
THE MULTIINFORMATION FUNCTION AS A TOOL FORMEASURING STOCHASTIC DEPENDENCE
M. STUDEN�Y AND J. VEJNAROV�AInstitute of Information Theory and AutomationAcademy of Sciences of Czech RepublicPod vod�arenskou v�e�z�� 4, 182 08 PragueandLaboratory of Intelligent SystemsUniversity of EconomicsEkonomick�a 957, 148 00 PragueCzech RepublicAbstract. Given a collection of random variables [�i]i2N where N is a�nite nonempty set, the corresponding multiinformation function ascribesthe relative entropy of the joint distribution of [�i]i2A with respect to theproduct of distributions of individual random variables �i for i 2 A toevery subset A � N . We argue it is a useful tool for problems concerningstochastic (conditional) dependence and independence (at least in discretecase).First, it makes possible to express the conditional mutual informationbetween [�i]i2A and [�i]i2B given [�i]i2C (for every disjoint A;B;C � N)which can be considered as a good measure of conditional stochastic de-pendence. Second, one can introduce reasonable measures of dependenceof level r among variables [�i]i2A (where A � N , 1 � r < cardA) whichare expressible by means of the multiinformation function. Third, it en-ables one to derive theoretical results on (nonexistence of an) axiomaticcharacterization of stochastic conditional independence models.1. IntroductionInformation theory provides a good measure of stochastic dependence be-tween two random variables, namely the mutual information [7, 3]. It is al-ways nonnegative and vanishes i� the corresponding two random variables



2are stochastically independent. On the other hand it achieves its maximalvalue i� one random variable is a function of the other variable [28].Perez [15] wanted also to express numerically the degree of stochasticdependence among any �nite number of random variables and proposed anumerical characteristic called 'dependence tightness'. Later he changed theterminology, started to call that characteristic systematicallymultiinforma-tion and encouraged research on asymptotic properties of an estimator ofmultiinformation [18]. Note that multiinformation somehow appeared inearlier information-theoretical papers. For example, Watanabe [24] calledit `total correlation' and Csisz�ar [2] showed that the IPFP procedure con-verges to the probability distribution minimizing multiinformation withinthe considered family of distributions having prescribed marginals.Further prospects occur when one considers multiinformation as a setfunction. That means if [�i]i2N is a collection of random variables indexedby a �nite set N then the multiinformation function (corresponding to[�i]i2N ) assigns the multiinformation of the subcollection [�i]i2A to everyA � N . Such a function was mentioned already in sixties by Watanabe [25]under name 'total cohesion function'. Some pleasant properties of the mul-tiinformation function were utilized by Perez [15] in probabilistic decision-making. Malvestuto named the multiinformation function 'entaxy' and ap-plied it in the theory of relational databases [9]. The multiinformation func-tion plays an important role in the problem of �nding 'optimal dependencestructure simpli�cation' solved in thesis [21], too. Finally, it has appearedto be a very useful tool for studying of formal properties of conditionalindependence.The �rst author in modern statistics to deal with those formal prop-erties of conditional independence was probably Dawid [5]. He character-ized certain statistical concepts (e.g. the concept of su�cient statistics) interms of generalized stochastic conditional independence. Spohn [17] stud-ied stochastic conditional independence from the viewpoint of philosophicallogic and formulated the same properties as Dawid. The importance of con-ditional independence in probabilistic reasoning was explicitly discernedand highlighted by Pearl and Paz [13]. They interpreted Dawid's formalproperties in terms of axioms for irrelevance models and formulated a nat-ural conjecture that these properties characterize stochastic conditional in-dependence models. This conjecture was refuted in [19] by substantial useof the multiinformation function and this result was later strengthened byshowing that stochastic conditional independence models cannot be char-acterized by a �nite number of formal properties of that type [20].However, as we have already mentioned, the original prospect of multiin-formation was to express quantitatively the strength of dependence amongrandom variables. An abstract view on measures of dependence was brought



3by R�enyi [16] who formulated a few reasonable requirements on measuresof dependence of two real-valued random variables. Zv�arov�a [28] studiedin more detail information-theoretical measures of dependence includingmutual information. The idea of measuring dependence appeared also innonprobabilistic calculi for dealing with uncertainty in arti�cial intelligence[22, 23].This article is basically an overview paper, but it brings several minornew results which (as we hope) support our claims about the usefulness ofthe multiinformation function. The basic fact here is that the multiinfor-mation function is related to conditional mutual information. In the �rstpart of the paper we show that the conditional mutual information com-plies with several reasonable requirements (analogous to R�enyi's conditions)which should be satis�ed by a measure of degree of stochastic conditionaldependence.The second part of the paper responds to an interesting idea broughtby Naftali Tishby and Joachim Buhmann in Erice during the workshop.Is it possible to decompose multiinformation (which is considered to be ameasure of global dependence) into level-speci�c measures of dependenceamong variables? That means one would like to measure the strength ofinteractions of the '�rst level' by a special measure of pairwise dependence,and similarly for interactions of 'higher levels'. We show that the multiin-formation can indeed be viewed as a sum of such level-speci�c measuresof dependence. Nevertheless, we have found recently that such a formulais not completely new: similar level-speci�c measures of dependence werealready considered by Han [8].Finally, in the third part of the paper, as an example of theoretical useof the multiinformation function we recall the results about nonexistence ofan axiomatic characterization of conditional independence models. Unlikethe original paper [20] we present a long didactive proof emphasizing theessential steps.Note that all results of the paper are formulated for random variablestaking a �nite number of values although the multiinformation functioncan be used also in the case of continuous variables. The reason is thatwe wish to present really elementary proofs which are not complicated bymeasure-theoretical technicalities.2. Basic conceptsWe recall well-known information-theoretical concepts in this section; themost of them can be found in textbooks, e.g. [3]. The reader who is familiarwith information theory can skip the section.



4 Throughout the paper N denotes a �nite nonempty set of factors orshortly a factor set. In the sequel, whenever A;B � N the juxtapositionAB will be used to shorten the notation for the set union A [ B and forany i 2 N; the singleton will be sometimes denoted by i instead of fig.2.1. DISCRETE PROBABILITY DISTRIBUTIONSThe factors should correspond to discrete random variables. A discreterandom variable �i corresponding to a factor i 2 N has to take values in anonempty �nite set Xi called the frame for i. Under situation when a �xedframe Xi is assigned to every factor i 2 N and ; 6= A � N the symbol XAdenotes the Cartesian product Qi2AXi, that is the frame for A. Whenever; 6= B � A � N and x 2 XA; then its coordinate projection to XB will bedenoted by xB.By a probability distribution on a nonempty �nite set Y we understandevery nonnegative real function P on Y with PfP (y) ; y 2 Y g = 1. Bya (discrete) probability distribution over a factor set N is understood anyprobability distribution onXN where fXi ; i 2 Ng is an arbitrary collectionof frames. Or equivalently, any particular joint distribution of a discreterandom vector [�i]i2N .Having ; 6= A � N and a probability distribution P over N its marginaldistribution PA is a probability distribution over A de�ned as follows:PA(a) = XfP (a; b) ; b 2 XNnA g for every a 2 XA :It describes the distribution of the random subvector [�i]i2A. In the sequelwe accept a natural convention P ; � 1.Having ; 6= B � N and b 2 XB such that PB(b) > 0 the conditionaldistribution P j b is a probability distribution over N n B de�ned by:P j b(a) = P (a; b)PB(b) for every a 2 XNnB :It describes the (conditional) distribution of [�i]i2NnB under the condition[�i]i2B � b. For disjoint A;B � N one can use the symbol PAj b to denote(PAB)j b = (P j b)A.Every mapping between frames induces a transformation of distribu-tions. Supposing P is a probability distribution on Y and f : Y ! Z is amapping into a nonempty �nite set Z, the formulaQ(z) = XfP (y) ; y 2 Y & f(y) = z g for every z 2 Z;de�nes a probability distribution on Z. In such a case we say that Q is animage of P (by f). Provided P is the distribution of a random vector �, Qis the distribution of the transformed vector f(�).



