
WUPES ' 9 7 , J a n u a r y 2 2 { 2 5 , P r a g u eCOMPARISON OF GRAPHICAL APPROACHES TODESCRIPTION OF CONDITIONAL INDEPENDENCESTRUCTURESM. Studen�y
Two traditional classes of graphs used to describe probabilistic conditional independencestructures are undirected graphs and directed acyclic graphs. In recent years several widerclasses of graphs have been used in literature for this purpose: general directed graphs,chain graphs, reciprocal graphs and annotated graphs. The aim of this contribution isto give except an overview a rough comparison of achieved results. That means, severalquestions of general interest are raised and it is mentioned which questions are alreadyanswered.INTRODUCTIONGraphs whose nodes correspond to random variables are traditional tools for de-scription of structures of multidimensional probability distributions. One can dis-tinguish two classic graphical approaches to description of conditional independencestructure of a probability distribution: either using undirected graphs (we will usethe abbreviation UG) or using directed acyclic graphs (we will use the abbreviationDAG). However, in recent years more general classes of graphs have been proposedfor description of conditional independence structures (of probability distributions).This paper tries to give a rough overview of these new graphical approaches.Each mentioned approach is recorded by an informal description of its character-istic features and by corresponding reference. Several relevant results concerningthe respective approach are sometimes recalled or paraphrased (this is the case ofclassic approaches). The ambition of the paper is not a profound complete surveyof all graphical approaches to description of probabilistic conditional independencestructure. It is simply only an overview of those approaches which the author cameacross and its aim is to inform other participants of WUPES'97 about recent de-velopment in this area. I would like to make a preventive apology to all authors ofreferenced papers for possible misinterpretation.The structure of the paper is the following one. In the �rst section we recall a fewbasic concepts. To give certain unifying point of view on all graphical approacheswe try to give in the second section a list of general questions of theoretical signi�-cance which can be raised and studied for each mentioned graphical approach. Such



Comparison of graphical approaches to description of conditional independence structures 157a (subjective) list makes it possible to classify in subsequent sections the resultsconcerning respective graphical approaches.Then, we recall the results concerning the classic approaches. The third sectiondeals with UGs, the fourth section with DAGs. Similar attention is devoted to theclass of chain graphs (we use the abbreviation CG) in the �fth section. The class ofCGs involves both UGs and DAGs. Further three classes of graphs which can be (incertain sense) considered as subclasses of the class of CGs will be mentioned in thesixth section.Remainig four sections describe graphical approaches which somehow go beyondthe framework of CGs. Each section is devoted to another direction, that is toanother way of generalization. The seventh section deals with annotated graphs,that is undirected graphs whose edges (in fact not only edges) are annotated by asubset of remaining nodes. The eighth section is devoted to graphs in which directedcycles are allowed. We will mention both general directed graphs and a very generalclass of reciprocal graphs which involves the class of CGs. Another direction togeneralization is to consider possibility of a hidden variable, that is to consider amodel obtained by a restriction of a graphical model to a subset of variables (see theninth section). Last section deals with approaches which do not generalize graphs butascribe the corresponding model of conditional independence structure in a di�erentway. Shortly, these approaches give alternative interpretation to the graphs. Theseapproaches involve so-called covariance graphs and generalized CGs.1. BASIC CONCEPTSSupposing N is a nonempty �nite set of variables let us denote by T (N) the class oftriplets hX;Y jZi of disjoint subsets of N whose �rst two components X and Y arenonempty. These triplets will be used to describe particular conditional indepen-dency statements. A independency model over a N is a subset of T (N). The classof all independency models over N can be denoted by I(N).IfM � T (N) is an independency model over N , then the restriction ofM to asubset of variables ; 6= T � N isM\ T (T ).A (discrete) probability distribution overN is speci�ed by a collection of nonempty�nite sets fXi; i 2 Ng (indexed by N) and by a function P : Qi2N Xi ! [0; 1]withPfP (x); x 2 Qi2N Xig = 1. If P (x) > 0 for all x 2Qi2N Xi, then P is calledstrictly positive. Whenever ; 6= T � N and P is a probability distribution over Nits marginal distribution for T is a probability distribution P T (over T ) de�ned asfollows (PN � P ) :P T (x) =PfP (x;y); y 2Qi2NnT Xig for x 2Qi2T Xi .Having hX;Y jZi 2 T (N) and a probability distribution P over N we say that X isconditionally independent of Y given Z with respect to P and write X ?? Y jZ (P )if8 x 2Qi2X Xi y 2 Qi2Y Xi z 2Qi2Z XiPX[Y [Z(x;y; z) � PZ(z) = PX[Z(x; z) � P Y [Z(y; z) ;where we accept the convention P ;(�) � 1.



