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COMPARISON OF GRAPHICAL APPROACHES TO
DESCRIPTION OF CONDITIONAL INDEPENDENCE
STRUCTURES

M. STUDENY

Two traditional classes of graphs used to describe probabilistic conditional independence
structures are undirected graphs and directed acyclic graphs. In recent years several wider
classes of graphs have been used in literature for this purpose: general directed graphs,
chain graphs, reciprocal graphs and annotated graphs. The aim of this contribution is
to give except an overview a rough comparison of achieved results. That means, several
questions of general interest are raised and it is mentioned which questions are already
answered.

INTRODUCTION

Graphs whose nodes correspond to random variables are traditional tools for de-
scription of structures of multidimensional probability distributions. One can dis-
tinguish two classic graphical approaches to description of conditional independence
structure of a probability distribution: either using undirected graphs (we will use
the abbreviation UG) or using directed acyclic graphs (we will use the abbreviation
DAG). However, in recent years more general classes of graphs have been proposed
for description of conditional independence structures (of probability distributions).

This paper tries to give a rough overview of these new graphical approaches.
Each mentioned approach is recorded by an informal description of its character-
istic features and by corresponding reference. Several relevant results concerning
the respective approach are sometimes recalled or paraphrased (this is the case of
classic approaches). The ambition of the paper is not a profound complete survey
of all graphical approaches to description of probabilistic conditional independence
structure. It is simply only an overview of those approaches which the author came
across and its aim is to inform other participants of WUPES’97 about recent de-
velopment in this area. I would like to make a preventive apology to all authors of
referenced papers for possible misinterpretation.

The structure of the paper is the following one. In the first section we recall a few
basic concepts. To give certain unifying point of view on all graphical approaches
we try to give in the second section a list of general questions of theoretical signifi-
cance which can be raised and studied for each mentioned graphical approach. Such
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a (subjective) list makes it possible to classify in subsequent sections the results
concerning respective graphical approaches.

Then, we recall the results concerning the classic approaches. The third section
deals with UGs, the fourth section with DAGs. Similar attention is devoted to the
class of chain graphs (we use the abbreviation CG) in the fifth section. The class of
CGs involves both UGs and DAGs. Further three classes of graphs which can be (in
certain sense) considered as subclasses of the class of CGs will be mentioned in the
sixth section.

Remainig four sections describe graphical approaches which somehow go beyond
the framework of CGs. Each section is devoted to another direction, that is to
another way of generalization. The seventh section deals with annotated graphs,
that is undirected graphs whose edges (in fact not only edges) are annotated by a
subset of remaining nodes. The eighth section is devoted to graphs in which directed
cycles are allowed. We will mention both general directed graphs and a very general
class of reciprocal graphs which involves the class of CGs. Another direction to
generalization is to consider possibility of a hidden variable, that is to consider a
model obtained by a restriction of a graphical model to a subset of variables (see the
ninth section). Last section deals with approaches which do not generalize graphs but
ascribe the corresponding model of conditional independence structure in a different
way. Shortly, these approaches give alternative interpretation to the graphs. These
approaches involve so-called covariance graphs and generalized CGs.

1. BASIC CONCEPTS

Supposing N is a nonempty finite set of variables let us denote by 7 (N) the class of
triplets (X,Y|Z) of disjoint subsets of N whose first two components X and Y are
nonempty. These triplets will be used to describe particular conditional indepen-
dency statements. A independency model over a N is a subset of T (). The class
of all independency models over N can be denoted by Z(N).

If M C T(N) is an independency model over N, then the restriction of M to a
subset of variables ) 2T C N is M N T(T).

A (discrete) probability distribution over N is specified by a collection of nonempty
finite sets {X;;4 € N} (indexed by N) and by a function P : [[,.x X; — [0,1]
with Y {P(x); x € [[;cn Xi} = 1. If P(x) > 0 for all x € [, 5 X, then P is called
strictly positive. Whenever ) # T C N and P is a probability distribution over N
its marginal distribution for T is a probability distribution P (over T) defined as
follows (PN = P) :

PT(x) =Y {P(x,y); y € HieN\T Xi} for x € [[;er Xi -
Having (X,Y|Z) € T(N) and a probability distribution P over N we say that X is
conditionally independent of Y given Z with respect to P and write X 1. Y | Z (P)
if
Vx€[[iexXi YE[LieyXi z€[[icrXi

PXUYUZ(X’ y, Z) ) PZ(Z) — PXUZ(X, Z) ) PYUZ(y, Z)

)

where we accept the convention P?(—) = 1.
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The independency model induced by a probability distribution P over N is the
collection of all triplets (X,Y|Z) € T(N) such that X 1l Y | Z (P).

