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Abstract. Given a collection of random variables [{;]iecy where N is a
finite nonempty set, the corresponding multiinformation function ascribes
the relative entropy of the joint distribution of [¢;];c4 with respect to the
product of distributions of individual random variables & for ¢ € A to
every subset A C N. We argue it is a useful tool for problems concerning
stochastic (conditional) dependence and independence (at least in discrete
case).

First, it makes possible to express the conditional mutual information
between [{;]ica and [{;]ien given [§]icc (for every disjoint A, B,C' C N)
which can be considered as a good measure of conditional stochastic de-
pendence. Second, one can introduce reasonable measures of dependence
of level r among variables [{;]ica (where A C N, 1 < r < card A) which
are expressible by means of the multiinformation function. Third, it en-
ables one to derive theoretical results on (nonexistence of an) axiomatic
characterization of stochastic conditional independence models.

1. Introduction

Information theory provides a good measure of stochastic dependence be-
tween two random variables, namely the mutual information [7, 3]. It is al-
ways nonnegative and vanishes iff the corresponding two random variables



are stochastically independent. On the other hand it achieves its maximal
value iff one random variable is a function of the other variable [28].

Perez [15] wanted also to express numerically the degree of stochastic
dependence among any finite number of random variables and proposed a
numerical characteristic called ’"dependence tightness’. Later he changed the
terminology, started to call that characteristic systematically multiinforma-
tion and encouraged research on asymptotic properties of an estimator of
multiinformation [18]. Note that multiinformation somehow appeared in
earlier information-theoretical papers. For example, Watanabe [24] called
it ‘total correlation’ and Csiszar [2] showed that the IPFP procedure con-
verges to the probability distribution minimizing multiinformation within
the considered family of distributions having prescribed marginals.

Further prospects occur when one considers multiinformation as a set
function. That means if [¢;];en is a collection of random variables indexed
by a finite set N then the multiinformation function (corresponding to
[€ilien) assigns the multiinformation of the subcollection [¢;]ica to every
A C N. Such a function was mentioned already in sixties by Watanabe [25]
under name ’total cohesion function’. Some pleasant properties of the mul-
tiinformation function were utilized by Perez [15] in probabilistic decision-
making. Malvestuto named the multiinformation function ’entaxy’ and ap-
plied it in the theory of relational databases [9]. The multiinformation func-
tion plays an important role in the problem of finding ’optimal dependence
structure simplification’ solved in thesis [21], too. Finally, it has appeared
to be a very useful tool for studying of formal properties of conditional
independence.

The first author in modern statistics to deal with those formal prop-
erties of conditional independence was probably Dawid [5]. He character-
ized certain statistical concepts (e.g. the concept of sufficient statistics) in
terms of generalized stochastic conditional independence. Spohn [17] stud-
ied stochastic conditional independence from the viewpoint of philosophical
logic and formulated the same properties as Dawid. The importance of con-
ditional independence in probabilistic reasoning was explicitly discerned
and highlighted by Pearl and Paz [13]. They interpreted Dawid’s formal
properties in terms of axioms for irrelevance models and formulated a nat-
ural conjecture that these properties characterize stochastic conditional in-
dependence models. This conjecture was refuted in [19] by substantial use
of the multiinformation function and this result was later strengthened by
showing that stochastic conditional independence models cannot be char-
acterized by a finite number of formal properties of that type [20].

However, as we have already mentioned, the original prospect of multiin-
formation was to express quantitatively the strength of dependence among
random variables. An abstract view on measures of dependence was brought



by Rényi [16] who formulated a few reasonable requirements on measures
of dependence of two real-valued random variables. Zvarova [28] studied
in more detail information-theoretical measures of dependence including
mutual information. The idea of measuring dependence appeared also in
nonprobabilistic calculi for dealing with uncertainty in artificial intelligence
(22, 23].

This article is basically an overview paper, but it brings several minor
new results which (as we hope) support our claims about the usefulness of
the multiinformation function. The basic fact here is that the multiinfor-
mation function is related to conditional mutual information. In the first
part of the paper we show that the conditional mutual information com-
plies with several reasonable requirements (analogous to Rényi’s conditions)
which should be satisfied by a measure of degree of stochastic conditional
dependence.

The second part of the paper responds to an interesting idea brought
by Naftali Tishby and Joachim Buhmann in Erice during the workshop.
Is it possible to decompose multiinformation (which is considered to be a
measure of global dependence) into level-specific measures of dependence
among variables? That means one would like to measure the strength of
interactions of the ’first level’ by a special measure of pairwise dependence,
and similarly for interactions of ’higher levels’. We show that the multiin-
formation can indeed be viewed as a sum of such level-specific measures
of dependence. Nevertheless, we have found recently that such a formula
is not completely new: similar level-specific measures of dependence were
already considered by Han [8].

Finally, in the third part of the paper, as an example of theoretical use
of the multiinformation function we recall the results about nonexistence of
an axiomatic characterization of conditional independence models. Unlike
the original paper [20] we present a long didactive proof emphasizing the
essential steps.

Note that all results of the paper are formulated for random variables
taking a finite number of values although the multiinformation function
can be used also in the case of continuous variables. The reason is that
we wish to present really elementary proofs which are not complicated by
measure-theoretical technicalities.

2. Basic concepts

We recall well-known information-theoretical concepts in this section; the
most of them can be found in textbooks, e.g. [3]. The reader who is familiar
with information theory can skip the section.



Throughout the paper N denotes a finite nonempty set of factors or
shortly a factor set. In the sequel, whenever A, B C N the juxtaposition
AB will be used to shorten the notation for the set union A U B and for
any i € N, the singleton will be sometimes denoted by 7 instead of {i}.

2.1. DISCRETE PROBABILITY DISTRIBUTIONS

The factors should correspond to discrete random variables. A discrete
random variable &; corresponding to a factor ¢ € N has to take values in a
nonempty finite set X; called the frame for 7. Under situation when a fixed
frame X; is assigned to every factor i € N and ) # A C N the symbol X4
denotes the Cartesian product [[;c 4 X;, that is the frame for A. Whenever
) # BC AC N and x € X4, then its coordinate projection to X g will be
denoted by zpg.

By a probability distribution on a nonempty finite set Y we understand
every nonnegative real function P on Y with > {P(y);y € Y} = 1. By
a (discrete) probability distribution over a factor set N is understood any
probability distribution on X where {X;; ¢ € N} is an arbitrary collection
of frames. Or equivalently, any particular joint distribution of a discrete
random vector [§;]ien.

Having ) # A C N and a probability distribution P over N its marginal
distribution P* is a probability distribution over A defined as follows:

PAa) = Z{P(a,b); beXma} foreveryaeXy.

It describes the distribution of the random subvector [€;]ic4. In the sequel
we accept a natural convention Pl =1.

Having ) # B C N and b € Xp such that PB(b) > 0 the conditional
distribution P! is a probability distribution over N \ B defined by:

P(a,b)
PB(b)
It describes the (conditional) distribution of [{;];c x\ p under the condition
[¢ilics = b. For disjoint A, B C N one can use the symbol PAI® to denote
(PA8)" = (PI)™,

Every mapping between frames induces a transformation of distribu-

tions. Supposing P is a probability distributionon Y and f: Y — Z is a
mapping into a nonempty finite set Z, the formula

Q(z) = Y {P();yeY & f(y) =z} for every z € Z,

defines a probability distribution on Z. In such a case we say that (Q is an
image of P (by f). Provided P is the distribution of a random vector &, Q
is the distribution of the transformed vector f(&).

P‘b(a) = for every a € X\ -



Supposing A, B C N are disjoint, P is a distribution over N we say that
A is functionally dependent on B with respect to P and write B — A (P)
if there exists a mapping f : Xgp — X4 such that

PAB(a,b) = PB(b) for a = f(b), b€ X5,
PAB(a,b) =0 for remaining a € X4, b€ Xp.

It reflects the situation when P is the distribution of a random vector
[€i]ie v whose random subvector [¢;];c 4 is a deterministic function of another
random subvector [¢;];cp. Note that the function f is uniquely determined
on the set {b € Xp; PB(b) > 0}, outside that set it can take arbitrary
values.

Supposing A, B,C C N are disjoint and P is a distribution over N we
say that A is conditionally independent of B given C' with respect to P and
write A 1L B|C (P) if the equality

PABC(q,b,¢) - PC(c) = PA%(a,c) - PPC(b,¢)

holds for every a € X4, b € Xp, ¢ € X¢. It describes the situation when
P is the distribution of a random vector [§;];cn and in every situation
when the values of [¢;];cc are known the values of [¢;];ca and [§]icp are
completely unrelated (from a stochastic point of view).

2.2. INDEPENDENCY MODELS

The symbol 7 (V) will denote the collection of ordered triplets (A, B|C) of
pairwise disjoint subsets of a factor set N, where A # () # B. These triplets
will serve for identification of conditional independence statements within
the factor set N.

