The contact process seen from a typical infected site

Jan M. Swart

Institute of Information Theory and Automation of the ASCR (ÚTIA) Pod vodárenskou věží 4, 18208 Praha 8, Czech Republic swart@utia.cas.cz

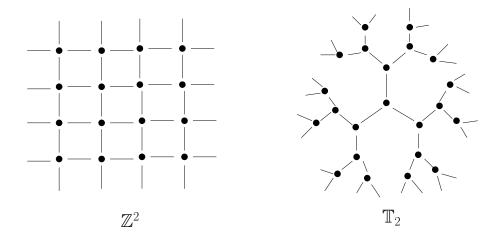
September 3, 2008

Abstract

We consider contact processes on general Cayley graphs. It is shown that any such contact process has a well-defined exponential growth rate, which can be related to the configuration seen from a 'typical' infected site at a 'typical' late time. Using this quantity, it is proved that on any nonamenable Cayley graph, the critical contact process dies out.

Cayley graphs

Let Λ be a countable, finitely generated group, with group action denoted by $(i, j) \mapsto ij$, inverse operation $i \mapsto i^{-1}$, and unit element (origin) 0. Let $\Delta \subset \Lambda$ be a finite generating set for Λ that is symmetric in the sense that $i \in \Delta$ implies $i^{-1} \in \Delta$. Then the (left) Cayley graph $\mathcal{G}(\Lambda, \Delta)$ associated with Λ and Δ is the graph with vertex set Λ , where there is an edge connecting $i, j \in \Lambda$ if and only if there is a $k \in \Delta$ such that j = ki. Examples of Cayley graphs are \mathbb{Z}^d , equipped with the usual nearest-neighbor structure, or the regular tree \mathbb{T}_d in which each site has d + 1 neighbors.



Amenability and exponential growth

A Cayley graph $\mathcal{G}(\Lambda, \Delta)$ is called *amenable* if for every $\varepsilon > 0$ there exists a finite nonzero $A \subset \Lambda$ such that

$$\frac{|\partial A|}{|A|} \leq \varepsilon \quad \text{where} \quad \partial A := \left\{ i \notin A : \exists \text{ edge } (i,j) \text{ s.t. } j \in A \right\}.$$

This says that there exist large 'blocks' A whose surface can be made arbitrarily small compared to their volume. For example, \mathbb{Z}^d is amenable but \mathbb{T}_d $(d \ge 2)$ is not.

A subadditivity argument shows that for each Cayley graph $\mathcal{G}(\Lambda, \Delta)$, the limit

$$\lim_{n \to \infty} \frac{1}{n} \log \left| \{ i \in \Lambda : d(0, i) \le n \} \right|$$

exists, where d(0, i) denotes the usual graph distance of a site *i* to the origin. The Cayley graph $\mathcal{G}(\Lambda, \Delta)$ is said to have *exponential growth* (resp. *subexponential growth*) if this limit is positive (resp. zero).

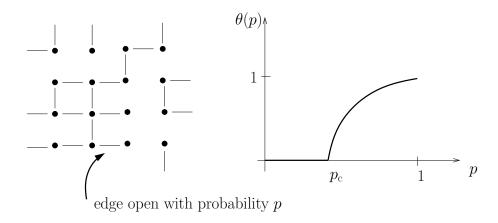
It can be shown that subexponential growth implies amenability, but the converse is not true. A counterexample is the lamplighter group.

Percolation

In (nearest-neighbor, Bernoulli) percolation on a Cayley graph $\mathcal{G}(\Lambda, \Delta)$, we independently make edges open with probability p and closed with the remaining probability. We let

$$\theta(p) := \mathbb{P}[0 \leftrightarrow \infty]$$

denote the probability that the origin is part of an infinite open cluster.

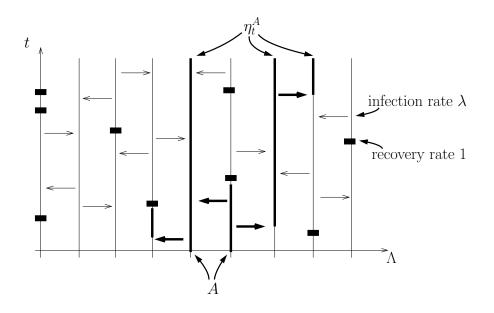


The graph of $\theta(p)$ is believed to be roughly as drawn above. In particular, there exists a critical percolation parameter $0 < p_c < 1$ such that $\theta(p) = 0$ for $p < p_c$ and $\theta(p) > 0$ for $p > p_c$. On \mathbb{Z}^d , it is known that $\theta(p_c) = 0$ in dimension d = 2 and dimensions $d \ge 19$. Proving this for $3 \le d \le 18$ is an open problem. For nonamenable graphs, the problem turns out to be easier than on \mathbb{Z}^d . In 1999, Benjamini, Lyons, Peres, and Schramm [BLPS99] proved that $\theta(p_c) = 0$ on any nonamenable Cayley graph.