(Discrete) probabilistic independency model over N is an independency model
induced by a (discrete) probability distribution over N. The class of all such proba-
bilistic independency models over N can be denoted by P(N). Evidently, restriction
of a probabilistic independency model to a set ) # T C N is a probabilistic inde-
pendency model over T here.

Note that in our overview also independency models induced by continous (more
exactly nondegenerate Gaussian) distributions are mentioned although we decided
to omit the corresponding definitions.

Several authors independently accentuated some basic properties of probabilistic
independency models [9, 36]. Pearl and Paz [28] highlighted the importance of those
properties in probabilistic reasoning and introduced the concept of semigraphoid as
an independency model closed under the ’inference rules’ below. The ’rules’ should
be understood as follows: if an independeny model contains the triplets before the
long arrow, then it contains also the triplet after the long arrow.

(A,B|C) — (B, A|C) symmetry
(A,BUC|D) — (A,C|D) decomposition
(A,BUC|D) — (A,B|CUD) weak union
[(A,B|CUD) & (A,C|D)] — (A,BUC|D) contraction.
It is called a graphoid if it moreover satisfies:

[(A,B|CUD) & (A,C|BUD)] — (A, BUC|D) intersection.

It is known [9] that every independency model induced by a strictly positive distri-
bution is a graphoid. A graphoid closure of M C T (N) consists of those triplets in
T (N) which are derivable from M by consecutive application of graphoid inference
rules. Evidently, it is a graphoid.

In general, a graph over a nonempty finite set of variables N will have the set N
as the set of nodes and will be given usually by a set of ’edges’. What is meant by an
‘edge’ in a graph will be specified later separately for each considered class of graphs.
In this section we introduce certain quite general class of graphs which involves the
majority of treated classes of graphs (but not all of them). We distinguish here two
basic types of edges over N: undirected edges, called lines and directed edges, called
arrows. A line over N is an unordered couple {u,v} where u,v € N, u # v (that
is a two-element subset of N). An arrow over N is an ordered couple (u,v) where
u,v € N, u #v.

A graph with mized edges over (a set of nodes N) is specified by a set of lines £
over N and by a set of arrows A over N. Supposing G = (N, £, A) is such a graph
in case {u,v} € £ we say that there exists a line between u and v in G and write
'u — v in G’. Similarly, in case (u,v) € A we say that there exists an arrow from u
to v in G and write 'u — v in G’ or 'v < w in G’. If either u — v in G, or u — v
in G, or u « v in G, then we say that [u,v] is an edge in G. Note explicitly that
such a definition allows (for a couple of distinct nodes u,v € N) that each of u — v,
u — v and u + v are simultaneously edges in G! A hybrid graph over N is such a
graph with mixed edges G that for a couple of distinct nodes u,v € N at most one
of those possibilities occurs in G.
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If ) #T C N, then the induced subgraph of G for T is a graph Gt = (T, L1, Ar)
over T where L7 (resp. Ar) is the set of those lines (resp. arrows) over T' which are
also in £ (resp. in A).

A route from a node u to a node v (or between nodes u and v) in such a graph
G is a sequence of nodes wy,...,w, € N, n > 1 together with a seguence of edges
€1,...,€6n—1 € LU A (possibly empty in case n = 1) such that u = wy, v = w,, and
€; is either w; — w;y1, or w; — w;qq, or w; ¢ wiq for i =1,...,n — 1. A route is
called descending if €; is either w; — w;y1, or w; = w41 fori =1,...,n -1, and
undirected if €; is w; — w;41 for i = 1,...,n — 1. Especially, every undirected route
is a descending route.

A path is a route in which all nodes wy,...,w, are distinct, a cycle is a route
where n > 2, wy = w, and wy,...,w,_1 are distinct. A directed cycle is a cycle
which is a descending route and where ¢; is w; = w;4+1 at least once.

We say that a node u is a parent of a node v in G if u — v in G, and u is an
ancestor of v in G if there exists a descending route (equivalently a descending path)
from u to v in G, and wu is connected to v in G if there exists an undirected route
(equivalently an undirected path) between u and v. Supposing A C N the symbol
ang(A) denoted the set of ancestors of the nodes of A in G. Clearly, the relation ’be
connected’ is an equivalence relation which decomposes IV into equivalence classes,
named connectivity components.

An undirected graph (UG) is a graph containing only lines (that is A = ), a
directed graph is a graph containing only arrows (that is £ = §)). The underlying
graph H of a graph with mixed edges G = (N, L, A) is an undirected graph H over
N such that w — v in H iff [u,v] is an edge in G.

