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Pod vodárenskou věž́ı 4, 18200 Prague 8, Czech Republic

{studeny,velorex,vomlel}@utia.cas.cz

Abstract. Non-trivial minimal balanced systems (= collections) of sets
are known to characterize through their induced linear inequalities the
class of the so-called balanced (coalitional) games. In a recent paper a
concept of an irreducible min-balanced (= minimal balanced) system of
sets has been introduced and the irreducible systems have been shown
to characterize through their induced inequalities the class of totally
balanced games. In this paper we recall the relevant concepts and results,
relate them to various contexts and offer a catalogue of permutational
types of non-trivial min-balanced systems in which the irreducible systems
are indicated. The present catalogue involves all types of such systems
on sets with at most 5 elements; it has been obtained as a result of an
alternative characterization of min-balanced systems.

Keywords: balanced set system · irreducible min-balanced system ·
totally balanced games · exact games

1 Introduction

A central notion of this note, namely the concept of a minimal balanced set
system, shortened as a min-balanced (set) system, is basically a combinatorial
concept. Nonetheless, the concept itself has been introduced in the context of
cooperative game theory, where it plays quite an important role. Specifically,
the well-known Shapley-Bondareva theorem [2, 12] says that balanced systems of
subsets of a non-empty finite basic set N covering N induce linear inequalities
characterizing coalitional games over the set of players N with a non-empty core.
Note that the concept of a core (polytope) is a substantial concept in cooperative
game theory [12]. The least class of inequalities characterizing the non-emptiness
of the core consists of those inequalities, which are induced by non-trivial minimal
balanced systems, where the minimality is understood with respect to inclusion
of set systems covering N .

For analogous reasons the inequalities induced by min-balanced systems are
important in the context of the theory of imprecise probabilities [15]. In that
context the basic set N can be interpreted as the sample space for probabilities,
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(normalized non-negative) games over N correspond to lower probabilities and
the cores to credal sets of probabilities. Thus, (minimal) balanced set systems on
N correspond to the inequalities characterizing lower probabilities avoiding sure
loss, which are the lower probabilities with non-empty credal sets [15, § 3.3.4].
We refer the reader to [7] for further details about the correspondence between
game-theoretical concepts and those in imprecise probabilities.

Here is a formal definition: we say that a system B = {S1, . . . , S`}, ` ≥ 1, of
non-empty subsets of N is a balanced system on a non-empty subset M ⊆ N if
there exist strictly positive real coefficients λi > 0, i = 1, . . . , `, such that

χM =
∑̀
i=1

λi ·χSi
, where χS ∈ RN denotes the incidence vector of S ⊆ N . (1)

In particular, the sets Si must be subsets of M and λi ≤ 1 for i = 1, . . . , `. Thus,
the concept of a balanced set system on M generalizes a classic combinatorial
concept of a partition of M (consider λi = 1 for all i = 1, . . . , `). For example,
in case N = {a, b, c, d} the partition B = { {a}, {b, c} } of M = {a, b, c} is an
example of a balanced system on M . On the other hand, one can also find links
to fuzzy set theory with a little bit of imagination: balanced systems can perhaps
be regarded as fuzzy partitions [1] of a crisp set M with fuzzy subsets having
allowed only two grades, namely 0 and λi ∈ (0, 1].

Note that balanced systems, called balanced collections in game-theoretical
literature, do have some applications in combinatorics and topology. Shapley [13]
generalized Sperner’s celebrated topological lemma concerning triangulations of a
simplex and balanced collections of sets play a crucial role in his generalization [4].
On the other hand, we would like to warn the reader that a combinatorial concept
of a balanced hypergraph from [11, § 83.1] has apparently nothing common with
the concept of a balanced set system; these are different notions.

