
CI{MODELS ARISING AMONG 4 RANDOMVARIABLES�Milan STUDEN�Y and Pavel BO�CEKABSTRACTLet �1; �2; �3; �4 be a system of 4 �nitely-valued random variables. Bythe CI-model (CI = conditional independence) induced by f�1; . . . ; �4gwe understand the list of triplets of disjoint subsets of f1; 2; 3; 4gfhA;BjCi; [�i]i2A is cond. independent of [�i]i2B given [�i]i2Cg. Thesubject of this contribution is the problem which lists of such tripletsare CI-models induced by a system of 4 �nitely-valued random vari-ables.1. INTRODUCTIONThe concept of CI has been studied in probability theory and statis-tics for many years (Dawid, 1979), (Spohn, 1980), (Mouchart andRolin, 1984). Its role in probabilistic reasoning was discerned andhighlighted by the group around J. Pearl (1988) (A. Paz, D. Geiger,T. Verma), but many other researchers dealt more or less explicitlywith this concept (Lauritzen et al., 1990), (Shachter, 1990), (Smith,1989), (Malvestuto, 1994). Moreover, the concept of CI has appearedto be important also for nonprobabilistic approaches to reasoning(Shenoy, 1994).The idea of Pearl and Paz (1987) to describe CI-models as `depen-dency models' closed under `inference rules' motivated our researchin this area (Studen�y, 1992), (Mat�u�s, 1992). One of our special goalsis to decide which dependency models over f1; 2; 3; 4g are CI-models.We hope that the solution of this problem will help us to obtain a�Supported by the internal grants of Academy of Sciences of Czech Republicn. 27564 and n. 275105. 268



good view on the general case. Indeed, 3 variables are too little toreveal general aspects of CI and 5 variables are too much to be han-dled. From this point of view the case of 4 variables is a reasonablecompromise { it is su�ciently complicated to show deeper propertiesof CI but still (although hardly) managable by humans.The aim of this contribution is to describe the history of that prob-lem, review clearly latest results from (Mat�u�s and Studen�y, 1995),(Mat�u�s, 1995) and formulate the questions which are still open.2. BASIC CONCEPTSThroughout the paper we will deal with 4 random variables �1; . . . ; �4where �i takes values in a �nite nonempty set Xi (we will call Xi therange of �i). The joint distribution of the collection f�1; �2; �3; �4g isa probability distribution over f1; 2; 3; 4g:Definition 1 (probability measure over N , marginal measure)Let N be a basic index set. In this paper we have N = f1; 2; 3; 4g.A probability measure over N is speci�ed by a collection of nonempty�nite sets fXi; i 2 Ng and by a probability measure on the cartesianproduct Qi2N Xi.Whenever ; 6= S  N de�ne a probability measure over S called themarginal measure of P and denoted by PS as follows:PS(A) = P (A�Qi2NnS Xi) whenever A � Qi2S Xi :Moreover, PN is de�ned as P itself.The focus of our interest is the concept of CI.Definition 2 (conditional independence)Suppose that P is the joint distribution of a collection of �nite-valuedrandom variables [�i]i2N (on Qi2N Xi concretely). Having a triplethA;BjCi of pairwise disjoint subsets of N , where A;B are nonemp-ty, we say that [�i]i2A is conditionally independent of [�i]i2B given[�i]i2C i� 8 [xi]i2N 2Qi2N XiPABC([xi]i2ABC) � PC([xi]i2C) = PAC([xi]i2AC) � PBC([xi]i2BC):1We will also say that the CI-statement A?BjC is valid for P andwrite A?BjC(P ).1The juxtaposition AB is used to denote the union A [ B, P (a) is writteninstead of P (fag) and the convention P ;([xi]i2;) = 1 is accepted here.269