However, one of the later mentioned approaches even allows two different types
of lines (so-called ’solid’ lines and ’dashed’ lines) and analogously two different types
of arrows. In another approach, a graph is not specified by a set of edges only but
also by further mathematical entities (annotation).

2. QUESTIONS RELATED TO GRAPHICAL APPROACHES

In this section we formulate several questions of theoretical interest which arise
in connection with graphical methods of description of probabilistic independency
models. If one decides to use certain class of graphs G for description of those models,
then one should clarify undoubtedly the following two basic issues.

Establishment of the class of graphs:
How exactly the class of respective graphs G(IN) over N is specified for each nonempty
finite set of variables N7

Ascription of the independency model:
How exactly an independency model over N is ascribed to every graph from G(N)?

Thus, the first question is aswered if one gives the definition of the class G(N) of
considered graphs over N, and the second question is answered if one defines (for
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Figure 1: An independency model over N is ascribed to every graph over N.

each N) an interpretation mapping m from G(N) to the class Z(NN) of independency
models over N (figure 1 gives an illustrative picture).

Remark Although we did not mention it explicitly (since it is almost impossible to
formulate exactly) we have in mind a ’consistent’ way of introducing of a graphical
framework. That means introducing of G(N) and the definition of the mapping
m for each IV has a common intuitive ’source’ behind which does not depend on
N. Bluntly said, we are not interested in ’inconsistent’ graphical frameworks where
for example G(N) is in case card N = 3 the class of undirected graphs over N but
in case card N = 4 it is the class of directed graphs over N. We hope that the
reader understands our intuitive aim: it will become more clear from examples in
subsequent sections. To be true, our ’intuitive’ assumption has as a result many
elegant properties which we consider as self-evident. For example, a permutation 7
on a set N induces naturally a permutation 7, of G(N) and a permutation 7* of
Z(N) and the interpretation mapping m should commute with these permutations,
that one should have m(m.(G)) = 7*(m(G)) for every G € G(N).

As concerns the question (B) let us note that its formulation above ’simplifies’
the real historical development. In fact, for both classic graphical approaches (i.e.
UGs and DAGs) at first the class of distributions having the structure described
by a graph was somehow introduced. For example, several structural conditions on
distributions with respect to a graph were introduced (i.e. the Gibbs condition, the
pairwise Markov condition, the local Markov condition, the global Markov condition
etc.), their relation was studied (namely their equivalence for strictly positive dis-
tributions was shown) and thus, the class of Markovian distributions was assigned
to every graph from the considered class of graphs. Then the researchers solved the
question whether the assigned class of distributions can be equivalently characterized
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as the class of distributions inducing certain independency model. So, the indepen-
dency model m(G) ascribed to a graph G € G(NN) has meaning of the independency
structure described by the graph.

Instead of describing the conditional independence structure of a probability dis-
tribution P over N by means of the independency model M € Z(N) induced by
P we wish to describe the structure by a graph G € G(N) such that M = m(G).
Thus, the the first natural question is the following one.

Correctness:
Is the model m(G) ascribed to a graph G over N indeed a probabilistic independency
model over N (for every N and every G € G(NN) of course)?

In mathematical language we ask whether m(G(N)) C P(N) for every N. Note
that some authors call positive results of this type the strong completeness results.
By the completeness result they understand a weaker result saying that for every
G € G(N) and for every (X,Y|Z) € T(N) outside m(G) there exists a probability
distribution P over N such that its induced independency model contains m(G) but
—[X U Y|Z (P)]. As the reader will see later, this basic question is still open for
some of mentioned new approaches. However, another relevant question was studied.

El Characterization of ascribed independecy models:
Is it possible to characterize the ascribed independency models in terms of properties
of those independency models?

More exactly, we wish to characterize the range of the mapping m, that is
m(G(N)), without a reference to G(IN) (for every N). The aim is to obtain cer-
tain type of ’axiomatic’ characterization of ascribed independency models, that is to
characterize them as independency models closed under a finite number of inference
rules of semigraphoid type. A special task within the framework of this question,
which was often a topic of research, is the task whether every ascribed independency
model is a graphoid.

The interpretation mapping m induces on G(NN) a natural equivalence relation:
we say that two graphs G and H from G(N) are equivalent if m(G) = m(H). The
equivalence relation characterizes the situation when G and H describe the same
independency model. This leads to a couple of questions.

Characterization of equivalent graphs:
Is it possible to characterize the equivalence relation of graphs in graphical terms?

Representation of the class of equivalent graphs:
Is there any (natural) representative of every class of equivalent graphs?