5Supposing A;B � N are disjoint, P is a distribution over N we say thatA is functionally dependent on B with respect to P and write B ! A (P )if there exists a mapping f : XB ! XA such thatPAB(a; b) = PB(b) for a = f(b); b 2 XB ;PAB(a; b) = 0 for remaining a 2 XA; b 2 XB :It re
ects the situation when P is the distribution of a random vector[�i]i2N whose random subvector [�i]i2A is a deterministic function of anotherrandom subvector [�i]i2B . Note that the function f is uniquely determinedon the set fb 2 XB ; PB(b) > 0g, outside that set it can take arbitraryvalues.Supposing A;B;C � N are disjoint and P is a distribution over N wesay that A is conditionally independent of B given C with respect to P andwrite A ?? BjC (P ) if the equalityPABC(a; b; c) � PC(c) = PAC(a; c) � PBC(b; c)holds for every a 2 XA, b 2 XB , c 2 XC . It describes the situation whenP is the distribution of a random vector [�i]i2N and in every situationwhen the values of [�i]i2C are known the values of [�i]i2A and [�i]i2B arecompletely unrelated (from a stochastic point of view).2.2. INDEPENDENCY MODELSThe symbol T (N) will denote the collection of ordered triplets hA;BjCi ofpairwise disjoint subsets of a factor set N , where A 6= ; 6= B. These tripletswill serve for identi�cation of conditional independence statements withinthe factor set N .In general, an independency model over N is a subset of the class T (N).Supposing hA;BjCi 2 T (N), its symmetric image is the triplet hB;AjCi 2T (N). The symmetric closure of an independency model I � T (N) is theclass of triplets in I and their symmetric images.The independency model induced by a probability distribution P over Nconsists just of those triplets hA;BjCi 2 T (N) such that A ?? BjC (P ).A probabilistic independency model (over N) is an independency modelinduced by some probability distribution over N .Lemma 2.1 Supposing I;J � T (N) are probabilistic independency mod-els the class I \ J is also a probabilistic independency model.Proof: Let P be a probability distribution on XN inducing I and Q be aprobability distribution on YN � Qi2N Yi inducing J . Put Zi = Xi �Yifor every i 2 N and de�neR([xi; yi]i2N ) = P ([xi]i2N ) �Q([yi]i2N ) for [xi; yi]i2N 2 ZN :



6It is easy to verify that for every hA;BjCi 2 T (N) one has A ?? BjC (R)i� [A ?? BjC (P ) & A ?? BjC (Q) ]. 22.3. RELATIVE ENTROPYSupposing Q and R are probability distributions on a nonempty �nite setY we say that Q is absolutely continuous with respect to R i� R(y) = 0implies Q(y) = 0 for every y 2 Y. In that case we can de�ne the relativeentropy of Q with respect to R asH(QjR) =XfQ(y) � ln Q(y)R(y) ; y 2 Y & Q(y) > 0 g :Lemma 2.2 Suppose that Q and R are probability distributions on anonempty �nite set Y such that Q is absolutely continuous with respect toR. Then(a) H(QjR) � 0,(b) H(QjR) = 0 i� Q = R.Proof: Consider the real function ' on the interval [0;1) de�ned by'(z) = z � ln z for z > 0, '(0) = 0,and the function h : Y! [0;1) de�ned byh(y) = Q(y)=R(y) if R(y) > 0, h(y) = 0 otherwise.Since ' is a continuous strictly convex function, one can use the well-knownJensen's inequality [3] with respect to R and write:0 = '(1) = '(Xy2Y h(y) �R(y)) � Xy2Y '(h(y)) �R(y) = H(QjR):Owing to strict convexity of ' the equality holds i� h is constant on theset fy 2 Y;R(y) > 0g. That means h � 1 there, i.e. Q = R. 2Supposing that hA;BjCi 2 T (N) and P is a probability distribution overN the formulaP̂ (x) = PAC(xAC)�PBC(xBC)PC(xC) for x 2 XABC with PC(xC) > 0;P̂ (x) = 0 for remaining x 2 XABC : (1)de�nes a probability distribution on XABC . Evidently, PABC is absolutelycontinuous with respect to P̂ . The conditional mutual information betweenA and B given C with respect to P , denoted by I(A;BjC kP ) is the relativeentropy of PABC with respect to P̂ . In case that P is known from thecontext we write just I(A;BjC).



7Consequence 2.1 Supposing that hA;BjCi 2 T (N) and P is a probabil-ity distribution over N one has(a) I(A;BjC kP ) � 0,(b) I(A;BjC kP ) = 0 i� A ?? BjC (P ).Proof: Owing to Lemma 2.2 it su�ces to realize that PABC = P̂ meansnothing but the corresponding conditional independence statement. 22.4. MULTIINFORMATION FUNCTIONThe multiinformation function induced by a probability distribution P(over a factor set N) is a real function on the power set of N de�nedas follows:M(D kP ) = H(PDjYi2DP fig) for ; 6= D � N; M(; kP ) = 0 :We again omit the symbol of P when the probability distribution is clearfrom the context. It follows from Lemma 2.2(b) that M(D) = 0 whenevercardD = 1 :Lemma 2.3 Let hA;BjCi 2 T (N) and P be a probability distributionover N . ThenI(A;BjC) =M(ABC) +M(C)�M(AC)�M(BC) : (2)Proof: Let us write H(PABC jP̂ ) asX fPABC(x) � ln PABC(x) � PC(xC)PAC(xAC) � PBC(xBC) ; x 2 XABC & PABC(x) > 0 g :Now we can arti�cially multiply both the numerator and the denomina-tor of the ratio in the argument of the logarithm by a special productQi2A P fig(xi) �Qi2B P fig(xi) �Qi2C P fig(xi) �Qi2C P fig(xi) which is alwaysstrictly positive for any considered con�guration x. Using well-known prop-erties of logarithm one can write it as a sum of four terms:PfPABC(x) � ln PABC (x)Qi2ABC Pfig(xi) ; x 2 XABC & PABC(x) > 0 g+ PfPABC(x) � ln PC (xC)Qi2C Pfig(xi) ; x 2 XABC & PABC(x) > 0 g� PfPABC(x) � ln PAC (xAC)Qi2AC Pfig(xi) ; x 2 XABC & PABC(x) > 0 g� PfPABC(x) � ln PBC(xBC)Qi2BC Pfig(xi) ; x 2 XABC & PABC(x) > 0 g:



8The �rst term is nothing but the value of the multiinformation function forABC. To see that the second term is M(C) one can sum there in groups ofcon�gurations for which the corresponding logarithm has the same value,that is groups of xs having the same projection to C:XxC2XCPC (xC )>0 Xy2XABPABC (y;xC )>0 PABC(y; xC) � ln PC(xC)Qi2C P fig(xi) == XxC2XCPC (xC )>0 ln PC(xC)Qi2C P fig(xi) � Xy2XABPABC (y;xC )>0 PABC(y; xC) == XxC2XCPC (xC )>0 ln PC(xC)Qi2C P fig(xi) � PC(xC) :Similarly for the other two terms. 22.5. ENTROPY AND CONDITIONAL ENTROPYIf Q is a discrete probability distribution on a nonempty �nite set Y theentropy of Q is de�ned by the formulaH(Q) =XfQ(y) � ln 1Q(y) ; y 2 Y & Q(y) > 0 g :Lemma 2.4 Suppose that Q is a discrete probability distribution on anonempty �nite set Y. Then(a) H(Q) � 0,(b) H(Q) = 0 i� there exists y 2 Y such that Q(y) = 1.Proof: Since logarithm is an increasing real function one has lnQ(y)�1 � 0for every y 2 Y with Q(y) > 0. Hence Q(y) � lnQ(y)�1 � 0 for every suchy; the equality occurs here only if Q(y) = 1. It gives both (a) and (b). 2The entropic function induced by a probability distribution P over afactor set N is a real function on the power set of N de�ned as follows:H(D kP ) = H(PD) for ; 6= D � N; H(; kP ) = 0 :We will often omit the symbol of P when it is clear from the context. Byusing the same procedure as in the proof of Lemma 2.3 it is not di�cult tosee that M(D) = �H(D) +Xi2DH(fig) for every D � N:



9Hence, using the formula (2) from Lemma 2.3 one derivesI(A;BjC) = �H(ABC)�H(C) +H(AC) +H(BC) : (3)Supposing A;B � N are disjoint the conditional entropy of A given Bis de�ned as a simple di�erenceH(AjB) = H(AB)�H(B) :We use the symbol H(AjB kP ) to indicate the corresponding probabilitydistribution P .Lemma 2.5 Let P be a probability distribution over N , A;B � N aredisjoint. ThenH(AjB kP ) = XfPB(b) �H(A kP j b) ; b 2 XB & PB(b) > 0 g : (4)Proof: One can easily see using the method used in the proof of Lemma 2.3that the expressionXfPAB(ab) � ln PB(b)PAB(ab) ; a 2 XA & b 2 XB & PAB(ab) > 0 gis nothing butH(AjB kP ). On the other hand, one can utilize the de�nitionof PAj b and write it in the formXb2XBPB(b)>0 PB(b) � Xa2XAPAj b(a)>0 PAj b(a) � ln 1PAj b(a) ;which gives the expression from (4). 23. Measure of conditional stochastic dependenceIn this section we give several arguments why conditional mutual informa-tion should be considered as a suitable quantitative measure of degree ofconditional stochastic dependence.To motivate this topic let us consider the following speci�c task. Sup-pose that �A; �B; �C are discrete random vectors and the joint distributionsof �AC and �BC are already known (�xed or prescribed). What are thenpossible values for the conditional mutual information I(A;BjC)? By Con-sequence 2.1 zero is a lower bound for those values, and it is the precisebound since one can always �nd a distribution having prescribed marginals



10for AC and BC such that I(A;BjC) = 0 (namely the 'conditional product'P̂ given by the formula (1)).3.1. MAXIMAL DEGREE OF CONDITIONAL DEPENDENCEBut one can also �nd an upper bound.Lemma 3.1 Let hA;BjCi 2 T (N) and P be a probability distributionover N . Then I(A;BjC) � min fH(AjC) ; H(BjC) g :Proof: It follows from (3) with help of the de�nition of conditional entropyI(A;BjC) = H(AjC)�H(AjBC) :Moreover, 0 � H(AjBC) follows from (4) with Lemma 2.4(a). This impliesI(A;BjC) � H(AjC), the other estimate with H(BjC) is analogous. 2The following proposition generalizes an analogous result obtained inthe unconditional case by Zv�arov�a ([28], Theorem 5) and loosely corre-sponds to the condition E) mentioned by R�enyi [16].Proposition 3.1 Supposing hA;BjCi 2 T (N) and P is a probability dis-tribution over N one hasI(A;BjC kP ) = H(AjC kP ) i� BC ! A (P ) :Proof: By the formula mentioned in the proof of Lemma 3.1 the consideredequality occurs just in case H(AjBC kP ) = 0. Owing to the formula (4)and Lemma 2.4(a) this is equivalent to the requirement H(A kP j bc) = 0for every (b; c) 2 XBC with PBC(b; c) > 0. By Lemma 2.4(b) it meansjust that for every such a couple (b; c) 2 XBC there exists a 2 XA withPAj bc(a) = 1. Of course, this a 2 XA is uniquely determined. This enablesus to de�ne the required function from XBC to XA : 2A natural question arises how tight is the upper bound for I(A;BjC)from Lemma 3.1. More exactly, we ask whether one can always �nd adistribution having prescribed marginals for AC and BC with I(A;BjC) =minfH(AjC);H(BjC)g. In general, the answer is negative as shown by thefollowing example.



11Example 3.1 Let us put XA = XB = XC = f0; 1g and de�ne PAC andPBC as followsPAC(0; 0) = 13 ; PAC(0; 1) = PAC(1; 1) = 14 ; PAC(1; 0) = 16 ;PBC(0; 0) = PBC(0; 1) = PBC(1; 0) = PBC(1; 1) = 14 :Since (PAC)C = (PBC)C there exists a distribution on XABC having themas marginals. In fact, any such distribution P can be expressed as followsP (0; 0; 0) = �;P (0; 0; 1) = �;P (0; 1; 0) = 13 � �;P (0; 1; 1) = 14 � �;P (1; 0; 0) = 14 � �;P (1; 0; 1) = 14 � �;P (1; 1; 0) = �� 112 ;P (1; 1; 1) = �;where � 2 [ 112 ; 14 ]; � 2 [0; 14 ]: It is easy to show that H(AjC) < H(BjC).On the other hand, for every parameter � either P (0; 0; 0) and P (1; 0; 0)are simultaneously nonzero or P (0; 1; 0) and P (1; 1; 0) are simultaneouslynonzero. Therefore A is not functionally dependent on BC with respect toP and by Proposition 3.1 the upper bound H(AjC) is not achieved. 3However, the upper bound given in Lemma 3.1 can be precise for speci�cprescribed marginals. Let us provide a general example.Example 3.2 Suppose that PBC is given, consider an arbitrary functiong : XB ! XA and de�ne PAC by the formulaPAC(a; c) =XfPBC(b; c) ; b 2 XB & g(b) = a g for a 2 XA; c 2 XC :Well, one can always �nd a distribution P over ABC having such a cou-ple of distributions PAC ; PBC as marginals and satisfying I(A;BjC kP ) =H(AjC kP ). Indeed, de�ne P over ABC as follows:P (a; b; c) = PBC(b; c) if g(b) = a;P (a; b; c) = 0 otherwise:This ensures that BC ! A (P ), then use Proposition 3.1. 33.2. MUTUAL COMPARISON OF DEPENDENCE DEGREESA natural intuitive requirement on a quantitative characteristic of degree ofdependence is that a higher degree of dependence among variables should



12be re
ected by a higher value of that characteristic. Previous results onconditional mutual information are in agreement with this wish: its minimalvalue characterizes independence, while its maximal values more or lesscorresponds to the maximal degree of dependence.Well, what about the behavior 'between' these 'extreme' cases? On canimagine two 'comparable' nonextreme cases when one case represents evi-dently a higher degree of dependence among variables than the other case.For example, let us consider two random vectors �AB resp. �AB (take C = ;)having distributions PAB resp. QAB depicted by the following diagrams.PAB 0 17 17 QAB 0 0 2717 17 17 17 27 017 17 0 17 17 0Clearly, (PAB)A = (QAB)A and (PAB)B = (QAB)B. But intuitively, QABexpresses a higher degree of stochastic dependence between �A = �A and�B = �B than PAB. The distribution QAB is more 'concetrated' than PAB :QAB is an image of PAB . Therefore, we can anticipate I(A;Bj; kP ) �I(A;Bj; kQ), which is indeed the case.The following proposition says that conditional mutual information hasthe desired property. Note that the property is not derivable from otherproperties of measures of dependence mentioned either by R�enyi [16] or byZv�arov�a [28] (in the unconditional case).Proposition 3.2 Suppose that hA;BjCi 2 T (N) and P;Q are probabilitydistributions over N such that PAC = QAC , PBC = QBC and QABC is animage of PABC . ThenI(A;BjC kP ) � I(A;BjC kQ) :Proof: Let us write P instead of PABC throughout the proof and similarlyfor Q. Suppose that Q is an image of P by f : XABC ! XABC . For every



13x 2 XABC with Q(x) > 0 put T = fy 2 XABC ; f(y) = x & P (y) > 0 gand write (owing to the fact that the logarithm is an increasing function):Xy2T P (y) � lnP (y) � Xy2T P (y) � ln Xz2T P (z)! = Q(x) � lnQ(x) :We can sum it over all such xs and deriveXy2XABCP (y)>0 P (y) � lnP (y) � Xx2XABCQ(x)>0 Q(x) � lnQ(x) :Hence �H(ABC kP ) � �H(ABC kQ) :Owing to the assumptions PAC = QAC , PBC = QBC one has H(AC kP ) =H(AC kQ);H(BC kP ) = H(BC kQ) and H(C kP ) = H(C kQ) : The for-mula (3) then gives the desired claim. 2Nevertheless, the mentioned inequality from Proposition 3.2 may nothold when the assumption that marginals for AC and BC coincide is re-leased, as demonstrated by the following example.Example 3.3 Take C = ; and consider the distributions PAB and QABdepicted by the following diagrams:PAB 38 18 QAB 0 1218 38 18 38Evidently, QAB is an image of PAB , but I(A;Bj; kP ) > I(A;Bj; kQ). 3Remark One can imagine more general transformations of distributions:instead of 'functional' transformations introduced in subsection 2.1 onecan consider transformations by Markov kernels. However, Proposition 3.2cannot be generalized to such a case. In fact, the distribution PAB from themotivation example starting this subsection can be obtained from QAB byan 'inverse' transformation realized by a Markov kernel.



143.3. TRANSFORMED DISTRIBUTIONSR�enyi's condition F) in [16] states that a one-to-one transformation of arandom variable does not change the value of a measure of dependence.Similarly, Zv�arov�a [28] requires that restrictions to sub-�-algebras (whichsomehow correspond to separate simplifying transformations of variables)decrease the value of the measure of dependence.The above mentioned requirements can be generalized to the 'conditio-nal' case as shown in the following proposition. Note that the assumptionof the proposition means (under the situation when P is the distributionof a random vector [�i]i2N ) simply that the random subvector [�i]i2A istransformed while the other variables �i, i 2 BC are preserved.Proposition 3.3 Let hA;BjCi ; hD;BjCi 2 T (N), P;Q be probabilitydistributions over N . Suppose that there exists a mapping g : XA ! XDsuch that QDBC is an image of PABC by the mapping f : XABC ! XDBCde�ned by f(a; b; c) = [ g(a); b; c ] for a 2 XA ; (b; c) 2 XBC :Then I(A;BjC kP ) � I(D;BjC kQ) :Proof: Throughout the proof we write P instead of PABC and Q insteadof QDBC . Let us denote by Y the class of all (c; d) 2 XCD such thatP (g�1(d) �XB � fcg) > 0 where g�1(d) = fa 2 XA; g(a) = dg. For every(c; d) 2 Y introduce a probability distribution Rcd on g�1(d)�XB by theformula:Rcd(a; b) = P (a; b; c)P (g�1(d)�XB � fcg) for a 2 g�1(d); b 2 XB :It can be formally considered as a distribution on XA � XB. Thus, byConsequence 2.1(a) we have0 � I(A;Bj; kRcd) for every (c; d) 2 Y :One can multiply this inequality by P (g�1(d)�XB�fcg), sum over Y andobtain by simple cancellation of P (g�1(d)�XB � fcg):0 � X(c;d)2Y X(a;b)2g�1(d)�XBP (abc)>0P (abc) � ln P (abc) � P (g�1(d)�XB � fcg)P (fag �XB � fcg) � P (g�1(d) � fbg � fcg) :



