ(S ) · c(S ) ≥ 1 (10)

hold for every λ ∈ ext (P).

Recall that one has κλ(∅) = 0 for any λ ∈ P, which means that it does not matter whether one allows the empty set
component in (10) or not. In particular, (10) can equivalently be written in the form∑

∅,S⊆N

κλ(S ) · c(S ) ≥ 1 .

Note also in this context that c ∈ A means 1 = c({i}) =
∑

S⊆N κλ|i| (S ) · c(S ) for any i ∈ N (see Section 2.4). Thus,
because λ|i| ∈ ext (P) for any i ∈ N, these |N | inequalities (10) for λ|i| hold with equality. The inequalities (10) for the
remaining λ ∈ ext (P), however, appear to be non-trivial (= do not hold with equality). Theorem 1 can be interpreted220

as an implicit characterization of facet-defining inequalities for DN : it can be shown by extending the arguments in
the proof from Appendix B that the non-trivial inequalities (10) are, in fact, facet-defining for DN . In particular, the
minimal set of linear inequalities defining DN can be obtained on basis of ext (P).

Example 6. Consider again N = {a, b, c}. As mentioned in Example 5, P has 10 vertices. Those 3 of them of the type
|i| yield equality constraints and the remaining 7 ones, those of types |i| jk|, |i| j|, and |i| j|k|, lead to respective clutter225

inequalities (of 3 types). These are facet-defining for the chordal graph polytope DN . By adding the lower bound
inequality c(N) ≥ 0 the list of facet-defining inequalities for DN becomes complete.

The second substantial result, proved in Appendix C, is as follows.

Theorem 2 (dual formulation of the chordal graph conjecture).
The chordal graph conjecture holds for |N| ≥ 2 iff {0, 1}P(N) ∩ P = ext (P).230
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4. Rebuttal of the conjecture

We found a counter-example to the validity of the chordal graph conjecture in the case |N| = 6. The argument is
based on Theorem 2: we find a vector in the dual polyhedron P which is not in the convex hull of the zero-one vectors
from P. Recall in this context that, by Lemma 1, these zero-one vectors from P are none other than the indicators of
non-degenerate singleton-containing filters.235

Example 7. Take N = {a, b, c, d, e, f }. We present an example of λ ∈ P which does not belong to the convex hull of
{0, 1}P(N) ∩ P. In fact, our vector λ belongs to a special 15-dimensional face F of P. Here is the definition of λ (below
we abbreviate notation and write ab instead of {a, b}):

0 = λ(∅) = λ(a) = λ(b) = λ(c) = λ(d) = λ(ad) = λ(bc),
1
2

= λ(e) = λ( f )

= λ(ae) = λ(a f ) = λ(be) = λ(b f ) = λ(ce) = λ(c f ) = λ(de) = λ(d f )
= λ(ab) = λ(ac) = λ(bd) = λ(cd)
= λ(abe) = λ(ac f ) = λ(abd) = λ(acd) = λ(bcd),

1 = λ(L) for remaining L ⊆ N.

Let us denote by Q the class of those sets L ⊆ N for which λ(L) = 1; note that |Q| = 38. Observe that λ is non-
decreasing: λ(S ) ≤ λ(T ) whenever S ⊆ T ⊆ N. It also belongs to the affine subspace A′ of RP(N) specified by
45 = 7 + 38 equalities from the first and last line above and 4 equalities

λ∗(ab) = λ∗(abe), λ∗(ac) = λ∗(ac f ), λ∗(bd) = λ∗(abd), λ∗(cd) = λ∗(acd) (11)

required for λ∗ ∈ RP(N). Let us put (we use our notational convention)

λ′ :=
1
2
· λ |e|ab|bd|ad f |bc f |cd f | +

1
2
· λ | f |ac|cd|ade|bce|bde|

and observe that
λ = λ′ −

1
2
· δbcd where δbcd is the indicator of the set bcd; (12)

this particular step is slightly tedious but straightforward. The verification of the inequalities (9) for λ breaks into 3
sub-cases.240

• If G is an incomplete chordal graph over N which has a clique K ∈ Q then one can choose a junction tree for G
in which K is a terminal clique and write the expression on the left-hand side of (9) in the form

[ λ(K) − λ(N) ]︸            ︷︷            ︸
=1−1=0

+
∑

C∈C(G)\{K}

[ λ(C) − λ(S C) ]︸              ︷︷              ︸
≥0

,

where S C ∈ S(G) with S C ⊂ C is assigned to C uniquely through the junction tree; see basic facts from
Section 2.1. Thus, (9) follows from the fact that λ is non-decreasing.