As concerns the previous question, an ideal representative of the equivalence
class is surely a naturally distinguished graph from the equivalence class, but one
can consider also represetation by more general mathematical objects (for example
by more general graphs) which somehow encode features shared by all graphs within
the equivalence class.

Further question of our interest concerns restriction of independency models.
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Behaviour with respect to restriction:

Could be the restriction of every independency model ascribed to a graph G € G(N)
to every subset of ) # T C N realized as the independency model ascribed to a
graph from G(T')?

In mathematical language we ask whether it holds rr(m(G(N))) C mr(G(T)) for
every ) # T C N where rr denotes the operation of restriction of independency
models to T and my the interpretation mapping for the set 7. The significance of
a positive answer to this question is evident: restriction of graphical independency
model to a set of variables can be performed directly in graphical terms.

The previous questions were mainly of theoretical interest. However, most of the
papers in the field of probabilistic reasoning are concerned with the following, more
specific question.

Estimation of graphs from data:

Suppose that statistical data are 'generated from’ a distribution over N inducing an
independency model m(G) for a G € G(N). How to obtain (an estimate of) such a
graph on basis of the data?

Note that we omit this important question in our overview below for limited scope
of a conference paper. Nevertheless, we will pay little attention to the following task.

Comparison:

Compare different classes of graphical independency models, either qualitatively or
quantitatively.

As concerns qualitative comparison we can ask whether for every N the class
of independency models ascribed to one class of graphs G; (V) (by a mapping m;)
contains the class of independency models ascribed to another class of graphs G, (V)
(by a mapping ms). By quantitative comparison we understand to compare the
number of independency models ascribed to graphs from G, (N) with the number of
independency models ascribed to graphs from Go(N).

3. UNDIRECTED GRAPHS

The class of UGs was already defined in the first section. Note that in [29] UGs were
named also Markov networks.

A triplet (X,Y|Z) € T(N) is represented in an UG G over N if every path in
G between a node in X and a node in Y contains a node in Z (such a path is
necessarily an undirected path). One can ascribe to G the independency model over
N consisting of the triplets over N represented in G.

It was shown in [15] that every independency model ascribed to an UG is a prob-
abilistic independency model induced by a strictly positive distribution. Especially,
every UG-model, that is an independency model ascribed to an UG, is a graphoid.
See also [11] for the completeness result with respect to the class of nondegenerate
Gaussian distributions. Thus, the correctness of UG-models is ensured.
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In [29, 28] one can find also an answer to the question (D), that is the indepen-
dency models ascribed to UGs are characterized in terms of properties analogous
to the semigraphoid properties. The properties are more complex, they allow dis-
junction of triplets as a consequent of an inference rule unlike one triplet in case
of properties of semigraphoid type. It follows from that construction that two UGs
over N are equivalent iff they are equal. Thus, the questions (E) and (F) are solved
in an ideal way for UGs.

The answer to the question (G) is also positive in the framework of UGs. The
reader can be surprised that the corresponding graph over a subset 7' C N is not the
induced subgraph for T in general. The corresponding restricted graph G is defined
as follows: u — v in G7T iff there exists a path in G between v and v consisting of
nodes of {u,v}U(N\T). The proof of the corresponding claim can be found in [27].

4. DIRECTED ACYCLIC GRAPHS

A directed acyclic graph (DAG) over N is a directed graph over N without directed
cycles. Note that a more precise name is ’acyclic directed graph’ but unfortunately
the most of authors became accustomed to the abbreviation DAG or use another
names like Bayesian network [29] or influence diagram. A DAG can be equivalently
introduced as a directed graph G whose (all) nodes can be ordered in a sequence
U1, ..., Uk, k> 1 such that if [u;,u;] is an edge in G for ¢ < j, then u; — u; in G.

There are two equivalent criteria to decide whether a triplet (X,Y|Z) € T(N) is
represented in an DAG G over N. Lauritzen et. al. [25] used so-called moralization
criterion while the group around J. Pearl [13] used a direct d-separation criterion in
which one tests whether paths in G from X to Y are ’blocked’ by Z (the definition
of blocking is special, it depends on directions of arrows of the path).

Let us describe the moralization criterion here. It has several stages. At first, one
takes the set T' = ang(X UY U Z) and considers the induced subgraph Gr. Then
G is changed into its moral graph H, that is the underlying graph of the graph
K (with mixed egdes) over T' which is obtained from the graph Gr by adding lines
u — v in K whenever there exists w € T having both u and v as parents in Gr. The
name 'moral graph’ was motivated by the fact that the parents of every node are
‘married’. The last step is to decide whether (X,Y|Z) is represented in the moral
graph H over T - this determines whether (X,Y|Z) € T(N) is represented in the
DAG G. The ascribed independency model over N then consists of triplets (over
N) represented in G.