15One can apply basic properties of the logarithm and write the right-handside of the obtained inequality as a sum of four terms (as in the proof ofLemma 2.3). We leave it to the reader to verify that each of these terms iscertain entropy (possibly with the minus sign). We just give hints indicatingformally the way of summation.Pc Pd Pb Pa P (abc) � lnP (abc) =Pc Pb Pd Pa : : : =Pc Pb Pa : : : = �H(ABC kP )�Pc Pd Pa Pb P (abc) � lnP (fag �XB � fcg) =Pc Pd Pa : : : =Pc Pa : : : = H(AC kP )�Pc Pd Pb Pa P (abc) � lnP (g�1(d)� fbg � fcg) =Pc Pd Pb : : : = H(DBC kQ)Pc Pd Pa Pb P (abc) � lnP (g�1(d)�XB � fcg) =Pc Pd : : : = �H(DC kQ)Thus, one can derive:0 � �H(ABC kP ) +H(AC kP ) +H(DBC kQ)�H(DC kQ) : (5)Since PBC = QBC one also has0 = H(BC kP )�H(BC kQ)�H(C kP ) +H(C kQ) : (6)Hence by summing (5) and (6) and using the formula (3)0 � I(A;BjC kP )� I(D;BjC kQ) ;which concludes the proof. 2If g is a one-to one mapping, one can apply Proposition 3.3 both tog and g�1, from which the following consequence immediately follows (itcorresponds exactly to the R�enyi's requirement F)).Consequence 3.1 Supposing the mapping g in Proposition 3.3 is a one-to-one mapping one hasI(A;BjC kP ) = I(D;BjC kQ) :Nevertheless, Proposition 3.3 cannot be strengthened to transformationsinvolving variables in C (more exactly transformations of the subvector[�i]i2AC ), as the following example shows.Example 3.4 Let us put XA = XB = XC = XD = f0; 1g, XE = f0g andde�ne a distribution P on XABC as followsP (0; 0; 0) = P (1; 0; 0) = P (0; 1; 1) = P (1; 1; 1) = 14 ;



16where the remaining values of P zero. Since A ?? BjC (P ) one has by Con-sequence 2.1(b) I(A;BjC kP ) = 0. Let us consider a mapping g : XAC !XDE de�ned byg(0; 0) = g(1; 0) = (0; 0) g(0; 1) = g(1; 1) = (1; 0) :Then the image of P by the mapping f : XABC ! XDBE de�ned byf(a; b; c) = [ g(a; c); b ] for (a; c) 2 XAC ; b 2 XB ;is the following distribution Q on XDBE :Q(0; 0; 0) = Q(1; 1; 0) = 12 ; Q(0; 1; 0) = Q(1; 0; 0) = 0 :Evidently I(D;BjE kQ) = ln 2 . 34. Di�erent levels of stochastic dependenceLet us start this section with motivation. Quite common 'philosophical'point of view on stochastic dependence is the following one. Global strengthof dependence among variables [�i]i2N is considered as a result of variousinteractions among factors in N .For example, in hierarchical log-linear models for contingency tables[4] one can distinguish the �rst-order interactions, i.e. interactions of pairsof factors, the second-order interactions, i.e. interactions of triplets of fac-tors, etc. In substance, the �rst-order interactions correspond to pairwisedependence relationships, i.e. to (unconditional) dependences between �iand �j for i; j 2 N , i 6= j. Similarly, one can (very loosely) imagine thatthe second-order interactions correspond to conditional dependences withone conditioning variable, i.e. to conditional dependences between �i and�j given �k where i; j; k 2 N are distinct. An analogous principle holds forhigher-order interactions. Note that we have used the example with log-linear models just for motivation { to illustrate informally the aim of thissection. In fact, one can interpret only special hierarchical log-linear modelsin terms of conditional (in)dependence.Well, it leads to the idea to distinguish di�erent 'levels' of stochasticdependence. Thus, the �rst level could 'involve' pairwise (unconditional)dependences. The second level could correspond to pairwise conditionaldependences between two variables given a third one, the third level topairwise conditional dependences given a couple of variables, etc. Let usgive a simple example of a probability distribution which exhibits di�erent



17behavior for di�erent levels. The following construction will be used in thenext section, too.Construction A Supposing A � N , cardA � 2, there exists a probabilitydistribution P over N such thatM(B kP ) = ln 2 whenever A � B � N ;M(B kP ) = 0 otherwise.Proof: Let us put Xi = f0; 1g for i 2 A, Xi = f0g for i 2 N n A. De�ne Pon XN as followsP ([xi]i2N ) = 21�cardA whenever Pi2N xi is even;P ([xi]i2N ) = 0 otherwise. 2The distribution P from Construction A exhibits only the highest-leveldependences within the factor set A. Indeed, for every couple i; j 2 A,i 6= j, one can easily verify (by Consequence 2.1 and Lemma 2.3) that i isconditionally independent of j given any proper subset C of Anfi; jg (withrespect to P ) but i is not conditionally independent of j given Anfi; jg. Orequivalently, supposing [�i]i2N has the distribution P , the variables [�i]i2Aare 'collectively dependent' although the variables [�i]i2D, where D is arbi-trary proper subset of A, are 'completely independent'. Such distributionsare called in [26] pseudo-independent models. The main conclusion of [26]is that in the case of such an underlying model standard algorithms forlearning Bayesian network approximations fail to �nd a suitable network.This maybe justi�es a wish to measure the strength of each level of depen-dence separately. Good quantitative level-speci�c measures of dependencemay help one to recognize whether a considered distribution is similar tothe fearful pseudo-independent model. They can provide a good theoreticalbasis for necessary statistical tests.Thus, we wish to have an analogue of the above mentioned classi�cationof interactions by order in log-linear models together with the possibilityto express numerically the degree of dependence for each level.4.1. LEVEL-SPECIFIC MEASURES OF DEPENDENCEIn the previous section we argued that the conditional mutual informationI(A;B jC) is a good measure of stochastic conditional dependence between[�i]i2A and [�j ]j2B given [�k]k2C where A;B;C � N are pairwise disjointsubsets of N . In the special case, when A and B are singletons, we willget a measure I(i; j jK) of conditional dependence between �i and �j given



18[�k]k2K ; where K � N n fi; jg : It leads directly to our proposal how tomeasure the degree of dependence for a speci�c level.Suppose that P is a probability distribution over N , A � N withcardA � 2. Then for each r = 1; : : : ; cardA� 1 we put:�(r; A kP ) =XfI(a; bjK kP ) ; fa; bg � A; K � A n fa; bg; cardK = r � 1 g:If the distribution P is known from the context, we write �(r;A) instead of�(r;A kP ). Moreover, we will occasionally write just �(r) as a shorthandfor �(r;N). We regard the introduced number as a basis of a measureof dependence of level r among factors from A. Consequence 2.1 directlyimplies:Proposition 4.1 Let P be a probability distribution over N , A � N ,cardA � 2, 1 � r � cardA� 1. Then(a) �(r;A kP ) � 0,(b) �(r;A kP ) = 0 i� [8 ha; bjKi 2 T (A) cardK = r� 1 a ?? bjK (P )].So, the number �(r) is nonnegative and vanishes just in case when thereare no stochastic dependences of level r. Especially, �(1) can be regarded asa measure of degree of pairwise unconditional dependence. The reader canask whether there are di�erent measures of the strength of level-speci�cinteractions. Of course, one can �nd many such information-theoreticalmeasures. However, if one is interested only in symmetric measures (i.e.measures whose values are not changed by a permutation of variables)based on entropy, then (in our opinion) the corresponding measure mustbe nothing but a multiple of �(r). We base our conjecture on the resultof Han [8]: he introduced certain level-speci�c measures which are positivemultiples of �(r) and proved that every entropy-based measure of multi-variate 'symmetric' correlation is a linear combination of his measures withnonnegative coe�cients.Of course, owing to Lemma 2.3 the number �(r) can be expressed bymeans of the multiinformation function. To get a neat formula we introducea provisional notation for sums of the multiinformation function over setsof the same cardinality. We denote for every A � N , cardA � 2:�(i; A) =XfM(D kP ) ; D � A; cardD = i g for i = 0; :::; cardA :Of course �(i) will be a shorthand for �(i;N). Let us mention that �(0) =�(1) = 0 :Lemma 4.1 For every r = 1; : : : ; n� 1 (where n = cardN � 2)�(r) =  r + 12 ! � �(r + 1)� r � (n� r) � �(r) +  n� r + 12 ! � �(r � 1):



19Proof: Let us �x 1 � r � n� 1 and write by Lemma 2.32�(r) = Xha;bjKi2LfM(abK) +M(K)�M(aK)�M(bK) g ; (7)where L is the class of all ha; bjKi 2 T (N) where a; b are singletons andcardK = r� 1. Note that in L the triplets ha; bjKi and hb; ajKi are distin-guished: hence the term 2�(r) in (7). Evidently, the sum contains only theterms M(D) such that r � 1 � cardD � r + 1 ; and one can write�(r) =Xf k(D) �M(D) ; D � N; r � 1 � cardD � r + 1 g ;where k(D) are suitable coe�cients. However, since every permutation �of factors in N transforms ha; bjKi 2 L into h�(a); �(b)j�(K)i 2 L thecoe�cient k(D) depends only on cardD. Thus, if one divides the numberof overall occurrences of terms M(E) with cardE = cardD in (7) by thenumber of sets E with cardE = cardD; the absolute value of 2k(D) isobtained. Since cardL = n � (n�1) ��n�2r�1� one can obtain for cardD = r+1that k(D) = 12 �n(n�1)�n�2r�1�=� nr+1� = �r+12 �. Similarly, in case cardD = r�1one has k(D) = 12 �n(n�1)�n�2r�1�=� nr�1� = �n�r+12 �. Finally, in case cardD = rone derives �k(D) = 12 � 2n(n� 1)�n�2r�1�=�nr� = r(n� r). To get the desiredformula it su�ces to utilize the de�nitions of �(r � 1), �(r), �(r + 1). 2Lemma 4.1 provides a neat formula for �(r), but in the case when agreat number of conditional independence statements is known to hold, thede�nition formula is better from the computational complexity viewpoint.4.2. DECOMPOSITION OF MULTIINFORMATIONThus, for a factor set N , cardN � 2; the number M(N) quanti�es globaldependence among factors in N and the numbers �(r;N) quantify level-speci�c dependences. So, one expects that the multiinformation is at leasta weighted sum of these numbers. This is indeed the case, but as the readercan expect, the coe�cients depend on cardN .For every n � 2 and r 2 f1; : : : ; n� 1g we put�(r; n) = 2 � r�1 �  nr!�1:Evidently, �(r; n) is always a strictly positive rational number.Proposition 4.2 Let P be a probability distribution over N , cardN � 2.Then M(N kP ) = n�1Xr=1 �(r; n) ��(r;N kP ) :



