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Abstract

The class of supermodular functions on the power set of a non-empty finite set N forms
a cone. It can be viewed as the direct sum of a linear subspace and of a cone of standardized
supermodular functions which has finitely many extreme rays. Every extreme ray can be
described by a standardized integer-valued set function. We analyse the situation in the case
when N has five elements (= variables). A computer program was used to obtain a catalogue
of all classes of permutably equivalent extreme standardized supermodular functions on the
power set of N . We consider several alternative ways of representation of these equivalence
classes and use various characteristics to describe them. Moreover, two relevant hypotheses
valid in case of four variables are disproved in case of five variables.

1 Introduction

The problem treated in this research report has two basic sources of motivation.

First, in [11] an attempt to develop a specific non-graphical approach to description of
probabilistic conditional independence structures was made. In contrast to classic graphical
methods this approach (for a brief overview see [10]) makes it possible to describe all probabilis-
tic conditional independence structures induced by discrete distributions and by non-degenerate
Gaussian distributions as well. Conditional independence structures can be described by special
integer-valued functions on the power set of the set of variables called structural imsets. More-
over, the approach offers simple algebraic operations with integers as a tool for inference among
conditional independence statements. However, the question of computer implementation of the
inference mechanism leads to the problem of finding all extreme rays of a certain cone in multi-
dimensional real vector space, namely of the cone of (standardized) supermodular functions on
the power set of the set of variables.

Second, supermodular set functions play an important role in game theory where they are
named either ’convex games’ [5] or ’convex set functions’ [4]. Distinguished position have then
’extreme convex set functions’ which correspond to extreme rays of the above mentioned cone.
In [4] the problem of characterization of extreme supermodular functions is raised and a certain
necessary and sufficient condition for a supermodular function to be extreme is given. However,
this condition is formulated in terms of specific representation of supermodular functions and it
does not seem to be suitable for practical purposes of computer verification. Let us note that
the question of characterization of all extreme supermodular functions may have relevance to
theory of polymatroids, that is certain submodular functions [2].
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The task to find all extreme rays of the cone of standardized supermodular functions (on the
power set of the set of variables) is easy in case of 3 variables. In case of 4 variables it is also
manageable without help of a computer [7]; in fact, these function were already determined by
S. A. Cook in 1965 (private communication to L. S. Shapley [5]). The primary aim of this paper
is to make basic formal analysis in case of 5 variables. That is, to find all extreme standardized
supermodular function on the power set of a set N = {a, b, c, d, e}. The secondary aim of
this work is to make reasonably reduced catalogue of suitable representatives of these extreme
supermodular functions. This catalogue can serve as a basis for later deeper analysis which may
hopefully one time in future lead to proper intuitive understanding of the form and structure
of these extreme supermodular functions. The third goal of our work is a computer program
which realizes the corresponding inference mechanism for conditional independence statements
over five variables mentioned in [10].

The report has the following structure. The next section contains definitions of basic concepts
and recalls elementary facts. Section 3 describes our method of obtaining the basic catalogue
of representatives of extreme supermodular functions using a computer program. Every item in
the catalogue contains a certain representative of a class of permutably equivalent extreme stan-
dardized supermodular functions. A specific conjecture concerning the form of these functions
valid in case of four variables [11] is refuted in Section 4. Several important characteristics of the
above equivalence classes are introduced there as well. Other (alternative) ways of representa-
tion of extreme supermodular set functions are mentioned in Section 5. Section 6 is an overview
of our internal notation which was agreed for the purpose of easy transition between theoretical
concepts and their computer implementation. Section 7 describes the catalogue (realized in the
form of a computer file). The Appendix illustrates pictorially the situation in case of 4 variables.
The core of the report is self-contained. However, let us warn the reader that some parts (mainly
additional remarks) can be fully understood only when the reader is aware of the content in the
references.

2 Basic concepts

Let N be a finite non-empty set of variables. The symbol P(N) will denote the power set of N ,
that is the class of all its subsets {A ; A ⊆ N}. The symbol R denotes the set of real numbers,
the symbol Q the set of rational numbers, the symbol Z the set of integer numbers. Imset over
N is an integer-valued function on the power set, that is an arbitrary function i : P(N) → Z.

2.1 Supermodular function

A real function m : P(N) → R is called supermodular if

m(U ∪ V ) +m(U ∩ V ) ≥ m(U) +m(V ) for every U, V ⊆ N .

Let us denote the class of supermodular functions by M. It forms a cone, that is

∀m1,m2 ∈ M ∀α, β ≥ 0 α ·m1 + β ·m2 ∈ M .

For the purpose of computer handling we need to characterize supermodular functions by means
of minimal number of inequalities. This is done hereafter.
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2.1.1 Elementary imsets

Elementary imset is an imset of a specific form. Given a triplet 〈i, j|K〉 where K ⊆ N is a
set of variables and i, j ∈ N \K are distinct variables (i 6= j) we introduce the corresponding
elementary imset u over N , sometimes denoted by u〈i,j|K〉 as follows

u(K) = u({i, j} ∪K) = +1, u({i} ∪K) = u({j} ∪K) = −1, u(S) = 0 for other S ⊆ N .

The class of elementary imsets over N will be denoted by E(N). One can easily compute the
number of distict elementary imsets, namely n · (n− 1) · 2n−3 where n is the number of elements
of N .

Remark Thus, the imset u〈i,j|K〉 corresponds to the elementary conditional independence state-
ment {i} ⊥⊥ {j} |K over N . Note that (when one deals with probabilistic conditional indepen-
dence structures) it is no reason to distinguish between {i} ⊥⊥ {j} |K and {j} ⊥⊥ {i} |K which
is reflected by the fact that u〈i,j|K〉 = u〈j,i|K〉.

2.1.2 Scalar product

Let m : P(N) → R and u : P(N) → Z be two function on the power set of N . Their scalar

product , denoted by 〈m,u〉, is the real number defined by the formula

〈m,u〉 =
∑

S⊆N

m(S) · u(S) .

It is indeed the scalar product on the space RP(N).

2.1.3 Equivalent definition of supermodular function

It is quite easy to verify the following simple fact (see for example Lemma 2.7 in [11]).

Lemma 2.1 Function m : P(N) → R is supermodular if and only if

∀u ∈ E(N) 〈m,u〉 ≥ 0 .

2.1.4 Examples

Let us give a simple canonical example of a supermodular function. Given A ⊆ N we introduce
the function mA : P(N) → R by the formula

mA(S) =

{

1 if A ⊆ S

0 otherwise
for every S ⊆ N .

Evidently, mA is supermodular for every A ⊆ N .

Remark Another important example of a supermodular function, the one we have particularly
in mind, is the multiinformation function mP induced by a probability distribution P over N .
The value mP (S) for every non-empty S ⊆ N is defined as the relative entropy of the marginal
distribution PS (= the marginal of P for S) with respect to the product of its one-dimensional
marginals

∏

i∈S P {i} and mP (∅) = 0 by convention. This works properly (that is, it gives finite
values) both in case of discrete distributions (= finite sample space for every i ∈ N) and in
case of non-degenerate Gaussian distributions (= normal distributions with a regular covariance
N ×N matrix).
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2.1.5 Submodular functions

A real function l : P(N) → R is called submodular if

l(U ∪ V ) + l(U ∩ V ) ≤ l(U) + l(V ) for every U, V ⊆ N ,

or equivalently if −l is supermodular. There exist functions which are simultaneously super-
modular and submodular, for example the function m∅ and the functions m{i} for every i ∈ N .