The maximal sets in P(N) outside Q are sets from the set system

K = { abd, abe, acd, ac f , bcd, b f , ce, de, d f } .

Thus, the other chordal graphs G over N have cliques that are subsets of sets in K . In particular, the set bcd is not a
separator in such a graph G because otherwise G would have a clique strictly containing bcd, which must be in Q.

• If G is a chordal graph over N which has no clique in Q∪{bcd} then, bcd is neither a clique nor a separator in G245

and, by (8) and (4), mG(bcd) = 0. Hence, by (12), 〈mG, λ〉 = 〈mG, λ
′〉. Moreover, by Lemma 1, λ′ ∈ P. Hence,

one has 〈mG, λ
′〉 ≥ 0, which implies the same inequality (9) for λ.
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The remaining case is that G is a chordal graph over N which has no clique in Q while bcd is a clique in G. Since
cliques of G are subsets of sets in K , the options for cliques E of G containing e are E ∈ { e, ae, be, ce, de, abe }, while
the options for cliques F of G containing f are F ∈ { f , a f , b f , c f , d f , ac f }. Observe that abe and ac f cannot be250

simultaneously cliques of G because then ab, ac, and bc are edges in G, which implies that abc is complete in G and
contradicts the assumption that G has no clique in Q. In particular, either one has E ∈ { e, ae, be, ce, de } for any clique
E of G containing e or one has F ∈ { f , a f , b f , c f , d f } for any clique F of G containing f .

• If G is a chordal graph over N with bcd ∈ C(G) but without a clique in Q then one can choose a junction tree
for G in which bcd is a terminal clique and write the expression on the left-hand side of (9) in the form

[ λ(bcd) − λ(N) ] +
∑

C∈C(G)\{bcd}

[ λ(C) − λ(S C) ] ,

where S C ∈ S(G) with S C ⊂ C assigned to C uniquely (by the choice of the junction tree). While [ λ(bcd) −
λ(N) ] = − 1

2 the terms [ λ(C)−λ(S C) ] are non-negative. Thus, to verify the validity of (9) it is enough to find at255

least one C ∈ C(G)\ {bcd} for which [ λ(C)−λ(S C) ] = + 1
2 . In the case that E ∈ { e, ae, be, ce, de } for any clique

E of G containing e one can take C = E for one of these cliques: there is at least one assignment E 7→ S E ∈ S(G)
with e < S E , giving λ(E) = 1

2 and λ(S E) = 0. The same argument works when F ∈ { f , a f , b f , c f , d f } for any
clique F of G containing f . Hence, (9) holds for λ also in this case.

Altogether, one has λ ∈ P. The fact that λ < conv ({0, 1}P(N) ∩ P) can be verified by a contradiction. Otherwise, λ260

is a convex combination of some vectors λ∗ ∈ {0, 1}P(N) ∩ P. Assume without loss of generality that λ is a convex
combination of such vectors λ∗ with all coefficients strictly positive. Note that λ belongs to F := P ∩ A′, which is a
face of P (use Lemma 1 saying that every λ′ ∈ P is non-decreasing). Hence, all these λ∗ ∈ {0, 1}P(N) ∩ P must belong
to F ⊆ A′, that is, λ∗ ∈ {0, 1}P(N) ∩ F. The next step is to show that the equalities defining A′ imply that λ∗(bcd) = 1
for any λ∗ ∈ {0, 1}P(N) ∩ F. Indeed, by Lemma 1, every such λ∗ is the indicator of a singleton-containing filter F and265

it is enough to show that bcd ∈ F :

• If a ∈ F then abd ∈ F ; by λ∗(bd) = λ∗(abd) in (11), bd ∈ F ⇒ bcd ∈ F .

• If either b ∈ F or c ∈ F or d ∈ F then obviously bcd ∈ F .

• If e ∈ F then abe ∈ F and, by λ∗(ab) = λ∗(abe) in (11), ab ∈ F ⇒ abd ∈ F . By λ∗(bd) = λ∗(abd) in (11) one
gets bd ∈ F ⇒ bcd ∈ F .270

• If f ∈ F then ac f ∈ F and, by λ∗(ac) = λ∗(ac f ) in (11), ac ∈ F ⇒ acd ∈ F . By λ∗(cd) = λ∗(acd) in (11) one
gets cd ∈ F ⇒ bcd ∈ F .

