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Abstract

In this paper, we introduce a one-dimensional model of particles performing independent
random walks, where only pairs of particles can produce offspring (“cooperative branch-
ing”) and particles that land on an occupied site merge with the particle present on that
site (“coalescence”). We show that the system undergoes a phase transition as the branch-
ing rate is increased. For small branching rates the upper invariant law is trivial and the
process started with finitely many particles a.s. ends up with a single particle. Both state-
ments are not true for high branching rates. An interesting feature of the process is that
the spectral gap is zero even for low branching rates. Indeed, if the branching rate is small
enough, then we show that for the process started in the fully occupied state, the particle
density decays as one over the square root of time, and the same is true for the decay of
the probability that the process still has more than one particle at a later time if it started
with two particles.
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1 Introduction and main results

1.1 Definition of the model

Let {0, 1}Z be the space of all configurations . . . 10010101101 . . . of zeroes and ones on the
integers. We denote such a configuration by x = (x(i))i∈Z with x(i) ∈ {0, 1}. Let λ ≥ 0
be a parameter, to be referred to as the cooperative branching rate. We will be interested
in the continuous-time Markov process X = (Xt)t≥0 taking values in {0, 1}Z and with right-
continuous sample paths, such that if X is in the state x, then for each i ∈ Z, it makes
transitions with the following exponential rates:

If x(i) = 1, then
(
x(i), x(i+ 1)

)
7→ (0, 1) at rate 1

2 ,(
x(i− 1), x(i)

)
7→ (1, 0) at rate 1

2 .

If
(
x(i), x(i+ 1)

)
= (1, 1), then x(i+ 2) 7→ 1 at rate 1

2λ,

x(i− 1) 7→ 1 at rate 1
2λ.

(1.1)

In these transitions, x(j) remains the same for all sites j not listed. We may construct such a
process with the help of a graphical representation as follows. For each i ∈ Z/2 = {k/2 : k ∈
Z}, let

→
ω(i),

←
ω(i) ⊂ R be Poisson subsets of the real line. We assume that all these Poisson

sets are independent and that
→
ω(i),

←
ω(i) have intensity 1

2 if i ∈ Z + 1
2 := {k + 1

2 : k ∈ Z} and
intensity 1

2λ if i ∈ Z. In pictures, we plot Z horizontally and time vertically. We indicate the
presence of a point t ∈ →ω(i) (resp. t ∈ ←ω(i)) by drawing a vector at time t from i− 1

2 to i+ 1
2

(resp. from i+ 1
2 to i− 1

2) (see Figure 1).
We interpret the points of

→
ω(i),

←
ω(i) with i ∈ Z + 1

2 as coalescing jump events and those
with i ∈ Z as cooperative branching events. Starting from an initial state X0 = x ∈ {0, 1}Z at
time zero, we construct a process Xx = X = (Xt)t≥0 that changes its state only at coalescing
jump events and cooperative branching events according to the following rules:

If immediately prior to some coalescing jump event t ∈ →ω(i) (with i ∈ Z + 1
2) the state is

Xt− and Xt−(i − 1
2) = 1, then we set Xt(i − 1

2) = 0, Xt(i + 1
2) = 1. Everywhere else, we do

nothing, i.e., we set Xt(j) = Xt−(j) for all j 6= i − 1
2 , i + 1

2 . If Xt−(i − 1
2) = 0, then we set

Xt(j) = Xt−(j) for all j, i.e., we do nothing. Interpreting a one (resp. zero) as the presence
(resp. absence) of a particle, this says that at each time t ∈ →ω(i), any particle that may be
present at the site i − 1

2 jumps to i + 1
2 , coalescing with any particle that may already be

present there. Likewise, at times t ∈ ←ω(i) a particle at i+ 1
2 (if there is one) jumps to i− 1

2 .
If immediately prior to some cooperative branching event t ∈ →ω(i) (with i ∈ Z) we have

(Xt−(i− 1), Xt−(i)) = (1, 1), then we set Xt(i+ 1) = 1 and Xt(j) = Xt−(j) for all j 6= i+ 1.
If (Xt−(i− 1), Xt−(i)) 6= (1, 1), then we do nothing. We may also describe this by saying that
if i− 1 and i are both occupied by a particle, then these two particles cooperate to produce a
particle at i+1, which coalesces with any particle that may already be present there. Likewise,
at times t ∈ ←ω(i), if there are particles at both i and i+ 1, then these give birth to a particle
at i− 1.

These rules are further illustrated in Figure 1, together with an example of a graphical
representation. It can be checked by standard means that the graphical representation yields,
for each initial state x ∈ {0, 1}Z, a well-defined {0, 1}Z-valued Markov process Xx = (Xx

t )t≥0
with initial state Xx

0 = x. Note that the graphical representation provides a natural coupling
between processes started in different (deterministic) initial states. The graphical represen-
tation can also be used to construct processes started in random initial states. In this case
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0 0 1 1 0 1 0

0 0 1 1 1 0 0

t

Z

x(1) x(2) x(3)

t ∈ →ω(2)

x(1) x(2) x(3) ∨ (x(1) ∧ x(2))

cooperative branching

x(0) x(1)

0 x(0) ∨ x(1)

t ∈ →ω(1/2)

coalescing jump

Figure 1: Example of a graphical representation with explanation of the rules. Bold lines
indicate the presence of a particle. Arrows that are used by a particle to jump through, or by
a pair of particles to give birth to a third particle are also drawn bold, regardless of whether
such a particle lands on an occupied site or not.

the initial state must be independent of the graphical representation. We call our process
the cooperative branching-coalescent with cooperative branching rate λ. Our motivation for
studying this particular model will be explained in detail in Section 1.4 below.

It will often be convenient to use set notation for our state space. Identifying a set A ⊂ Z
with its indicator function 1A, we may identify the space {0, 1}Z with the space P(Z) of all
subsets of Z. For each A ⊂ Z, we let

ηAt := {i ∈ Z : X1A
t (i) = 1} (t ≥ 0) (1.2)

denote the set of occupied sites at time t for the process started with the initial set of occupied
sites A. Then ηA = (ηAt )t≥0 is just a different notation for the cooperative branching-coalescent
X1A = (X1A

t )t≥0. Because of certain notational advantages, we will usually (but not always)
use this sort of set notation for our processes.

1.2 Basic facts

Recall [Lig85, Thm II.2.4] that the laws µ := P[Y ∈ · ] and ν := P[Z ∈ · ] of two {0, 1}Z-valued
random variables Y and Z are said to be stochastically ordered, denoted as µ ≤ ν, if Y and
Z can be coupled such that Y ≤ Z a.s., by which we mean that Y (i) ≤ Z(i) (i ∈ Z) a.s.
Equivalently, using set notation, this says that the laws of two P(Z)-valued random variables
η, ξ are stochastically ordered if they can be coupled such that η ⊂ ξ. It is a simple consequence
of our graphical representation that cooperative branching-coalescents are monotone in the
following sense.

Lemma 1 (Monotonicity) Let η and η′ be cooperative branching-coalescents with cooperative
branching rates λ and λ′, respectively. Assume that λ ≤ λ′ and P[η0 ∈ · ] ≤ P[η′0 ∈ · ]. Then
P[ηt ∈ · ] ≤ P[η′t ∈ · ] for all t ≥ 0.

Proof We first use the fact that P[η0 ∈ · ] ≤ P[η′0 ∈ · ] to couple η0 and η′0 in such a way
that η0 ⊂ η′0 a.s. Next, we construct a graphical representation, consisting of Poisson sets
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→
ω(i),

←
ω(i) and

→
ω′(i),

←
ω′(i), respectively, for the processes η and η′, independent of (η0, η

′
0), in

the following way. Starting from a graphical representation for η, we define
→
ω′(i) :=

→
ω(i) and

←
ω′(i) :=

←
ω(i) for i ∈ Z + 1

2 , i.e., the processes η and η′ use the same coalescing jump events.
For i ∈ Z, we let

→
ω′′(i) and

←
ω′′(i) be independent Poisson sets with intensity 1

2(λ′−λ) and set
→
ω′(i) :=

→
ω(i) +

→
ω′′(i) and likewise

←
ω′(i) :=

←
ω(i) +

←
ω′′(i). In this way, the cooperative branching

events of η are a subset of those of η′. It is now straightforward to check from the rules of a
graphical representation that ηt ⊂ η′t a.s. for each t ≥ 0.

It is easy to check that the rules of our graphical representation moreover imply the
following property.

Lemma 2 (Subadditivity) For a given graphical representation, one has

ηAt ∪ ηBt ⊂ ηA∪Bt (t ≥ 0, A,B ⊂ Z). (1.3)

Processes that have a graphical representation for which equality holds in (1.3) are called
additive [Gri79, Prop. II.1.2]. Our process, however, only has the weaker property (1.3) (unless
λ = 0 which is a pure coalescing random walk). It can moreover be checked that because of
the coalescing random walk dynamics, which involves jumps between incomparable states,
meaning that jumps occur from state x to x′ such that neither x ≤ x′ nor x′ ≤ x, our process
does not satisfy [Lig85, formula (II.2.19)], and hence it does not preserve positive correlations.

