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TRIMMED TREES AND EMBEDDED PARTICLE SYSTEMS1

BY KLAUS FLEISCHMANN AND JAN M. SWART

Weierstrass Institute and University Erlangen–Nuremberg

In a supercritical branching particle system, the trimmed tree consists of
those particles which have descendants at all times. We develop this concept
in the superprocess setting. For a class of continuous superprocesses with
Feller underlying motion on compact spaces, we identify the trimmed tree,
which turns out to be a binary splitting particle system with a new underlying
motion that is a compensated h-transform of the old one. We show how
trimmed trees may be estimated from above by embedded binary branching
particle systems.
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1. Introduction and main results.

1.1. Introduction. It frequently happens that a superprocess X = (Xt )t≥0,
taking values in the space M(E) of finite measures on some space E, and a
branching particle process X = (Xt )t≥0 are related by the formula

P L(Pois(µ))[Xt ∈ ·] = P µ[Pois(Xt ) ∈ ·], t ≥ 0,µ ∈M(E).(1.1)

Here Pois(Xt ) denotes a Poisson point measure with random intensity Xt and
P L(Pois(µ)) denotes the law of the process X, started with initial law L(X0) =
L(Pois(µ)). For example, (1.1) holds when X is the standard, critical, continuous
super-Brownian motion in R

d , which corresponds to the evolution equation
∂
∂t

ut = 1
2�ut − u2

t , and X is a system of binary branching Brownian motions
with branching rate 1 and death rate 1. Loosely speaking, X can be obtained
from X by Poissonization. Poissonization relations of the form (1.1) have been
exploited by various authors, for example, Gorostiza, Roelly-Coppoletta and
Wakolbinger ([17], formula (8)), Klenke ([19], formula (4.19)) and Winter ([26],
formula (1.23)).

In the present paper, we investigate Poissonization relations for a class of
continuous superprocesses on compacta with Feller underlying motion. We give
conditions that imply that a superprocess X and a branching particle system X

can be coupled as processes, such that

P [Xt ∈ ·|(Xs)0≤s≤t ] = P [Pois(hXt ) ∈ ·|Xt ] a.s. ∀ t ≥ 0,(1.2)

where h is a sufficiently smooth density. Formula (1.2) says that the conditional
law of Xt , given (Xs)0≤s≤t , is the law of a Poisson point measure with
intensity hXt . For certain critical and subcritical superprocesses, a coupling of
the form (1.2) has occurred before in [20], Theorem 3.1 and Section 3.2.

The weighted superprocess (hXt )t≥0 that occurs in (1.2) is a superprocess
itself, which compared to X has a new branching mechanism and a new underlying
motion, the latter being a “compensated” h-transform of the old one. For the
special case that X is a superdiffusion, this fact was proved and exploited by
Engländer and Pinsky [7].

Let X and X be related by (1.2), let A := {∃ τ <∞ such that Xt = 0 ∀ t ≥ τ }
denote the event that X becomes extinct after some random time τ and set
A := {∃ τ < ∞ such that Xt = 0 ∀ t ≥ τ }. Since P [Xt = 0|Xt = 0] = 1, t ≥ 0,
we clearly have P (A\A)= 0. We investigate when X and X can be coupled such
that P (A \A) = 0 also holds, that is, the extinction of X implies the extinction
of X.

In particular, for a supercritical superprocess X, we construct a binary splitting
particle system X, such that X and X are related by a formula of the form (1.2),
and, moreover, X corresponds, loosely speaking, to those infinitesimal bits of mass
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of X which have descendants at all times. More precisely, we couple the historical
processes X̂ and X̂ associated with X and X such that

∀ t ≥ 0∃ τ <∞ s.t. ∀ r ≥ τ supp(X̂t )= supp
(
X̂r ◦ π−1

[0,t]
)

a.s.(1.3)

Here π[0,t] denotes projection on the space DE[0, t] of cadlag paths from [0, t]
into E. Informally, X̂t is a random measure on paths of length t , measuring
how much each line of descent contributes to the population at time t ; likewise,
X̂t counts how often each line of descent contributes to Xt . Thus, (1.3) says that
eventually all mass of the superprocess X descends from finitely many lines of
descent, which are given by supp(X̂t ). In this special case, the function h that
occurrs in (1.2) is h= p, the infinitesimal survival probability of X, given by

p(x)= ∂

∂ε
P εδx [Xt > 0 ∀ t ≥ 0]

∣∣∣∣
ε=0

, x ∈E.(1.4)

We call X the trimmed tree of X. The reduced tree of a branching process
describes the family relations between all particles alive at a fixed time and their
ancestors (neglecting those lines of descent that died earlier). Thus, our trimmed
tree can be viewed as the limit of reduced trees as time tends to infinity. Reduced
trees have been studied intensively in the branching literature. For historical
background, see, for example, the last paragraph in Section 12.1 of [2], page 201.

It is worth mentioning that the weighted superprocess (pXt )t≥0 with p as
in (1.4) played an important role in the work of Engländer and Pinsky [7], who
investigated support properties (such as recurrence) of superdiffusions by analytic
tools. Weighted superprocesses and embedded particle systems also played a
central role in [14], which motivated our present article.

The paper is organized as follows. In Sections 1.2–1.4, we introduce our objects
of interest together with some of their elementary properties in more detail.
Sections 1.5 and 1.6 contain our main results, while Section 1.7 is devoted to
discussion. In Section 2, we collect some necessary facts on historical processes
and weighted superprocesses. The final proofs are deferred to Section 3.

1.2. Poissonization of superprocesses. Let E be a compact metrizable space,
and let B(E) and C(E) denote the spaces of bounded measurable real functions
and continuous real functions on E, respectively. We set B+(E) := {f ∈
B(E) :f ≥ 0}, B[0,1](E) := {f ∈ B(E) : 0≤ f ≤ 1} and define C+(E), C[0,1](E)

similarly. Let M(E) denote the space of finite measures on E, equipped with
the topology of weak convergence. If µ is a measure and f is measurable,
then 〈µ,f 〉 := ∫

E f dµ denotes the integral of f with respect to µ, whenever
it exists. By N (E) ⊂ M(E) we denote the space of finite point measures, that
is, measures ν of the form

∑n
i=1 δxi

with xi ∈ E and n ≥ 0. We interpret such a
point measure as a collection of n particles, situated at positions x1, . . . , xn. For
f ∈ B[0,1](E) and ν = ∑n

i=1 δxi
∈ N (E) we use the notation f ν := ∏n

i=1 f (xi)

(where f 0 := 1). If µ is a random variable taking values in M(E), then Pois(µ)
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denotes an N (E)-valued random variable such that, conditioned on µ, Pois(µ) is
a Poisson point measure with intensity µ. If ν is a random variable taking values in
N (E) and f ∈ B[0,1](E), then Thinf (ν) denotes a random point measure obtained
by thinning ν with f . That is, conditioned on ν, a particle δx in ν is kept with
probability f (x), independently of the other particles in ν. Note that

(i) P [Pois(f µ)= 0|µ] = e−〈µ,f 〉, f ∈B+(E),

(ii) P [Thinf (ν)= 0|ν] = (1− f )ν, f ∈B[0,1](E).
(1.5)

It is well known that

Thinf

(
Thing(ν)

) D= Thinfg(ν) and Thinf (Pois(µ))
D= Pois(fµ),(1.6)

where D= denotes equality in distribution.
Let G be the generator of a Feller process ξ = (ξt )t≥0 on E and let α ∈ C+(E),

β ∈ C(E). Then, for each f ∈ B+(E), an appropriate integrated version [see (2.8)]
of the semilinear Cauchy problem

∂

∂t
ut =Gut + βut − αu2

t , t ≥ 0,

(1.7)
u0 = f,

has a unique solution ut =:Ut f , t ≥ 0, in B+(E). Moreover, there exists a unique
(in law) Markov process X in M(E) with continuous sample paths, defined by its
Laplace functionals

Eµ
[
e−〈Xt ,f 〉]= e−〈µ,Utf 〉, t ≥ 0,µ ∈M(E), f ∈B+(E).(1.8)

The process X is called the superprocess in E with underlying motion gener-
ator G, (local) activity α and (local) growth parameter β (the last two terms
are our terminology) or, for short, the (G,α,β)-superprocess. The semigroup
(Ut )t≥0 = U = U(G,α,β) is called the log-Laplace semigroup of X. In fact,
Ut f can be defined unambiguously for any measurable f :E → [0,∞] such
that (1.8) holds (where e−∞ := 0). The process X can be constructed in several
ways and is nowadays standard (see, e.g., [10–12]). We can think of X as describ-
ing a population where mass flows with generator G and during a time interval
dt a bit of mass dm at position x produces offspring with mean (1+ β(x) dt) dm

and finite variance 2α(x) dt dm. For basic facts on superprocesses, we refer to
[2] and [8].

Similarly, when G is (again) the generator of a Feller process in a compact
metrizable space E and b, d ∈ C+(E), then, for any f ∈ B[0,1](E), an integrated
version of the semilinear Cauchy problem

∂

∂t
ut =Gut + but(1− ut)− dut, t ≥ 0,

(1.9)
u0 = f,
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has a unique solution ut =: Utf , t ≥ 0, in B[0,1](E). Moreover, there exists a
unique Markov process X with cadlag sample paths in N (E), defined by its
generating functionals

Eν[
(1− f )Xt

]= (1−Utf )ν, t ≥ 0, ν ∈N (E), f ∈B[0,1](E).(1.10)

We call X the binary branching particle system in E with underlying motion
generator G, branching rate b and death rate d , or, for short the (G,b, d)-particle
system. The semigroup (Ut )t≥0 = U = U(G,b, d) is called the generating
semigroup of X. The particles in X perform independent motions with generator G

and, additionally, a particle branches with local rate b into two new particles,
created at the position of the old one, and particles die with local rate d . If the
death rate is zero, we also speak about binary splitting instead of binary branching.

Because of (1.5), formulas (1.8) and (1.10) can be rewritten as

(i) P µ[Pois(fXt )= 0] = P [Pois((Ut f )µ)= 0],µ ∈M(E), f ∈B+(E),

(ii) P ν[Thinf (Xt )= 0] = P [ThinUtf (ν)= 0], ν ∈N (E), f ∈B[0,1](E),
(1.11)

t ≥ 0. The following lemma is now an easy observation.

LEMMA 1 (Poissonization of superprocesses). Let X be the (G,α,β)-super-
process, assume that α ≥ β and let X be the (G,α,α− β)-particle system. Then

P L(Pois(µ))[Xt ∈ ·] = P µ[Pois(Xt ) ∈ ·], t ≥ 0,µ ∈M(E).(1.12)

PROOF. Let U = U(G,α,β) and U = U(G,α,α − β) denote the log-
Laplace semigroup of X and the moment generating semigroup of X, respectively.
Comparing the Cauchy problems (1.7) and (1.9), we see that Ut f = Utf for all
f ∈ B[0,1](E) and t ≥ 0. It follows that for any f ∈ B[0,1](E), µ ∈ M(E) and
t ≥ 0,

P L(Pois(µ))[Thinf (Xt )= 0]
= P [ThinUtf (Pois(µ))= 0] = P [Pois((Utf )µ)= 0](1.13)

= P µ[Pois(fXt )= 0] = P µ[Thinf (Pois(Xt ))= 0].
Since this holds for arbitrary f ∈ B[0,1](E), the law of Xt , when X is started with
initial law L(X0)=L(Pois(µ)), coincides with the law of Pois(Xt ), when X is
started in X0 = µ. �

REMARK 2 (Locally compact spaces). With the help of a suitable compacti-
fication, the results in this paper can be applied to superprocesses on some non-
compact spaces as well. Let E be a locally compact but not compact, separable,
metrizable space, let G be the generator of a Feller process ξ = (ξt )t≥0 on E,
whose semigroup maps the space C0(E) of continuous real functions vanishing
at infinity into itself and let α,β be bounded continuous functions on E, α ≥ 0.
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Then the (G,α,β)-superprocess may be defined as follows. First, E may be em-
bedded in a compact metrizable space E such that E is an open dense subset of
E and such that the functions α,β can be extended to continuous functions α,β

on E. [To construct such a compactification, take for E the closure of the graph
of (α,β) in Eσ × R

2, where Eσ is the one-point compactification of E.] Sec-
ond, ξ may be extended to a Feller process in E (with generator denoted by G )
by putting P x[ξt = x ∀ t ≥ 0] := 1 for x ∈ E \ E. By identifying M(E) with
the space {µ ∈ M(E ) :µ(E \ E) = 0}, the (G,α,β )-superprocess X satisfies
P µ[Xt ∈M(E) ∀ t ≥ 0] = 1 for all µ ∈M(E). The (G,α,β)-superprocess may
then be defined as the restriction of X to M(E). In this way, the results in this
paper can be applied, for example, to the usual super-Brownian motion (with finite
initial mass). To keep notation simple, we formulate our results in the rest of this
paper for superprocesses in a compact space E.

1.3. Historical superprocesses and branching particle systems. Let E be a
compact metrizable space as before, and let DE[0,∞) and DE[0, t] denote the
spaces of cadlag paths w : [0,∞)→E and w: [0, t] →E, respectively, equipped
with the Skorohod topology. Let ξ be a Feller process in E. Then the path
process ξ̂ associated with ξ is a time-inhomogeneous Markov process with time-
dependent state space DE[0, t], defined as follows. Let ξx denote the process ξ

started in ξx
0 = x ∈ E. Then (ξ̂

s,w
t )t≥s , the path process ξ̂ started at time s ≥ 0 in

w ∈DE[0, s] and evaluated at times t ≥ s, is defined as

ξ̂
s,w
t (r) :=

{
w(r), if 0≤ r ≤ s,

ξ
w(s)
r−s , if s ≤ r ≤ t .