Since λ∗(bcd) = 1 holds for any λ∗ ∈ {0, 1}P(N) ∩ F the same must hold for their convex combination λ, which
contradicts its definition saying λ(bcd) = 1

2 .

5. Conclusions275

We have introduced the concept of a dual polyhedron to the chordal graph polytope DN . The point is that (the
characterization of) its vertices yield(s) a complete inequality description of DN (Theorem 1). Our particular con-
struction of such a dual polyhedron P allowed us to show that the original chordal graph conjecture is equivalent to
the condition that all vertices of P are zero-one vectors (Theorem 2). This is indeed true in case |N | ≤ 5; nevertheless,
we have also showed that, in case |N| = 6, there is a vertex of P which is not a zero-one vector. Specifically, we have280

constructed a vector λ ∈ P which is not in the convex hull of zero-one vectors from P (see Example 7 in Section 4)
and this fact already implies the existence of a non-zero-one vertex of P.

Thus, the original optimistic conjecture that facet-defining inequalities for the chordal graph polytope over N
correspond to set systems, namely to certain clutters of subsets of N, has been refuted in case |N | = 6. Let us
emphasize that this conclusion has been made on the basis of a theoretical heuristic analysis of the situation in case of285

|N| = 6, not by computing all the vertices of the dual polyhedron P in this case. Therefore, we don’t know what are
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the vertices of P in this case and the question of what is the minimal set of inequalities delimiting the chordal graph
polytope DN in the case |N| = 6 remains open.

In particular, we don’t know the number of facets for DN when |N | = 6 and whether it exceeds the number
of vertices or not. Recall that in cases |N | ≤ 5, when facets are known to correspond to clutters of subsets of N, the290

number of facets of DN is lower than or equal to the number of its vertices [12, § 3], and, thus, its inequality description
is “simpler” than its vertex description. In such a situation the LP re-formulation of the respective optimization tasks
is clearly beneficial in comparison with a direct brute-force optimization over vertices of DN (= chordal graphs =

statistical models).
This leads to a natural open geometric question whether, in the case |N | ≥ 6, the number of facets of DN is295

lower or not than the number of its vertices. This seems to be a question of substantial theoretical importance for the
development of the ILP approach to learning of decomposable models based on characteristic imsets. If the answer is
“yes” then it confirms the suitability of this particular ILP approach despite our refutal of the original chordal graph
conjecture: then one should aim at a theoretical characterization of facet-defining inequalities of DN in general. On
the other hand, if the answer is “no” for |N | = 6 then this is a clear indication that research activity in this direction300

should be stopped. Hence, our proximate research effort will be directed to computationally enumerating vertices
of the dual polyhedron P in the case |N | = 6 because this may answer the above geometric question when |N | = 6.
Nevertheless, we are aware of the fact that this computational task may appear to infeasible (as it seems now).

Even if the idea of direct use of facets of the chordal graph polytope DN in statistical learning decomposable
models appears to be hopeless there is still another promising research direction. It is the idea of characterizing the305

edges of the chordal graph polytope DN , which may appear to be a simpler theoretical task in comparison with the
task of complete characterization of its facets. The (geometric) edges of a polytope are its faces of the dimension 1,
each of them is a segment connecting two vertices of the polytope, but not any such segment is an edge. The point is
that common LP optimization methods, in particular the simplex method, can be interpreted as search methods passing
vertices of a polytope through its geometric edges. Thus, if edges of DN are characterized theoretically then one can310

possibly design an optimization method inspired by the simplex method in which the maxima of common scores are
searched in this way. Thus, another open question related to the concept of a chordal graph polytope which deserves
attention is what are the geometric edges of this polytope. This follows a similar idea considered earlier in context
of learning Bayesian network structure [28], where the structures were represented by the so-called essential graphs.
An additional step towards geometric interpretation has been done recently in context of causal discovery [29], where315

edges were characterized for some faces of the respective characteristic imset polytope for learning Bayesian network
structure.
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Appendix A. Proof of Lemma 1

Let us recall what we are going to show.
Lemma 1: Every λ ∈ P is non-decreasing: λ(S ) ≤ λ(T ) whenever S ⊆ T.
In particular, the set P ⊆ [0, 1]P(N) is a non-empty bounded polyhedron.
One has λ ∈ {0, 1}P(N) ∩ P iff λ is the indicator of a singleton-containing filter F ⊆ P(N) with ∅ < F .325

Moreover, {0, 1}P(N) ∩ P ⊆ ext (P).