Lemma 1 with λ = λ′ says that the cooperative branching-coalescent is a monotone inter-
acting particle system. It is well-known1 that this implies the existence of an invariant law ν,
called the upper invariant law, such that

P
[
ηZt ∈ ·

]
=⇒
t→∞

ν, (1.4)

where⇒ denotes weak convergence of probability measures on {0, 1}Z, equipped with the prod-
uct topology. Moreover, ν dominates any other invariant law of the process in the stochastic
order (hence its name). Using again Lemma 1, but now with λ ≤ λ′, it is moreover easy to
see that the upper invariant laws νλ, νλ′ corresponding to cooperative branching rates λ ≤ λ′
are stochastically ordered as νλ ≤ νλ′ . We say that ν is nontrivial if ν gives zero probability
to the empty configuration, i.e., if ν({∅}) = 0, and we let

θ(λ) :=

∫
νλ(dA)1{0∈A} (1.5)

denote the probability under ν of finding a particle in the origin.
It is clear from our dynamics that a process started with a single particle will consist of

a single particle at all times, and this particle performs simple random walk on Z. We will
say that the process survives for a given value λ of the cooperative branching rate if the
probability

ψ(λ) := P
[
|η{0,1}t | ≥ 2 ∀t ≥ 0

]
(1.6)

is positive. If the process does not survive then we say that it dies out. (Even though, of
course, there will always be one particle left. But since only pairs of particles can branch or
coalesce, we are naturally interested in whether there will always survive at least two particles
in the system.) It is easy to see from Lemma 1 that this probability is nondecreasing in the
cooperative branching rate λ.

1For attractive spin systems, this is proved in [Lig85, Thm II.2.3]. Although not stated there, the proof
actually carries over without a change to any monotone interacting particle system.
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Figure 2: Density θ(λ) of the upper invariant law and survival probability ψ(λ) (plotted
in black and red, respectively) of the cooperative branching-coalescent as a function of the
cooperative branching rate.

1.3 Main results

Our first main result says that the cooperative branching-coalescent exhibits a phase transition,
both in terms of its upper invariant law and in terms of survival.

Theorem 3 (Phase transition)
(a) There exists a 1 ≤ λc <∞ such that νλ = δ∅ for λ < λc but νλ is nontrivial for λ > λc.

(b) There exists a 1 ≤ λ′c < ∞ such that the process dies out for λ < λ′c and survives (with
positive probability) for λ > λ′c.

The basic idea behind the proof of Theorem 3, which can be found in Section 2, is easily
explained. If λ < 1, then each pair of particles on neighboring positions on average creates less
particles by cooperative branching than are lost by coalescence, from which it is not too hard
to conclude that no nontrivial invariant law is possible and systems started with finitely many
particles end up with one particle a.s., see Section 2.1. On the other hand, for sufficiently high
cooperative branching rates, a pair of particles on neighboring positions has a high probability
of producing particles on both of its neighboring sites before any of its particles makes a jump.
Using this, one can set up a comparison with supercritical oriented percolation which gives
both survival and existence of a nontrivial invariant law. This is done in Section 2.2 where we
also complete the proof of Theorem 3.

We do not know if λc = λ′c, although it seems plausible that this is indeed the case.
Numerically, both critical points are given by

λc ≈ λ′c ≈ 2.47± 0.02, (1.7)

see Figure 2. Superficially, the behavior of the cooperative branching-coalescent looks similar
to that of the contact process, but the critical exponent associated with the density of the
upper invariant law seems to be different. For the one-dimensional contact process, and indeed
for many other, similar particle systems that are supposed to be in the same universality class,
it is believed (and explained by non-rigorous renormalization group theory) that the density of
the upper invariant law grows like (λ−λc)β with β ≈ 0.27648. For the cooperative branching-
coalescent, this critical exponent β seems to be approximately β ≈ 0.5 ± 0.1. A picture of a
near-critical process is shown in Figure 3.
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Figure 3: Simulation of a near-critical cooperative branching-coalescent with λ = 21
3 on a

lattice of 700 sites with periodic boundary conditions, started from the fully occupied initial
state. Space is plotted horizontally, time vertically, and black indicates the presence of a
particle.

From a physical point of view, different critical exponents are to be expected, since, as we
will see, our process exhibits critical behavior (in particular, the absence of a spectral gap) in
the whole regime λ ≤ λc. This contrasts with the behavior of the contact process, which is
known to have a spectral gap in the whole subcritical regime. Indeed, the probability that a
subcritical contact process started with finitely many infected sites survives until time t decays
exponentially in t [BG91], and by the self-duality of the contact process, the same is true for
the density at time t of the process started with all sites occupied. Our next result shows that
for the cooperative branching-coalescent, both quantities decay according to a power law with
exponent −1/2.

Theorem 4 (Decay rate in the subcritical regime) Let η{0,1} and ηZ be cooperative
branching-coalescents with cooperative branching rate λ ≥ 0, started with two particles at
neighboring sites or in the fully occupied state, respectively. Then there exists a constant c > 0
such that for all λ ≥ 0,

P
[
|η{0,1}t | ≥ 2

]
≥ ct−1/2 and P[0 ∈ ηZt ] ≥ ct−1/2 (t ≥ 0). (1.8)

Moreover, there exists a constant C <∞ such that for each 0 ≤ λ ≤ 1/2,

P
[
|η{0,1}t | ≥ 2

]
≤ Ct−1/2 and P[0 ∈ ηZt ] ≤ Ct−1/2 (t ≥ 0). (1.9)

The proof of (1.8) is easy: By Lemma 1, we can estimate ηZ from below by a system
with cooperative branching rate zero, i.e., by a pure coalescencing random walk, for which the
decay of both quantities is well-known. The proof of (1.9) is more involved and depends on
estimating the survival probability of a somewhat complicated ‘superdual’ process. The proof
of Theorem 4 is completed at the end of Section 3.

1.4 Discussion and motivation

Our motivation for studying the cooperative branching-coalescent is multifaceted. As detailed
below, we regard the model as an interesting toy model in and by itself, both from a biological
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and mathematical perspective. In addition, the model is of relevance due to connections to
other interesting models for which it is potentially harder to prove the results that we can
obtain here.

From a purely mathematical perspective, the cooperative branching-coalescent is interest-
ing because of the critical behavior in the extinction phase (proved in Theorem 4), which sets
it apart from more usual models exhibiting a phase transition between extinction and survival,
such as the contact process. This criticality arises from the fact that extinction is driven by
coalescence alone, a property presumably shared with other models that are more difficult to
treat.

From a biological perspective, we have two, rather different motivations for studying coop-
erative branching. First of all, interpreting particles as organisms, we may view the cooperative
branching-coalescent as a model for population dynamics. The assumption that only pairs of
individuals can reproduce is, of course, rather natural. Although usually, the members of such
a pair need to be of opposite sex (a fact not incorporated in our model), there are in fact
quite a lot of organisms (such as snails) that are hermaphroditic, i.e. each individual plays
the role of both sexes, but that do not self-fertilize. In this interpretation, the random walk
dynamics models dispersal of organisms while the coalescence represents a death rate that is
quadratic in the local population size. Such a quadratic death rate naturally models deaths
due to competition between individuals for limited space and resources [AS05].

To make the model more realistic, one could (as in [AS05]) also add a linear component
in the death rate, representing spontaneous deaths that are not due to competition with
other individuals. Doing so would, however, radically change the properties of the model. In
particular, this would destroy the validity of Theorem 4 and presumably yield a model in the
universality class of the contact process. For these reasons, we have chosen not to do this.

Our second biological motivation for considering the cooperative branching-coalescent
comes from the study of balancing selection (sometimes also called heterozygosity selection
or negative frequency dependent selection). This is the phenomenon that genetically similar
individuals often compete more strongly with each other than with genetically more differ-
ent individuals. This could for example be due to the fact that genetically more different
individuals need a somewhat different set of resources for survival.

In order to model this effect, Neuhauser and Pacala [NP99] introduced a variation of the
voter model in which types that are locally in the minority have an advantage (due to the
presumed smaller competition with neighbors). A very similar model, dubbed the “rebellious
voter model”, was introduced in [SS08]. Numerical simulations backed up, in part, by rigorous
mathematics (see [SV10] and references therein) have shown that typically, such models in
dimensions d ≥ 2 tend to have an invariant law in which both types are present for all
values of the selection parameter, but in dimension one undergo a phase transition between
noncoexistence and coexistence as the selective advantage for locally rare types is increased.

Proving the existence of this phase transition, and in particular the existence of the non-
coexisting phase, has proved to be difficult, however. Both through duality and by considering
the corresponding ‘interface model’ (as explained in [SS08]), noncoexistence can be shown
to be equivalent to the extinction of a branching-annihilating particle system, where single
particles give birth to two offspring at once, and pairs of particles annihilate each other, with
certain rates. Such systems are parity-preserving (i.e. even/oddness of the initial number of
particles is conserved), so extinction needs to be interpreted as starting from even initial states,
since odd systems can never die out completely. These systems are similar to the cooperative
branching-coalescent in the sense that single particles cannot die and hence extinction relies on
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the recurrence of one-dimensional random walk. In fact, it seems likely that in the extinction
regime, the density and survival probability (started from an even number of particles) of
these systems decays like t−1/2, just as for the cooperative branching-coalescent (Theorem 4).

Contrary to the cooperative branching-coalescent, however, none of these statements are
proven. This is mainly due to two difficulties. First, these parity-preserving branching-
annihilating particle systems are not monotone, so the usual coupling arguments fail and
in general one does not even know if increasing the branching rate makes survival more likely
(although this is certainly what one sees in all simulations). Second, in a parity-preserving
branching-annihilating particle system, single particles can still branch, even though most of
the particles created in such branchings are believed to be quickly lost again due to annihi-
lation. This is related to the problem of (strong) interface tightness for the rebellious voter
model, which has recently been shown to imply noncoexistence [Swa13] (although it remains
an open problem to show either occurs).