(1.14)

For t ≥ 0, we identify the space DE[0, t] with the space {w ∈DE[0,∞) :w(u)=
w(t) ∀u≥ t} of paths stopped at time t . With this identification, ξ̂ s,w : [s,∞)→
DE[0,∞) has cadlag sample paths. Note that ξ̂

0,x
t , the path process started at time

zero in x ∈DE{0} ∼= E and evaluated at time t ≥ 0, records the path followed by
ξx up to time t .

If X is a (G,α,β)-superprocess in E as defined in the last section, then by defi-
nition the historical superprocess X̂ associated with X is the time-inhomogeneous
superprocess with time-dependent state space M(DE[0, t]), with underlying mo-
tion ξ̂ , time-dependent activity α̂t (w) := α(w(t)) and time-dependent growth pa-
rameter β̂t (w) := β(w(t)). We call X̂ the historical (G,α,β)-superprocess. As
before, we identify DE[0, t] with the subspace of DE[0,∞) consisting of paths
stopped at time t , and in this identification X : [0,∞)→M(DE[0,∞)) has con-
tinuous sample paths. For the technical details needed to deal with the facts that the
underlying motion is time-inhomogeneous and the space DE[0,∞) is not locally
compact, we refer to Section 2.2; see also [3], Chapter 2. If X̂ is started at time
zero in X̂0 = µ ∈M(DE{0})∼=M(E) and πt (w) := w(t) denotes the projection
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on the endpoint of a path w ∈ DE[0, t], then (a proof can be found in Section
2.2.3) the projection

Xt := X̂t ◦ π−1
t , t ≥ 0,(1.15)

gives back the original (G,α,β)-superprocess X started in X0 =µ.
Likewise, if X is a (G,b, d)-particle system in E as defined in the last section,

then the historical binary branching particle system X̂ associated with X is defined
as the time-inhomogeneous binary branching particle system with time-dependent
state space N (DE[0, t]), with underlying motion ξ̂ , time-dependent branching
rate b̂(t,w) := b(w(t)) and time-dependent death rate d̂(t,w) := d(w(t)). We call
X̂ the historical (G,b, d)-particle system. For a historical setting in the case of
spatial Markov branching processes in discrete time, see, for instance, [13] or [18],
Chapter 10. Viewed as a process in N (DE[0,∞)), X̂ has cadlag sample paths.
If X̂ is started at time zero in X̂0 = ν ∈ N (DE{0}) ∼= N (E), then the analogue
of (1.15) gives back the (nonhistorical) (G,b, d)-particle system X started in
X0 = ν.

1.4. Weighted superprocesses and compensated h-transforms. We continue to
assume that ξ is a Feller process in a compact metrizable space E. Let G be the
generator of ξ , that is, Gf := limt→0 t−1(Ptf − f ), where Ptf (x) := Ex[f (ξt )]
is the semigroup associated with ξ and the domain D(G) of G consists of
all functions f ∈ C(E) for which the limit exists in the supremum norm. The
following lemma, the proof of which can be found in Section 2.3.3, introduces
compensated h-transforms of Feller processes.

LEMMA 3 (Compensated h-transform of a Feller process). Let G be the
generator of a Feller process ξ in a compact metrizable space E and assume that
h ∈D(G) satisfies h > 0. Then the operator

Ghf := 1

h

(
G(hf )− (Gh)f

)
,(1.16)

with domain D(Gh) := {f ∈ C(E) :hf ∈ D(G)}, is the generator of a Feller
process ξh on E. The laws of ξh and ξ are related by

P x
[
(ξh

s )s∈[0,t] ∈ dw
]

(1.17)

= h(wt)

h(x)
exp

(
−

∫ t

0

Gh

h
(ws)

)
P x

[
(ξs)s∈[0,t] ∈ dw

]
, t > 0, x ∈E.

REMARK 4 (h-transforms). Doob’s h-transform of a Feller process is the
process with generator G̃hf := 1

h
G(hf ) (see, e.g., [4], Section 2.VI.13, [24],

formula (62.23) and [5], Section IX.4). Here h is superharmonic (i.e., Gh ≤ 0)
and the h-transformed process has an additional local killing rate Gh/h. In our
setup, it is natural to compensate for this killing by adding the term −Gh/h in the
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definition of Gh. In this case, we can allow h to be any positive function in the
domain of G. A variant of the transformation in (1.16) appeared before in [15],
Section 4. At least for diffusion processes, their transformation is equivalent
to (1.16) if one chooses the logarithm of h for their function ξ .

The following lemma, which was proved in a nonhistorical setting for su-
perdiffusions in [7], describes the relation between weighted historical (G,α,β)-
superprocesses and compensated h-transforms.

LEMMA 5 (Weighted superprocess). Let X̂ be the historical (G,α,β)-
superprocess and assume that h ∈D(G), h > 0. Then the weighted process X̂h,
defined by

X̂h
t (dw) := h(wt )X̂t (dw), t ≥ 0,(1.18)

is the historical (Gh,hα,β + Gh
h

)-superprocess.

In particular, by formula (1.15), if X is the (G,α,β)-superprocess, then
Xh

t (dx) := h(x)Xt (dx), t ≥ 0, is the (Gh,hα,β + Gh
h

)-superprocess. The proof
of Lemma 5 is deferred to Section 2.3.4.

1.5. Main results. We are ready to state our first main result.

THEOREM 6 (Embedded particle system). Let E be a compact metrizable
space, let G be the generator of a Feller process in E and α ∈ C+(E), β ∈ C(E).
Assume that h ∈D(G) satisfies h > 0 and, for some γ ∈ C+(E),

Gh+ βh− αh2 =−γ h.(1.19)

Then the historical (G,α,β)-superprocess X̂ started in X̂0 = µ ∈M(E) and the
historical (Gh,hα,γ )-particle system X̂ started in X̂0 = Pois(hµ) can be coupled
as processes such that

P [X̂t ∈ ·|(X̂s)0≤s≤t ] = P
[
Pois

(
(h ◦ πt )X̂t

) ∈ ·|X̂t

]
a.s. ∀ t ≥ 0.(1.20)

It follows from (1.15) that the associated nonhistorical processes X and X

are related by (1.2). The phrase “coupled as processes” means that (X̂t )t≥0 and
(X̂t )t≥0 can be defined on the same probability space in such a way that (1.20)
holds.

If X̂ and X̂ are related by (1.20), then clearly the extinction of X̂ implies the
extinction of X̂ a.s. We now investigate when the converse conclusion can be
drawn, that is, when X̂ and X̂ can be coupled such that in addition to (1.20),
eventually all mass of the superprocess X descends from particles in X. Set

p(x) := − logP δx [Xt = 0 t-eventually], x ∈E.(1.21)
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Here, − log 0 := ∞ and we write t-eventually behind an event, depending on t ,
to denote the existence of a (random) time τ < ∞ such that the event holds
for all t ≥ τ . If no ambiguity is possible, we simply write eventually. It is not
hard to check that p, defined by (1.21), satisfies (1.4). Therefore, we call p the
infinitesimal survival probability of X. Note that

P δx [Xt = 0] =Eδx
[
e−〈Xt ,∞〉]= e−Ut∞(x), t ≥ 0, x ∈E.(1.22)

The following proposition is proved in Section 3.1.3.

PROPOSITION 7 (Properties of the infinitesimal survival probability). Con-
sider U=U(G,α,β), where G, α and β are as in Theorem 6, and let p be given
by (1.21). Assume that supx∈E Ut∞(x) < ∞ for some t > 0. Then we have the
following properties:

(a) Pointwise Ut∞ ↓ p as t ↑ ∞ and limt→∞Ut f = p for all f ∈ C+(E)

with f > 0.
(b) For all t ≥ 0, Utp = p.
(c) A function f ∈ C+(E) satisfies Ut f = f for all t ≥ 0 if and only if

f ∈D(G) and f solves

Gf + βf − αf 2 = 0.(1.23)

(d) If infx∈E p(x) > 0, then p is continuous and p is the unique positive
solution to (1.23).

We now formulate our main theorem, which gives sufficient conditions for
all mass of the superprocess X to descend eventually from particles in an
embedded particle system X. We write π[0,s] to denote projection on DE[0, s].
By definition, the support supp(µ) of a measure µ is the smallest closed set such
that µ(supp(µ)c)= 0.

THEOREM 8 (Eventual descent from an embedded particle system). Let X̂,
X̂ and h be as in Theorem 6, and assume that U = U(G,α,β) satisfies
supx∈E Ut∞(x) <∞ for some t > 0. Then p ≤ h. Moreover, X̂ and X̂ may be
coupled as processes such that (1.20) holds and such that, additionally,

supp(X̂t )⊃ supp
(
X̂r ◦ π−1

[0,t]
)

r-eventually ∀ t ≥ 0 a.s.(1.24)

If, moreover, infx∈E p(x) > 0, then by Proposition 7 we may take h = p in
Theorem 6. In this case we have the following theorem:

THEOREM 9 (Trimmed tree of a superprocess). Let E be a compact metriz-
able space, let G be the generator of a Feller process in E and α ∈ C+(E),
β ∈ C(E). Assume that U=U(G,α,β) satisfies supx∈E Ut∞(x) <∞ for some
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t > 0 and infx∈E p(x) > 0. Then the historical (G,α,β)-superprocess X̂ started
in X̂0 = µ ∈ M(E) and the historical (Gp,pα,0)-particle system X̂ started in
X̂0 = Pois(pµ) can be coupled as processes such that

P [X̂t ∈ ·|(X̂s)0≤s≤t ] = P
[
Pois

(
(p ◦ πt )X̂t

) ∈ ·|X̂t

]
a.s. ∀ t ≥ 0(1.25)

and

supp(X̂t )= supp
(
X̂r ◦ π−1

[0,t]
)
, r-eventually ∀ t ≥ 0 a.s.(1.26)

If X̂ and X̂ are coupled as in Theorem 9, then we say that X̂ is the trimmed
tree of X̂. If Xt = X̂t ◦ π−1

t and Xt = X̂t ◦ π−1
t are the associated nonhistorical

processes, then we also call X the trimmed tree of X. Note that the death rate of X

is zero, that is, X is a binary splitting particle system.

REMARK 10 (Checking the assumptions on Ut∞ and p). Upper bounds on
Ut∞ and lower bounds on p can be found, in practical situations, by finding
solutions to an appropriate differential inequality; see Lemmas 12 and 25.

1.6. Finite ancestry. In this section, we investigate the assumption in Theo-
rems 8 and 9 that supx∈E Ut∞(x) <∞ for some t > 0. In particular, we show
that this assumption is equivalent to the statement that all mass of the superprocess
X descends eventually from finitely many ancestors, in some sense.

To do this, we need to equip the historical (G,α,β)-superprocess X̂ with some
additional structure that makes it possible to distinguish different ancestors. To
this aim, set E′ :=E × [0,1]. Define a Feller process ξ ′ = (ξ, η) on E′, where for
given initial conditions (x, y) ∈ E × [0,1], ξ is the Feller process with generator
G started in x, and ηt := y, t ≥ 0. Put α′(x, y) := α(x) and β ′(x, y) := β(x). Let
X̂′ denote the historical (G′, α′, β ′)-superprocess. Then the formula

X̂t := X̂′
t ◦ψ−1

t , t ≥ 0,(1.27)

gives back the original historical (G,α,β)-superprocess X̂, where ψt denotes the
projection from DE×[0,1][0, t] to DE[0, t]. The following lemma is proved in
Section 3.2.3. Here π0(w) := w(0) denotes the projection on the starting point
of a path w in DE[0, t] or DE′ [0, t].

LEMMA 11 (Finite ancestry). Let X̂ be the historical (G,α,β)-superprocess,
let X̂′ be the extended historical (G′, α′, β ′)-superprocess just defined and
U = U(G,α,β). Let � denote Lebesgue measure on [0,1]. Then we have the
relations (i)⇔ (ii)⇒ (iii), where

(i) sup
x∈E

Ut∞(x) <∞ for some t > 0,

(ii) P 0,µ⊗�[supp(X̂′
t ◦ π−1

0 ) is finite eventually] = 1 ∀µ ∈M(E),

(iii) P 0,µ[supp(X̂t ◦ π−1
0 ) is finite eventually] = 1 ∀µ ∈M(E).

(1.28)
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We interpret supp(X̂′
t ◦ π−1

0 ) as the ancestors at time 0 of the population of X
at time t . We have extended the underlying space E to make sure that different
ancestors live a.s. on different positions. Note that if E is finite, then (iii) is always
trivially fulfilled even when (i) fails.

For many superprocesses, it is actually the case that

sup
x∈E

Ut∞(x) <∞ ∀ t > 0.(1.29)

A sufficient, but not necessary condition for (1.29) is that α is bounded away
from zero. The sufficiency follows from the following bound (see, e.g., [14],
Lemma 11).

LEMMA 12 (Extinction estimate). Set α := infx∈Eα(x) and β := supx∈Eβ(x).
If α > 0, then

Ut∞≤ β

α(1− e−βt )
, β �= 0 and Ut∞≤ 1

αt
, β = 0.(1.30)

On the other hand, it is possible for a (G,α,β)-superprocess to satisfy (1.29)
while α = 0 (see [14], Lemmas 5 and 6).

The following consequence of (1.29) is proved in Section 3.2.3.

LEMMA 13 (Finite ancestry and preserved past property). If X satisfies (1.29),
then

(i) supp
(
X̂r ◦ π−1

[0,t]
)

is finite ∀0≤ t < r a.s.,

(ii) supp
(
X̂r ◦ π−1

[0,t]
)⊃ supp

(
X̂r ′ ◦ π−1

[0,t]
) ∀0≤ t < r ≤ r ′ a.s.