20Proof: Using Lemma 4.1 we write (note that the super
uous symbol of Pis omitted throughout the proof and �(r) is used instead of �(r; n))n�1Xr=1 �(r) ��(r) = n�1Xr=1 �(r) �  r + 12 ! � �(r + 1)� n�1Xr=1 �(r) � r � (n� r) � �(r) + n�1Xr=1 �(r) �  n� r + 12 ! � �(r � 1) :Let us rewrite it into a more convenient form:nXj=2�(j�1)� j2!��(j)�n�1Xj=1 �(j)�j �(n�j)��(j)+n�2Xj=0 �(j+1)� n� j2 !��(j):It is, in fact, Pnj=0 l(j) � �(j), where l(j) are suitable coe�cients. Thus,l(n) = �(n� 1) � �n2� = 1,l(n� 1) = �(n� 2) � �n�12 �� �(n� 1) � (n� 1) = 2n � 2n = 0,and moreover, for every 2 � j � n� 2 one can writel(j) = �(j � 1) � �j2�� �(j) � j � (n� j) + �(j + 1) � �n�j2 � == �nj��1 � f(n� j + 1)� 2(n� j) + (n� j � 1)g = 0:Hence, owing to �(0) = �(1) = 0 and n � 2 we obtainn�1Xr=1 �(r) ��(r) = nXj=2 l(j) � �(j) = �(n) =M(N) : 2If one considers a subset A � N in the role of N in the precedingstatement, then one obtainsM(A kP ) = cardA�1Xr=1 �(r; cardA) ��(r;A kP ) (8)for every A � N , cardA � 2. One can interpret it in the following way.Whenever [�i]i2A is a random subvector of [�i]i2N , thenM(A kP ) is a mea-sure of global dependence among factors in A, and the value �(r; cardA) ��(r;A kP ) expresses the contribution of dependences of level r among fac-tors in A. In this sense, the coe�cient �(r; cardA) then re
ects the rela-tionship between the level r and the number of factors. Thus, the 'weights'of di�erent levels (and their mutual ratios, too) depend on the number offactors in consideration.



21The formula (8) leads to the following proposal. We propose to measurethe strength of stochastic dependence among factors A � N (cardA � 2)of level r (1 � r � cardA� 1) by means of the number:�(r;A kP ) = �(r; cardA) ��(r;A kP ) :The symbol of P is omitted whenever it is suitable. By Proposition 4.1�(r;A) is nonnegative and vanishes just in case of absence of interactionsof degree r within A. The formula (8) says that M(A) is just the sum of�(r;A)s. To have a direct formula one can rewrite the de�nition of �(r;A)using Lemma 4.1 as follows:�(r;A) = (a� r) �  ar + 1!�1 � �(r + 1; A)� 2 � (a� r) �  ar!�1 � �(r;A) + (a� r) �  ar � 1!�1 � �(r � 1; A) ;where a = cardA, 1 � r � a� 1.Let us clarify the relation to Han's measure [8] �2e(n)r of level r amongn = cardN variables. It holds:�(r;N) = (n� r) ��2e(n)r for every 1 � r � n� 1; n � 2 :We did not study the computational complexity of calculating particularcharacteristics introduced in this section | this can be a subject of future,more applied research.5. Axiomatic characterizationThe aim of this section is to demonstrate that the multiinformation func-tion can be used to derive theoretical results concerning formal propertiesof conditional independence. For this purpose we recall the proof of theresult from [20]. Moreover, we enrich the proof by introducing several con-cepts which (as we hope) clarify all the proof and indicate which stepsare substantial. The reader may surmise that our proof is based on Con-sequence 2.1 and the formula from Lemma 2.3. However, these facts bythemselves are not su�cient, one needs something more.Let us describe the structure of this long section. Since the mentionedresult says that probabilistic independency models cannot be characterizedby means of a �nite number of formal properties of (= axioms for) indepen-dency models one has to clarify thoroughly what is meant by such a formalproperty. This is done in subsection 5.1: �rst (in 5.1.1) syntactic records ofthose properties are introduced and illustrated by examples, and then (in



225.1.2) their meaning is explained. The aim to get rid of super
uous formalproperties motivates the rest of the subsection 5.1: the situation when aformal property of independency models is a consequence of other such for-mal properties is analyzed in 5.1.3, 'pure' formal properties having in everysituation a nontrivial meaning are treated in 5.1.4.The subsection 5.2 is devoted to speci�c formal properties of probabilis-tic independency models. We show by an example that their validity (=probabilistic soundness) can be sometimes derived by means of the multiin-formation function. The analysis in 5.2.1 leads to the proposal to limit at-tention to certain 'perfect' formal properties of probabilistic independencymodels in 5.2.2.Finally, the subsection 5.3 contains the proof of the described nonax-iomatizability result. The method of the proof is described in 5.3.1: one hasto �nd an in�nite collection of perfect probabilistically sound formal prop-erties of independency models. Their probabilistic soundness is veri�ed in5.3.2, their perfectness in 5.3.3.5.1. FORMAL PROPERTIES OF INDEPENDENCY MODELSWe have already introduced the concept of an independency model over Nas a subset of the class T (N) (see subsection 2.2.). This is too general aconcept to be of much use. One needs to restrict oneself to special inde-pendency models which satisfy certain reasonable properties. Many authorsdealing with probabilistic independency models formulated certain reason-able properties in the form of formal schemata which they named axioms.Since we want to prove that probabilistic independency models cannot becharacterized by means of a �nite number of such axioms we have to specifymeticulously what is the exact meaning of such formal schemata. Thus, weboth describe the syntax of those schemata and explain their semantics.Let us start with an example. Semigraphoid [14] is an independencymodel which satis�es four formal properties expressed by the followingschemata having the form of inference rules.hA;BjCi ! hB;AjCi symmetryhA;BCjDi ! hA;CjDi decompositionhA;BCjDi ! hA;BjCDi weak union[hA;BjCDi ^ hA;CjDi] ! hA;BCjDi contraction.Roughly said, the schemata should be understood as follows: if an inde-pendency model contains the triplets before the arrow, then it containsthe triplet after the arrow. Thus, we are interested in formal properties ofindependency models of such a type.



235.1.1. Syntax of an inference ruleLet us start with a few technical de�nitions. Supposing S is a given �xednonempty �nite set of symbols, the formulas hK1;K2jK3i, where K1;K2;K3are disjoint subsets of S represented by juxtapositions of their elements,will be called terms over S.We write K � L to denote that K and L are juxtapositions of all ele-ments of the same subset of S (they can di�er in their order). We say thata term hK1;K2jK3i over S is an equivalent version of the term hL1;L2jL3iover S if Ki � Li for every i = 1; 2; 3. We say that hK1;K2jK3i is a symmet-ric version of hL1;L2jL3i if K1 � L2, K2 � L1, K3 � L3. For example, theterm hAE;BCjDi over S = fA;B;C;D;E; Fg is an equivalent version ofthe term hAE;CBjDi and a symmetric version of the term hBC;EAjDi.Regular inference rule with r antecedents and s consequents is speci�ed by(a) positive integers r; s,(b) a �nite set of symbols S, possibly including a special symbol ;,(c) a sequence of ordered triplets [Sk1 ;Sk2 ;Sk3 ], k = 1; : : : ; r+s of nonemptysubsets of S such that for every k the sets Sk1 , Sk2 , Sk3 are pairwisedisjoint.Moreover, we have several technical requirements:� S has at least three symbols,� if Ski contains the symbol ;, then no other symbol from S is involvedin Ski (for every k = 1; : : : ; r + s and every i = 1; 2; 3),� if k; l 2 f1; : : : ; r + sg, k 6= l, then Ski 6= S li for some i 2 f1; 2; 3g,� every � 2 S belongs to some Ski ,� there is no couple of di�erent symbols �; � 2 S such that8k = 1; : : : ; r + s 8i = 1; 2; 3 [� 2 Ski ) � 2 Ski ].A syntactic record of the corresponding inference rule is then[ hS11 ;S12 jS13 i ^ : : :^ hSr1 ;Sr2 jSr3 i ]! [ hSr+11 ;Sr+12 jSr+13 i _ : : :_ hSr+s1 ;Sr+s2 jSr+s3 i ]where each Ski is represented by a juxtaposition of involved symbols. Herethe terms hSk1 ;Sk2 jSk3 i for k = 1; : : : ; r are the antecedent terms, whilehSk1 ;Sk2 jSk3 i for k = r + 1; : : : ; r + s are the consequent terms.Example 5.1 Take r = 2, s = 1, and S = fA;B;C;Dg. Moreover, letus put [S11 ;S12 ;S13 ] = [fAg; fBg; fC;Dg], [S21 ;S22 ;S23 ] = [fAg; fCg; fDg],[S31 ;S32 ;S33 ] = [fAg; fB;Cg; fDg]. All our technical requirements are sat-is�ed. One possible corresponding syntactic record was already mentioned