Using the results of our present paper, we can describe a simple variation of a one-
dimensional voter model in which rare types have an advantage and for which the existence
of a phase transition between noncoexistence and coexistence can be proved:

Consider a one-dimensional, nearest neighbor multitype voter model in which initially each
site has a different type. We assume the usual voter model dynamics, i.e., the type of each
site is updated with rate one, at which event it is replaced by the type found on either side
immediately to the left of right of it, with equal probabilities. In addition, with rate λ, we
assume that each singleton, i.e. each site that is occupied by a type that occurs nowhere else,
gives birth to a completely new type which is placed on one of its neighboring sites, with equal
probabilities. Let Yt(i) denote the type of site i at time t in this model. Then a little thinking
convinces one that

ηZt := {i ∈ Z : Yt(i) 6= Yt(i+ 1)} (t ≥ 0) (1.10)

defines a cooperative branching-coalescent with cooperative branching rate λ, started in the
fully occupied state. Note that ηZt is the set of interfaces of Yt, i.e., boundaries where different
types meet. Now Theorem 3 (a) together with (1.4) show that Yt tends in law to a constant
configuration for λ < λc but to an invariant law in which different types coexist for λ > λc.

This model is obviously somewhat artificial since it depends crucially on the nearest-
neighbor property of the interaction, which implies that at all times each type present in the
population occupies a single interval. Moreover, the assumption that singletons give birth to
a new type is not well motivated from the biological point of view. Nevertheless, the general
behavior of the model seems to be similar to that of other, better-motivated models with
balancing selection such as the rebellious voter model of [SS08]. In fact, we may view the
model we have just described as a variation on the rebellious voter model in which interface
tightness and monotonicity of the interface model have been built in artificially. As such, we
hope that it may also shed some light on this and similar models.

In this context we should also mention another related one-dimensional model, the co-
operative caring double branching annihilating random walk (ccDBARW), that was recently
introduced and analyzed by Blath and Kurt in [BK11] and that partially motivated our present
paper. In this model, new particles can only be created by clumps of at least two particles
at neighboring sites. In contrast to our cooperative branching-coalescent they are created in
pairs (double branching) on either side of the clump. In addition, particles perform a random
walk. Unlike in our model particles that land on the same site do not coalesce but annihi-
late each other. The dynamics of the ccDBARW are somewhat complicated and contrary to
the cooperative branching-coalescent it cannot be started in infinite initial states. One of its
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motivations is that it demonstrates rather dramatically the non-monotonicity of the classical
DBARW, another parity-preserving branching-annihilating system. Blath and Kurt showed
that the ccDBARW has parameter ranges for survival as well as for extinction which implies
that at least one phase transition between survival and extinction must occur. (However,
note that due to lack of monotonicity in this model a scenario with multiple phase transitions
cannot be ruled out.)

1.5 Open problems

The cooperative branching-coalescent has certain nice properties, such as monotonicity (see
Lemma 1), which allow us to give rather short proofs of Theorems 3 and 4 (a). Beyond these
basic facts, however, many questions concerning the model remain open and seem to require
a substantially bigger effort to be solved. One of the difficulties of the cooperative branching-
coalescent is the lack of a simple dual model, such as one has for the contact process (which
is self-dual) or for the rebellious voter model [SS08]. We have managed to find a dual, which
we intend to publish in a separate paper, but this is a mildly complicated process that does
not seem so easy to study. In the present paper, we content ourselves with a process that
is only a ‘subdual’ (as explained in Section 3.1 below), which nonetheless shows that some
properties of the full dual can be controlled and which also provides the basis of the proof of
our Theorem 4 (b). Much progress in the understanding of cooperative branching-coalescents
can be expected from a better understanding of the full dual process.

In this section, we list and discuss a number of open problems concerning the cooperative
branching-coalescent.

P1 Generalize Theorems 3 and 4 to higher dimension.

It is not hard to define generalizations of the cooperative branching-coalescent to higher-
dimensional lattices Zd (d ≥ 2). For such models, the basic Lemmas 1 and 2 will remain true,
and also Theorem 3 can probably be generalized without too much difficulties. In transient
dimensions d ≥ 3, a bit of care is needed in defining survival, since it is possible that two or
more particles separate forever. The right definition of survival now seems to be that with
positive probability there are pairs of particles at neighboring positions at arbitrary late times.
Generalizing Theorem 4 to higher dimensions is less straightforward since even for the pure
coalescent it is known that the decay of the density has a different asymptotics now, namely
t−1 log t in d = 2 and t−1 in dimensions d ≥ 3, see [BG80].

P2 Prove equality λc = λ′c of the critical parameters from Theorem 3.

Even an inequality in either way would be interesting here. For the contact process, the
analogous result is a simple consequence of self-duality, which is not available here. One
possible approach is through the following problem.

P3 Prove that survival implies a positive edge speed.

Here, a positive edge speed means that for the process started with only the negative axis
occupied,

lim inf
t→∞

t−1 sup(η−Nt ) > 0. (1.11)

This sort of a result could potentially be used to set up a comparison with supercritical oriented
percolation. This is related to the work of Bezuidenhout, Gray and Grimmett [BG90] and

9



[BG94], which however does not easily generalize to our model because of the lack of positive
correlations. A more modest problem is whether λ > λc or λ > λ′c (or both) imply a positive
edge speed.

P4 Prove any estimate for the critical exponent associated with the density of the upper
invariant law or the survival probability.

This looks like a hard problem but any argument that allows one to compare with the
contact process (believed β ≈ 0.27648) or rebellious voter model (conjectured β ≈ 0.9 – 1.0,
see the discussion in [SV10]) would be valuable.

P5 For λ > λc, show that ν is the only nontrivial translation invariant stationary law, and
the limit law started from any nontrivial translation invariant initial law.

This can usually be proved provided one has sufficient control on the dual model, see e.g. the
classical proof for the contact process [Dur80, DG82] or Theorem 5 of [SS08] for the rebellious
voter model. For sufficiently large λ, a simpler proof may be available using monotonicity.

P6 Extend the statements in Theorem 4 (b) to all λ < λ′c resp. λ < λc.

Again, good control of the dual seems key here.

2 Proof of the phase transition

In this section we prove Theorem 3 by first showing extinction (respectively the triviality of the
upper invariant law) for small λ in Section 2.1 and then survival (respectively the nontriviality
of the upper invariant law) for sufficiently large λ in Section 2.2.

2.1 Extinction

We prove lower bounds on λc and λ′c in the present subsection and upper bounds in the next.
We start with λc.

Lemma 5 (Triviality of the upper invariant law) For λ ≤ 1, the upper invariant law of
the cooperative branching-coalescent satisfies ν = δ∅.

Proof In this proof, it will be more convenient to work with the process (Xt)t≥0 taking values
in {0, 1}Z, rather than using set notation as in (1.2).

Let X be a cooperative branching-coalescent started in any translation-invariant initial
law. For any x0, . . . , xn ∈ {0, 1}, let us write

pt(x0x1 · · ·xn) := P
[
Xt(i) = x0, Xt(i+ 1) = x1, . . . , Xt(i+ n) = xn

]
(t ≥ 0), (2.1)

which does not depend on i ∈ Z by the translation invariance of our process and the initial
law. It follows from basic generator calculations that

∂
∂tpt(1) =−pt(1) + 1

2pt(10) + 1
2pt(01) + 1

2λpt(110) + 1
2λpt(011)

=−pt(11) + λ
(
pt(11)− pt(111)

)
= (λ− 1)pt(11)− λpt(111).

(2.2)

10



Here, the terms in the first line arise from a particle at i jumping away as well as a vacant site at
i becoming occupied by particles jumping there or by pairs of particles giving birth to a particle
at i. We have rewritten this using that pt(1) = pt(10) + pt(11) and pt(11) = pt(110) + pt(111),
and similar relations for pt(01) and pt(011).

Now imagine that X0 is distributed according to ν, or in fact any translation invariant
stationary law. Then, assuming moreover that 0 < λ ≤ 1, we have

0 = ∂
∂tpt(1) ≤ −λpt(111) = −λp0(111), (2.3)

from which we conclude that

p0(111) = P
[(
X0(1), X0(2), X0(3)

)
= (1, 1, 1)

]
= 0. (2.4)

We will show that this implies that X0 is identically zero a.s.
Indeed, if X0 is not identically zero, then by translation invariance pt(1) = p0(1) =

P[X0(i) = 1] =: ε > 0 (i ∈ Z) so for n > 3ε−1 the expected number of particles in {1, . . . , n}
is greater than three. In particular, there is a positive probability of finding three particles
in this interval. Using Lemma 1, we may estimate X from below by a system of coalescing
random walks without cooperative branching. Since there is a positive probability that three
coalescing random walks started anywhere in {1, . . . , n} end up at the sites 1, 2, 3 at time 1,
using stationarity we see that the probability in (2.4) is positive, contradicting our assumption.

If λ = 0 then the same argument applies, except that we use that 0 = ∂
∂tpt(1) = pt(11)

and we only need to show that this implies the triviality of X, which is weaker than what we
have already shown. Our arguments show that for λ ≤ 1, no translation invariant stationary
law can exist that is not concentrated on the empty configuration. In particular, the upper
invariant law must be concentrated on the empty configuration.

Lemma 6 (Extinction) For λ ≤ 1, the cooperative branching-coalescent started in any finite,
nonempty initial state A satisfies

P
[
∃T <∞ s.t. |ηAt | = 1 ∀t ≥ T

]
= 1. (2.5)

Proof Given ηAt we have that |ηAt | increases by 1 due to cooperative branching at rate

λ

2

∑
i∈Z

(
1{{i,i+1}⊂ηAt ,i+2/∈ηAt } + 1{{i,i+1}⊂ηAt ,i−1/∈ηAt }

)
(2.6)

and decreases by 1 due to coalescence at rate
∑

i∈Z 1{{i,i+1}⊂ηAt }. Therefore, we obtain

∂
∂tE
[
|ηAt |

]
=

λ

2

∑
i∈Z

(
P[{i, i+ 1} ⊂ ηAt , i+ 2 /∈ ηAt

]
+ P[{i, i+ 1} ⊂ ηAt , i− 1 /∈ ηAt

])
(2.7)

−
∑
i∈Z

P[{i, i+ 1} ⊂ ηAt
]
.