158 M. STUDEN�YThe independency model induced by a probability distribution P over N is thecollection of all triplets hX;Y jZi 2 T (N) such that X ?? Y jZ (P ).(Discrete) probabilistic independency model over N is an independency modelinduced by a (discrete) probability distribution over N . The class of all such proba-bilistic independency models over N can be denoted by P(N). Evidently, restrictionof a probabilistic independency model to a set ; 6= T � N is a probabilistic inde-pendency model over T here.Note that in our overview also independency models induced by continous (moreexactly nondegenerate Gaussian) distributions are mentioned although we decidedto omit the corresponding de�nitions.Several authors independently accentuated some basic properties of probabilisticindependency models [9, 36]. Pearl and Paz [28] highlighted the importance of thoseproperties in probabilistic reasoning and introduced the concept of semigraphoid asan independency model closed under the 'inference rules' below. The 'rules' shouldbe understood as follows: if an independeny model contains the triplets before thelong arrow, then it contains also the triplet after the long arrow.hA;BjCi �! hB;AjCi symmetryhA;B [ CjDi �! hA;CjDi decompositionhA;B [ CjDi �! hA;BjC [Di weak union[hA;BjC [Di & hA;CjDi] �! hA;B [ CjDi contraction.It is called a graphoid if it moreover satis�es:[hA;BjC [Di & hA;CjB [Di] �! hA;B [ CjDi intersection.It is known [9] that every independency model induced by a strictly positive distri-bution is a graphoid. A graphoid closure ofM� T (N) consists of those triplets inT (N) which are derivable fromM by consecutive application of graphoid inferencerules. Evidently, it is a graphoid.In general, a graph over a nonempty �nite set of variables N will have the set Nas the set of nodes and will be given usually by a set of 'edges'. What is meant by an'edge' in a graph will be speci�ed later separately for each considered class of graphs.In this section we introduce certain quite general class of graphs which involves themajority of treated classes of graphs (but not all of them). We distinguish here twobasic types of edges over N : undirected edges, called lines and directed edges, calledarrows. A line over N is an unordered couple fu; vg where u; v 2 N , u 6= v (thatis a two-element subset of N). An arrow over N is an ordered couple (u; v) whereu; v 2 N , u 6= v.A graph with mixed edges over (a set of nodes N) is speci�ed by a set of lines Lover N and by a set of arrows A over N . Supposing G = (N;L;A) is such a graphin case fu; vg 2 L we say that there exists a line between u and v in G and write'u! v in G'. Similarly, in case (u; v) 2 A we say that there exists an arrow from uto v in G and write 'u ! v in G' or 'v  u in G'. If either u ! v in G, or u ! vin G, or u  v in G, then we say that [u; v] is an edge in G. Note explicitly thatsuch a de�nition allows (for a couple of distinct nodes u; v 2 N) that each of u! v,u ! v and u  v are simultaneously edges in G! A hybrid graph over N is such agraph with mixed edges G that for a couple of distinct nodes u; v 2 N at most oneof those possibilities occurs in G.



Comparison of graphical approaches to description of conditional independence structures 159If ; 6= T � N , then the induced subgraph of G for T is a graph GT = (T;LT ;AT )over T where LT (resp. AT ) is the set of those lines (resp. arrows) over T which arealso in L (resp. in A).A route from a node u to a node v (or between nodes u and v) in such a graphG is a sequence of nodes w1; : : : ; wn 2 N , n � 1 together with a seguence of edges�1; : : : ; �n�1 2 L [ A (possibly empty in case n = 1) such that u = w1, v = wn and�i is either wi ! wi+1, or wi ! wi+1, or wi  wi+1 for i = 1; : : : ; n� 1. A route iscalled descending if �i is either wi ! wi+1, or wi ! wi+1 for i = 1; : : : ; n � 1, andundirected if �i is wi ! wi+1 for i = 1; : : : ; n� 1. Especially, every undirected routeis a descending route.A path is a route in which all nodes w1; : : : ; wn are distinct, a cycle is a routewhere n � 2, w1 = wn and w1; : : : ; wn�1 are distinct. A directed cycle is a cyclewhich is a descending route and where �i is wi ! wi+1 at least once.We say that a node u is a parent of a node v in G if u ! v in G, and u is anancestor of v in G if there exists a descending route (equivalently a descending path)from u to v in G, and u is connected to v in G if there exists an undirected route(equivalently an undirected path) between u and v. Supposing A � N the symbolanG(A) denoted the set of ancestors of the nodes of A in G. Clearly, the relation 'beconnected' is an equivalence relation which decomposes N into equivalence classes,named connectivity components.An undirected graph (UG) is a graph containing only lines (that is A = ;), adirected graph is a graph containing only arrows (that is L = ;). The underlyinggraph H of a graph with mixed edges G = (N;L;A) is an undirected graph H overN such that u! v in H i� [u; v] is an edge in G.However, one of the later mentioned approaches even allows two di�erent typesof lines (so-called 'solid' lines and 'dashed' lines) and analogously two di�erent typesof arrows. In another approach, a graph is not speci�ed by a set of edges only butalso by further mathematical entities (annotation).2. QUESTIONS RELATED TO GRAPHICAL APPROACHESIn this section we formulate several questions of theoretical interest which arisein connection with graphical methods of description of probabilistic independencymodels. If one decides to use certain class of graphs G for description of those models,then one should clarify undoubtedly the following two basic issues.A Establishment of the class of graphs:How exactly the class of respective graphs G(N) overN is speci�ed for each nonempty�nite set of variables N?B Ascription of the independency model:How exactly an independency model over N is ascribed to every graph from G(N)?Thus, the �rst question is aswered if one gives the de�nition of the class G(N) ofconsidered graphs over N , and the second question is answered if one de�nes (for