In general, an independency model over N is a subset of the class T (V).
Supposing (A, B|C) € T(N), its symmetric image is the triplet (B, A|C) €
T(N). The symmetric closure of an independency model Z C T (N) is the
class of triplets in Z and their symmetric images.

The independency model induced by a probability distribution P over N
consists just of those triplets (A, B|C) € T(N) such that A 1L B|C (P).
A probabilistic independency model (over N) is an independency model
induced by some probability distribution over V.

Lemma 2.1 SupposingZ,J C T (N) are probabilistic independency mod-
els the class Z N J is also a probabilistic independency model.

Proof: Let P be a probability distribution on Xy inducing Z and @ be a
probability distribution on Yy = [[;cy Y; inducing J. Put Z; = X; x Y;
for every ¢ € N and define

R([zi,yilien) = P([xilien) - Q([yilien) for [zi, yilien € Zn -
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It is easy to verify that for every (A4, B|C) € T(N) one has A 1L B|C (R)
iff [A 1L B|C (P) & A 1L B|C(Q)]. 0

2.3. RELATIVE ENTROPY

Supposing ) and R are probability distributions on a nonempty finite set
Y we say that @ is absolutely continuous with respect to R iff R(y) = 0
implies Q(y) = 0 for every y € Y. In that case we can define the relative
entropy of ) with respect to R as

HQIR) = Y QW) Qg; yEY & Qy) >0}

Lemma 2.2 Suppose that () and R are probability distributions on a
nonempty finite set Y such that () is absolutely continuous with respect to
R. Then

(a) H(QIR) >0,

(b) H(Q|R) =0iff Q@ = R.

Proof: Consider the real function ¢ on the interval [0,00) defined by

o(z) =z-Inz for z>0, ¢(0)=0,

and the function 4 : Y — [0, 00) defined by

h(y) = Q(y)/R(y) if R(y) >0, h(y) = 0 otherwise.

Since @ is a continuous strictly convex function, one can use the well-known
Jensen’s inequality [3] with respect to R and write:

= (> hy)-Ry) < o(h(y) - Ry) = H(QIR).

yeyY yeyY

Owing to strict convexity of ¢ the equality holds iff A is constant on the
set {y € Y;R(y) > 0}. That means h =1 there, i.e. Q = R. |

Supposing that (4, B|C) € T(N) and P is a probability distribution over
N the formula

_ PA%wac)PP%zpe) : c
r) = forz e X with P%(z¢) > 0,
A( ) PC(o0) ABC (zc) )
Pz) = 0 for remaining x € X 4pc -

5

defines a probability distribution on X 4. Evidently, PAB¢ is absolutely

continuous with respect to P. The conditional mutual information between
A and B given C with respect to P, denoted by I(A4; B|C || P) is the relative
entropy of PAPC with respect to P. In case that P is known from the
context we write just I(A4; B|C).
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Consequence 2.1 Supposing that (A, B|C) € T(N) and P is a probabil-
ity distribution over N one has

(a) I(4;B|C|P) >0,

(b) I(A;B|C||P)=0iff A 1L B|C(P).

Proof: Owing to Lemma 2.2 it suffices to realize that PAPC = P means
nothing but the corresponding conditional independence statement. a

2.4. MULTIINFORMATION FUNCTION

The multiinformation function induced by a probability distribution P
(over a factor set N) is a real function on the power set of N defined
as follows:

M(D|P)=HP"| ] P'?) for0#£DC N, M@®||P)=0.
1€D

We again omit the symbol of P when the probability distribution is clear
from the context. It follows from Lemma 2.2(b) that M (D) = 0 whenever
cardD =1.

Lemma 2.3 Let (A,B|C) € T(N) and P be a probability distribution
over N. Then

I(A; B|C) = M(ABC) + M(C) — M(AC) — M(BC). 2)

Proof: Let us write H(PABC|P) as

Z {PABC({L') .In PABC(x) : PC($C’)

PAC (g 40 - PBC(zp0)
Now we can artificially multiply both the numerator and the denomina-
tor of the ratio in the argument of the logarithm by a special product
[lica P{Z}(g:i) TLien pli} (zi)  TLicc pli} (i) - Tlicc pli} (x;) which is always
strictly positive for any considered configuration z. Using well-known prop-
erties of logarithm one can write it as a sum of four terms:

.z € Xape & PABC(z) >0} .

Z{PABC(x) _IHLC(I'); z € Xapce & PABC(Q?) > 0}
HieABC Pli}(z:)
+ Z{PABC(:E)-IHLM§ .’EEXABC&PABC(CE)>O}
.o PG

— X{PYa) L e X e & PAPC(r) > 0)
HiEACP (z:)

— Y PABC(g) - In —L20EBO) e Xupe & PABC(2) > 0).
HiEBC’ Pl (@)



The first term is nothing but the value of the multiinformation function for
ABC'. To see that the second term is M (C') one can sum there in groups of
configurations for which the corresponding logarithm has the same value,
that is groups of zs having the same projection to C":

> Y. PYP%,a0) S )

rceXg ve X, p HiGC’ P{Z} (xl)
PC(z5)>0 PABC (y,25)>0
PC(z
= Y U s pancg ) -
X [Tico Pl (i)
z0€ X i€C 4 ve Xup
PC(2c)>0 PABC (y,25)>0

C
- 3 mLx?) - P%(z¢) .
coeXe  1liec PU(zi)

PC(zc)>0

Similarly for the other two terms. O

2.5. ENTROPY AND CONDITIONAL ENTROPY

If @ is a discrete probability distribution on a nonempty finite set Y the
entropy of (Q is defined by the formula

L
Q(y)

Lemma 2.4 Suppose that () is a discrete probability distribution on a
nonempty finite set Y. Then

(a) H(Q) =0,

(b) H(Q) = 0 iff there exists y € Y such that Q(y) = 1.

H(Q) =D {Qy) In ;yeY &Q(y)>0}.

Proof: Since logarithm is an increasing real function one has In Q(y)_1 >0
for every y € Y with Q(y) > 0. Hence Q(y) - InQ(y) ™" > 0 for every such
y; the equality occurs here only if Q(y) = 1. It gives both (a) and (b). O

The entropic function induced by a probability distribution P over a
factor set IV is a real function on the power set of IV defined as follows:

H(D|P)=H(PP) for #DcCN, H(|P)=0.

We will often omit the symbol of P when it is clear from the context. By
using the same procedure as in the proof of Lemma 2.3 it is not difficult to
see that

M(D)=—H(D)+ Y _ H({i}) forevery DC N.
i€D



Hence, using the formula (2) from Lemma 2.3 one derives
I(A;B|C) = —-H(ABC) - H(C)+ H(AC)+ H(BC). (3)

Supposing A, B C N are disjoint the conditional entropy of A given B
is defined as a simple difference

H(A|B) = H(AB) — H(B) .

We use the symbol H(A|B || P) to indicate the corresponding probability
distribution P.

Lemma 2.5 Let P be a probability distribution over N, A,B C N are
disjoint. Then

H(AB||P) = Y {PP(b) - HA|P" ; beXp & PP(b) >0}. (4)

Proof: One can easily see using the method used in the proof of Lemma 2.3
that the expression

> { P45 (ab) - In PTE)b) caeXy &beXp & PAP(ab) >0}

is nothing but H(A|B || P). On the other hand, one can utilize the definition
of PAI® and write it in the form

1

PB(b) - PA%g) ln ——— |
Z ( ) Z (a) n PA“’(a)
be Xp ae Xy
PB(b)>0 PAIb(a)>0
which gives the expression from (4). O

3. Measure of conditional stochastic dependence

In this section we give several arguments why conditional mutual informa-
tion should be considered as a suitable quantitative measure of degree of
conditional stochastic dependence.

To motivate this topic let us consider the following specific task. Sup-
pose that £4,&p, ¢ are discrete random vectors and the joint distributions
of {4c and €pc are already known (fixed or prescribed). What are then
possible values for the conditional mutual information I(A4; B|C)? By Con-
sequence 2.1 zero is a lower bound for those values, and it is the precise
bound since one can always find a distribution having prescribed marginals
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for AC and BC such that I(A; B|C) = 0 (namely the ’conditional product’
P given by the formula (1)).

3.1. MAXIMAL DEGREE OF CONDITIONAL DEPENDENCE
But one can also find an upper bound.

Lemma 3.1 Let (A,B|C) € T(N) and P be a probability distribution
over N. Then

I(A; B|C) < min { H(A|C), H(B|C)}.

Proof: Tt follows from (3) with help of the definition of conditional entropy
I(A; B|IC) = H(A|C) — H(A|BC).

Moreover, 0 < H(A|BC) follows from (4) with Lemma 2.4(a). This implies
I(A; B|C) < H(A|C), the other estimate with H(B|C) is analogous. O

The following proposition generalizes an analogous result obtained in
the unconditional case by Zvéarovd ([28], Theorem 5) and loosely corre-
sponds to the condition E) mentioned by Rényi [16].

