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Abstract

It has been known for a long time that for birth-and-death processes started in zero the
first passage time of a given level is distributed as a sum of independent exponentially
distributed random variables, the parameters of which are the negatives of the eigenvalues
of the stopped process. Recently, Diaconis and Miclo have given a probabilistic proof
of this fact by constructing a coupling between a general birth-and-death process and a
process whose birth rates are the negatives of the eigenvalues ordered from high to low
and whose death rates are zero in such a way that the latter process is always ahead of
the former, and both arrive at the same time at the given level. In this note, we extend
their methods by constructing a third process, whose birth rates are the negatives of the
eigenvalues ordered from low to high and whose death rates are zero, which always lags
behind the original process and also arrives at the same time.
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1 Introduction

1.1 First passage times of birth-and-death processes

Let X = (Xt)t>0 be the continuous-time Markov process in N = {0,1,...}, started from
Xop =0, that jumps from z — 1 to x with birth rate b, > 0 and from x to z — 1 with death rate
dy >0 (z>1). Let

v :=inf{t > 0: B, = N} (N>1) (1.1)

denote the first passage time of N. The following result has been known at least since [KM59]
Prop. 1].

Proposition 1.1 (Law of first passage times) The first passage time Ty is distributed as
a sum of independent exponentially distributed random variables whose parameters Ay < --- <
AN are the negatives of the nonzero eigenvalues of the generator of the process stopped in N.



Older proofs of this fact are based on a calculation of the Laplace transform of 7n by
purely algebraic methods, see [DMQ9] for a historical overview. In the latter paper, Diaconis
and Miclo gave for the first time a probabilistic proof of Proposition by coupling the
process X to another birth-and-death process X+ with birth rates bf = AN, .. ,b} = )\ and
zero death rates, in such a way that Xa-, < Xt+ for all t > 0 and X and X arrive in N at
the same time. In the present paper, we will extend their methods by showing that X and
X can in addition be coupled to a process X~ with birth rates bf =Aq,..., b} = Ay and
zero death rates, in such a way that X;” < Xiary < X, for all ¢ > 0 and all three processes
arrive in N at the same time.

1.2 Intertwining of Markov processes

The coupling technique used by Diaconis and Miclo in [DM09] is of a special kind, which is
sometimes called intertwining of Markov processes. Let X and X’ be continuous-time Markov
processes with finite state spaces S and S’ and generators G' and G, respectively, and let K
be a probability kernel from S to S’. Then K defines a linear operator from R to R, also
denoted by K, by the formula

Kf(z):= Y K(z,9)f(y). (1.2)
yes’
The following result, which is based on an observation by Rogers and Pitman [RP81], was
proved by Fill in [Fil92, Thm. 2]. (An independent proof can be found in [AS10, Prop. 4]).
Proposition 1.2 (Intertwining of Markov processes) Assume that

GK = KG'. (1.3)

Then there exists a generator G of an S x S'-valued Markov process with the property that if
(X, X') evolves according to G and satisfies

P[X) =y | Xo] = K(Xo,y) (yes), (1.4)

then
PIX; =y| (Xs)o<s<t] = K(Xp,y)  (t>0, ye '), (1.5)

and the processes X and X', on their own, are Markov processes evolving according to the
generators G and G', respectively.

Algebraic relations of the type are called intertwining relations, hence the name inter-
tuining of Markov processes. We note that the operator K needs in general not have an
inverse, and even if it does, this inverse will in general not be associated to a probability
kernel from S’ to S. In view of this, an intertwining of Markov processes is not a symmetric
relation. To express this, following terminology introduced in [AS10], we will also say that in
the set-up of Proposition X' is an averaged Markov process on X.

1.3 Intertwining of birth-and-death processes

We are now ready to formulate our main result. Deviating slightly from our notation in Sec-
tion[L.1] we let X = (X;)¢>0 be a continuous-time Markov process with state space {0,..., N},



started from Xg = 0, that jumps from x — 1 to & with birth rate b, and from z to z — 1 with
death rate d,, where by,...,by > 0, di,...,dy_1 > 0, but dy = 0, i.e., X is the stopped
process from Section We let G denote the generator of X i.e.,

Cf(@) = b (fe +1) — f@) +do(fla— 1)~ f(x))  (O<z<N),  (L6)

where f : {0,...,N} — R is a real function and we adopt the convention that dy = 0 and
by+1 = 0 so that the corresponding terms in ([1.6|) are zero, regardless of the (fictive) values
of fin —1 and N + 1. The following theorem is our main result.