160 M. STUDEN�Y
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Figure 1: An independency model over N is ascribed to every graph over N .each N) an interpretation mapping m from G(N) to the class I(N) of independencymodels over N (�gure 1 gives an illustrative picture).Remark Although we did not mention it explicitly (since it is almost impossible toformulate exactly) we have in mind a 'consistent' way of introducing of a graphicalframework. That means introducing of G(N) and the de�nition of the mappingm for each N has a common intuitive 'source' behind which does not depend onN . Bluntly said, we are not interested in 'inconsistent' graphical frameworks wherefor example G(N) is in case cardN = 3 the class of undirected graphs over N butin case cardN = 4 it is the class of directed graphs over N . We hope that thereader understands our intuitive aim: it will become more clear from examples insubsequent sections. To be true, our 'intuitive' assumption has as a result manyelegant properties which we consider as self-evident. For example, a permutation �on a set N induces naturally a permutation �� of G(N) and a permutation �� ofI(N) and the interpretation mapping m should commute with these permutations,that one should have m(��(G)) = ��(m(G)) for every G 2 G(N).As concerns the question (B) let us note that its formulation above 'simpli�es'the real historical development. In fact, for both classic graphical approaches (i.e.UGs and DAGs) at �rst the class of distributions having the structure describedby a graph was somehow introduced. For example, several structural conditions ondistributions with respect to a graph were introduced (i.e. the Gibbs condition, thepairwise Markov condition, the local Markov condition, the global Markov conditionetc.), their relation was studied (namely their equivalence for strictly positive dis-tributions was shown) and thus, the class of Markovian distributions was assignedto every graph from the considered class of graphs. Then the researchers solved thequestion whether the assigned class of distributions can be equivalently characterized



Comparison of graphical approaches to description of conditional independence structures 161as the class of distributions inducing certain independency model. So, the indepen-dency model m(G) ascribed to a graph G 2 G(N) has meaning of the independencystructure described by the graph.Instead of describing the conditional independence structure of a probability dis-tribution P over N by means of the independency model M 2 I(N) induced byP we wish to describe the structure by a graph G 2 G(N) such that M = m(G).Thus, the the �rst natural question is the following one.C Correctness:Is the modelm(G) ascribed to a graph G overN indeed a probabilistic independencymodel over N (for every N and every G 2 G(N) of course)?In mathematical language we ask whether m(G(N)) � P(N) for every N . Notethat some authors call positive results of this type the strong completeness results.By the completeness result they understand a weaker result saying that for everyG 2 G(N) and for every hX;Y jZi 2 T (N) outside m(G) there exists a probabilitydistribution P over N such that its induced independency model contains m(G) but:[X ?? Y jZ (P ) ]. As the reader will see later, this basic question is still open forsome of mentioned new approaches. However, another relevant question was studied.D Characterization of ascribed independecy models:Is it possible to characterize the ascribed independency models in terms of propertiesof those independency models?More exactly, we wish to characterize the range of the mapping m, that ism(G(N)), without a reference to G(N) (for every N). The aim is to obtain cer-tain type of 'axiomatic' characterization of ascribed independency models, that is tocharacterize them as independency models closed under a �nite number of inferencerules of semigraphoid type. A special task within the framework of this question,which was often a topic of research, is the task whether every ascribed independencymodel is a graphoid.The interpretation mapping m induces on G(N) a natural equivalence relation:we say that two graphs G and H from G(N) are equivalent if m(G) = m(H). Theequivalence relation characterizes the situation when G and H describe the sameindependency model. This leads to a couple of questions.E Characterization of equivalent graphs:Is it possible to characterize the equivalence relation of graphs in graphical terms?F Representation of the class of equivalent graphs:Is there any (natural) representative of every class of equivalent graphs?As concerns the previous question, an ideal representative of the equivalenceclass is surely a naturally distinguished graph from the equivalence class, but onecan consider also represetation by more general mathematical objects (for exampleby more general graphs) which somehow encode features shared by all graphs withinthe equivalence class.Further question of our interest concerns restriction of independency models.