Also in the framework of DAGs the answer to the question (C) is positive. In
[14] a construction of a desired probability distribution is given (which need not be
strictly positive).

As far as I know, the DAG-models were not so far satisfactory characterized in
terms of properties of independency models. In [29] several properties of models as-
cribed to DAGs are mentioned which imply that DAG-models are always graphoids.
However, these properties of semigraphoid type do not characterize DAG-models.
In [12] it is proved that DAG-models cannot be characterized by means of a finite



164 M. STUDENY

number of properties of semigraphoid type. On the other hand it is mentioned in the
paper [12] that Verma in a prepared (unfinished ?) research report found very com-
plex characterization of DAG-model which cannot be considered as an ’axiomatic’
characterization. Note that a special class of singly connected DAG-models was
characterized in terms of properties analogous to the semigraphoid properties in [5].
So, the question whether there exists certain reasonable ’axiomatic’ characterization
of DAG-models seems to remain open.

The answer to the question (E) was given at first in [40], but this result can be
found also in other publications, for example in [1, 34]. Let’s call immorality in an
DAG G over N every induced subgraph of G for a set T = {u, v, w} such that u — w
in G, v = w in G and [u,v] is not an edge in G. It was shown that two DAGs over
N are equivalent iff they have the same underlying graph and the same occurence
of immoralities.

On the other hand the question of representation of equivalence classes of DAGs
has not so elegant solution. There is no natural representative of a class of equiva-
lent DAGs within the class. Thus, hybrid graphs were used in literature [40, 1] to
represent uniquely the equivalence classes of DAGs. Let’s introduce the essential
graph of a class of equivalent DAGs over N is such a hybrid graph over N which has
the same underlying graph as every DAG from the considered equivalence class and
whose only arrows are those arrows which occur in every DAG from the equivalence
class (with the same orientation). The remaining edges of the essential graph are
lines. The essential graphs were characterized in graphical terms in [1].

The answer to the question (G) is negative in case of DAGs. This led to an effort
to study the models which are restrictions of DAG-models, see the ninth section.

Note that the problem of estimation of DAGs from data, more exactly estimation
of the essential graph on basis of the induced independency model (which can be
obtained as a result of statistical test based on data) was treated in [41] and [26].
A related question of choice of a suitable essential graph on basis of statistical data
was treated in [7].

The classes of UG-models and DAG-models are incomparable from qualitative
point of view. Examples can be found in [39]. As concerns quantitative comparison,
the number of DAG-models is higher than the number of UG-models for every N
with at least 3 nodes.

5. CHAIN GRAPHS

A chain graph (CG) over N is a hybrid graph over N without directed cycles.
The class of chain graphs was introduced by Lauritzen and Wermuth in middle
eighties [21]. Let us recall here the original equivalent definition which explains the
terminology. A chain for a hybrid graph G is a partition of N into ordered disjoint
(nonempty) subsets By, ..., B,, n > 1 called blocks such that, if [u,v] is an edge in
G with u,v € B; then v — v, and if [u,v] is an edge in G with u € B;,v € B;,i < j
then u — v. A CG is then a hybrid graph which admits a chain.
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Lauritzen [23], followed by Frydenberg [10], introduced the moralization criterion
for CGs. The only difference from the moralization criterion described in the pre-
ceding section is in a more general definition of the moral graph. Supposing G is
a hybrid graph over ) # T C N one defines a graph K with mixed edges over T
by adding lines v — v in K whenever there exist w,t¢ € T belonging to the same
connectivity component of G (possibly w = t) such that v — w in Gy and v — ¢ in
Gr. The moral graph H of G is the underlying graph of K. Well, the independency
model over N ascribed to a CG G consists of triplets (X,Y|Z) € T(N) represented
in G according to the moralization criterion for CGs.

An equivalent c-separation criterion which generalizes the d-separation criterion
for DAGs was introduced in [4]. In case of the separation criterion the difference
from the case of DAGs is more visible: if one verifies using c-separation criterion
whether (X,Y|Z) € T(N) is represented in a CG G over N, then one has to test a
more wider class of routes in a CG G from X to Y whether they are blocked’ by Z
(it is not sufficient to test only paths between X and Y, but on the other hand one
need not to test all routes).

The c-separation criterion made it possible to prove in [37] that every indepen-
dency model ascribed to a CG is a probabilistic independency model induced by
a strictly positive probability distribution. Thus, the correctness of CG-models is
ensured and every CG-model is a graphoid.

As far as I know, the question (D) for case of CGs was not studied so far.