Theorem 1.3 (Intertwining of birth-and-death processes) The operator G has N + 1
distinct eigenvalues 0 = —\g > —\1 > --- > —Ay. Let X~ and X be the pure birth processes
in {0,...,N}, started from X, = Xi = 0, with birth rates by = Ai,...,by = Ay and
bf = AN, b} = A1, respectively, and let G= and G be their generators. Then there exist
probability kernels K~ and K+ on {0,..., N} satisfying

K™ (z,{0,...,2}) =1, K™ (x,{0,...,2}) =1, (0<z<N)

(1.7)
K~ (N,N)=0, KT (N,N) =0,
and
(i) KTG=GTK" and (i) GK- =K G™. (1.8)
Moreover, the processes X, X, and X can be coupled in such a way that
(1) PIX; =y (X ocs<t] = KT (X",y) (t>0, 0<y<N), 19)
(i) PIX; =yl (X, Xoozszd = K~ (X1, 9) (t20,0<y< '

The existence of a kernel KT such that (1.8) (i) and (1.9) (i) hold has been proved before
in [DMO09, Prop. 10]. Our new contribution is the construction of the kernel K~ such that

moreover ([1.8) (i) and (1.9) (ii) hold. It is easy to see that formulas ([1.7) and (1.9) imply

that
i) X, <Xe<XS  (t20),

+

O (1.10)
i) 7y =7n =Ty,

where 7y = inf{t > 0 : X; = N} and 7 and 7, are defined similarly for X~ and X,
respectively. We note that X~ and X move, in a sense, in the slowest resp. fastest possible
way from 0 to N, given that they have to arrive at exactly the same time as X. Note that,
using terminology introduced at the end of Section X is an averaged Markov process on
X and X~ is an averaged Markov process on X.

1.4 Discussion

In comparison to the paper by Diaconis and Miclo [DMO09], the present paper does not add too
much that is new. In particular the construction of the kernel K~ in Theoremis very similar
to the construction of the kernel K, which was already carried out in [DM09]. However, we
believe that the observation that both constructions are possible, with an interesting symmetry
between them, is of some interest.

The methods of [DMO09] can also be used to study birth-and-death processes on {0, ..., N}
whose death rate dy is not zero and which, therefore, converge in law to a unique equilibrium.



In particular, Diaconis and Miclo use their intertwining relation (i) to contruct a fastest
strong stationary time for such processes (we refer to [DMQ9] for the definition). In contrast,
it seems that the interwining relation (ii) does not generalize to such a setting.

On a more general level, one may ask what the advantage is of a ‘probabilistic’ proof of
Proposition [1.1] as opposed to older, more algebraic proofs. Since most of the work behind
Theorem goes into proving the intertwining relations , one might even argue that the
present proof is still rather algebraic in nature, although with a strong probabilistic flavour.
In this context, it is interesting to note that the fact that G is diagonalizable with real,
distinct eigenvalues follows as a result of our proofs (in particular, this follows from a repeated
application of the Perron-Frobenius theorem) and does not have to be provided by some extra
argument (based on, for example, reversibility).

In general, diagonalizing a generator of a Markov process gives very strong information
about the process, but in practice, if the state space is large, it is hard to get good information
about the position of eigenvalues etc. The idea of interwining generators with transition
kernels may in some cases be a good way to transform generators of complicated processes
into generators of more simple processes and thus provide a more probabilistic alternative to
diagonalization.

The methods of this paper can certainly be extended to one-dimensional processes with
two traps, to dicrete-time processes, and to one-dimensional diffusions. Miclo [Mic10] has
proved a generalization of Propositionfor reversible Markov chains. In [AS10], intertwining
relations were used to estimate the time to extinction for large hierarchical contact processes.
The present work was partly motivated by an open problem from that paper. (To be precise,
Question 1° from Section 3.3.)