Contact processes

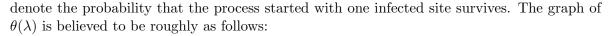
The contact process with infection rate λ on a Cayley graph $\mathcal{G}(\Lambda, \Delta)$ is a Markov process $(\eta_t)_{t\geq 0}$ taking values in the subsets of Λ . If $i \in \eta_t$ then we say that the site *i* is infected at time $t \geq 0$; otherwise we say that the site is healthy. Infected sites infect healthy neighboring sites with rate λ , and infected sites become healthy with recovery rate 1.

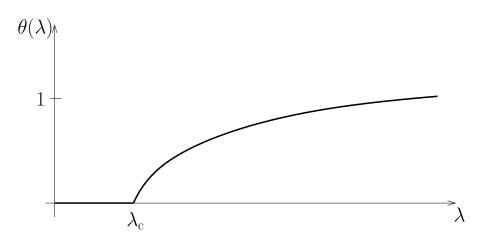
The contact process $(\eta_t^A)_{t\geq 0}$ started from the initial state A can be constructed with the help of a graphical representation. Here, a site i is infected at time t if there is a site $j \in A$ and an upward path from (j, 0) to (i, t) that may follow infection arrows but must avoid recovery symbols.



We let

$$\theta(\lambda) := \mathbb{P}[\eta_t^{\{0\}} \neq \emptyset \ \forall t \ge 0]$$
$$= \mathbb{P}[(0,0) \to \infty]$$





In particular, there exists a critical infection rate $0 < \lambda_c < \infty$ such that $\theta(\lambda) = 0$ for $\lambda < \lambda_c$ and $\theta(\lambda) > 0$ for $\lambda > \lambda_c$. In the celebrated paper of Bezuidenhout and Grimmett [BG90], it is proved that $\theta(\lambda_c) = 0$ for the process on \mathbb{Z}^d in all dimensions $d \ge 1$. The analogue result for trees has been proved by Morrow, Schinazi, and Zhang in [MSZ94]. The next result generalizes this, in the spirit of [BLPS99], to any nonamenable Cayley graph:

> **Theorem [Swa08]** Assume that Λ is nonamenable. Then $\theta(\lambda_c) = 0$.

The exponential growth rate

A simple argument using subadditivity shows that each contact process on a Cayley graph has a well-defined exponential growth rate. More precisely, there exists a real constant $r = r(\lambda)$ such that the process started in any finite nonzero initial state satisfies:

$$\lim_{t \to \infty} \frac{1}{t} \log \mathbb{E}\big[|\eta_t|\big] = r.$$

If the Cayley graph has subexponential growth, then it is not hard to show that $r \leq 0$. In particular, on \mathbb{Z}^d , it is known that $r(\lambda) < 0$ for $\lambda < \lambda_c$ and $r(\lambda) = 0$ for $\lambda \geq \lambda_c$ [BG91]. On the other hand, on graphs with exponential growth, it is possible that r > 0. In many ways, the function $r(\lambda)$ is easier to study than the function $\theta(\lambda)$. The Theorem above is a result of the following proposition.

Proposition 1 For any Cayley graph $\mathcal{G}(\Lambda, \Delta)$:

- (a) The function $\lambda \mapsto r(\lambda)$ is Lipschitz continuous.
- (b) $r(\lambda) > 0$ implies $\theta(\lambda) > 0$.
- (c) If Λ is nonamenable and $\theta(\lambda) > 0$, then $r(\lambda) > 0$.

The process seen from a typical site

Proposition 1 (c) is proved by relating the exponential growth rate r to the configuration seen from a typical infected site at a typical late time.

Definitions

The space $\mathcal{P}(\Lambda) := \{A : A \subset \Lambda\}$ of all subsets of Λ can in a natural way be identified with $\{0,1\}^{\Lambda}$, which is a compact space under the product topology. In this topology, $\mathcal{P}_{+}(\Lambda) := \{A \in \mathcal{P}(\Lambda) : A \neq \emptyset\}$ is a locally compact space. We define locally finite measures μ_t on $\mathcal{P}_{+}(\Lambda)$ by

$$\mu_t := \sum_{i \in \Lambda} \mathbb{P}[\eta_t^{\{i\}} \in \cdot]\big|_{\mathcal{P}_+(\Lambda)} \qquad (t \ge 0),$$

where $|_{\mathcal{P}_{+}(\Lambda)}$ denotes restriction of a measure to $\mathcal{P}_{+}(\Lambda)$. Think of μ_{t} as the law at time t of the process started with one infected site, distributed according to the uniform distribution on Λ . Conditioning μ_{t} on the origin being infected yields a probability measure, describing the configuration seen from a typical infected site at time t.

We set

$$\hat{\mu}_{\alpha} := \frac{1}{Z_{\alpha}} \int_{0}^{\infty} \mu_{t} e^{-\alpha t} \mathrm{d}t \qquad (\alpha > r),$$

where Z_{α} is a normalization constant such that $\hat{\mu}_{\alpha}\{A: 0 \in A\} = 1$.