Since
1{{i,i+1}⊂ηAt ,i+2/∈ηAt } = 1{{i,i+1}⊂ηAt } − 1{{i,i+1,i+2}⊂ηAt } (2.8)

It follows from a calculation as in (2.2) using the translation invariance that

∂
∂tE
[
|ηAt |

]
= (λ− 1)

∑
i∈Z

P[{i, i+ 1} ⊂ ηAt
]
− λ

∑
i∈Z

P[{i, i+ 1, i+ 2} ⊂ ηAt
]
. (2.9)

11



In particular, if λ ≤ 1 this is easily seen to imply due to the Markov property that |ηAt | is a
supermartingale with respect to FAt := σ(ηAs , 0 ≤ s ≤ t) since for 0 ≤ s ≤ t

E
[
|ηAt |

∣∣FAs ] = E
[
|ηη

A
s
t−s|
∣∣ηAs ] = |ηAs |+

∫ t−s

0

∂
∂uE

[
|ηηAsu |

∣∣ηAs ]du ≤ |ηAs |. (2.10)

By supermartingale convergence, it follows that

|ηAt | −→
t→∞

N a.s. (2.11)

for some N-valued random variable N . Let

AT :=
{
∃t ≥ T s.t. |ηAt−| 6= |ηAt |

}
, (2.12)

denote the event that the number of particles will change at some time greater or equal than
T and let ρ(A) denote the probability of A0 as a function of the initial state A. Using the
continuity of conditional probabilities w.r.t. the σ-field (see [Chu74, Thm 9.4.8] or [Bil86,
Thms 3.5.5 and 3.5.7]), we conclude that for each S ≤ T ,

ρ(ηAT ) = P[AT |FAT ] ≤ P[AS |FAT ] −→
T→∞

P[AS |FA∞] = 1AS
a.s. (2.13)

It follows that limT→∞ ρ(ηAT ) = 0 a.s. on the complement of the event
⋂
S≥0AS , i.e. the event

lim
T→∞

ρ(ηAT ) = 0 or ∀S ≥ 0 ∃t ≥ S s.t. |ηAt−| 6= |ηAt | (2.14)

has probability one. By (2.11), we conclude that limT→∞ ρ(ηAT ) = 0 a.s. By the recurrence of
one-dimensional random walk, it is easy to see that ρ is uniformly bounded away from zero
on {A : |A| ≥ 2} (in fact, it is not hard to see that ρ ≡ 1 on this set), so we conclude that
limT→∞ |ηAT | = 1 a.s.

2.2 Survival

In this section we show that for λ sufficiently large, the cooperative branching-coalescent
survives and has a nontrivial upper invariant law. As a first step, we compare it from below
with a contact process with ‘double deaths’. Since in the cooperative branching-coalescent,
only pairs of particles can produce offspring, we wish to estimate the number of occupied
neighboring pairs from below.

For each i ∈ Z+ 1
2 , let

→
π(i),

←
π(i), π∗(i) be independent Poisson subsets of R with intensities

1
2λ,

1
2λ, and 1, respectively. For each ζ0 ⊂ Z, we may construct a Markov process (ζt)t≥0 with

initial state ζ0 that evolves according to the following rules.
For each i ∈ Z + 1

2 , if immediately prior to some cooperative branching event t ∈ →π(i) the
state is ζt− and i− 1

2 ∈ ζt−, then we set ζt := ζt−∪{i+ 1
2}. If i− 1

2 6∈ ζt−, then we do nothing.
A similar rule applies to t ∈ ←π(i), where now the site i+ 1

2 , if occupied, infects the site i− 1
2 .

Finally, for each i ∈ Z + 1
2 , at each time t ∈ π∗(i), we replace ζt− by ζt := ζt−\{i− 1

2 , i+ 1
2}.

With these rules, we see that (ζt)t≥0 is a contact process with ‘double deaths’, where sites
infect their neighbors with rate 1

2λ and for each pair {i, i+1} of neighboring sites, any particles
located at these sites die simultaneously with rate 1.

12



Lemma 7 (Comparison with the contact process with double deaths) Let (ηt)t≥0
and (ζt)t≥0 be a cooperative branching-coalescent and contact process with double deaths, with
cooperative branching rate respectively infection rate λ. Let

η
(2)
t :=

{
i ∈ Z : {i, i+ 1} ⊂ ηt

}
(t ≥ 0) (2.15)

denote the set of locations where ηt contains a pair of neighboring particles. Then (ηt)t≥0 and
(ζt)t≥0 can be coupled such that

ζ0 ⊂ η(2)0 implies ζt ⊂ η(2)t (t ≥ 0). (2.16)

Proof We claim that (2.16) holds if we construct (ηt)t≥0 by means of a graphical representation
with Poisson sets

←
ω(i),

→
ω(i) as in Section 1.1 and construct (ζt)t≥0 by means of a graphical

representation with Poisson sets given by

←
π(i− 1

2) :=
←
ω(i),

→
π(i− 1

2) :=
→
ω(i), and π∗(i− 1

2) :=
←
ω(i− 1

2) ∪ →ω(i+ 1
2), (2.17)

(i ∈ Z), which are independent Poisson sets with intensities 1
2λ,

1
2λ, and 1, respectively.

It suffices to check that if ζt ⊂ η
(2)
t is true just prior to a cooperative branching event or

coalescing jump event, then it will also be true immediately after such an event. For i ∈ Z, if
prior to some t ∈ →ω(i) =

←
π(i− 1

2) one has {i− 1, i} ⊂ ηt− and i− 1 ∈ ζt−, then ζt = ζt− ∪ {i}
while now also {i, i+ 1} ⊂ ηt since the pair {i−1, i} has given birth to a particle at i+ 1. The
same argument applies to cooperative branching events to the left. For i ∈ Z, it may happen
that a pair {i, i+ 1} ⊂ ηt− is destroyed due to a coalescing jump event

t ∈
(←
ω(i− 1

2) ∪ →ω(i+ 1
2)
)
∪
(←
ω(i+ 1

2) ∪ →ω(i+ 3
2)
)

= π∗(i− 1
2) ∪ π∗(i+ 1

2), (2.18)

which corresponds to the particle at i or i + 1 jumping to the left or right. But in this case,
i 6∈ ζt since any particles on either {i− 1, i} or {i, i+ 1} have died simultaneously. Coalescing
jump events may also lead to the creation of new pairs but also in this case, the inclusion

η
(2)
t ⊃ ζt is preserved.

Clearly, if the contact process with double deaths (ζt)t≥0 with infection rate λ survives,
then so does the cooperative branching-coalescent with cooperative branching rate λ. The
contact process with double deaths is a monotone particle system, so by the same arguments
as for the cooperative branching-coalescent (see (1.4)), it has an upper invariant law. Coupling
the processes ηZt and ζZt as in Lemma 7 and sending t → ∞, we see that if the contact
process with double deaths has a nontrivial upper invariant law, then so does the cooperative
branching-coalescent.

Thus, we are left with the task of proving that for sufficiently large λ, the contact process
with double deaths survives and has a nontrivial upper invariant law. In fact, it suffices to
prove the first statement only. This is because the contact process with double deaths is
self-dual, just like the normal contact process (as can easily be proved from the graphical
representation), and hence its upper invariant law is nontrivial (for a given value of λ) if
and only if the process survives. (See the discussion for the standard contact process around
formulas (I.1.7) and (I.1.8) in [Lig99].)

Unfortunately, there seems to be no easy way to compare the contact process with dou-
ble deaths with a normal contact process. There exist several ways of proving survival (for
sufficiently large λ) of the standard, one-dimensional contact process. Each of these might be
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attempted for the contact process with double deaths as well. We will use the most robust
technique, comparison with oriented percolation, which however performs rather poorly when
it comes to finding explicit upper bounds on the critical value. We will not attempt to find
such explicit bounds.

Let Z2
even := {(i, n) ∈ Z2 : i+ n is even}. We equip Z2

even with the structure of a directed
graph by drawing for each z = (i, n) ∈ Z2

even two directed edges (arrows) e−z and e+z which
point from (i, n) to (i−1, n+1) and (i+1, n+1), respectively. Let E be the set of all directed
edges e±z and let (χe)e∈E be i.i.d. Bernoulli random variables with P[χe = 1] = p. We say that
the edge e is open if χe = 1. For z, z′ ∈ Z2

even, we say that there is an open path from z to z′,
denoted as z → z′, if either z = z′ or z = (i, n), z′ = (i′, n′) with n′ > n and there exists a
function γ : {n, . . . , n′} → Z such that γn = i, γn′ = i′, and for all k = n + 1, . . . , n′ one has
|γk − γk−1| = 1 and the edge from (γk−1, k − 1) to (γk, k) is open. For given W0 ⊂ Zeven, we
put

Wn := {i ∈ Z : (i, n) ∈ Z2
even, ∃i′ ∈W0 s.t. (i′, 0)→ (i, n)} (n ≥ 1). (2.19)

Then W = (Wn)n≥0 is a Markov chain, taking values, in turn, in the subsets of Zeven and
Zodd. We call W the oriented percolation process.