As explained below, in case of a min-balanced system B the coefficients in (1)
are uniquely determined and the class of min-balanced systems on a given basic
set is finite. Every permutational type of non-trivial min-balanced systems can
be viewed as a combinatorial object: it represents a particular way in which a
finite set M can be composed from its proper subsets. Thus, questions of natural
interest are what are the permutational types of such systems, whether one can
classify/categorize them or even whether an enumeration method generating all
these types exists. Note in this context that Peleg [8] proposed an algorithm for
inductive generating min-balanced systems on a given basic set. Nonetheless, as
far as we know, no public available catalogue of their permutational types has
been generated as an output of that algorithm.

1.1 Totally balanced and exact games

Because of the above mentioned Shapley-Bondareva theorem, games with non-
empty cores are named balanced games. There are two important subclasses of
the class of balanced games over a player set N . One of them is the class of totally
balanced games : these are such games m over N that, for every non-empty subset
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M ⊆ N , the subgame of m for M is a balanced game over M . An even smaller
class is the class of exact games: these are such games that each bound defining
the core polyhedron is tight (a precise definition can be found below). Since these
classes of games play an important role in cooperative game theory [10, 9], some
effort has been exerted to characterize them in terms of linear inequalities.

Special set systems play an important role in this context, too. Csóka et al. [3]
characterized exact games over N by means of an infinite set of linear inequalities
which could be associated with the so-called exactly balanced set systems on N .
Lohman et al. [6] then refined that result and showed that the exact games over
N can be characterized by means of a finite set of linear inequalities. Specifically,
these are inequalities assigned to min-balanced set systems on non-empty subsets
M ⊆ N and to the so-called minimal negatively balanced set systems on N .
Nonetheless, the reader was warned in [6] that this set of inequalities is not the
the least possible set of inequalities characterizing the exact games.

In a recent paper [5] the least possible set of inequalities (up to a positive
multiple) that characterizes the totally balanced games over N was found.
These inequalities are induced by special irreducible min-balanced set systems
on non-empty subsets M ⊆ N (a formal definition is placed below). Another
interesting observation from [5] is as follows: if B is a non-trivial min-balanced
system on M ⊆ N then its complementary system relative to M , that is,

B∗ := {M \ S : S ∈ B}

is also a non-trivial min-balanced system on M . In particular, the non-trivial
min-balanced systems on a fixed non-empty set M ⊆ N come in pairs of mutually
complementary systems. Moreover, the inequality induced by B∗ is a conjugate
inequality with respect to M to the one induced by B (also to be defined below).

Finally, a conjecture about the least possible set of inequalities characterizing
the exact games was formulated in [5]. It says that a game over N is exact if and
only if it satisfies the inequalities induced by non-trivial irreducible min-balanced
systems on non-empty strict subsets M ⊂ N and their conjugate inequalities
with respect to N . The conjecture is known to be true in case |N | ≤ 5.

Therefore, the question of classifying permutational types of non-trivial
irreducible min-balanced systems over a fixed basic set is of great importance for
the study of totally balanced and exact games. This is a topic of this note.

1.2 Structure of the rest of the paper

We provide a catalogue [14] of permutational types of non-trivial min-balanced
systems on small sets in which the irreducible types are indicated. Its initial
version describes all such types on sets with at most five elements. Nonetheless,
we intend to upgrade it later into an interactive web platform and possibly extend
it to involve all types of min-balanced systems on a six-element set. Now we
describe the structure of the rest of the paper.

In Section 2 we recall basic concepts and facts. In particular, we describe the
way linear inequalities are induced by min-balanced systems and introduce the
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concept of an irreducible min-balanced system. Section 3 deals with conjugate
inequalities and complementary set systems. Section 4 then describes the way
our catalogue [14] was obtained. Note that our computations were not based
on Peleg’s iterative algorithm [8] but on an alternative characterization of the
min-balanced systems in terms of linear independence of certain vectors. In
Section 5 our tools to classify the permutational types are discussed. In last
Section 6 we mention possible future research directions and open tasks.