Recall that ext (P) denotes the set of vertices (= extreme points) of P. In this proof, and also in other proofs
presented in Appendices, we use the slanted font to distinguish those parts of the proof in which a subclaim/step is
verified. We believe that this makes the proof better to follow for the reader.

Proof. Given T ⊂ N and i ∈ T , consider a chordal graph G with cliques T and N \ {i}. The inequality (9) assigned to
G then gives

λ(T ) + λ(N \ {i}) − λ(T \ {i}) − λ(N) ≥ 0 .
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Add the simple inequality λ(N) − λ(N \ {i}) ≥ 0 to that to get λ(T \ {i}) ≤ λ(T ). Using an inductive argument we330

observe that any λ ∈ P is non-decreasing.
The latter fact easily implies P ⊆ [0, 1]P(N). As P is a bounded polyhedron, by [22, Corollary 8.7] it is a polytope

and has finitely many vertices. Its non-emptiness follows from the next characterization of zero-one vectors in P.
Given λ ∈ {0, 1}P(N)∩P we put F := {T ⊆ N : λ(T ) = 1}. Clearly, F is a filter. To see that F contains a singleton

use (9) for the empty graph over N to observe
∑

i∈N λ({i}) ≥ 1. The constraint λ(∅) = 0 implies ∅ < F .335

Conversely, let λ be the indicator of a singleton-containing filter F ⊆ P(N) with ∅ < F . The validity of simple
monotonicity inequalities for λ is evident. To verify (9) for λ and some incomplete chordal graph G over N consider a
junction tree J for G and introduce a sub-forest of J determined by F : it has those hyper-nodes of J which belong
to F and those hyper-edges in J which are labeled by sets from F . The point is that the left hand side of (9) is equal
to the number of connected components of the F -sub-forest reduced by 1.340

Indeed, recall that hyper-edges ofJ are labeled by separators and the expression
∑

C∈C(G) λ(C) −
∑

S∈S(G) νG(S ) · λ(S ),
which is the left-hand side of (9) plus 1, equals to the difference between the number of hyper-nodes of the F -sub-
forest and the number of its hyper-edges, which is just the number of its components.
The assumption that F contains a singleton implies that the F -sub-forest has at least one hyper-node, and, thus, the
left-hand side of (9) is non-negative.345

The last claim follows from a simple geometric argument. Since P is a subset of the hypercube [0, 1]P(N), whose
vertex set is {0, 1}P(N), every zero-one vector λ ∈ P is an extreme point of [0, 1]P(N) and, therefore, of P as well. �

Appendix B. Proof of Theorem 1

Let us recall what we are going to prove; note that ext (P) denotes the set of vertices of the dual polyhedron P.
The re-writing of (10) below is based on the fact that κλ(∅) = 0 for any λ ∈ P.350

Theorem 1: Assume |N | ≥ 2. Given c ∈ A, one has c ∈ DN if and only if c(N) ≥ 0 and the inequalities∑
∅,S⊆N

κλ(S ) · c(S ) ≥ 1 (10)

hold for every λ ∈ ext (P).

In order to distinguish those parts of the proof(s) in which a second-order subclaim is verified (within the text in
the slanted font) we indent those parts.

Proof. Let cone (P) denote the cone generated by P. Since P is a subset of the affine space specified by λ(N) = 1 one
has cone (P) = cone (ext (P)).355

I. Observe that λ ∈ RP(N) belongs to cone (P) ≡ cone (ext (P)) if and only if λ(∅) = 0 and λ satisfies both the simple
monotonicity inequalities and the graphical inequalities (9) for incomplete chordal graphs G over N.
Indeed, the necessity of those linear constraints easily follows from Definition 2. As concerns their sufficiency, by
repeating the arguments in the 1st paragraph of the proof of Lemma 1 we observe that they imply that λ is non-
decreasing; hence, λ(∅) = 0 implies λ(N) ≥ 0 and λ is the λ(N)-multiple of a vector in P.360

Let lin (S) denote the linear hull of a set S ⊆ RP(N). Introduce for any j ∈ N a vector λ| j| ∈ RP(N) as the indicator
of the filter generated by a trivial clutter L := { { j} }, that is, λ| j|(T ) = δ( j ∈ T ) for any T ⊆ N.
II. Then we observe, for every λ ∈ RP(N) satisfying λ(∅) = 0, that one has

λ ∈ cone ( ext (P) ∪ lin ({λ| j| : j ∈ N}) )

iff λ satisfies the inequalities (9) for all incomplete chordal graphs G over N.
Indeed, any λ ∈ ext (P) ⊆ P satisfies inequalities (9) for all incomplete chordal graphs G over N. Since the conic
combination preserves the validity of (9), their necessity follows from the fact that every λ| j| satisfies (9) with equality.