(1.31)

In view of Lemma 11 and (1.31)(i) we say that a superprocess X has the finite
ancestry property if X satisfies (1.29). Note that (1.31)(ii) says that lines of descent
(up to a given time s) can become extinct, but no new ones are created. This
statement may seem obvious, but some care is needed regarding the order of the ∀
and the a.s. in the statements. In (1.31)(ii), we claim that the same zero set works
for all times t, r, r ′ such that 0≤ t < r ≤ r ′. One cannot simply argue by continuity
here, because the support of a measure µ is not a continuous function of µ. Note
that if the superprocess X in Theorem 9 has the finite ancestry property, then a.s.
the sets supp(X̂r ◦π−1

[0,t]) in (1.26) are finite for all r > t and decrease to supp(X̂t )

as r ↑∞.

1.7. Methods, discussion and outline of the proofs. Our results have obvious
applications in the study of (local) extinction and survival of superprocesses. For
superdiffusions, extinction properties were studied by Engländer and Pinsky [7].
Parallel to the present paper, Engländer and Kyprianou [6] investigated local
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survival and local exponential growth of superdiffusions. The first paper uses more
analytic tools, while the second is more probabilistic in nature.

While our methods are more probabilistic, some of our results are close in spirit
to the work in [7]. As we already mentioned, the weighted superprocess (pXt )t≥0
with p as in (1.4) plays an important role in [7]. Also, their Theorem 4.4(a) is
not surprising in view of our Theorem 9, although their setup and ours do not
completely overlap. Their Theorem 3.1 describes properties of the function p

similar (but not identical) to our Proposition 7. Since our underlying motion is
a general Feller process which does not have the good smoothing properties of
uniformly elliptic diffusions, we have to be more careful about the sense in which
p solves equation (1.23).

The main tool in [6] is an expression [their Theorem 5(i)] that says (in
the language of log-Laplace functionals) that a certain change of measure of a
superdiffusion yields back the same superdiffusion with an additional immigration
term coming from a single particle. In their introduction, Engländer and Kyprianou
discussed the possible use of Poissonization relations for their aims, but rejected
them on the ground that relation between the laws of Xt and Xt at fixed times t are
not enough to relate the long-time behavior of X and X. A central aim of our work
is to overcome such shortcomings of the usual Poissonization formulas. Another
aim, of course, is to allow more general underlying motions than diffusions.

The main ideas behind our proofs of Theorems 6, 8 and 9 are the simple
observations about Poissonization and weighting of superprocesses in Lemmas
1 and 5, respectively. Our strategy is to construct a version of the superprocess with
so much additional structure that we can distinguish all ancestors of the population
alive at a given time. For such a sufficiently enriched process, we then explicitly
identify the trimmed tree and check that it is a binary splitting particle system. This
is done in Proposition 39 and Lemma 40 in Sections 3.3.1 and 3.3.2, respectively.
The essential step, where a coupling of Xt and Xt for fixed t is improved to a
coupling of X and X as processes, occurs in the proof of Lemma 40. Forgetting
step by step some of the added structure, we then arrive at Theorems 6, 8 and 9.

Interesting side results of this approach are a number of lemmas about the lines
of descent of a superprocess, notably Lemma 13, which may seem intuitively
obvious, but to our knowledge has not been proved before. On the other hand,
our approach does not make any statements about the transition probabilities of
the joint process (Xt ,Xt )t≥0, when X and X (and their historical counterparts)
are coupled as in Theorem 6. Another possible approach to our Theorem 6 (not
followed in this paper) would be to specify a joint Markov evolution for (X,X)

and then show that if the process is started in a state such that X0 = Pois(hX0),
then Xt = Pois(hXt ) for all t ≥ 0. Here, X would be an autonomous binary
branching particle system, while X would be a superprocess with an additional
mass creation on the positions of the particles in X.

Our results can be generalized in several directions. If the space E is not
compact but locally compact, then generalizations of our results can be derived
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using the compactification technique from Remark 2. This requires, however, that
the functions h in Theorems 6 and 8 or p in Theorem 9 are uniformly bounded
away from zero, and hence can be extended to positive continuous functions on
some compactification of E. Truly local versions of our results, where h and p are
only required to be locally bounded away from zero, are somewhat more subtle.
We hope to handle these in a forthcoming paper.

A lot of our proofs work for superprocesses whose underlying motion is a
general Hunt process on a Polish space, and whose activity and growth parameter
are bounded and measurable, but we do not know how to treat compensated
h-transforms and weighted superprocesses (Lemmas 3 and 5) in this context.

The proofs are organized as follows. After settling some notational and
topological issues in Section 2.1, we introduce formally historical processes in
Section 2.2 and collect some of their elementary properties. Section 2.3 treats
compensated h-transforms and weighted superprocesses. Section 3.1 is devoted
to the infinitesimal survival probability p. Section 3.2 collects some basic facts
about surviving lines of descent. In Section 3.3, finally, we prove our main results.

2. Prerequisites on superprocesses.

2.1. Topological preliminaries. Let E be a Polish space (i.e., E is a separable
topological space and there exists a complete metric generating the topology).
We always equip E with the Borel σ -field B(E). We let B(E), B+(E) and
B[0,1](E) denote the spaces of bounded, bounded nonnegative and [0,1]-valued,
real measurable functions on E, respectively. If a countable collection of functions
{fi : i ≥ 1} ⊂ B(E) separates points, then B(E) = σ(fi : i ≥ 1) (see [23],
Lemma II.18). We remind the reader of the fact that a subspace F of a Polish
space E is itself Polish in the induced topology if and only if F is a Gδ-subset
of E, that is, a countable intersection of open sets ([1], Section 6, Theorem 1).

Let Cb(E) denote the space of bounded continuous real functions on E. We
write M(E) for the space of finite measures on E, equipped with the topology of
weak convergence (with weak convergence denoted by ⇒), under which M(E) is
a Polish space ([9], Theorem 3.1.7). Recall that by definition µn ⇒ µ if and only
if 〈µn,f 〉→ 〈µ,f 〉 for all f ∈ Cb(E). Note that the topology on M(E) does not
depend on the choice of the metric on E. The Borel σ -field on M(E) is generated
by the mappings µ �→ µ(A), A ∈ B(E) (cf. [21], Lemma 3.2.3). If F ⊂ E is
measurable, we identify M(F ) with the space {µ ∈ M(E) :µ(E \ F) = 0}. In
particular, when F is a Gδ-subset of E (and therefore Polish in the induced
topology), then the topology of weak convergence on M(F ) coincides with the
induced topology from its embedding in M(E). By M1(E) ⊂M(E) we denote
the space of probability measures; N (E)⊂M(E) denotes the space of finite point
measures on E.

We denote by DE[0,∞) the space of cadlag (i.e., right-continuous with existing
left limits) functions w : [0,∞) → E, equipped with the Skorohod topology.
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This is the J1 topology defined in [25]. The space DE[0,∞) is Polish ([9],
Theorem 3.5.6). One has wn → w in DE[0,∞) if and only if for each T > 0
there exists a sequence of strictly increasing, continuous λn : [0, T ]→ [0,∞) with
λn(0)= 0, such that

lim
n→∞ sup

t∈[0,T ]
|λn(t)− t| = 0(2.1)

and such that (cf. [9], Proposition 3.5.3)

wn(λn(tn))→
{

w(t), whenever tn ↓ t,

w(t−), whenever tn ↑ t,
tn, t ∈ [0, T ].(2.2)

Note that the topology on DE[0,∞) does not depend on the choice of the metric
on E.

2.2. Historical processes.

2.2.1. Hunt processes. Let E be a Polish space and let (Pt)t≥0 be a
measurable transition probability on E. That is, (t, x) �→ Pt(x, ·) is a (Borel)
measurable map from [0,∞) × E into M1(E), P0(x, ·) = δ0 for all x ∈ E and
the operators

Ptf (x) :=
∫
E

Pt(x, dy)f (y), t ≥ 0, x ∈E,f ∈ B(E),(2.3)

form a semigroup: PtPsf = Pt+sf for all s, t ≥ 0, f ∈B(E).
Assume that (Pt)t≥0 is the transition probability (equivalently the semigroup)

of a Markov process with cadlag sample paths in E, that is, for every x ∈E there
exists a DE[0,∞)-valued random variable ξx , unique in distribution, such that
ξx

0 = x and

E[f (ξx
t )|Fs] = (Pt−sf )(ξx

s ) a.s., 0≤ s ≤ t, f ∈B(E),(2.4)

where (Ft )t≥0 denotes the filtration generated by ξx . By definition, the Markov
process with transition probability (Pt)t≥0 is a Hunt process if, for every x ∈ E,
the following statements hold (see [24], Theorem I.7.4 and Definition V.47.3):

(i) Right property. For every t > 0 and f ∈B(E),
the map [0, t) � s �→ Pt−sf (ξx

s ) is a.s. right-continuous.

(ii) Quasi left-continuity. For every increasing sequence of
F·+ stopping times τn ↑ τ , we have ξx

τn
→ ξx

τ a.s. on {τ <∞}.
(2.5)

Here F·+ = (Ft+)t≥0 denotes the right-continuous modification of (Ft )t≥0.
The right property implies the strong Markov property ([24], Theorem I.7.4).
Conditions (2.5)(i) and (2.5)(ii) are properties of the law P x :=L(ξx) of ξx only
and, therefore, being a Hunt process is a property of the transition probability.
It suffices to check (2.5)(i) for all f ∈ Cb(E) ([24], Theorem I.7.4). We identify a
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Hunt process with the collection of probability measures (P x)x∈E . If (ξx)x∈E is a
collection of DE[0,∞)-valued random variables with laws L(ξx) = P x , x ∈ E,
then with a slight abuse of terminology we say that (ξx)x∈E is a Hunt process
(regardless of a possible dependence structure between the ξx ).

We also need time-inhomogeneous Hunt processes with a time-dependent state
space Et . We assume that the Et are (or can be identified with) subsets of some
Polish space E and that the set Ė := {(t, x) ∈ [0,∞)×E :x ∈Et } is a Gδ-subset
of [0,∞)×E (and therefore Polish in the induced topology). Let W[s,∞) := {w ∈
DE[s,∞) :wt ∈Et ∀ t ≥ s} denote the space of all possible paths the process can
follow after time s. Generalizing our previous definition, we say that a collection
of random variables (ξ s,x)(s,x)∈Ė , where ξ s,x takes values in W[s,∞), is a time-

inhomogeneous Hunt process if the collection of random variables (ξ̇ (s,x))(s,x)∈Ė

defined by

ξ̇
(s,x)
t := (s + t, ξ

s,x
s+t ), (s, x) ∈ Ė, t ≥ 0,(2.6)

is a (time-homogeneous) Hunt process in Ė. If (ξ s,x)(s,x)∈Ė is a time-inhomoge-
neous Hunt process, then we write Ps,t (x, ·) := P [ξ s,x

t ∈ ·] and we let Ps,t :
B(Et)→ B(Es) denote the operator

Ps,tf (x) :=
∫
Et

Ps,t (x, dy)f (y), x ∈Es,f ∈ B(Et).(2.7)

By a slight abuse of terminology, we call (Ps,t )t≥s≥0 the (time-inhomogeneous)
semigroup associated with (ξ s,x)(s,x)∈Ė . (Such time-inhomogeneous semigroups
are sometimes called transition functions.)

2.2.2. Superprocesses with Hunt underlying motion. Let ξ be a (time-
homogeneous) Hunt process in a Polish space E with semigroup (Pt )t≥0 and
assume that α ∈ B+(E), β ∈ B(E). Then, for every f ∈ B+(E), there exists a
unique B([0,∞)× E)-measurable nonnegative function u which is bounded on
[0, T ] ×E for all T > 0, solving the Cauchy integral equation

ut = Ptf +
∫ t

0
Pt−s(βus − αu2

s ) ds, t ≥ 0(2.8)

([10], Proposition 2.3). Moreover, it was shown ([10], Corollary 3.6) that there
exists a unique (in law) Hunt process (Xµ)µ∈M(E), with continuous sample paths,
such that

Eµ
[
e−〈Xt ,f 〉]= e−〈µ,Ut f 〉, t ≥ 0,µ ∈M(E), f ∈B+(E),(2.9)

where Ut f := ut , t ≥ 0, and u solves (2.8). We call X the superprocess with
underlying motion ξ , activity α and growth parameter β , or, for short, the
(ξ,α,β)-superprocess, and we call U = U(ξ,α,β) its log-Laplace semigroup.
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By monotone convergence, Ut f can be defined unambiguously such that (2.9)
holds for any measurable f :E →[0,∞] ([14], Lemma 9).

We list some elementary properties of (ξ,α,β)-superprocesses that we need
later. The following lemma is an easy consequence of (2.9).

LEMMA 14 (Branching property). Let µ1,µ2 ∈M(E), and let Xµ1 and Xµ2

be independent copies of the (ξ,α,β)-superprocess started in µ1 and µ2,
respectively. Then

X
µ1+µ2
t :=X

µ1
t +X

µ2
t , t ≥ 0,(2.10)

is the (ξ,α,β) superprocess started in µ1 +µ2.

The following lemma was proved in [10], Proposition 2.7.

LEMMA 15 (Moment formulas). For every f ∈ B(E), there exists a unique
B([0,∞) × E)-measurable function v which is bounded on [0, T ] × E for all
T > 0, such that

vt = Ptf +
∫ t

0
Pt−s(βvs) ds, t ≥ 0.(2.11)

The formula Vt f := vt defines a (linear) semigroup (Vt )t≥0 on B(E). We have

Vt f (x)= Ex

[
f (ξt ) exp

(∫ t

0
β(ξs) ds

)]
, t ≥ 0, x ∈E,f ∈ B(E).(2.12)

Moreover, for all t ≥ 0, f, g ∈B(E),

(i) Eµ[〈Xt , f 〉] = 〈µ,Vtf 〉,
(ii) Covµ(〈Xt , f 〉, 〈Xt , g〉)= 2

∫ t

0
ds

〈
µ,Vs

(
α(Vt−sf )(Vt−sg)

)〉
.

(2.13)

The following lemma is an easy consequence of Lemma 15 and the fact that
0 ≤ Vt f ≤ e‖β‖t‖Ptf ‖ for all f ∈ B+(E) (where ‖ · ‖ denotes the supremum
norm).