2 Basic concepts and facts

Let N be a non-empty finite basic set. The symbol P(N) will denote its power
set, that is, the collection {S : S ⊆ N} of all its subsets. The symbol RN will be
used to denote the Euclidean space of real vectors [xi]i∈N whose components are
indexed by elements of N . Given S ⊆ N , the symbol χS will denote the incidence
vector of S in RN , that is, its zero-one identifier in RN defined by

(χS)i :=

{
1 for i ∈ S,
0 for i ∈ N \ S,

whenever i ∈ N .

2.1 Game-theoretical notions

In this context, elements of the basic set N correspond to players and (non-empty)
subsets of N to coalitions. A (transferable-utility coalitional ) game over N is
modeled by a real function m : P(N) → R such that m(∅) = 0. If ∅ 6= M ⊆ N
then the restriction of m to P(M) is called a subgame of m for M .

The core C(m) of a game m over N is a polyhedron in RN defined by

C(m) := { [xi]i∈N ∈ RN :
∑
i∈N

xi = m(N) &
∑
i∈S

xi ≥ m(S) for any S ⊆ N} .

We say that a game m over N is balanced if C(m) 6= ∅. It is called totally balanced
if every its subgame is balanced. Finally, a game over N is exact if, for each
coalition S ⊆ N , a vector [xi]i∈N ∈ C(m) exists such that

∑
i∈S xi = m(S). This

basically means that every inequality defining the core of m is tight.
A well-known fact is that every exact game is totally balanced (see Remark 1.19

in [10, §V.1]); by definition, every totally balanced game is balanced.

2.2 Min-balanced set systems

Any subset B of P(N) is called a set system; the union of sets in B will be denoted
by

⋃
B. A set system having at most one set is considered to be trivial; thus, set

systems B ⊆ P(N) with |B| ≥ 2 will be named non-trivial.
We say that B composes to a non-empty set M ⊆ N if M =

⋃
B and the

vector χM belongs to the conic hull of {χS ∈ RN : S ∈ B}, that is, there exist
non-negative coefficients λS ≥ 0, S ∈ B, such that χM =

∑
S∈B λS · χS .
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Given B ⊆ P(N) and ∅ 6= M ⊆ N we say B is min-balanced on M if it is a
minimal set system in P(N) which composes to M . That means, B composes to
M and, moreover, there is no C ⊂ B such that C composes to M . The following
basic observation was done in [5, Lemma 2.1].

Lemma 1. A non-empty set system B ⊆ P(N) is min-balanced on a non-empty
set M ⊆ N iff the following two conditions hold:

(i) there exist strictly positive λS > 0, S ∈ B, such that χM =
∑
S∈B λS · χS,

(ii) the incidence vectors {χS ∈ RN : S ∈ B} are linearly independent.

The condition (i), mentioned already with (1), means that B is balanced, which
is usual terminology in game-theoretical literature. The condition (ii), equivalent
to minimality, then implies the uniqueness of the so-called balancing coefficients
λS in (i). One can observe using Lemma 1 that a non-empty B ⊆ P(N) is min-
balanced on M iff it is a minimal set system satisfying (i), which is a standard
definition of a minimal balanced collection in game-theoretical literature.

Note that it follows from [5, Lemma 2.2] that any non-trivial min-balanced
system B on M ⊆ N consists of least two proper subsets of M . Moreover, the
intersection of all sets in B must be empty and one has at most |M | sets in B.

As mentioned earlier, every non-trivial min-balanced system on M ⊆ N
induces a unique non-trivial inequality (up to a positive multiple) for games m
over N . More specifically, we know by Lemma 1 that unique balancing coefficients
λS > 0, S ∈ B, exist such that χM =

∑
S∈B λS · χS . The induced inequality for

games m over N has then the form

m(M) ≥
∑
S∈B

λS ·m(S) . (2)

One can show that the balancing coefficients λS must be rational [5, § 3.3], which
allows one to multiply (2) by a positive factor so that the (balancing) coefficients
become integers with no common prime divisor. Moreover, it is convenient to
introduce a conventional coefficient with the empty set which plays no role in (2)
because m(∅) = 0 for any game m. The convention is such that one gets, after a
re-arrangement, a unique standardized form of the inequality

α(M) ·m(M) +
∑
S∈B

α(S) ·m(S) + α(∅) ·m(∅) ≥ 0 , (3)

where α(S), S ∈ B, are negative integers with no common prime divisor and
α(M), α(∅) are positive integers determined by the standardization conditions:∑

S⊆N

α(S) = 0 and ∀ i ∈ N
∑

S⊆N : i∈S

α(S) = 0 . (4)

The point of this particular convention will be revealed in Section 3.