162 M. STUDEN�YG Behaviour with respect to restriction:Could be the restriction of every independency model ascribed to a graph G 2 G(N)to every subset of ; 6= T � N realized as the independency model ascribed to agraph from G(T )?In mathematical language we ask whether it holds rT (m(G(N))) � mT (G(T )) forevery ; 6= T � N where rT denotes the operation of restriction of independencymodels to T and mT the interpretation mapping for the set T . The signi�cance ofa positive answer to this question is evident: restriction of graphical independencymodel to a set of variables can be performed directly in graphical terms.The previous questions were mainly of theoretical interest. However, most of thepapers in the �eld of probabilistic reasoning are concerned with the following, morespeci�c question.H Estimation of graphs from data:Suppose that statistical data are 'generated from' a distribution over N inducing anindependency model m(G) for a G 2 G(N). How to obtain (an estimate of) such agraph on basis of the data?Note that we omit this important question in our overview below for limited scopeof a conference paper. Nevertheless, we will pay little attention to the following task.I Comparison:Compare di�erent classes of graphical independency models, either qualitatively orquantitatively.As concerns qualitative comparison we can ask whether for every N the classof independency models ascribed to one class of graphs G1(N) (by a mapping m1)contains the class of independency models ascribed to another class of graphs G2(N)(by a mapping m2). By quantitative comparison we understand to compare thenumber of independency models ascribed to graphs from G1(N) with the number ofindependency models ascribed to graphs from G2(N).3. UNDIRECTED GRAPHSThe class of UGs was already de�ned in the �rst section. Note that in [29] UGs werenamed also Markov networks.A triplet hX;Y jZi 2 T (N) is represented in an UG G over N if every path inG between a node in X and a node in Y contains a node in Z (such a path isnecessarily an undirected path). One can ascribe to G the independency model overN consisting of the triplets over N represented in G.It was shown in [15] that every independency model ascribed to an UG is a prob-abilistic independency model induced by a strictly positive distribution. Especially,every UG-model, that is an independency model ascribed to an UG, is a graphoid.See also [11] for the completeness result with respect to the class of nondegenerateGaussian distributions. Thus, the correctness of UG-models is ensured.



Comparison of graphical approaches to description of conditional independence structures 163In [29, 28] one can �nd also an answer to the question (D), that is the indepen-dency models ascribed to UGs are characterized in terms of properties analogousto the semigraphoid properties. The properties are more complex, they allow dis-junction of triplets as a consequent of an inference rule unlike one triplet in caseof properties of semigraphoid type. It follows from that construction that two UGsover N are equivalent i� they are equal. Thus, the questions (E) and (F) are solvedin an ideal way for UGs.The answer to the question (G) is also positive in the framework of UGs. Thereader can be surprised that the corresponding graph over a subset T � N is not theinduced subgraph for T in general. The corresponding restricted graph GT is de�nedas follows: u ! v in GT i� there exists a path in G between u and v consisting ofnodes of fu; vg[ (N nT ). The proof of the corresponding claim can be found in [27].4. DIRECTED ACYCLIC GRAPHSA directed acyclic graph (DAG) over N is a directed graph over N without directedcycles. Note that a more precise name is 'acyclic directed graph' but unfortunatelythe most of authors became accustomed to the abbreviation DAG or use anothernames like Bayesian network [29] or inuence diagram. A DAG can be equivalentlyintroduced as a directed graph G whose (all) nodes can be ordered in a sequenceu1; : : : ; uk, k � 1 such that if [ui; uj ] is an edge in G for i < j, then ui ! uj in G.There are two equivalent criteria to decide whether a triplet hX;Y jZi 2 T (N) isrepresented in an DAG G over N . Lauritzen et. al. [25] used so-called moralizationcriterion while the group around J. Pearl [13] used a direct d-separation criterion inwhich one tests whether paths in G from X to Y are 'blocked' by Z (the de�nitionof blocking is special, it depends on directions of arrows of the path).Let us describe the moralization criterion here. It has several stages. At �rst, onetakes the set T = anG(X [ Y [ Z) and considers the induced subgraph GT . ThenGT is changed into its moral graph H , that is the underlying graph of the graphK (with mixed egdes) over T which is obtained from the graph GT by adding linesu! v in K whenever there exists w 2 T having both u and v as parents in GT . Thename 'moral graph' was motivated by the fact that the parents of every node are'married'. The last step is to decide whether hX;Y jZi is represented in the moralgraph H over T - this determines whether hX;Y jZi 2 T (N) is represented in theDAG G. The ascribed independency model over N then consists of triplets (overN) represented in G.Also in the framework of DAGs the answer to the question (C) is positive. In[14] a construction of a desired probability distribution is given (which need not bestrictly positive).As far as I know, the DAG-models were not so far satisfactory characterized interms of properties of independency models. In [29] several properties of models as-cribed to DAGs are mentioned which imply that DAG-models are always graphoids.However, these properties of semigraphoid type do not characterize DAG-models.In [12] it is proved that DAG-models cannot be characterized by means of a �nite