LEMMA 16 (Absolute continuity of moment measures). Let µ be a probability
measure on E and m≥ 0. Then, for t ≥ 0,

(i) Emµ[Xt ] � P µ[ξt ∈ ·],
(ii) Emµ[Xt ⊗Xt ] � P µ[ξt ∈ ·] ⊗ P µ[ξt ∈ ·] +Q

µ
t ,

(2.14)

where Q
µ
t is the measure on E ×E defined as

Q
µ
t :=

∫ t

0
ds

∫
E

P µ[ξs ∈ dx](P x[ξt−s ∈ ·] ⊗ P x[ξt−s ∈ ·]).(2.15)
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A measure µ ∈M(E) is atomless [i.e., µ({x})= 0 for all x ∈E] if and only if

µ⊗µ
({(x1, x2) ∈E ×E : 1 = x2})= 0.(2.16)

The following lemma follows from formulas (2.14)(ii) and (2.16).

LEMMA 17 (Atomless superprocess). Assume that P x[ξt ∈ ·] is atomless for
every t > 0 and x ∈ E. Then Xt is atomless a.s. for every t > 0 and initial state
µ ∈M(E).

Our next lemma is the following:

LEMMA 18 (Image property). Let E,F be Polish spaces, let ψ :E → F be
continuous and let ξ = (ξx)x∈E and η = (ηy)y∈F be Hunt processes in E and F ,
respectively, satisfying

ψ(ξx
t )= η

ψ(x)
t , x ∈E, t ≥ 0.(2.17)

Assume that αF ∈ B+(F ) and βF ∈ B(F ), and let αE ∈B+(E) and βE ∈B(E) be
given by

αE := αF ◦ψ and βE := βF ◦ψ.(2.18)

Let X be the (ξ,αE,βE)-superprocess with initial state µ ∈M(E). Then

Yt :=Xt ◦ψ−1, t ≥ 0,(2.19)

is the (η,αF ,βF )-superprocess with initial state µ ◦ψ−1.

PROOF. Let P E and P F denote the semigroups associated with the processes
ξ and η, respectively. Formula (2.17) implies that P E

t (f ◦ ψ) = (P F
t f ) ◦ ψ

for all f ∈ B(F ). Using this fact and (2.18), it is not hard to show that also
UE

t (f ◦ ψ) = (UF
t f ) ◦ ψ for all f ∈ B+(F ), where UE = U(ξ,αE,βE) and

UF = U(η,αF ,βF ) are the log-Laplace semigroups of X and Y, respectively.
Let (Ft )t≥0 be the filtration generated by X. Then, for all 0≤ s ≤ t ,

E[exp(−〈Xt ◦ψ−1, f 〉)|Fs]
=E[exp(−〈Xt , f ◦ψ〉)|Fs] = exp

(− 〈Xs,U
E
t−s(f ◦ψ)〉)

(2.20)
= exp

(− 〈Xs, (U
F
t−sf ) ◦ψ〉)

= exp(−〈Xs ◦ψ−1,UF
t−sf 〉), f ∈ B+(F ).

This shows that (Xt ◦ ψ−1)t≥0 is a Markov process and that its transition
probabilities coincide with those of the (η,αF ,βF )-superprocess. Since ψ is
continuous, Xt ◦ψ−1 has continuous sample paths. �

The following simple observation will be useful later.
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LEMMA 19 (Preserved sets). Let X be the (ξ,α,β)-superprocess.

(a) If F ⊂E is measurable and P x[ξt ∈ F ] = 1∀ t ≥ 0 (x ∈ F), then

P µ[Xt ∈M(F )] = 1 ∀ t ≥ 0,µ ∈M(F ).(2.21)

(b) If F ⊂ E is a Gδ-set and P x[ξt ∈ F ∀ t ≥ 0, ξt− ∈ F ∀ t > 0] = 1, x ∈ F ,
then

P µ[Xt ∈M(F ) ∀ t ≥ 0] = 1, µ ∈M(F ).(2.22)

PROOF. Statement (a) follows from (2.14)(i), while (b) follows by applying
Lemma 18 to the inclusion map F ⊂ E, where we use that the restriction of ξ to F

is again a Hunt process. The assumption that F is a Gδ-set guarantees that F is a
Polish space and that the event {Xt ∈M(F ) ∀ t ≥ 0} is Borel measurable. �

We conclude this section by constructing superprocesses with time-inhomoge-
neous underlying motion. Let ξ = (ξ s,x)(s,x)∈Ė be a time-inhomogeneous Hunt
process as defined at the end of the last section, and assume that α̇ ∈ B+(Ė) and
β̇ ∈ B(Ė). Let ξ̇ be the time-homogeneous Hunt process in (2.6) and let Ẋ denote
the (ξ̇ , α̇, β̇) superprocess. Using Lemma 16 we see that Ẋδs⊗µ

t is concentrated on
{s + t} × Es+t a.s. ∀ t ≥ 0. Since Ẋδs⊗µ has continuous sample paths and since
{δt ⊗ µ : t ≥ 0,µ ∈M(Et)} ⊂M(Ė) is closed, there exists a process Xs,µ with
continuous sample paths in M(E) such that X

s,µ
s+t ∈M(Es+t ) for all t ≥ 0 and

Ẋ
δs⊗µ
t = δs+t ⊗X

s,µ
s+t .(2.23)

Set Ṁ := {(t,µ) ∈ [0,∞)×M(E) :µ ∈M(Et)}. It is not hard to check that X=
(Xs,µ)(s,µ)∈Ṁ is a time-inhomogeneous Hunt process with continuous sample
paths, and

Es,µ[
e−〈Xt ,f 〉]= e−〈µ,Us,t f 〉, t ≥ s ≥ 0,µ ∈M(Es), f ∈ B+(Et),(2.24)

where (Us,t f )s∈[0,t] =: u ∈B+({(s, x) ∈ [0, t] ×E :x ∈Es}) solves the equation

us = Ps,tf +
∫ t

s
Ps,r(βrur − αru

2
r ) dr, s ∈ [0, t].(2.25)

Here αt (x) := α̇(t, x), βt (x) := β̇(t, x) ((t, x) ∈ Ė) and (Ps,t )t≥s≥0 is the
(time-inhomogeneous) semigroup associated with ξ . We call X the (time-
inhomogeneous) (ξ,αt, βt )-superprocess and call (Us,t )t≥s≥0 the (time-inhomoge-
neous) log-Laplace semigroup associated with X.
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2.2.3. Historical superprocesses. Let ξ = (ξx)x∈E be a Hunt process in a
Polish space E and let ξ̂ = (ξ̂ s,w)s≥0,w∈DE [0,s] be the associated path process,
defined as in (1.14). Identify, as usual, DE[0, s] with the subspace of DE[0,∞)

consisting of paths stopped at time s and define Ẽ ⊂ [0,∞)×DE[0,∞) by

Ẽ := {(s,w) : s ≥ 0,w ∈DE[0, s]}.(2.26)

Then (ξ̂ s,w)(s,w)∈Ẽ is a time-inhomogeneous Hunt process (see [3], Proposi-
tion 2.1.2). If X is a (ξ,α,β)-superprocess, then by definition the historical
(ξ,α,β)-superprocess X̂ is the (time-inhomogeneous) (ξ̂ , α̂t , β̂t )-superprocess,
where α̂t (w) := α(w(t)) and β̂t (w) := β(w(t)), (t,w) ∈ Ẽ. We are now in a sit-
uation where we can prove some of the elementary properties of historical super-
processes mentioned in Section 1.

PROOF OF (1.15). If ξ̂ is the path process associated with a Hunt process ξ ,
started at time s ≥ 0 in w ∈DE[0, s], then ξt := πs+t (ξ̂s+t ), t ≥ 0, gives back the
original Hunt process ξ started in πs(ξ̂s). Moreover, the map (t,w) �→ w(t) from
Ẽ into E is continuous. (Note that this is true even though the map w �→ w(t)

from DE[0,∞) into E is in general discontinuous.) Therefore, Lemma 18 (the
image property of superprocesses) shows that if (X̂t )t≥s is the historical (ξ,α,β)-
superprocess started at time s ≥ 0 in µ̂ ∈DE[0, s], then

Xt := X̂s+t ◦ π−1
s+t , t ≥ 0,(2.27)

is the (nonhistorical) (ξ,α,β)-superprocess started in µ̂ ◦ π−1
s . �

One of the driving ideas behind the development of historical superprocesses
has been the desire to have a means to distinguish those parts of the population that
descend from different ancestors. However, all that a path in DE[0, t] tells us is
where in space these ancestors have lived in the past. Let us say that the underlying
motion ξ has the distinct path property if the law of (ξs)s∈[0,t] (considered as a
DE[0, t]-valued random variable) is atomless for every t > 0 and for every initial
state ξ0 = x ∈ E. This is called Property S in [2], Definition 12.2.2.6, and occurs
as formula (3.18) in [3]. In this case, the idea is that different ancestors follow a.s.
different paths, and therefore it should be possible to recover the genealogy from
the paths. As an immediate consequence of Lemma 17, we have the following
lemma. (An analogue of this result in a spatially homogeneous setting, but for
more general branching mechanisms, can be found in [3], Proposition 4.1.8(b).)

LEMMA 20 (Atomless historical superprocesses). If ξ has the distinct path
property, then X̂t is atomless a.s. ∀ t > 0.

The following characterization of historical superprocesses will be convenient
more than once.
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LEMMA 21 (Finite-dimensional projections). Let X be a (ξ,α,β)-superprocess
with log-Laplace semigroup U = U(ξ,α,β) and let X̂ be the associated his-
torical (ξ,α,β)-superprocess. Then, for all n ≥ 0, 0 = t0 < t1 < · · · < tn+1 and
f ∈B+(En+2),

Etn,µ̂

[
exp

(
−

∫
DE [0,tn+1]

X̂tn+1(dw)f
(
wt0, . . . ,wtn+1

))]
(2.28)

= exp
(
−

∫
DE [0,tn]

µ̂(dw)Utn+1−tnf
(
wt0, . . . ,wtn, ·

)(
wtn

))
.

Conversely, any Markov process X̂ with time-dependent state space
M(DE[0, t]) and continuous sample paths, satisfying (2.28), is the historical
(ξ,α,β)-superprocess.

PROOF. The fact that X̂ satisfies (2.28) can be found in [3], Theorem 2.2.5(b)
or [2], Theorem 12.3.4. Conversely, if a Markov process X̂ satisfies (2.28), then,
for all 0≤ k ≤ n,

Etk,µ̂

[
exp

(
−

∫
DE [0,tn+1]

X̂tn+1(dw)f
(
wt0, . . . ,wtn+1

))]
(2.29)

= exp
(
−

∫
DE [0,tk]

µ̂(dw)fk

(
wt0, . . . ,wtk

))
,

where we have inductively defined functions fl ∈B+(El+1) by

fn+1(x0, . . . , xn+1) := f (x0, . . . , xn+1),
(2.30)

fl(x0, . . . , xl) :=Utl+1−tl fl+1(x0, . . . , xl, ·)(xl), k ≤ l ≤ n.

The expectations in (2.29) clearly determine the transition probabilities of X̂
uniquely. �

Note that formula (2.29) says that if Û denotes the (time-inhomogeneous)
log-Laplace semigroup of X̂ and F(w) := f (wt0, . . . ,wtn+1), then

Ûtk ,tn+1F(w)= fk

(
wt0, . . . ,wtk

)
.(2.31)

LEMMA 22 (Mean of historical superprocess). Let X̂ be the historical
(ξ,α,β)-superprocess. Then, for any µ ∈M1(E) and m≥ 0,

Emµ[X̂t ](dw)=m exp
(∫ t

0
β(ws) ds

)
P µ

[
(ξs)s∈[0,t] ∈ dw

]
, t ≥ 0.(2.32)

In particular, if α = 0, then X̂t is deterministic and given by the right-hand side
of (2.32).
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PROOF. By Lemma 15, the mean of a superprocess does not depend on the
activity. Therefore, it suffices to prove that the historical (ξ,0, β)-superprocess is
deterministic and given by the right-hand side of (2.32). Define X̂t (dw), t ≥ 0,
by the right-hand side of (2.32). Let U = U(ξ,0, β) denote the log-Laplace
semigroup of the (nonhistorical) (ξ,0, β)-superprocess. Since α = 0, U coincides
with the linear semigroup V in formula (2.12). It follows that, for n≥ 0, 0= t0 <

t1 < · · ·< tn+1 and f ∈ B+(En+2),∫
DE [0,tn+1]

X̂tn+1(dw)f
(
wt0, . . . ,wtn+1

)

=
∫
DE [0,tn+1]

m exp
(∫ tn+1

0
β(ws) ds

)
f

(
wt0, . . . ,wtn+1

)

× P µ
[
(ξs)s∈[0,t] ∈ dw

]

=mEµ

[
exp

(∫ tn+1

0
β(ξs) ds

)
f

(
ξt0, . . . , ξtn+1

)]
(2.33)

=mEµ

[
exp

(∫ tn

0
β(ξs) ds

)

×E

[
exp

(∫ tn+1

tn

β(ξs) ds

)
f

(
ξt0, . . . , ξtn+1

)∣∣(ξs)s∈[0,tn]
]]

=mEµ

[
exp

(∫ tn

0
β(ξs) ds

)
f̃

(
ξt0, . . . , ξtn

)]

=
∫
DE [0,tn]

X̂tn (dw)f̃
(
wt0, . . . ,wtn

)
,

where

f̃ (x0, . . . , xn) :=Utn+1−tnf (x0, . . . , xn, ·)(xn).(2.34)

Thus, X̂ satisfies (2.28). Since X̂ is a Markov process with continuous sample
paths, it follows from Lemma 21 that (X̂t )t≥0 is the historical (ξ,0, β)-
superprocess started at time 0 in mµ. �

Although the next result may appear obvious, be aware of the fact that since the
functions involved are not continuous, parts (b) and (c) are not trivial consequences
of part (a). We will need (c) in the proof of Lemma 13.