24under the label 'contraction' in the de�nition of semigraphoid. Thus, con-traction is a regular inference rule with two antecedents and one consequent.Note that another possible syntactic record can be obtained for exampleby replacing the �rst antecedent term by its equivalent version:[hA;BjDCi ^ hA;CjDi]! hA;BCjDi. 3Of course, the remaining semigraphoid schemata are also regular infer-ence rules in the sense of our de�nition.Remark Our technical requirements in the above de�nition anticipate thesemantics of the symbols. The symbols from S are interpreted as (dis-joint) subsets of a factor set N and the special symbol ; is reserved forthe empty set. Terms are interpreted as elements of T (N). The third re-quirement ensures that no term in a syntactic record of an inference ruleis an equivalent version of another (di�erent) term. Further requirementsavoid redundancy of symbols in S: the fourth one means that no symbol isunused, while the �fth one prevents their doubling, as for example in the'rule': [hA;BEjCDi ^ hA;CjDi] ! hA;EBCjDiwhere the symbol B is doubled by the symbol E.5.1.2. Semantics of an inference ruleLet us consider a regular inference rule � with r antecedents and s conse-quents. What is its meaning for a �xed nonempty factor set N? A substi-tution mapping (for N) is a mapping m which assigns a set m(�) � N toevery symbol � 2 S in such a way that:� m(;) is the empty set,� fm(�) ; � 2 S g is a disjoint collection of subsets of N ,� S�2Sk1 m(�) 6= ; for every k = 1; : : : ; r + s,� S�2Sk2 m(�) 6= ; for every k = 1; : : : ; r + s.Of course, it may happen that no such substitution mapping exists for afactor set N ; for example in case of contraction for N with cardN = 2.However, in case such a mapping m exists an inference instance of theconsidered inference rule (induced by m) is (r + s)-tuple [t1; : : : ; tr+s] ofelements of T (N) de�ned as follows:tk = h [�2Sk1 m(�) ; [�2Sk2 m(�) j [�2Sk3 m(�) i for k = 1; : : : ; r + s :The (r + s)-tuple [t1; : : : ; tr j tr+1; : : : ; tr+s] is formally divided into the r-tuple made of the triplets t1; : : : ; tr which are called antecedents, and thes-tuple made of the triplets tr+1; : : : ; tr+s which are called consequents.



25Example 5.2 Let us continue with Example 5.1 and consider contractionand N = f1; 2; 3g. Put m(A) = f1g, m(B) = f2g, m(C) = f3g, m(D) = ;.It is a substitution mapping for N . The corresponding inference instance(induced by m) is then [t1; t2 j t3] wheret1 = hf1g; f2gjf3gi, t2 = hf1g; f3gj;i, t3 = hf1g; f2; 3gj;i.Here t1; t2 are the antecedents and t3 is the consequent. However, there areother inference instances, induced by other possible substitution mappingsfor N . In this case one �nds 5 other ones:~t1 = hf1g; f3gjf2gi, ~t2 = hf1g; f2gj;i, ~t3 = hf1g; f2; 3gj;i,t̂1 = hf2g; f1gjf3gi, t̂2 = hf2g; f3gj;i, t̂3 = hf2g; f1; 3gj;i,�t1 = hf2g; f3gjf1gi, �t2 = hf2g; f1gj;i, �t3 = hf2g; f1; 3gj;i,�t1 = hf3g; f1gjf2gi, �t2 = hf3g; f2gj;i, �t3 = hf3g; f1; 2gj;i,�t1 = hf3g; f2gjf1gi, �t2 = hf3g; f1gj;i, �t3 = hf3g; f1; 2gj;i. 3Of course, the number of possible substitution mappings is �nite for a�xed regular inference rule and a �xed factor set. Therefore, the numberof all inference instances of a regular inference rule for a given factor set isalways �nite and the following de�nition is sensible.Having a �xed factor set N we say that an independency model I �T (N) is closed under a regular inference rule � with r antecedents and sconsequents i� for every inference instance [t1; : : : ; tr+s] 2 T (N)r+s (of �for N) f t1; : : : ; tr g � I implies ftr+1; :::; tr+sg \ I 6= ;.Example 5.3 Let us continue with Example 5.2. The independency modelI over N = f1; 2; 3g consisting of the triplet hf1g; f2gj;i only is closed undercontraction since no inference instance for N has both antecedents in I.On the other hand, the model M = f hf1g; f2gj;i ; hf1g; f3gjf2gi g is notclosed under contraction. Indeed, one has ~t1; ~t2 2 M but ~t3 62 M for theinference instance [ ~t1; ~t2 j ~t3 ] 35.1.3. Logical implication of inference rulesThe aim of regular inference rules is to sketch formal properties of indepen-dency models, especially probabilistic independency models. In fact, onecan have in mind another reasonable class of independency models insteadof the class of probabilistic independency models. For example the class ofgraph-isomorphic independency models [14] or the class of EMVD-models[20, 9] or various classes of possibilistic independency models [1, 6]. Well,such an approach hides a deeper wish or hope to characterize the respectiveclass of independency models as the class of those closed under a collectionof regular inference rules. We can speak about the axiomatic characteriza-tion of the respective class of independency models.



26 For example, in the case of probabilistic independency models such acharacterization would make it possible to recognize them without laboriousconstruction of an inducing probability distribution. Indeed, the processof veri�cation of whether a given independency model is closed under a�nite number of known inference rules is completely automatic and can bedone by a computer. Of course such a desired collection of inference rulesshould be minimal (a �nite collection would be an ideal solution). Oneneeds a criterion for removing super
uous regular inference rules from sucha desired collection. Therefore, we are interested in the following relationamong inference rules.We say that a collection of regular inference rules � logically implies aregular inference ! and write � j= ! if for every (nonempty �nite) factorset N and for every independency model M over N the following holds:whenever M is closed under every inference rule � 2 �, then M is closedunder !.Usually, an easy su�cient condition for logical implication is (syntactic)derivability. We give an illustrative example to explain what we have inmind. We hope that it gives a better insight than a pedantic de�nition,which would be too complicated.Example 5.4 Let us consider the following regular inference rule ! withthree antecedents and one consequent:[ hA;B jEi ^ hA;C jBEi ^ hA;D jCEi ] ! hA;D jEi.This inference rule is logically implied by the semigraphoid inference rules.To show it we construct a special derivation sequence of terms over thecorresponding set of symbols S = fA;B;C;D;Eg. Here is the derivationsequence:1. hA;B jEi ;2. hA;C jBEi ;3. hA;D jCEi ;4. hA;BC jEi is directly derived from 2. and 1. by contraction,5. hA;C jEi is directly derived from 4. by decomposition,6. hA;CD jEi is directly derived from 3. and 5. by contraction,7. hA;D jEi is directly derived from 6. be decomposition.The last term is the consequent term of !. Every term in the derivationsequence is either an antecedent term of !, or it is 'directly derived' frompreceding terms (in the derivation sequence) by virtue of a semigraphoidinference rule.



27Now, let us consider a �xed factor set N and a semigraphoidM� T (N)(i.e. an independency model over N closed under all semigraphoid inferencerules). To show that M is closed under ! let us consider an inferenceinstance [ t1; t2; t3 j t4 ] of ! for N induced by a substitution mappingm. So,we can construct a sequence u1; : : : ; u7 of elements of T (N) which 'copies'the derivation sequence:u1 = hm(A) ; m(B) jm(E)i � t1 ;u2 = hm(A) ; m(C) jm(B) [m(E)i � t2 ;u3 = hm(A) ; m(D) jm(C) [m(E)i � t3 ;u4 = hm(A) ; m(B) [m(C) jm(E)i ;u5 = hm(A) ; m(C) jm(E)i ;u6 = hm(A) ; m(C) [m(D) jm(E)i ;u7 = hm(A) ; m(D) jm(E)i � t4.Owing to the fact that M is closed under every semigraphoid inferencerule one can derive from the assumption ft1; t2; t3g � M by induction onj = 1; : : : ; 7 that fu1; : : : ; ujg � M. Especially, t4 2 M, which was thedesired conclusion. Thus, M is closed under !. 35.1.4. Pure inference rulesIt may happen that an inference instance of a regular inference rule is trivialin the sense that it has as a consequent one of its antecedents (for example inthe case of decomposition for a substitution mapping m with m(B) = ;).Thus, we wish to concentrate on a class of 'pure' inference rules whichhave only 'informative' inference instances. For technical reasons (whichwill become clear later - see 5.2.2) we would also like to avoid those inferencerules which possibly may have an inference instance whose consequent isthe symmetric image of an antecedent, as demonstrated by the followingexample.Example 5.5 Let us consider the following regular inference rule:[ hA;BCjDi ^ hB;DjACi ] ! hB;AjDi.Take N = f1; 2g and put m(A) = f1g, m(B) = f2g, m(C) = ;, m(D) =f3g. It induces the inference instance [t1; t2 j t3] with t1 = h f1g ; f2g j f3g i,t2 = h f2g ; f3g j f1g i, t3 = h f2g ; f1g j f3g i. Here the consequent t3 is thesymmetric image of the antecedent t1. 3Thus, we say that a regular inference rule! is pure if there is no inferenceinstance of ! (for arbitrary factor set N) in which a consequent eithercoincides with an antecedent or with the symmetric image of an antecedent.