Example 1. Consider N = {a, b, c, d} and a set system B = {a, bc, bd, cd}, where
abbreviations like ab stand for sets like {a, b}. One has

χN = 1 · χa +
1

2
· χbc +

1

2
· χbd +

1

2
· χcd ,
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which allows one to observe using Lemma 1 that B is min-balanced on N .
The respective inequality (2) is multiplied by factor 2, which gives α(N) = 2,
α(a) = −2 and α(S) = −1 for remaining S ∈ B. The convention in the first
formula of (4) gives α(∅) = +3, which leads to the standardized inequality (3)

2 ·m(abcd)− 2 ·m(a)−m(bc)−m(bd)−m(cd) + 3 ·m(∅) ≥ 0 (5)

for games m over N .

Shapley-Bondareva theorem can be re-formulated as follows [5, Lemma 3.5]:

Proposition 1. If |N | ≥ 2 then the least possible set of standardized inequalities
characterizing the balanced games m over N is the set of inequalities (3) induced
by non-trivial min-balanced systems B on N .

2.3 Irreducible min-balanced systems

Let B be a min-balanced system on ∅ 6= M ⊆ N . We say that B is reducible if
there exist a set ∅ 6= A ⊂M such that BA := {S ∈ B : S ⊂ A} composes to A.
Note that one can assume without loss of generality that both |A| ≥ 2 and A 6∈ B
because otherwise B cannot be min-balanced. A min-balanced system B ⊆ P(N)
that is not reducible is called irreducible.

The meaning of the reducibility condition is that the induced inequality
(for games over N) is a conic combination of inequalities induced by other
min-balanced systems, in particular by the irreducible ones.

Lemma 2. Given a min-balanced system B on ∅ 6= M ⊆ N , the reducibility
condition with a set ∅ 6= A ⊂ M is equivalent to the existence of min-balanced
systems C on A and D on M such that A ∈ D, C \ D 6= ∅ and B = C ∪ D \ {A}.

Proof. The sufficiency of the condition is easy as C ⊆ BA. For the necessity realize
using Lemma 1 that {χS : S ∈ BA} are linearly independent. Hence, uniquely
determined coefficients µS ≥ 0, S ∈ BA, exist such that χA =

∑
S∈BA

µS · χS .
Put C := {S ∈ BA : µS > 0} and µT := 0 for T ∈ B \ BA. Again by Lemma 1,
unique coefficients λS > 0, S ∈ B, exist such that χM =

∑
S∈B λS · χS . Let us

put ε := minC∈C
λC

µC
and introduce κA := ε, κS := λS − ε · µS for S ∈ B. Then

one has χM =
∑
S∈B λS ·χS + ε · (χA−

∑
S∈B µS ·χS) =

∑
S∈B∪{A} κS ·χS with

κS ≥ 0 for S ∈ B ∪ {A}. One can put D := {S ∈ B ∪ {A} : κS > 0} and verify
the conditions from Lemma 2.

One can extend the arguments used in the above proof to show that the
min-balanced systems C and D mentioned above are uniquely determined by the
set A. Lemma 2 also allows one to observe that the reducibility condition for a
min-balanced system B is equivalent to the original one from [5, Definition 4.1].
The next example illustrates the fact that the “decomposition” of B into systems
C and D leads to conic combination of the induced inequalities.
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Example 2. The set system B = {a, bc, bd, cd} from Example 1 is reducible. Put
A := {b, c, d}; then BA = {bc, bd, cd} composes to A because of

χA ≡ χbcd =
1

2
· χbc +

1

2
· χbd +

1

2
· χcd .