2.2 Standardization

As mentioned earlier the aim of this work is to examine the cone of supermodular functions.
The only problem which complicates easy view on this cone is that there exist functions which
are simultaneously supermodular and submodular. However, this ambiguity can be avoided by
a suitable standardization of supermodular functions done hereafter.

2.2.1 Contained linear subspace

Let us denote by L the class of those functions which are simultanously supermodular and
submodular, that is L = M∩ (−M) = {l ∈ M; −l ∈ M}. It follows from Lemma 2.1 that

l ∈ L ⇔ [∀u ∈ E(N) 〈l, u〉 = 0 ] .

Hence, L is a linear subspace of RP(N). As mentioned in Section 2.1.5 the functions m∅ and
m{i}, i ∈ N belong to L. They are evidently linearly independent. Actually, it is easy to show
that they form a basis of L (see for example Lemma 2 [6]). Hence, one can summarize.

Lemma 2.2 The set L is a linear subspace of RP(N) of dimension n+ 1 where n is the number
of elements of N .

2.2.2 Strong equivalence of supermodular functions

We say that two real functions m1 and m2 on P(N) are strongly equivalent if

∀u ∈ E(N) 〈m1, u〉 = 〈m2, u〉 .

Clearly, m1 and m2 are strongly equivalent if and only if m1−m2 ∈ L. By Lemma 2.1, whenever
a function is strongly equivalent to a supermodular function then it is supermodular as well.
From our point of view there is no reason to distinguish between strongly equivalent functions.
Thus, to have a clear view on the situation one should choose one representative from every
class of strongly equivalent supermodular functions in a systematic way.

2.2.3 Direct sum

To have also reasonable geometric insight one should simply do the choice ’linearly’. Thus, one
should choose another linear subspaces S such that the direct sum L ⊕ S is the whole space
RP(N). That means L ∩ S contains only the zero function and every function in RP(N) can
be written as the sum l + s where l ∈ L and s ∈ S (then l, s are determined uniquely). The
fact RP(N) = L ⊕ S then easily implies M = L ⊕ (M ∩ S). Hence, every m ∈ M is strongly
equivalent to just one s ∈ M∩ S and one can represent the corresponding equivalence class by
s. We chose the following subspace as our standard:

S = {m : P(N) → R ; m(∅) = 0 and m({i}) = 0 for every i ∈ N } .
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Thus, the result of our standardization is the cone of standardized supermodular functionsM∩S,
denoted below by Mst. Important fact is that it already does not contain a non-trivial linear
subspace, that is Mst ∩ (−Mst) contains only the zero function. Straightforward consequence
of our choice (see for example Lemma 2.10 [8]) is the following pleasant property.

Lemma 2.3 Every m ∈ Mst is a non-decreasing function, that is

m(S) ≤ m(T ) whenever S ⊆ T ⊆ N .

Remark Our choice of the subspace S above is motivated by our wish to represent supermodular
functions in multiinformation-like style. Indeed, every multiinformation function mentioned in
Section 2.1.4 belongs to M∩S. However, they are other possible ways of standardization. For
example, one can consider the following subspace R instead of S

R = { r : P(N) → R ; r(S) = 0 whenever |S| ≥ |N | − 1 }

which leads to ’reverse’ standardization by non-increasing functions. Another interesting option
is to take simply the orthogonal complement L⊥ in place of S.

2.2.4 Model equivalence of supermodular functions

We say that two real functions m1 and m2 on P(N) are model equivalent if

∀u ∈ E(N) 〈m1, u〉 = 0 if and only if 〈m2, u〉 = 0 .

This concept is motivated by the approach from [11] where a certain model of conditional
independence structure was ascribed to every supermodular function. Namely, given m ∈ M by
the (’elementary’ version of the) induced independence model Im can be understood the class of
those elementary conditional independence statements {i} ⊥⊥ {j} |K for which 〈m,u〈i,j|K〉〉 = 0.
Thus, two supermodular functions are model equivalent if and only if they induce the same
model.

Remark The multiinformation function mP (induced by a probability distribution P over N)
mentioned in Section 2.1.4 is important for the following reason. It encodes whole conditional in-
dependence structure induced by P since one has (for every elementary conditional independence
statement) {i} ⊥⊥ {j} |K [P ] (i.e., {i} ⊥⊥ {j} |K is valid in P ) if and only if 〈mP , u〈i,j|K〉〉 = 0.
Thus, the model induced by mP is exactly the (’elementary’ version of the) conditional indepen-
dence model of P . One can consider the concept of probabilistically representable (standardized)
supermodular function, that is such a function m ∈ Mst that there exists a probability distri-
bution P over N and α > 0 such that m = α ·mP . So, supposing m ∈ Mst is probabilistically
representable, the induced independence model is indeed the conditional independence model
induced by a probability distribution.

2.3 Extreme supermodular functions

A non-zero standardized supermodular function m ∈ Mst is called extreme if only segments in
Mst having it as an internal point are segments consisting of multiples ofm, that is 0 6= m ∈ Mst

satisfies the following condition

∀ r, s ∈ Mst m =
1

2
· r +

1

2
· s implies r = α ·m for some α ≥ 0 .
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Of course, zero function satisfies the above condition as well, but the definition requires that an
extreme function must be non-zero. The point is that one can find a finite set of such functions
characterizing the whole cone Mst (as the conical hull of this finite set). One can achieve
uniqueness of such a set as a result of a certain type of normalization done hereafter. Note that
the facts mentioned and used below have no immediate proof but they are certainly evident to
everyone who is familiar with linear programming.

2.3.1 Extreme rays

Let us recall a few basic concepts and facts from the theory of convex cones in finite-dimensional
real vector spaces (they will be applied to the case RP(N)). By the ray of a cone K generated
by 0 6= x ∈ K is understood the set {α · x ; α ≥ 0}. A ray R is called extreme if ∀u, v ∈ K the
fact 1

2 ·u+
1
2 · v ∈ R implies u ∈ R. Thus, a function from Mst is extreme in the sense of earlier

definition if and only if it belongs to an extreme ray of Mst.

The first basic fact is that every cone of the form K = {m ∈ RP(N) ; ∀u ∈ F 〈m,u〉 ≥ 0}
where F ⊆ QP(N) is a finite set, can be equivalently described as the conical hull of a finite
non-empty G ⊆ QP(N), that is K = {

∑

αv · v ; v ∈ G αv ≥ 0} (see Proposition 5b in [9]). It
can be applied to the case of Mst since one can put

F = E(N) ∪ {δ∅,−δ∅} ∪ {δ{i} ; i ∈ N} ∪ {−δ{i} ; i ∈ N} ,

where

δA(S) =

{

1 if A = S,
0 otherwise.

Thus, Mst can be obtained as the conical hull of a finite ∅ 6= G ⊆ QP(N).
The second basic fact is that every such a cone K satisfying also K∩ (−K) = {0} has finitely

many extreme rays and all of them are generated by elements of QP(N) (see Consequence 5b in
[9]). As mentioned earlier in Section 2.2.3 this is also the case of Mst.