LEMMA 23 (Preserved past property). Let X̂ be the historical (ξ,α,β)-
superprocess started at time s ≥ 0 in µ̂ ∈M(DE[0, s]).

(a) If F ⊂DE[0, s] is measurable, then

P s,µ̂[
X̂t ◦ π−1

[0,s] ∈M(F )
]= 1 ∀ t ≥ s, µ̂ ∈M(F ).(2.35)
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(b) If F ⊂DE[0, s] is a Gδ-set, then

P s,µ̂
[
X̂t ◦ π−1

[0,s] ∈M(F ) ∀ t ≥ s
]= 1, µ̂ ∈M(F ).(2.36)

(c) If F,F c ⊂DE[0, s] are Gδ-sets, then

P s,µ̂[
1{X̂t ′◦π−1

[0,s](F )>0} ≤ 1{X̂t◦π−1
[0,s](F )>0} ∀ t ′ ≥ t ≥ s

]= 1.(2.37)

PROOF. Recall the definition of Ẽ in (2.26) and set F̃ := {(t,w) ∈ Ẽ : t ≥ s,

π[0,s](w) ∈ F }. If F is measurable, then F̃ is measurable. Moreover, since
π[0,s] is the pointwise limit of a sequence of continuous functions (cf. [9],
Proposition 3.7.1), F̃ is a Gδ-set when F is a Gδ-set. The path process ξ̂ satisfies

P s′,w[(t, ξ̂t ) ∈ F̃ ∀ t ≥ s′, (t, ξ̂t−) ∈ F̃ ∀ t > s′] = 1, (s′,w) ∈ F̃ .(2.38)

Therefore (a) follows from Lemma 19(a) and (b) follows from Lemma 19(b). To
prove (c), use the branching property (Lemma 14) to write

X̂
s,µ̂
t = X̂

s,1F µ̂
t + X̂

s,1Fc µ̂
t ∀ t ≥ s a.s.(2.39)

Then, applying (b) to F and F c,

X̂s,µ̂
t ◦ π−1

[0,s](F )= X̂s,1F µ̂
t ◦ π−1

[0,s](F )+ X̂
s,1Fc µ̂
t ◦ π−1

[0,s](F )
(2.40)

= 〈
X̂

s,1F µ̂
t ◦ π−1

[0,s],1
〉+ 0 ∀ t ≥ s a.s.

By applying the strong Markov property to the stopping time inf{t ≥ s : X̂s,1F µ̂
t

= 0}, it is not hard to see that

1{X̂s,1F µ̂

t ′ ◦π−1
[0,s]>0} ≤ 1{X̂s,1F µ̂

t ◦π−1
[0,s]>0} ∀ t ′ ≥ t ≥ s a.s.,(2.41)

which proves (c). �

2.2.4. Historical binary branching particle systems. Historical binary branch-
ing particle systems can be introduced in much the same way as historical su-
perprocesses. First, binary branching particle systems, the underlying motion of
which is a Hunt process ξ with cadlag sample paths in a Polish space E, are de-
fined through their generating semigroup, which in turn is defined via the unique
solution to a Cauchy integral equation of the form (2.8). If ξ is such a Hunt process
and b, d ∈ B+(E), then the historical (ξ, b, d)-particle system X̂ is the (time-
inhomogeneous) (ξ̂ , b̂, d̂)-particle system, where ξ̂ is the path process associated
with ξ and b̂(t,w) := b(w(t)), d̂(t,w) := d(w(t)). Because this is very similar to
what we have already seen (but easier), we skip the details.

Many of the elementary properties of historical superprocesses have analogues
for historical binary branching particle systems. For example, if the underlying
motion has the distinct path property, then the historical binary branching particle
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system at time t > 0 is a.s. a simple point measure. (One way to prove this is to
use Poissonization and Lemma 20.) Also the formula for the finite-dimensional
projections of a historical superprocess (Lemma 21) has a straightforward
analogue for particle systems.

2.3. Compensated h-transforms and weighted superprocesses.

2.3.1. Preliminaries from semigroup theory. Let E be a compact metrizable
space and let C(E) be the Banach space of continuous real functions on E,
equipped with the supremum norm, denoted by ‖ · ‖. Let S = (St )t≥0 be a
semigroup of bounded linear operators on C(E). By definition, S is strongly
continuous if limt→0 ‖Stf − f ‖ = 0 for all f ∈ C(E) and S is positive if f ≥ 0
implies Stf ≥ 0, t ≥ 0. For λ ∈ R, let us say that S is λ-contractive if ‖Stf ‖ ≤
eλt‖f ‖, t ≥ 0. The following version of the Hille–Yosida theorem can easily be
derived from [9], Theorem 4.2.2 and Proposition 1.1.5(b). (Setting S̃t := e−λSt and
G̃ :=G− λ, we can restrict ourselves to contraction semigroups and operators G

that satisfy the positive maximum principle. To see that for contraction semigroups
our condition (iv) implies condition (c) from [9], Theorem 4.2.2, note that v :=∫∞

0 ute
−ct dt solves (c−G)v = f . By [9], Proposition 1.1.5(b), our condition (iv)

is also necessary.)

LEMMA 24 (Hille–Yosida theorem). A linear operator G on C(E) with
domain D(G) is the generator of a strongly continuous, positive, λ-contractive
semigroup S on C(E), with λ ∈R, if and only if

(i) G is closed;
(ii) D(G) is dense in C(E);

(iii) Gf (x) ≤ λf (x) whenever f ∈D(G) assumes its maximum over
E in a point x ∈E with f (x)≥ 0;

(iv) for all f ∈ D(G) there exists a continuously differentiable u :
[0,∞)→ C(E) such that u0 = f , ut ∈D(G) and ∂

∂t
ut =Gut , t ≥ 0.

(2.42)

The function u in (iv) is unique and given by Stf = ut , t ≥ 0, f ∈D(G).

Let G be the generator of a strongly continuous, positive, λ-contractive
semigroup on C(E) and let α ∈ C+(E), β ∈ C(E). By definition, a mild solution to
the Cauchy problem (1.7) is a continuous function u : [0,∞)→ C(E) that satisfies

ut = Stf +
∫ t

0
St−s(βus − αu2

s ) ds, t ≥ 0,(2.43)

[cf. (2.8)]. By definition, u is a classical solution to (1.7) if t �→ ut is continuously
differentiable in C(E), ut ∈ D(G) for all t ≥ 0 and (1.7) holds. Every classical
solution is a mild solution. For classical solutions, we have the following
comparison result.
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LEMMA 25 (Sub- and supersolutions). Fix T > 0 and assume that u is a
classical solution to (1.7) on [0, T ] for some u0 = f ∈ D(G). Assume that
ũ : [0, T ]→ C(E) is continuously differentiable, ũt ∈D(G) for all t ∈ [0, T ] and

∂

∂t
ũt ≤Gũt + βũt − αũ2

t , t ∈ [0, T ],
(2.44)

ũ0 ≤ f.

Then ũT ≤ uT . The same holds with all inequality signs reversed.

PROOF. This is a standard application of the maximum principle (see,
e.g. [14], Lemma 10). �

Existence of solutions to (1.7) is guaranteed by the following lemma.

LEMMA 26 (Classical and mild solutions to a semilinear Cauchy problem).
For each f ∈ C(E) there exists a unique mild solution u of (1.7) up to an
“explosion time” T (f ), with limt↑T (f ) ‖ut‖ =∞ if T (f ) is finite. For each t ≥ 0,
f �→Ut f := ut defines a continuous map from {f ∈ C(E) :T (f ) < t}, into C(E).
If f ∈D(G), then the mild solution to (1.7) is a classical solution. The time T (f )

is infinite if f ≥ 0, in which case also u≥ 0, or if α = 0.

PROOF. The statements about mild solutions follow from [22], Theorems
6.1.2 and 6.1.4, and the statement about classical solutions follows from [22],
Theorem 6.1.5. If f ∈D(G) ∩ C+(E), then using Lemma 25 it is easy to prove
that the classical solution to (1.7) satisfies 0 ≤ u ≤ e(λ+‖β‖)t‖f ‖. Since D(G) is
dense, C+(E) is the closure of its interior and Ut is continuous, the same bounds
hold for mild solutions. The fact that solutions do not explode in the linear case
α = 0 follows from [22], Theorem 6.1.2. �

2.3.2. Superprocesses with Feller underlying motion. Let E be a locally
compact metrizable space and let (ξx)x∈E be a Markov process in E with cadlag
sample paths. Then (ξx)x∈E is called a Feller process if the map (t, x) �→L(ξx

t )

from [0,∞) × E into M(E) is continuous and (in case E is not compact)
the semigroup of (ξx)x∈E maps the space C0(E) of continuous real functions
vanishing at infinity into itself. A Feller process on a locally compact but not
compact space E can always be extended to a Feller process on the one-point
compactification of E by putting ξ∞t :=∞, t ≥ 0.

If E is compact, then (ξx)x∈E is a Feller process if and only if its semigroup
is strongly continuous, positive, and satisfies St1 = 1, t ≥ 0. Such semigroups
are called Feller semigroups. Note that a Feller semigroup is contractive, that is,
λ-contractive with λ= 0. To every Feller semigroup there exists a unique (in law)
Feller process in E with cadlag sample paths ([9], Theorem 4.2.7). A Feller process
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on a compact metrizable space is a Hunt process (see [24], Theorem I.9.26 and
Exercise I.9.27 or [16], (9.11)).

Let E be compact and metrizable, let G be the generator of a Feller semigroup
(Pt)t≥0 on C(E), α ∈ C+(E), and β ∈ C(E). Then we have the following lemma:

LEMMA 27 (Feller property of superprocess). Let X be the (G,α,β)-
superprocess with log-Laplace semigroup U = U(G,α,β). Then X is a Feller
process. For each f ∈ C+(E), the map (t, x) �→ Ut f (x) from [0,∞) × E into
[0,∞) is continuous.

PROOF. Since E is compact, the space M(E) is locally compact. By [22],
Theorem 6.1.4, (t, x) �→ Ut f (x) is jointly continuous in t and x whenever
f ∈ C+(E). Therefore, and by (1.8),

Eµn
[
e−〈Xtn ,f 〉]→Eµ

[
e−〈Xt ,f 〉] as µn ⇒µ, tn → t, f ∈ C+(E).(2.45)

If f ∈ C+(E) satisfies f > 0, then the function µ �→ e−〈µ,f 〉 is continuous
on M(E) and vanishes at infinity, and by the Stone–Weierstrass theorem, the
linear span of all such functions is dense in C0(M(E)). Thus, (2.45) implies that
Lµn(Xtn ) ⇒ Lµ(Xt ) whenever µn ⇒ µ, tn → t . It is not hard to see that the
semigroup of X maps functions that vanish at infinity into functions that vanish at
infinity; therefore, X is a Feller process. �

2.3.3. Compensated h-transforms of Feller processes. In this section we prove
Lemma 3. We start with two simple observations.

LEMMA 28 (h-transformed semigroup). Let S be a strongly continuous,
positive, λ-contractive semigroup on C(E) with generator G and assume that
h ∈D(G) satisfies h > 0. Then

S̃tf := 1

h
St (hf ), f ∈ C(E), t ≥ 0,(2.46)

defines a strongly continuous, positive, λ̃-contractive semigroup on C(E), with
λ̃ := ‖Gh

h
‖ and generator

G̃f := 1

h
G(hf ) with D(G̃) := {f ∈ C(E) :hf ∈D(G)}.(2.47)

PROOF. Since h is bounded away from zero and S is strongly continuous, it is
easy to see that also S̃ is strongly continuous. Moreover, t−1(S̃tf − f ) converges
in C(E) if and only if hf ∈D(G), and the limit is given by G̃f . Obviously, S̃ is
positive. Since ∂

∂t
heλ̃t = ‖Gh

h
‖heλ̃t ≥ Gheλ̃t , Lemma 25 shows that Sth ≤ heλ̃t .

Since f h ≤ ‖f ‖h and S is positive, it follows that 1
h
St(hf ) ≤ 1

h
St(‖f ‖h) ≤

‖f ‖eλ̃t . Similarly −‖f ‖eλ̃t ≤ S̃t f and, therefore, S̃ is λ̃-contractive. �
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LEMMA 29 (Linear perturbation). Let G be the generator of a strongly
continuous, positive, λ-contractive semigroup on C(E) and assume that g ∈ C(E).
Then

G̃ :=G+ g with D(G̃) :=D(G)(2.48)

is the generator of a strongly continuous, positive, λ̃-contractive semigroup on
C(E) with λ̃ := λ+ ‖g‖.

PROOF. The operator G̃ satisfies conditions (i)–(iv) from Lemma 24, where
condition (iv) follows from Lemma 26. �

PROOF OF LEMMA 3. It follows from the previous two lemmas that Gh is
the generator of a strongly continuous, positive, λ-contractive semigroup on C(E)

(for some λ). Obviously 1 ∈D(Gh) and Gh1 = 0, and therefore Gh generates a
Feller semigroup.

To see that the law of the corresponding Feller process ξh is given by (1.17), we
proceed as follows. By [9], Lemma 4.3.2, the process

Mt := h(ξt )

h(x)
exp

(
−

∫ t

0

Gh(ξs)

h(ξs)
ds

)
, t ≥ 0,(2.49)

is a martingale with respect to the filtration (Ft )t≥0 generated by ξ ; therefore,
P̃ x(A) := Ex[Mt1A], A ∈ Ft , defines a legitimate change of measure. Put
P h

t f (x) := Ẽx[f (ξt )], x ∈E,f ∈ C(E). We need to show that under the changed
measure, ξ is a Feller process with semigroup P h and that Gh is the generator
of P h. By the Markov property of P x , for 0≤ s ≤ t ,

Ex

[
f (ξt )

Mt

Ms

∣∣∣Fs

]
= Ex

[
f (ξt )

h(ξt )

h(ξs)
exp

(
−

∫ t

s

Gh(ξu)

h(ξu)
du

)∣∣∣Fs

]
(2.50)

= Eξs [f (ξt−s)Ms] = P h
t−sf (ξs).