One gets C = {bc, bd, cd} and D = {a, bcd} in this particular case. The inequality
(5) induced by B is then a conic combination of inequalities induced by C and D:

1 × { 2 ·m(bcd)−m(bc)−m(bd)−m(cd) +m(∅) } ≥ 0

2 × { m(abcd)−m(a)−m(bcd) +m(∅) } ≥ 0 ,

where the (conic) coefficient for C is 1 and the coefficient for D is 2.

Thus, reducible systems are superfluous for describing totally balanced games.
Nonetheless, the irreducible ones are substantial as shown in [5, Theorem 5.1]:

Proposition 2. Assume |N | ≥ 2. The least set of standardized inequalities that
characterizes totally balanced games m over N is the set of inequalities (3) induced
by non-trivial irreducible min-balanced systems B on non-empty subsets M ⊆ N .

3 Conjugate inequalities and complementary systems

Every (standardized) inequality (3) for games m (over N) can be viewed as∑
S⊆N

α(S) ·m(S) ≥ 0 , where the coefficients outside B ∪ {∅,M} are zeros,

and assigned its conjugate inequality for games m (over N) with respect to N :∑
T⊆N

α∗(T ) ·m(T ) ≥ 0 , where α∗(T ) := α(N \ T ) for any T ⊆ N .

The importance of this concept for balanced and exact games is apparent from
[5, Lemma 3.4], which can be re-phrased as follows.

Proposition 3. The least set S of standardized inequalities that characterizes
balanced games over N is closed under conjugacy: whenever (3) is in S then
its conjugate inequality is in S. The same holds for the least set of standardized
inequalities characterizing exact games over N .

We know from Proposition 1 that the inequalities in the set S characterizing
balanced games over N correspond to non-trivial min-balanced systems on N .
Thus, the conjugate inequality to (3) for a system B on N also corresponds to a
non-trivial min-balanced system on N , which is nothing but the complementary
system to B relative to N . The following is a re-formulation of [5, Corollary 3.1].

Proposition 4. Let B be a non-trivial min-balanced system on N inducing (3).
Then its complementary system B∗ := {N \ S : S ∈ B} relative to N is also a
non-trivial min-balanced system on N , inducing the conjugate inequality to (3).
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The reader can now comprehend the convention from Section 2.2, where the
coefficient α(∅) with the empty set was introduced. It is just the coefficient α∗(N)
in the conjugate inequality, that is, the coefficient with N for the complementary
system B∗. This phenomenon is illustrated by the next example.

Example 3. Consider again the system B = {a, bc, bd, cd} on N = {a, b, c, d} from
Example 1. Its complementary system relative to N is B∗ = {ab, ac, ad, bcd}. The
standardized inequality induced by B∗ is then

3 ·m(abcd)−m(ab)−m(ac)−m(ad)− 2 ·m(bcd) + 2 ·m(∅) ≥ 0 ,

which is, as the reader can check, the conjugate inequality to the inequality
(5) induced by B (see Example 1). Note that B∗ is an irreducible min-balanced
system unlike its complementary system B∗∗ = B (see Example 2).

4 Catalogue: procedure

Here we describe the method our catalogue [14] has been obtained. As explained
in Section 2.2, a min-balanced system on a basic set N contains at most n := |N |
sets. Thus, a non-trivial such system B ⊆ P(N) can be represented by a zero-one
n× r-matrix, where 2 ≤ r ≤ n, namely by a matrix whose (distinct) columns are
incidence vectors of (all) sets S ∈ B. To get one-to-one correspondence between
such matrices and non-trivial set systems one can choose and fix an order of
elements in N and also choose and fix an order of elements in P(N).

Moreover, by Lemma 1(ii), the columns of a matrix which represents a
min-balanced system must be linearly independent, which means that the rank of
the matrix is r, the number of its columns. This is something one can easily test
using linear algebra computational tools. Thus, the first step of our procedure
was computing a list of representatives of permutational types of non-trivial set
systems B ⊆ P(N) such that {χS : S ∈ B} are linearly independent in RN . In
our case n = 5 we have obtained 1649 such (non-trivial) type representatives.