The third basic fact is that then for every finite set H ⊂ K 6= {0} generating all extreme rays
of K one has K = {

∑

αv · v ; v ∈ H αv ≥ 0 } (see Proposition 4 in [9]). In case of the cone Mst

it means that it suffices to choose just one element (representative) from every extreme ray.

2.3.2 Normalization

A natural way of the choice of a representative within every extreme ray of Mst is the following
one. We say that an imset m over N is normalized if the collection of integers {m(S); S ⊆ N}
has no common prime divisor. Since we know that every extreme ray of Mst is generated
by a rational-valued function, it has to contain a non-zero integer-valued function (= imset).
Therefore it contains a normalized imset as well. Of course, it can contain at most one non-zero
normalized imset. So, one can summarize the results as follows.

Lemma 2.4 For every extreme r ∈ Mst there exist unique normalized imset m such that r =
α ·m for α > 0 (m ∈ Mst is extreme as well). The class of normalized extreme (standardized)
supermodular imsets Mex is finite and every m ∈ Mst can be written in the form

m =
∑

v∈Mex

αv · v where αv ≥ 0 .

Thus, the class of normalized integer-valued extreme standardized supermodular functions
Mex is uniquely determined finite class and we will call it the skeleton (terminology from [11]).
Their elements are called skeletal imsets.
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2.3.3 Interpretation of extreme supermodular functions

The reason why we are interested in extreme supermodular functions is that they play an
important role in the approach from [11]. We have already mentioned in Section 2.2.4 that every
supermodular function induces a certain model of conditional independence structure. Clearly,
zero function induces the maximal conditional independence model (involving all elementary
conditional independence statements). However, one can derive by combining the results from
[11, 9] (Lemma 2.3, Consequence 2.4, Assertion 1.4) the following conlusion.

Lemma 2.5 A standardized supermodular function m is extreme if and only if the induced
independence model Im is a submaximal independence model within the class of independence
models induced by supermodular functions, in sense that the only distinct independence model
containing Im is the maximal independence model.

Remark Let us note that every independence model induced by a supermodular function is the
intersection of the maximal independence model and a collection of submaximal independence
models (possibly empty collection). This fact is a basis of our computer program which realizes
the coresponding inference mechanism for conditional independence statements over 5 variables
(see Section 7.4).

2.4 Permutations

Further simplification can be achieved as a result of considering of permutations of variables.
These allow one to construct one extreme supermodular function from another one.

2.4.1 Permutation of variables

By a permutation of N is understood any bijective mapping π : N → N . The class of all per-
mutations of N forms a group: the result of composition of two permutations is a permutation,
identical mapping is the null-element of the group, and every permutation π has an inverse per-
mutation π−1. Every permutation π can be extended to a bijective mapping π : P(N) → P(N)
as follows

π(A) = {π(i) ; i ∈ A } for every A ⊆ N .

Given a real function m : P(N) → R the formula

mπ(A) = m(π(A)) for every A ⊆ N

then defines a permutated function mπ. The following observations are quite obvious.

Lemma 2.6 Supposing m : P(N) → R is supermodular and π is a permutation of N , the
function mπ is supermodular as well. Supposing m is standardized, the same holds for mπ.
Supposing m is a normalized imset, mπ is also a normalized imset.

Thus, given a permutation π of N , the mapping m 7→ mπ is a bijective linear mapping which
maps Mst onto Mst. This fact makes it possible to derive that whenever m ∈ Mst is extreme
them mπ is extreme as well. So, we can conlude the following fact.

Lemma 2.7 Let π be a permutation of N , m ∈ Mex. Then mπ ∈ Mex and the mapping
m 7→ mπ is a bijective mapping onto Mex.
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2.4.2 Permutable equivalence of supermodular functions

We say that two real functions m1 and m2 on P(N) are permutably equivalent if

∃ permutation π on N such that m1 = (m2)π .

It is evidently an equivalence relation. By Lemma 2.7, whenever a function is permutably
equivalent to m ∈ Mex then it belongs to Mex. Thus, it can be understood as equivalence
relation on the skeleton Mex. Permutations enable one to do further reduction. Instead of
keeping the whole list of elemets of the skeleton it suffices to choose one representative of each
equivalence class of permutably equivalent skeletal imsets (according to a suitable criterion) and
keep it on a reduced list.

Remark Conditional independence models mentioned in Section 2.2.4 can be permutated as well.
Indeed, given a permutation π of N one can introduce the following bijective mapping

Π : {i} ⊥⊥ {j} |K 7→ π({i}) ⊥⊥ π({j}) |π(K)

between elementary conditional independence statements. Thus, every class of elementary con-
ditional independence statements I can be permutated into the class of permutated state-
ments Π (I). It makes no problem to see that for every supermodular function m one has
Imπ = Π−1(Im). Thus, permutations can be extended to independence models as well.

One can also show that permutation of a probabilistically representable supermodular func-
tion is a probabilistically representable supermodular function. Indeed, every probability dis-
tribution P over N , defined on the sample space

∏

i∈N Xi, can be permutated to a probability
distribution Pπ, defined on the sample space

∏

i∈N Yi ≡
∏

i∈N Xπ(i), which is also a prob-
ability distribution over N . It follows from the definition of multiinformation function that
(mP )π = mPπ . In particular, permutation of a probabilistically representable element of Mex is
a probabilistically representable element of Mex. Therefore, probabilistic representability is an
invariant property with respect to permutable equivalence.

2.5 Examples

Let us describe the situation in case |N | < 5. The trivial case of 2 variables is omitted.

2.5.1 Three variables

In case N = {a, b, c} the class of elementary imsets E(N) has 6 elements. It is easy to find out
that the skeleton Mex has then 5 elements [6]. Skeletal imsets are shown in Figure 1 by means
of special diagrams. The diagrams are in principle Hasse diagrams of the lattice of subsets N :
the ovals in the diagrams correspond to subsets of N , links between two ovals are made when
the symmetric difference of the represented sets is a singleton, and the integer number written
in the oval is the value of the represented imset in the set represented by the oval. There are
only 3 classes of permutably equivalent skeletal imsets over N = {a, b, c}. Rows in Figure 1
correspond to them.

2.5.2 Four variables

There exist 24 elementary imsets in case of 4 variables. The skeleton has 37 elements [7] and
decomposes into 10 classes of permutably equivalent imsets (= types). Representatives of these
types are depicted in the Appendix (Figures 6 - 15).
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Figure 1: All skeletal imsets over N = {a, b, c}.

9



Remark Nine of ten types of skeletal imsets over N = {a, b, c, d} consist of probabilistically
representable supermodular functions [12]. Figure 14 gives an example of a skeletal imset which
is not probabilistically representable by a discrete probability distribution.

3 Our method

3.1 Computation

A computer program PORTA [13] was used to obtain all extreme rays of Mst in case of 5
variables, that is N = {a, b, c, d, e}. PORTA is a collection of routines for analysing polytopes
and polyhedra. Its procedure traf finds all extreme points of a bounded convex set defined by
means of linear inequalities with rational coefficients. It uses special integer arithmetics so that
the result is accurate (no rounding off during computation is made).