Therefore, for any A ∈ Fs ,

Ẽx[f (ξt )1A] = Ex[f (ξt )Mt1A] = Ex

[
Ex

[
f (ξt )

Mt

Ms

∣∣∣Fs

]
Ms1A

]
(2.51)

= Ex[P h
t−sf (ξs)Ms1A] = Ẽx[P h

t−sf (ξs)1A],
which shows that Ẽx[f (ξt )|Fs] = P h

t−sf (ξs). It is not hard to see that P h
t f (x) is

jointly continuous in t and x, and therefore P h is a Feller semigroup. Finally, if
f h ∈D(G), then

h(x) lim
t→0

t−1(P h
t f − f )(x)

= lim
t→0

t−1
(
Ex

[
f (ξt )h(ξt ) exp

(
−

∫ t

0

Gh(ξs)

h(ξs)
ds

)]
− h(x)f (x)

)
(2.52)

=G(fh)(x)− f (x)Gh(x)
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uniformly in x ∈E, which shows that Gh is the generator of P h. �

An alternative proof of formula (1.17), using historical superprocesses, is given
at the end of the next section.

2.3.4. Weighted superprocesses.

PROOF OF LEMMA 5. Write U := U(G,α,β) and Uh := U(Gh,hα,β +
Gh
h

). By Lemma 26, for every f ∈ D(Gh) ∩ C+(E), the function t �→ ut :=
Ut (hf ) is a classical solution to the Cauchy problem

∂

∂t
ut =Gut + βut − αu2

t , t ≥ 0,

(2.53)
u0 = hf.

A little calculation shows that t �→ uh
t := 1

h
ut is a classical solution to the Cauchy

problem

∂

∂t
uh

t =Ghuh
t +

(
β + Gh

h

)
uh

t − hα(uh
t )

2, t ≥ 0,

(2.54)
uh

0 = f.

Therefore, Uh
t f = 1

h
Ut (hf ) for all f ∈D(Gh) ∩ C+(E). Since D(Gh) is dense

in C(E), C+(E) is the closure of its interior and U,Uh are continuous, it follows
that

Uh
t f = 1

h
Ut (hf ), t ≥ 0, f ∈ C+(E).(2.55)

It is clear that the process X̂h defined in (1.18) is a Markov process with
continuous sample paths. To see that X̂h is the historical (Gh,hα,β + Gh

h
)-

superprocess, by Lemma 21, it suffices to check that X̂h satisfies (2.28) for the
log-Laplace semigroup Uh. This is easily done, since we have

E

[
exp

(
−

∫
DE [0,tn+1]

X̂h
tn+1

(dw)f
(
wt0, . . . ,wtn+1

))∣∣∣X̂h
tn
=µ

]

= E

[
exp

(
−

∫
DE [0,tn+1]

h
(
wtn+1

)
X̂tn+1(dw)

× f
(
wt0, . . . ,wtn+1

))∣∣∣(h ◦ πtn

)
X̂tn = µ

]

= E

[
exp

(
−

∫
DE [0,tn+1]

X̂tn+1(dw)h
(
wtn+1

)

× f
(
wt0, . . . ,wtn+1

))∣∣∣X̂tn =
(
h ◦ πtn

)−1
µ

]
(2.56)
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= exp
(
−

∫
DE[0,tn]

h
(
wtn

)−1
µ(dw)

×Utn+1−tn

{
h(·)f (

wt0, . . . ,wtn, ·
)}(

wtn

))

= exp
(
−

∫
DE[0,tn]

µ(dw)Uh
tn+1−tn

f
(
wt0, . . . ,wtn, ·

)(
wtn

))
. �

ALTERNATIVE PROOF OF (1.17). Let X̂ be the (deterministic) historical
(G,0,0)-superprocess started in X̂0 = δx and set

X̂h
t (dw) := h(wt )X̂t (dw), t ≥ 0.(2.57)

By Lemma 5, X̂h is the historical (Gh,0, Gh
h

)-superprocess started in X̂0 =
h(x)δx and, therefore, by Lemma 22,

(i) X̂t (dw) = P x
[
(ξs)s∈[0,t] ∈ dw

]
,

(ii) X̂h
t (dw) = h(x) exp

(∫ t

0

Gh

h
(ws) ds

)
P x

[
(ξh

s )s∈[0,t] ∈ dw
]
.

(2.58)

Combining (2.57) and (2.58), we arrive at (1.17). �

3. Proof of the main results.

3.1. The infinitesimal survival probability.

3.1.1. Extinction versus unbounded growth.

LEMMA 30 (Eventual extinction). We have Ut∞↓ p as t ↑∞. Moreover,

P µ[Xt = 0 eventually] =
{

e−〈µ,p〉, if 〈µ,Ut∞〉<∞ for some t > 0,

0, otherwise.
(3.1)

If supx∈E Ut∞(x) <∞ for some t > 0, then Utp = p for all t ≥ 0.

If 〈µ,Ut∞〉 = ∞ for all t ≥ 0, then possibly e−〈µ,p〉 = 0, but this need not
always be the case; see Example 34.

PROOF OF LEMMA 30. Since the zero measure is an absorbing state,
1{Xt=0} = 1{Xr=0∀ r≥t} a.s. and, therefore, 1{Xtn=0} ↑ 1{Xt=0 eventually} as

tn ↑∞ a.s. Thus, taking the limit in (1.22), we see that Ut∞↓ p. If 〈µ,Ut∞〉<
∞ for some t > 0, then 〈µ,Ut∞〉 ↓ 〈µ,p〉. Taking the limit in P µ[Xt = 0] =
e−〈µ,Ut∞〉, we arrive at (3.1). Formula (1.8) shows that Ut is continuous with
respect to bounded decreasing sequences. Therefore, if supx∈E Ut∞(x) <∞ for
some t > 0, then Utp =Ut (lims↑∞Us∞) = lims↑∞Ut+s∞= p for all t ≥ 0.

�
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LEMMA 31 (Extinction versus unbounded growth). If supx∈E Ut∞(x) <∞
for some t > 0, then

P µ

[
Xt = 0 eventually or lim

t→∞〈Xt ,1〉 =∞
]
= 1, µ ∈M(E),(3.2)

and

lim
t→∞Ut f (x)= p(x) ∀x ∈E,f ∈ C(E), f > 0.(3.3)

PROOF. Let (Ft )t≥0 denote the filtration generated by X. It follows from the
right property of the process X [see (2.5)(i)] that t �→ e−〈Xt ,p〉 is right-continuous.
By Lemma 30 and convergence of bounded right-continuous martingales,

e−〈Xt ,p〉 = P [Xs = 0 eventually|Ft ] −→
t→∞1{Xs=0 eventually} a.s.(3.4)

It follows that 〈Xt , p〉 →∞ a.s. on {Xs = 0 eventually}c. Since ‖p‖ <∞, the
same conclusion holds for 〈Xt ,1〉. �

3.1.2. Continuity of the infinitesimal survival probability. Even though the
underlying motion has the Feller property and α,β are continuous functions,
p need not be continuous in general, as is illustrated by the following examples,
which we give without proof.

EXAMPLE 32 (Discontinuous infinitesimal survival probability). Let ξ be the
deterministic Feller process in [−1,1] given by the differential equation

∂

∂t
ξt = 1− (ξt )

2, t ≥ 0.(3.5)

Let X be the superprocess in [−1,1] with underlying motion ξ , activity α(x) := 1
and growth parameter β(x) := −x. Then

− logP δx [Xt = 0 eventually] =
{1, if x =−1,

0, if x ∈ (−1,1].(3.6)

Let Y be the superprocess in [−1,1] with underlying motion ξ , activity α(x) :=
x ∨ 0 and growth parameter β(x) := x ∨ 0. Then

− log P δx [Yt = 0 eventually] =
{∞, if x =−1,

1, if x ∈ (−1,1].(3.7)

Nevertheless, we have the following lemma.

LEMMA 33 (Continuity of the infinitesimal survival probability). If

sup
x∈E

Ut∞(x) <∞

for some t > 0 and infx∈E p(x) > 0, then p is continuous.
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PROOF. Our strategy is to prove that the event that X becomes extinct depends
in a continuous way on the path of X and, therefore, by the Feller property, on the
initial condition. To do this, we show that by observing X for a finite time, we can
be almost certain whether X becomes extinct.

Set

p := inf
x∈E

p(x) and p := sup
x∈E

p(x).(3.8)

Note that by (3.1),

e−〈µ,1〉p ≤ P µ[Xt = 0 eventually] ≤ e−〈µ,1〉p, µ ∈M(E).(3.9)

Fix x0 ∈ E. We will show that p is continuous at x0. Let 0 < c < C < ∞
and ε′, ε′′ > 0 be arbitrary. Choose continuous functions f0, f1, f∞ from [0,∞)

into [0,1], summing up to 1, such that 1[0,c/2] ≤ f0 ≤ 1[0,c], 1[c,C] ≤ f1 ≤
1[c/2,2C], and 1[2C,∞) ≤ f∞ ≤ 1[C,∞). By Lemma 31, there exists a T > 0 such
that

Eδx0 [f1(〈XT ,1〉)] ≤ ε′.(3.10)

Let d be a metric that generates the topology on E. By Lemma 27, we can choose
δ > 0 such that for all x ∈E with d(x, x0)≤ δ,∣∣Eδx0 [fr(〈XT ,1〉)] −Eδx [fr(〈XT ,1〉)]∣∣≤ ε′′, d(x, x0)≤ δ, r = 0,1.(3.11)

Write

P δx [Xt = 0 eventually]

= Eδx

[ ∑
r=0,1,∞

fr(〈XT ,1〉)1{Xt=0 eventually}
]

(3.12)

= ∑
r=0,1,∞

Eδx
[
fr(〈XT ,1〉)P XT [Xt = 0 eventually]].

Using (3.12) to get lower and upper estimates on P δx
[
Xt = 0 eventually

]
, and

applying (3.9), we find that

Eδx [f0(〈XT ,1〉)] − (1− e−cp)

≤Eδx [f0(〈XT ,1〉)]e−cp

≤ P δx [Xt = 0 eventually](3.13)

≤Eδx [f0(〈XT ,1〉)] +Eδx [f1(〈XT ,1〉)] +Eδx [f∞(〈XT ,1〉)]e−Cp

≤Eδx [f0(〈XT ,1〉)] + (ε′ + ε′′)+ e−Cp, d(x, x0)≤ δ.
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Therefore, for all x ∈E with d(x, x0)≤ δ,∣∣P δx0 [Xt = 0 eventually] − P δx [Xt = 0 eventually]∣∣
≤ ∣∣P δx0 [Xt = 0 eventually] −Eδx0 [f0(〈XT ,1〉)]∣∣
+ ∣∣Eδx0 [f0(〈XT ,1〉)] −Eδx [f0(〈XT ,1〉)]∣∣

(3.14)
+ ∣∣Eδx [f0(〈XT ,1〉)] − P δx [Xt = 0 eventually]∣∣

≤ (
(1− e−cp)+ (ε′ + ε′′ + e−Cp)

)
+ ε′′ + (

(1− e−cp)+ (ε′ + ε′′ + e−Cp)
)
.

Since 0 < c < C < ∞ and ε′, ε′′ > 0 are arbitrary, the last line of (3.14) can be
made arbitrarily small. Thus, we have shown that for each ε > 0 there exists a
δ > 0 such that∣∣e−p(x0) − e−p(x)

∣∣≤ ε ∀x ∈E with d(x, x0)≤ δ.(3.15)

This shows that p is continuous at x0. �

3.1.3. Properties of the infinitesimal survival probability.

PROOF OF PROPOSITION 7. Parts (a) and (b) follow from Lemmas 30 and 31.
To prove part (c), note that if f ∈ C+(E) satisfies Ut f = f for all t ≥ 0, then
ut := f , t ≥ 0, is a mild solution to (1.7), that is,

f = Ptf +
∫ t

0
Ps(βf − αf 2) ds, t ≥ 0.(3.16)

Thus,

lim
t→0

t−1(Ptf − f )=− lim
t→0

t−1
∫ t

0
Ps(βf − αf 2) ds =−βf + αf 2,(3.17)

which proves that f ∈ D(G) and that (1.23) holds. Conversely, if f ∈ D(G) ∩
C+(E) solves (1.23), then ut := f is a classical solution to (1.7) and, therefore,
Ut f = f for all t ≥ 0.

To prove (d), note that if infx∈E p(x) > 0, then p is continuous by Lemma 33
and, therefore, p solves (1.23) by parts (b) and (c). Moreover, part (a) shows that
in this case there exists only one positive fixed point of U. �

3.1.4. Nonuniform convergence of Ut∞. Lemma 11 shows that the assump-
tion that supx∈E Ut∞(x) < ∞ for some t > 0 cannot be dropped from Theo-
rems 8 and 9. However, the reader may wonder if this condition is not implied by
the simpler-looking condition supx∈E p(x) <∞. To show that this is not the case,
we include the following example.
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EXAMPLE 34 (Nonuniform convergence of Ut∞). There exists a generator
G of a Feller process in a compact metrizable space E and α ∈ C+(E) such that
U=U(G,α,0) satisfies

(i) Ut∞(x) <∞ ∀x ∈E, t > 0,

(ii) Ut∞↓ 0, as t ↑∞,

(iii) supx∈E Ut∞(x)=∞ ∀ t ≥ 0.