2 Proofs

2.1 Leading eigenvectors

Let X be the birth-and-death process in Sy := {0,..., N} from Section and let G :
RS¥ — RN be its generator, defined in (1.6). We equip R°N with the usual inner product
(z|f) = Z;]I;V:o 7(x) f(x) and let GT denote the adjoint of G with respect to this inner product.
Then

Glr(z) = bym(x — 1) — bpy17m(z) + dprm(x + 1) — dpr (), (2.1)

where as in we use the convention that dy = 0 and by = 0 so that the corresponding
terms in are zero, regardless of the (fictive) values of 7 in —1 and N + 1.

Since 6y (the delta mass in N) is the unique invariant law of X, the eigenvalue 0 of
the generator G has multiplicity one and its unique left and right eigenvectors are 5 and
the constant function 1, respectively. We will need the following result on the next largest
eigenvalue and its left and right eigenvectors.

Lemma 2.1 (Leading eigenvectors) There exists a A > 0 and f, 7w € RSN such that
(i) f is strictly decreasing on {0,..., N} and satisfies f(0) =1, f(N) =0

(il) = is strictly positive on {0,..., N — 1} and satisfies Zivz_ol m(z) =1=—-m(N). (2.2)
(i) Gf=-\f and Ginm=-)\r.



Proof Set
e(z) = oy 0<z<N-1) and e(N):=1,
fa)=0,—0y (0<z<N-1) and EN):=dy.

Then {e(0),...,e(N)} is a basis for RV and {£(0),...,£(N)} is its associated dual basis, i.e.,
(e()|EW)) = 1oy Set

& :=span{e(0),...,e(N — 1)} = {f e RSN : f(N) = 0},
F:=span{£(0),...,&(N — 1)} = {x e R : 2N '7x(x) = 0}.

Since N is a trap for the process X, it is easy to see that the operator G maps the space £
and into itself. It follows that with respect to the basis {e(0),...,e(NN)}, the matrix [G] of G

has the form
A 0

where A is the matrix of the restriction of G to £. The restriction of the process X to the space
{0,..., N — 1} is irreducible in the sense that there is a positive probability of going from any
state to any other state. Therefore, a standard application of the Perron-Frobenius theorem
shows that A has a real eigenvalue —\ of multiplicity one, which is larger in absolute value
than all other eigenvalues, and associated left and right eigenvectors m# € F and f € £ that
are strictly positive with respect to the bases {£(0),...,{(N — 1)} and {e(0),...,e(N — 1)},
respectively. Since Markov semigroups are contractive we have —A < 0 and since the eigenvalue
zero of G has multiplicity one we conclude that —A < 0. Since we can always normalize our
eigenvectors such that Zi\:)l 7(z) = 1 and max) ! f(z) = 1, this proves all statements of the
lemma except for the fact that f is strictly decreasing.

To prove this latter fact, we observe that by the facts that Gf = —Af and f > 0 on
{0,...,N — 1},

(2.3)

(2.4)

b (1) — £(0)) = ~AF(0) <0, 26)
which show that f(0) > f(1). By the same argument,

bos1 (fz+1) = f(2)) = =Af(2) —do(f( = 1) = f(z)) <O (I<z<N-1), (27)

from which we see by induction that f(z) > f(z+1) forall 0 <z < N — 1. |

2.2 Intertwining the fast process

In this section, we prove the existence of a kernel KT satisfying and . Our proof
is basically the same as the proof given in [DMO09], but as a preparation for the next section
it will be convenient to review their proof and shorten it somewhat. The proof in [DM09] is
written in such a way as to make clear how the authors arrived at their argument and uses
discrete derivatives that are presumably also useful if one wants to generalize the theory to
one-dimensional diffusions. If our only aim is Theorem however, we can summarize their
arguments quite a bit.

The kernel KT will be constructed as the concatenation of an inductively defined sequence
of kernels K(N-D+ KW+ Associated with these kernels is a sequence of generators
GW-D.+ GO+ of birth-and-death processes in {0,..., N} satisfying the intertwining
relations

KM+ + — qM=D+ M)+ (1 <M< N-1), (2.8)



where the process with generator GM) has birth rates bgM), e ,bg\],\/[) > (0 and death rates
dgM), . ,dg\]/y) > 0, dg\%zl =...= dg\j,w) = 0; see Figure [1| for a picture. In particular, we will
choose GIV-D+ .= @ and setting GT := GO+ will yield the desired pure birth process with
birth rates bf = AN, ... ,bj([ = A

The core the proof is the following proposition, which corresponds to the inductive step in
the argument.