164 M. STUDEN�Ynumber of properties of semigraphoid type. On the other hand it is mentioned in thepaper [12] that Verma in a prepared (un�nished ?) research report found very com-plex characterization of DAG-model which cannot be considered as an 'axiomatic'characterization. Note that a special class of singly connected DAG-models wascharacterized in terms of properties analogous to the semigraphoid properties in [5].So, the question whether there exists certain reasonable 'axiomatic' characterizationof DAG-models seems to remain open.The answer to the question (E) was given at �rst in [40], but this result can befound also in other publications, for example in [1, 34]. Let's call immorality in anDAG G overN every induced subgraph of G for a set T = fu; v; wg such that u! win G, v ! w in G and [u; v] is not an edge in G. It was shown that two DAGs overN are equivalent i� they have the same underlying graph and the same occurenceof immoralities.On the other hand the question of representation of equivalence classes of DAGshas not so elegant solution. There is no natural representative of a class of equiva-lent DAGs within the class. Thus, hybrid graphs were used in literature [40, 1] torepresent uniquely the equivalence classes of DAGs. Let's introduce the essentialgraph of a class of equivalent DAGs over N is such a hybrid graph over N which hasthe same underlying graph as every DAG from the considered equivalence class andwhose only arrows are those arrows which occur in every DAG from the equivalenceclass (with the same orientation). The remaining edges of the essential graph arelines. The essential graphs were characterized in graphical terms in [1].The answer to the question (G) is negative in case of DAGs. This led to an e�ortto study the models which are restrictions of DAG-models, see the ninth section.Note that the problem of estimation of DAGs from data, more exactly estimationof the essential graph on basis of the induced independency model (which can beobtained as a result of statistical test based on data) was treated in [41] and [26].A related question of choice of a suitable essential graph on basis of statistical datawas treated in [7].The classes of UG-models and DAG-models are incomparable from qualitativepoint of view. Examples can be found in [39]. As concerns quantitative comparison,the number of DAG-models is higher than the number of UG-models for every Nwith at least 3 nodes.5. CHAIN GRAPHSA chain graph (CG) over N is a hybrid graph over N without directed cycles.The class of chain graphs was introduced by Lauritzen and Wermuth in middleeighties [21]. Let us recall here the original equivalent de�nition which explains theterminology. A chain for a hybrid graph G is a partition of N into ordered disjoint(nonempty) subsets B1; : : : ; Bn, n � 1 called blocks such that, if [u; v] is an edge inG with u; v 2 Bi then u! v, and if [u; v] is an edge in G with u 2 Bi; v 2 Bj ; i < jthen u! v. A CG is then a hybrid graph which admits a chain.



Comparison of graphical approaches to description of conditional independence structures 165Lauritzen [23], followed by Frydenberg [10], introduced the moralization criterionfor CGs. The only di�erence from the moralization criterion described in the pre-ceding section is in a more general de�nition of the moral graph. Supposing GT isa hybrid graph over ; 6= T � N one de�nes a graph K with mixed edges over Tby adding lines u ! v in K whenever there exist w; t 2 T belonging to the sameconnectivity component of GT (possibly w = t) such that u! w in GT and v ! t inGT . The moral graph H of GT is the underlying graph of K. Well, the independencymodel over N ascribed to a CG G consists of triplets hX;Y jZi 2 T (N) representedin G according to the moralization criterion for CGs.An equivalent c-separation criterion which generalizes the d-separation criterionfor DAGs was introduced in [4]. In case of the separation criterion the di�erencefrom the case of DAGs is more visible: if one veri�es using c-separation criterionwhether hX;Y jZi 2 T (N) is represented in a CG G over N , then one has to test amore wider class of routes in a CG G from X to Y whether they are 'blocked' by Z(it is not su�cient to test only paths between X and Y , but on the other hand oneneed not to test all routes).The c-separation criterion made it possible to prove in [37] that every indepen-dency model ascribed to a CG is a probabilistic independency model induced bya strictly positive probability distribution. Thus, the correctness of CG-models isensured and every CG-model is a graphoid.As far as I know, the question (D) for case of CGs was not studied so far.However, equivalent CGs were characterized in graphical terms by Frydenberg[10]. Let's call a complex in a CG G over N every induced subgraph of G for aset T = fw1; : : : ; wkg, k � 3 such that w1 ! w2, wi ! wi+1 for i = 2; : : : ; k � 2,wk�1  wk in G, and no additional edge between (distinct) nodes of fw1; : : : ; wkgexist in G. It was shown that two CGs over N are equivalent i� they have the sameunderlying graph and the same occurence of complexes. Evidently, the concept of acomplex generalizes the concept of an immorality from the preceding section (takek = 3) and immoralities are the only complexes in a DAG. Thus, the characterizationof equivalent CGs generalizes the above mentioned characterization of equivalentDAGs.Moreover, unlike the case of DAGs, an elegant answer to the question (F) forCGs was found: every class of equivalent CGs contains a naturally distinguishedCG! We say for two CGs G and H over N having the same underlying graph thatG is larger than H if every arrow in G is an arrow in H with the same orientation.Frydenberg [10] showed that every class of equivalent CGs contains a CG which islarger than every other CG within the class (i.e. it has the greatest number of lines).This distinguished CG is named the largest chain graph of that equivalence class.Certain graphical characterization of largest CGs is given in the paper [38] wherealso the problem of estimation of the largest CG on basis of the induced independencymodel is treated. However, perhaps a more elegant graphical characterization oflargest CGs was lately found by M. Volf (my diploma student).Although I did not checked it carefully, I think that the answer to the question(G) in the framework of CGs is also negative: one can use the same example as incase of DAGs.