However, equivalent CGs were characterized in graphical terms by Frydenberg
[10]. Let’s call a complez in a CG G over N every induced subgraph of G for a
set T' = {wy,...,wx}, k > 3 such that wy — we, w; — wiqq fori =2,... k-2,
wg—1 + wy in G, and no additional edge between (distinct) nodes of {wy,...,wy}
exist in G. It was shown that two CGs over N are equivalent iff they have the same
underlying graph and the same occurence of complexes. Evidently, the concept of a
complex generalizes the concept of an immorality from the preceding section (take
k = 3) and immoralities are the only complexes in a DAG. Thus, the characterization
of equivalent CGs generalizes the above mentioned characterization of equivalent
DAGs.

Moreover, unlike the case of DAGs, an elegant answer to the question (F) for
CGs was found: every class of equivalent CGs contains a naturally distinguished
CG! We say for two CGs G and H over N having the same underlying graph that
G is larger than H if every arrow in GG is an arrow in H with the same orientation.
Frydenberg [10] showed that every class of equivalent CGs contains a CG which is
larger than every other CG within the class (i.e. it has the greatest number of lines).
This distinguished CG is named the largest chain graph of that equivalence class.

Certain graphical characterization of largest CGs is given in the paper [38] where
also the problem of estimation of the largest CG on basis of the induced independency
model is treated. However, perhaps a more elegant graphical characterization of
largest CGs was lately found by M. Volf (my diploma student).

Although T did not checked it carefully, I think that the answer to the question

(G) in the framework of CGs is also negative: one can use the same example as in
case of DAGs.
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As concerns qualitative comparison, it is evident from the definitions above that
the class od CG-models involves both the class of UG-models and the class of DAG-
models. Thus, CGs give certain unifying point of view on Markov and Bayesian
networks. Note for information that in case card N = 3 one has 8 UG-models and
11 DAG-models (= CG-models), in case card N = 4 there exist 64 UG-models, 185
DAG-models and 200 CG-models, and in case card N = 5 one has 1024 UG-models,
8782 DAG-models (see [1]) and 11519 CG-models (a calculation of M. Volf).

6. MODELS IN THE FRAMEWORK OF CHAIN GRAPHS

There are three interesting classes of graphs used for description of conditional in-
dependence structures which can be somehow considered as subclasses of the class

of CGs.

Quite important class is the class of chordal (= triangulated) graphs. An UG
G is called chordal if every cycle uy,...,u,, n > 5 in G has a ’'chord’, that is a
line between nodes of {uy,...,u,_1} different from the lines of the cycle. Note that
chordal graphs induce so-called decomposable models [29] which have very pleasant
properties from the computational point of view and form mathematical basis of the
well-known method of local computation [24].

What is worthwhile to mention is that the class of independency models which
are simutaneously UG-models and DAG-models is exactly the class independency
models ascribed to chordal graphs. An ’axiomatic’ characterization of those inde-
pendency models in terms of properties analogous to the semigraphoid properties
was found in [6]. The reader may be interested in the fact that the answer to the
question (G) is positive for chordal graphs. One can easily verify that the restriction
GT of a chordal graph G is again a chordal graph.

In the paper [18] the class of recursive causal graphs is studied. A recursive causal
graph G over N can be equivalently defined as a CG which admits a chain such that
the only lines of G are lines within the first block. Thus, UGs and DAGs are special
cases of recursive graphs. Note that the way of ascribing the independency model
to recursive graphs is consonant with the way used in case of CGs. Thus, also from
the point of view of description of conditional independence structure CGs strictly
generalize recursive graphs: one can find a CG whose CG-model is not ascribed to
a recursive graph.

Shafer in his recent book [33] deals also with bubble graphs. A bubble graph over
N is specified by an ordered decomposition By, ..., B,, n > 1 of N into nonempty
subsets, named bubbles, and by a collection of ’arrows’ which point to bubbles al-
though they originate from single nodes taken from the preceding bubbles. Every
such a graph describes the class of probability distributions over N which satisfy
certain factorization formula.

A bubble graph B over N is not a graph in standard sense, but one can associate
with it a CG G over N made by joining nodes in each bubble of B by lines and
by replacing any ’arrow’ from a node u € N to a bubble B C N by the collection
of ordinary arrows from w to every node of B. Then one can derive easily using
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the result about the factorization formula associated with a CG from [10] that a
probability distribution over N satisfies the factorization formula corresponding to
the bubble graph B iff it induces the independency model ascribed to G. Thus,
bubble graphs can be naturally embedded into the class of CGs.