Proposition 2.2 (Inductive step) Let 1 < M < N—1 and let G be the generator of a birth-
and-death process in {0, ..., N} with birth rates by, ...,bx > 0 and death rates dy,...,dy > 0,
dyr41 =+ =dn = 0. Then there exists a probability kernel K on {0,..., N} satisfying

K(z,{z,...,z})=1 (0<z<N) and K(z,x)=1 (M+1<z<N), (2.9)

and a generator G' of a birth-and-death process in {0, ..., N} with birth rates by,..., 0 >0
and death rates di,...,d\y; >0, dy, =---=dy =0, such that KG = G'K.

Proof It follows from Lemma applied to the process stopped at M + 1 that there exists
a function p : {0,...,N} — R such that p > 0 on {0,...,. M}, p=0on {M +1,...,N},
Zi\f:o p(x) =1, and

GTp(z) = =Ap(x) + Mpra(z)  (0<z < N), (2.10)

where
A =bpypip(M) > 0. (2.11)

The law p is sometimes called a quasi-stationary law. Using p, we define the kernel K on
{0,...,N} by

p(y) .
1 Lt/ o< M
K(ry)={ "H@E "= (2.12)
where .
H(z):=> ply) (0<z< M) (2.13)
y=0

Since K is a lower triangular matrix, it is invertible, so there exists a unique linear operator G’
satisfying KG = G'K and G’ is in fact given by G/ = KGK~!. Since G'1 = G’K1=KG1 =0
we see that

G'(z,2)=-) G'(x,y). (2.14)

yFx
In view of this, to prove our claim, it suffices to check that the off-diagonal entries of G’
coincide with those of a birth-and-death process in {0,..., N} with birth rates b,...,0 >0
and death rates dy,...,d);_, >0,d), =---=dy=0.
To determine the off-diagonal entries of G’, we calculate, using and ,

(KG)(z,y) = GTK (@, )(y)

B ply) plz+1) p(z) :
=) ) + Ao (y) if o = M,
_bm+16x(y) + bx—l—l(sz—&-l(y) if x > M.
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Figure 1: Intertwining of birth and death processes. In this picture N = 4. All nonzero
transition rates and probabilities have been indicated with arrows.



In order to find G’, we need to express these formulas, as functions of ¥, as linear combinations

of the basis vectors (K (z,

-))o<z<n- To that aim, we observe that

0y = K(z, -) (M+1<z<N), (2.16)
while for 1 <z < M, we have
(y)
6:16(3/) = (1{y§x} 1{y<a: 1} P xg
_H(z) P(y) p(y)
=00 1{y<m}H<x s e (217)
H(x H(x —1)
= Kx,y) — —K(z -1,y
o) VT Kby
Inserting this into (2.15]), we find that
N
Y G(z,2)K(7,y) == (KG)(x,y)
z'=0
N p(1)
p(O) H(1) H(0) :
b —=K(l,y) — —=K(0,y if x =0,
1H(O) ( p(l) ( + 1) 551% ( )) ' Heo1)
p T T T —
—AK K(x—-1
p(x T .
+bx+1H(x)( ot ) (x+ 1,y) - ($+1)K( ,y)) it 0 <z < M,
“AK(M,y) + A\K(M + 1,y) if £ = M,
(| —ber1 K(2,y) + bp1 K(x + 1,7) it > M.
(2.18)
From this, we can read off the off-diagonal entries of G’. Indeed,
warlM if < M’
, , H(x)p(x+1)
byt if > M, (2.19)
plx+1)H(z .
d =G (z,0—1)= dz41 Hx)p(x) it0<z <M,
0 ife > M,
and all other off-diagonal entries are zero. |

Remark The proof of Proposition is straightforward except for the clever choice of K in
(2.12)—(2.13]). For some motivation of this choice and the way the authors arrived at it we

refer to [DMO09].