Remarksa) This de�nition involves also the ordinal stochastic independence asa special case when there is no conditioning variable i.e. C is empty.b) Note that the order of components in the triplet used in this paperdi�ers from (Pearl, 1988) where the conditioning area is placed on thesecond position. We follow the original notation in probability theo-ry: the conditioning area is on the last position after the separator j .Pearl (1988) proposed to describe CI-structures among random vari-ables by means of the concept of dependency model.Definition 3 (dependency model, CI-model)Let us denote by T (N) the set of all ordered triplets hA;BjCi whereA;B;C � N are pairwise disjoint and A;B nonempty. Every subsetof T (N) will be called a dependency model over N .Let P be a probability measure over N . A dependency model I iscalled the model of the CI-structure of P i� I is the set of tripletsrepresenting valid CI-statements for P .The following lemma from (Geiger and Pearl, 1990) or (Studen�y,1992) will appear to be very useful in the sequel.Lemma 1The intersection of two CI-models is also a CI-model.2The lemma indicates one of possible ways to description of CI-struc-tures arising among �xed number of variables. One need not to keepthe list of all CI-models overN since proper intersections of CI-modelscan be removed.Definition 4 (irreducible CI-model)We will say that a CI-model I is irreducible i� it cannot be writtenas the intersection of two CI-models di�erent from I.As each CI-model can be written as intersection of irreducible CI-models it su�ces focus only on irreducible CI-models. However, onecan �nd even more economic way by considering permutations of thebasic index set.2The construction of the corresponding probability distribution used to provethis lemma has �rst of all theoretical value as it enlarges exponentially ranges ofrandom variables. 270



Definition 5 (permutation of dependency models)Let � : N ! N be a permutation of the basic index set N . It canbe considered as an autobijection of T (N): one can assign the tripleth�(A); �(B)j�(C)i to every hA;BjCi 2 T (N).3Thus, having dependency models I; J over N we will say that I andJ are permutably equivalent i� there exists a permutation � of N suchthat I = f h�(A); �(B)j�(C)i; hA;BjCi 2 J g, i.e. I is the image of Jby the corresponding autobijection of T (N).Of course, it is indeed an equivalence relation on the class of depen-dency models over N which moreover respects CI-models:Lemma 2Supposing I and J are permutably equivalent dependency models Iis a CI-model i� J is a CI-model.4It makes no problem to derive from the previous lemma that alsoirreducibility of CI-models is saved by the considered equivalence.Therefore, one need not keep the whole list of irreducible CI-models,it su�ces to have only one representative for each equivalence class.3. INFERENCE RULESThe characterization of CI-models by means of the list of irreduciblerepresentatives is one of the