To adapt our problem for the procedure we have intersected Mst with the linear manifold

T = {m : P(N) → R ; m(N) = 1 }

so that Mst∩T is a non-empty bounded convex set and every extreme ray of Mst contains just
one point of T . Then extreme points of Mst ∩ T correspond to extreme rays of Mst. Owing to
Lemma 2.1 M can be characterized by 80 inequalities with integer coefficients. Restriction to
the linear subspace S (see Section 2.2.3) was done implicitly: every element of S was encoded
into 26-dimensional real vector in such a way that every set S ⊆ N with |S| ≥ 2 was identified
with a component of the vector. Restriction to the manifold T was realized by one extra equality
restriction. Thus, an input text file describing 80 inequality and 1 equality restrictions in 26-
dimensional in real vector space was written. Then, we have used the above mentioned procedure
traf to get a 16 megabyte text output file. Note that computation for the five variables case
took approximately eight hours while the four variables case took only a few seconds. This
indicates that most likely it is not feasible to investigate the case of six or more variables using
this method in future.

3.2 Normalization

The next step was to convert the above mentioned output text file into a suitable data file.
Ideally, every obtained 26-dimensional real vector x should be modified as follows.

• Change x into a 32-dimensional real vector x by incorporating additional zero components
which are identified with sets S ⊆ N satisfying |S| ≤ 1.

• Multiply x by a suitable rational constant so that the resulting 32-dimensional vector x

has integer components with no common prime divisor (i.e. normalize it in sense of Section
2.3.2).

In such a way a big 117978 × 32 matrix describing the skeleton could be obtained. Its rows are
skeletal imsets, the chosen coding of sets into components is described in Section 6.1.

3.3 Reduction

However, such a matrix is too big for an analysis without help of a computer. Fortunately, it
can be reduced in the way described in Section 2.4.2. To have a proper criterion of choice of
type representatives we considered weight w(S) for every S ⊆ N :

w(S) = 2δ(S,a) · 3δ(S,b) · 4δ(S,c) · 5δ(S,d) · 6δ(S,e)
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where

δ(S, x) =

{

1 if x ∈ S

0 if x 6∈ S
for every x ∈ {a, b, c, d, e} .

Thus, from every class of permutably equivalent skeletal imsets a representative m minimizing
〈m,w〉 was chosen, i.e.

m = argmin {
∑

S⊆N

m(S) · w(S)} .

Note that a similar principle of choice of type representative was used in the case of 4 variables
(see the Appendix). The intuition behind is clear: the chosen representative m ’ascribes its
mass’ mainly to a, variable b has the second priority, after that c, d, and e follow (in this order).

Actually, we performed the above mentioned procedure before the normalization step de-
scribed in Section 3.2. Indeed, this is possible because permutably equivalent vectors must be
multiplied by the same constant during normalization. Thus, unnecessary repetition of nor-
malization steps was avoided. In such a way a reduced 1319 × 32 matrix describing types of
skeletal imsets was obtained. Moreover, the number of skeletal imsets belonging to each type
was computed. This number can be considered as an auxiliary characteristic of the type.

3.4 Summary

Thus, in case of 5 variables one has 80 elementary imsets. The skeleton has 117978 imsets and
decomposes into 1319 types. We have made a virtual catalogue of all types of skeletal imsets
over N = {a, b, c, d, e} (an analogue of the printed catalogue in case of 4 variables from the
Appendix). The catalogue is described in Section 7.

4 Refuted conjectures

An analysis in case of 4 variables led to a naive conjecture how to obtain all skeletal imsets.
Roughly said, the hypotesis was that every skeletal imset is determined by its support, i. e., the
class of sets with a non-zero value. In such a case the skeleton over N could have been obtained
by means of thorough analysis of ascending classes of subsets of N .

4.1 Minimal sets

A class A ⊆ P(N) is called ascending if

S ⊆ T, S ∈ A ⇒ T ∈ A .

Every ascending class A ⊆ {S ⊆ N ; |S| ≥ 2} is uniquely determined by the class of its minimal

sets with respect to inclusion

Amin = {S ∈ A ; ∀T ∈ A T ⊆ S ⇒ T = S } ,

which is typically smaller. Supposing m ∈ Mst its support

Am = {S ⊆ N ; m(S) > 0 }

is an ascending subclass of {S ⊆ N ; |S| ≥ 2} by Lemma 2.3. Conversely, every such a class A
induces a standardized supermodular imset mA as follows. We put

mA(S) = 0 for S ⊆ N, S 6∈ A,

mA(S) = 1 for S ∈ Amin,

11



and determine the remaining values (for S ∈ A \Amin) gradually (first for S with |S| = 2, then
for S with |S| = 3 etc.) by means of the formula

mA(S) = max {mA(S \ {i}) +mA(S \ {j}) −mA(S \ {i, j}) ; i, j ∈ S, i 6= j } .

Indeed, the formulas above imply that for every S ⊆ N , |S| ≥ 2 and every u〈i,j|K〉 ∈ E(N) with
{i, j} ∪K = S one has

mA(S) = mA({i, j} ∪K) ≥ mA({i} ∪K) +mA({j} ∪K)−mA(K) .

Hence, by Lemma 2.1 mA ∈ Mst and A is the support of mA (by Lemma 2.3). Thus, a certain
class of standardized supermodular functions can be obtained in this way. An interesting fact is
that in case |N | ≤ 4 every m ∈ Mex has this form. The reader can verify it directly (see Figure
1 and the Appendix where minimal sets of the support are emphasized). The conjecture was
that every skeletal imset can be obtained in a similar way.

4.2 Incremental transformation

Let us reformulate the conjecture in a more elegant way. For every S ⊆ N with |S| ≥ 2 denote

E↑
S(N) = {u〈i,j|K〉 ∈ E(N) ; {i, j} ∪K = S} .

Given m : P(N) → R define the corresponding incremental function as follows:

∆m(S) = min { 〈m,u〉 ; u ∈ E↑
S(N) } for |S| ≥ 2,

∆m(S) = 0 otherwise.

Clearly, by Lemma 2.1 m is supermodular if and only if ∆m is non-negative. For every S ⊆ N ,
|S| ≥ 2 one can rewrite ∆m(S) in the form

m(S)−max {m({i} ∪K) +m({j} ∪K)−m(K) ; u〈i,j|K〉 ∈ E↑
S(N) } .

This gives an inverse formula for standardized m ∈ S

m(S) = ∆m(S) + max {m({i} ∪K) +m({j} ∪K)−m(K) ; u〈i,j|K〉 ∈ E↑
S(N) } for S ⊆ N,

which has to be applied with increasing cardinality of S (maximum of empty collection is 0 by
convention). Thus, ∆m(S) is indeed the ’increment’ of m ∈ M at S with respect to a natural
lower estimate. Moreover, the formula above implies that m ∈ Mst is uniquely determined by
∆m. Of course, supposing A is the support of m ∈ Mst one has

∆m(S) = 0 for S ⊆ N, S 6∈ A,

∆m(S) = m(S) for S ∈ Amin.

The conjecture mentioned in Section 4.1 can be reformulated as follows:

∀m ∈ Mex
∆m(S) = 1 for S ∈ Amin,
∆m(S) = 0 for S 6∈ Amin.

Both conditions mentioned above need not hold in case N = {a, b, c, d, e}. An example that
m(S) = ∆m(S) > 1 for a certain minimal set S is given in Figure 2. An example that the
incremental function can be non-zero also for non-minimal sets is given in Figure 3.
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4.3 Grade

Another important characteristic of m ∈ Mst is the record of its scalar products with elementary
imsets

Sm : u ∈ E(N) → 〈m,u〉 .