Proposition 8 (Comparison with oriented percolation) Let (ζt)t≥0 denote the contact
process with double deaths and let (Wn)n≥0 denote the oriented percolation process. Then, for
each p < 1, there exists λ′, T > 0 such that for all λ ≥ λ′, the processes (ζt)t≥0 and (Wn)n≥0
with parameters λ and p can be coupled in such a way that

W0 ⊂ ζ0 implies Wn ⊂ ζnT (n ≥ 0). (2.20)

Proof We construct (ζt)t≥0 using its graphical representation. By a trivial rescaling of time,
we may assume that infection events, corresponding to the Poisson sets

←
π(i),

→
π(i), have in-

tensity 1
2 each, while deaths, corresponding to the Poisson sets π∗(i), have intensity λ−1. For

each T > 0, we define a collection of Bernoulli random variables (χTe )e∈E indexed by the edges
of the directed graph (Z2

even, E), in the following way. For the directed edge e+z from z = (i, n)
to (i+ 1, n+ 1), we let χTe be the indicator of the event{→
π(i+ 1

2)∩ (nT, (n+1)T ] 6= ∅,
(
π∗(i− 1

2)∪π∗(i+ 1
2)∪π∗(i+ 3

2)
)
∩ (nT, (n+1)T ] = ∅

}
, (2.21)

which says that there is an infection from i to i + 1 in the time interval (nT, (n + 1)T ], but
no deaths occur in i or i + 1 during this time interval. For directed edges e−z to the left, the
analogous definition applies. Clearly, if Zeven 3 i ∈ ζ0 and there exists a path from (i, 0) to
(i′, n) along edges that are open in the sense of the (χTe )e∈E , then i′ ∈ ζnT .

By first choosing T large enough and then λ large enough we can make the probability
of the event in (2.21) as close to one as we wish. The events belonging to different edges are
not independent, but they are m-dependent for a suitable m, so by standard results [Lig99,
Thm B26], the (χTe )e∈E can be estimated from below by i.i.d. Bernoulli random variables with
a succes probability p that can be made arbitrarily close to one. Using these i.i.d. Bernoulli
random variables to construct the oriented percolation process, we arrive at (2.20).

Proof of Theorem 3 The facts that the upper invariant law is trivial and the process dies
out for λ ≤ 1 have been proved in Lemmas 5 and 6. To prove that for λ suffiently large, the
upper invariant law is nontrivial and the process survives, by Lemma 7 and the discussion
below it, it suffices to show that the contact process with double deaths survives for λ suffiently
large. This follows from Theorem 8 and the fact that the oriented percolation process (Wn)n≥0
survives for p > 8/9 by [Dur88, Sect. 5a].
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3 Decay of the density

3.1 Some general terminology

Recall (see e.g. [Lig85, Def II.3.1]) that two Markov processes X and Y with metrizable state
spaces SX and SY are dual to each other with bounded, Borel measurable duality function
ψ : SX × SY → R, if for processes with arbitrary deterministic initial states X0 and Y0 one
has

E[ψ(Xt, Y0)] = E[ψ(X0, Yt)] (t ≥ 0). (3.1)

If (3.1) holds for deterministic initial states, then it holds more generally when X and Y are
independent and have (possibly) random initial states, as can be seen by integrating both
sides of (3.1) w.r.t. the product of the laws of X0 and Y0.

More generally, borrowing terminology from [AS05], we say that Y is a subdual of X if

E[ψ(Xt, Y0)] ≥ E[ψ(X0, Yt)] (t ≥ 0) (3.2)

whenever X and Y are independent. In particular, if Y is started in an invariant law, and
hence (Yt)t≥0 is a stationary process, then this implies that the function

h(x) := E[ψ(x, Yt)] (x ∈ SX , t ≥ 0) (3.3)

is a subharmonic function for the process X. We define superduals (which then may give rise
to superharmonic functions) similarly, by reversing the inequality sign.

Following [JK12], we say that a duality as in (3.1) is a pathwise duality if for each t > 0, it
is possible to couple the processes X and Y , which have cadlag sample paths, in such a way
that the stochastic process

s 7→ ψ(Xs−, Yt−s) (3.4)

is a.s. constant on [0, t]. Likewise, we may say that we have a pathwise subduality (respectively
superduality) if this function is a.s. nondecreasing (nonincreasing).

3.2 Coalescing random walk duality

In this section, we consider the case that the cooperative branching rate is zero. In this
case, the cooperative branching-coalescent ηAt from (1.2) reduces to a system of coalescing
random walks, and the graphical representation contains only coalescing jump events, i.e.,
←
ω(i) = ∅ =

→
ω(i) for each i ∈ Z.

By definition, an open path in our graphical representation is a cadlag function ξ : L→ Z,
defined on some interval L ⊂ R, satisfying the following rules:

1. If t ∈ ←ω(ξt−− 1
2) (resp. t ∈ →ω(ξt−+ 1

2)) for some t ∈ L, then ξt = ξt−−1 (resp. = ξt−+1).

2. If for some t ∈ L, t 6∈ (
←
ω(ξt− − 1

2) ∪ →ω(ξt− + 1
2)), then ξt = ξt−.

In words, this says that ξ walks upwards until it meets the rear end of an arrow, at
which instance it jumps to the tip of the arrow and continues its journey upwards. For each
deterministic starting point (i, s) ∈ Z×R, there a.s. exists a unique open path ξ(i,s) : [s,∞)→
Z such that ξ

(i,s)
s = i, and this path is distributed as a random walk that jumps to the

positions immediately on its left or right with rate 1
2 each. Moreover, paths started from
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Z

t I1 I2

I ′1 I ′2

Figure 4: Coalescing random walk duality. One has ηt ∩ I1 6= ∅ if and only if η0 ∩ I ′1 6= ∅, and
ηt ∩ I2 6= ∅ if and only if η0 ∩ I ′2 6= ∅. The boundaries of the intervals I1 and I2, resp. I ′1 and
I ′2, are dual coalescing random walk paths evaluated at time t, resp. 0.

different starting points are independent until the first time they meet and coalesce (i.e. go
on as a single walker as soon as they meet).

It is well-known (see, e.g., the appendix of [STW00] for an analogous duality in discrete
time) that such systems of coalescing random walks are self-dual, in the following sense. Set

←̂
ω(i) :=

→
ω(i+ 1

2) and
→̂
ω(i) :=

←
ω(i− 1

2) (i ∈ Z), (3.5)

and for each t ∈ ←̂ω(i) (resp. t ∈ →̂ω(i)), draw a dual arrow from i+ 1
2 to i− 1

2 (resp. from i− 1
2

to i + 1
2). In Figure 4, these dual arrows have been drawn in red. By definition, a dual open

path in our graphical representation is a caglad (i.e. left continuous with right limits) function
ξ̂ : L→ Z + 1

2 , defined on some interval L ⊂ R, such that

1. If t ∈ ←̂ω(ξ̂t+− 1
2) (resp. t ∈ →̂ω(ξ̂t++ 1

2)) for some t ∈ L, then ξ̂t = ξ̂t+−1 (resp. = ξ̂t++1).

2. If for some t ∈ L, t 6∈ (
←̂
ω(ξ̂t+ − 1

2) ∪ →̂ω(ξ̂t+ + 1
2)), then ξ̂t = ξ̂t+.

In words, this says that the dual open paths walk downwards in time until they meet the
rear end of a dual arrow, at which instance they jump to its tip and continue their journey
downwards. For each deterministic starting point (i, s) ∈ (Z+ 1

2)×R, there a.s. exists a unique

dual open path ξ̂(i,s) : (−∞, s] → Z + 1
2 such that ξ̂

(i,s)
s = i, and these downward paths are

distributed in the same way as the forward paths, except for a rotation over 180 degrees.
We observe that forward and dual open paths do not cross. As a result, for each deter-

ministic t > 0 and i, j ∈ Z+ 1
2 with i < j, if there exists a forward open path starting at time

0 that passes at time t between i and j, then such a path must start between ξ̂
(i,t)
0 and ξ̂

(j,t)
0 ;

in particular, such a forward path can exist only if ξ̂
(i,t)
0 < ξ̂

(j,t)
0 . Conversely, any forward path

that starts between ξ̂
(i,t)
0 and ξ̂

(j,t)
0 must pass at time t between i and j. For any i, j ∈ Z + 1

2
with i < j, let us write

〈i, j〉 := {k ∈ Z : i < k < j} = {i+ 1
2 , . . . , j −

1
2}. (3.6)

Then, if ηA is our system of coalescing random walks defined as in (1.2) (with cooperative
branching rate λ = 0), then by the arguments we have just given,

ηAt ∩ 〈i, j〉 6= ∅ if and only if A ∩ 〈ξ̂(i,t)0 , ξ̂
(j,t)
0 〉 6= ∅ a.s. (3.7)
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(See Figure 4.) In fact, the process (
〈ξ̂(i,t)t−s , ξ̂

(j,t)
t−s 〉

)
s≥0 (3.8)

defines a nearest-neighbor voter model by specifying the clusters that are occupied by either
0’s or 1’s. The relationship (3.7) is then a special case of the well-known (pathwise) duality
between coalescing random walks and voter models, see for example [Lig85, Sec. V.1].

For each i, j ∈ Z, let

τi,j := inf{t ≥ 0 : ξ
(i,0)
t = ξ

(j,0)
t } (3.9)

denote the time at which ξ(i,0) and ξ(j,0) coalesce. We will be especially interested in

τ〈2〉 := τ0,1 and τ〈3〉 := τ0,1 ∧ τ1,2, (3.10)

which are the first time that any pair out of two, respectively three walkers meet each other
and coalesce when the walkers are initially located at neighboring positions.