Proposition 3.1 Supposing (A, B|C) € T(N) and P is a probability dis-
tribution over N one has

I(A; B|C || P) = H(A|C||P) iff BC — A(P).

Proof: By the formula mentioned in the proof of Lemma 3.1 the considered
equality occurs just in case H(A|BC || P) = 0. Owing to the formula (4)
and Lemma 2.4(a) this is equivalent to the requirement H(A|| PI*¢) = 0
for every (b,c) € Xpc with PBY(b,c) > 0. By Lemma 2.4(b) it means
just that for every such a couple (b,¢) € Xp¢ there exists a € X4 with
PAlb(g) = 1. Of course, this a € X4 is uniquely determined. This enables
us to define the required function from Xpg¢c to X4 . O

A natural question arises how tight is the upper bound for I(A; B|C)
from Lemma 3.1. More exactly, we ask whether one can always find a
distribution having prescribed marginals for AC and BC with I(A; B|C) =
min{ H(A|C), H(B|C)}. In general, the answer is negative as shown by the
following example.
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Example 3.1 Let us put X4 = Xp = X¢ = {0,1} and define P4¢ and
Ppc as follows

Pac(0,0) = 5, Pac(0,1) = Pac(1,1) = ;, Pac(1

PBC(OaO) = PBC(Oa 1) = PBC’(LO) = PBC(L 1) =

0 =1,

=

Since (Pac)® = (Ppc)® there exists a distribution on X 4pc having them
as marginals. In fact, any such distribution P can be expressed as follows

— 15

where a € [15,1],8 € [0, 1]. It is easy to show that H(A|C) < H(B|C).
On the other hand, for every parameter « either P(0,0,0) and P(1,0,0)
are simultaneously nonzero or P(0,1,0) and P(1,1,0) are simultaneously
nonzero. Therefore A is not functionally dependent on BC' with respect to
P and by Proposition 3.1 the upper bound H(A|C) is not achieved. <O

However, the upper bound given in Lemma 3.1 can be precise for specific
prescribed marginals. Let us provide a general example.

Example 3.2 Suppose that Pp¢ is given, consider an arbitrary function
g : Xp — X4 and define P4¢ by the formula

Pyc(a,c) :Z{PBC(b,C) ; beXp & gb)=a} forae Xy ceXe.

Well, one can always find a distribution P over ABC having such a cou-
ple of distributions P4c, Ppc as marginals and satisfying I(A; B|C || P) =
H(A|C || P). Indeed, define P over ABC as follows:

P(a,b,c) = Ppc(b,c) if g(b) = a,
P(a,b,c) =0 otherwise.
This ensures that BC' — A (P), then use Proposition 3.1. &

3.2. MUTUAL COMPARISON OF DEPENDENCE DEGREES

A natural intuitive requirement on a quantitative characteristic of degree of
dependence is that a higher degree of dependence among variables should
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be reflected by a higher value of that characteristic. Previous results on
conditional mutual information are in agreement with this wish: its minimal
value characterizes independence, while its maximal values more or less
corresponds to the maximal degree of dependence.

Well, what about the behavior ’between’ these ’extreme’ cases? On can
imagine two ’comparable’ nonextreme cases when one case represents evi-
dently a higher degree of dependence among variables than the other case.
For example, let us consider two random vectors £ 45 resp. nap (take C' = ()
having distributions Psp resp. @ 4p depicted by the following diagrams.

1 1 2

Pap 0 7 7 QaB 0 0 7
1 1 1 1 2

7 7 7 7 7 0
1 1 1 1

7 7 0 7 7 0

Clearly, (Pap)" = (Qap)" and (Pap)? = (Qap)”. But intuitively, Q45
expresses a higher degree of stochastic dependence between 14 = &4 and
np = {p than P4p. The distribution ) 4p is more ’concetrated’ than Pp:
Qap is an image of Psp. Therefore, we can anticipate I(A;B|0|| P) <
I(A; B0 || Q), which is indeed the case.

The following proposition says that conditional mutual information has
the desired property. Note that the property is not derivable from other
properties of measures of dependence mentioned either by Rényi [16] or by
Zvarova [28] (in the unconditional case).

Proposition 3.2 Suppose that (A, B|C) € T(N) and P, Q are probability
distributions over N such that PAC¢ = QAC, PBC = QBC and QABC is an
image of PABC . Then

I(A4;B|C||P) < I(A; B|IC| Q) -

Proof: Let us write P instead of PABC throughout the proof and similarly
for Q). Suppose that @) is an image of P by f : Xapc — Xapc. For every
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z € Xape with Q(z) > 0 put 7' = {y € Xupc; fly) =z & P(y) >0}
and write (owing to the fact that the logarithm is an increasing function):

> Py) lnP(y) <Y Py -In (Z P(Z)) = Q(z) - nQ(z).

yeT yeT zeT

We can sum it over all such zs and derive

> Py WmPy < D Q) InQ(z).
ve XaBC z€ Xypo
P(y)>0 Q(z)>0

Hence
—H(ABC||P) < —H(ABC || Q).

Owing to the assumptions PA¢ = Q4¢, PBC = QB one has H(AC || P) =
H(AC||Q),H(BC |P)=H(BC|Q)and H(C||P)=H(C| Q). The for-
mula (3) then gives the desired claim. O

Nevertheless, the mentioned inequality from Proposition 3.2 may not
hold when the assumption that marginals for AC' and BC coincide is re-
leased, as demonstrated by the following example.

Example 3.3 Take C = () and consider the distributions P4 and Qg
depicted by the following diagrams:

oolw
D=

Qap| 0

0o

Pup

oolw
ool
oolw

o[

Evidently, Q4p is an image of Pap, but I(A4; B|0|| P) > I(A; B0 ]| Q). ©

Remark One can imagine more general transformations of distributions:
instead of ’'functional’ transformations introduced in subsection 2.1 one
can consider transformations by Markov kernels. However, Proposition 3.2
cannot be generalized to such a case. In fact, the distribution P4p from the
motivation example starting this subsection can be obtained from Q4p by
an 'inverse’ transformation realized by a Markov kernel.
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3.3. TRANSFORMED DISTRIBUTIONS

Rényi’s condition F) in [16] states that a one-to-one transformation of a
random variable does not change the value of a measure of dependence.
Similarly, Zvarové [28] requires that restrictions to sub-o-algebras (which
somehow correspond to separate simplifying transformations of variables)
decrease the value of the measure of dependence.

The above mentioned requirements can be generalized to the ’conditio-
nal’ case as shown in the following proposition. Note that the assumption
of the proposition means (under the situation when P is the distribution
of a random vector [{;];.,) simply that the random subvector [§];c, is
transformed while the other variables &;, 1 € BC' are preserved.

Proposition 3.3 Let (A, B|C), (D,B|C) € T(N), P,Q be probability
distributions over N. Suppose that there exists a mapping g : X4 — Xp

such that QDBC is an image of PABC by the mapping f : Xapc — XpBC
defined by

f(a,b,c) =[g(a),b,c] foraeXa, (bec)€ Xpc.

Then
I(A; B|C||P) > I(D; B|IC'|| Q) -

Proof: Throughout the proof we write P instead of PABC and @ instead
of QPBC. Let us denote by Y the class of all (¢,d) € X¢p such that
P(g-1(d) x Xp x {c}) > 0 where g_1(d) = {a € X4;9(a) = d}. For every
(¢,d) € Y introduce a probability distribution R,y on g_1(d) x Xp by the
formula:

P(a,b,c)
P(g-1(d) x Xp x {c})

It can be formally considered as a distribution on X4 x Xpg. Thus, by
Consequence 2.1(a) we have

R.4(a,b) = fora € g_1(d), be Xp.

0 <I(A;B|0||Reg) forevery (c,d) €Y.

One can multiply this inequality by P(g_1(d) x Xp x {c}), sum over Y and
obtain by simple cancellation of P(g_;(d) x X5 x {c}):

0< > >

(6 d)EY (ap)eg 1(d)x Xp
P(abc)>0

P(abe) - P(g—1(d) x Xp x {c})
({a} x Xp x{c}) - P(g-1(d) x {b} x {c}) -

P(abe) -1
(abe) n
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One can apply basic properties of the logarithm and write the right-hand
side of the obtained inequality as a sum of four terms (as in the proof of
Lemma 2.3). We leave it to the reader to verify that each of these terms is
certain entropy (possibly with the minus sign). We just give hints indicating
formally the way of summation.