(3.18)

PROOF. Take E := [0,1]2. Define a Feller process ξ = (ξx)x∈E in E by

ξ
(x,y)
t := (x, ye−t ), (x, y) ∈ [0,1] × [0,1),

(3.19)

ξ
(x,1)
t :=

{
(x,1), t ≤ τx,(
x, e−(t−τx)

)
, t > τx,

x ∈ [0,1],

where τx , x ∈ (0,1] is an exponentially distributed random variable with mean
x and τ0 := 0. It is not hard to see that ξ is a Feller process. Let G denote its
generator. Choose α ∈ C+(E) such that α(0,1)= 0 and α > 0 elsewhere. Set

α(x, ·) := inf{α(x, y) :y ∈ [0,1]}, x ∈ [0,1].(3.20)

For fixed x ∈ [0,1], the process ξ restricted to {x}× [0,1] is an autonomous Feller
process and α(x, ·) > 0 for x > 0. Therefore, using (1.30), we have

Ut∞(x, y)≤ 1

α(x, ·)t , t > 0, (x, y) ∈ (0,1] × [0,1].(3.21)

The superprocess X started in δ(0,y) (y ∈ [0,1]) is concentrated on (0, ye−t ) at
time t , if it survives. Therefore, applying (1.30) to the process (Xt )t≥ε , we have
for each ε > 0 that

Ut∞(0, y)≤ 1

δ(t − ε)
, t > ε, where δ := inf{α(0, e−t ) : t ∈ [ε,∞]}.(3.22)

This proves (3.18)(i) and (3.18)(ii). Now consider the process (Xt (· ∩ ((0,1] ×
{1})))t≥0. It is not too hard to see that this is an autonomous superprocess without
(i.e., with constant) underlying motion, activity α(·,1) and growth parameter
β(x) := − 1

x
. Therefore [see (1.30)],

Ut

(∞1(0,1]×{1}
)
(x,1)= β(x)

α(x,1)(1− e−β(x)t )
= x−1

α(x,1)(et/x − 1)
,(3.23)

t > 0, x ∈ (0,1]. We can additionally choose α(x,1) := e−1/x2
, x ∈ (0,1]. Then

lim
x→0

Ut

(∞1(0,1]×{1}
)
(x,1)=∞, t > 0.(3.24)

It follows that supx∈E Ut∞(x) ≥ supx∈E Ut (∞1(0,1]×{1})(x) = ∞, which
proves (3.18)(iii). �
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3.2. Surviving lines of descent.

3.2.1. Poisson point measures. Let E be a Polish space. By definition, a
Poisson point measure with intensity µ ∈ M(E) is an N (E)-valued random
variable Pois(µ) with

E
[
(1− f )Pois(µ)

]= e−〈µ,f 〉, f ∈B+(E).(3.25)

If µ is atomless, then Pois(µ) a.s. takes values in the space N ∗(E) := {ν ∈
N (E) :ν({x}) ≤ 1 ∀x ∈ E} of simple point measures on E. Note that N ∗(E)

is an open subset of N (E) and, therefore, a Polish space in the induced topology.
We identify N ∗(E) with the space of finite subsets of E. If µ ∈M(E) is atomless,
then an N ∗(E)-valued random variable ν is a Poisson point measure with intensity
µ if and only if (see [21], Proposition 1.4.7)

P [ν(A)= 0] = e−µ(A), A ∈B(E).(3.26)

It is not hard to see that the event {µ ∈M(E) : supp(µ) is finite} ⊂M(E) is mea-
surable and that µ �→ supp(µ) is a measurable map from {µ ∈M(E) : supp(µ) is
finite} into N ∗(E).

We need a criterion to decide whether the support of a random measure is a
Poisson point measure.

LEMMA 35 (Random measures with Poisson support). Let E be a Polish
space, let µ be an atomless measure on E and let Z be an M(E)-valued random
variable such that

P [Z(A)= 0] = e−µ(A), A ∈B(E).(3.27)

Then

P [supp(Z) is finite] =
{ 1, if µ(E) <∞,

0, if µ(E)=∞.
(3.28)

Moreover, if µ(E) <∞, then supp(Z) is a Poisson point measure with intensity µ.

PROOF. Assume that µ(E) <∞. Choose finite measurable partitions A(n) =
{A(n)

i }i∈I (n) such that A(n+1) is a refinement of A(n) and such that intersections of

the form
⋂

A
(n)
in

are empty or consist of one point. Since

E
[∣∣{i ∈ I (n) :Z

(
A

(n)
i

)
> 0

}∣∣]= ∑
i∈I (n)

(
1− e−µ(A

(n)
i ))≤ µ(E),(3.29)

the increasing limit of |{i ∈ I (n) :Z(A
(n)
i ) > 0}| is a.s. finite, that is, there are a.s.

finitely many decreasing sequences of partition elements A
(1)
i1
⊃ A

(2)
i2
⊃ · · · such

that Z(A
(n)
in

) > 0 for all n. The limit points of these sequences give the support
of Z and by formula (3.26), supp(Z) is a Poisson point measure with intensity µ.
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Assume, on the other hand, that µ(E) =∞. Since µ is atomless, there exist
measurable disjoint sets (Bi)i≥0 such that µ(Bi) ≥ 1. Formula (3.27) shows that
the events {Z(Bi) > 0} are independent and that

∞∑
i=1

P [Z(Bi) > 0] =
∞∑
i=1

(
1− e−µ(Bi)

)=∞.(3.30)

Therefore, by the Borel–Cantelli lemma Z(Bi) > 0 for infinitely many i, which
proves that supp(Z) is infinite a.s. �

3.2.2. Poissonization of historical superprocesses. The following lemma
gives a historical variant of formula (1.11)(i). Moreover, it shows that the particles
in Pois((Ut f )µ) from (1.11)(i) are, in a sense, the ancestors of the particles in
Pois(fXt ).

LEMMA 36 (Poissonization of historical superprocesses). Let X̂ be the
historical (G,α,β)-superprocess started at time s ≥ 0 in µ̂ ∈ M(DE[0, s]).
Assume that µ̂ is atomless. If ν̂ is an N (DE[0, s + t])-valued random variable
such that, for a given f ∈ B+(E) and t ≥ 0,

P [ν̂ ∈ ·|(X̂r )s≤r≤s+t ] = P
[
Pois

(
(f ◦ πs+t )X̂s+t

) ∈ ·|X̂s+t

]
a.s.,(3.31)

then supp(ν̂ ◦ π−1
[0,s]) is a Poisson point measure with intensity (Ut f ◦ πs)µ̂.

PROOF. Since µ̂ is atomless, by Lemma 35, it suffices to show that for all
A ∈B(DE[0, s]),

P
[
ν̂ ◦ π−1

[0,s](A)= 0
]= exp

(− (Ut f ◦ πs)µ̂(A)
)
.(3.32)

By (3.31),

P
[
ν̂ ◦ π−1

[0,s](A)= 0
]=Es,µ̂

[
exp

(− (f ◦ πs+t )X̂s+t ◦ π−1
[0,s](A)

)]
.(3.33)

By the branching property (Lemma 14) and by Lemma 23(a), we can rewrite the
right-hand side of this equation as

Es,1Aµ̂
[
exp

(− (f ◦ πs+t )X̂s+t ◦ π−1
[0,s](A)

)]
×Es,1Ac µ̂[

exp
(− (f ◦ πs+t )X̂s+t ◦ π−1

[0,s](A)
)]

(3.34)

=Es,1Aµ̂
[
exp

(− 〈(f ◦ πs+t )X̂s+t ,1〉)] · 1.

From the relation (2.27) between a historical superprocess and its associated
superprocess it is obvious that

Es,1Aµ̂
[
exp

(− 〈X̂s+t ◦ π−1
s+t , f 〉

)]= exp
(− 〈(1Aµ̂) ◦ π−1

s ,Ut f 〉).(3.35)
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It follows that

Es,µ̂
[
exp

(− (f ◦ πs+t )X̂s+t ◦ π−1
[0,s](A)

)]= exp
(− (Ut f ◦ πs)µ̂(A)

)
.(3.36)

Combining this with (3.33), we see that (3.32) holds. �

The proof of Lemma 36 has the following corollary.

COROLLARY 37 (Surviving lines of descent). Let X̂ be the historical
(G,α,β)-superprocess started at time s ≥ 0 in µ̂ ∈ M(DE[0, s]). Assume that
µ̂ is atomless. Then, for any t > 0,

P
[
supp

(
X̂s+t ◦ π−1

[0,s]
)

is finite
]= 1 ⇐⇒ 〈µ̂ ◦ π−1

s ,Ut∞〉<∞.(3.37)

Moreover, if 〈µ̂ ◦ π−1
s ,Ut∞〉 < ∞, then supp(X̂s+t ◦ π−1

[0,s]) is a Poisson point
measure with intensity (Ut∞◦ πs)µ̂.

PROOF. Letting f ↑∞ in (3.36) we see that

P s,µ̂
[
X̂s+t ◦ π−1

[0,s](A)= 0
]

(3.38)
= exp

(− (Ut∞◦ πs)µ̂(A)
)
, A ∈B(DE[0, s]).

Now the statements follow from Lemma 35. �

3.2.3. Finite ancestry property.

PROOF OF LEMMA 11. If supx∈E Ut∞(x) < ∞ for some t > 0, then
〈µ,Ut∞〉 < ∞ for all µ ∈ M(E). On the other hand, if supx∈E Ut∞(x) = ∞
for all t ≥ 0, then we can find µ ∈ M(E) such that 〈µ,Ut∞〉 = ∞ for all
t ≥ 0. To see this, choose strictly positive (εn)n≥0 such that

∑
n≥0 εn = 1. Choose

tn ↑∞ and xn ∈E such that Utn∞(xn)≥ ε−1
n and choose µ :=∑

n≥0 εnδxn . Then
〈µ,Utn∞〉≥∑

m≥n εmUtn (xm)≥∑
m≥n εmUtm(xm)=∞.

The log-Laplace semigroup U′ =U(G′, α′, β ′) satisfies U′
t (f ◦ψ)= (Ut f ) ◦

ψ , where ψ denotes the projection from E′ to E (see Lemma 18). Therefore (i)
implies that 〈µ⊗�,U′

t∞〉<∞ for some t > 0, which by Corollary 37 implies (ii).
On the other hand, if (i) does not hold, then there exists a µ ∈ M(E) such that
〈µ⊗ �,U′

t∞〉=∞ for all t ≥ 0, and in this case Corollary 37 shows that (ii) does
not hold. Finally, since X̂t = X̂′

t ◦ψ−1
t , (ii) implies (iii). �

PROOF OF LEMMA 13. We prove the following, slightly more general result.

LEMMA 38 (Immortal lines of descent). Let X̂ be the historical (G,α,β)-su-
perprocess started at time 0 in µ ∈M(E). Assume that supx∈E Ut∞(x) <∞ for
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all t > q , for some q ≥ 0, where U=U(G,α,β). Then

(i) supp
(
X̂r ◦ π−1

[0,t]
)

is finite

∀ t, r ≥ 0 such that t + q < r a.s.

(ii) supp
(
X̂r ◦ π−1

[0,t]
)⊃ supp

(
X̂r ′ ◦ π−1

[0,t]
)

∀ t, r, r ′ ≥ 0 such that t + q < r ≤ r ′ a.s.

(3.39)

PROOF. Let us introduce the shorthand

X̂t,r := X̂r ◦ π−1
[0,t], 0≤ t ≤ r.(3.40)

Let D ⊂ [0,∞) be countable and dense. The implication ⇐ in (3.37) also holds if
µ̂ is not atomless; this can be proved by extending the space E as in Lemma 11.
Therefore,

supp(X̂t,r ) is finite ∀ t, r ∈D, t + q < r a.s.(3.41)

Let O be a countable basis for the topology on DE[0, t]. Conditioning on X̂t and
applying Lemma 23(c), we see that

1{X̂t,r′ (O)>0} ≤ 1{X̂t,r (O)>0} ∀ r, r ′ ≥ 0, t ∈D,O ∈O, t ≤ r ≤ r ′ a.s.(3.42)

It follows that

supp(X̂t,r ′)⊂ supp(X̂t,r ) ∀ r, r ′ ≥ 0, t ∈D, t ≤ r ≤ r ′ a.s.(3.43)

Combining this with (3.41), we see that supp(X̂t,r ′)⊂ supp(X̂t,r ) and supp(X̂t,r )

is finite ∀ r ′ ≥ 0, t, r ∈ D, t + q < r ≤ r ′ a.s., and therefore (3.41) can be
sharpened to

supp(X̂t,r ′) is finite ∀ r ′ ≥ 0, t ∈D, t + q < r ′ a.s.(3.44)

If X̂t,r ′ is finitely supported for some t, r ′, then supp(X̂t ′,r ′)= π[0,t ′](supp(X̂t,r ′))
for all t ′ ≤ t . Thus, (3.44) can be further sharpened to

supp(X̂t ′,r ′) is finite ∀ t ′, r ′ ≥ 0, t ′ + q < r ′ a.s.(3.45)

This proves (3.39)(i). Moreover, by (3.43) and (3.45),

supp(X̂t ′,r ′)= π[0,t ′]
(

supp(X̂t,r ′)
)⊂ π[0,t ′]

(
supp(X̂t,r )

)= supp(X̂t ′,r )(3.46)

∀ t ′, r, r ′ ≥ 0, t ∈D, t ′ + q ≤ t + q < r ≤ r ′ a.s.,

which proves (3.39)(ii). �

The proof of Lemma 13 is complete. �
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3.3. Embedded trees. Our first and crucial proposition in this section shows
that it is possible to embed a collection I of immortal lines of descent in certain
historical superprocesses. We then identify these immortal lines of descent as a
historical binary branching particle system. Finally, we generalize our results in a
number of steps, until we arrive at the statements in Section 1.5.