Consider the system ηZ of coalescing random walks started with each site occupied. As in
(2.1), let

pt(1) = P
[
i ∈ ηZt

]
and pt(11) = P

[
i ∈ ηZt , i+ 1 ∈ ηZt

]
(3.11)

denote the density of occupied sites and the density of pairs of occupied neighboring sites,
respectively, as a function of time. We claim that

pt(1) = P[t < τ〈2〉] and pt(11) = P[t < τ〈3〉]. (3.12)

Indeed, by the coalescing random walk duality (3.7),

pt(1) = P
[
i ∈ ηZt

]
= P

[
ξ̂
(i− 1

2
,t)

0 < ξ̂
(i+ 1

2
,t)

0

]
= P[t < τ〈2〉], (3.13)

and similarly,

pt(11) = P
[
i ∈ ηZt , i+ 1 ∈ ηZt

]
= P

[
ξ̂
(i− 1

2
,t)

0 < ξ̂
(i+ 1

2
,t)

0 < ξ̂
(i+ 3

2
,t)

0

]
= P[t < τ〈3〉]. (3.14)

3.3 Asymptotics of meeting times

For any two functions f, g : [0,∞)→ (0,∞), we write

f(t) ∼ g(t) as t→∞ (3.15)

to express the fact that
f(t)

g(t)
−→
t→∞

1. (3.16)

Recall the definitions of τ〈2〉 and τ〈3〉 from (3.10). We will need the following fact.

Lemma 9 (Asymptotics of meeting times) One has

P[t < τ〈2〉] ∼
1√
π
t−1/2 and P[t < τ〈3〉] ∼

1

2
√
π
t−3/2 as t→∞. (3.17)
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Note that the first statement about τ〈2〉 is just a result on the hitting time of zero of a
random walk that is given by the mutual distance of the two random walkers. The second
statement about τ〈3〉 is less standard. For a proof of both asymptotics in the case of a discrete
time random walk see for example [EK08, Theorem 1.1]. For completeness we provide here a
short proof of Lemma 9. For this we need one preparatory technical lemma.

Lemma 10 (Asymptotic derivative) Let α > 0, let F : [0,∞) → (0,∞) be continuously
differentiable and assume that t 7→ ∂

∂tF (t) is nondecreasing. Assume moreover that

F (t) ∼ t−α as t→∞. (3.18)

Then
− ∂

∂tF (t) ∼ αt−α−1 as t→∞. (3.19)

Proof Heuristically, we have

− ∂
∂tF (t) ≈ − ∂

∂t t
−α = αt−α−1, (3.20)

where it is not clear, a priori, how to interpret the approximate equality ≈. It is easy to
find examples showing that this cannot in general be interpreted in the sense of ∼ without
imposing further regularity conditions (such as the monotonicity of the derivative).

To prove (3.19), set f(t) := − ∂
∂tF (t). We observe that for each δ > 0,

tα
∫ t(1+δ)

t
f(s)ds = tαF (t)− (1 + δ)−α(t(1 + δ))αF

(
t(1 + δ)

)
−→
t→∞

1− (1 + δ)−α. (3.21)

Since f is nonincreasing, it follows that

lim inf
t→∞

(δt)tαf(t) ≥ 1− (1 + δ)−α (δ > 0), (3.22)

and hence
lim inf
t→∞

tα+1f(t) ≥ δ−1
(
1− (1 + δ)−α) −→

δ↓0
α. (3.23)

In a similar fashion, by looking at the intergral from t(1− δ) to t, we obtain that

lim sup
t→∞

tα+1f(t) ≥ δ−1
(
(1− δ)−α − 1) −→

δ↓0
α. (3.24)

Proof of Lemma 9 Let (∆t)t≥0 be a continuous-time random walk on Z, started in ∆0 = 1,
that jumps one step to the left or right with rate one each, and let

τ := inf{t ≥ 0 : ∆t = 0}. (3.25)

Then the distance between the two walkers ξ
(1,0)
t − ξ(0,0)t as a function of time has the same

distribution as ∆t stopped at τ ; in particular τ〈2〉 is equally distributed with τ . It is a simple
consequence of the reflection principle (compare [LPW09, formula (2.21)]) that

P[∆t > 0] = P[∆t < 0] + P[t < τ ] (t ≥ 0). (3.26)
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Also, by symmetry, P[∆t > 2] = P[∆t < 0], so we obtain that

P[t < τ ] = P
[
∆t ∈ {1, 2}

]
∼ 1√

π
t−1/2 as t→∞, (3.27)

where in the last step we have used the local central limit theorem [LL10, Thm 2.5.6] and the
fact that Var(∆t) = 2t.

We recall from (3.12) that P[t < τ〈2〉] and P[t < τ〈3〉] are given by the density of occupied
sites pt(1) and the density of pairs of occupied neighboring sites pt(11) in a system of coalescing
random walks started from the fully occupied state. By formula (2.2) restricted to λ = 0,

∂
∂tpt(1) = −pt(11). (3.28)

Applying Lemma 10 we arrive at (3.17).

Lemma 9 yields the following useful corollary.

Corollary 11 (Power-law bound) There exists a constant K <∞ such that

P[t < τ〈3〉] ≤ Kt−3/2 (t ≥ 0). (3.29)

3.4 Mean meeting time of three walkers

It follows from Lemma 9 that E[τ〈2〉] = ∞ but E[τ〈3〉] < ∞. In fact, it turns out that the
expectation of τ〈3〉 is exactly one. While this fact is not essential in the following, it simplifies
our formulas and makes our estimates more explicit. In view of this, we provide a proof here.
Although the content of Lemma 12 below seems to be know, we did not find a reference.

Recall that for each i ∈ Z, (ξ
(i,0)
t )t≥0 is a continuous-time random walk on Z that jumps

at the times of a rate one Poisson process to one of its neighboring sites, chosen with equal
probabilities. Walkers started at different sites jump independently until they meet, after
which they coalesce. As in (3.9), we let τi,j denote the first meeting time of the walkers
started at i and j.

Lemma 12 (Expected meeting time of three walkers) One has

E[τi,j ∧ τj,k] = (j − i)(k − j) (i ≤ j ≤ k). (3.30)

Proof Since we stop the process as soon as two walkers meet, instead of looking at coalescing
random walks, we can equivalently study independent walkers. Let ~ξt = (ξ1t , ξ

2
t , ξ

3
t ) (t ≥ 0) be

three independent walkers started at (ξ10 , ξ
2
0 , ξ

3
0) = (i, j, k) with i < j < k. Then (~ξt)t≥0 is a

Markov process with generator

Gf(i, j, k) = 1
2

(
f(i+ 1, j, k) + f(i− 1, j, k)− 2f(i, j, k)

)
+1

2

(
f(i, j + 1, k) + f(i, j − 1, k)− 2f(i, j, k)

)
+1

2

(
f(, j, k + 1) + f(i− 1, j, k − 1)− 2f(i, j, k)

)
.

(3.31)

Set

Z3
≤ := {(i, j, k) ∈ Z3 : i ≤ j ≤ k} and Z3

< := {(i, j, k) ∈ Z3 : i < j < k}. (3.32)
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Consider the functions

f(i, j, k) := (j − i)(k − j) and h(i, j, k) := (j − i)(k − j)(k − i). (3.33)

Straightforward calculations give

Gf(i, j, k) = −1 and Gh(i, j, k) = 0
(
(i, j, k) ∈ Z3

<). (3.34)

By Lemma 13 below, the process

Mt := f(~ξt)−
∫ t

0
Gf(~ξs)ds (3.35)

is a martingale with respect to the filtration generated by ~ξ. Therefore, setting

τ := inf{t ≥ 0 : ~ξt 6∈ Z3
<} = τi,j ∧ τj,k (3.36)

and using optional stopping, we see that for ~ξ0 = (i, j, k) ∈ Z3
<,

f(~ξ0) = E[Mt∧τ ] = E[f(~ξt∧τ )]− E[

∫ t∧τ

0
Gf(~ξs)ds] = E[f(~ξt∧τ )] + E[t ∧ τ ], (3.37)

where we have used (3.34). Note that τ <∞ a.s. by the recurrence of one-dimensional random
walk. Therefore (3.30) will follow by letting t→∞ in (3.37), provided we show that

E[f(~ξt∧τ )] −→
t→∞

0. (3.38)

Since f is unbounded, this is not completely trivial. Indeed, our arguments so far apply
equally well to the function f and the function f ′ := f +h, while the right-hand side of (3.30)
is given by f(i, j, k) and not by f ′(i, j, k).

To prove (3.38), we proceed as follows. Let

Pt(~ı,~) := P~ı[~ξt∧τ = ~] (3.39)

denote the transition probabilities of the stopped process. Formula (3.34), Lemma 13 below,
and optional stopping imply that

(h(~ξt∧τ ))t≥0 (3.40)

is a martingale. As a result, setting

P ht (~ı,~) := h(~ı)−1Pt(~ı,~)h(~)
(
~ı,~ ∈ Z3

<

)
(3.41)

defines a transition probability on Z3
<. Let ~ξh denote the associated h-transformed Markov

process, started in the same initial state ~ξh0 = ~ξ0 = (i, j, k) ∈ Z3
<. Then, using the fact that

f = 0 on Z3
≤\Z3

<, we have that

E[f(~ξt∧τ )] =
∑
~∈Z3
≤

Pt(~ı,~)f(~) = h(~ı)
∑
~∈Z3

<

P ht (~ı,~)f(~)h(~)−1

= h(~ı)E
[
f(~ξht )/h(~ξht )

]
= h(~ı)E

[
(ξh,3t − ξ

h,1
t )−1

]
,

(3.42)

where we have used the notation ~ξht = (~ξh,1t , . . . , ~ξh,3t ).
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We claim that (ξh,3t − ξ
h,1
t )−1 (t ≥ 0) is a supermartingale. Indeed, by optional stopping,

the process (Mt∧τ )t≥0 with M as in (3.35) is a martingale, so by (3.34), (f(~ξt∧τ ))t≥0 is a
supermartingale. Setting g(~ı) := (i3 − i1)−1 = f(~ı)/h(~ı) (~ı ∈ Z3

<), we see that∑
~∈Z3

<

P ht (~ı,~)g(~) = h(~ı)−1
∑
~∈Z3

<

Pt(~ı,~)f(~) ≤ h(~ı)−1f(~ı) = g(~ı). (3.43)

Since (ξh,3t − ξ
h,1
t )−1 is a bounded supermartingale, it converges a.s. It is not hard to see that

ξh,3t − ξ
h,1
t cannot converge to a finite limit, so we conclude that

(ξh,3t − ξ
h,1
t )−1 −→

t→∞
0 a.s., (3.44)

which by (3.42) implies (3.38).