LS P mPab) =SY S Y = LT = —H(4BO| P)
—%:%:%:%:P(abc)-lnP({a}XXBX{c}—Ezz. =¥ = HAC|P)
—;%:%:%:P(ab@-lnp(gfl(d)X{b}X{C} ZEZ —HDBCIIQ)
;;;;P(abc) -InP(g-1(d) x Xp x {c}) = ZZ H(DC| Q)
Thus, one can derive:
0 < —H(ABC| P)+ H(AC||P)+ H(DBC||Q) — H(DC| Q). (5)
Since PBC = QBC one also has
0=H(BC|P)-H(BC|Q)-H(C|P)+H(C|Q). (6)
Hence by summing (5) and (6) and using the formula (3)
0<I(4;B|C||P)—I(D;B|C|Q),

which concludes the proof. a

If g is a one-to one mapping, one can apply Proposition 3.3 both to
g and ¢~ !, from which the following consequence immediately follows (it
corresponds exactly to the Rényi’s requirement F)).

Consequence 3.1 Supposing the mapping g in Proposition 3.3 is a one-
to-one mapping one has

I(A;B|C|| P) = I(D; BIC'|| Q) -

Nevertheless, Proposition 3.3 cannot be strengthened to transformations
involving variables in C' (more exactly transformations of the subvector
[€ilicac ), as the following example shows.

Example 3.4 Let us put X4 = Xp = X¢c =Xp ={0,1}, Xg = {0} and
define a distribution P on X 4g¢ as follows

P(0,0,0) = P(1,0,0) = P(0,1,1) = P(1,1,1) = -
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where the remaining values of P zero. Since A 1l B|C (P) one has by Con-
sequence 2.1(b) I(A; B|C'|| P) = 0. Let us consider a mapping g : Xa4¢c —
X pp defined by

9(070) :g(l,O) :(070) 9(071) :g(lal) :(170)
Then the image of P by the mapping f : X4pc — Xppg defined by
f(a,b,¢c) =[g(a,c),b] for (a,c) € Xac, b€ Xp,

is the following distribution ) on Xppg :

Q(0,0,0) = Q(1L1,0) = 2, Q(0,1,0) = Q(1,0,0) =0.

Evidently I(D; B|E| Q) = In2. o

4. Different levels of stochastic dependence

Let us start this section with motivation. Quite common ’philosophical’
point of view on stochastic dependence is the following one. Global strength
of dependence among variables [{;];cn is considered as a result of various
interactions among factors in V.

For example, in hierarchical log-linear models for contingency tables
[4] one can distinguish the first-order interactions, i.e. interactions of pairs
of factors, the second-order interactions, i.e. interactions of triplets of fac-
tors, etc. In substance, the first-order interactions correspond to pairwise
dependence relationships, i.e. to (unconditional) dependences between &;
and ¢; for i,j € N, i # j. Similarly, one can (very loosely) imagine that
the second-order interactions correspond to conditional dependences with
one conditioning variable, i.e. to conditional dependences between ¢; and
&; given §, where i, j,k € N are distinct. An analogous principle holds for
higher-order interactions. Note that we have used the example with log-
linear models just for motivation — to illustrate informally the aim of this
section. In fact, one can interpret only special hierarchical log-linear models
in terms of conditional (in)dependence.

Well, it leads to the idea to distinguish different ’levels’ of stochastic
dependence. Thus, the first level could ’involve’ pairwise (unconditional)
dependences. The second level could correspond to pairwise conditional
dependences between two variables given a third one, the third level to
pairwise conditional dependences given a couple of variables, etc. Let us
give a simple example of a probability distribution which exhibits different
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behavior for different levels. The following construction will be used in the
next section, too.

Construction A Supposing A C N, card A > 2, there exists a probability
distribution P over N such that

M(B||P)=1n2 whenever AC BC N,
M(B|P)=0 otherwise.

Proof: Let us put X; = {0,1} for i € A, X; = {0} for i € N\ A. Define P
on Xy as follows

P([zi]ien) = 2! —cardA whenever Y.y x; is even,
P([zilien) =0 otherwise.

|

The distribution P from Construction A exhibits only the highest-level
dependences within the factor set A. Indeed, for every couple 7,7 € A,
i # j, one can easily verify (by Consequence 2.1 and Lemma 2.3) that 7 is
conditionally independent of j given any proper subset C of A\ {7,j} (with
respect to P) but 7 is not conditionally independent of j given A\ {i,j}. Or
equivalently, supposing [¢;];cn has the distribution P, the variables [{;]ica
are ’collectively dependent’ although the variables [{;];cp, where D is arbi-
trary proper subset of A, are ’'completely independent’. Such distributions
are called in [26] pseudo-independent models. The main conclusion of [26]
is that in the case of such an underlying model standard algorithms for
learning Bayesian network approximations fail to find a suitable network.
This maybe justifies a wish to measure the strength of each level of depen-
dence separately. Good quantitative level-specific measures of dependence
may help one to recognize whether a considered distribution is similar to
the fearful pseudo-independent model. They can provide a good theoretical
basis for necessary statistical tests.

Thus, we wish to have an analogue of the above mentioned classification
of interactions by order in log-linear models together with the possibility
to express numerically the degree of dependence for each level.

4.1. LEVEL-SPECIFIC MEASURES OF DEPENDENCE

In the previous section we argued that the conditional mutual information
I(A; B| C) is a good measure of stochastic conditional dependence between
[&ilica and [¢]jep given [€]rcc where A, B,C C N are pairwise disjoint
subsets of N. In the special case, when A and B are singletons, we will
get a measure I(i;j | K) of conditional dependence between &; and &; given
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[€k|ker , where K C N \ {i,7}. It leads directly to our proposal how to
measure the degree of dependence for a specific level.

Suppose that P is a probability distribution over N, A C N with
card A > 2. Then for each r =1,...,card A — 1 we put:

A(r,A|| Py =" {I(a;b|K || P); {a,b} C A, K C A\ {a,b}, card K =r —1}.

If the distribution P is known from the context, we write A(r, A) instead of
A(r, A || P). Moreover, we will occasionally write just A(r) as a shorthand
for A(r,N). We regard the introduced number as a basis of a measure
of dependence of level r among factors from A. Consequence 2.1 directly
implies:

Proposition 4.1 Let P be a probability distribution over N, A C N,
cardA > 2,1 <r<card A—1. Then

(a) A(r, Al P) =0,

(b) A(r,A||P)=0iff [V(a,bK)€ T(A)cardK =r—1 a 1L b|K (P)].

So, the number A(r) is nonnegative and vanishes just in case when there
are no stochastic dependences of level . Especially, A(1) can be regarded as
a measure of degree of pairwise unconditional dependence. The reader can
ask whether there are different measures of the strength of level-specific
interactions. Of course, one can find many such information-theoretical
measures. However, if one is interested only in symmetric measures (i.e.
measures whose values are not changed by a permutation of variables)
based on entropy, then (in our opinion) the corresponding measure must
be nothing but a multiple of A(r). We base our conjecture on the result
of Han [8]: he introduced certain level-specific measures which are positive
multiples of A(r) and proved that every entropy-based measure of multi-
variate 'symmetric’ correlation is a linear combination of his measures with
nonnegative coefficients.

Of course, owing to Lemma 2.3 the number A(r) can be expressed by
means of the multiinformation function. To get a neat formula we introduce
a provisional notation for sums of the multiinformation function over sets
of the same cardinality. We denote for every A C N, card A > 2:

o(i,A) = Z{M(D |P); DCA, cardD =14} fori=0,..,card A.

Of course o (i) will be a shorthand for o (i, N). Let us mention that o(0) =
o(1)=0.

Lemma 4.1 For everyr =1,...,n —1 (where n = card N > 2)

A(r) = (T_;1> -o(r+1)—r-(n—r)-a(r)+(n_;+1> co(r—1).
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Proof: Let us fix 1 <r <n —1 and write by Lemma, 2.3

2A(r) = Y {M(abK) + M(K) — M(aK) — M(bK)},  (7)
(a,b|KYEL

where L is the class of all (a,b|K) € T(N) where a,b are singletons and
card K = r — 1. Note that in £ the triplets (a,b|K) and (b, a|K) are distin-
guished: hence the term 2A(r) in (7). Evidently, the sum contains only the
terms M (D) such that r — 1 < card D <r + 1, and one can write

A(r) =Y {k(D)-M([D); DCN, r—1<cardD <r+1},

where k(D) are suitable coefficients. However, since every permutation
of factors in N transforms (a,b/K) € L into (n(a),n(b)|n(K)) € L the
coefficient k(D) depends only on card D. Thus, if one divides the number
of overall occurrences of terms M (FE) with card E = card D in (7) by the
number of sets E with card E = card D, the absolute value of 2k(D) is
obtained. Since card L =n-(n—1)- (’;:f) one can obtain for card D = r+1

that k(D) = %n(n—l)(?j)/(ril) = ("}"). Similarly, in case card D = r—1

one has k(D) = 2-n(n—1)(""2)/(.",) = (" 5T"). Finally, in case card D = r
one derives —k(D) = 1 - 2n(n —1)("=?) /(") = r(n —r). To get the desired
formula it suffices to utilize the definitions of o(r — 1), o(r), o(r +1). O

Lemma 4.1 provides a neat formula for A(r), but in the case when a
great number of conditional independence statements is known to hold, the
definition formula is better from the computational complexity viewpoint.