The second necessary condition for a min-balanced system B ⊆ P(N) is that
B composes to M :=

⋃
B, that is, non-negative coefficients λS ≥ 0, S ∈ B, exist

such that χM =
∑
B∈B λS · χS . If A is the n× r-matrix representing B then this

condition is equivalent to the existence of a non-negative column vector λ ∈ Rr
such that A · λ = χM , which is a standard feasibility task in linear programming.
Again, this can be tested computationally by means linear programming software
packages. In our case n = 5 we found that 934 representatives of those 1649 ones
mentioned above describe systems B composing to

⋃
B.

In case of an n× r-matrix A of the rank r the solution λ of a linear system
A · λ = χM is uniquely determined. Hence, the criterion to decide whether the
corresponding system B is min-balanced is immediate: all the components of the
unique solution λ must be strictly positive. This gave massive reduction: only 57
representatives of above mentioned 934 ones describe min-balanced systems.

Testing irreducibility of min-balanced systems using their matrix computer
representations comes from the definition in Section 2.3: testing whether a set
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subsystem composes to its union is a linear programming feasibility task. In our
case n = 5 we recognized 23 irreducible types of 57 of min-balanced ones. The
particular numbers are given in Table 1, the details can be found in [14].

variables systems permutational types irreducible systems irreducible types

|N | = 2 1 1 1 1

|N | = 3 5 3 4 2

|N | = 4 41 9 18 5

|N | = 5 1291 44 288 15

|N | ≤ 5 1338 57 311 23

Table 1. The numbers of non-trivial min-balanced systems in case |N | ≤ 5.

5 Towards classification of permutation types

Here we mention some characteristics which can be used to classify permutational
types of non-trivial (irreducible) min-balanced set systems.

5.1 Numerical characteristics of permutational types

Let B be a non-trivial min-balanced set system on a basic set N with n := |N | ≥ 2.
Introduce (set) cardinality characteristics of B by ck := |{S ∈ B : |S| = k}|
for k = 1, . . . , n − 1. Note that

∑n−1
k=1 ck = |B| is the number of sets in B.

The cardinality vector [c1, . . . , cn−1] can then serve as a characteristic of any
permutational type of non-trivial min-balanced systems. Cardinality vectors
cannot, however, distinguish between some different permutational types.

An alternative idea comes from multiplicity characteristics which are defined
by mi := |{S ∈ B : i ∈ S}| for elements i ∈ N . One can order the numbers
mi in an increasing way, say, and get a multiplicity vector of the length |N |,
which can serve as a characteristic of the permutational type of B. The sum of
its components

∑
i∈N mi can be viewed as a kind of multiplicity index for B.

Multiplicity vectors cannot, however, distinguish between different partitions.

5.2 Archetypes

Let B be a set system on a basic set N . It defines an equivalence relation on N :
given i, j ∈ N , i ∼ j will mean that, for every S ∈ B, one has i ∈ S ⇔ j ∈ S.
For any i ∈ N put [i] := {j ∈ N : i ∼ j} and denote by Ñ := { [i] : i ∈ N}
the factor set of ∼, that is, the set of equivalence classes of ∼. Analogously, any
S ∈ B can be identified with a subset of Ñ , namely with S̃ := { [i] : i ∈ S};
note that the inverse relation is S =

⋃
{[i] : [i] ∈ S̃}. The system B itself can be

identified with B̃ := {S̃ : S ∈ B}, which is a set system on Ñ .



10 Studený, Kratochv́ıl, and Vomlel

Given a set system B on N 6= ∅ and a set system C on L 6= ∅ we will say
that they belong to the same archetype if there exists a one-to-one mapping
ψ : Ñ → L̃ from Ñ onto L̃ which maps B̃ to C̃, that is, C̃ = {ψ(S̃) : S̃ ∈ B̃}.