166 M. STUDEN�YAs concerns qualitative comparison, it is evident from the de�nitions above thatthe class od CG-models involves both the class of UG-models and the class of DAG-models. Thus, CGs give certain unifying point of view on Markov and Bayesiannetworks. Note for information that in case cardN = 3 one has 8 UG-models and11 DAG-models (= CG-models), in case cardN = 4 there exist 64 UG-models, 185DAG-models and 200 CG-models, and in case cardN = 5 one has 1024 UG-models,8782 DAG-models (see [1]) and 11519 CG-models (a calculation of M. Volf).6. MODELS IN THE FRAMEWORK OF CHAIN GRAPHSThere are three interesting classes of graphs used for description of conditional in-dependence structures which can be somehow considered as subclasses of the classof CGs.Quite important class is the class of chordal (= triangulated) graphs. An UGG is called chordal if every cycle u1; : : : ; un, n � 5 in G has a 'chord', that is aline between nodes of fu1; : : : ; un�1g di�erent from the lines of the cycle. Note thatchordal graphs induce so-called decomposable models [29] which have very pleasantproperties from the computational point of view and form mathematical basis of thewell-known method of local computation [24].What is worthwhile to mention is that the class of independency models whichare simutaneously UG-models and DAG-models is exactly the class independencymodels ascribed to chordal graphs. An 'axiomatic' characterization of those inde-pendency models in terms of properties analogous to the semigraphoid propertieswas found in [6]. The reader may be interested in the fact that the answer to thequestion (G) is positive for chordal graphs. One can easily verify that the restrictionGT of a chordal graph G is again a chordal graph.In the paper [18] the class of recursive causal graphs is studied. A recursive causalgraph G over N can be equivalently de�ned as a CG which admits a chain such thatthe only lines of G are lines within the �rst block. Thus, UGs and DAGs are specialcases of recursive graphs. Note that the way of ascribing the independency modelto recursive graphs is consonant with the way used in case of CGs. Thus, also fromthe point of view of description of conditional independence structure CGs strictlygeneralize recursive graphs: one can �nd a CG whose CG-model is not ascribed toa recursive graph.Shafer in his recent book [33] deals also with bubble graphs. A bubble graph overN is speci�ed by an ordered decomposition B1; : : : ; Bn, n � 1 of N into nonemptysubsets, named bubbles, and by a collection of 'arrows' which point to bubbles al-though they originate from single nodes taken from the preceding bubbles. Everysuch a graph describes the class of probability distributions over N which satisfycertain factorization formula.A bubble graph B over N is not a graph in standard sense, but one can associatewith it a CG G over N made by joining nodes in each bubble of B by lines andby replacing any 'arrow' from a node u 2 N to a bubble B � N by the collectionof ordinary arrows from u to every node of B. Then one can derive easily using



Comparison of graphical approaches to description of conditional independence structures 167the result about the factorization formula associated with a CG from [10] that aprobability distribution over N satis�es the factorization formula corresponding tothe bubble graph B i� it induces the independency model ascribed to G. Thus,bubble graphs can be naturally embedded into the class of CGs.7. ANNOTATED GRAPHSPaz and Geva introduced a few years ago so-called annotated graphs which candescribe very wide class of independency models. Let's call an element over N anycouple [ fu; vg jS ] where u; v 2 N , u 6= v and S � N is a set with fu; vg \ S = ;.An annotated graph over N is a UG H = (N;L) supplemented by a collection E ofelements over N . Intended interpretation of an element [ fu; vg jS ] 2 E is that a(possible) line u! v in H is 'annotated' by a set of nodes S. However the de�nitionabove is too wide. The class of regular annotated graphs is de�ned in [27] as theclass of those annotated graphs which satisfy three regularity conditions. We willnot repeat these technical conditions here.In the mentioned paper a so-called 'membership algorithm' is introduced. Thisalgorithm decides whether a triplet hX;Y jZi 2 T (N) is represented in a regularannotated graph over N . Loosely said, the 'membership algorithm' consists in suc-cessive removal of the elements from E , by (corresponding) restriction of H and Eand by removal of certain edges of H . After those changes (when all elements fromE are removed) one tests whether hX;Y jZi is represented in the resulting UG. Incertain sense the 'membership algorithm' is analogous to the