4.2. DECOMPOSITION OF MULTIINFORMATION

Thus, for a factor set N, card N > 2, the number M (N) quantifies global
dependence among factors in N and the numbers A(r, N) quantify level-
specific dependences. So, one expects that the multiinformation is at least
a weighted sum of these numbers. This is indeed the case, but as the reader
can expect, the coefficients depend on card V.

For every n > 2 and r € {1,...,n — 1} we put

-1
B(r,n) =2- rt. (Z) .

Evidently, 8(r,n) is always a strictly positive rational number.

Proposition 4.2 Let P be a probability distribution over N, card N > 2.
Then

n—1
M(N|P) =73 B(r,n) - A(r,N || P).

r=1
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Proof: Using Lemma 4.1 we write (note that the superfluous symbol of P
is omitted throughout the proof and 3(r) is used instead of B(r,n))

n-! fy r+1
ZﬂﬂAWZZMW<2>vWH)
r=1 r=1

n—1 n—1 n—r+1
—Zﬂ(r)-r-(n—r)-a(r)—i—Zﬂ(r)-( 5 )-U(r—l).
r=1 r=1

Let us rewrite it into a more convenient form:

n - n—1 n—2 o
E:ﬁu—ly(;)au»—ijﬁurj«n—ﬁ«mﬂ+§jﬂu+ay(”2J>vu»
j=2 j=1 j=0

It is, in fact, 3°7_o1(j) - 0(j), where [(j) are suitable coefficients. Thus,
l(n)=pn—-1)-() =1,
(n—1)=pn-2)-(";)=Bn—-1)-(n-1)=2-2=0,

and moreover, for every 2 < j <n — 2 one can write

1) =BG-1-()—B8U) j-n—5)+B8G+1)- (") =

=M -+ =20 -5+ (n—j-1)}=0.

Hence, owing to o(0) = o(1) = 0 and n > 2 we obtain

If one considers a subset A C N in the role of N in the preceding
statement, then one obtains

card A—1
M(A| P) = Z B(r,card A) - A(r, A|| P) (8)
r=1

for every A C N, card A > 2. One can interpret it in the following way.
Whenever [{;]ic4 is a random subvector of [¢;];cn, then M (A || P) is a mea-
sure of global dependence among factors in A, and the value §3(r,card A) -
A(r, A|| P) expresses the contribution of dependences of level r among fac-
tors in A. In this sense, the coefficient (3(r,card A) then reflects the rela-
tionship between the level r and the number of factors. Thus, the 'weights’
of different levels (and their mutual ratios, too) depend on the number of
factors in consideration.
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The formula (8) leads to the following proposal. We propose to measure
the strength of stochastic dependence among factors A C N (card A > 2)
of level r (1 <r < card A — 1) by means of the number:

A(r,A|| P) = B(r,card A) - A(r, A || P) .

The symbol of P is omitted whenever it is suitable. By Proposition 4.1
A(r, A) is nonnegative and vanishes just in case of absence of interactions
of degree r within A. The formula (8) says that M(A) is just the sum of
A(r, A)s. To have a direct formula one can rewrite the definition of A\(r, A)
using Lemma 4.1 as follows:

-1
A(r,A):(a—r)-<Til> co(r+1, A)
a_l " -1
—2-(a—r>-<T> -o(r,A)+(a—r>-(T_1> a(r—1,4),

where a = card A, 1 <r <a—1.
Let us clarify the relation to Han’s measure 8] AZe(™ of level r among
n = card N variables. It holds:
Ar,N) = (n—r)-A%™ forevery 1 <r<n-—1,n>2.
We did not study the computational complexity of calculating particular

characteristics introduced in this section — this can be a subject of future,
more applied research.

5. Axiomatic characterization

The aim of this section is to demonstrate that the multiinformation func-
tion can be used to derive theoretical results concerning formal properties
of conditional independence. For this purpose we recall the proof of the
result from [20]. Moreover, we enrich the proof by introducing several con-
cepts which (as we hope) clarify all the proof and indicate which steps
are substantial. The reader may surmise that our proof is based on Con-
sequence 2.1 and the formula from Lemma 2.3. However, these facts by
themselves are not sufficient, one needs something more.

Let us describe the structure of this long section. Since the mentioned
result says that probabilistic independency models cannot be characterized
by means of a finite number of formal properties of (= axioms for) indepen-
dency models one has to clarify thoroughly what is meant by such a formal
property. This is done in subsection 5.1: first (in 5.1.1) syntactic records of
those properties are introduced and illustrated by examples, and then (in
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5.1.2) their meaning is explained. The aim to get rid of superfluous formal
properties motivates the rest of the subsection 5.1: the situation when a
formal property of independency models is a consequence of other such for-
mal properties is analyzed in 5.1.3, 'pure’ formal properties having in every
situation a nontrivial meaning are treated in 5.1.4.

The subsection 5.2 is devoted to specific formal properties of probabilis-
tic independency models. We show by an example that their validity (=
probabilistic soundness) can be sometimes derived by means of the multiin-
formation function. The analysis in 5.2.1 leads to the proposal to limit at-
tention to certain ’perfect’ formal properties of probabilistic independency
models in 5.2.2.

Finally, the subsection 5.3 contains the proof of the described nonax-
iomatizability result. The method of the proof is described in 5.3.1: one has
to find an infinite collection of perfect probabilistically sound formal prop-
erties of independency models. Their probabilistic soundness is verified in
5.3.2, their perfectness in 5.3.3.

5.1. FORMAL PROPERTIES OF INDEPENDENCY MODELS

We have already introduced the concept of an independency model over N
as a subset of the class T(N) (see subsection 2.2.). This is too general a
concept to be of much use. One needs to restrict oneself to special inde-
pendency models which satisfy certain reasonable properties. Many authors
dealing with probabilistic independency models formulated certain reason-
able properties in the form of formal schemata which they named azioms.
Since we want to prove that probabilistic independency models cannot be
characterized by means of a finite number of such axioms we have to specify
meticulously what is the exact meaning of such formal schemata. Thus, we
both describe the syntax of those schemata and explain their semantics.

Let us start with an example. Semigraphoid [14] is an independency
model which satisfies four formal properties expressed by the following
schemata having the form of inference rules.

(A,B|C) — (B,A|C) symmetry
(A,BC|D) — (A,C|D) decomposition
(A,BC|D) — (A,B|CD) weak union
[(A,B|CD) N (A,C|D)] — (A,BC|D) contraction.

Roughly said, the schemata should be understood as follows: if an inde-
pendency model contains the triplets before the arrow, then it contains
the triplet after the arrow. Thus, we are interested in formal properties of
independency models of such a type.
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5.1.1. Syntax of an inference rule

Let us start with a few technical definitions. Supposing § is a given fixed
nonempty finite set of symbols, the formulas (K1, K2|Cs), where Ky, Ko, K3
are disjoint subsets of S represented by juxtapositions of their elements,
will be called terms over S.

We write I =~ L to denote that X and L are juxtapositions of all ele-
ments of the same subset of S (they can differ in their order). We say that
a term (1, Ko|KC3) over S is an equivalent version of the term (Ly, L2]|L3)
over S if K; = L; for every i = 1,2, 3. We say that (K1, K2|C3) is a symmet-
ric version of (L1, La|L3) if K1 = Lo, Ko = L1, K3 = L3. For example, the
term (AE, BC|D) over S = {A,B,C,D,E, F} is an equivalent version of
the term (AE,CB|D) and a symmetric version of the term (BC, EA|D).

Regular inference rule with r antecedents and s consequents is specified by
(a) positive integers r, s,
(b) a finite set of symbols S, possibly including a special symbol 0,

(c) a sequence of ordered triplets [SF, S¥, S¥], k =1,...,r +s of nonempty
subsets of S such that for every k the sets SF, S5, S¥ are pairwise
disjoint.

Moreover, we have several technical requirements:

— &S has at least three symbols,

— if Sf contains the symbol ), then no other symbol from S is involved
in SF (for every k = 1,...,7 + s and every i = 1,2, 3),

— ifk,0 € {1,...,r + s}, k #1, then SF # S! for some i € {1,2,3},

— every o € S belongs to some S¥,

— there is no couple of different symbols 0,7 € S such that
Vk=1,...,r+s Vi=1,2,3 [0c€SF=r71¢eS8F]

A syntactic record of the corresponding inference rule is then
[(S1,83183) A A (ST, S3ISE) ] = [(STH, SIS Ve v (ST, 85701850 ]

where each Sf is represented by a juxtaposition of involved symbols. Here
the terms (SF,S%|S¥) for k = 1,...,r are the antecedent terms, while
(SF,SE|SEY for k =r +1,...,r + s are the consequent terms.