28 Such a de�nition is not suitable for veri�cation. We need a su�cientcondition formulated by means of syntactic concepts from 5.1.1. To formu-late it we give two de�nitions. Suppose that ! is a regular inference rulewith a syntactic record having S as the set of symbols. We say that thesymbol sets K;L � S are distinguished in ! if9 k 2 f1; : : : ; r+ sg 9 j 2 f1; 2g Skj � (KnL)[ (LnK). A term hK1;K2jK3iover S is distinguished in ! from a term hL1;L2jL3i over S if Ki and Liare distinguished in ! for some i = 1; 2; 3:Lemma 5.1 A regular inference rule ! is pure if every consequent term of! is distinguished in ! both from all antecedent terms of ! and from theirsymmetric versions.Proof: At �rst realize this: whenever symbol sets K and L are distinguishedin !, then for every substitution mapping m one has; 6= m(Skj ) � m(K n L) [m(L n K) � (m(K) nm(L)) [ (m(L) nm(K)),which implies m(K) 6= m(L). Hence, terms distinguished in ! are trans-formed to distinct elements of T (N) by any substitution mapping. There-fore, under the mentioned assumption, no consequent of a respective infer-ence instance can coincide either with an antecedent or with its symmetricimage. 2We leave it to the reader to verify by means of Lemma 5.1 that con-traction is a pure inference rule. On the other hand one can easily see thatdecomposition and weak union are not pure rules.5.2. PROBABILISTICALLY SOUND INFERENCE RULESWe say that a regular inference rule ! is probabilistically sound if everyprobabilistic independency model is closed under !.That means, every probabilistically sound inference rule expresses a for-mal property which is shared by all probabilistic independency models. Is itdi�cult to verify probabilistic soundness of a given regular inference rule?The multiinformation function is a good tool for this purpose, althoughmaybe not universal. In the e�ort to characterize all probabilistic inde-pendency models over four factors [10, 11] a lot of probabilistically soundinference rules was found whose soundness was not veri�ed with help of themultiinformation function. However, it has appeared lately that at leastsome of them can be regarded as a consequence of deeper properties of themultiinformation function, namely of a certain 'conditional' inequalitiesfor the multiinformation (or entropic) function [27, 12]. Thus, the ques-tion whether every probabilistically sound inference rule can be derived bymeans of the multiinformation function remains open. However, to support



29our arguments about its usefulness we give an illustrative example. We be-lieve that an example is more didactic than a technical description of themethod.Example 5.6 To show the probabilistic soundness of weak union one hasto verify for arbitrary factor set N , for any probability distribution Pover N , and for any collection of disjoint sets A;B;C;D � N which arenonempty with possible exceptions of C and D, thatA ?? BCjD (P ) ) A ?? BjCD (P ) :The assumption A ?? BCjD (P ) can be rewritten by Consequence 2.1(b)and Lemma 2.3 in terms of the multiinformation function M induced bythe distribution P :0 =M(ABCD) +M(D)�M(AD)�M(BCD) :Then one can 'arti�cially' add and subtract the terms M(CD)�M(ACD)and by Lemma 2.3 derive:0 = fM(ABCD) +M(CD)�M(ACD)�M(BCD)g+ fM(ACD) +M(D)�M(AD)�M(CD)g= I(A;BjCD) + I(A;CjD) :By Consequence 2.1(a) both I(A;BjCD) and I(A;CjD) are nonnegative,and therefore they vanish! But that implies by Consequence 2.1(b) thatA ?? BjCD (P ). 3Note that one can easily see using the method shown in the precedingexample that every semigraphoid inference rule is probabilistically sound.5.2.1. Redundant rulesHowever, some probabilistically sound inference rules are super
uous forthe purposes of providing an axiomatic characterization of probabilistic in-dependency models. The following consequence follows directly from givende�nitions.Consequence 5.1 If ! is a regular inference rule which is logically im-plied by a collection of probabilistically sound inference rules, then ! isprobabilistically sound.A clear example of a super
uous rule is an inference rule with redundantantecedent terms.



30Example 5.7 The inference rule[ hA;BC jDi ^ hC;B jAi ] ! hA;B jCDiis a probabilistically sound regular inference rule. But it can be ignoredsince it is evidently logically implied by weak union. 3Therefore we should limit ourselves to 'minimal' probabilistically soundinference rules, i.e. to such probabilistically sound inference rules that noantecedent term can be removed without violating the probabilistic sound-ness of the resulting reduced inference rule. However, even such a rule canbe logically implied by probabilistically sound rules with fewer antecedents.We need the following auxiliary construction of a probability distributionto give an easy example.Construction B Supposing A � N , cardA � 2, there exists a probabilitydistribution P over N such thatM(B kP ) = max f0; card (A \B)� 1g � ln 2 for B � N :Proof: Let us put Xi = f0; 1g for i 2 A, Xi = f0g for i 2 N n A. De�ne Pon XN as follows:P ([xi]i2N ) = 12 whenever [8i; j 2 A xi = xj] ;P ([xi]i2N ) = 0 otherwise. 2Example 5.8 We have already veri�ed earlier that the inference rule !from Example 5.4 is logically implied by the semigraphoid inference rules.Hence, ! is probabilistically sound by Consequence 5.1.Let us consider a 'reduced' inference rule made by a removal of an an-tecedent term:[ hA;BjEi ^ hA;CjBEi ] ! hA;DjEi.It is a regular inference rule with 2 antecedents and one consequent. Todisprove its probabilistic soundness one has to �nd a probabilistic inde-pendency model over a factor set N which is not closed under this rule.Use Construction B with N = f1; 2; 3; 4g and A = f1; 4g. By Conse-quence 2.1 one veri�es that f1g ?? f2gj; (P ), f1g ?? f3gjf2g (P ), but:[ f1g ?? f4gj; (P ) ] for the constructed distribution P . As concerns analternative 'reduced' inference rule[ hA;B jEi ^ hA;D jCEi ] ! hA;D jEiuse Construction B with A = f1; 3; 4g and a distribution P over N suchthat f1g ?? f2gj; (P ), f1g ?? f4gjf3g (P ), but :[ f1g ?? f4gj; (P ) ]. Asconcerns the third possible 'reduced' inference rule



31[ hA;C jBEi ^ hA;D jCEi ] ! hA;D jEiuse again Construction B with A = f1; 2; 3; 4g. Thus, one has a distributionP with f1g ?? f3gjf2g (P ), f1g ?? f4gjf3g (P ), but :[ f1g ?? f4gj; (P ) ]. }5.2.2. Perfect rulesThus, one should search for conditions which ensure that an inference ruleis not logically implied by probabilistically sound inference rules with fewerantecedents. We propose the following condition.We say that a probabilistically sound regular inference rule with r an-tecedents (and s consequents) is perfect if there exists a factor set N andan inference instance [t1; : : : ; tr j tr+1; : : : ; tr+s] 2 T (N)r+s such that thesymmetric closure of every proper subset of ft1; : : : ; trg is a probabilisticindependency model over N .Lemma 5.2 Let ! be a perfect, probabilistically sound, pure inferencerule with r antecedents, r � 1. Then there exists a factor set N and anindependency model M over N such that� M is closed under every probabilistically sound regular inferencerule with at most r � 1 antecedents,� M is not closed under !.Proof: Let [t1; : : : ; tr+s] 2 T (N) be the inference instance of ! mentionedin the de�nition of perfectness. De�neM� T (N) as the symmetric closureof the set of antecedents ft1; : : : ; trg. Let us show that M is closed underall probabilistically sound inference rules with at most r � 1 antecedents.Suppose for a contradiction that [~t1; : : : ; ~t~r+~s] 2 T (N)~r+~s is an inferenceinstance of such an inference rule � (with ~r � r� 1 antecedents and ~s con-sequents) for N with f~t1; : : : ; ~t~rg �M and f~t~r+1; : : : ; ~t~r+~sg\M = ;. How-ever, owing to the fact that ~r < r and the assumption (of perfectness) thesymmetric closure I of f~t1; : : : ; ~t~rg is a probabilistic independency model.So, (by the de�nition of probabilistic soundness) I is closed under �, andtherefore f~t~r+1; : : : ; ~t~r+~sg \ I 6= ; which contradicts the fact that I �M.Therefore M has to be closed under any such inference rule �.Owing to the assumption that the inference rule ! is pure by de�ni-tion one has ftr+1; : : : ; tr+sg \ M = ;. Since M was de�ned to containft1; : : : ; trg, it is not closed under !. 2The preceding lemma implies the following consequence with help ofthe de�nition of logical implication.Consequence 5.2 No perfect probabilistically sound pure inference ruleis logically implied by a collection of probabilistically sound inference ruleswith fewer antecedents.