possible ways. The dual approach isto describe CI-models as dependency models closed under inferencerules.Definition 6 (inference rule)In general, an inference rule with r antecedents (r � 1) in an (r+1)-nary relation on T (N). But in practice we are interested in inferencerules expressed by an informal schema, which de�nes such an (r+1)-nary relation for each basic index set N , like the following exampleshA;BjCi ! hB;AjCi symmetryhA;BCjDi ! hA;CjDi decompositionhA;BCjDi ! hA;BjCDi weak union[ hA;BjCDi; hA;CjDi ] ! hA;BCjDi contraction.3Here �(A) = f�(x); x 2 A g denotes the image of a set A.4Hint: if J is the CI-model induced by [�i]i2N and � is the pertinent permu-tation of N , then I is induced by [���1(i)]i2N .271



An example is the most e�ective way of indicating what is meant,but the formal de�nition is more awkward. So-called regular infer-ence rule with r antecedents will be speci�ed by the following items:a) A �nite set of symbols S = fA1; . . . ; Ang, possibly including aspecial symbol ;, is given (n � 3).b) For each k = 1; . . . ; r + 1 an ordered triplet [Sk1 ;Sk2 ;Sk3 ] ofnonempty disjoint subsets of S is given. The only requirementis that whenever Ski contains the symbol ; then no other sym-bol is in Ski . The syntactic record of the described inferencerule is[ hS11 ;S12 jS13 i; . . . ; hSr1 ;Sr2 jSr3 i ] ! hSr+11 ;Sr+12 jSr+13 iwhere each set Ski is depicted by the juxtaposition of its ele-ments. To avoid redundancy we suppose that each symbol inS is contained in some set Ski and that no couple of di�erentsymbols is contained in exactly same collection of sets Ski .c) For every basic setN a set of (r+1)-tuples of triplets from T (N)is speci�ed as follows: whenever there exists a substitutionmap-ping m assigning to every symbol A 2 S a subset m(A) � N(the empty set is allowed, we even require thatm(;) is the emp-ty set) such that fm(Ai); i = 1; . . . ; n g is a disjoint collectionand for each k = 1; . . . ; r + 1 both Sfm(A);A 2 Sk1g 6= ; andSfm(B);B 2 Sk2 g 6= ;, i.e. the tripletshSfm(A);A 2 Sk1 g ; Sfm(B);B 2 Sk2 g j Sfm(C);C 2 Sk3 iform an (r + 1)-tuple of elements of T (N) called inference in-stance. First r triplets (for k � r) in such an inference instanceare called antecedents, the last one (corresponding to k = r+1)is called the consequent. The described regular inference rule isthen the set of all its inference instances.Now, we are to explain how inference rules can be used to describeCI-models.Definition 7 (probabilistically sound inference rule, semigraphoid)Having a regular inference rule and a dependency model I � T (N)we will say that I is closed under that inference rule if the consequent(of each inference instance of that rule) belongs to I provided thatthe antecedents (of that instance) belong to I. An inference rule isprobabilistically sound i� every CI-model is closed under it.272