It naturally encodes the induced independence model Im mentioned in Section 2.2.4: the record
has zeros in Sm at positions corresponding to induced valid conditional independence statements.
Moreover, m can be reconstructed from Sm since it determines the incremental function ∆m

mentioned in Section 4.2. Another fact illustrating simplicity of cases 3 and 4 variables is that
for every skeletal imset m ∈ Mex the corresponding record of scalar products Sm consists of
zeros and ones [6, 7]. However, this is not true in case of 5 variables as already demostrated in
Figure 2. Thus, an interesting characteristic of a skeletal imset m can be its grade

g(m) = max { 〈m,u〉 ; u ∈ E(N) } .

It is easy to see that g(mπ) = g(m) for every permutation π over N (see Section 2.4). Therefore,
the grade can be considered as a characteristic of the type of skeletal imsets. The maximal
possible grade over the set of variables N

G = max { g(m) ; m ∈ Mex }

appears to be a quite important number. We have found that in case of 5 variables the maximal
grade is 7. The corresponding example is given in Figure 4.

Remark The maximal grade plays crucial role in computer verification of ’facial’ implication
among elementary imsets [10] which enables one to derive ’automatically’ formal properties of
probabilistic conditional independence. For example, the following property









{c} ⊥⊥ {d} | {a, b, e} {b} ⊥⊥ {e} | {a, c, d}
{a} ⊥⊥ {c} | {d, e} {c} ⊥⊥ {e} | {d}
{d} ⊥⊥ {e} | {c} {a} ⊥⊥ {d} | {e}
{b} ⊥⊥ {d} | {a} {a} ⊥⊥ {b} | {c}









⇐⇒













{d} ⊥⊥ {e} | {a, b, c} {c} ⊥⊥ {e} | {a, b, d}
{a} ⊥⊥ {b} | {c, d, e} {c} ⊥⊥ {d} | {b, e}
{b} ⊥⊥ {d} | {e} {b} ⊥⊥ {e} | {c}
{a} ⊥⊥ {c} | {d} {a} ⊥⊥ {d} | {c}
{b} ⊥⊥ {e} | {a}













is an easy consequence of the equality

u〈c,d|abe〉 + 2 · u〈b,e|acd〉 + u〈a,c|de〉 + u〈c,e|d〉 + u〈d,e|c〉 + u〈a,d|e〉 + u〈b,d|a〉 + u〈a,b|c〉 =

u〈d,e|abc〉 + u〈c,e|abd〉 + u〈a,b|cde〉 + u〈c,d|be〉 + u〈b,d|e〉 + u〈b,e|c〉 + u〈a,c|d〉 + u〈a,d|c〉 + u〈b,e|a〉 .

An interesting fact is that one cannot derive the above mentioned property of conditional inde-
pendence as a consequence of a similar equality where the coefficient of the term u〈b,e|acd〉 is less
than 2. On the other hand, one can show that the integer coefficients corresponding to elemen-
tary imsets can be at most the maximal grade G (this will be topic of another paper). Thus,
in case of 4 variables the maximal coefficient is 1 while in the case of 5 variables the maximal
coefficient is 7. An example of an equality with a coefficient 7 which cannot be diminished is
here:

7 · u〈c,e|abd〉 + 2 · u〈c,d|be〉 + 3 · u〈b,d|ce〉 + u〈b,c|de〉 + u〈a,e|bd〉 + 2 · u〈a,d|be〉 + 2 · u〈b,c|ae〉

4 · u〈a,c|bd〉 + 4 · u〈d,e|a〉 + u〈a,b|c〉 + u〈a,c|b〉 + u〈b,c|a〉 + u〈b,d|∅〉 + u〈a,e|∅〉 =

3 · u〈d,e|abc〉 + 4 · u〈b,c|ade〉 + 6 · u〈c,e|bd〉 + 2 · u〈a,e|cd〉 + 2 · u〈a,d|ce〉 + 5 · u〈a,c|be〉

2 · u〈b,d|c〉 + 2 · u〈c,d|a〉 + u〈a,b|e〉 + 2 · u〈b,d|a〉 + u〈d,e|∅〉 + u〈c,e|∅〉 .
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4.4 Sorting of types

A natural question how to sort types of skeletal imsets in an elegant way arises. Let us describe
a certain method which works nicely in case of 4 variables. For every l = 1, . . . , |N | − 1 we
introduce the class of elementary imsets of level l:

El(N) = {u〈i,j|K〉 ; |K| = l − 1 } .

Clearly, E(N) decomposes into El(N), l = 1, . . . , |N | − 1. Then every skeletal imset m ∈ Mex

can be characterized by an integer-valued (|N | − 1)× (G+1) matrix Z (where G is the maximal
grade) with elements

zlk = |{u ∈ El(N) ; 〈m,u〉 = k }| l = 1, . . . , |N | − 1, k = 0, . . . ,G .

Thus, the l-th row in the zip matrix Z characterizes ’behaviour’ of m on the l-th level. Again, it
is easy to verify that permutably equivalent imsets have the same zip matrix. Thus, the matrix
can be considered as a type characteristic.

For example, in case N = {a, b, c} one has G = 1 and zip matrices are 2 × 2 matrices. Zip
matrices of skeletal imsets (see Figure 1) are then

(

3 0
0 3

) (

2 1
2 1

) (

0 3
3 0

)

.

Evidently, they distinguish all 3 types. Similarly, in case of 4 variables one can sort all types
of skeletal imsets easily since the corresponding 3 × 2 zip matrices distinguish all types (we
leave it to the reader). However, the hope that zip matrices distinguish types also in case
N = {a, b, c, d, e} appeared to be abortive. Examples of two different types having the same
4× 8 zip matrix are given in Figure 5.

5 Other ways of representation

There are many other ways of representation of extreme supermodular set functions. Some of
them are described in this section.

5.1 Reverse representation

We have mentioned in Section 2.2.3 (Remark) that one can consider an alternative way of
standardization of supermodular functions leading to non-increasing functions. That means,
instead of the standard representative m ∈ Mst = M ∩ S of a class of strongly equivalent
supermodular functions one can choose another representative, the one which belongs to M∩R
where

R = { r : P(N) → R ; r(S) = 0 whenever |S| ≥ |N | − 1 } .

Of course, there is one-to-one correspondence between m and r. Indeed, to compute r on basis
of m we first put

ν(i) = m(N)−m(N \ {i}) for i ∈ N, k = −m(N) +
∑

i∈N

ν(i) .

We do not know whether the terms ν(i) and k have certain interpretation, but analogous formulas
appeared also in [4] on page 345. Then, r can be obtained from m as follows:

r(S) = m(S) + k −
∑

i∈S

ν(i) for S ⊆ N .
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Figure 5: Two permutably non-equivalent skeletal imsets with the same zip matrix.
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Clearly, r and m are strongly equivalent since r −m ∈ L (see Section 2.2.1). By construction
r(S) = 0 whenever |S| ≥ |N | − 1. Given r ∈ M∩R, the formula above can serve as an inverse
formula for m, it suffices to put

k = r(∅), ν(i) = k − r({i}) for i ∈ N .