Example 5.1 Take r = 2, s = 1, and § = {4, B,C, D}. Moreover, let
us put [S1,81,84] = [{A},{B},{C, DY}, [S?,5%,83] = [{A},{C},{D}],
[S3,83,83] = [{A},{B,C},{D}]. All our technical requirements are sat-
isfied. One possible corresponding syntactic record was already mentioned
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under the label ’contraction’ in the definition of semigraphoid. Thus, con-
traction is a regular inference rule with two antecedents and one consequent.
Note that another possible syntactic record can be obtained for example
by replacing the first antecedent term by its equivalent version:

[(A,B|DC) N (A,C|D)] — (A, BC|D). &

Of course, the remaining semigraphoid schemata are also regular infer-
ence rules in the sense of our definition.

Remark Our technical requirements in the above definition anticipate the
semantics of the symbols. The symbols from S are interpreted as (dis-
joint) subsets of a factor set N and the special symbol ) is reserved for
the empty set. Terms are interpreted as elements of 7 (N). The third re-
quirement ensures that no term in a syntactic record of an inference rule
is an equivalent version of another (different) term. Further requirements
avoid redundancy of symbols in S: the fourth one means that no symbol is
unused, while the fifth one prevents their doubling, as for example in the
rule’: [(A,BE|CD) N (A,C|D)] — (A, EBC|D)

where the symbol B is doubled by the symbol E.

5.1.2. Semantics of an inference rule

Let us consider a regular inference rule a with r antecedents and s conse-
quents. What is its meaning for a fixed nonempty factor set N7 A substi-
tution mapping (for N) is a mapping m which assigns a set m(c) C N to
every symbol ¢ € § in such a way that:

- m(@) is the empty set,

— {m(o); o € S} is a disjoint collection of subsets of N,
— Usest m(o) #0 forevery k=1,...,r + s,

_ Ugesg m(o) #0 forevery k=1,...,7 + s.

Of course, it may happen that no such substitution mapping exists for a
factor set IV; for example in case of contraction for N with card N = 2.
However, in case such a mapping m exists an inference instance of the
considered inference rule (induced by m) is (r + s)-tuple [t1,...,tq45] of
elements of 7 (V) defined as follows:

tr = ( U m(o), U m(o) | U m(o)) fork=1,...,r+s.
oeSy occSk ocSk

The (r + s)-tuple [t1,...,¢ |tr+1,-..,tr4s] is formally divided into the r-
tuple made of the triplets ¢i,...,t. which are called antecedents, and the
s-tuple made of the triplets ¢,41,...,%,+s which are called consequents.
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Example 5.2 Let us continue with Example 5.1 and consider contraction
and N = {1,2,3}. Put m(A) = {1}, m(B) = {2}, m(C) = {3}, m(D) = 0.
It is a substitution mapping for N. The corresponding inference instance
(induced by m) is then [t1, s | t3] where

b= ({11 £2H{3D), 2= ({1}, {3H0), 5 = ({1},{2,3}/0).

Here t1,15 are the antecedents and t3 is the consequent. However, there are
other inference instances, induced by other possible substitution mappings
for N. In this case one finds 5 other ones:

B = ({15, 342D, 2= ({11 {210), £ = ({1}.{2,3}]0),
B = (120, 118D, 2= ({21, {310). 5 = ({2}.{1,3}]0),
h = <{3}7 {2}|{1}>7 ty = <{3}7 {1}|®>7 t3 = <{3}7 {172}|0> <

Of course, the number of possible substitution mappings is finite for a
fixed regular inference rule and a fixed factor set. Therefore, the number
of all inference instances of a regular inference rule for a given factor set is
always finite and the following definition is sensible.

Having a fixed factor set N we say that an independency model Z C
T(N) is closed under a regular inference rule @ with r antecedents and s
consequents iff for every inference instance [t1,...,t15] € T(N)" ™ (of a
for N) {t1,...,t, } CZ implies {ty41,....,tr45} N # 0.

Example 5.3 Let us continue with Example 5.2. The independency model
Zover N = {1,2,3} consisting of the triplet ({1}, {2}|0) only is closed under
contraction since no inference instance for N has both antecedents in Z.
On the other hand, the model M = { ({1},{2}|0) , ({1},{3}|{2})} is not
closed under contraction. Indeed, one has #;,t, € M but t3 € M for the
inference instance [y, | 3] <&

5.1.3. Logical implication of inference rules

The aim of regular inference rules is to sketch formal properties of indepen-
dency models, especially probabilistic independency models. In fact, one
can have in mind another reasonable class of independency models instead
of the class of probabilistic independency models. For example the class of
graph-isomorphic independency models [14] or the class of EMVD-models
[20, 9] or various classes of possibilistic independency models [1, 6]. Well,
such an approach hides a deeper wish or hope to characterize the respective
class of independency models as the class of those closed under a collection
of regular inference rules. We can speak about the aziomatic characteriza-
tion of the respective class of independency models.
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For example, in the case of probabilistic independency models such a
characterization would make it possible to recognize them without laborious
construction of an inducing probability distribution. Indeed, the process
of verification of whether a given independency model is closed under a
finite number of known inference rules is completely automatic and can be
done by a computer. Of course such a desired collection of inference rules
should be minimal (a finite collection would be an ideal solution). One
needs a criterion for removing superfluous regular inference rules from such
a desired collection. Therefore, we are interested in the following relation
among inference rules.

We say that a collection of regular inference rules Y logically implies a
regular inference w and write T |= w if for every (nonempty finite) factor
set N and for every independency model M over N the following holds:
whenever M is closed under every inference rule v € T, then M is closed
under w.

Usually, an easy sufficient condition for logical implication is (syntactic)
derivability. We give an illustrative example to explain what we have in
mind. We hope that it gives a better insight than a pedantic definition,
which would be too complicated.

Example 5.4 Let us consider the following regular inference rule w with
three antecedents and one consequent:
[(A,B|E) N (A,C|BE) N (A,D|CE)] — (A,D|E).
This inference rule is logically implied by the semigraphoid inference rules.
To show it we construct a special derivation sequence of terms over the
corresponding set of symbols S = {A, B,C, D, E}. Here is the derivation
sequence:

1. (A,B|E),

2. (A,C|BE),

3. (A,D|CE),

4. (A, BC'| E) is directly derived from 2. and 1. by contraction,

5. (A,C | E) is directly derived from 4. by decomposition,
6. (A,CD | E) is directly derived from 3. and 5. by contraction,

(

7.

The last term is the consequent term of w. Every term in the derivation
sequence is either an antecedent term of w, or it is ’directly derived’ from
preceding terms (in the derivation sequence) by virtue of a semigraphoid
inference rule.

A,D| E) is directly derived from 6. be decomposition.
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Now, let us consider a fixed factor set N and a semigraphoid M C T (N)
(i.e. an independency model over N closed under all semigraphoid inference
rules). To show that M is closed under w let us consider an inference
instance [ 1, ta,t3|t4] of w for N induced by a substitution mapping m. So,
we can construct a sequence uq,...,u7 of elements of 7 (N) which ’copies’
the derivation sequence:

uy = (m(A), m(B) |[m(E)) = t1,

up = (m(A), m(C) |m(B) Um(E)) =i,
ug = (m(A), m(D) |m(C)Um(E)) =t3,
ug = (m(A), m(B) Um(C) |m(E)),

us = (m(A), m(C)|m(E)),

ug = (m(A), m(C)Um(D)|m(E)),

ur = (m(A), m(D)|m(E)) = t4.

Owing to the fact that M is closed under every semigraphoid inference
rule one can derive from the assumption {¢,t2,t3} C M by induction on
j =1,...,7 that {ui,...,u;} C M. Especially, t4 € M, which was the
desired conclusion. Thus, M is closed under w. O

5.1.4. Pure inference rules

It may happen that an inference instance of a regular inference rule is trivial
in the sense that it has as a consequent one of its antecedents (for example in
the case of decomposition for a substitution mapping m with m(B) = 0).
Thus, we wish to concentrate on a class of ’pure’ inference rules which
have only ’informative’ inference instances. For technical reasons (which
will become clear later - see 5.2.2) we would also like to avoid those inference
rules which possibly may have an inference instance whose consequent is
the symmetric image of an antecedent, as demonstrated by the following
example.

Example 5.5 Let us consider the following regular inference rule:
[(A,BC|D) N (B,D|AC)] — (B, A|D).