A dependency model closed under symmetry, decomposition, weakunion and contraction mentioned in De�nition 6 is called a semi-graphoid.Note that all semigraphoid inference rules are probabilistically soundaccording to well-known basic properties of CI (Dawid, 1979). Theoriginal idea of Pearl and Paz (1987) was to describe CI-structures asdependency models closed under a �nite number of regular inferencerules, concretely Pearl (1988) conjectured that CI-models coincidewith semigraphoids.4. OUR FIRST ATTEMPTSWe started our research in this area by the above mentioned Pearl'sconjecture, which was identical with an unpublished Spohn's conjec-ture from 1980 { as we learned from (Spohn, 1994). Unfortunately,we found in (Studen�y, 1989) that there exist probabilistically soundinference rules not derivable from the semigraphoid inference rules.5Dealing with the natural question whether CI-models could becharacterized as dependency models closed under a �nite number ofinference rules one can limit attention to inference rules with nonre-dundant antecedents:Definition 8 (minimal inference rule)Consider a probabilistically sound (regular) inference rule with r an-tecedents. In case it has at least one inference instance [t1; . . . ; tr+1] 2T (N)r+1 such that no proper subset of the antecedent set ft1; . . . ; trghas the property that each CI-model containing it contains also theconsequent tr+1, we will say that the inference rule is minimal, theinference instance will be called minimal, too.Later we found that even stronger limitation is suitable.Definition 9 (perfect inference rule)Consider a probabilistically sound (regular) inference rule with r an-tecedents. In case it has at least one inference instance [t1; . . . ; tr+1] 2T (N)r+1 where each proper subset of the antecedent set ft1; . . . ; trgis a CI-model6 the inference rule will be called perfect.5They are denoted (A.3) in the sequel.6Equivalently: each subset of ft1; . . . ; trg of cardinality r � 1 is a CI-model.273



Of course, a perfect inference rule is necessarily minimal, but theconverse is not true. For example, the inference rule[ hA;BjEi; hA;CjBEi hA;DjCEi ] ! hA;DjEiis a minimal probabilistically sound inference rule7 which is not per-fect since f hf1g; f2gj;i; hf1g; f3gjf2gi g is not a CI-model8.As a perfect inference instance cannot be derived using a nonper-fect inference rule, all perfect inference rules have to be contained inevery complete system of probabilistically sound inference rules. Thiswas the clue which helped in (Studen�y, 1992) to show that CI-modelscannot be characterized by means of a �nite number of inferencerules. Nevertheless, we showed that CI-models can be characterizedby means of a countable number of minimal probabilistically soundinference rules.9 We hope that nonperfect inference rules can be re-moved from such a system and dare to formulate:ConjectureCI-models can be characterized as dependency models closed under(a countable number of) perfect inference rules.The result on (�nite) nonaxiomatizability of CI-models led to an al-ternative approach to description of CI-models by means of so-calledimsets (Studen�y, 1994, 1995). This approach makes it possible toderive simply further probabilistically sound inference rules. For thecase of 4 variables we found the following perfect inference rules.(A:1) hA;BjCi  ! hB;AjCi(A:2) [ hA;BjCDi; hA; CjDi ]  ! hA;BCjDi(A:3) [ hA;BjCDEi; hC;DjAEi; hC;DjBEi; hA;BjEi ] ! ! [ hC;DjABEi; hA;BjCEi; hA;BjDEi; hC;DjEi ](A:4) [ hA;BjCDEi; hA;DjBEi; hC;DjAEi; hB;CjEi ] ! ! [ hA;DjBCEi; hA;BjDEi; hB;CjAEi; hD; CjEi ](A:5) [ hA;CjDEi; hB;DjCEi; hB;CjAEi; hA;DjBEi ] ! ! [ hA;DjCEi; hB;CjDEi; hB;DjAEi; hA;CjBEi ](A:6) [ hA;BjCEi; hA;CjDEi; hA;DjBEi ] ! ! [ hA;CjBEi; hA;DjCEi; hA;BjDEi ]7It is derived from the semigraphoid inference rules; substitute A = f1g, B =f2g, C = f3g, D = ; to get the corresponding minimal inference instance.8It imlies hf1g;f2;3gj;i by contraction.9This was done under platonic assumption that all CI-models are captured bythe creator of that countable system. 274



(A:7) [ hA; BjCDEi; hC;DjABEi; hA;CjEi; hB;DjEi ] ! ! [ hA;CjBDEi; hB;DjACEi; hA;BjEi; hC;DjEi ]Note that we used here a comperessed notation of inference rules.The rules with the sames set of antecedents are collected in one en-try having more than one consequent. Also two-way arrows are usedto denote alternative inference rules (with antecedents exchanged forconsequents). Thus, (A.2) is a compression of decomposition, weakunion and contraction.At that time we hoped that all perfect inference rules could be pro-duced by the new approach. In (Studen�y, 1994) we speci�ed a classof structural semigraphoids which we had formerly conjectured to co-incide with CI-models. We tried to verify it in case of 4 variables.We found all 37 submaximal structural semigraphoids10 and foundthat for our purpose it su�ces to show that they are CI-models11.Considering permutation (see De�nition 5) only 10 construction (for10 representatives of di�erent classes of permutable equivalence) ofprobability measures were needed. Unfortunately, we succeeded �ndonly 9 construction, the last type of structural semigraphoids ap-peared not to be a CI-model (Mat�u�s, 1994). We found later that itcan be explained by further independent probabilistically sound in-ference rules announced in (Studen�y, 1994).5. LATEST RESULTSOn the other hand, the hypothesis that the 9 construction above giveall irreducible CI-models appeared also untrue. Further 4 types ofirreducible CI-models (of course not submaximal!) were found { thelist of all known irreducible CI-models will be given in the last sec-tion. We proceed in (Mat�u�s and Studen�y, 1995) and (Mat�u�s, 1995)by �nding further independent inference rules. Three basic methodsof proving their probabilistic soundness can be distinguished. We willnot repeat the proofs, they are in (Mat�u�s, 1995).10A structural semigraphoid is submaximal i� the only structural semigraphoidcontaining it properly is the full class T (N).11As every nonmaximal structural semigraphoid is intersection of submaximalstructural semigraphoids, it follows from Lemma 1.275



The �rst method utilizes Corollary 3.6 from (Mouchart and Rolin,1984) formulated for �-algebras. Note that this property implies well-known inference rule intersection (Pearl, 1988) known to be valid forstrictly positive measures. But also in general case it gives someweaker conclusion (not expressible in terms of the classical conceptof CI) which combined with other CI-statements may imply the re-quired consequent. That is the principle of the proof of the followingcollection of perfect probabilistically sound inference rules.