5.1.1 Maximal sets

The choice of the way of standardization appears to be a matter of taste. Alternative choice of
reverse standardization leads to completely ’reverse’ point of view. Analogously to Lemma 2.3
one can see that every r ∈ M∩R is a non-increasing function, that is

r(S) ≥ r(T ) whenever S ⊆ T ⊆ N .

In particular, the support
D = {S ⊆ N ; r(S) > 0 }

of r ∈ M∩R is a descending subclass of {S ⊆ N ; |S| ≤ |N |− 2 }. The class of its maximal sets

Dmax = {S ∈ D ; ∀T ∈ D T ⊇ S ⇒ T = S }

can be considered as a characteristic of a ’reverse’ skeletal imset (an analogue of the class of
minimal sets Amin mentioned in Section 4.1).

5.1.2 Decremental transformation

The ’reverse’ point of view leads to further possible way of representation. For every S ⊆ N

with |S| ≤ |N | − 2 denote

E↓
S(N) = {u〈i,j|K〉 ; K = S} .

Given r : P(N) → R define the corresponding decremental function as follows:

δr(S) = min { 〈r, u〉 ; u ∈ E↓
S(N) } for S ⊆ N ,

where the minimum of empty collection is 0 by convention. One can repeat the arguments from
Section 4.2 to show that there is one-to-one correspondence between r and δr.

5.1.3 Reflection

The ’reverse’ point of view also enables one to recognize further symmetry within the skeleton.
Let us consider the following bijective mappping ι : P(N) → P(N):

ι(A) = N \ A for every A ⊆ N .

Then every real function m : P(N) → R can be transformed as follows

mι(A) = m(ι(A)) for every A ⊆ N .

Like in Section 2.4.1 one can verify that the mapping m 7→ mι is bijective (self-inverse) linear
mapping which maps M∩S onto M∩R. In particular, extreme rays of M∩S are transformed
into extreme rays of M ∩ R. Therefore, every m ∈ Mex is transformed into ’reversely’ stan-
dardized extreme normalized imset r⋆ = mι ∈ M ∩ R. This reverse representative r⋆ can be
again linearly transformed (see above, Section 5.1) into the corresponding standard representa-
tive m⋆ ∈ M ∩ S called the reflection of m. The previous arguments show that the reflection
mapping m 7→ m⋆ is a bijective mapping of Mex onto Mex. For example, in case N = {a, b, c}
the reflection of the skeletal imset in the first row of Figure 1 is the imset in the third row of
Figure 1 and conversely. The imsets in the second row are self-reflexive.
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5.2 Polymatroid representation

Every supermodular function m : P(N) → R corresponds uniquely to a submodular function
−m. This simple fact leads to further alternative way of representation of skeletal imsets.
Polymatroid [3] is an non-decreasing submodular real function h : P(N) → R which satisfies
h(∅) = 0. Rank of the polymatroid is the value h(N). Every m ∈ Mst can be identified with a
polymatroid in the following way. We put

ν(i) = m(N)−m(N \ {i}) for every i ∈ N,

and introduce
h(S) = −m(S) +

∑

i∈S

ν(i) for S ⊆ N .

It follows from formulas in Section 5.1 that

∀S ⊆ N h(S) + r(S) = k ,

where k = −m(N)+
∑

i∈N ν(i) is a constant. Hence, h is a polymatroid and there is one-to-one
correspondence between h and the reverse representative r. Indeed, one has h(N) = k = r(∅).

Remark Given a discrete probability distribution P over N , the entropy function hP induced by
P is a function which ascribes the entropy of the marginal PS to every S ⊆ N . It is always a
polymatroid. Thus, the polymatroid way of representation is motivated by the wish to represent
things in entropy-like style.

5.3 Möbius inversion

Another possible linear transformation applicable to standard supermodular function m ∈ Mst

is the Möbius inversion. Indeed, one can put

t(S) =
∑

T⊆S

(−1)|S\T | ·m(T ) for every S ⊆ N .

It is well known that the inverse formula is

m(S) =
∑

T⊆S

t(T ) for every S ⊆ N ,

and therefore the mapping m 7→ t is a bijective linear mapping.

Remark Note that in case m = mP , where P is a probability distribution over N , the number
tP (S) =

∑

T⊆S (−1)|S\T | ·mP (T ) is known in information theory [1] as the mutual information

of variables in S. Note that the mutual information of more than 2 variables can be negative
(in contrast to mutual information of two variables).

6 Internal notation

This is an overview of our internal conventions in notation.
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6.1 Coding of sets

We have chosen and fixed the following way of indentification of subsets of the set N =
{a, b, c, d, e} with integers j ∈ {1, . . . , 32}. The set encoded by j will be denoted by Set(j).

1 ∅ 9 {a, d} 17 {a, b, c} 25 {b, d, e}
2 {a} 10 {a, e} 18 {a, b, d} 26 {c, d, e}
3 {b} 11 {b, c} 19 {a, b, e} 27 {a, b, c, d}
4 {c} 12 {b, d} 20 {a, c, d} 28 {a, b, c, e}
5 {d} 13 {b, e} 21 {a, c, e} 29 {a, b, d, e}

6 {e} 14 {c, d} 22 {a, d, e} 30 {a, c, d, e}
7 {a, b} 15 {c, e} 23 {b, c, d} 31 {b, c, d, e}
8 {a, c} 16 {d, e} 24 {b, c, e} 32 {a, b, c, d, e}

6.2 Standard representation

Standard representatives of types of extreme supermodular functions on P(N) will be stored in
a matrix

M = (mi,j) i = 1, . . . , 1319, j = 1, . . . 32 .

Row mi of this matrix describes the standard representative of the i-th type. One can also
consider a ’non-reduced’ matrix M∗ whose rows are all standard representatives of extreme
supermodular functions

M∗ = (m∗
i,j) i = 1, . . . , 117978, j = 1, . . . 32 .

6.3 Coding of elementary independence statements

We have fixed the following way of indentification of elementary independence statements over
the set N = {a, b, c, d, e} with integers k ∈ {1, . . . , 80}.