Remark In a discrete-time setting, it is proved in [EK08, Theorem 1.1(vi)] that

t−
1
2 ~ξht =⇒

t→∞
B, (3.45)

with B = (B1, B2, B3) a random vector with density proportional to

exp(−1
2(x21 + x22 + x23))h(x)2. (3.46)

By looking at the associated jump chains, this result may be transferred to our present
continuous-time setting.

We conclude this section by supplying the still outstanding lemma on martingales. For
each ~ı = (i1, . . . , id) ∈ Zd, set ‖~ı‖ := supdα=1 |iα|. We say that a function f : Zd → R is of
polynomial growth if

|f(~ı)| ≤ K(1 + ‖~ı‖k) (~ı ∈ Zd) (3.47)

for some integers K, k.

Lemma 13 (Martingale problem for random walk) Let (~ξt)t≥0 be a continuous-time,
nearest-neighbor random walk on Zd started in a deterministic initial state, and let G denote
its generator. Then, for any function f of polynomial growth, the process

Mf
t := f(~ξt)−

∫ t

0
Gf(~ξs)ds (t ≥ 0) (3.48)

is a martingale with respect to the filtration generated by (~ξt)t≥0.

Proof (sketch) Set fk(~ı) := f(~ı) if ‖~ı‖ ≤ k and := 0 otherwise. The fact that Mfk is a

martingale is standard, so it suffices to show that Mfk
t converges to Mf

t in L1-norm for each
t ≥ 0. Now

E
[
|Mf

t −M
fk
t |
]
≤ E

[
|f(~ξt)− fk(~ξt)|

]
+

∫ t

0
E
[
|Gf(~ξs)−Gfk(~ξs)|

]
ds. (3.49)

It is not hard to check that if f is of polynomial growth, then so are Gf and Gfk. Thus,
|f − fk| and |Gf −Gfk| can be estimated by some function of the form K(1 + ‖~ı‖k) and the
result follows by dominated convergence and the fact that nearest-neighbor random walk has
moments of all orders.
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I ′1 I ′2

Figure 5: Superduality: If ηt ∩ I1 6= ∅ and ηt ∩ I2 6= ∅, then there must exist a backward
3-path as drawn such that η0∩ I ′1 6= ∅ and η0∩ I ′2 6= ∅. Between times when the 3-path renews
itself, it consists of three dual coalescing random walk paths which form the boundaries of two
adjacent intervals as in Figure 4. Cooperative branching arrows such as the one marked “1”
may be used to renew the 3-path by splitting one of its paths into three new paths, but they
do not need to be used such as the cooperative branching arrow 2.

3.5 A superduality

We have already collected all the necessary material to prove the lower bound (1.8) in The-
orem 4. Indeed, this follows from Lemma 1, which allows us to compare with a system of
coalescing random walks, for which the decay of the survival probability and the density are
given by Lemma 9 and formula (3.12).

The proof of the upper bound (1.9) in Theorem 4 is more involved. To prepare for this,
in the present section, we will use the graphical representation to construct (in terminology
explained in Section 3.1) a pathwise superdual to the cooperative branching-coalescent.

Fix a graphical representation for the cooperative branching-coalescent, as explained in
Section 1.1, consisting of Poisson point processes

←
ω(i),

→
ω(i) representing coalescing jump events

and cooperative branching events, which occur on the whole time axis R (including negative
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times). Ignoring the cooperative branching events for the moment being, we define dual
coalescing random walk arrows and dual open paths in such a graphical representation as in
Section 3.2.

Next, for any deterministic s < u, we define a dual 3-path to be a triple of cadlag functions
γk : [s, u)→ Z + 1

2 (k = 1, 2, 3) satisfying the following rules.

There exist times s = t0 < · · · < tn+1 = u such that:

1. On each of the intervals [ti−1, ti) with i = 1, . . . , n and on [tn, u], the functions
γ1, γ2, γ2 are open dual paths satisfying γ1 < γ2 < γ3.

2. For each t = ti with i ∈ 1, . . . , n, one of the following cases occurs:

(a) t ∈ ←ω(γkt + 1
2) with k = 2, 3 (but not 1),

and (γ1t−, γ
2
t−, γ

3
t−) = (γkt , γ

k
t + 1, γkt + 2)

(b) t ∈ →ω(γkt − 1
2) with k = 1, 2 (but not 3),

and (γ1t−, γ
2
t−, γ

3
t−) = (γkt − 2, γkt − 1, γkt ).

An example of a dual 3-path is drawn in Figure 5. In the absense of cooperative branching
events, the three paths γ1, γ2, γ3 evolve as dual coalescing random walk paths, which however
are not allowed to coalesce (if the dual coalescing random walks coalesce then the 3-path ends).
If either γ2 or γ3 (but not γ1) hits the head of a cooperative branching arrow pointing to the
left, then we may forget about the three old paths and start anew with three new backward
random walks from the positions i, i+ 1, and i+ 2, where i ∈ Z+ 1

2 is the location of the head
of the cooperative branching arrow. A similar rule applies for cooperative branching arrows
pointing to the right. We say that a dual 3-path renews itself at such an instance. Note that
cooperative branching events may be used to renew the dual 3-path, but they do not need to
be used. As a result, there may be many different dual 3-paths starting from a given initial
state (γ1u, γ

2
u, γ

3
u) and running backwards in time. It is not hard to see that the times when a

dual 3-path renews itself can a.s. be read off from the path, i.e., all information is contained
in the triple of cadlag functions (γ1, γ2, γ2).

Recall the notation introduced in (3.6). We let

Ξ+,2 :=
{

(〈i, j〉, 〈j, k〉) : i, j, k ∈ Z + 1
2 , i < j < k

}
(3.50)

denote the space whose elements are pairs (I1, I2) = (〈i, j〉, 〈j, k〉) of adjacent, discrete, non-
empty, finite intervals in Z. The usefulness of dual 3-paths lies in the following fact.

Lemma 14 (Dual 3-paths) Let (ηt)t≥0 be a cooperative branching-coalescent constructed
with a graphical representation as described in Section 1.1. Let 0 ≤ s < u and let (I1, I2) ∈ Ξ+,2

be a pair of adjacent intervals in Z. Then, a.s. on the event

ηu ∩ I1 6= ∅ and ηu ∩ I2 6= ∅, (3.51)

there exists a (I ′1, I
′
2) ∈ Ξ+,2 and a dual 3-path (γ1t , γ

2
t , γ

3
t )t∈[s,u] with

(I1, I2) =
(
〈γ1u, γ2u〉, 〈γ2u, γ3u〉

)
and (I ′1, I

′
2) =

(
〈γ1s , γ2s 〉, 〈γ2s , γ3s 〉

)
, (3.52)

such that
ηs ∩ I ′1 6= ∅ and ηs ∩ I ′2 6= ∅. (3.53)
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Proof In the absence of cooperative branching events, there exist unique dual open paths
(γ1t , γ

2
t , γ

3
t )t∈[s,u] starting at time u from the boundaries of I1 and I2, and these form a dual

3-path, by the definition of the latter, if and only if they do not coalesce until time s. Thus,
in this case, coalescing random walk duality (3.7) tells us that the events in (3.51) and (3.53)
are in fact a.s. equivalent.

In general, in the presence of cooperative branching events, let us define, for s ≤ t ≤ u,

Jt :=
{

(I ′1, I
′
2) ∈ Ξ+,2 : ∃ dual 3-path (γ1s , γ

2
s , γ

3
s )s∈[t,u] s.t.

(I1, I2) =
(
〈γ1u, γ2u〉, 〈γ2u, γ3u〉

)
and (I ′1, I

′
2) =

(
〈γ1t , γ2t 〉, 〈γ2t , γ3t 〉

)}
.

(3.54)

It suffices to prove that if a cooperative branching event takes place at time t and

∃(I ′1, I ′2) ∈ Jt s.t. ηt ∩ I ′1 6= ∅ and ηt ∩ I ′2 6= ∅, (3.55)

then the same is true at time t−, i.e., just before the cooperative branching event. By sym-
metry, it suffices to consider the case t ∈ ←ω(i) for some i ∈ Z. By assumption, (3.55) holds at
time t, so there exist (I ′1, I

′
2) ∈ Jt with ηt ∩ I ′1 6= ∅ and ηt ∩ I ′2 6= ∅. The only way in which this

can fail to hold at time t− is that the cooperative branching event has introduced a particle
(at i − 1) into either I ′1 or I ′2, while this interval was empty at time t−. For this to happen,
the arrow associated with

←
ω(i) must point into I ′1 or I ′2 from the outside and i and i+ 1 must

both have been occupied by a particle at time t−. But then, by the way dual 3-paths may
renew theirselves, we have ({i}, {i+ 1}) ∈ Jt− and hence (3.55) is also satisfied in this case.

We claim that Lemma 14 actually gives rise to a Markov process that, using terminology
defined in Section 3.1, is a pathwise superdual to the cooperative branching-coalescent. To
see this, we change the notation introduced in the proof of Lemma 14 slightly. For any finite
subset J0 ⊂ Ξ+,2 and fixed u ∈ R, define a Markov process (Jt)t≥0 taking values in the finite
subsets of Ξ+,2, by

Jt :=
{

(I ′1, I
′
2) ∈ Ξ+,2 : ∃(I1, I2) ∈ J0 and a dual 3-path (γ1s , γ

2
s , γ

3
s )s∈[u−t,u] s.t.