To this end one can repeat, for every j ∈ N, the arguments in the 4th paragraph of the proof of Lemma 1
with

F j := {T ⊆ N : j ∈ T }
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and realize that the F j-sub-forest ofJ has only one connected component (use the definition of a junction
tree for this purpose).365

For the sufficiency of the inequalities assume λ ∈ RP(N), λ(∅) = 0, satisfying (9) and put β j := λ(N) − λ(N \ { j}) for
j ∈ N. Then λ′ := λ −

∑
j∈N β j · λ| j| satisfied both λ′(∅) = 0 and the simple monotonicity inequalities with equality.

Since λ′ also satisfies all inequalities (9), by the previous Step I, λ′ ∈ cone (ext (P)), which allows us to observe that
λ ∈ cone ( ext (P) ∪ lin ({λ| j| : j ∈ N}) ).

One can interpret any λ ∈ RP(N) satisfying λ(∅) = 0 as a vector in RP(N)\{∅} and understand the inequalities (9) in
this context (= ignore the component for the empty set because it plays no role). Analogous convention will concern
the superset Möbius inversions mG for incomplete graphs G over N and their modified versions mG. The component
for the empty set is then determined by other components and does not occur in any linear inequality of our interest.
III. The next step is to observe using a duality consideration that, for every m ∈ RP(N)\{∅}, one has

m ∈ cone ( {mG : G is an incomplete chordal graph over N} )

iff
∑

T : j∈T m(T ) = 0 for any j ∈ N and∑
∅,L⊆N

m(L) · λ(L) ≥ 0 for any λ ∈ ext (P).

Consider two cones in RP(N)\{∅}: put370

K := cone ( {mG : G is an incomplete chordal graph over N} ), and
L := cone ( {+λ| j| : j ∈ N} ∪ {−λ| j| : j ∈ N} ∪ ext (P) ) .

By definition, they are both polyhedral cones, and, therefore, closed convex cones. Consider the scalar product
〈m, λ〉 :=

∑
∅,S⊆N m(S ) · λ(S ) in the space RP(N)\{∅}, which allows one to define the dual cone

S∗ := {λ ∈ RP(N)\{∅} : 〈m, λ〉 ≥ 0 for all m ∈ S}

to every subset S ⊆ RP(N)\{∅}. Since L = cone ( ext (P) ∪ lin ({λ| j| : j ∈ N}) ), by Step II, one has L = S∗ for

S = {mG : G is an incomplete chordal graph over N} ;

by the equality S∗ = (cone (S))∗ for any S ⊆ RP(N)\{∅} one then gets L = K∗. A well-known fact is that K = K∗∗

for any closed cone; see for example [30, Consequence 1]. In particular, L = K∗ gives L∗ = K∗∗ = K. Again using
(cone (S))∗ = S∗ observe that K = L∗ consists of those m ∈ RP(N)\{∅} for which 〈m, λ| j|〉 = 0 for any j ∈ N and
〈m, λ〉 ≥ 0 for any λ ∈ ext (P).

This allows us to characterize the convex hull of our graphical vectors:
IV. for every m ∈ RP(N)\{∅}, one has

m ∈ conv ( {mG : G is an incomplete chordal graph over N} )

iff m(N) = −1,
∑

T : j∈T m(T ) = 0 for any j ∈ N and∑
∅,L⊆N

m(L) · λ(L) ≥ 0 for any λ ∈ ext (P).

Indeed, by (8), one has mG(N) = −1 for each incomplete chordal graph G over N, which implies, together with375

Step III, the necessity of the linear constraints. For their sufficiency use the other implication in Step III saying that
m belongs to the conic hull: m =

∑
k αk ·mGk , where Gk are (all) incomplete chordal graphs over N and αk ≥ 0. The

substitution −1 = m(N) =
∑

k αk ·mGk (N) =
∑

k αk · (−1) gives
∑

k αk = 1, that is, m belongs to the convex hull.
By definition, mG(N) = 0 for incomplete chordal graphs G; using (8) realize that mG = mG + δN , where

δN ∈ RP(N)\{∅} denotes the indicator of N, and obtain from Step IV:
V. For every m ∈ RP(N)\{∅}, one has

m ∈ conv ( {mG : G is an incomplete chordal graph over N} )
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iff m(N) = 0,
∑

T : j∈T m(T ) = 1 for any j ∈ N and∑
∅,L⊆N

λ(L) ·m(L) ≥ λ(N) = 1 for any λ ∈ ext (P).