1 {d} ⊥⊥ {e} | {a, b, c} 21 {a} ⊥⊥ {d} | {c, e} 41 {c} ⊥⊥ {d} | {e} 61 {c} ⊥⊥ {d} | {a}
2 {c} ⊥⊥ {e} | {a, b, d} 22 {a} ⊥⊥ {c} | {d, e} 42 {c} ⊥⊥ {e} | {d} 62 {a} ⊥⊥ {b} | {e}
3 {c} ⊥⊥ {d} | {a, b, e} 23 {d} ⊥⊥ {e} | {a, b} 43 {d} ⊥⊥ {e} | {c} 63 {a} ⊥⊥ {e} | {b}
4 {b} ⊥⊥ {e} | {a, c, d} 24 {b} ⊥⊥ {e} | {a, d} 44 {b} ⊥⊥ {d} | {e} 64 {b} ⊥⊥ {e} | {a}
5 {b} ⊥⊥ {d} | {a, c, e} 25 {b} ⊥⊥ {d} | {a, e} 45 {b} ⊥⊥ {e} | {d} 65 {a} ⊥⊥ {b} | {d}
6 {b} ⊥⊥ {c} | {a, d, e} 26 {a} ⊥⊥ {e} | {b, d} 46 {d} ⊥⊥ {e} | {b} 66 {a} ⊥⊥ {d} | {b}
7 {a} ⊥⊥ {e} | {b, c, d} 27 {a} ⊥⊥ {d} | {b, e} 47 {b} ⊥⊥ {c} | {e} 67 {b} ⊥⊥ {d} | {a}
8 {a} ⊥⊥ {d} | {b, c, e} 28 {a} ⊥⊥ {b} | {d, e} 48 {b} ⊥⊥ {e} | {c} 68 {a} ⊥⊥ {b} | {c}
9 {a} ⊥⊥ {c} | {b, d, e} 29 {c} ⊥⊥ {e} | {a, b} 49 {c} ⊥⊥ {e} | {b} 69 {a} ⊥⊥ {c} | {b}
10 {a} ⊥⊥ {b} | {c, d, e} 30 {b} ⊥⊥ {e} | {a, c} 50 {b} ⊥⊥ {c} | {d} 70 {b} ⊥⊥ {c} | {a}
11 {d} ⊥⊥ {e} | {b, c} 31 {b} ⊥⊥ {c} | {a, e} 51 {b} ⊥⊥ {d} | {c} 71 {d} ⊥⊥ {e} | ∅
12 {c} ⊥⊥ {e} | {b, d} 32 {a} ⊥⊥ {e} | {b, c} 52 {c} ⊥⊥ {d} | {b} 72 {c} ⊥⊥ {e} | ∅
13 {c} ⊥⊥ {d} | {b, e} 33 {a} ⊥⊥ {c} | {b, e} 53 {a} ⊥⊥ {d} | {e} 73 {c} ⊥⊥ {d} | ∅
14 {b} ⊥⊥ {e} | {c, d} 34 {a} ⊥⊥ {b} | {c, e} 54 {a} ⊥⊥ {e} | {d} 74 {b} ⊥⊥ {e} | ∅
15 {b} ⊥⊥ {d} | {c, e} 35 {c} ⊥⊥ {d} | {a, b} 55 {d} ⊥⊥ {e} | {a} 75 {b} ⊥⊥ {d} | ∅
16 {b} ⊥⊥ {c} | {d, e} 36 {b} ⊥⊥ {d} | {a, c} 56 {a} ⊥⊥ {c} | {e} 76 {b} ⊥⊥ {c} | ∅
17 {d} ⊥⊥ {e} | {a, c} 37 {b} ⊥⊥ {c} | {a, d} 57 {a} ⊥⊥ {e} | {c} 77 {a} ⊥⊥ {e} | ∅
18 {c} ⊥⊥ {e} | {a, d} 38 {a} ⊥⊥ {d} | {b, c} 58 {c} ⊥⊥ {e} | {a} 78 {a} ⊥⊥ {d} | ∅
19 {c} ⊥⊥ {d} | {a, e} 39 {a} ⊥⊥ {c} | {b, d} 59 {a} ⊥⊥ {c} | {d} 79 {a} ⊥⊥ {c} | ∅
20 {a} ⊥⊥ {e} | {c, d} 40 {a} ⊥⊥ {b} | {c, d} 60 {a} ⊥⊥ {d} | {c} 80 {a} ⊥⊥ {b} | ∅
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6.4 Elementary imsets

Every elementary conditional independence statement corresponds to an elementary imset which
is an integer-valued function on the power set of N = {a, b, c, d, e}. Taking into consideration
coding of subsets of N mentioned in Section 6.1 elementary imsets can be described by a matrix

U = (uk,j) k = 1, . . . , 80, j = 1, . . . 32 .

6.5 Lattice of subsets

The power set of N is ordered by inclusion and forms a distributive lattice. The corresponding
Hasse diagram can be represented in the form of a matrix

L = (lj,J) j = 1, . . . , 32, J = 1, . . . 32 .

composed of zeros and ones, where

lj,J =

{

1 if Set(J) contains Set(j) plus one extra element,
0 otherwise.

6.6 Minimal sets

The classes of minimal subsets (see Section 4.1) will be represented also in the form of a zero-one
matrix

Mmin = (mmin
i,j ) i = 1, . . . , 1319, j = 1, . . . 32,

whose elements are determined as follows

mmin
i,j =

{

1 if Set(j) is a mimimal set with non-zero value in mi,
0 otherwise.

6.7 Incremental (ascending) transformation

Standard representatives can be transformed by ’incremental’ transformation (see Section 4.2).
The corresponding matrix is then

A = (ai,j) i = 1, . . . , 1319, j = 1, . . . 32 .

6.8 Table of scalar products

The record of scalar products (see Section 4.3) is described by a matrix

S = (si,k) i = 1, . . . , 1319, k = 1, . . . 80 .

which is nothing but matrix product of M and the transpose of U . Similarly, a non-reduced
form (where M is replaced by M∗) is denoted analogously

S∗ = (s∗i,k) i = 1, . . . , 117978, k = 1, . . . 80 .

6.9 Grade

Maximum of every row in the matrix S is grade (see Section 4.3) of the coresponding type and
is stored in a vertical vector

G = (gi) with gi = max
k=1,...,80

si,k for i = 1, . . . , 1319 .
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6.10 Reverse representation

Reverse standardization (see Section 5.1) is stored in a matrix

R = (ri,j) i = 1, . . . , 1319, j = 1, . . . 32 .

Row ri in R describes the reverse representative of the i-th type. The corresponding non-reduced
matrix whose rows are all reverse representatives of extreme supermodular functions is then

R∗ = (r∗i,j) i = 1, . . . , 117978, j = 1, . . . 32 .

6.11 Decremental (descending) transformation

Reverse transformation can be transformed by ’decremental’ transformation (see Section 5.1.2)
which will be decribed by a matrix

D = (di,j) i = 1, . . . , 1319, j = 1, . . . 32 .

6.12 Maximal sets

The classes of maximal subsets obtained on basis of reverse representation (see Section 5.1.1)
will be represented in the form of a zero-one matrix

Rmax = (rmax
i,j ) i = 1, . . . , 1319, j = 1, . . . 32

where

rmax
i,j =

{

1 if Set(j) is a maximal set with non-zero value in ri,
0 otherwise.

6.13 Polymatroid representation

Polymatroid representation (see Section 5.2) will be stored in the matrix

H = (hi,j) i = 1, . . . , 1319, j = 1, . . . 32 .

6.14 Mutual information

Mutual information representation (i. e. Möbius inversions of standard representatives, see Sec-
tion 5.3) will be described by a matrix

T = (ti,j) i = 1, . . . , 1319, j = 1, . . . 32 .

7 Catalogue

There are three versions of the catalogue described hereafter. However, in all three versions
the types of skeletal imsets have the same identification (ID) number (a number between 1

and 1319) and the same standard representative. The ID numbers were assigned to the types
automatically by a computer during the choice of representatives described in Section 3.3. They
have no special meaning, it is just an auxiliary tool for browsing through the catalogue (we have
mentioned the ID numbers in our figures already).

All files mentioned below including the original input text file fivevar.ieq for PORTA
mentioned in Section 3.1 can be found at

http://www.utia.cas.cz/user data/studeny/fivevar.htm .
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7.1 PC viewer

The first version of the catalogue is an original computer program for PC (under Windows)
which makes it possible to visualise any list of (possibly alternative) representatives of types
of skeletal imsets written in a special data file *.prn. The representatives are visualised in
the form of diagrams similar to the figures used in this report. The program enables user to
see simultaneously two (possibly different) representatives of the same type and to print those
pictures. The choice of ways of representation can be done by importing (possibly two) data
files. The order in the joint list of pictures depends on the order in the first imported data file
*.prn. We have prepared the following data files:

m.prn standard representatives of types of skeletal imsets (see Section 2.2.3),
a.prn incremental transformation of the standard representatives (see Section 4.2),
r.prn reverse representatives (see Section 5.1),
h.prn polymatroid representatives computed by the formula from Section 5.2,
t.prn Möbius inversions of the standard representatives (see Section 5.3).