It is easy to see that this is an equivalence relation on set systems coarsening
their permutational equivalence. Trivial set systems form one equivalence class
of this archetypal equivalence; however, such systems are not of our interest.

Lemma 3. Let B be a set system on N and C a set system on L which belong
to the same archetype. Then B is min-balanced iff C is min-balanced. Moreover,
B is a non-trivial irreducible min-balanced system iff C is so.

Proof. It is enough to verify the claims for a set system B on N and the system
B̃ on Ñ in place of the system C on L. The claim about min-balanced systems
follows easily from Lemma 1: realize that one has χN =

∑
S∈B λS · χS iff

χÑ =
∑
S∈B λS · χS̃ for arbitrary real coefficients λS and similar consideration

works with zero vectors in place of χN and χÑ .
As concerns the irreducible systems it is more convenient to show that B is

reducible iff B̃ is reducible. It was mentioned in Section 2.3 that the set A in the
definition of reducibility of B has the form A =

⋃
BA with BA = {S ∈ B : S ⊂ A}.

Such a set A is composed of equivalence classes of ∼ and can be identified with
a subset of Ñ : one has Ã := { [i] : i ∈ A} and A =

⋃
{[i] : [i] ∈ Ã}. Hence, one

has Ã ⊂ Ñ and χA =
∑
S∈BA

λS · χS iff χÃ =
∑
S∈BA

λS · χS̃ for arbitrary real
coefficients λS . This implies the claim about reducible systems. The claim about
trivial/non-trivial systems is evident.

Lemma 3 implies that permutational types can be classified by their archetypes.
Any archetype can be canonically represented by an archetypal set system, which
is such a system B on N that, for any i, j ∈ N , one has i ∼ j iff i = j.

Example 4. Consider an irreducible min-balanced system B = {ab, acd, bcd} on
N = {a, b, c, d}. One has c ∼ d in this case and the system B belongs to the same
archetype as C = {ab, ac, bc} on M = {a, b, c}. Clearly, C is an archetypal system.

6 Conclusions

We would like to find out whether our method of generating (all) types of
min-balanced systems based on Lemma 1 can be modified and can lead to some
iterative algorithm, which would be able to produce catalogues for |N | ≥ 6.

One of our open tasks is whether the numerical characteristics from Section 5.1
are able to distinguish between any distinct types of min-balanced systems. If this
is so then an alternative method of generating types could possibly be designed.

This is also related to the question of finding lower and upper estimates for
the numbers (of types) of min-balanced systems and irreducible min-balanced
system in terms of |N |. The asymptotic behavior of these numbers with increasing
|N | would be of our interest, too.
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5. Kroupa, T., Studený, M.: Facets of the cone of totally balanced games.
Accepted in Mathematical Methods of Operations Research (2019)
https://arxiv.org/abs/1812.00576.

6. Lohmann, E., Borm, P., Herings, P.J.-J.: Minimal exact balancedness. Mathematical
Social Sciences 64, 127-135 (2012)

7. Miranda, E., Montes, I.: Games solutions, probability transformations and the core.
In: JMLR Workshops and Conference Proceedings 62: ISIPTA 2017, 217-228 (2017)

8. Peleg, B: An inductive method for constructing minimal balanced collections of finite
sets. Naval Research Logistics Quaterly 12, 155-162 (1965)

9. Peleg, B, Sudhölter, P.: Introduction to the Theory of Cooperative Games. Volume 34
of Theory and Decision Library, series C: Game Theory, Mathematical Programming
and Operations Research, Springer (2007)

10. Rosenmüller, J.: Game Theory: Stochastics, Information, Strategies and Coopera-
tion. Kluwer, Boston (2000)

11. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer,
Berlin (2003)

12. Shapley, L.S.: On balanced sets and cores. Naval Research Logistics Quarterly 14,
453–460 (1967)

13. Shapley, L.S.: On balanced games without side payments. In: Hu, T.C., Robinson,
S.M. (eds.) Mathematical Programming, Academic Press, New York 261–290 (1973)
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