Using Proposition we can construct a sequence of kernels K(N-D+
,GO)+ satisfying the intertwining relations (2.8), such that Gt := GO+
> 0, say. It is now easy to see that the

ators GIV-D+

is a pure birth process with birth rates bf, by

composed kernel

Kt =krgWM+

b-‘r

L K(IN=D A+

, KM+ and gener-

(2.20)



satisfies KT (2,{0,...,2}) =1(0< 2 < N),K"(N,N)=1and K*G = GTK™. It is straight-
forward to check that the eigenvalues of G’ are —bf,...,—b},0. Since G = (KT)"!GTKT,
the operators G and G have the same spectrum.

We claim that bf > > bj(, > 0. To see this, recall from the proofs of Lemma and
Proposition that —b]\+/[ is the Perron-Frobenius eigenvalue of the process with generator
GM)+ stopped at M + 1. It follows from the intertwining relation that —bLA is also
an eigenvalue of this process, corresponding to a different eigenvector, hence by the Perron-
Frobenius theorem, bys_1 > byy.

2.3 Intertwining the slow process

In the previous section, we have constructed a kernel K+ and generator of a pure birth process
G such that (i) holds. In this section, we construct a kernel K~ and generator of a
pure birth process G~ satisfying (ii). The proof will be very similar to the previous
case, except that some things will ‘go he other way around’. In particular, using terminology
introduced at the end of Section G~ will be the generator of an avaraged Markov process
X~ on X while in the previous section we constructed a pure birth process X+ such that X
is an averaged Markov process on X T.

As in the previous section, the kernel K~ will be constructed as the concatention of an
inductively defined sequence of kernels KM~ ... K=Y~ Agsociated with these kernels
is a sequence of generators G ... GN=1 = of birth-and-death processes in {0,...,N}
satisfying the intertwining relations

GM-D-gM) = — gM) =M= 1< M<N-1), (2.21)
where the process with generator G™) has birth rates bgM), e ,bg\jfw) > 0 and death rates
dgM) =...= dgy) =0, d%ﬁl, cee dg\],\{)l > 0, and dg\],\/f) = 0. We again refer to Figure |1| for an
illustration.

The core of the argument is the following proposition.

Proposition 2.3 (Inductive step) Let 0 < M < N — 2 and let G be the generator of a
birth-and-death process in {0,..., N} with birth rates by,...,by > 0 and death rates d; =
coo=dpy =0, dyyr, ..., dy—1 >0, and dy = 0. Then there exists a probability kernel K on
{0,..., N} satisfying

K(z,{z,...,z}) =1 (0<z<N) and K(z,x)=1 (z¢&{M,...,N—-1}), (2.22)

and a genemtorG of a birth-and-death process in {0,...,N} with birth rates by, ... , by >0
and death rates dy = --- = dp+1 =0, dpr42, ..., dy—1 > 0, and dy = 0, such that GK = KG.

Proof It follows from Lemma applied to the process restricted to {M,..., N} that there
exists a function f : {0,..., N} — Rsuch that f =0on {0,..., M —1}, f is strictly decreasing
on {M,...,N}, f(M)=1, f(N)=0, and

Gf(z) = ~Mf(z) + bydar_1(z)  (0<z < N), (2.23)

where

A=by1(1— f(M+1))>0. (2.24)



We set
K(z,y) == 1{p—p (yg{M,...,N —1}). (2.25)

Fory = M,..., N —1, we claim that we can inductively define the kernel K (z,y) and contants
Cy > 0 in such a way that

(i) y) = Cylyy<ay (@),

K(z,
i (M <y<N-1). (2.26)

11

To see that this is all right, note that for y = M (2.26) (i) and (ii) are satisfied by choosing
Chr:=1, while for M +1 <y <N —1 (2.26]) (i) and (ii) imply that we must choose

1 o
Cpi=——(1- % K(y,y')). (2.27)
fy) ( !
Since f is strictly decreasing on {M, ..., N}, one has, by induction,
y—1 y—1 y—1 Y=
Y K(yy)= ) Cufy) < > Cyfly—1)= Z y—1y) =1, (2.28)
y'=M y'=M y'=M y'=M

which shows that Cy > 0. We now calculate

(GK)(xay) = GK(,y)(iL’)