moralization criterion.Thus, one can ascribe an independency model overN to every (regular) annotatedgraph over N . It is shown in [27] that the independency model ascribed to a regularannotated graph is always a graphoid.The aim of introducing of annotated graphs was to have a condensed 'graphicalrecord' for description of graphoid closures of unions of UG-models. It is shown in[27] that for every sequence of UGs Gi = (Ni;Li), i = 1; : : : ; k, k � 1 such thatNi � Ni+1 and Li � Li+1 for i = 1; : : : ; k� 1 one can construct a regular annotatedgraph over N = Nk such that the independency model over N ascribed to thatannotated graph is exactly the graphoid closure of Sfm(Gi); i = 1; : : : ; kg wherem(Gi) � T (Ni) � T (N) denotes the independency model ascribed to the UG Gifor every i = 1; : : : ; k. As every CG-model can be obtained as such a graphoidclosure the annotated graphs generalize CGs from the point of view of descriptionof independency models.On the other hand the question of correctness of annotated graphs is so farunsolved. Similarly, the other questions mentioned in the second section are open.Note for information that the idea to annnotate edges of a graph by sets of re-maining nodes appeared also in the paper [3], this time for DAGs and by a coupleof disjoint subsets of the set of remaining modes. The class of IDAGs (that is 'an-notated' DAGs) introduced there allows to describe every graphoid. Therefore, theanswer to the question (C) for IDAGs is negative. Moreover, the question whetherevery independency model ascribed to an IDAG was not mentioned in [3].



168 M. STUDEN�Y8. GRAPHS ALLOWING DIRECTED CYCLESA natural way of generalization of DAGs and CGs is to allow directed cycles. Wehave mentioned two such approaches in literature.Spirtes et. al. in their book [34] alredy mentioned possible use of general directedgraphs for desription of models allowing also feedback. Note that they used partiallymisleading terminology 'directed cyclic graphs', although the considered class ofgraphs involves DAGs.In fact, one can ascribe an independency model over N to every directed graphover N using the moralization criterion described in the fourth section for DAGs. Itwas mentioned in [35] that one can also generalize directly d-separation criterion andthat both criteria are equivalent also in case of general directed graphs. Moreover,Spirtes [35] showed that the completeness result with respect to the class of non-degenerate Gaussian distributions. Thus, (Gaussian) correctness of those models isalmost ensured.Attention was devoted also to the questions (E) and (F) from the second sec-tion. Richardson [31] gave a graphical characterization of equivalent (general) di-rected graphs. However, the mentioned characterization is quite complicated (unlikethe case of DAGs): it involves 6 special independent conditions. In another paperRichardson [32] proposed to use special representatives of classes of equivalent di-rected graphs, named 'PAGs'. These representatives are much more complicatedmathematical objects, namely graphs over the N whose edges have 3 possible end-ings for both end-nodes and where the endings of di�erent edges near a commonend-node may be connected by two possible 'connections'. Each 'mark' in a PAGexpress certain graphical property shared by all graphs within the equivalence class.On the other hand it is claimed that PAGs allow also to describe restrictions of(general) directed graph models (Richardson's oral communication). Note for expla-nation that the answer to the question (G) is negative also in case of general directedgraphs.Koster [19] introduced lately a very general class of reciprocal graphs. A reciprocalgraph G over N is a graph with mixed edges over N such that there is no arrow in Gbetween two nodes belonging to the same connectivity component of G. Thus, everyCG is a reciprocal graph and every (general) directed graph is a reciprocal graph.Koster ascribed an independency model over N to every reciprocal graph by meansof the moralization criterion described in the �fth section for the case of CGs. Notethat in case of directed graphs it collapses to the moralization criterion treated bySpirtes et. al.Thus, the independency models ascribed to reciprocal graphs involve both CG-models and the models ascribed to (general) cyclic graphs. On the other hand, thequestion of correctness of reciprocal graphs is solved only partially so far. Kosterestablished connection of so-called 'simultaneous equation systems' (LISREL mod-els) [20] with certain subclass of the class of reciprocal graphs (not involving CGs).Furthemore, for this special subclass a completeness result was achieved with respectto the class of Gaussian distributions.