(I1, I2) =
(
〈γ1u, γ2u〉, 〈γ2u, γ3u〉

)
and (I ′1, I

′
2) =

(
〈γ1u−t, γ2u−t〉, 〈γ2u−t, γ3u−t〉

)}
.

(3.56)

Letting ψ denote the duality function

ψ(η,J ) := 1{∃(I1, I2) ∈ J s.t. η ∩ I1 6= ∅ and η ∩ I2 6= ∅}, (3.57)

the proof of Lemma 14 then shows that the function

[0, u] 3 t 7→ ψ(ηt−,Ju−t) (3.58)

is a.s. nonincreasing, i.e., the process (Jt)t≥0 is a pathwise superdual of (ηt)t≥0.

3.6 Extinction of the superdual

In this section, we show that the superdual from (3.56) dies out a.s. if the cooperative branching
rate satisfies λ < 1/2. To keep the argument simple, and since this is all we will need in the
end, we will only show this for the simplest possible initial state, where J0 = {(I1, I2)} contains
only a single pair of adjacent intervals and these both have length one. We fix some u ∈ R.
For each t > 0 we consider the quantity

Nt := the number of distinct dual 3-paths (γ1s , γ
2
s , γ

3
s )s∈[u−t,u]

such that (γ1u, γ
2
u, γ

3
u) = (−1

2 ,
1
2 ,

3
2).

(3.59)
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The next lemma not only shows that the probability that Nt 6= 0 tends to zero as t→∞, but
more importantly also determines the right speed of decay.

Lemma 15 (Expected number of dual 3-paths) Let K be the constant from (3.29) and
let Nt be as in (3.59). Then

E[Nt] ≤ K
( ∞∑
n=1

(2λ)nn5/2
)
t−3/2 (t ≥ 0). (3.60)

Proof Let τ〈3〉 be the first meeting time of three walkers as in (3.10) and set

G(t) := P[t ≤ τ〈3〉] (t ≥ 0). (3.61)

We may distinguish dual 3-paths according to how often they renew themselves on the interval
[u − t, u]. The probability that there is a dual 3-path on [u − t, u] that never renews itself
is then given by G(t) (recall that appropriate cooperative branching events may be used for
renewal but that they do not have to be used). Since there are four ways in which a path can
renew itself, each of which has rate λ/2, the probability that there is a dual 3-path on [u− t, u]
that renews itself in the time interval (u− s, u− s− ds) is

G(s) · (2λds) ·G(t− s). (3.62)

Thus, the expected number of paths that renew themselves exactly once during the time
interval [u− t, t] is given by

2λ

∫ t

0
dsG(s)G(t− s) = 2λG ∗G(t), (3.63)

where ∗ denotes the convolution of two functions. Similarly, the expected number of paths
that renew themselves exactly n times during the time interval [u− t, t] is given by

(2λ)nG∗n(t), (3.64)

where G∗n denotes the n-th convolution power of G, and hence

E[Nt] =
∞∑
n=1

(2λ)nG∗n(t). (3.65)

Let G1, G2 be functions satisfying∫ ∞
0

Gi(t)dt = 1 and 0 ≤ Gi(t) ≤ Kit
−α (i = 1, 2, t ≥ 0), (3.66)

and let 0 < p < 1. Then

G1 ∗G2(t) =

∫ t

0
dsG1(s)G2(t− s)

=

∫ t

pt
dsG1(s)G2(t− s) +

∫ t

(1−p)t
dsG2(s)G1(t− s)

≤
∫ t

pt
dsK1s

−αG2(t− s) +

∫ t

(1−p)t
dsK2s

−αG1(t− s)

≤ K1(pt)
−α
∫ t

pt
dsG2(t− s) +K2((1− p)t)−α

∫ t

(1−p)t
dsG1(t− s)

≤
(
K1p

−α +K2(1− p)−α
)
t−α,

(3.67)
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where in the last step we have used that G1 and G2 have integral one. By induction, we get
for functions G1, . . . , Gn the estimate

G1 ∗ · · · ∗Gn(t) ≤
(
K1p

−α
1 + · · ·+Knp

−α
n

)
t−α, (3.68)

where p1, . . . , pn are nonnegative numbers summing up to one.
In our case, condition (3.66) is satisfied by Corollary 11 and Lemma 12 since∫ ∞

0
dtG(t) =

∫ ∞
0

dtP[t ≤ τ〈3〉] = E[τ〈3〉] = 1. (3.69)

Hence, setting pi = 1/n and α = 3/2 in (3.68) we obtain in our set-up the estimate

G∗n(t) ≤ K · n · (1/n)−3/2 · t−3/2 = Kn5/2t−3/2, (3.70)

which by (3.65) yields (3.60).

3.7 Algebraic decay

In this section we prove Theorem 4. We start with some preparatory lemmas. The first
concerns an upper bound for the decay of the density of paris of particles: At least for
λ < 1/2 we obtain the same rate of decay as in the case λ = 0 without cooperative branching,
see (3.12) and Corollary 11.

Lemma 16 (Density of pairs) Let (ηt)t≥0 be a cooperative branching-coalescent with coop-
erative branching rate λ < 1/2, started in an arbitrary initial law. Let K be the constant from
(3.29) and let

K ′ := K
∞∑
n=1

(2λ)nn5/2 <∞. (3.71)

Then
P
[
{0, 1} ⊂ ηt

]
≤ K ′t−3/2 (t ≥ 0). (3.72)

Proof By Lemma 14, the probability that {0, 1} ⊂ ηt is bounded from above by the probability
that there exists a dual 3-path (γ1s , γ

2
s , γ

3
s )s∈[0,t] with (γ1t , γ

2
t , γ

3
t ) = (−1

2 ,
1
2 ,

3
2) such that

η0 ∩ 〈γ10 , γ20〉 6= ∅ and η0 ∩ 〈γ20 , γ30〉 6= ∅. (3.73)

By Lemma 15 we can estimate this from above, uniformly in the initial law of X, by

P[Nt > 0] ≤ E[Nt] ≤ K ′t−3/2 (t ≥ 0). (3.74)

Lemma 17 (Expected number of occupied pairs) Let (ηt)t≥0 be a cooperative bran-
ching-coalescent with cooperative branching rate λ < 1/2, started in η0 = {0, 1}, and let K ′ be
the constant from (3.71). Then

E
[∣∣{i ∈ Z : {i, i+ 1} ⊂ ηt

}∣∣] ≤ K ′t−3/2 (t ≥ 0). (3.75)
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Proof By Lemma 14, for each i ∈ Z, the probability

P
[
{i, i+ 1} ⊂ ηt

]
(3.76)

is bounded from above by the probability that there exists a dual 3-path (γ1s , γ
2
s , γ

3
s )s∈[0,t] with

(γ1t , γ
2
t , γ

3
t ) = (i − 1

2 , i + 1
2 , i + 3

2) such that γ20 = 1
2 . By translation invariance, this is the

same as the probability that there exists a dual 3-path with (γ1t , γ
2
t , γ

3
t ) = (−1

2 ,
1
2 ,

3
2) such that

γ20 = −i+ 1
2 . Summing over all i ∈ Z and using Lemma 15, this implies that

E
[∣∣{i ∈ Z : {i, i+ 1} ⊂ ηt}

}∣∣] ≤ E[Nt] ≤ K ′t−3/2 (t ≥ 0). (3.77)

Proof of Theorem 4 By Lemma 1, we may stochastically bound an arbitrary cooperative
branching-coalescent by a cooperative branching-coalescent with λ = 0, i.e. a system of
coalescing random walks. Thus, it suffices to prove the lower bound (1.8) only for λ = 0. For
such systems, using notation introduced in (3.10), we have that

P
[
|η{0,1}t | ≥ 2

]
= P[t ≤ τ〈2〉] and P[0 ∈ ηZt ] = P[t ≤ τ〈2〉], (3.78)

where the second equality is (3.12). By Lemma 9, there exists a constant c > 0 such that

P[t ≤ τ〈2〉] ≥ ct−1/2 (t ≥ 0). (3.79)

This completes the proof of the lower bound (1.8).
To get also the upper bound (1.9), define pt(· · · ) as in (2.1) for the process ηZ. Since, by

Theorem 3 (a), pt(1)→ 0 as t→∞, formula (2.2) tells us that

pt(1) = −
∫ ∞
t

ds ∂∂s ps(1) =

∫ ∞
t

ds
(
(1− λ)ps(11) + λps(111)

)
≤
∫ ∞
t

ds ps(11). (3.80)

Since ps(11) ≤ K ′s−3/2 by Lemma 16, we find that

P[0 ∈ ηZt ] ≤ K ′
∫ ∞
t

ds s−3/2 = 2K ′t−1/2. (3.81)

Similarly, the indicator function on the event {|η{0,1}t | ≥ 2} decreases at rate 1 whenever

η
{0,1}
t = {i, i + 1} for some i ∈ Z due to an appropriate random walk step and subsequent

coalescence. Thus, by Lemma 17,

− ∂
∂tP
[
|η{0,1}t | ≥ 2

]
= P

[
η
{0,1}
t = {i, i+ 1} for some i ∈ Z

]
(3.82)

≤ P
[
{i, i+ 1} ⊂ η{0,1}t for some i ∈ Z

]
≤ K ′t−3/2 (t ≥ 0).

Hence, using Theorem 3 (b) we find that

P
[
|η{0,1}t | ≥ 2

]
≤
∫ ∞
t

dsK ′s−3/2 = 2K ′t−1/2 (t ≥ 0). (3.83)
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[STW00] F. Soucaliuc, B. Tóth, and W. Werner. Reflection and coalescence between indepen-
dent one-dimensional Brownian paths. Ann. Inst. Henri Poincaré, Probab. Stat. 36(4),
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