(B:1) [ hA;BjCi; hA;BjDi; hB;CjAi; hC;Dj;i ]! hA;Bj;i(B:2) [ hA;BjCi; hA;CjDi; hB;CjAi; hB;Dj;i ]! hA;Bj;i(B:3) [ hA;BjCi; hA;CjDi; hC;DjAi; hB;Dj;i ]! hA;Bj;i(B:4) [ hA;BjCi; hA;CjDi; hA;DjCi; hB;Dj;i ]! hA;Bj;i(B:5) [ hA;BjDi; hA;CjBi; hB;DjCi; hA;DjBi ]! hA;BjCi(B:6) [ hA;BjDi; hA;CjBi; hB;DjCi; hB;DjAi ]! hA;BjCi(B:7) [ hA;BjDi; hA;CjBi; hB;DjCi; hB;CjDi ]! hA;BjCi(B:8) [ hA;BjDi; hA;CjBi; hB;DjCi; hC;DjBi ]! hA;BjCi(B:9) [ hA;BjDi; hA;CjBi; hB;DjACi; hA;DjBi ]! hA;BjCDi(B:10) [ hA;BjDi; hA;CjBi; hB;DjACi; hB;DjAi ]! hA; BjCDiThe second method is the principle of uniqueness of a factorizable dis-tribution saying that mutually absolute continous probability mea-sures having the same marginals on sets from a system S and factor-izable with respect to S coincide. Using this principle probabilisticvalidity of the following perfect inference rules can be shown.(C:1) [ hA;BjCi; hA; BjDi; hA;CjDi; hC;DjABi ]! hA;BjCDi(C:2) [ hA;CjDi; hA;BjDi; hB;CjAi; hA;DjBCi ]! hA;BjCDi(C:3) [ hA;BjDi; hA;CjBi; hA;CjDi; hB;DjCi ]! hA;BjCiThe third method consists of calculation with heedful cancelation andemploying of `nonstandard' equivalent de�nitions of CI. In fact, eachof the following perfect inference rules has a speci�c proof. Note, that(D.1) has appeared also in (Spohn, 1994).(D:1) [ hA;BjCi; hA;BjDi; hA;Bj;i; hC;DjABi ]! hA;BjCDi(D:2) [ hA;BjCi; hA;BjDi; hC;DjAi; hC;Dj;i ]! hA;Bj;i(D:3) [ hA;BjCi; hA;CjDi; hB;DjCi; hB;Dj;i ]! hA; Bj;i276



(D:4) [ hA;BjCi; hA;CjDi; hB;DjAi; hB;Dj;i ]! hA;Bj;i6. PRESENT STATEThus, we can summarize. In the sequel we give the list of all so farknown nonmaximal irreducible CI-models. Of course, it su�ces tomention only one representative for each class of permutable equiva-lence. Moreover, more economic way of description of semigraphoidsis based on the following concept.Definition 10 (elementary triplet)An elementary triplet is every triplet hfag; fbgjKi 2 T (N) whereK � N , a; b 2 N nK, a 6= b. The class of elementary triplets over Nwill be denoted by E(N).It was shown in (Mat�u�s, 1992):Lemma 3Every semigraphoid I � T (N) is determined uniquely by its intersec-tion with the set of elementary triplets E(N). It can be reconstructedfrom I \E(N) by means of the following property:hA;BjCi 2 I , 8a 2 A b 2 B C � K � (A [B) n fa; bghfag; fbgjKi 2 I \E(N).Thus, every CI-model can be represented as a subset of E(N) whichhas 24 elements in our case N = f1; 2; 3; 4g.In the following list we omit braces { every component of an ele-mentary triplet is expressed by the juxtaposition of its elements orby the symbol of the empty set.1. (20 triplets, submaximal, 6 perm. equiv. representatives)h1; 3j;i, h2; 3j;i, h1; 4j;i, h2; 4j;i, h3; 4j;i, h1; 3j2i, h2; 3j1i, h1; 4j2i,h2; 4j1i, h1; 3j4i, h1; 4j3i, h3; 4j1i, h2; 3j4i, h2; 4j3i, h3; 4j2i, h1; 3j24i,h2; 3j14i, h1; 4j23i, h2; 4j13i, h3; 4j12i.2. (18 triplets, submaximal, 4 perm. equiv. representatives)h1; 4j;i, h2; 4j;i, h3; 4j;i, h1; 2j3i, h1; 3j2i, h2; 3j1i, h1; 4j2i, h2; 4j1i,h1; 4j3i, h3; 4j1i, h2; 4j3i, h3; 4j2i, h1; 2j34i, h1; 3j24i, h2; 3j14i, h1; 4j23i,h2; 4j13i, h3; 4j12i. 277