3.3.1. Construction of the embedded tree. Recall the definition of the distinct
path property before Lemma 20.

PROPOSITION 39 (Embedded tree). Let X̂ be the historical (G,α,α)-
superprocess started at time 0 in µ ∈ M(E). Assume that µ is atomless and
that the Feller process with generator G has the distinct path property. Then
X̂ may be coupled to a random set I ⊂ DE[0,∞) such that the random sets
It := {π[0,t](w) :w ∈ I } are finite for all t ≥ 0 and satisfy

P [It ∈ ·|(X̂s )0≤s≤t ] = P [Pois(X̂t ) ∈ ·|X̂t ] a.s. ∀ t ≥ 0.(3.47)

If, in addition, U = U(G,α,α) satisfies supx∈E Ut∞(x) < ∞ for some t > 0,
then p := limt↑∞Ut∞= 1 and I may be chosen such that, moreover,

It = supp
(
X̂r ◦ π−1

[0,t]
)
, r-eventually ∀ t ≥ 0 a.s.(3.48)

PROOF. Identify, as usual, finite subsets and simple point measures. For each
T ≥ 0, let I (T ) be a random finite subset of DE[0, T ] such that

P
[
I (T ) ∈ ·|(X̂t )0≤t≤T

]= P [Pois(X̂T ) ∈ ·|X̂T ].(3.49)

Put

I
(T )
t := {

π[0,t](w) :w ∈ I (T )
}= supp

(
I (T ) ◦ π−1

[0,t]
)
, 0≤ t ≤ T .(3.50)

Using the fact that, by Lemma 20, X̂t is a.s. atomless, conditioning on (X̂s)0≤s≤t ,
applying Lemma 36 and the fact that the function 1 is a fixed point of U(G,α,α),
we find that

P
[
I

(T )
t ∈ ·|(X̂s )0≤s≤t

]= P [Pois(X̂t ) ∈ ·|X̂t ] a.s. ∀0≤ t ≤ T .(3.51)

Thus, we can satisfy (3.47) up to a finite time horizon T . To let T ↑∞, we need
to take a projective limit. For 0 ≤ S ≤ T , define a map ψS,T :N ∗(DE[0, T ]) →
N ∗(DE[0, S]) by

ψS,T (J ) := {
π[0,S](w) :w ∈ J

}
, J ∈N ∗(DE[0, T ]).(3.52)

Then (3.51) shows that the random variables ((X̂t )0≤t≤T , I (T ))T≥0 satisfy the con-
sistency relation L((X̂t )0≤t≤S,ψS,T (I (T ))) = L((X̂t )0≤t≤S, I (S)) (0 ≤ S ≤ T ).
Note that ((X̂t )0≤t≤T , I (T )) takes values in the Polish space CM(DE [0,∞))[0, T ] ×
N ∗(DE[0, T ]). Let N (∞) be the space of all countable subsets I ⊂ DE[0,∞)
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such that ψT,∞(I ) := {π[0,T ](w) :w ∈ I } is finite for all T ≥ 0. Equip N (∞) with
the σ -field generated by the mappings ψT,∞ :N (∞) → N ∗(DE[0, T ]), T ≥ 0.
Taking the projective limit of the variables ((X̂t )0≤t≤T , I (T ))T≥0, we can con-
struct a random variable (X̃, I ) with values in CM(DE [0,∞))[0,∞)×N (∞) such
that ((X̃t )0≤t≤T ,ψT,∞(I )) is equal in distribution to ((X̂t )0≤t≤T , I (T )) for all
T ≥ 0. It follows that X̃ is the historical (G,α,α)-superprocess started at time 0
in µ ∈M(E) and that I is a random set that satisfies (3.47).

Assume that supx∈E Ut∞(x) <∞ for some t > 0. We must show that we can
choose I such that, moreover, (3.48) holds. First note that the function 1 is a
positive solution to (1.23) and, therefore, by Proposition 7(a), p = 1. Choose q ≥ 0
such that supx∈E Ut∞(x) <∞ for all t > q . Then, by Lemma 38, the random sets

supp(X̂r ◦ π−1
[0,t]) are finite and nonincreasing in r > t + q for all t ≥ 0 a.s. Define

random finite subsets It ⊂DE[0, t] by

It :=
⋂

r>t+q

supp
(
X̂r ◦ π−1

[0,t]
) ∀ t ≥ 0 a.s.(3.53)

Then (3.48) is fulfilled. Define I ⊂DE[0,∞) by

I := {
w ∈DE[0,∞) :π[0,t](w) ∈ It ∀ t ≥ 0

}
.(3.54)

Then

It = {
π[0,t](w) :w ∈ I

} ∀ t ≥ 0 a.s.(3.55)

By Corollary 37,

P
[
supp

(
X̂r ◦ π−1

[0,t]
) ∈ ·|(X̂s)0≤s≤t

]
(3.56)

= P
[
Pois

(
(Ur−t∞◦ πt)X̂t

) ∈ ·|X̂t

]
a.s.

∀ t, r ≥ 0, t + q < r . Taking the limit r ↑∞, we see that also (3.47) holds. �

3.3.2. Identification of the embedded tree. Our next step is to identify the
embedded tree I in Proposition 39 as a binary splitting particle system. For t ≥ 0,

define equivalence relation
t−∼ and

t+∼ on I by

w
t−∼ v if and only if π[0,t)(w)= π[0,t)(v),

w
t+∼ v if and only if π[0,t+ε](w)= π[0,t+ε](v) for some ε > 0,

(3.57)

and let It− and It+ denote the collections of
t−∼ and

t+∼ equivalence classes in I ,
respectively. Define counting measures X̂t− and X̂t+ on DE[0, t] by

X̂t− :=
∑

w∈It−
δπ[0,t](w), t > 0,

(3.58)
X̂t :=

∑
w∈It+

δπ[0,t](w), t ≥ 0.
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It is not hard to see that X̂ = (X̂t )t≥0 has right-continuous sample paths with left
limits given by X̂t− and that

It = X̂t a.s. ∀ t ≥ 0.(3.59)

Note that the a.s. and the ∀ t ≥ 0 cannot be interchanged here, since X̂t is not
a simple point measure at those (random) times when |It | < |It+|, that is, when
splitting occurs.

LEMMA 40 (Identification of the embedded tree). The process X̂ is the
(G,α,0)-particle system started at time 0 in Pois(µ).

PROOF. By (3.59) and (3.47),

P [X̂t ∈ ·|(X̂s)0≤s≤t ] = P [Pois(X̂t ) ∈ ·|X̂t ] a.s. ∀ t ≥ 0.(3.60)

Let X̂′ denote the (G,α,0)-particle system started at time 0 in Pois(µ). The time-
inhomogeneous log-Laplace semigroup (Ûs,t )0≤s≤t of the historical (G,α,α)-
superprocess X̂ and the time-inhomogeneous generating semigroup (Ûs,t )0≤s≤t of
the historical (G,α,0)-particle system X̂′ are defined by the same Cauchy integral
equation. Hence

Ûs,t f = Ûs,tf, 0≤ s ≤ t, f ∈B[0,1](DE[0, t]).(3.61)

Therefore, we may reason exactly as in the proof of Lemma 1 to see that

P 0,Pois(µ)[X̂′
t ∈ ·] = P 0,µ[Pois(X̂t ) ∈ ·], t ≥ 0,µ ∈M(E).(3.62)

Combining (3.60) and (3.62), we see that

P [X̂t ∈ ·] = P [X̂′
t ∈ ·], t ≥ 0.(3.63)

It follows from our definition of X̂ that

X̂s = supp
(
X̂t ◦ π−1

[0,s]
)

a.s. ∀0≤ s ≤ t.(3.64)

By a straightforward analogue of Lemma 23(a) for historical particle systems,
supp(X̂′

t ◦ π−1
[0,s]) ⊂ supp(X̂′

s) a.s. ∀0 ≤ s ≤ t . Since the death rate of X̂′ is zero,

particles cannot become extinct and, therefore, in fact supp(X̂′
t ◦π−1

[0,s])= supp(X̂′
s)

a.s. ∀0≤ s ≤ t . Since X̂′
s is a.s. a simple point measure [which follows from (3.63)

and the fact that X̂s is a.s. a simple point measure], X′ satisfies, in analogy
with (3.64),

X̂′
s = supp

(
X̂′

t ◦ π−1
[0,s]

)
a.s. ∀0≤ s ≤ t.(3.65)

It follows from (3.63)–(3.65) that

P
[(

X̂t1 , . . . , X̂tn

) ∈ ·]= P
[(

X̂′
t1
, . . . , X̂′

tn

) ∈ ·], 0≤ t1 < t2 < · · ·< tn.(3.66)

Since X̂ and X̂′ have right-continuous sample paths, X̂ and X̂′ are equal in
distribution. �
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3.3.3. Proof of the main theorems. Theorems 6, 8 and 9 can be combined into
the following theorem.

THEOREM 41 (Main results). Let X̂ be the historical (G,α,β)-superprocess
started at time 0 in µ ∈M(E). Assume that h ∈ D(G) satisfies h > 0 and, for
some γ ∈ C+(E),

Gh+ βh− αh2 =−γ h.(3.67)

Then X̂ can be coupled to the historical (Gh,hα,γ )-particle system X̂ started in
X̂0 = Pois(hµ) such that

P
[
X̂t ∈ ·

∣∣(X̂s)0≤s≤t

]= P
[
Pois

(
(h ◦ πt )X̂t

) ∈ ·|X̂t

]
a.s. ∀ t ≥ 0.(3.68)

If, in addition, U = U(G,α,β) satisfies supx∈E Ut∞(x) < ∞ for some t > 0,
then p := limt↑∞Ut∞≤ h and the coupling may be chosen such that, moreover,

supp(X̂t )⊃ supp
(
X̂r ◦ π−1

[0,t]
)
, r-eventually ∀ t ≥ 0 a.s.(3.69)

If, in addition, γ = 0, then p = h and the coupling may be chosen such that
equality holds r-eventually in (3.69).

PROOF. Under the additional assumptions that (i) µ is atomless and the Feller
process with generator G has the distinct path property, (ii) γ = 0 and (iii) h= 1,
the statement follows from Proposition 39 and Lemma 40. We now remove these
assumptions one by one.

(i) Generalization to measures with atoms. Let η be a Feller process in a
compact metrizable space F such that η has the distinct path property (e.g.,
Brownian motion on the unit circle). Let G′ denote the generator of the Feller
process (ξ, η) in E × F , where for given initial conditions, ξ and η evolve
independently. Put α′(x, y) := α(x) and β ′(x, y) := β(x). Let ψt denote the
projection from DE×F [0, t] to DE[0, t]. Let µ̂ and ρ̂ be finite measures on
DE[0, s] and DF [0, s], respectively, and assume that ρ̂ is atomless. If X̂′ is the
historical (G′, α′, β ′)-superprocess started at time s in µ̂⊗ ρ̂, then, by Lemma 18,

X̂t := X̂′
t ◦ψ−1

t , t ≥ s(3.70)

is the historical (G,α,β)-superprocess started at time s in µ̂. Moreover, X̂′
t is

atomless a.s. ∀ t ≥ s and its underlying motion has the distinct path property. The
statements for X̂ now follow from the statements for X̂′ by projection.

(ii) Generalization to γ �= 0. Note that since we are still assuming h= 1, (3.67)
reduces to α − β = γ . Set E† := E ∪ {†}, where † is an isolated cemetery point
that does not belong to E. Define a linear operator G† on C(E†) by

G†f (x) :=Gf (x)+ γ (x)
(
f (†)− f (x)

)
, x ∈E,

(3.71)
G†f (†) := 0,
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where D(G†) consists of those f ∈ C(E†) such that the restriction of f to E is in
D(G). Set, moreover,

α†(x) := α(x), x ∈E,
(3.72)

α†(†) := 1.

Let X̂† denote the historical (G†, α†, α†)-superprocess started at time 0 in
µ ∈M(E) and let X̂† denote the historical (G†, α†,0)-particle system started
at time 0 in Pois(µ). For t ≥ 0, let X̂t and X̂t denote the restrictions of
X̂†

t and X̂
†
t to DE[0, t], respectively. Elementary considerations involving the log-

Laplace semigroups of X̂†
t and X̂

†
t show that (X̂t )t≥0, so defined, is the historical

(G,α,β)-superprocess, and that (X̂t )t≥0 is the historical (G,α, γ )-particle system.
By what we have already proved, X̂† and X̂† may be coupled such that

P [X̂†
t ∈ ·|(X̂†

s )0≤s≤t ] = P [Pois(X̂†
t ) ∈ ·|X̂†

t ] a.s. ∀ t ≥ 0,(3.73)

which implies (3.68). If, in addition, supx∈E Ut∞(x) <∞ for some t > 0, then
using the fact that α†(†)= 1, it is not hard to show that also supx∈E† U†

t∞(x) <∞
for some t > 0 and, therefore, by what we have already proved,

p† := lim
t↑∞U†

t∞= 1

and the coupling between X̂† and X̂† may be chosen such that, moreover,

supp(X̂
†
t )= supp

(
X̂†

r ◦ π−1
[0,t]

)
, r-eventually ∀ t ≥ 0 a.s.(3.74)

By Lemma 19(b) and the fact that † is a trap for the underlying motion, X̂† is
concentrated on paths that are trapped in †, once they reach † and, therefore,

supp(X̂t )= supp(X̂
†
t )∩DE[0, t]

(3.75)
= supp

(
X̂†

r ◦ π−1
[0,t]

)∩DE[0, t] ⊃ supp
(
X̂r ◦ π−1

[0,t]
)

∀0≤ t ≤ r a.s. Formulas (3.74) and (3.75) imply (3.69). Finally, for all x ∈E,

p(x)=− logP δx [Xt = 0 eventually]
(3.76)

≤ − logP δx [X†
t = 0 eventually] = p†(x)= 1.

(iii) Generalization to h �= 1. Set X̂h
t (dw) := h(wt )X̂t (dw), t ≥ 0. By

Lemma 5, X̂h is the historical (Gh,αh,βh)-superprocess, where Gh is defined
in (1.16) and αh := hα, βh := β + Gh

h
. Formula (3.67) implies that

−γ = βh − αh ≤ 0.(3.77)

Therefore the statements follow from what we have already proved. �
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