Further re-writing is in terms of the vector c whose superset Möbius inversion is m. To this end use the inverse formula
to (3) saying c(S ) =

∑
T : S⊆T m(T ) for S ⊆ N and obtain using the formula (6) the following:

VI. For every c ∈ RP(N)\{∅}, one has

c ∈ conv ( {cG : G is an incomplete chordal graph over N} )

iff c(N) = 0, c({ j}) = 1 for any j ∈ N and∑
∅,S⊆N

κλ(S ) · c(S ) ≥ 1 for any λ ∈ ext (P).

VII. Finally observe that, for any c ∈ RP(N)\{∅},

c ∈ conv ( {cG : G is a chordal graph over N} )

iff c(N) ≥ 0, c({ j}) = 1 for any j ∈ N and∑
∅,S⊆N

κλ(S ) · c(S ) ≥ 1 for any λ ∈ ext (P).

Indeed, the characteristic imset cH for the complete graph H over N clearly satisfies those linear constraints even with380

equalities except for c(N) ≥ 0: by (4) its superset Möbius inversions mH is the indicator of the set N, use (6) and
the fact that λ(N) = 1 for every λ ∈ ext (P) ⊆ P. This, together with Step VI, implies the necessity of the linear
constraints.

For the sufficiency of the considered linear constaints we first realize that they imply that c is non-increasing:
c(S ) ≥ c(T ) whenever ∅ , S ⊆ T ⊆ N.385

To this end, for every fixed ∅ , S ⊂ N and i ∈ N \ S consider the clutter L := { {i}, S } and the indicator
λ|i|S | of the corresponding filter. By Lemma 1, λ|i|S | ∈ ext (P). The inequality for λ|i|S |, that is, the clutter
inequality for L, then gives c({i}) + c(S ) − c({i} ∪ S ) ≥ 1 (see Section 2.3). Substitute c({i}) = 1 to get
c(S ) ≥ c({i} ∪ S ); an inductive argument implies that c is non-increasing.

Because c({ j}) = 1 for arbitrary j ∈ N, it implies 0 ≤ c(N) ≤ 1. Let us put α := c(N). In case α = 0 we use directly
Step VI to conclude that c is in the convex hull. In case of α = 1 use the fact that c is non-increasing to realize that
c = cH , which again implies the desired conclusion. In case 0 < α < 1 we put

c′ :=
1

1 − α
· (c − α · cH) ,

which means that c = α · cH + (1 − α) · c′ is a convex combination. It implies, for every λ ∈ ext (P), that390 ∑
∅,S⊆N

κλ(S ) · c′(S )

=
1

1 − α
· (

∑
∅,S⊆N

κλ(S ) · c(S )︸                ︷︷                ︸
≥1

−α ·
∑
∅,S⊆N

κλ(S ) · cH(S )︸                  ︷︷                  ︸
=1

)

≥
1

1 − α
· (1 − α) = 1 .

Since one has both c′(N) = 0 and c′({ j}) = 1 for any j ∈ N, by the previous Step VI, c′ is in the convex hull of cG’s
for incomplete chordal graphs G over N. Hence, c is in the convex hull for all chordal graphs over N.

One has DN = conv ({cG : G is a chordal graph over N}) and c ∈ A iff c({ j}) = 1 for any j ∈ N. Thus, the last
Step VII implies Theorem 1. �
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Appendix C. Proof of Theorem 2395

Let us recall what we are going to prove; note that we assume |N | ≥ 2.

Theorem 2: The chordal graph conjecture holds iff {0, 1}P(N) ∩ P = ext (P).

The steps of the proof for Theorem 2 correspond to the steps of the proof for Theorem 1; however, the order of
the steps is inverse and ext (P) is replaced by {0, 1}P(N) ∩ P in the claims.

Proof. If {0, 1}P(N) ∩ P = ext (P) then, by Theorem 1 and Lemma 1, one has c ∈ DN if and only if c(N) ≥ 0 and400 ∑
S⊆N κL(S ) · c(S ) ≥ 1 for every singleton-containing clutter L ⊆ P(N) (see Section 2.4). As mentioned earlier, the

inequalities for clutters consisting of one (singleton) set only are superfluous. This implies the sufficiency for the
condition from Conjecture 1.