( bydy—1(x) — bys10,() fo<y<M-1,
. brronr— ify=M
f(@) + baronr—1(z) if y (2.29)
= *)\Cyl{ygm}f(l’) + byCy(Sy,l(iL‘)
—dyCy(fly—1) — f(y))dy(x) if M+1<y<N-1,
bnOn—1(x) ify=N

By the same arguments as those in the previous section, there exists a unique linear operator
G such that GK = KG. In order to check that G is the generator of a birth-and-death
process in {O ., N} with birth rates bl, ..,by > 0 and death rates dy = --- = dM+1 =0,
dM+2, .. dN 1> 0, and dy = 0, it suffices to check that the off- dlagonal entrles G(x y) have
the desured form. In order to do this, we must express the formulas in , as functions of
x, as linear combinations of the basis vectors (K(-,y))o<y<n. We observe that

while for M <y < N — 2, we have

Oy(2) = (Ly<ay — Lyti<ay) ";g)
T) —

~—

1
mcy+11{y+1§x}f (z) (2.31)
Yy

TGy @y L),

10



and
1

Sn_1(x) = ml((x, N—1). (2.32)
Inserting this into , we obtain
> K(x,y)G( ., y) = (GK)(z,y)
(b K (e y — 1)~ by K(r,y) 0 <y <M1,
—AK(x, M)+ by K(x,M — 1) ify =M,
o T K($ay_1) _ K(:Cay)
M () + 0,0y (765 Do T 1)0)1)
€T,y T,y + .
_] TG U-D- }i ((y))(f(ly))(?y WG ) #M+lgysN-2,
€T,y — €,y
—AK (@ y) + byCy(f(y — 1}(031—1  fly+ 1)Cy>
4, Cy(fly 1) — f() Y iy =N 1,

fW)Cy
K(z,N —1)

NN —1)Cn

if y = N,

(2.33)
where we use the convention that by = 0 and hence by K (z, —1) = 0, regardless of the (fictive)
value of K (x,—1). From li we can read off the off-diagonal entries of G. Indeed,

. ' by if1<y<M,
by=Gy—1,y)= Cy i
’ b, ——2 lfM+1§ SNa
yf(y—l)cyfl g
(2.34)
| | 0 ify g {M+1,...,N -2},
dyn=CGly+Ly)=3 , GUE=D=F0) o <n_2

Y Cy+1f(y)

and all other off-diagonal entries are zero. We note that in particular, by (2.24]) and the
definition of the C,’s,

. b C
brrp1 = % = byt1Cn41 = by (1= f(M +1)) = A (2.35)

Remark As in the case of Proposition the proof of Proposition is straightforward
except for the choice of the kernel K. We have guessed formula (2.26) by analogy with
formula (2.12)), which is due to [DMO09].

With the help of Proposition we can inductively define kernels KM~ ..., K(V=1— and
operators GM— .. GWN=D = Setting G~ := GV~ and

K =KO-.. . gN-1)- (2.36)
now yields a generator of a pure birth process with birth rates b;,...,by and a kernel K~

with the properties described in (|L.7])—(1.8]).

11



In the same way as in the previous section, we see that 0, —b;, ..., —by are the eigenvalues
of G. To see that 0 < b; < --- < by we observe from that —b;, is the Perron-Frobenius
eigenvalue of the process with generator G(M) ~ restricted to {M,...,N}. It follows from the
intertwining relation that —b']f/[ 41 1s also an eigenvalue of this process, corresponding to
a different eigenvector, hence by the Perron-Frobenius theorem, bys < bpr41.

2.4 Proof of the main theorem

Proof of Theorem The existence of generators G—, G and kernels K, KT satisfying
— has been proved in the previous sections. By Proposition it follows that X
and X can be coupled such that (i) holds. By applying Proposition to the kernel L
from {0,...,N}? to {0,..., N} given by

L((xay)vz) = K+(x,y)K_(y,z) (ng,y,ng), (2'37)

we see that X, X, and X~ can be coupled in such a way that both (1.9) (i) and (ii) hold. ®
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