Take N = {1,2} and put m(A) = {1}, m(B) = {2}, m(C) = 0, m(D) =
{3}. It induces the inference instance [t1, t2 | 3] with ¢, = ({1}, {2} |{3}),
to = ({2}, {3} [{1}), ts = ({2}, {1} | {3} ). Here the consequent ¢3 is the
symmetric image of the antecedent ;. O

Thus, we say that a regular inference rule w is pure if there is no inference
instance of w (for arbitrary factor set N) in which a consequent either
coincides with an antecedent or with the symmetric image of an antecedent.
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Such a definition is not suitable for verification. We need a sufficient
condition formulated by means of syntactic concepts from 5.1.1. To formu-
late it we give two definitions. Suppose that w is a regular inference rule
with a syntactic record having S as the set of symbols. We say that the
symbol sets IC, L C S are distinguished in w if
dke{1,...,r+s}3j€{1,2} Sf C (K\L)U(L\K). A term (1, K2|3)
over S is distinguished in w from a term (Lq, L2|L3) over S if K; and L;
are distinguished in w for some ¢ = 1,2, 3.

Lemma 5.1 A regular inference rule w is pure if every consequent term of
w is distinguished in w both from all antecedent terms of w and from their
symmetric versions.

Proof: At first realize this: whenever symbol sets IC and L are distinguished
in w, then for every substitution mapping m one has

0 #m(Sf) Cm(K\ L)Um(L\K) C (m(K)\ m(£)) U (m(L) \ m(K)),
which implies m(KC) # m(L). Hence, terms distinguished in w are trans-
formed to distinct elements of 7(N) by any substitution mapping. There-
fore, under the mentioned assumption, no consequent of a respective infer-
ence instance can coincide either with an antecedent or with its symmetric
image. a

We leave it to the reader to verify by means of Lemma 5.1 that con-
traction is a pure inference rule. On the other hand one can easily see that
decomposition and weak union are not pure rules.

5.2. PROBABILISTICALLY SOUND INFERENCE RULES

We say that a regular inference rule w is probabilistically sound if every
probabilistic independency model is closed under w.

That means, every probabilistically sound inference rule expresses a for-
mal property which is shared by all probabilistic independency models. Is it
difficult to verify probabilistic soundness of a given regular inference rule?
The multiinformation function is a good tool for this purpose, although
maybe not universal. In the effort to characterize all probabilistic inde-
pendency models over four factors [10, 11] a lot of probabilistically sound
inference rules was found whose soundness was not verified with help of the
multiinformation function. However, it has appeared lately that at least
some of them can be regarded as a consequence of deeper properties of the
multiinformation function, namely of a certain ’conditional’ inequalities
for the multiinformation (or entropic) function [27, 12]. Thus, the ques-
tion whether every probabilistically sound inference rule can be derived by
means of the multiinformation function remains open. However, to support
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our arguments about its usefulness we give an illustrative example. We be-
lieve that an example is more didactic than a technical description of the
method.

Example 5.6 To show the probabilistic soundness of weak union one has
to verify for arbitrary factor set N, for any probability distribution P
over N, and for any collection of disjoint sets A, B,C, D C N which are
nonempty with possible exceptions of C' and D, that

Al BC|D(P) = A 1L B|CD(P).

The assumption A 1l BC|D (P) can be rewritten by Consequence 2.1(b)
and Lemma 2.3 in terms of the multiinformation function M induced by
the distribution P:

0 = M(ABCD) + M(D) — M(AD) — M(BCD) .

Then one can ’artificially’ add and subtract the terms M (CD) — M(ACD)
and by Lemma 2.3 derive:

0 = {M(ABCD)+ M(CD)— M(ACD) — M(BCD)}
+{M(ACD)+ M(D) — M(AD) — M(CD)}
= I(A;B|CD)+I(A;C|D).

By Consequence 2.1(a) both I(A; B|CD) and I(A;C|D) are nonnegative,
and therefore they vanish! But that implies by Consequence 2.1(b) that
A 1L B|CD (P). o

Note that one can easily see using the method shown in the preceding
example that every semigraphoid inference rule is probabilistically sound.

5.2.1. Redundant rules

However, some probabilistically sound inference rules are superfluous for
the purposes of providing an axiomatic characterization of probabilistic in-
dependency models. The following consequence follows directly from given
definitions.

Consequence 5.1 If w is a regular inference rule which is logically im-
plied by a collection of probabilistically sound inference rules, then w is
probabilistically sound.

A clear example of a superfluous rule is an inference rule with redundant
antecedent terms.
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Example 5.7 The inference rule

[(A,BC|D) A (C,B|A)] — (4,B|CD)

is a probabilistically sound regular inference rule. But it can be ignored
since it is evidently logically implied by weak union. O

Therefore we should limit ourselves to 'minimal’ probabilistically sound
inference rules, i.e. to such probabilistically sound inference rules that no
antecedent term can be removed without violating the probabilistic sound-
ness of the resulting reduced inference rule. However, even such a rule can
be logically implied by probabilistically sound rules with fewer antecedents.
We need the following auxiliary construction of a probability distribution
to give an easy example.

Construction B Supposing A C N, card A > 2, there exists a probability
distribution P over N such that

M(B|| P) = max {0,card (AN B) —1}-In2 for BC N.

Proof: Let us put X; = {0,1} for i € A, X; = {0} for i € N\ A. Define P

on X as follows:
P([zilien) =
P([zilien) =

whenever [Vi,j € A z; = ],

S ol

otherwise.
O

Example 5.8 We have already verified earlier that the inference rule w
from Example 5.4 is logically implied by the semigraphoid inference rules.
Hence, w is probabilistically sound by Consequence 5.1.

Let us consider a 'reduced’ inference rule made by a removal of an an-
tecedent term:
[(A,BIE) A (A,C|BE)] — (A,DIE).
It is a regular inference rule with 2 antecedents and one consequent. To
disprove its probabilistic soundness one has to find a probabilistic inde-
pendency model over a factor set N which is not closed under this rule.
Use Construction B with N = {1,2,3,4} and A = {1,4}. By Conse-
quence 2.1 one verifies that {1} 1L {2}|0(P), {1} L {3}/{2} (P), but
=[{1} 1L {4}|0(P)] for the constructed distribution P. As concerns an
alternative 'reduced’ inference rule
[(A,B|E) A (AD|CE)] — (A,D|E)
use Construction B with A = {1,3,4} and a distribution P over N such
that {1} 1L {2} (P), {1} 1L {4}[{3} (P), but ~[{1} 1L {4}[0(P)]. As
concerns the third possible 'reduced’ inference rule
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[(A,C|BE) A (A,D|CE)] — (A, D|E)
use again Construction B with A = {1,2,3,4}. Thus, one has a distribution
P with {1} 1L {3}{2} (P), {1} 1L {4}|{3} (P), but =[{1} 1L {4}|0(P)]. &

5.2.2. Perfect rules

Thus, one should search for conditions which ensure that an inference rule
is not logically implied by probabilistically sound inference rules with fewer
antecedents. We propose the following condition.

We say that a probabilistically sound regular inference rule with r an-
tecedents (and s consequents) is perfect if there exists a factor set N and
an inference instance [t1,...,t |tri1,...,tras] € T(N)"™* such that the
symmetric closure of every proper subset of {t1,...,t,} is a probabilistic
independency model over N.

Lemma 5.2 Let w be a perfect, probabilistically sound, pure inference
rule with r antecedents, r > 1. Then there exists a factor set N and an
independency model M over N such that

— M is closed under every probabilistically sound regular inference
rule with at most r — 1 antecedents,

— M is not closed under w.

Proof: Let [t1,...,t,4+s] € T(NN) be the inference instance of w mentioned
in the definition of perfectness. Define M C T () as the symmetric closure
of the set of antecedents {t1,...,%,}. Let us show that M is closed under
all probabilistically sound inference rules with at most » — 1 antecedents.

Suppose for a contradiction that [y, ..., %715] € T(N)"+? is an inference
instance of such an inference rule v (with 7 < r — 1 antecedents and § con-
sequents) for N with {¢,...,tz} C M and {tjy1,...,tz 5y N M = 0. How-
ever, owing to the fact that 7 < r and the assumption (of perfectness) the
symmetric closure Z of {t,...,%;} is a probabilistic independency model.
So, (by the definition of probabilistic soundness) Z is closed under v, and
therefore {t7,1,...,t715} N T # @ which contradicts the fact that Z C M.
Therefore M has to be closed under any such inference rule v.

Owing to the assumption that the inference rule w is pure by defini-
tion one has {t,41,...,tr45} N M = (). Since M was defined to contain
{t1,...,t,}, it is not closed under w. O

The preceding lemma implies the following consequence with help of
the definition of logical implication.

Consequence 5.2 No perfect probabilistically sound pure inference rule
is logically implied by a collection of probabilistically sound inference rules
with fewer antecedents.
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Contraction is an example of a perfect pure regular inference rule.

5.3. NO FINITE AXIOMATIC CHARACTERIZATION

5.3.1. Method of the proof

It is clear in the light of Consequence 5.2 how to disprove the existence of
a finite system of regular inference rules characterizing probabilistic inde-
pendency models.