32 Contraction is an example of a perfect pure regular inference rule.5.3. NO FINITE AXIOMATIC CHARACTERIZATION5.3.1. Method of the proofIt is clear in the light of Consequence 5.2 how to disprove the existence ofa �nite system of regular inference rules characterizing probabilistic inde-pendency models.Lemma 5.3 Let us suppose that we have found for every r � 3 a per-fect, probabilistically sound, pure inference rule with at least r antecedents.Then every system � of regular inference rules characterizing probabilisticindependency models as independency models closed under rules in � isin�nite.Proof: Let us suppose for a contradiction that there exists a �nite system� of regular inference rules such that for every factor set N an indepen-dency model M � T (N) is a probabilistic independency model (over N)i� it is closed under all rules in �. Hence, every rule in � must be prob-abilistically sound. We choose ~r � 3 which exceeds the maximal numberof antecedents of rules in �. According to the assumption there exists aperfect, probabilistically sound, pure inference rule ! with r antecedents,where r � ~r.By Lemma 5.2 we �nd a factor set N and an independency model Mover N which is closed under every probabilistically sound inference rulewith at most r� 1 antecedents but not under !. Since every inference rulefrom � has at most r � 1 antecedents, M is closed under every inferencerule from �. Therefore M is a probabilistic independency model over N .However, M is not closed under ! which contradicts the fact that ! isprobabilistically sound. 2Thus, we need to verify the assumptions of the preceding lemma. Let usconsider for each n � 3 the following inference rule 
(n) with n antecedentsand one consequent:[ hA;B1jB2i ^ : : : ^ hA;Bn�1jBni ^ hA;BnjB1i ] ! hA;B2jB1i : 
(n)It is no problem to verify that each 
(n) is indeed a regular inference rule.Moreover, one can verify easily using Lemma 5.1 that each 
(n) is a purerule.5.3.2. SoundnessTo show their probabilistic soundness we use the properties of the multiin-formation function.



33Lemma 5.4 Each above mentioned rule 
(n) is probabilistically sound.Proof: Let us �x n � 3. We have to show for arbitrary factor set N , anydistribution P over N , and any collection of nonempty disjoint subsetsA;B1; : : : ; Bn � N that (under convention Bn+1 � B1) the assumption[8j = 1; : : : ; n A ?? Bj jBj+1 (P ) ]implies that A ?? B2jB1 (P ). By Consequence 2.1(b) with Lemma 2.3 onehas for every j = 1; : : : ; n (M is the corresponding multiinformation func-tion): M(ABjBj+1) +M(Bj+1)�M(ABj+1)�M(BjBj+1) = 0 :Hence we get by summing, the above mentioned convention and Lemma 2.3:0 = nXj=1 f M(ABjBj+1) +M(Bj+1)�M(ABj+1)�M(BjBj+1) g= nXj=1 M(ABjBj+1) + nXj=1 M(Bj+1)� nXj=1 M(ABj+1)� nXj=1 M(BjBj+1)= nXj=1 M(ABjBj+1) + nXj=1 M(Bj)� nXj=1 M(ABj)� nXj=1 M(BjBj+1)= nXj=1 f M(ABjBj+1) +M(Bj)�M(ABj)�M(BjBj+1) g= nXj=1 I(A;Bj+1jBj) :Owing to Consequence 2.1(a) necessarily I(A;Bj+1jBj kP ) = 0 for everyj = 1; : : : ; n. Hence by Consequence 2.1(b) A ?? B2jB1 (P ). 25.3.3. PerfectnessTo verify perfectness of a rule one needs some method for showing thatan independency model is a probabilistic independency model. We againConstructions A and B.Lemma 5.5 Suppose that N = f0; 1; : : : ; ng, n � 3 and M � T (N) bethe symmetric closure of the set f h f0g; fig j fi + 1g i ; i = 1; : : : ; n � 1 g.Then M is a probabilistic independency model over N .Proof: It su�ces to �nd a probabilistic independency modelMt withM�Mt and t 62 Mt for every t 2 T (N)nM. Indeed, thenM� Tt2T (N)nMMt,and by Lemma 2.1 M is a probabilistic independency model.



34 Moreover, one can limit oneself to the triplets of the form ha; bjCi 2T (N) nM where a; b are singletons. Indeed, for a given general hA;BjCi 2T (N) nM choose a 2 A, b 2 B and �nd the respective probabilistic inde-pendency model Mt for t = ha; bjCi. Since Mt is a semigraphoid, t 62 Mtimplies hA;BjCi 62 Mt.In the sequel we distinguish 5 cases for a given �xed ha; bjCi 2 T (N)nM.Each case requires a di�erent construction of the respective probabilisticindependency model Mt, that is a di�erent construction of a probabilitydistribution P over N such that f0g ?? fig j fi+1g (P ) for i = 1; : : : ; n�1,but :[ fag ?? fbg jC (P ) ]. One can verify these statements about P throughthe multiinformation function induced by P . If the multiinformation func-tion is known (as it is in the case of our constructions) one can use Conse-quence 2.1(b) and Lemma 2.3 for this purpose. We leave this to the reader.Here is the list of cases.I. 8i = 1; : : : ; n� 1 fa; bg 6= f0; ig (C arbitrary).In this case use Construction A where A = fa; bg.II. [9j 2 f1; : : : ; n� 1g fa; bg = f0; jg] and C n fj � 1; j + 1g 6= ;.In this case choose r 2 C nfj�1; j+1g and use Construction A whereA = f0; j; rg.III. [9j 2 f2; : : : ; n� 1g fa; bg = f0; jg] and C = fj � 1; j + 1g.In this case use Construction A where A = f0; j � 1; j; j + 1g.IV. [9j 2 f2; : : : ; n� 1g fa; bg = f0; jg] and C = fj � 1g.Use Construction B where A = f0; j; j + 1; : : : ; ng.V. [9j 2 f1; : : : ; n� 1g fa; bg = f0; jg] and C = ;.Use Construction B where A = N . 2Consequence 5.3 Each above mentioned rule 
(n) is perfect.Proof: Let us �x n � 3, put N = f0; 1; : : : ; ng and tj = hf0g; fjgjfj + 1gifor j = 1; : : : ; n (convention n + 1 � 1), tn+1 = hf0g; f2gjf1gi. Evidently,[ t1; : : : ; tn j tn+1 ] is an inference instance of 
(n). To show that the sym-metric closure of every proper subset of ft1; : : : ; tng is a probabilistic inde-pendency model it su�ces to verify it only for every subset of cardinalityn� 1 (use Lemma 2.1). However, owing to possible cyclic re-indexing of Nit su�ces to prove (only) that the symmetric closure M of ft1; : : : ; tn�1gis a probabilistic independency model. This follows from Lemma 5.5. 2Proposition 5.1 There is no �nite system � of regular inference rulescharacterizing probabilistic independency models as independency modelsclosed under rules in � .



35Proof: An easy consequence of Lemmas 5.3, 5.4 and Consequence 5.3. 2ConclusionsLet us summarize the paper. Several results support our claim that condi-tional mutual information I(A;BjC) is a good measure of stochastic condi-tional dependence between random vectors �A and �B given �C . The valueof I(A;BjC) is always nonnegative and vanishes i� �A is conditionally inde-pendent of �B given �C . On the other hand, the upper bound for I(A;BjC)is minfH(AjC);H(BjC)g, and the value H(AjC) is achieved just in case�A is a function of �BC . A transformation of �ABC which saves �AC and �BCincreases the value of I(A;BjC). On the other hand, if �A is transformedwhile �BC is saved, then I(A;BjC) decreases. Note that the paper [29] dealswith a more practical use of conditional mutual information: it is appliedto the problem of �nding relevant factors in medical decision-making.Special level-speci�c measures of dependence were introduced. Whilethe value M(A) of the multiinformation function is viewed as a measureof global stochastic dependence within [�i]i2A, the value of �(r;A) (for1 � r � cardA�1) is interpreted as a measure of the strength of dependenceof level r among variables [�i]i2A. The value of �(r;A) is always nonnegativeand vanishes i� �i is conditionally independent of �j given �K for arbitrarydistinct i; j 2 A, K � A, cardK = r�1. And of course, the sum of �(r;A)sis just M(A). Note that measures �(r;A) are certain multiples of Han's [8]measures of multivariate symmetric correlation.Finally, we have used the multiinformation function as a tool to showthat conditional independence models have no �nite axiomatic character-ization. A didactic proof of this result, originally shown in [20], is given.We analyze thoroughly syntax and semantics of inference rule schemata (=axioms) which characterize formal properties of conditional independencemodels. The result of the analysis is that two principal features of suchschemata are pointed out: the inference rules should be (probabilistically)sound and perfect. To derive the nonaxiomatizability result one has to �ndan in�nite collection of sound and perfect inference rules. In the veri�ca-tion of both soundness and perfectness the multiinformation function wasproved to be an e�ective tool.Let us add a remark concerning the concept of perfect rule. We haveused this concept just in the proof of the nonaxiomatizability result. How-ever, our aim is a little bit deeper, in fact. We (vaguely) guess that prob-abilistic independency models have certain uniquely determined 'minimal'axiomatic characterization, which is of course in�nite. In particular, we con-jecture that the semigraphoid inference rules and perfect probabilistically
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