3. (18 triplets, submaximal, 1 perm. equiv. representative)h1; 2j3i, h1; 3j2i, h2; 3j1i, h1; 2j4i, h1; 4j2i, h2; 4j1i, h1; 3j4i, h1; 4j3i,h3; 4j1i, h2; 3j4i, h2; 4j3i, h3; 4j2i, h1; 2j34i, h1; 3j24i, h2; 3j14i, h1; 4j23i,h2; 4j13i, h3; 4j12i.4. (18 triplets, submaximal, 1 perm. equiv. representative)h1; 2j;i, h1; 3j;i, h2; 3j;i, h1; 4j;i, h2; 4j;i, h3; 4j;i, h1; 2j3i, h1; 3j2i,h2; 3j1i, h1; 2j4i, h1; 4j2i, h2; 4j1i, h1; 3j4i, h1; 4j3i, h3; 4j1i, h2; 3j4i,h2; 4j3i, h3; 4j2i.5. (18 triplets, submaximal, 4 perm. equiv. representatives)h1; 2j;i, h1; 3j;i, h2; 3j;i, h1; 4j;i, h2; 4j;i, h3; 4j;i, h1; 2j4i, h1; 4j2i,h2; 4j1i, h1; 3j4i, h1; 4j3i, h3; 4j1i, h2; 3j4i, h2; 4j3i, h3; 4j2i, h3; 4j12i,h2; 4j13i, h1; 4j23i.6. (14 triplets, submaximal, 6 perm. equiv. representatives)h1; 3j;i, h2; 3j;i, h1; 4j;i, h2; 4j;i, h3; 4j;i, h1; 3j2i, h2; 3j1i, h1; 4j2i,h2; 4j1i, h1; 2j34i, h1; 3j24i, h2; 3j14i, h1; 4j23i, h2; 4j13i.7. (12 triplets, submaximal, 1 perm. equiv. representative)h1; 2j;i, h1; 3j;i, h2; 3j;i, h1; 4j;i, h2; 4j;i, h3; 4j;i, h1; 2j34i, h1; 3j24i,h2; 3j14i, h1; 4j23i, h2; 4j13i, h3; 4j12i.8. (12 triplets, submaximal, 4 perm. equiv. representatives)h1; 2j;i, h1; 3j;i, h2; 3j;i, h1; 4j;i, h2; 4j;i, h3; 4j;i, h1; 2j3i, h1; 3j2i,h2; 3j1i, h2; 3j14i, h1; 3j24i, h1; 2j34i.9. (12 triplets, submaximal, 4 perm. equiv. representatives)h2; 3j;i, h2; 4j;i, h3; 4j;i, h2; 3j1i, h2; 4j1i, h3; 4j1i, h1; 2j34i, h1; 3j24i,h2; 3j14i, h1; 4j23i, h2; 4j13i, h3; 4j12i.10. (5 triplets, not submaximal, 6 perm. equiv. representatives)h1; 2j34i, h1; 2j3i, h1; 2j4i, h3; 4j1i, h3; 4j2i.11. (4 triplets, not submaximal, 6 perm. equiv. representatives)h1; 2j34i, h1; 2j3i, h1; 2j4i, h3; 4j;i.12. (4 triplets, not submaximal, 24 perm. equiv. representatives)h1; 2j34i, h1; 2j4i, h2; 3j1i, h3; 4j2i.13. (4 triplets, not submaximal, 24 perm. equiv. representatives)h1; 2j34i, h1; 2j4i, h2; 3j1i, h3; 4j;i. 278



The corresponding constructions of probability measures follow. Thesets Xi (i = 1; . . . ; 4) are taken either f0g or f0; 1g or f0; 1; 2g oreven f0; 1; 2; 3g { what option is concretly chosen is clear from thecontext. The measures are de�ned on their support only; the orderof variables in quadruplets is 1,2,3,4.1. (0; 0; 0; 0)! 1=2(1; 1; 0; 0)! 1=2 2. (0; 0; 0; 0)! 1=2(1; 1; 1; 0)! 1=2 3. (0; 0; 0; 0)! 1=2(1; 1; 1; 1)! 1=24. (0; 0; 0; 0)! 1=8(0; 0; 1; 1)! 1=8(0; 1; 0; 1)! 1=8(0; 1; 1; 0)! 1=8(1; 0; 0; 1)! 1=8(1; 0; 1; 0)! 1=8(1; 1; 0; 0)! 1=8(1; 1; 1; 1)! 1=8 5. (0; 0; 0; 0)! 1=4(0; 1; 1; 0)! 1=4(1; 0; 1; 0)! 1=4(1; 1; 0; 0)! 1=4 6. (0; 0; 0; 0)! 1=4(0; 0; 1; 1)! 1=4(1; 1; 0; 1)! 1=4(1; 1; 1; 0)! 1=47. (0; 0; 0; 0)! 1=9(0; 1; 1; 1)! 1=9(0; 2; 2; 2)! 1=9(1; 0; 1; 2)! 1=9(1; 1; 2; 0)! 1=9(1; 2; 0; 1)! 1=9(2; 0; 2; 1)! 1=9(2; 1; 0; 2)! 1=9(2; 2; 1; 0)! 1=9 8. (0; 0; 0; 0)! 1=8(0; 0; 1; 1)! 1=8(0; 1; 0; 2)! 1=8(0; 1; 1; 3)! 1=8(1; 0; 0; 3)! 1=8(1; 0; 1; 2)! 1=8(1; 1; 0; 1)! 1=8(1; 1; 1; 0)! 1=8 9. (0; 0; 0; 0)! 1=4(1; 0; 1; 1)! 1=4(2; 1; 0; 1)! 1=4(3; 1; 1; 0)! 1=410. (0; 0; 0; 0)! 1=6(1; 0; 0; 0)! 1=6(0; 0; 0; 1)! 1=6(0; 0; 1; 0)! 1=4(0; 0; 1; 1)! 1=8(0; 1; 1; 1)! 1=8 11. (0; 0; 0; 0)! 1=8(1; 0; 0; 0)! 1=8(0; 0; 0; 1)! 1=4(0; 0; 1; 0)! 1=4(0; 0; 1; 1)! 1=8(0; 1; 1; 1)! 1=8 12. (1; 0; 0; 0)! 1=8(1; 1; 0; 0)! 1=8(1; 0; 1; 0)! 1=8(1; 1; 1; 0)! 1=4(1; 1; 0; 1)! 1=8(0; 1; 1; 1)! 1=413. (0; 0; 0; 0)! 1=8(0; 1; 0; 0)! 1=8(0; 1; 1; 0)! 1=4(1; 0; 0; 1)! 1=4(0; 0; 1; 1)! 1=4 279
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