7.2 WWW viewers

The second version is a series of five interactive catalogues (= online viewers) of representatives
of types of skeletal imsets for clients of World Wide Web. Every viewer uses just one of five
ways of representation mentioned in Section 7.1 and enables user to browse through the list of
respective representatives visualised in a similar way. Moreover, one can optionally highlight
minimal and maximal sets of the support (see Sections 4.1 and 5.1.1) in the way used in our
figures. Finally, a special mode allows one to browse similarly through all permutations of a
chosen fixed representative. So, a complete list of representatives of skeletal imsets is available
for viewing.

7.3 Catalogue in EXCEL

The third version of the catalogue is a file in EXCEL which contains vector description of all
five representatives of types of skeletal imsets mentioned above and the table of scalar products.
Moreover, the file contains (in another list) several numerical characteristics of the type, namely

1. number of skeletal imsets belonging to the type (see Section 3.3),

2. grade of the type (see Section 4.3),

3. sum of values of the standard representative,

4. rank of the polymatroid (see Section 5.2),

5. zip matrix of the type (see Section 4.4).

Note that these lists are ordered according to the ID numbers. The characteristics are designed
to enable user to reorder types according to specific (user’s) criteria (command ORDER in menu
DATA of EXCEL). This reordering automatically results in reordering of the list EXPORT o.prn,
which is the list of standard representatives of types of skeletal imsets ordered according to the
new chosen criteria (not according to the ID number any more). This list can be exported into
a file *.prn using the command SAVE AS in menu FILE of EXCEL. Such a file can be used by
the above mentioned PC viewer as the first imported file governing the order of types in a joint
list.
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7.4 Program realizing inference mechanism

The approach described in [10] leads to a certain method of inferring conditional independence
statements from other conditional independence statements (facial implication). Effective com-
puter implementation of this inference mechanism substantially depends on the knowledge of
the skeleton. One of the goals of this work was to realize this inference mechanism in case of
5 variables. We have prepared such a computer program verimpli.exe for PC. The program
gives an answer to the question whether a certain set of elementary conditional independence
statements L facially implies another conditional independence statement v. The question is
encoded in the form of a text input file input.txt which has the form

0 0 + 0 + + 0 ... 0 - + 0 + +

END

where the first line contains 80 symbols which correspond to elementary conditional indepen-
dence statements ordered according to their codes from Section 6.3. The symbol + in the record
indicates that the corresponding conditional independence statement belongs to L, the symbol
- indicates v and the digit 0 indicates the remaining conditional independence statements. The
program needs description of the skeleton in form of a data file m.poi. The command

verimpli input.txt m.poi

(where input.txt is the input file) written on a DOS command line can be used to execute the
program. An experimental online version of this program is also available on web.

7.5 Program for decomposition

Another program verstruc.exe for PC allows one to find out whether an imset which is a
combination of elementary imsets with integer coefficients has a non-zero non-negative multiple
which is a combination of elementary imsets with non-negative integer coeffients (that is, whether
it is a structural imset in sense of [10]). An input file describing the respective combination of
elementary imsets has an analogous structure

0 0 1 0 5 -1 0 ... 0 -3 2 0 1 1

END

where the first line contains 80 integers, namely the coefficients of elementary imsets encoded in
the way described in Section 6.3. The command

verstruc input.txt m.poi

written on a DOS command line is analogous to the previous case. The program can sometimes
help one to decompose a structural imset, that is to write it as a combination of elementary
imsets with non-negative integer coefficients. Equalities mentioned in Section 4.3 were obtained
in this way.

8 Conclusions

The goals of the paper were roughly achieved. The basic results were achieved by a computer
program PORTA. Computation took several hours. The runtime for four variables compared to
five and the nature of the problem suggests that this approach is not feasible for finding extreme
supermodular set functions over six or more variables. The result also suggests that the number
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of extreme supermodular set functions grows superexponentially with the number of variables.
Several questions remain open, other questions emerged.

• Is there any suitable characterization of extreme supermodular functions which makes it
possible to find the skeletal imsets directly on basis of ’combinatorial’ properties?

• Is seems possible to realize facial implication [10] without knowing the skeleton, just on
basis of knowledge of grade (see Section 4.3). How to compute the grade for every number
of variables? Is such a method of verification of facial implication more efficient than the
method based on knowledge of skeleton?

• How to recognize probabilistically representable and non-representable types of skeletal
imsets on basis of their numerical characteristics? What are probabilistically representable
supermodular functions over 5 variables? We were informed (private communication by
F. Matúš) that a sufficient condition for probabilistical representability of a polymatroid
h over N is that

∑

i∈N h({i}) ≤ 7.
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957, 14800 Prague, Czech Republic. (kocka@vse.cz)

Appendix

All 10 types of skeletal imsets over N = {a, b, c, d} are described by means of the following
figures.
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Figure 6: The first type of skeletal imsets over N = {a, b, c, d} - 1 representative only.
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Figure 7: The second type of skeletal imsets - one of 4 possible representatives.
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Figure 8: The third type of skeletal imsets - one of 6 possible representatives.
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Figure 9: The fourth type of skeletal imsets - one of 4 possible representatives.
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Figure 10: The fifth type of skeletal imsets over N = {a, b, c, d} - only 1 representative.

�
�

�
�{a, b, c, d}

+2

�
�

�
�{a, b, c}

+1
�
�

�
�{a, b, d}

+1
�
�

�
�{a, c, d}

+1
�
�

�
�{b, c, d}

+1

�
�

�
�{a, b}

+1
�
�

�
�{a, c}

0
�
�

�
�{a, d}

0
�
�

�
�{b, c}

0
�
�

�
�{b, d}

0
�
�

�
�{c, d}

0

�
�

�
�{a}

0
�
�

�
�{b}

0
�
�

�
�{c}

0
�
�

�
�{d}

0

�
�

�
�∅

0

�
�

�
�

��

�
�
�

A
A
A

Q
Q
Q
Q
QQ

�
�

�
��

PPPPPPPPP

���������

PPPPPPPPP

���������

�
�

�
��

PPPPPPPPP

�
�

�
��

Q
Q
Q
QQ

Q
Q
Q
QQ

PPPPPPPPP

PPPPPPPPP

�
�

�
��

PPPPPPPPP

�
�

�
��

���������

���������

�
�

�
��

Q
Q
Q
Q
QQ

A
A
A

�
�
�

�
�

�
�

��

Figure 11: The sixth type of skeletal imsets - one of 6 possible representatives.
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Figure 12: The seventh type of skeletal imsets - one of 4 possible representatives.
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Figure 13: The eighth type of skeletal imsets - one of 4 possible representatives.
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Figure 14: The ninth type of skeletal imsets - one of 6 possible representatives.
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Figure 15: The tenth type of skeletal imsets over N = {a, b, c, d} - only 1 representative.
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