Lemma 5.3 Let us suppose that we have found for every r > 3 a per-
fect, probabilistically sound, pure inference rule with at least r antecedents.
Then every system Y of regular inference rules characterizing probabilistic
independency models as independency models closed under rules in T is
infinite.

Proof: Let us suppose for a contradiction that there exists a finite system
T of regular inference rules such that for every factor set N an indepen-
dency model M C T(N) is a probabilistic independency model (over N)
iff it is closed under all rules in Y. Hence, every rule in T must be prob-
abilistically sound. We choose 7 > 3 which exceeds the maximal number
of antecedents of rules in Y. According to the assumption there exists a
perfect, probabilistically sound, pure inference rule w with r antecedents,
where r > 7.

By Lemma 5.2 we find a factor set N and an independency model M
over N which is closed under every probabilistically sound inference rule
with at most » — 1 antecedents but not under w. Since every inference rule
from T has at most r — 1 antecedents, M is closed under every inference
rule from Y. Therefore M is a probabilistic independency model over N.
However, M is not closed under w which contradicts the fact that w is
probabilistically sound. a

Thus, we need to verify the assumptions of the preceding lemma. Let us
consider for each n > 3 the following inference rule v(n) with n antecedents
and one consequent:

[(A,B1|By) A...A (A, Bu_1|Bn) A (A,By|Bi)] — (A,Bs|Bi). ~(n)

It is no problem to verify that each «(n) is indeed a regular inference rule.
Moreover, one can verify easily using Lemma 5.1 that each (n) is a pure
rule.

5.3.2. Soundness
To show their probabilistic soundness we use the properties of the multiin-
formation function.
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Lemma 5.4 Each above mentioned rule y(n) is probabilistically sound.

Proof: Let us fix n > 3. We have to show for arbitrary factor set N, any
distribution P over N, and any collection of nonempty disjoint subsets
A,Byi,...,B, C N that (under convention B, = Bj) the assumption

[V_] = 1,...,’]’L AJ_LBj|Bj+1 (P)]

implies that A L By|B; (P). By Consequence 2.1(b) with Lemma 2.3 one
has for every j = 1,...,n (M is the corresponding multiinformation func-
tion):

M(AB;Bjt1) + M(Bjt1) — M(ABj11) — M(B;Bj11) = 0.

Hence we get by summing, the above mentioned convention and Lemma 2.3:

0= > { M(AB;Bj1) + M(Bj1) — M(AB; 1) — M(B;Bj11) }

j=1
= Y M(AB;Bjj1)+ Y M(Bji1) =Y, M(ABj1) — > M(B;Bjy)
j=1 j=1 j=1 j=1
= Y M(AB;Bjj1)+ Y M(Bj)—Y M(AB;j)—>  M(B;Bjy)
j=1 j=1 j=1 j=1

= i{ M(AB;Bj1) + M(Bj) — M(ABj) — M(B;Bji1) }

j=1

= Y I(4Bjn|B)) .
j=1
Owing to Consequence 2.1(a) necessarily I(A; Bj1|B; || P) = 0 for every
j =1,...,n. Hence by Consequence 2.1(b) A 1L By|B; (P). 0

5.3.3. Perfectness

To verify perfectness of a rule one needs some method for showing that
an independency model is a probabilistic independency model. We again
Constructions A and B.

Lemma 5.5 Suppose that N = {0,1,...,n}, n > 3 and M C T(N) be
the symmetric closure of the set { ({0},{i}|{i +1}); i =1,...,n—1}.
Then M is a probabilistic independency model over N.

Proof: It suffices to find a probabilistic independency model M; with M C
M and t g M, for every t € T(N)\ M. Indeed, then M = N;c7(nypm M,
and by Lemma 2.1 M is a probabilistic independency model.
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Moreover, one can limit oneself to the triplets of the form (a,b|C) €
T(N)\ M where a,b are singletons. Indeed, for a given general (A, B|C) €
T(N)\ M choose a € A, b € B and find the respective probabilistic inde-
pendency model M, for ¢t = (a,b|C). Since M, is a semigraphoid, ¢t ¢ M,
implies (A, B|C) & M,.

In the sequel we distinguish 5 cases for a given fixed (a,b|C') € T(N)\M.
Each case requires a different construction of the respective probabilistic
independency model M,, that is a different construction of a probability
distribution P over N such that {0} 1L {i} |{i+1}(P) fori=1,...,n—1,
but =[{a} 1L {b} | C (P)]. One can verify these statements about P through
the multiinformation function induced by P. If the multiinformation func-
tion is known (as it is in the case of our constructions) one can use Conse-
quence 2.1(b) and Lemma 2.3 for this purpose. We leave this to the reader.
Here is the list of cases.

I.Vi=1,...,n—1 {a,b} #{0,i} (C arbitrary).
In this case use Construction A where A = {a, b}.

II. Fje{1,...,n—1} {a,b} ={0,5}] and C'\ {j — 1,5 + 1} # 0.
In this case choose r € C'\{j —1,j+ 1} and use Construction A where
A=1{0,7,r}.

ITI. 35 €{2,...,n—1} {a,b} ={0,j}] and C = {5 — 1,5 + 1}.
In this case use Construction A where A ={0,5 —1,7,7 + 1}.

IV. [3j€{2,...,n—1} {a,b} ={0,7}] and C = {5 — 1}.
Use Construction B where A ={0,5,j +1,...,n}.

V. [Fje{l,....,n—1} {a,b} ={0,5}] and C = 0.
Use Construction B where A = N.

Consequence 5.3 Each above mentioned rule «y(n) is perfect.

Proof: Let us fix n > 3, put N = {0,1,...,n} and t; = ({0}, {7}/{7 +1})
for j = 1,...,n (convention n + 1 = 1), t,+1 = ({0}, {2}/{1}). Evidently,
[t1,...,tn|tns1] is an inference instance of 4(n). To show that the sym-
metric closure of every proper subset of {t1,...,%,} is a probabilistic inde-
pendency model it suffices to verify it only for every subset of cardinality
n —1 (use Lemma 2.1). However, owing to possible cyclic re-indexing of N
it suffices to prove (only) that the symmetric closure M of {t1,...,t,_1}
is a probabilistic independency model. This follows from Lemma 5.5. O

Proposition 5.1 There is no finite system Y of regular inference rules
characterizing probabilistic independency models as independency models
closed under rules in T .
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Proof: An easy consequence of Lemmas 5.3, 5.4 and Consequence 5.3. O

Conclusions

Let us summarize the paper. Several results support our claim that condi-
tional mutual information I(A; B|C) is a good measure of stochastic condi-
tional dependence between random vectors £4 and £p given &c. The value
of I(A; B|C) is always nonnegative and vanishes iff £ 4 is conditionally inde-
pendent of {p given £-. On the other hand, the upper bound for I(A; B|C)
is min {H(A|C), H(B|C)}, and the value H(A|C) is achieved just in case
&4 is a function of £ge. A transformation of £ 4 g which saves £ 4¢ and £ge
increases the value of I(A; B|C). On the other hand, if {4 is transformed
while {p¢ is saved, then I(A; B|C) decreases. Note that the paper [29] deals
with a more practical use of conditional mutual information: it is applied
to the problem of finding relevant factors in medical decision-making.

Special level-specific measures of dependence were introduced. While
the value M(A) of the multiinformation function is viewed as a measure
of global stochastic dependence within [¢;];c 4, the value of A(r,A) (for
1 < r < card A—1) is interpreted as a measure of the strength of dependence
of level 7 among variables [¢;];. 4. The value of \(r, A) is always nonnegative
and vanishes iff §; is conditionally independent of §; given {x for arbitrary
distinct 4,5 € A, K C A, card K = r—1. And of course, the sum of \(r, A)s
is just M (A). Note that measures A(r, A) are certain multiples of Han’s [§]
measures of multivariate symmetric correlation.

Finally, we have used the multiinformation function as a tool to show
that conditional independence models have no finite axiomatic character-
ization. A didactic proof of this result, originally shown in [20], is given.
We analyze thoroughly syntax and semantics of inference rule schemata (=
axioms) which characterize formal properties of conditional independence
models. The result of the analysis is that two principal features of such
schemata are pointed out: the inference rules should be (probabilistically)
sound and perfect. To derive the nonaxiomatizability result one has to find
an infinite collection of sound and perfect inference rules. In the verifica-
tion of both soundness and perfectness the multiinformation function was
proved to be an effective tool.

Let us add a remark concerning the concept of perfect rule. We have
used this concept just in the proof of the nonaxiomatizability result. How-
ever, our aim is a little bit deeper, in fact. We (vaguely) guess that prob-
abilistic independency models have certain uniquely determined ’minimal’
axiomatic characterization, which is of course infinite. In particular, we con-
jecture that the semigraphoid inference rules and perfect probabilistically
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sound pure inference rules form together the desired axiomatic characteri-
zation of probabilistic independency models.
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