We need to give a proof of the necessity of {0, 1}P(N) ∩ P = ext (P) for the validity of Conjecture 1. Thus, assume
that the conjecture holds, which means that c ∈ DN iff c ∈ A, c(N) ≥ 0 and c satisfies the clutter inequalities for all405

singleton-containing clutters L ⊆ P(N).
Indeed, recall from Section 2.3 that the inequality for a clutter consisting of one set holds with equality for c ∈ A.
As explained in Section 2.4, the clutter inequality for a singleton-containing clutter L ⊆ P(N) takes a special form
1 ≤

∑
∅,S⊆N κλ(S )·c(S ), where λ is the indicator of the filterL↑. By Lemma 1, λ is an indicator of singleton-containing

filter F ⊆ P(N) with ∅ < F iff λ ∈ {0, 1}P(N) ∩ P.
A. Hence, we observe that

c ∈ conv ( {cG : G is a chordal graph over N} )

iff c(N) ≥ 0, c({ j}) = 1 for any j ∈ N and∑
∅,S⊆N

κλ(S ) · c(S ) ≥ 1 for any λ ∈ {0, 1}P(N) ∩ P.

B. The next step is to observe, for every c ∈ RP(N)\{∅},

c ∈ conv ( {cG : G is an incomplete chordal graph over N} )

iff c(N) = 0, c({ j}) = 1 for any j ∈ N and∑
∅,S⊆N

κλ(S ) · c(S ) ≥ 1 for any λ ∈ {0, 1}P(N) ∩ P.

Indeed, note that the only chordal graph H over N with cH(N) > 0 is the complete graph, which implies the necessity
of the considered linear constraints. Conversely, a well-known fact is that if F′ is a face of polytope P′ = conv (S)
then F′ = conv (S ∩ F′); in our case the face is defined by the equality c(N) = 0 and the converse implication follows410

from Step A.
One can use the inverse formula to (3) saying c(S ) =

∑
T : S⊆T m(T ) for S ⊆ N and (6) to re-write Step B in terms

of the superset Möbius inversion:
C. For every m ∈ RP(N)\{∅}, one has

m ∈ conv ( {mG : G is an incomplete chordal graph over N} )

iff m(N) = 0,
∑

T : j∈T m(T ) = 1 for any j ∈ N and∑
∅,L⊆N

λ(L) ·m(L) ≥ 1 for any λ ∈ {0, 1}P(N) ∩ P.

Further re-writing is in terms of their modified versions given by (8); because mG(N) = 0 gives mG = mG − δN , where
δN ∈ RP(N)\{∅} denotes the indicator of N, we obtain this:
D. For every m ∈ RP(N)\{∅}, one has

m ∈ conv ( {mG : G is an incomplete chordal graph over N} )
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iff m(N) = −1,
∑

T : j∈T m(T ) = 0 for any j ∈ N and∑
∅,L⊆N

λ(L) ·m(L) ≥ 0 for any λ ∈ {0, 1}P(N) ∩ P.

The next step is to characterize the conic hull of that set of vectors:
E. For every m ∈ RP(N)\{∅}, one has

m ∈ cone ( {mG : G is an incomplete chordal graph over N} )

iff
∑

T : j∈T m(T ) = 0 for any j ∈ N and∑
∅,L⊆N

λ(L) ·m(L) ≥ 0 for any λ ∈ {0, 1}P(N) ∩ P.

The necessity of those linear constraints to m ∈ RP(N)\{∅} follows easily from Step D. For their sufficiency we need to
evidence that they imply m(N) ≤ 0. To this end we consider c ∈ RP(N)\{∅} whose superset Möbius inversion is m, and
show that c is non-increasing.

Indeed, owing to the inverse formula c(S ) =
∑

T : S⊆T m(T ) for ∅ , S ⊆ N, the constraints in terms of
c mean c({ j}) = 0 for j ∈ N and

∑
∅,R⊆N κλ(R) · c(R) ≥ 0 for any λ ∈ {0, 1}P(N) ∩ P, using (6). Given

∅ , S ⊂ N and i ∈ N \ S consider the clutter L := { {i}, S } and the indicator λ|i|S | ∈ RP(N)\{∅} of the
corresponding filter. By Lemma 1, λ|i|S | ∈ {0, 1}P(N)∩P. The substitution of λ|i|S | into the above inequality
gives

c({i}) + c(S ) − c({i} ∪ S ) ≥ 0 .