Proposition 2 The measures $\{\hat{\mu}_{\alpha} : \alpha > r\}$ are tight in the topology of vague convergence, and each vague limit as $\alpha \downarrow r$ yields an 'eigenmeasure' with eigenvalue r (as defined below).

Eigenmeasures

By definition, we say that a locally finite measure μ on $\mathcal{P}_+(\Lambda)$ is an *eigenmeasure* with eigenvalue α of a contact process if

$$\int \mu(\mathrm{d}A) \,\mathbb{P}\big[\eta_t^A \in \cdot\,\big]\big|_{\mathcal{P}_+(\Lambda)} = e^{\alpha t}\mu \qquad (t \ge 0).$$

Note that this says that if we start the process in the (possibly infinite) measure μ , then, up to an exponential factor, we get back the same law at any later time. Consider the 'spectrum'

 $\mathcal{E}(\lambda) := \{ \alpha \in \mathbb{R} : \text{ there exists a spatially homogeneous eigenmeasure} \\ \text{ with eigenvalue } \alpha \text{ for the contact process with} \\ \text{ infection rate } \lambda \}.$

Proposition 2 shows that $r \in \mathcal{E}(\alpha)$. More generally, one has:

Proposition 3 $\mathcal{E}(\lambda)$ is a compact subset of \mathbb{R} and $r(\lambda) = \max \mathcal{E}(\lambda)$.

The upper invariant law

Extending the graphical representation to negative times and setting

$$\overline{\eta}_t := \{ i \in \Lambda : -\infty \to (i, t) \} \qquad (t \in \mathbb{R})$$

defines a stationary contact process $(\overline{\eta}_t)_{t\geq 0}$, whose stationary law $\overline{\nu} := \mathbb{P}[\eta_t \in \cdot]$ is called the *upper invariant law*. By reversing the direction of all arrows and turning the graphical representation upside down, it is not hard to see that $\overline{\nu}$ is nontrivial (i.e., concentrated on $\mathcal{P}_+(\Lambda)$) if and only if the contact process survives.

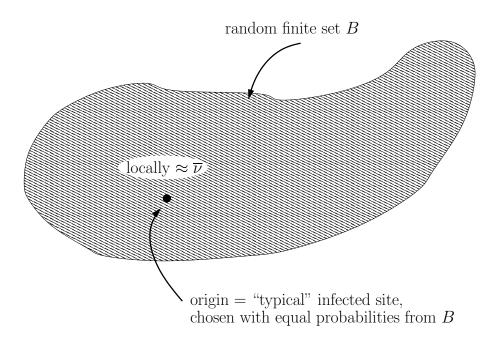
There exists a not too difficult proof, that works on any Cayley graph, that if a contact process survives, then $\overline{\nu}$ is its unique nontrivial spatially homogeneous invariant law. In a similar fashion, one can prove the following, stronger fact:

Proposition 4 If a contact process on a Cayley graph survives, then, up to a multiplicative constant, the upper invariant law $\overline{\nu}$ is the only spatially homogeneous eigenmeasure with eigenvalue zero.

Proof of Proposition 1 (c) (sketch)

Assume that a contact process on a Cayley graph survives, and its exponential growth rate $r(\lambda)$ is zero. Then, by Propositions 2 and 4, the vague limit $\lim_{\alpha \downarrow 0} \hat{\mu}_{\alpha}$ exists and is up to a multiplicative constant equal to $\bar{\nu}$.

Consider the law $\hat{\mu}_{\alpha}$, conditioned on the event $\{A : 0 \in A\}$. By our previous remarks, for α close to zero, this law describes a random finite set B, containing the origin, that looks something like this:



Since seen from the origin, we see something that looks like the spatially homogeneous law $\overline{\nu}$, we conclude that 0 lies with high probability far from the outer boundary of *B*. Since 0 is a 'typical' site, this contradicts nonamenability, which says that in any finite set *B*, a positive fraction of the sites must lie near the boundary.

References

- [BG90] C. Bezuidenhout and G. Grimmett. The critical contact process dies out. Ann. Probab. 18(4), 1462–1482, 1990.
- [BG91] C. Bezuidenhout and G. Grimmett. Exponential decay for subcritical contact and percolation processes. Ann. Probab. 19(3), 984–1009, 1991.
- [BLPS99] I. Benjamini, R. Lyons, Y. Peres, and O. Schramm. Critical percolation on any nonamenable group has no infinite clusters. *Ann. Probab.* 27(3), 1347–1356, 1999.
- [MSZ94] G.J. Morrow, R.B. Schinazi, and Y. Zhang. The critical contact process on a homogeneous tree. J. Appl. Probab. 31(1), 250–255, 1994.
- [Swa08] J.M. Swart. The contact process seen from a typical infected site. Published online in J. Theor. Probab., DOI 10.1007/s10959-008-0184-4. ArXiv:math.PR/0507578.