7. ANNOTATED GRAPHS

Paz and Geva introduced a few years ago so-called annotated graphs which can
describe very wide class of independency models. Let’s call an element over N any
couple [{u,v}|S] where u,v € N, u # v and S C N is a set with {u,v} NS = 0.
An annotated graph over N is a UG H = (N, £) supplemented by a collection £ of
elements over N. Intended interpretation of an element [{u,v}|S] € &£ is that a
(possible) line u — v in H is ’annotated’ by a set of nodes S. However the definition
above is too wide. The class of regular annotated graphs is defined in [27] as the
class of those annotated graphs which satisfy three regularity conditions. We will
not repeat these technical conditions here.

In the mentioned paper a so-called 'membership algorithm’ is introduced. This
algorithm decides whether a triplet (X,Y|Z) € T(N) is represented in a regular
annotated graph over N. Loosely said, the 'membership algorithm’ consists in suc-
cessive removal of the elements from &, by (corresponding) restriction of H and &
and by removal of certain edges of H. After those changes (when all elements from
& are removed) one tests whether (X,Y|Z) is represented in the resulting UG. In
certain sense the 'membership algorithm’ is analogous to the moralization criterion.

Thus, one can ascribe an independency model over N to every (regular) annotated
graph over N. It is shown in [27] that the independency model ascribed to a regular
annotated graph is always a graphoid.

The aim of introducing of annotated graphs was to have a condensed ’graphical
record’ for description of graphoid closures of unions of UG-models. It is shown in
[27] that for every sequence of UGs G; = (N;,L;), i = 1,...,k, k > 1 such that
N; C Niyq and £; C Li41 fori =1,...,k—1 one can construct a regular annotated
graph over N = N}, such that the independency model over N ascribed to that
annotated graph is exactly the graphoid closure of J{m(G;);i = 1,...,k} where
m(G;) C T(N;) C T(N) denotes the independency model ascribed to the UG G;
for every i = 1,...,k. As every CG-model can be obtained as such a graphoid
closure the annotated graphs generalize CGs from the point of view of description
of independency models.

On the other hand the question of correctness of annotated graphs is so far
unsolved. Similarly, the other questions mentioned in the second section are open.

Note for information that the idea to annnotate edges of a graph by sets of re-
maining nodes appeared also in the paper [3], this time for DAGs and by a couple
of disjoint subsets of the set of remaining modes. The class of IDAGs (that is ’an-
notated’ DAGs) introduced there allows to describe every graphoid. Therefore, the
answer to the question (C) for IDAGs is negative. Moreover, the question whether
every independency model ascribed to an IDAG was not mentioned in [3].
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8. GRAPHS ALLOWING DIRECTED CYCLES

A natural way of generalization of DAGs and CGs is to allow directed cycles. We
have mentioned two such approaches in literature.

Spirtes et. al. in their book [34] alredy mentioned possible use of general directed
graphs for desription of models allowing also feedback. Note that they used partially
misleading terminology ’directed cyclic graphs’, although the considered class of
graphs involves DAGs.

In fact, one can ascribe an independency model over N to every directed graph
over N using the moralization criterion described in the fourth section for DAGs. It
was mentioned in [35] that one can also generalize directly d-separation criterion and
that both criteria are equivalent also in case of general directed graphs. Moreover,
Spirtes [35] showed that the completeness result with respect to the class of non-
degenerate Gaussian distributions. Thus, (Gaussian) correctness of those models is
almost ensured.

Attention was devoted also to the questions (E) and (F) from the second sec-
tion. Richardson [31] gave a graphical characterization of equivalent (general) di-
rected graphs. However, the mentioned characterization is quite complicated (unlike
the case of DAGs): it involves 6 special independent conditions. In another paper
Richardson [32] proposed to use special representatives of classes of equivalent di-
rected graphs, named 'PAGs’. These representatives are much more complicated
mathematical objects, namely graphs over the N whose edges have 3 possible end-
ings for both end-nodes and where the endings of different edges near a common
end-node may be connected by two possible ’connections’. Each 'mark’ in a PAG
express certain graphical property shared by all graphs within the equivalence class.
On the other hand it is claimed that PAGs allow also to describe restrictions of
(general) directed graph models (Richardson’s oral communication). Note for expla-
nation that the answer to the question (G) is negative also in case of general directed
graphs.

Koster [19] introduced lately a very general class of reciprocal graphs. A reciprocal
graph G over N is a graph with mixed edges over N such that there is no arrow in G
between two nodes belonging to the same connectivity component of G. Thus, every
CG is a reciprocal graph and every (general) directed graph is a reciprocal graph.
Koster ascribed an independency model over IV to every reciprocal graph by means
of the moralization criterion described in the fifth section for the case of CGs. Note
that in case of directed graphs it collapses to the moralization criterion treated by
Spirtes et. al.