Because c({i}) = 0 it gives c(S ) ≥ c({i}∪S ) and by an inductive argument observe that c is non-increasing:415

c(S ) ≥ c(T ) whenever ∅ , S ⊆ T ⊆ N.

Since c({ j}) = 0 for any j ∈ N it gives 0 ≥ c(N) = m(N).
In case m(N) = c(N) = 0 one necessarily has c(S ) = 0 for each ∅ , S ⊆ N and, thus, m(T ) = 0 for each ∅ , T ⊆ N.
Thus, m belongs to the conic hull then.
In case α := c(N) = m(N) < 0 we introduce m′ as 1

|α|
-multiple of m. Since m′(N) = −1, by Step D, m′ belongs to the420

convex hull of the respective set of vectors, which implies that m belongs to its conic hull.
F. The next step is to observe using a duality consideration that, for every λ ∈ RP(N)\{∅}, one has

λ ∈ cone ( {+λ| j| : j ∈ N} ∪ {−λ| j| : j ∈ N} ∪ ({0, 1}P(N) ∩ P) )︸                                                                         ︷︷                                                                         ︸
R

iff λ satisfies the inequalities (9) for all incomplete chordal graphs G over N.
Indeed, let R be the conic hull of the vectors λ ∈ RP(N)\{∅} written above. We, moreover, put

K := cone ( {mG : G is an incomplete chordal graph over N} ) .

The previous Step E implies that K = R∗. Hence, K∗ = R∗∗ = R because R is a closed cone; see [30, Consequence 1].
It remains to realize that K∗ consists of those λ ∈ RP(N)\{∅} that (9) is fulfilled, that is, 〈mG, λ〉 ≥ 0, holds for incomplete
chordal graphs G over N: it follows from the equality S∗ = (cone (S))∗ valid for any S ⊆ RP(N)\{∅}.425

Recall our convention saying that any λ ∈ RP(N)\{∅} is naturally extended to λ ∈ RP(N) by λ(∅) = 0. A further
observation is as follows:
G. For every λ ∈ RP(N)\{∅}, one has λ ∈ cone ({0, 1}P(N) ∩ P) iff it satisfies the simple monotonicity inequalities
λ(N) − λ(N \ {i}) ≥ 0 for i ∈ N and the inequalities (9) for all incomplete chordal graphs G over N.
Indeed, Definition 2 implies that any λ ∈ {0, 1}P(N) ∩ P satisfies both the simple monotonicity inequalities and the
inequalities (9). As the conic combination preserves their validity the necessity of the linear constraints is evident.
For their sufficiency consider λ ∈ RP(N)\{∅} satisfying all of them. By Step F

λ =
∑
i∈N

α j · λ| j| + λ′
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with α j ∈ R and λ′ in the conic hull of ({0, 1}P(N) ∩ P) \ {λ| j| : j ∈ N}. Note that, by Lemma 1, elements of

{0, 1}P(N) ∩ P are indicators of singleton-containing filters F ⊆ P(N) with ∅ < F . Hence, the simple monotonicity
inequality λ(N) − λ(N \ { j}) ≥ 0 for j ∈ N holds with equality for all elements of {0, 1}P(N) ∩ P except for λ| j|. Thus,
since the vector λ satisfies the simple monotonicity inequalities one has α j ≥ 0 for j ∈ N. This implies that λ is in the
conic hull of {0, 1}P(N) ∩ P.430

H. From that we observe that conv ({0, 1}P(N) ∩ P) = P.
Indeed, conv ({0, 1}P(N) ∩ P) ⊆ P is evident. For converse inclusion consider λ ∈ P and, by Definition 2 and Step G,
get λ ∈ cone ({0, 1}P(N) ∩ P), that is, λ =

∑
i αi · λi with αi ≥ 0 and λi ∈ {0, 1}P(N) ∩ P. The substitution 1 = λ(N) =∑

i αi · λi(N) =
∑

i αi implies that it is a convex combination.
The last step implies that ext (P) ⊆ {0, 1}P(N) ∩P, which together with the converse inclusion from Lemma 1 gives435

the observation ext (P) = {0, 1}P(N) ∩ P, which is the desired conclusion. Thus, the necessity of this condition for the
validity of Conjecture 1 has been verified. �
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