Comparison of graphical approaches to description of conditional independence structures 169However, as far as I know, the other questions of our interest were not solved inthe framework of reciprocal graphs.9. MODELS WITH HIDDEN VARIABLESIt was mentioned in the fourth section that the restriction of a DAG-model may notbe a DAG-model. This led to an idea to describe the restrictions of DAG-modelsby means of graphical diagrams. Geiger, Paz and Pearl [16] developed the ideasfrom [30] and introduced so-called 'embedded Bayesian networks' for this purpose.An embedded Bayesian network over N is graph over N allowing both directed andbidirected edges (at most one edge is allowed between two di�erent nodes) such thatpurely directed cycles (i.e. directed cycles made of arrows only, without bidirectededges) are not present in the graph.In [16] an independency model over N is ascribed to every such a special graph Gover N (using a generalized d-separation criterion) and it is mentioned in text thatone can always �nd a DAG H over a superset M � N such that the restriction ofthe independency model m(H) over M (i.e. of the model ascribed to the DAG H)to N is exactly the independency model over N ascribed to G. Especially, owing tocorrectness of DAG-models and the fact the restriction of a probabilistic model is aprobabilistic model, the independency model over N ascribed to G is a probabilisticindependency model. So, the answer to the question (C) is positive for embeddedBayesian networks.Moreover, according to Pearl's oral communication, Verma showed that everyrestriction of a DAG-model can be ascribed in such a way to certian embeddedBayesian network - probably in [30].Note that in recent literature (not referenced here) the restrictions of DAG-modelsare often named the models with hidded variables. The reason is evident: one canimagine that N contains 'observed' variables but the actual DAG-model is over itssuperset M � N and therefore M nN is the set of 'unobserved' or hidded variables.10. MODELS WITH ALTERNATIVE INTERPRETATIONSome authors interpret the above mentioned graphs in another way, that is they de-�ne the interpretation mapping m mentioned in the second section in another way.These approaches were developed especially by Wermuth and were intended mainlyfor description of conditional independence structures induced by nondegenerateGaussian distributions. To distinguish the 'classic' and the alternative interpreta-tion Cox and Wermuth use in their book [8] in pictures dashed lines respectivelydashes arrows instead of 'classic' solid lines and solid arrows if they have in mind analternative way of interpretation.Cox and Wermuth [8] consider a class of generalized CGs. A joint-response chaingraph G is a CG in which every arrow is either a solid arrow or a dashed arrow andevery line is either a solid line or a dashed line and where for every connectivitycomponent C the following two conditions hold:



170 M. STUDEN�Y� all lines within C are either solid or dashed,� all arrows directed to nodes of C are either solid or dashed.Nevertheless, Cox and Wermuth do not ascribe directly the independency modelsto their generalized CGs. They rather describe in words (in one special chapter)what they understand by the class of (non-degenerate Gaussian) distributions whichare Markovian with respect to a joint-response CG. So, the question whether the as-signed class of distributions can be characterized as the class of distribution inducingcertain independency model, that is the question (B), is open in general.However, the mentioned question was anwered in a few special cases. Kauer-mann [17] answered it for the subclass of covariance graphs that is UGs made ofdashed lines. The corresponding independency model which should be ascribed tosuch a graph G over N consists of those triplets hX;Y jZi 2 T (N) such that everypath in G from a node in X to a node in Y contains a node in N n Z. He alsoshowed the completeness result with respect to the class of nondegenerate Gaussiandistributions.A similar attitude occurs in the paper [2] where another independency model isassigned to every CG. Andersson, Madigan and Perlman introduced a criterion todecide whether a triplet over N is represented in a CG. This criterion is analogousto the moralization criterion described in the �fth section but it is di�erent fromit. Instead of the moral graph they de�ne so-called 'augmented graph', otherwiseeverything is analogous. The alternative CGs from [2] then probably correspond tothe generalized CGs with solid lines and dashed lines from [8] (according to Madi-gan's oral communication). Moreover (also according to an oral communication),one can introduce an equivalent 'separation' criterion which allows to verify that thealternatively ascribed independency model is indeed a probabilistic independencymodel.ACKNOWLEDGEMENTThe paper was partially supported by the grant M�SMT n. VS96008.REFERENCES[1] S. A. Andersson, D. Madigan and M. D. Perlman: A characterization of Markovequivalence classes for acyclic digraphs. Tech. rep. 287, University of Washington,Seattle 1995, submitted to Ann. Statist.[2] S. A. Andersson, D. Madigan and M. D. Perlman: An alternative Markov propertyfor chain graphs. In Uncertainty in Arti�cial Intelligence 12 (E. Horvitz and F. Jenseneds.), Morgan Kaufmann 1996, 40{48.[3] R. R. Bouckaert: IDAGs: a perfect map for any distribution. In Symbolic and Quan-titative Approaches to Reasoning and Uncertainty (M. Clarke, R. Kruse and S. Moraleds.), Lecture Notes in Computer Science 747, Springer-Verlag 1993, 49{56.[4] R. R. Bouckaert and M. Studen�y: Chain graphs: semantics and expressiveness. InSymbolic and Quantitative Approaches to Reasoning and Uncertainty (Ch. Froidevauxand J. Kohlas eds.), Lecture Notes in Arti�cial Intelligence 946, Springer-Verlag 1995,67{76.
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