Thus, the independency models ascribed to reciprocal graphs involve both CG-
models and the models ascribed to (general) cyclic graphs. On the other hand, the
question of correctness of reciprocal graphs is solved only partially so far. Koster
established connection of so-called ’simultaneous equation systems’ (LISREL mod-
els) [20] with certain subclass of the class of reciprocal graphs (not involving CGs).
Furthemore, for this special subclass a completeness result was achieved with respect
to the class of Gaussian distributions.
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However, as far as I know, the other questions of our interest were not solved in
the framework of reciprocal graphs.

9. MODELS WITH HIDDEN VARIABLES

It was mentioned in the fourth section that the restriction of a DAG-model may not
be a DAG-model. This led to an idea to describe the restrictions of DAG-models
by means of graphical diagrams. Geiger, Paz and Pearl [16] developed the ideas
from [30] and introduced so-called ’embedded Bayesian networks’ for this purpose.
An embedded Bayesian network over N is graph over N allowing both directed and
bidirected edges (at most one edge is allowed between two different nodes) such that
purely directed cycles (i.e. directed cycles made of arrows only, without bidirected
edges) are not present in the graph.

In [16] an independency model over N is ascribed to every such a special graph G
over N (using a generalized d-separation criterion) and it is mentioned in text that
one can always find a DAG H over a superset M D N such that the restriction of
the independency model m(H) over M (i.e. of the model ascribed to the DAG H)
to IV is exactly the independency model over N ascribed to G. Especially, owing to
correctness of DAG-models and the fact the restriction of a probabilistic model is a
probabilistic model, the independency model over N ascribed to G is a probabilistic
independency model. So, the answer to the question (C) is positive for embedded
Bayesian networks.

Moreover, according to Pearl’s oral communication, Verma showed that every
restriction of a DAG-model can be ascribed in such a way to certian embedded
Bayesian network - probably in [30].

Note that in recent literature (not referenced here) the restrictions of DAG-models
are often named the models with hidded variables. The reason is evident: one can
imagine that N contains ’observed’ variables but the actual DAG-model is over its
superset M O N and therefore M \ N is the set of "'unobserved’ or hidded variables.

10. MODELS WITH ALTERNATIVE INTERPRETATION

Some authors interpret the above mentioned graphs in another way, that is they de-
fine the interpretation mapping m mentioned in the second section in another way.
These approaches were developed especially by Wermuth and were intended mainly
for description of conditional independence structures induced by nondegenerate
Gaussian distributions. To distinguish the ’classic’ and the alternative interpreta-
tion Cox and Wermuth use in their book [8] in pictures dashed lines respectively
dashes arrows instead of ’classic’ solid lines and solid arrows if they have in mind an
alternative way of interpretation.

Cox and Wermuth [8] consider a class of generalized CGs. A joint-response chain
graph G is a CG in which every arrow is either a solid arrow or a dashed arrow and
every line is either a solid line or a dashed line and where for every connectivity
component C' the following two conditions hold:
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e all lines within C are either solid or dashed,
e all arrows directed to nodes of C' are either solid or dashed.

Nevertheless, Cox and Wermuth do not ascribe directly the independency models
to their generalized CGs. They rather describe in words (in one special chapter)
what they understand by the class of (non-degenerate Gaussian) distributions which
are Markovian with respect to a joint-response CG. So, the question whether the as-
signed class of distributions can be characterized as the class of distribution inducing
certain independency model, that is the question (B), is open in general.

However, the mentioned question was anwered in a few special cases. Kauer-
mann [17] answered it for the subclass of covariance graphs that is UGs made of
dashed lines. The corresponding independency model which should be ascribed to
such a graph G over N consists of those triplets (X,Y|Z) € T(N) such that every
path in G from a node in X to a node in Y contains a node in N \ Z. He also
showed the completeness result with respect to the class of nondegenerate Gaussian
distributions.

A similar attitude occurs in the paper [2] where another independency model is
assigned to every CG. Andersson, Madigan and Perlman introduced a criterion to
decide whether a triplet over N is represented in a CG. This criterion is analogous
to the moralization criterion described in the fifth section but it is different from
it. Instead of the moral graph they define so-called ’augmented graph’, otherwise
everything is analogous. The alternative CGs from [2] then probably correspond to
the generalized CGs with solid lines and dashed lines from [8] (according to Madi-
gan’s oral communication). Moreover (also according to an oral communication),
one can introduce an equivalent ’separation’ criterion which allows to verify that the
alternatively ascribed independency model is indeed a probabilistic independency
model.
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