R. Bouckaert, R. Hemmecke, S. Lindner, M. Studeny:
Efficient algorithms for conditional independence inference.
Journal of Machine Learning Research
11 (2010), pp. 34533479.
 Abstract

The topic of the paper is computer testing of (probabilistic)
conditional independence (CI) implications by an algebraic
method of structural imsets. The basic idea is to transform
(sets of) CI statements into certain integral vectors and to verify
by a computer the corresponding algebraic relation between the
vectors, called the independence implication.
We interpret the previous methods for computer testing of this
implication from the point of view of polyhedral geometry. However,
the main contribution of the paper is a new method, based on
linear programming (LP). The new method overcomes
the limitation of former methods to the number of involved variables.
We recall/describe the theoretical basis for all four methods involved
in our computational experiments, whose aim was to compare the
efficiency of the algorithms. The experiments show that the LP method
is clearly the fastest one.
As an example of possible application of such algorithms we show that
testing inclusion of Bayesian network structures or whether a CI
statement is encoded in an acyclic directed graph can be done
by the algebraic method.
 AMS classification 68T30
 Keywords
 conditional independence inference
 linear programming approach
 A
pdf version of the paper (218kB) is available.
The paper builds on resuls from the following publications: