Advanced Topics in Markov chains

J.M. Swart

May 16, 2012

Abstract This is a short advanced course in Markov chains, i.e., Markov processes with discrete space and time. The first chapter recalls, without proof, some of the basic topics such as the (strong) Markov property, transience, recurrence, periodicity, and invariant laws, as well as some necessary background material on martingales. The main aim of the lecture is to show how topics such as harmonic functions, coupling, Perron-Frobenius theory, Doob transformations and intertwining are all related and can be used to study the properties of concrete chains, both qualitatively and quantitatively. In particular, the theory is applied to the study of first exit problems and branching processes.
Notation

\(\mathbb{N} \) natural numbers \(\{0,1,\ldots\} \)
\(\mathbb{N}_+ \) positive natural numbers \(\{1,2,\ldots\} \)
\(\mathbb{N} \) \(\mathbb{N} \cup \{\infty\} \)
\(\mathbb{Z} \) integers
\(\mathbb{Z} \) \(\mathbb{Z} \cup \{-\infty,\infty\} \)
\(\mathbb{Q} \) rational numbers
\(\mathbb{R} \) real numbers
\(\overline{\mathbb{R}} \) extended real numbers \([-\infty,\infty] \)
\(\mathbb{C} \) complex numbers
\(\mathcal{B}(E) \) Borel-\(\sigma \)-algebra on a topological space \(E \)
\(1_A \) indicator function of the set \(A \)
\(A \subset B \) \(A \) is a subset of \(B \), which may be equal to \(B \)
\(A^c \) complement of \(A \)
\(A \setminus B \) set difference
\(\overline{A} \) closure of \(A \)
\(\text{int}(A) \) interior of \(A \)
\((\Omega,\mathcal{F},\mathbb{P}) \) underlying probability space
\(\omega \) typical element of \(\Omega \)
\(\mathbb{E} \) expectation with respect to \(\mathbb{P} \)
\(\sigma(\ldots) \) \(\sigma \)-field generated by sets or random variables
\(\|f\|_\infty \) supremum norm \(\|f\|_\infty := \sup_x |f(x)| \)
\(\mu \ll \nu \) \(\mu \) is absolutely continuous w.r.t. \(\nu \)
\(f_k \ll g_k \) \(\lim f_k/g_k = 0 \)
\(f_k \sim g_k \) \(\lim f_k/g_k = 1 \)
\(o(n) \) any function such that \(o(n)/n \to 0 \)
\(O(n) \) any function such that \(\sup_n o(n)/n \leq \infty \)
\(\delta_x \) delta measure in \(x \)
\(\mu \otimes \nu \) product measure of \(\mu \) and \(\nu \)
\(\Rightarrow \) weak convergence of probability laws
Contents

0 Preliminaries ... 5
 0.1 Stochastic processes ... 5
 0.2 Filtrations and stopping times 6
 0.3 Martingales .. 7
 0.4 Martingale convergence .. 9
 0.5 Markov chains ... 10
 0.6 Kernels, operators and linear algebra 14
 0.7 Strong Markov property ... 15
 0.8 Classification of states ... 17
 0.9 Invariant laws .. 19

1 Harmonic functions .. 23
 1.1 (Sub-) harmonicity ... 23
 1.2 Random walk on a tree .. 29
 1.3 Coupling .. 34
 1.4 Convergence in total variation norm 37

2 Eigenvalues .. 41
 2.1 The Perron-Frobenius theorem 41
 2.2 Subadditivity ... 43
 2.3 Spectral radius ... 44
 2.4 Existence of the leading eigenvector 45
 2.5 Uniqueness of the leading eigenvector 46
 2.6 The Jordan normal form ... 48
 2.7 The spectrum of a nonnegative matrix 51
 2.8 Convergence to equilibrium 53
 2.9 Conditioning to stay inside a set 55

3 Intertwining ... 61
 3.1 Intertwining of Markov chains 61
 3.2 Markov functionals ... 65
 3.3 Intertwining and coupling 69
 3.4 First exit problems revisited 72

4 Branching processes .. 75
 4.1 The branching property ... 75
CONTENTS

4.2 Generating functions .. 78
4.3 The survival probability ... 81
4.4 First moment formula .. 84
4.5 Second moment formula ... 86
4.6 Supercritical processes ... 89
4.7 Trimmed processes .. 90

A Supplementary material ... 97
A.1 The spectral radius .. 97
Chapter 0

Preliminaries

0.1 Stochastic processes

Let I be a (possibly infinite) interval in \mathbb{Z}. By definition, a stochastic process with discrete time is a collection of random variables $X = (X_k)_{k \in I}$, defined on some underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and taking values in some measurable space (E, \mathcal{E}). We call the random function

$$I \ni k \mapsto X_k(\omega) \in E$$

the sample path of the process X. The sample path of a discrete-time stochastic process is in fact itself a random variable $X = (X_k)_{k \in I}$, taking values in the product space (E^I, \mathcal{E}^I), where

$$E^I := \{ x = (x_k)_{k \in I} : x_k \in E \ \forall k \in I \}$$

is the space of all functions $x : I \to E$ and \mathcal{E}^I denotes the product-σ-field. It is well-known that a probability law on (E^I, \mathcal{E}^I) is uniquely characterized by its finite-dimensional marginals, i.e., even if I is infinite, the law of the sample path X is uniquely determined by the finite dimensional distributions

$$\mathbb{P}[(X_k, \ldots, X_{k+n}) \in \cdot] \quad (\{k, \ldots, k+n\} \subset I).$$

of the process. Conversely, if (E, \mathcal{E}) is a Polish space equipped with its Borel-σ-field, then by the Daniell-Kolmogorov extension theorem, any consistent collection of probability measures on the finite-dimensional product spaces (E^J, \mathcal{E}^J), with $J \subset I$ a finite interval, uniquely defines a probability measure on (E^I, \mathcal{E}^I). Polish
spaces include many of the most commonly used spaces, such as countable spaces equipped with the discrete topology, \mathbb{R}^d, separable Banach spaces, and much more. Moreover, open or closed subsets of Polish spaces are Polish, as are countable cartesian products of Polish spaces, equipped with the product topology.

0.2 Filtrations and stopping times

As before, let I be an interval in \mathbb{Z}. A discrete filtration is a collection of σ-fields $(\mathcal{F}_k)_{k \in I}$ such that $\mathcal{F}_k \subset \mathcal{F}_{k+1}$ for all $k, k+1 \in I$. If $X = (X_k)_{k \in I}$ is a stochastic process, then

$$\mathcal{F}_k^X := \sigma(\{X_j : j \in I, \ j \leq k\}) \quad (k \in I)$$

is a filtration, called the filtration generated by X. For any filtration $(\mathcal{F}_k)_{k \in I}$, we set

$$\mathcal{F}_\infty := \sigma(\bigcup_{k \in I} \mathcal{F}_k).$$

In particular, $\mathcal{F}_\infty^X = \sigma((X_k)_{k \in I})$.

A stochastic process $X = (X_k)_{k \in I}$ is adapted to a filtration $(\mathcal{F}_k)_{k \in I}$ if X_k is \mathcal{F}_k-measurable for each $k \in I$. Then $(\mathcal{F}_k^X)_{k \in I}$ is the smallest filtration that X is adapted to, and X is adapted to a filtration $(\mathcal{F}_k)_{k \in I}$ if and only if $\mathcal{F}_k^X \subset \mathcal{F}_k$ for all $k \in I$.

Let $(\mathcal{F}_k)_{k \in I}$ be a filtration. An \mathcal{F}_k-stopping time is a function $\tau : \Omega \rightarrow I \cup \{\infty\}$ such that the $\{0,1\}$-valued process $k \mapsto 1_{\{\tau \leq k\}}$ is \mathcal{F}_k-adapted. Obviously, this is equivalent to the statement that

$$\{\tau \leq k\} \in \mathcal{F}_k \quad (k \in I).$$

If $(X_k)_{k \in I}$ is an E-valued stochastic process and $A \subset E$ is measurable, then the first entrance time of X into A

$$\tau_A := \inf\{k \in I : X_k \in A\}$$

with $\inf \emptyset := \infty$ is an \mathcal{F}_k^X-stopping time. More generally, the same is true for the first entrance time of X into A after σ

$$\tau_{\sigma,A} := \inf\{k \in I : k > \sigma, \ X_k \in A\},$$

where σ is an \mathcal{F}_k-stopping time. Deterministic times are stopping times (w.r.t. any filtration). Moreover, if σ, τ are \mathcal{F}_k-stopping times, then also

$$\sigma \lor \tau, \quad \sigma \land \tau$$
are \mathcal{F}_k-stopping times. If $f : I \cup \{\infty\} \to I \cup \{\infty\}$ is measurable and $f(k) \geq k$ for all $k \in I$, and τ is an \mathcal{F}_k-stopping time, then also $f(\tau)$ is an \mathcal{F}_k-stopping time.

If $X = (X_k)_{k \in I}$ is an \mathcal{F}_k-adapted stochastic process and τ is an \mathcal{F}_k-stopping time, then the stopped process

$$
\omega \mapsto X_{k \wedge \tau}(\omega) \quad (k \in I)
$$

is also an \mathcal{F}_k-adapted stochastic process. If $\tau < \infty$ a.s., then moreover $\omega \mapsto X_{\tau(\omega)}(\omega)$ is a random variable. If τ is an \mathcal{F}_k-stopping time defined on some filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_k)_{k \in I}, \mathbb{P})$ (with $\mathcal{F}_k \subset \mathcal{F}$ for all $k \in I$), then the σ-field of events observable before τ is defined as

$$
\mathcal{F}_\tau := \{ A \in \mathcal{F}_\infty : A \cap \{ \tau \leq k \} \in \mathcal{F}_k \ \forall k \in I \}.
$$

Exercise 0.1 If $(\mathcal{F}_k)_{k \in I}$ is a filtration and σ, τ are \mathcal{F}_k-stopping times, then show that $\mathcal{F}_{\sigma \wedge \tau} = \mathcal{F}_\sigma \wedge \mathcal{F}_\tau$.

Exercise 0.2 Let $(\mathcal{F}_k)_{k \in I}$ be a filtration, let $X = (X_k)_{k \in I}$ be an \mathcal{F}_k-adapted stochastic process and let τ be an \mathcal{F}_k^X-stopping time. Let $Y_k := X_{k \wedge \tau}$ denote the stopped process. Show that the filtration generated by Y is given by

$$
\mathcal{F}_k^Y = \mathcal{F}_{k \wedge \tau}^X \quad (k \in I \cup \{\infty\}).
$$

In particular, since this formula holds also for $k = \infty$, one has

$$
\mathcal{F}_\tau^X = \sigma((X_{k \wedge \tau})_{k \in I}),
$$

i.e., \mathcal{F}_τ^X is the σ-algebra generated by the stopped process.

0.3 Martingales

By definition, a real stochastic process $M = (M_k)_{k \in I}$, where $I \subset \mathbb{Z}$ is an interval, is an \mathcal{F}_k-submartingale with respect to some filtration $(\mathcal{F}_k)_{k \in I}$ if M is \mathcal{F}_k-adapted, $\mathbb{E}[|M_k|] < \infty$ for all $k \in I$, and

$$
\mathbb{E}[M_{k+1}|\mathcal{F}_k] \geq M_k \quad (\{k, k + 1\} \subset I).
$$

We say that M is a supermartingale if the reverse inequality holds, i.e., if $-M$ is a submartingale, and a martingale if equality holds in (0.1), i.e., M is both a
submartingale and a supermartingale. By induction, it is easy to show that (0.1) holds more generally when \(k, k + 1 \) are replaced by more general times \(k, m \in I \) with \(k \leq m \).

If \(M \) is an \(\mathcal{F}_k \)-submartingale and \((\mathcal{F}'_k)_{k \geq 0} \) is a smaller filtration (i.e., \(\mathcal{F}'_k \subset \mathcal{F}_k \) for all \(k \in I \)) that \(M \) is also adapted to, then

\[
E[M_{k+1}|\mathcal{F}'_k] = E[E[M_{k+1}|\mathcal{F}_k]|\mathcal{F}'_k] \geq E[M_k|\mathcal{F}'_k] = M_k \quad (\{k, k + 1\} \subset I),
\]

which shows that \(M \) is also an \(\mathcal{F}_k \)-submartingale. In particular, a stochastic process \(M \) is a submartingale with respect to some filtration if and only if it is a submartingale with respect to its own filtration \((\mathcal{F}_k^M)_{k \in I} \). In this case, we simply say that \(M \) is a submartingale (resp. supermartingale, martingale).

Let \((\mathcal{F}_k)_{k \in I} \) be a filtration and let \((\mathcal{F}'_k)_{k \in I} \) be the filtration shifted one step to left, where we set \(\mathcal{F}'_{k-1} := \{\emptyset, \Omega\} \) if \(k - 1 \not\in I \). Let \(X = (X_k)_{k \in I} \) be a real \(\mathcal{F}_k \)-adapted stochastic process such that \(E[|X_k|] < \infty \) for all \(k \in I \). By definition, a compensator of \(X \) w.r.t. the filtration \((\mathcal{F}_k)_{k \in I} \) is an \(\mathcal{F}_k-1 \)-adapted real process \(K = (K_k)_{k \in I} \) such that \(E[|K_k|] < \infty \) for all \(k \in I \) and \((X_k - K_k)_{k \in I} \) is an \(\mathcal{F}_k \)-martingale. It is not hard to show that \(K \) is a compensator if and only if \(K \) is \(\mathcal{F}_k-1 \)-adapted, \(E[|K_k|] < \infty \) for all \(k \in I \) and

\[
K_{k+1} - K_k = E[X_{k+1} \mid \mathcal{F}_k] - X_k \quad (\{k, k + 1\} \subset I).
\]

It follows that any two compensators must be equal up to an additive \(\bigcap_{k \in I} \mathcal{F}_{k-1} \)-measurable random constant. In particular, if \(I = \mathbb{N} \), then because of the way we have defined \(\mathcal{F}_{-1} \), such a constant must be deterministic. In this case, it is customary to put \(K_0 := 0 \), i.e., we call

\[
K_n := \sum_{k=1}^n (E[X_k \mid \mathcal{F}_{k-1}] - X_{k-1}) \quad (n \geq 0)
\]

the (unique) compensator of \(X \) with respect to the filtration \((\mathcal{F}_k)_{k \in \mathbb{N}} \). We note that \(X \) is a submartingale if and only if its compensator is a.s. nondecreasing.

The proof of the following basic fact can be found in, e.g., [Lach12, Thm 2.4].

Proposition 0.3 (Optional stopping) Let \(I \subset \mathbb{Z} \) be an interval, \((\mathcal{F}_k)_{k \in I} \) a filtration, let \(\tau \) be an \(\mathcal{F}_k \)-stopping time and let \((M_k)_{k \in I} \) be an \(\mathcal{F}_k \)-submartingale. Then the stopped process \((M_{k \wedge \tau})_{k \in I} \) is an \(\mathcal{F}_k \)-submartingale.

The following proposition is a special case of [Lach12, Prop. 2.1].
0.4 MARTINGALE CONVERGENCE

Proposition 0.4 (Conditioning on events up to a stopping time) Let $I \subset \mathbb{Z}$ be an interval, $(\mathcal{F}_k)_{k \in I}$ a filtration, let τ be an \mathcal{F}_k-stopping time and let $(M_k)_{k \in I}$ be an \mathcal{F}_k-submartingale. Then
\[\mathbb{E}[M_k \mid \mathcal{F}_{k \wedge \tau}] \geq M_{k \wedge \tau} \quad (k \in I). \]

0.4 Martingale convergence

If $\mathcal{F}, \mathcal{F}_k (k \geq 0)$ are σ-fields, then we say that $\mathcal{F}_k \uparrow \mathcal{F}$ if $\mathcal{F}_k \subset \mathcal{F}_{k+1} (k \geq 0)$ and $\mathcal{F} = \sigma(\bigcup_{k \geq 0} \mathcal{F}_k)$. Note that this is the same as saying that $(\mathcal{F}_k)_{k \geq 0}$ is a filtration and $\mathcal{F} = \mathcal{F}_\infty$, as we have defined it above. Similarly, if $\mathcal{F}, \mathcal{F}_k (k \geq 0)$ are σ-fields, then we say that $\mathcal{F}_k \downarrow \mathcal{F}$ if $\mathcal{F}_k \supset \mathcal{F}_{k+1} (k \geq 0)$ and $\mathcal{F} = \bigcap_{k \geq 0} \mathcal{F}_k$.

Exercise 0.5 Let $(\mathcal{F}_k)_{k \in \mathbb{N}}$ be a filtration and let τ be an \mathcal{F}_k-stopping time. Show that $\mathcal{F}_{k \wedge \tau} \uparrow \mathcal{F}_\tau$ as $k \uparrow \infty$.

The following proposition says that conditional expectations are continuous w.r.t. convergence of σ-fields. A proof can be found in, e.g., [Lach12, Prop. 4.12], [Chu74, Thm 9.4.8] or [Bil86, Thms 3.5.5 and 3.5.7].

Proposition 0.6 (Continuity in σ-field) Let X be a real random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\mathcal{F}_\infty, \mathcal{F}_k \subset \mathcal{F} (k \geq 0)$ be σ-fields. Assume that $\mathbb{E}[|X|] < \infty$ and $\mathcal{F}_k \uparrow \mathcal{F}_\infty$ or $\mathcal{F}_k \downarrow \mathcal{F}_\infty$. Then
\[\mathbb{E}[X \mid \mathcal{F}_k] \longrightarrow \mathbb{E}[X \mid \mathcal{F}_\infty] \quad \text{a.s. and in } L^1\text{-norm}. \]

Note that if $\mathcal{F}_k \uparrow \mathcal{F}$ and $\mathbb{E}[|X|] < \infty$, then $M_k := \mathbb{E}[X \mid \mathcal{F}_k]$ defines a martingale. Proposition 0.6 says that such a martingale always converges. Conversely, we would like to know for which martingales $(M_k)_{k \geq 0}$ there exists a final element X such that $M_k = \mathbb{E}[X \mid \mathcal{F}_k]$. This leads to the problem of martingale convergence. Since each submartingale is the sum of a martingale and a nondecreasing compensator and since nondecreasing functions always converge, we may more or less equivalently ask the same question for submartingales. For a proof of the following fact we refer to, e.g., [Lach12, Thm 4.1].

Proposition 0.7 (Submartingale convergence) Let $(M_k)_{k \in \mathbb{N}}$ be a submartingale such that $\sup_{n \geq 0} \mathbb{E}[M_k \vee 0] < \infty$. Then there exists a random variable M_∞ with $\mathbb{E}[|M_\infty|] < \infty$ such that
\[M_k \longrightarrow M_\infty \quad \text{a.s.} \]
In particular, this implies that nonnegative supermartingales converge almost surely. The same is not true for nonnegative submartingales: a counterexample is one-dimensional random walk reflected at the origin.

In general, even if \(M \) is a martingale, it need not be true that \(\mathbb{E}[M_\infty] \geq \mathbb{E}[M_0] \) (a counterexample is random walk stopped at the origin). We recall that a collection of random variables \((X_k)_{k \in I}\) is uniformly integrable if

\[
\lim_{n \to \infty} \sup_{k \in I} \mathbb{E}[|X_k|1_{\{|X_k| \geq n\}}] = 0.
\]

Sufficient\(^1\) for this is that \(\sup_{k \in I} \mathbb{E}[\psi(|X_k|)] < \infty \), where \(\psi : [0, \infty) \to [0, \infty) \) is nonnegative, increasing, convex, and satisfies \(\lim_{r \to \infty} \psi(r)/r = \infty \). Possible choices are for example \(\psi(r) = r^2 \) or \(\psi(r) = (1 + r) \log(1 + r) - r \). It is well-known that uniform integrability and a.s. convergence of a sequence of real random variables imply convergence in \(L_1 \)-norm. For submartingales, the following result is known [Lach12, Thm 4.8].

Proposition 0.8 (Final element) In addition to the assumptions of Proposition 0.7, assume that \((M_k)_{k \in \mathbb{N}}\) is uniformly integrable. Then

\[
\mathbb{E}[|M_k - M_\infty|] \to 0 \quad \text{a.s.}
\]

and \(\mathbb{E}[M_\infty|\mathcal{F}_k] \geq M_k \) for all \(k \geq 0 \). If \(M \) is a martingale, then \(\mathbb{E}[M_\infty|\mathcal{F}_k] = M_k \) for all \(k \geq 0 \).

Note that in particular, if \(M \) is a martingale, then Proposition 0.8 says that \(M_k = \mathbb{E}[M_\infty|\mathcal{F}_k] \), which shows that all information about the martingale \(M \) is hidden in its final element \(M_\infty \).

Combining Propositions 0.8 and 0.3, we see that if \(\tau \) is an \(\mathcal{F}_k \)-stopping time such that \(\tau < \infty \) a.s., \((M_k)_{k \in \mathbb{N}}\) is an \(\mathcal{F}_k \)-submartingale, and \((M_{k \wedge \tau})_{k \in \mathbb{N}}\) is uniformly integrable, then \(\mathbb{E}[M_\tau] = \lim_{k \to \infty} \mathbb{E}[M_{k \wedge \tau}] \geq M_0 \).

There also exist convergence results for ‘backward’ martingales \((M_k)_{k \in \{-\infty, \ldots, 0\}}\).

0.5 Markov chains

Proposition 0.9 (Markov property) Let \((E, \mathcal{E})\) be a measurable space, let \(I \subset \mathbb{Z} \) be an interval and let \((X_k)_{k \in I}\) be an \(E \)-valued stochastic process. For each \(n \in I \),

\(^1\)By the De la Valle-Poussin theorem, this condition is in fact also necessary.
set $I_n^- := \{ k \in I : k \leq n \}$ and $I_n^+ := \{ k \in I : k \geq n \}$, and let $\mathcal{F}_n^X := \sigma((X_k)_{k \in I_n^-})$ be the filtration generated by X. Then the following conditions are equivalent.

(i) $\mathbb{P}[(X_k)_{k \in I_n^-} \in A, (X_k)_{k \in I_n^+} \in B \mid X_n]$

 \[= \mathbb{P}[(X_k)_{k \in I_n^-} \in A \mid X_n] \mathbb{P}[(X_k)_{k \in I_n^+} \in B \mid X_n] \text{ a.s.}\]

 for all $A \in \mathcal{E}^{I_n^-}, B \in \mathcal{E}^{I_n^+}, n \in I$.

(ii) $\mathbb{P}[(X_k)_{k \in I_n^+} \in B \mid \mathcal{F}_n^X] = \mathbb{P}[(X_k)_{k \in I_n^+} \in B \mid X_n] \text{ a.s. for all } B \in \mathcal{E}^{I_n^+}, n \in I$.

(iii) $\mathbb{P}[X_{n+1} \in C \mid \mathcal{F}_n^X] = \mathbb{P}[X_{n+1} \in C \mid X_n] \text{ a.s. for all } C \in \mathcal{E}, \{n, n+1\} \subset I$.

Remarks Property (i) says that the past and future are conditionally independent given the present. Property (ii) says that the future depends on the past only through the present, i.e., after we condition on the present, conditioning on the whole past does not give any extra information. Property (iii) says that it suffices to check (ii) for single time steps.

Proof of Proposition 0.9 Set $\mathcal{G}_n^X := \sigma((X_k)_{k \in I_n^+})$. If (i) holds, then, for any $A \in \mathcal{F}_n^X$ and $B \in \mathcal{G}_n^X$, we have

\[
\mathbb{E}[1_A \mathbb{P}[B \mid X_n]] = \mathbb{E}[\mathbb{E}[1_A \mathbb{P}[B \mid X_n] \mid X_n]]
\]

\[
= \mathbb{E}[\mathbb{E}[1_A \mid X_n] \mathbb{P}[B \mid X_n]] = \mathbb{E}[\mathbb{P}[A \mid X_n] \mathbb{P}[B \mid X_n]]
\]

\[
= \mathbb{E}[\mathbb{P}[A \cap B \mid X_n]] = \mathbb{P}[A \cap B],
\]

where we have pulled the $\sigma(X_n)$-measurable random variable $\mathbb{P}[B \mid X_n]$ out of the conditional expectation. Since this holds for arbitrary $A \in \mathcal{F}_n^X$ and since $\mathbb{P}[B \mid X_n]$ is \mathcal{F}_n^X-measurable, it follows from the definition of conditional expectations that

\[
\mathbb{P}[B \mid \mathcal{F}_n^X] = \mathbb{P}[B \mid X_n],
\]

which is just another way of writing (ii). Conversely, if (ii) holds, then for any $C \in \sigma(X_n)$,

\[
\mathbb{E}[\mathbb{P}[A \mid X_n] \mathbb{P}[B \mid X_n] 1_C] = \mathbb{E}[\mathbb{P}[B \mid X_n] 1_C \mathbb{E}[1_A \mid X_n]]
\]

\[
= \mathbb{E}[\mathbb{E}[\mathbb{P}[B \mid X_n] 1_C 1_A \mid X_n]] = \mathbb{E}[1_{A \cap C} \mathbb{P}[B \mid \mathcal{F}_n^X]] = \mathbb{P}[A \cap B \cap C].
\]

Since this holds for any $C \in \sigma(X_n)$, it follows from the definition of conditional expectations that

\[
\mathbb{P}[A \cap B \mid X_n] = \mathbb{P}[A \mid X_n] \mathbb{P}[B \mid X_n] \text{ a.s.}
\]
To see that (iii) is sufficient for (ii), one first proves by induction that
\[P[X_{n+1} \in C_1, \ldots, X_{n+m} \in C_m | F_{n}] = P[X_{n+1} \in C_1, \ldots, X_{n+m} \in C_m | X_n], \]
and then uses that these sort events uniquely determine conditional probabilities of events in \(G_n \).

If a process \(X = (X_k)_{k \in I} \) satisfies the equivalent conditions of Proposition 0.9, then we say that \(X \) has the Markov property. For processes with countable state spaces, there is an easier formulation.

Proposition 0.10 (Markov chains) Let \(I \subset \mathbb{Z} \) be an interval and let \(X = (X_k)_{k \in I} \) be a stochastic process taking values in a countable space \(S \). Then \(X \) has the Markov property if and only if for each \(\{ k, k+1 \} \subset I \) there exists a probability kernel \(P_{k,k+1}(x,y) \) on \(S \) such that
\[
P[X_k = x_k, \ldots, X_{k+n} = x_{k+n}] = P[X_k = x_k] P_{k,k+1}(x_k, x_{k+1}) \cdots P_{k+n-1,k+n}(x_{k+n-1}, x_{k+n}) \tag{0.2} \]
for all \(\{ k, \ldots, k+n \} \subset I, x_k, \ldots, x_{k+n} \in S \).

Proof See, e.g., [LP11, Thm 2.1].

If \(I = \mathbb{N} \), then Proposition 0.10 shows that the finite dimensional distributions, and hence the whole law of a Markov chain \(X \) are defined by its initial law \(P[X_0 \in \cdot] \) and its transition probabilities \(P_{k,k+1}(x,y) \). If the initial law and transition probabilities are given, then it is easy to see that the probability laws defined by (0.2) are consistent, hence by the Daniell-Kolmogorov extension theorem, there exists a Markov chain \(X \), unique in distribution, with this initial law and transition probabilities.

We note that conversely, a Markov chain \(X \) determines its transition probabilities \(P_{k,k+1}(x,y) \) only for a.e. \(x \in S \) w.r.t. the law of \(X_k \). If it is possible to choose the transition kernels \(P_{k,k+1} \)'s in such a way that they do not depend on \(k \), then we say that the Markov chain is homogeneous. We are usually not interested in the problem to find \(P_{k,k+1} \) given \(X \), but typically we start with a given probability kernel \(P \) on \(S \) and are interested in all Markov chains that have \(P \) as their transition probability in each time step, and arbitrary initial law. Often, the word Markov chain is used in this more general sense. Thus, we often speak of ‘the Markov chain with state space \(S \) that jumps from \(x \) to \(y \) with probability…’ without specifying
the initial law. From now on, we use the convention that all Markov chains are homogeneous, unless explicitly stated otherwise. Moreover, if we don’t mention the initial law, then we mean the process started in an arbitrary initial law.

We note from Proposition 0.9 (i) that the Markov property is symmetric under time reversal, i.e., if \((X_k)_{k \in I}\) has the Markov property and \(I' := \{-k : k \in I\}\), then the process \(X' = (X'_k)_{k \in I'}\) defined by \(X'_k := X_{-k} (k \in I')\) also has the Markov property. It is usually not true, however, that \(X'\) is homogeneous if \(X\) is. An exception are stationary processes, which leads to the useful concept of reversible laws.

Exercise 0.11 (Stopped Markov chain) Let \(X = (X_k)_{k \geq 0}\) be a Markov chain with countable state space \(S\) and transition kernel \(P\), let \(A \subset S\) and let \(\tau_A := \inf\{k \geq 0 : X_k \in A\}\) be the first entrance time of \(A\). Let \(Y\) be the stopped process \(Y_k := X_{k \wedge \tau_A} (k \geq 0)\). Show that \(Y\) is a Markov chain and determine its transition kernel. If we replace \(\tau_A\) by the second entrance time of \(A\), is \(Y\) then still Markov?

By definition, a *random mapping representation* of a probability kernel \(P\) on a countable state space \(S\) is a probability space \((E, \mathcal{E}, \mu)\) together with a measurable function \(f : S \times E \to S\) such that if \(Z_1\) is a random variable taking values in \((E, \mathcal{E})\) with law \(\mu\), then

\[
P(x, y) = \mathbb{P}[f(x, Z_1) = y] \quad (x, y \in S).
\]

If \((Z_k)_{k \geq 1}\) are i.i.d. random variables with values in \((E, \mathcal{E})\) and common law \(\mu\) and \(X_0\) is a random variable taking values in \(S\), independent of the \((Z_k)_{k \geq 1}\), then setting, inductively,

\[
X_k := f(X_{k-1}, Z_k) \quad (k \geq 1)
\]

defines a Markov chain with transition kernel \(P\) and initial state \(X_0\). Random mapping representations are essential for simulating Markov chains on a computer. In addition, they have plenty of theoretical applications, for example for coupling Markov chains with different initial states. (See Section 1.3 for an introduction to coupling.) One can show that each probability kernel has a random mapping representation, but such a representation is far from unique. Often, the key to a good proof is choosing the right one.

We note that it is in general not true that functions of Markov chains are themselves Markov chains. An exception is the case when

\[
\mathbb{P}[f(X_{k+1}) \in \cdot | \mathcal{F}_k^X]
\]
depends only on \(f(X_k)\). In this case, we say that \(f(X)\) is an *autonomous* Markov chain.
Lemma 0.12 (Autonomous Markov functional) Let $X = (X_k)_{k \in I}$ be a Markov chain with countable state space S and transition kernel P. Let S' be a countable set and let $f : S \to S'$ be a function. Assume that there exists a probability kernel P' on S' such that

$$P'(x', y') = \sum_{y : f(y) = y'} P(x, y') \quad (x \in S, \ f(x) = x').$$

Then $f(X) := (f(X_k))_{k \in I}$ is a Markov chain with state space S' and transition kernel P'.

0.6 Kernels, operators and linear algebra

Let $X = (X_k)_{k \in I}$ be a stochastic process taking values in a countable space S, and let P be a probability kernel on S. Then it is not hard to see that X is a Markov process with transition kernel P (and arbitrary initial law) if and only if

$$\mathbb{P}[X_{k+1} = y \mid \mathcal{F}_k^X] = P(X_k, y) \quad \text{a.s.} \quad (y \in S, \ \{k, k+1\} \subset I),$$

where $(\mathcal{F}_k^X)_{k \in I}$ is the filtration generated by X. More generally, one has

$$\mathbb{P}[X_{k+n} = y \mid \mathcal{F}_k^X] = P^n(X_k, y) \quad \text{a.s.} \quad (y \in S, \ n \geq 0, \ \{k, k+n\} \subset I),$$

where P^n denotes the n-th power of the transition kernel P. Here, if K, L are probability kernels on S, then we define their product as

$$KL(x, z) := \sum_{y \in S} K(x, y)L(y, z) \quad (x, z \in S),$$

which is again a probability kernel on S. Then K^n is defined as the product of n times K with itself, where $K^0(x, y) := 1_{\{x=y\}}$. We may associate each probability kernel on S with a linear operator, acting on bounded real functions $f : S \to \mathbb{R}$, defined as

$$Kf(x) := \sum_{y \in S} K(x, y)f(y) \quad (x \in S).$$

Then KL is just the composition of the operators K and L, and for each bounded $f : S \to \mathbb{R}$, one has

$$\mathbb{E}[f(X_{k+n}) \mid \mathcal{F}_k^X] = P^n f(X_k) \quad \text{a.s.} \quad (n \geq 0, \ \{k, k+n\} \subset I), \quad (0.3)$$
and this formula holds more generally provided the expectations are well-defined (e.g., if $\mathbb{E}[|f(X_{k+n})|] < \infty$ or $f \geq 0$).

If μ is a probability measure on S and K is a probability kernel on S, then we may define a new probability measure μK on S by

$$\mu K(y) := \sum_{x \in S} \mu(x)K(x,y) \quad (y \in S).$$

In this notation, if X is a Markov process with transition kernel P and initial law $\mathbb{P}[X_0 \in \cdot] = \mu$, then $\mathbb{P}[X_n \in \cdot] = \mu P^n$ is its law at time n.

We may view transition kernels as (possibly infinite) matrices that act on row vectors μ or column vectors f by left and right multiplication, respectively.

0.7 Strong Markov property

We assume that the reader is familiar with some basic facts about Markov chains, as taught in the lecture [LP11]. In particular, this concerns the strong Markov property, which we formulate now.

Let $X = (X_k)_{k \geq 0}$ be a Markov chain with countable state space S and transition kernel P. As usual, it goes without saying that X is homogeneous (i.e., we use the same P in each time step) and when we don’t mention the initial law, we mean the process started in an arbitrary initial law. Often, it is notationally convenient to assume that our process X is always the same, while the dependence on the initial law is expressed in the choice of the probability measure on our underlying probability space.

More precisely, we assume that we have a measurable space (Ω, \mathcal{F}) and a collection $X = (X_k)_{k \geq 0}$ of measurable maps $X_k : \Omega \to S$, as well as a collection $(\mathbb{P}^x)_{x \in S}$ of probability measures on (Ω, \mathcal{F}), such that under the measure \mathbb{P}^x, the process X is a Markov chain with initial law $\mathbb{P}^x[X_0 = x] = 1$ and transition kernel P. In this set-up, if μ is any probability measure on S, then under the law $\mathbb{P} := \sum_{x \in S} \mu(x) \mathbb{P}^x$, the process X is distributed as a Markov chain with initial law μ and transition kernel P.

If $X, \mathbb{P}, \mathbb{P}^x$ are as just described and $(\mathcal{F}_k^X)_{k \geq 0}$ is the filtration generated by X, then it follows from Proposition 0.9 (ii) and homogeneity that

$$\mathbb{P}[(X_{n+k})_{k \geq 0} \in \cdot \bigg| \mathcal{F}_n^X] = \mathbb{P}^{X_n}[(X_{k})_{k \geq 0} \in \cdot] \quad \text{a.s.}$$

(0.4)
Here, for fixed \(n \geq 0 \), we consider \((X_{n+k})_{k \geq 0}\) as a random variable taking values in \(S^N \) (i.e., this is the process \(Y \) defined by \(Y_k := X_{n+k} \ (k \geq 0) \)). Since \(S^N \) is a nice (in particular Polish) space, we can choose a regular version of the conditional probability on the left-hand side of (0.4), i.e., this is a random probability measure on \(S^N \). Since \(X_n \) is random, the same is true for the right-hand side. In words, formula (0.4) says that given the process up to time \(n \), the process after time \(n \) is distributed as the process started in \(X_n \). The strong Markov property extends this to stopping times.

Proposition 0.13 (Strong Markov property) Let \(X, \mathbb{P}, \mathbb{P}^x \) be as defined above. Then, for any \(\mathcal{F}_k^X \)-stopping time \(\tau \) such that \(\tau < \infty \) a.s., one has

\[
\mathbb{P}\left[(X_{\tau+k})_{k \geq 0} \in \cdot \mid \mathcal{F}_\tau^X\right] = \mathbb{P}^{X_\tau}\left[(X_k)_{k \geq 0} \in \cdot\right] \quad \text{a.s.} \tag{0.5}
\]

Proof This follows from [LP11, Thm 2.3].

Remark 1 Even if \(\mathbb{P}[\tau = \infty] > 0 \), formula (0.5) still holds a.s. on the event \(\{\tau < \infty\} \).

Remark 2 Homogeneity is essential for the strong Markov property, at least in the (useful) formulation of (0.5).

Since this is closely related to formula (0.4), we also mention the following useful principle here.

Proposition 0.14 (What can happen must eventually happen) Let \(X = (X_k)_{k \geq 0} \) be a Markov chain with countable state space \(S \). Let \(B \subset S^N \) be measurable and set \(\rho(x) := \mathbb{P}^x[(X_k)_{k \geq 0} \in B] \). Then the event

\[
\{ (X_{n+k})_{k \geq 0} \in B \text{ for infinitely many } n \geq 0 \} \cup \{ \rho(X_n) \to 0 \}
\]

has probability one.

Proof Let \(\mathcal{A} \) denote the event that \((X_{n+k})_{k \geq 0} \in B \) for some \(n \geq 0 \). Then by Proposition 0.6

\[
\rho(X_n) = \mathbb{P}^{X_n}[(X_k)_{k \geq 0} \in B] = \mathbb{P}[(X_{n+k})_{k \geq 0} \in B \mid \mathcal{F}_n^X] \\
\leq \mathbb{P}[\mathcal{A} \mid \mathcal{F}_n^X] \xrightarrow{n \to \infty} \mathbb{P}[\mathcal{A} \mid \mathcal{F}_\infty^X] = 1_{\mathcal{A}} \quad \text{a.s.}
\]

In particular, this shows that \(\rho(X_n) \to 0 \) a.s. on the event \(\mathcal{A}^c \). Applying the same argument to \(\mathcal{A}_m := \{(X_{n+k})_{k \geq 0} \in B \text{ for some } n \geq m\} \), we see that the event \(\mathcal{A}_m \cup \{ \rho(X_n) \to 0 \} \) has probability one for each \(m \). Letting \(m \uparrow \infty \) and observing that \(\mathcal{A}_m \downarrow \{(X_{n+k})_{k \geq 0} \in B \text{ for infinitely many } n \geq 0\} \), the claim follows.
0.8 Classification of states

Let X be a Markov chain with countable state space S and transition kernel P. For each $x,y \in S$, we write $x \sim y$ if $P^n(x,y) > 0$ for some $n \geq 0$. Note that $x \sim y \sim z$ implies $x \sim z$. Two states x,y are called equivalent if $x \sim y$ and $y \sim x$. It is easy to see that this defines an equivalence relation on S. A Markov chain / transition kernel is called irreducible if all states are equivalent.

A state x is called recurrent if

$$\Pr^x[X_k = x \text{ for some } k \geq 1] = 1,$$

otherwise it is called transient. If two states are equivalent and one of them is recurrent (resp. transient), then so is the other. Fix $x \in S$, let $\tau_0 := 0$ and let

$$\tau_k := \inf\{n > \tau_{k-1} : X_n = x\} \quad (k \geq 1)$$

be the times of the k-th visit to x after time zero. Consider the process started in $X_0 = x$. If x is recurrent, then $\tau_1 < \infty$ a.s. It follows from the strong Markov property that $\tau_2 - \tau_1$ is equally distributed with and independent of τ_1. By induction, $(\tau_k - \tau_{k-1})_{k \geq 1}$ are i.i.d. In particular, $\tau_k < \infty$ for all $k \geq 1$, i.e., the process returns to x infinitely often.

On the other hand, if x is transient, then by the same sort of argument we see that the number $N_x = \sum_{k \geq 1} 1_{\{X_k = x\}}$ of returns to x is geometrically distributed

$$\Pr^x[N_x = n] = \theta^n(1 - \theta) \quad \text{where } \theta := \Pr^x[X_k = x \text{ for some } k \geq 1].$$

In particular, $\mathbb{E}^x[N_x] < \infty$ if and only if x is transient.

Lemma 0.15 (Recurrent classes are closed) Let X be a Markov chain with countable state space S and transition kernel P. Assume that $S' \subset S$ is an equivalence class of recurrent states. Then $P(x,y) = 0$ for all $x \in S'$, $y \in S \setminus S'$.

Proof Imagine that $P(x,y) > 0$ for some $x \in S'$, $y \in S \setminus S'$. Then, since S' is an equivalence class, $y \not\sim x$, i.e., the process cannot return from y to x. Since $P(x,y) > 0$, this shows that the process started in x has a positive probability never to return to x, a contradiction.

A state x is called positively recurrent if

$$\mathbb{E}^x[\inf\{n \geq 1 : X_n = x\}] < \infty.$$
Recurrent states that are not positively recurrent are called null recurrent. If two states are equivalent and one of them is positively recurrent (resp. null recurrent), then so is the other. From this, it is easy to see that a finite equivalence class of states can never be null recurrent.

The following lemma is an easy application of the principle ‘what can happen must happen’ (Proposition 0.14).

Lemma 0.16 (Finite state space) Let \(X = (X_k)_{k \geq 0} \) be a Markov chain with finite state space \(S \) and transition kernel \(P \). Let \(S_{\text{pos}} \) denote the set of all positively recurrent states. Then \(\mathbb{P}[X_k \in S_{\text{pos}} \text{ for some } k \geq 0] = 1 \).

By definition, the period of a state \(x \) is the greatest common divisor of \(\{n \geq 1 : P(x,x) > 0\} \). Equivalent states have the same period. States with period one are called aperiodic. If \(x \) is an aperiodic state, then there exists an \(m \geq 1 \) such that \(P^n(x,x) > 0 \) for all \(n \geq m \). Irreducible Markov chains are called aperiodic if one, and hence all states have period one. If \(X = (X_k)_{k \geq 0} \) is an irreducible Markov chain with period \(n \), then \(X'_n := X_{kn} \) for \(k \geq 0 \) defines an aperiodic Markov chain \(X' = (X'_k)_{k \geq 0} \).

The following example is of special importance.

Lemma 0.17 (Recurrence of one-dimensional random walk) The Markov chain \(X \) with state space \(\mathbb{Z} \) and transition kernel \(P(k,k-1) = P(k,k+1) = \frac{1}{2} \) is null recurrent.

Proof Note that this Markov chain is irreducible and has period two, as it takes value alternatively in the even and odd integers. Using Stirling’s formula, it is not hard to show that (see [LP11, Example 2.9])

\[
P^{2k}(0,0) \sim \frac{1}{\sqrt{\pi k}} \quad \text{as } k \to \infty.
\]

In particular, this shows that the expected number of returns to the origin \(\mathbb{E}^0[N_0] = \sum_{k=1}^{\infty} P^{2k}(0,0) \) is infinite, hence \(X \) is recurrent.

To prove that \(X \) is not positively recurrent, we jump a bit ahead. By Theorem 0.18 (a) and (b) below, an irreducible Markov chain is positively recurrent if and only if it has an invariant law. It is not hard to check that any invariant measure for \(X \) must be infinite, hence \(X \) has no invariant law, so it cannot be positively recurrent.

We will later see that, more generally, random walks on \(\mathbb{Z}^d \) are recurrent in dimensions \(d = 1, 2 \) and transient in dimensions \(d \geq 3 \).
0.9 Invariant laws

By definition, an invariant law for a Markov process with transition kernel P and countable state space S is a probability measure μ on S that is invariant under left-multiplication with P, i.e., $\mu P = \mu$, or, written out per coordinate,

$$\sum_{y \in S} \mu(y) P(y, x) = \mu(x) \quad (x \in S).$$

More generally, a (possibly infinite) measure μ on S satisfying this equation is called an invariant measure. A probability measure μ on S is an invariant law if and only if the process $(X_k)_{k \geq 0}$ started in the initial law $\mathbb{P}[X_0 \in \cdot] = \mu$ is (strictly) stationary. If μ is an invariant law, then there also exists a stationary process $X = (X_k)_{k \in \mathbb{Z}}$, unique in distribution, such that X is a Markov process with transition kernel P and $\mathbb{P}[X_k \in \cdot] = \mu$ for all $k \in \mathbb{Z}$ (including negative times).

A detailed proof of the following theorem can be found in [LP11, Thms 2.10 and 2.26].

Theorem 0.18 (Invariant laws) Let X be a Markov chain with countable state space S and transition kernel P. Then

(a) If μ is an invariant law and x is not positively recurrent, then $\mu(x) = 0$.

(b) If $S' \subset S$ is an equivalence class of positively recurrent states, then there exists a unique invariant law μ of X such that $\mu(x) > 0$ for all $x \in S'$ and $\mu(x) = 0$ for all $x \in S \setminus S'$.

(c) The invariant law μ from part (b) is given by

$$\mu(x) = \mathbb{E}^x \left[\inf \{ k \geq 1 : X_k = x \} \right]^{-1}. \quad (0.6)$$

Sketch of proof For any $x \in S$, define $\mu(x)$ as in (0.6), with $1/\infty := 0$. Since consecutive return times are i.i.d., it is not hard to prove that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \mathbb{P}^x[X_k = x] = \mu(x), \quad (0.7)$$

i.e., the process started in x spends a $\mu(x)$-fraction of its time in x. As a result, it is not hard to show that if x is transient or null-recurrent, then the process started
in any initial law satisfies $\mathbb{P}[X_n = x] \to 0$ for $n \to \infty$, hence no invariant law can give positive probability to such a state.

On the other hand, if $S' \subset S$ is an equivalence class of positively recurrent states, then one can check that (0.7) holds more generally for the process started in any initial law on S'. It follows that for any such process, the Césaro-limit

$$\mu = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \mathbb{P}[X_k \in \cdot]$$

exists and does not depend on the initial law. In particular, if we start in an invariant law, then this limit must be μ, which proves uniqueness. It is not hard to check that any such Césaro-limit must be an invariant law, from which we obtain existence.

Remark Using Lemma 0.15, it is not hard to prove that a general invariant law of the process is a convex combination of invariant laws that are concentrated on one equivalence class of positively recurrent states.

Theorem 0.19 (Convergence to invariant law) Let X be an irreducible positively recurrent Markov chain with invariant law μ. Then the process started in any initial law satisfies

$$\frac{1}{n} \sum_{k=0}^{n-1} \mathbb{P}[X_k = x] \xrightarrow{n \to \infty} \mu(x) \quad (x \in S).$$

If X is moreover aperiodic, then one also has that

$$\mathbb{P}[X_k = x] \xrightarrow{k \to \infty} \mu(x) \quad (x \in S).$$

On the other hand, if X is a Markov chain such that all states of X are transient or null recurrent, then the process started in any initial law satisfies

$$\mathbb{P}[X_k = x] \xrightarrow{k \to \infty} 0 \quad (x \in S).$$

Proof See [LP11, Thm 2.26].

If μ is an invariant law and $X = (X_k)_{k \in \mathbb{Z}}$ is a stationary process such that $\mathbb{P}[X_k \in \cdot] = \mu$ for all $k \in \mathbb{Z}$, then by the symmetry of the Markov property w.r.t. time reversal, the process $X' = (X'_k)_{k \in \mathbb{Z}}$ defined by $X'_k := X_{-k}$ ($k \in \mathbb{Z}$) is also a
Markov process. By stationarity, \(X' \) is moreover homogeneous, i.e., there exists a transition kernel \(P' \) such that the transition probabilities \(P'_{k,k+1} \) of \(X' \) satisfy \(P'(x,y) = P'_{k,k+1}(x,y) \) for a.e. \(x \) w.r.t. \(\mu \). In general, it will not be true that \(P' = P \). We say that \(\mu \) is a reversible law if \(\mu \) is invariant and in addition, the stationary processes \(X \) and \(X' \) are equal in law. One can check that this is equivalent to the detailed balance condition

\[
\mu(x)P(x,y) = P(x,y)\mu(y) \quad (x,y \in S),
\]

which says that the process \(X \) started in \(\mathbb{P}[X_0 \in \cdot] = \mu \) satisfies \(\mathbb{P}[X_0 = x, X_1 = y] = \mathbb{P}[X_0 = y, X_1 = x] \). More generally, a (possibly infinite) measure \(\mu \) on \(S \) satisfying detailed balance is called a reversible measure. If \(\mu \) is reversible measure and we define a (semi-) inner product of real functions \(f : S \to \mathbb{R} \) by

\[
\langle f, g \rangle_\mu := \sum_{x \in S} f(x)g(x)\mu(x),
\]

then \(P \) is self-adjoint w.r.t. this inner product:

\[
\langle f, P g \rangle_\mu = \langle P f, g \rangle_\mu.
\]
Chapter 1

Harmonic functions

1.1 (Sub-) harmonicity

Let \(X \) be a Markov chain with countable state space \(S \) and transition kernel \(P \). As we have seen, an invariant law of \(X \) is a vector that is invariant under left-multiplication with \(P \). Harmonic functions\(^1\) are functions that are invariant under right-multiplication with \(P \). More precisely, we will say that a function \(h : S \to \mathbb{R} \) is subharmonic for \(X \) if

\[
\sum_y P(x,y)|h(y)| < \infty \quad (x \in S),
\]

and

\[
h(x) \leq \sum_y P(x,y)h(y) \quad (x \in S).
\]

We say that \(h \) is superharmonic if \(-h\) is subharmonic, and harmonic if it is both subharmonic and superharmonic.

Lemma 1.1 (Harmonic functions and martingales) Assume that \(h \) is subharmonic for the Markov chain \(X = (X_k)_{k \geq 0} \) and that \(\mathbb{E}[|h(X_k)|] < \infty \) (\(k \geq 0 \)). Then \(M_k := h(X_k) \) (\(k \geq 0 \)) defines a submartingale \(M = (M(X_k))_{k \geq 0} \) w.r.t. to the filtration \((\mathcal{F}_k^X)_{k \geq 0} \) generated by \(X \).

\(^1\)Historically, the term harmonic function was first used, and is still commonly used, for a smooth function \(f : U \to \mathbb{R} \), defined on some open domain \(U \subset \mathbb{R}^d \), that solves the Laplace equation \(\sum_{i=1}^d \frac{\partial^2}{\partial x_i^2} f(x) = 0 \). This is basically the same as our definition, but with our Markov chain \(X \) replaced by Brownian motion \(B = (B_t)_{t \geq 0} \). Indeed, a smooth function \(f \) solves the Laplace equation if and only if \((f(B_t))_{t \geq 0} \) is a local martingale.
Proof This follows by writing (using (0.3)),
\[E[h(X_{k+1}) \mid \mathcal{F}_k^X] = \sum_y P(X_k, y) h(y) \geq h(X_k) \quad (k \geq 0).\]

We will say that a state \(x \) is an absorbing state or trap for a Markov chain \(X \) if \(P(x, x) = 1 \).

Lemma 1.2 (Trapping probability) Let \(X \) be a Markov chain with countable state space \(S \) and transition kernel \(P \), and let \(z \in S \) be a trap. Then the trapping probability
\[h(x) := P^x[X_k = z \text{ for some } k \geq 0] \]
is a harmonic function for \(X \).

Proof Since \(0 \leq h \leq 1 \), integrability is not an issue. Now
\[
h(x) = P^x[X_k = z \text{ for some } k \geq 0] \\
= \sum_y P^x[X_k = z \text{ for some } k \geq 0 \mid X_1 = y] P^y[X_1 = y] \\
= \sum_y P(x, y) P^y[X_k = z \text{ for some } k \geq 0] = \sum_y P(x, y) h(y).
\]

Lemma 1.3 (Trapping estimates) Let \(X \) be a Markov chain with countable state space \(S \) and transition kernel \(P \), and let \(T := \{ z \in S : z \text{ is a trap} \} \). Assume that the chain gets trapped a.s., i.e., \(P[\exists n \geq 0 \text{ s.t. } X_n \in T] = 1 \) (regardless of the initial law). Let \(z \in T \) and let \(h : S \to [0, 1] \) be a subharmonic function such that \(h(z) = 1 \) and \(h \equiv 0 \) on \(T \setminus \{z\} \). Then
\[h(x) \leq P^x[X_k = z \text{ for some } k \geq 0] \]
If \(h \) is superharmonic, then the same holds with the inequality sign reversed.

Proof Since \(h \) is subharmonic, \(M_k := h(X_k) \) is a submartingale. Since \(h \) is bounded, \(M \) is uniformly integrable. Therefore, by Propositions 0.7 and 0.8 \(M_k \to M_\infty \) a.s. and in \(L_1 \)-norm, where \(M_\infty \) is some random variable such that \(E^x[M_\infty] \geq M_0 = h(x) \). Since the chain gets trapped a.s., we have \(M_\infty = h(X_\tau) \),
1.1. (SUB-) HARMONICITY

where $\tau := \inf\{k \geq 0 : X_k \in T\}$ is the trapping time. Since $h(z) = 1$ and $h \equiv 0$ on $T \setminus \{z\}$, we have $M_\infty = 1_{\{X_\tau = z\}}$ and therefore $\mathbb{P}^x[X_\tau = z] = \mathbb{E}^x[M_\infty] \geq h(x)$. If h is superharmonic, the same holds with the inequality sign reversed.

Remark 1 If $S' \subset S$ is a ‘closed’ set in the sense that $\mathbb{P}(x,y) = 0$ for all $x \in S'$, $y \in S \setminus S'$, then define $\phi : S \to (S \setminus S') \cup \{\ast\}$ by $\phi(x) := \ast$ if $x \in S'$ and $\phi(x) := x$ if $x \in S \setminus S'$. Now $(\phi(X_k))_{k \geq 0}$ is a Markov chain that gets trapped in \ast if and only if the original chain enters the closed set S'. In this way, Lemma 1.3 can easily be generalized to Markov chains that eventually get ‘trapped’ in one of finitely many equivalence classes of recurrent states. In particular, this applies when S is finite.

Remark 2 Lemma 1.3 tells us in particular that, provided that the chain gets trapped a.s., the function h from Lemma 1.2 is the unique harmonic function satisfying $h(z) = 1$ and $h \equiv 0$ on $T \setminus \{z\}$. For a more general statement of this type, see Exercise 1.7 below.

Remark 3 Even in situations where it is not feasible to calculate trapping probabilities exactly, Lemma 1.3 can sometimes be used to derive lower and upper bounds for these trapping probabilities.

The following transformation is usually called an h-transform or Doob’s h-transform. Following [LPW09], we will simply call it a Doob transform.2

Lemma 1.4 (Doob transform) Let X be a Markov chain with countable state space S and transition kernel P, and let $h : S \to [0, \infty)$ be a nonnegative harmonic function. Then setting $S' := \{x \in S : h(x) > 0\}$ and

$$P^h(x,y) := \frac{P(x,y)h(y)}{h(x)} \quad (x,y \in S')$$

defines a transition kernel P^h on S'.

Proof Obviously $P^h(x,y) \geq 0$ for all $x,y \in S'$. Since

$$\sum_{y \in S'} P^h(x,y) = h(x)^{-1} \sum_{y \in S'} P(x,y)h(y) = h(x)^{-1}Ph(x) = 1 \quad (x \in S'),$$

P^h is a transition kernel.

2The term h-transform is somewhat inconvenient for several reasons. First of all, having mathematical symbols in names of chapters or articles causes all kinds of problems for referencing. Secondly, if one performs an h-transform with a function g, then should one speak of a g-transform or an h-transform? The situation becomes even more confusing when there are several functions around, one of which may be called h.

Proposition 1.5 (Conditioning on the future) Let $X = (X_k)_{k \geq 0}$ be a Markov chain with countable state space S and transition kernel P, and let $z \in S$ be a trap. Set $S' := \{ y \in S : y \sim z \}$ and assume that $\mathbb{P}[X_0 \in S'] > 0$. Then, under the conditional law
\[\mathbb{P}[(X_k)_{k \geq 0} \in \cdot | X_m = z \text{ for some } m \geq 0], \]
the process X is a Markov process in S' with Doob-transformed transition kernel P^h, where
\[h(x) := \mathbb{P}^x[X_m = z \text{ for some } m \geq 0] \]
satisfies $h(x) > 0$ if and only if $x \in S'$.

Proof Using the Markov property (in its strong form (0.4)), we observe that
\[\mathbb{P}[X_{n+1} = y \mid (X_k)_{0 \leq k \leq n} = (x_k)_{0 \leq k \leq n}, X_m = z \text{ for some } m \geq 0] \]
\[= \mathbb{P}[X_{n+1} = y, X_m = z \text{ for some } m \geq n + 1 \mid (X_k)_{0 \leq k \leq n} = (x_k)_{0 \leq k \leq n}, X_m = z] \]
\[= \frac{P(x_n, y)\mathbb{P}^y[X_m = z \mid (X_k)_{0 \leq k \leq n} = (x_k)_{0 \leq k \leq n}, X_m = z]}{\mathbb{P}^x[X_m = z \mid (X_k)_{0 \leq k \leq n} = (x_k)_{0 \leq k \leq n}, X_m = z]} = P^h(x_n, y) \]
for each $(x_k)_{0 \leq k \leq n}$ and y such that $\mathbb{P}[(X_k)_{0 \leq k \leq n} = (x_k)_{0 \leq k \leq n}] > 0$ and $x_n, y \in S'$.

Remark At first sight, it is surprising that conditioning on the future may preserve the Markov property. What is essential here is that being trapped in x is a tail event, i.e., an event measurable w.r.t. the tail-σ-algebra
\[T := \bigcap_{k \geq 0} \sigma(X_k, X_{k+1}, \ldots). \]
Similarly, if we condition a Markov chain $(X_k)_{0 \leq k \leq n}$ that is defined on finite time interval on its final state X_n, then under the conditional law, $(X_k)_{0 \leq k \leq n}$ is still Markov, although no longer homogeneous.

Exercise 1.6 (Sufficient conditions for integrability) Let $h : S \to \mathbb{R}$ be any function. Assume that $\mathbb{E}[|h(X_0)|] < \infty$ and there exists a constant $K < \infty$ such that $\sum_y P(x, y)|h(y)| \leq K|h(x)|$. Show that $\mathbb{E}[|h(X_k)|] < \infty$ $(k \geq 0)$.

Exercise 1.7 (Boundary conditions) Let X be a Markov chain with countable state space S and transition kernel P, and let $T := \{ z \in S : z \text{ is a trap} \}$. Assume
that the chain gets trapped a.s., i.e., $\mathbb{P}[\exists n \geq 0 \text{ s.t. } X_n \in T] = 1$ (regardless of the initial law). Show that for each real function $\phi : T \to \mathbb{R}$ there exists a unique bounded harmonic function $h : S \to \mathbb{R}$ such that $h = \phi$ on T. Hint: take $h(x) := \mathbb{E}[\phi(X_\tau)]$, where $\tau := \inf\{k \geq 0 : X_k \in T\}$ is the trapping time.

Exercise 1.8 (Conditions for getting trapped) If we do not know a priori that a Markov chain eventually gets trapped, then the following fact is often useful. Let X be a Markov chain with countable state space S and transition kernel P, and let $h : S \to [0,1]$ be a sub- or superharmonic function. Assume that for all $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$
\mathbb{P}^x[|h(X_1) - h(x)| \geq \delta] \geq \delta \quad \text{whenever } \varepsilon \leq h(x) \leq 1 - \varepsilon.
$$

Show that $\lim_{k \to \infty} h(X_k) \in \{0,1\}$ a.s. Hint: use martingale convergence to prove that $\lim_{k \to \infty} h(X_k)$ exists and use the principle ‘what can happen must happen’ (Proposition 0.14) to show that the limit cannot take values in $(0,1)$.

Exercise 1.9 (Trapping estimate) Let X, S, P and h be as in Exercise 1.8. Assume that h is a submartingale and there is a point $z \in S$ such that $h(z) = 1$ and $\sup_{x \in S \setminus \{z\}} h(x) < 1$. Show that

$$
h(x) \leq \mathbb{P}^x[X_k = z \text{ for some } k \geq 0].
$$

Exercise 1.10 (Compensator) Let $X = (X_k)_{k \geq 0}$ be a Markov chain with countable state space S and transition kernel P, and let $f : S \to \mathbb{R}$ be a function such that $\sum_y P(x,y)|f(y)| < \infty$ for all $x \in S$. Assume that, for some given initial law, the process X satisfies $\mathbb{E}||f(X_k)|| < \infty$ for all $k \geq 0$. Show that the compensator of $(f(X_k))_{k \geq 0}$ is given by

$$
K_n = \sum_{k=0}^{n-1} (P f(X_k) - f(X_k)) \quad (n \geq 0).
$$

Exercise 1.11 (Expected time till absorption: part 1) Let X be a Markov chain with countable state space S and transition kernel P, and let $T := \{z \in S : z \text{ is a trap}\}$. Let $\tau := \inf\{k \geq 0 : X_k \in T\}$ and assume that $\mathbb{E}^x[\tau] < \infty$ for all $x \in S$. Show that the function $f(x) := \mathbb{E}^x[\tau]$ satisfies $P f(x) - f(x) = -1$ ($x \in S \setminus T$) and $f \equiv 0$ on T.
Exercise 1.12 (Expected time till absorption: part 2) Let X be a Markov chain with countable state space S and transition kernel P, let $T := \{z \in S : z$ is a trap$\}$, and set $\tau := \inf\{k \geq 0 : X_k \in T\}$. Assume that $f : S \to [0,\infty)$ satisfies $Pf(x) - f(x) \leq -1 (x \in S \setminus T)$ and $f \equiv 0$ on T. Show that $\mathbb{E}_x[\tau] \leq f(x)$ $(x \in S)$.

Hint: show that the compensator K of $(f(X_k))_{k \geq 0}$ satisfies $K_n \leq -n \wedge \tau$.

Exercise 1.13 (Absorption of random walk) Consider a random walk $W = (W_k)_{k \geq 0}$ on \mathbb{Z} that jumps from x to $x + 1$ with probability p and to $x - 1$ with the remaining probability $q := 1 - p$, where $0 < p < 1$. Fix $n \geq 1$ and set $\tau := \inf\{k \geq 0 : W_k \in \{0, n\}\}$. Calculate, for each $0 \leq x \leq n$, the probability $\mathbb{P}[W_\tau = n]$.

Exercise 1.14 (First occurrence of a pattern: part 1)

Let $(X_k)_{k \geq 0}$ be i.i.d. Bernoulli random variables with $\mathbb{P}[X_k = 0] = \mathbb{P}[X_k = 1] = \frac{1}{2}$ $(k \geq 0)$. Set

$$\tau_{110} := \inf\{k \geq 0 : (X_k, X_{k+1}, X_{k+2}) = (1, 1, 0)\},$$

and define τ_{010} similarly. Calculate $\mathbb{P}[\tau_{010} < \tau_{110}]$.

Hint: Set $\tilde{X}_k := (X_k, X_{k+1}, X_{k+2}) (k \geq 0)$. Then $(\tilde{X}_k)_{k \geq 0}$ is a Markov chain with transition probabilities as in the picture on the right. Now the problem amounts to calculating the trapping probabilities for the chain stopped at $\tau_{010} \wedge \tau_{110}$.

Exercise 1.15 (First occurrence of a pattern: part 2) In the set-up of the previous exercise, calculate $\mathbb{E}[\tau_{110}]$ and $\mathbb{E}[\tau_{111}]$. Hints: you need to solve a system
of linear equations. To find the solution, it helps to use Theorem 0.18 (c) and the fact that the uniform distribution is an invariant law. In the case of τ_{111}, it also helps to observe that $E^x[\tau_{111}]$ depends only on the number of ones at the end of x.

\section{Random walk on a tree}

In this section, we study random walk on an infinite tree in which every vertex has three neighbors. Such random walks have many interesting properties. At present they are of interest to us because they have many different bounded harmonic functions. As we will see in the next section, the situation for random walks on \mathbb{Z}^d is quite different.

Let T_2 be an infinite tree, (i.e., a connected graph without cycles) in which each vertex has degree 3 (i.e., there are three edges incident to each vertex). We will be interested in the Markov chain whose state space are the vertices of T_2 and that jumps in each step with equal probabilities to one of the three neighboring sites.

We first need a convenient way to label vertices in such a tree. Consider a finitely generated group with generators a, b, c satisfying $a = a^{-1}$, $b = b^{-1}$ and $c = c^{-1}$. More formally, we can construct such a group as follows. Let G be the set of all finite sequences $x = x(1) \cdots x(n)$ where $n \geq 0$ (we allow for the empty sequence \emptyset), $x(i) \in \{a, b, c\}$ for all $1 \leq i \leq n$, and $x(i) \neq x(i+1)$ for all $1 \leq i \leq i+1 \leq n$.

We define a product on V by concatenation, where we apply the rule that any two a’s, b’s or c’s next to each other cancel each other, inductively, till we obtain an element of G. So, for example,

$$(abcb)(cab) = abacbcab, \quad (abcb)(bab) = abacbcb = abacab,$$

and $$ (abcb)(bcb) = abacbbcb = abaccb = abab. $$

With these rules, G is a group with unit element \emptyset, the empty sequence, and inverse $(x(1) \cdots x(n))^{-1} = x(n) \cdots x(1)$. Note that G is not abelian, i.e., the group product is not commutative.

We can make G into a graph by drawing an edge between two elements $x, y \in G$ if $x = ya$, $x = yb$, or $x = yc$. It is not hard to see that the resulting graph is an infinite tree in which each vertex has degree 3; see Figure 1.1. We let

\[\text{This is a special case of a much more general construction. Let } G \text{ be a finitely generated group and let } \Delta \subset G \text{ be a finite, symmetric (in the sense that } a \in \Delta \text{ implies } a^{-1} \in \Delta) \text{ set of elements that generates } G. \text{ Draw a vertex between two elements } a, b \in G \text{ if } a = cb \text{ for some} \]
$|x| = |x(1) \cdots x(n)| := |n|$ denote the length of an element $x \in G$. It is not hard to see that this is the same as the graph distance of x to the ‘origin’ \emptyset, i.e., the length of the shortest path connecting x to \emptyset.

Let $X = (X_k)_{k \geq 0}$ be the Markov chain with state space G and transition probabilities

$$P(x, xa) = P(x, xb) = P(x, xc) = \frac{1}{3} \quad (x \in G),$$

i.e., X jumps in each step to a uniformly chosen neighboring vertex in the graph. We call X the nearest neighbor random walk on G.

We observe that if X is such a random walk on G, then $|X| = (|X_k|)_{k \geq 0}$ is a

\[c \in \Delta\] (or equivalently, by the symmetry of Δ, if $b = c'a$ for some $c' \in \Delta$). The resulting graph is called the left Cayley graph associated with G and Δ. This is a very general method of making graphs with some sort of translation-invariant structure.
Markov chain with state space \mathbb{N} and transition probabilities given by

$$Q(n, n-1) := \frac{1}{3} \quad \text{and} \quad Q(n, n+1) := \frac{2}{3} \quad (n \geq 1),$$

and $Q(0,1) := 1$.

For each $x = x(1) \cdots x(n) \in G$, let us write $x(i) := \emptyset$ if $i > n$. The following lemma shows that the random walk X is transient and walks away to infinity in a well-defined ‘direction’.

Lemma 1.16 (Transience) Let X be the random walk on G described above, started in any initial law. Then there exists a random variable $X_\infty \in \{a, b, c\}^{\mathbb{N}_+}$ such that

$$\lim_{n \to \infty} X_n(i) = X_\infty(i) \quad \text{a.s.} \quad (i \in \mathbb{N}_+).$$

Proof We may compare $|X|$ to a random walk $Z = (Z_k)_{k \geq 0}$ on Z that jumps from n to $n-1$ or $n+1$ with probabilities $1/3$ and $2/3$, respectively. Such a random walk has independent increments, i.e., $(Z_k - Z_{k-1})_{k \geq 1}$ are i.i.d. random variables that take the values -1 and $+1$ with probabilities $1/3$ and $2/3$. Therefore, by the strong law of large numbers, $(Z_n - Z_0)/n \to 1/3$ a.s. and therefore $Z_n \to \infty$ a.s. In particular Z visits each state only finitely often, which shows that all states are transient. It follows that the process Z started in $Z_0 = 0$ has a positive probability of not returning to 0. Since $Z_n \to \infty$ a.s. and since $|X|$ has the same dynamics as Z as long as it is in \mathbb{N}_+, this shows that the process started in $X_0 = a$ satisfies

$$\mathbb{P}^a[|X_k| \geq 1 \ \forall k \geq 1] = \mathbb{P}^1[Z_k \geq 1 \ \forall k \geq 1] > 0.$$

This shows that a is a transient state for X. By irreducibility, all states are transient and $|X_k| \to \infty$ a.s., which is easily seen to imply the lemma. \hfill \blacksquare

We are now ready to prove the existence of a many bounded harmonic functions for the Markov chain X. Let

$$\partial G := \{ x \in \{a, b, c\}^{\mathbb{N}_+} : x(i) \neq x(i+1) \ \forall i \geq 1 \}.$$

Elements in ∂G correspond to different ways of walking to infinity. Note that ∂G is an uncountable set. In fact, if we identify elements of ∂G with points in $[0,1]$ written in base 3, then ∂G corresponds to a sort of Cantor set. We equip ∂G with the product-σ-field, which we denote by $\mathcal{B}(\partial G)$. (Indeed, one can check that this is the Borel-σ-field associated with the product topology.)
CHAPTER 1. HARMONIC FUNCTIONS

Proposition 1.17 (Bounded harmonic functions) Let \(\phi : \partial G \to \mathbb{R} \) be bounded and measurable, let \(X \) be the random walk on the tree \(G \) described above, and let \(X_\infty \) be as in Lemma 1.16. Then

\[
h(x) := \mathbb{E}^x[\phi(X_\infty)] \quad (x \in G)
\]

defines a bounded harmonic function for \(X \). Moreover, the process started in an arbitrary initial law satisfies

\[
h(X_n) \rightarrow_{n \to \infty} \phi(X_\infty) \text{ a.s.}
\]

Proof: It follows from the Markov property (in the form (0.4)) that

\[
h(x) = \mathbb{E}^x[\phi(X_\infty)] = \sum_y P(x, y) \mathbb{E}^y[\phi(X_\infty)] = \sum_y P(x, y) h(y) \quad (x \in G),
\]

which shows that \(h \) is harmonic. Since \(\|h\|_{\infty} \leq \|\phi\|_{\infty} \), the function \(h \) is bounded. Moreover, by (0.4) and Proposition 0.6,

\[
h(X_n) = \mathbb{E}^{X_n}[\phi(X_\infty)] = \mathbb{E}[\phi(X_\infty) \mid \mathcal{F}_n^X] \rightarrow_{n \to \infty} \mathbb{E}[\phi(X_\infty) \mid \mathcal{F}_\infty^X] = \phi(X_\infty) \text{ a.s.}
\]

For example, in Figure 1.2, we have drawn a few values of the harmonic function

\[
h(x) := \mathbb{P}^x[X_\infty(1) = a] \quad (x \in G).
\]

Although Proposition 1.17 proves that each bounded measurable function \(\phi \) on \(\partial G \) yields a bounded harmonic function for the process \(X \), we have not actually shown that different \(\phi \)'s yield different \(h \)'s.

Lemma 1.18 (Many bounded harmonics) Let \(\mu \) be the probability measure on \(\partial G \) defined by \(\mu := \mathbb{P}^\emptyset[X_\infty \in \cdot] \). Let \(\phi, \psi : \partial G \to \mathbb{R} \) be bounded and measurable and let

\[
h(x) := \mathbb{E}^x[\phi(X_\infty)] \quad \text{and} \quad g(x) := \mathbb{E}^x[\psi(X_\infty)] \quad (x \in G).
\]

Then \(h = g \) if and only if \(\phi = \psi \) a.s. w.r.t. \(\mu \).

Proof: Let us define more generally \(\mu_x = \mathbb{P}^x[X_\infty \in \cdot] \). Since

\[
\mu_x(A) = \sum_z P^n(x, z) \mathbb{P}^z[X_\infty \in \cdot] \leq P^n(x, y) \mu_y(A)
\]
1.2. RANDOM WALK ON A TREE

Figure 1.2: A bounded harmonic function

\((x, y \in G, \ n \geq 0, \ A \in B(\partial G))\) and \(P\) is irreducible, we see that \(\mu_x \ll \mu_y\) for all \(x, y \in G\), hence the measures \((\mu_x)_{x \in G}\) are all equivalent. Thus, if \(\phi = \psi\) a.s. w.r.t. \(\mu\), then they are a.s. equal w.r.t. to \(\mu_x\) for each \(x \in G\), and therefore

\[
h(x) = \int \phi \, d\mu_x = \int \psi \, d\mu_x = g(x) \quad (x \in G).
\]

On the other hand, if the set \(\{\phi \neq \psi\}\) has positive probability under \(\mu\), then by Proposition 1.17

\[
\mathbb{P}^0\left[\lim_{n \to \infty} h(X_n) \neq \lim_{n \to \infty} g(X_n) \right] > 0,
\]

which shows that there must exist \(x \in G\) with \(h(x) \neq g(x)\).

Exercise 1.19 (Escape probability) Let \(Z = (Z_k)_{k \geq 0}\) be the Markov chain with state space \(Z\) that jumps in each step from \(n\) to \(n - 1\) with probability 1/3 and to \(n + 1\) with probability 2/3. Calculate \(\mathbb{P}^1[Z_k \geq 1 \ \forall k \geq 0]\). Hint: find a suitable harmonic function for the process stopped at zero.
Exercise 1.20 (Independent increments) Let \((Y_k)_{k \geq 1}\) be i.i.d. and uniformly distributed on \(\{a, b, c\}\). Define \((X_n)_{n \geq 0}\) by the random group product (in the group \(G\))
\[
X_n := Y_1 \cdots Y_n \quad (n \geq 1),
\]
with \(X_0 := \emptyset\). Show that \(X\) is the Markov chain with transition kernel \(P\) as defined above.

1.3 Coupling

For any \(x = (x(1), \ldots, x(d)) \in \mathbb{Z}^d\), let \(|x|_1 := \sum_{i=1}^d |x(i)|\) denote the \('L_1\)-norm' of \(x\). Set \(\Delta := \{x \in \mathbb{Z}^d : |x|_1 = 1\}\). Let \((Y_k)_{k \geq 1}\) be i.i.d. and uniformly distributed on \(\Delta\) and let
\[
X_n := \sum_{k=1}^n Y_k \quad (n \geq 1),
\]
with \(X_0 := 0\). (Here we also use the symbol 0 to denote the origin \(0 = (0, \ldots, 0) \in \mathbb{Z}^d\).) Then, just as in Exercise 1.20, \(X\) is a Markov chain, that jumps in each time step from its present position \(x\) to a uniformly chosen position in \(x + \Delta = \{x + y : y \in \Delta\}\). We call \(X\) the symmetric nearest neighbor random walk on the integer lattice \(\mathbb{Z}^d\). Sometimes \(X\) is also called simple random walk.

Let \(P\) denote its transition kernel. We will be interested in bounded harmonic functions for \(P\). We will show that in contrast to the random walk on the tree, the random walk on the integer lattice has very few bounded harmonic functions. Indeed, all such functions are constant. We will prove this using coupling, which is a technique of much more general interest, with many applications.

Usually, when we talk about a random variable \(X\) (which may be the path of a process \(X = (X_k)_{k \geq 0}\)), we are not so much interested in the concrete probability space \((\Omega, \mathcal{F}, \mathbb{P})\) that \(X\) is defined on. Rather, all that we usually care about is the law \(\mathbb{P}[X \in \cdot]\) of \(X\). Likewise, when we have in mind two random variables \(X\) and \(Y\) (for example, one binomially and the other normally distributed, or \(X\) and \(Y\) may be two Markov chains with possibly different initial states or transition kernels), then we usually do not \textit{a priori} know what their joint distribution is, even if we know there individual distributions. A \textit{coupling} of two random variables \(X\) and \(Y\), in the most general sense of the word, is \textit{a way to construct} \(X\) \textit{and} \(Y\) \textit{together on one underlying probability space} \((\Omega, \mathcal{F}, \mathbb{P})\). More precisely, if \(X\) and \(Y\) are random variables defined on different underlying probability spaces, then a coupling of \(X\) and \(Y\) is a pair of random variables \((X', Y')\) defined on one
1.3. COUPLING

underlying probability space \((\Omega, \mathcal{F}, \mathbb{P})\), such that \(X'\) is equally distributed with \(X\) and \(Y'\) is equally distributed with \(Y\). Equivalently, since the laws of \(X\) and \(Y\) are all we really care about, we may say that a coupling of two probability laws \(\mu, \nu\) defined on measurable spaces \((E, \mathcal{E})\) and \((F, \mathcal{F})\), respectively, is a probability measure \(\rho\) on the product space \((E \times F, \mathcal{E} \otimes \mathcal{F})\) such that the first marginal of \(\rho\) is \(\mu\) and its second marginal is \(\nu\).

Obviously, a trivial way to couple any two random variables is to make them independent, but this is usually not what we are after. A typical coupling is designed to compare two random variables, for example by showing that they are close, or one is larger than the other. The next exercise gives a simple example.

Exercise 1.21 (Monotone coupling) Let \(X\) be uniformly distributed on \([0, \lambda]\) and let \(Y\) be exponentially distributed with mean \(\lambda > 0\). Show that \(X\) and \(Y\) can be coupled such that \(X \leq Y\) a.s. (Hint: note that this says that you have to construct a probability measure on \([0, \lambda] \times [0, \infty)\) that is concentrated on \(\{(x, y) : x \leq y\}\) and has the ‘right’ marginals.) Use your coupling to prove that \(\mathbb{E}[X^\alpha] \leq \mathbb{E}[Y^\alpha]\) for all \(\alpha > 0\).

Now let \(\Delta \subset \mathbb{Z}^d\) be as defined at the beginning of this section and let \(P\) be the transition kernel on \(\mathbb{Z}^d\) defined by

\[
P(x, y) := \frac{1}{2d} 1\{y - x \in \Delta\} \quad (x, y \in \mathbb{Z}^d).
\]

We are interested in bounded harmonic functions for \(P\), i.e., bounded functions \(h : \mathbb{Z}^d \to \mathbb{R}\) such that \(Ph = h\). It is somewhat inconvenient that \(P\) is periodic. In light of this, we define a ‘lazy’ modification of our transition kernel by

\[
P_{\text{lazy}}(x, y) := \frac{1}{2} P(x, y) + \frac{1}{2} 1\{x = y\}.
\]

Obviously, \(P_{\text{lazy}} f = \frac{1}{2} Pf + \frac{1}{2} f\), so a function \(h\) is harmonic for \(P\) if and only if it is harmonic for \(P_{\text{lazy}}\).

Proposition 1.22 (Coupling of lazy walks) Let \(X^x\) and \(X^y\) be two lazy random walks, i.e., Markov chains on \(\mathbb{Z}^d\) with transition kernel \(P_{\text{asy}}\), and initial states \(X^x_0 = x\) and \(X^y_0 = y\), \(x, y \in \mathbb{Z}^d\). Then \(X^x\) and \(X^y\) can be coupled such that

\[
\exists n \geq 0 \ s.t. \ X^x_k = X^y_k \ \forall k \geq n \ \text{a.s.}
\]

\(^4\)Indeed, the Markov chain with transition kernel \(P\) takes values alternatively in \(\mathbb{Z}^{d}_{\text{even}} := \{x \in \mathbb{Z}^d : \sum_{i=1}^d x(i) \text{ is even}\}\) and \(\mathbb{Z}^{d}_{\text{odd}} := \{x \in \mathbb{Z}^d : \sum_{i=1}^d x(i) \text{ is odd}\}\).
Proof We start by choosing a suitable random mapping representation. Let $(U_k)_{k \geq 1}$, $(I_k)_{k \geq 1}$, and $(W_k)_{k \geq 1}$ be collections of i.i.d. random variables, each collection independent of the others, such that for each $k \geq 1$, U_k is uniformly distributed on $\{0, 1\}$, I_k is uniformly distributed on $\{1, \ldots, d\}$, and W_k is uniformly distributed on $\{-1, +1\}$. Let $e_i \in \mathbb{Z}^d$ be defined as $e_i(j) := 1_{\{i=j\}}$. Then we may construct X^x inductively by setting $X^x_0 := x$ and

$$X^x_k = X^x_{k-1} + U_k W_k e_{I_k} \quad (k \geq 1).$$

Note that this says that U_k decides if we jump at all, I_k decides which coordinate jumps, and W_k decides whether up or down.

To construct also X^y on the same probability space, we define inductively $X^y_0 := y$ and

$$X^y_k = \begin{cases}
X^y_{k-1} + (1 - U_k) W_k e_{I_k} & \text{if } X^y_{k-1}(I_k) \neq X^x_{k-1}(I_k), \\
X^y_{k-1} + U_k W_k e_{I_k} & \text{if } X^y_{k-1}(I_k) = X^x_{k-1}(I_k),
\end{cases} \quad (k \geq 1).$$

Note that this says that X^x and X^y always select the same coordinate $I_k \in \{1, \ldots, d\}$ that is allowed to move. As long as X^x and X^y differ in this coordinate, they jump at different times, but after the first time they agree in this coordinate, they always increase or decrease this coordinate by the same amount at the same time. In particular, these rules ensure that

$$X^x_k(i) = X^y_k(i) \quad \text{for all } k \geq \tau_i := \inf\{n \geq 0 : X^x_n(i) = X^y_n(i)\}.$$

Since $(X^x_k, X^y_k)_{k \geq 0}$ is defined in terms of i.i.d. random variables $(U_k, I_k, W_k)_{k \geq 1}$ by a random mapping representation, the joint process (X^x, X^y) is clearly a Markov chain. We have already seen that X^x, on its own, is also a Markov chain, with the right transition kernel P_{lazy}. It is straightforward to check that $\mathbb{P}[X^y_k = z \mid (X^x_k, X^y_k)] = P_{\text{lazy}}(X^y_k, z)$ a.s. In particular, this transition probability depends only on X^y_k, hence by Lemma 0.12, X^y is an autonomous Markov chain with transition kernel P_{lazy}.

In view of this, our claim will follow provided we show that $\tau_i < \infty$ a.s. for each $i = 1, \ldots, d$. Fix i and define inductively $\sigma_0 := 0$ and

$$\sigma_k := \inf\{k > \sigma_{k-1} : I_k = i\}.$$

Consider the difference process

$$D_k := X^x_{\sigma_k} - X^y_{\sigma_k} \quad (k \geq 0).$$
Then \(D = (D_k)_{k \geq 0} \) is a Markov process on \(\mathbb{Z} \) that in each step jumps from \(z \) to \(z + 1 \) or \(z - 1 \) with equal probabilities, except when it is in zero, which is a trap. In other words, this says that \(D \) is a simple random walk stopped at the first time it hits zero. By Lemma [0.17] there a.s. exists some (random) \(k \geq 0 \) such that \(D_k = 0 \) and hence \(\tau_i = \sigma_k < \infty \) a.s.

As a corollary of Proposition [1.22], we obtain that all bounded harmonic functions for nearest-neighbor random walk on the \(d \)-dimensional integer lattice are constant.

Corollary 1.23 (Bounded harmonic functions are constant) Let \(P(x,y) = (2d)^{-1} 1_{\{|x-y|=1\}} \) be the transition kernel of nearest-neighbor random walk on the \(d \)-dimensional integer lattice \(\mathbb{Z}^d \). If \(h : \mathbb{Z}^d \to \mathbb{R} \) is bounded and satisfies \(Ph = h \), then \(h \) is constant.

Proof Couple \(X^x \) and \(X^y \) as in Proposition [1.22]. Since \(h \) is harmonic and bounded, \((h(X^x_k))_{k \geq 0} \) and \((h(X^y_k))_{k \geq 0} \) are martingales. It follows that

\[
\begin{align*}
h(x) - h(y) &= \mathbb{E}[h(X^x_k)] - \mathbb{E}[h(X^y_k)] \\
&= \mathbb{E}[h(X^x_k) - h(X^y_k)] \leq 2\|h\|_{\infty} \mathbb{P}[X^x_k \neq X^y_k] \\
& \xrightarrow{k \to \infty} 0
\end{align*}
\]

for each \(x, y \in \mathbb{Z}^d \), proving that \(h \) is constant.

Remark Actually, a much stronger statement than Corollary [1.23] is true: for nearest-neighbor random walk on \(\mathbb{Z}^d \), all nonnegative harmonic functions are constant. This is called the strong Liouville property, see [Woe00, Corollary 25.5]. In general, the problem of finding all positive harmonic functions for a Markov chain leads to the (rather difficult) problem of determining the *Martin boundary* of a Markov chain.

1.4 Convergence in total variation norm

In this section we turn our attention away from harmonic functions and instead show another application of coupling. We will use coupling to give a proof of the statement in Theorem [0.19] (stated without proof in the Introduction) that any aperiodic, irreducible, positively recurrent Markov chain is ergodic, in the sense that regardless of the initial state, its law at time \(n \) converges to the invariant law as \(n \to \infty \).
Recall that the total variation distance between two probability measures \(\mu, \nu \) on a countable set \(S \) is defined as

\[
\|\mu - \nu\|_{TV} := \max_{A \subset S} |\mu(A) - \nu(A)|
\]

The following lemma gives another formula for \(\| \cdot \|_{TV} \).

Lemma 1.24 (Total variation distance) For any probability measures \(\mu, \nu \) on a countable set \(S \), one has

\[
\|\mu - \nu\|_{TV} = \sum_{x : \mu(x) \geq \nu(x)} (\mu(x) - \nu(x)) + \sum_{x : \mu(x) < \nu(x)} (\nu(x) - \mu(x)) = \sum_{x \in S} |\mu(x) - \nu(x)|.
\]

Proof Set \(S_+ := \{ x \in S : \mu(x) > \nu(x) \} \), \(S_0 := \{ x \in S : \mu(x) = \nu(x) \} \), and \(S_- := \{ x \in S : \mu(x) < \nu(x) \} \). Define a finite measure \(\rho \) by \(\rho(x) := |\mu(x) - \nu(x)| \). Then

\[
\mu(A) - \nu(A) = \rho(A \cap S_+) - \rho(A \cap S_-).
\]

It follows that

\[
-\rho(S_-) \leq \mu(A) - \nu(A) \leq \rho(S_+)
\]

where either inequality may be an equality for a suitable choice of \(A \) (\(A = S_- \) or \(A = S_+ \), respectively). Here

\[
\rho(S_+) - \rho(S_-) = \sum_{x \in S} (\mu(x) - \nu(x)) = 1 - 1 = 0,
\]

so

\[
\sum_{x : \mu(x) \geq \nu(x)} (\mu(x) - \nu(x)) = \rho(S_+) = \rho(S_-) = \sum_{x : \mu(x) < \nu(x)} (\nu(x) - \mu(x)).
\]

Theorem 1.25 (Convergence to invariant law) Let \(X \) be an irreducible, aperiodic, positively recurrent Markov chain with transition kernel \(P \), state space \(S \), and invariant law \(\mu \). Then the process started in any initial law satisfies

\[
\left\| \mathbb{P}[X_n \in \cdot] - \mu \right\|_{TV} \xrightarrow{n \to \infty} 0.
\]
Proof We take the existence of an invariant law μ as proven. Uniqueness will follow from our proof. Let X and \overline{X} be two independent Markov chains with transition kernel P, where X is started in an arbitrary initial law and $\mathbb{P}[\overline{X}_0 \in \cdot] = \mu$. It is easy to see that the joint process $(X, \overline{X}) = (X_k, \overline{X}_k)_{k \geq 0}$ is a Markov process with state space $S \times S$. Let is denote its transition kernel by P_2, i.e., by independence,

$$P_2((x, \overline{x}), (y, \overline{y})) = P(x, y)P(\overline{x}, \overline{y}) \quad (x, \overline{x}, y, \overline{y} \in S).$$

We claim that P_2 is irreducible. Fix $x, \overline{x}, y, \overline{y} \in S$. Since P is irreducible and aperiodic, it is not hard to see that there exists an $m_1 \geq 1$ such that $P^n(x, y) > 0$ for all $n \geq m_1$. Likewise, there exists an $m_2 \geq 1$ such that $P^n(\overline{x}, \overline{y}) > 0$ for all $n \geq m_2$. Choosing $n \geq m_1 \lor m_2$, we see that

$$P_2^n((x, \overline{x}), (y, \overline{y})) = P^n(x, y)P^n(\overline{x}, \overline{y}) > 0,$$

proving that P_2 is irreducible.

By Theorem 0.18 (a) and (b), an irreducible Markov chain is positively recurrent if and only if it has an invariant law. Obviously, the product measure $\mu \otimes \mu$ is an invariant law for P_2, so P_2 is positively recurrent. In particular, this proves that the stopping time

$$\tau := \inf\{k \geq 0 : X_k = \overline{X}_k\}$$

is a.s. finite and has, in fact, finite expectation. Let $X' = (X'_k)_{k \geq 0}$ be the process defined by

$$X'_k := \begin{cases} X_k & \text{if } k < \tau, \\ \overline{X}_k & \text{if } k \geq \tau. \end{cases}$$

It is not hard to see that X' is a Markov chain with transition kernel P and initial law $\mathbb{P}[X'_0 \in \cdot] = \mathbb{P}[X_0 \in \cdot]$, hence X' is equal in law with X. Now

$$\|\mathbb{P}[X_n \in \cdot] - \mu\|_{TV} = \sup_{A \subseteq S} |\mathbb{P}[X'_n \in A] - \mu(A)| = \sup_{A \subseteq S} |\mathbb{P}[X'_k \in A] - \mathbb{P}[\overline{X}_k \in A]|$$

$$= \sup_{A \subseteq S} \mathbb{P}
\left[
X'_k \in A, \overline{X}_k \not\in A \text{ or } X_k \not\in A, \overline{X}_k \in A
\right]$$

$$\leq \mathbb{P}[X'_k \neq \overline{X}_k] = \mathbb{P}[k < \tau] \xrightarrow{k \to \infty} 0.$$

Exercise 1.26 (Periodic kernels) Show that the probability kernel P_2 in the proof of Theorem 1.25 is not irreducible if P is periodic.
Chapter 2

Eigenvalues

2.1 The Perron-Frobenius theorem

In this section, we recall the classical Perron-Frobenius theorem about the leading eigenvalue and eigenvector of a nonnegative matrix. This theorem is usually viewed as a part of linear algebra and proved in that context. We will see that the theorem has close connections with Markov chains and some of its statements can even be proved by probabilistic methods.

Let S be a finite set ($S = \{1, \ldots, n\}$ in the traditional formulation of the Perron-Frobenius theorem) and let $A : S \times S \to \mathbb{C}$ be a function. We view such functions as matrices, equipped with the usual matrix product, or, equivalently, we identify A with the linear operator $A : \mathbb{C}^S \to \mathbb{C}^S$ given by $Af(x) := \sum_{y \in S} A(x,y)f(y)$, where, \mathbb{C}^S denotes the linear space consisting of all functions $f : S \to \mathbb{C}$. We say that A is real if $A(x,y) \in \mathbb{R}$, and nonnegative if $A(x,y) \geq 0$, for all $x,y \in S$.

Note that probability kernels are nonnegative matrices. A nonnegative matrix A is called irreducible if for each $x,y \in S$ there exists an $n \geq 1$ such that $A^n(x,y) > 0$. For probability kernels, this coincides with our earlier definition of irreducibility.

We let $\text{spec}(A)$ denote the spectrum of A, i.e., the collection of (possibly complex) eigenvalues of A, and we let $\rho(A)$ denote its spectral radius

$$\rho(A) := \sup\{ |\lambda| : \lambda \in \text{spec}(A) \}.$$

If $\| \cdot \|$ is any norm on \mathbb{C}^S, then we define the associated operator norm $\|A\|$ of A as

$$\|A\| := \sup\{ \|Af\| : f \in \mathbb{C}^S, \|f\| = 1 \}.$$
It is well-known that for any such operator norm
\[\rho(A) = \lim_{n \to \infty} \frac{\|A^n\|^{1/n}}{n}. \] (2.1)

The following version of the Perron-Frobenius theorem can be found in [Gan00, Section 8.3] (see also, e.g., [Sen73, Chapter 1]). In this section, we will give our own proof, with a distinctly probabilistic flavor, of this theorem and the remark below it.

Theorem 2.1 (Perron-Frobenius) Let \(S \) be a finite set and let \(A : \mathbb{C}^S \to \mathbb{C}^S \) be a linear operator whose matrix is nonnegative and irreducible. Then

(i) There exist an \(f : S \to [0, \infty) \), unique up to multiplication by a positive constant, and a unique \(\alpha \in \mathbb{R} \) such that \(Af = \alpha f \) and \(f \) is not identically zero.

(ii) \(f(x) > 0 \) for all \(x \in S \).

(iii) \(\alpha = \rho(A) > 0 \).

(iv) The algebraic multiplicity of \(\alpha \) is one. In particular, if \(A \) is written in its Jordan normal form, then \(\alpha \) corresponds to a block of size \(1 \times 1 \).

Remark We define periodicity for nonnegative matrices in the same way as for probability kernels. If \(A \) is moreover aperiodic, then there exists some \(n \geq 1 \) such that \(A^n(x, y) > 0 \) for all \(x, y \in S \) (i.e., the same \(n \) works for all \(x, y \)). Now Perron’s theorem [Gan00, Section 8.2] implies that all other eigenvalues \(\lambda \) of \(A \) satisfy \(|\lambda| < \alpha \). If \(A \) is not aperiodic, then it is easy to see that this statement fails in general. (This is stated incorrectly in [DZ98, Thm 3.1.1 (b)].)

We call the constant \(\alpha \) and function \(f \) from Theorem 2.1 the **Perron-Frobenius eigenvalue** and **eigenfunction** of \(A \), respectively. We note that if \(A^\dagger(x, y) := A(y, x) \) denotes the transpose of \(A \), then \(A^\dagger \) is also nonnegative and irreducible. It is well-known that the spectra of a matrix and its transpose agree: \(\text{spec}(A) = \text{spec}(A^\dagger) \), and therefore also \(\rho(A) = \rho(A^\dagger) \), which implies that the Perron-Frobenius eigenvalues of \(A \) and \(A^\dagger \) are the same. The same is usually not true for the corresponding Perron-Frobenius eigenvectors. We call eigenvectors of \(A \) and \(A^\dagger \) also **right** and **left eigenvectors**, respectively, and write \(\phi A := A^\dagger \phi \), consistent with earlier notation for probability kernels.
2.2 Subadditivity

By definition, a function $f : \mathbb{N}_+ \to \mathbb{R}$ is subadditive if

$$f(n + m) \leq f(n) + f(m) \quad (n, m \geq 1).$$

The following simple lemma has many applications. Proofs can be found in many places, e.g. [Lig99, Thm B.22].

Lemma 2.2 (Fekete’s lemma) If $f : \mathbb{N}_+ \to \mathbb{R}$ is subadditive, then the limit

$$\lim_{n \to \infty} \frac{1}{n} f(n) = \inf_{n \geq 1} \frac{1}{n} f(n)$$

exists in $[-\infty, \infty)$.

Proof Note that we can always extend f to a subadditive function $f : \mathbb{N} \to \mathbb{R}$ by setting $f(0) = 0$. Fix $m \geq 1$ and for each $n \geq 0$ write $n = k_m(n) m + r_m(n)$ where $k_m(n) \geq 0$ and $0 \leq r_m(n) < m$, i.e., $k_m(n)$ is n/m rounded off to below and $r_m(n)$ is the remainder. Setting $s_m := \sup_{1 \leq r < m} f(r)$, we see that

$$\frac{f(n)}{n} = \frac{f(k_m(n)m + r_m(n))}{k_m(n)m + r_m(n)} \leq \frac{k_m(n)f(m) + s_m}{k_m(n)m} \to \frac{f(m)}{m},$$

which proves that

$$\limsup_{n \to \infty} \frac{f(n)}{n} \leq \frac{f(m)}{m} \quad (m \geq 1).$$

Taking the infimum over m we conclude that

$$\limsup_{n \to \infty} \frac{f(n)}{n} \leq \inf_{m \geq 1} \frac{f(m)}{m}.$$

This shows in particular that the limit superior is less or equal than the limit inferior, hence the limit exists. Moreover, the limit (which equals the limit superior) is given by the infimum. Since f takes values in \mathbb{R}, the infimum is clearly less than $+\infty$.
2.3 Spectral radius

Let \(S \) be a finite set and let \(\mathcal{L}(\mathbb{C}^S, \mathbb{C}^S) \) denote the space of all linear operators \(A : \mathbb{C}^S \to \mathbb{C}^S \). Let \(\| \cdot \| \) be any norm on \(\mathbb{C}^S \) and let \(\| A \| \) denote the associated operator norm of an operator \(A \in \mathcal{L}(\mathbb{C}^S, \mathbb{C}^S) \). Then obviously
\[
\| Af \| = \| A(f/\| f \|) \| \| f \| \leq \| A \| \| f \| \quad (f \in \mathbb{C}^S),
\]
where the inequality between the left- and right-hand sides holds also for \(f = 0 \) even though in this case the intermediate steps are not defined. It follows that
\[
\| ABf \| \leq \| A \| \| B \| \| f \|, \quad (A, B \in \mathcal{L}(\mathbb{C}^S, \mathbb{C}^S)).
\]
(2.2)

Exercise 2.3 (Operator norm induced by supremum norm) If \(\| \cdot \|_{\infty} \) denotes the supremum norm on \(\mathbb{C}^S \), then show that the associated operator norm on \(\mathcal{L}(\mathbb{C}^S, \mathbb{C}^S) \) is given by
\[
\| A \|_{\infty} = \sup_{x \in S} \sum_{y \in S} |A(x, y)|.
\]

Lemma 2.4 (Spectral radius) For each operator \(A \in \mathcal{L}(\mathbb{C}^S, \mathbb{C}^S) \), the limit
\[
\rho(A) := \lim_{n \to \infty} \| A^n \|^{1/n}
\]
exists in \([0, \infty)\). For each \(\varepsilon > 0 \) there exists a \(C_\varepsilon < \infty \) such that
\[
\rho(A)^n \leq \| A^n \| \leq C_\varepsilon (\rho(A) + \varepsilon)^n \quad (n \geq 0).
\]
(2.3)

Proof It follows from (2.2) that \(\| A^{n+m} \| \leq \| A^n \| \| A^m \| \). In other words, this says that the function \(n \mapsto \log \| A^n \| \) is subadditive. By Lemma 2.2, it follows that the limit
\[
\lim_{n \to \infty} \frac{1}{n} \log \| A^n \| = \inf_{n \geq 1} \frac{1}{n} \log \| A^n \|
\]
exists in \([0, \infty)\). Applying the exponential function to both sides of this equation, we see that the limit
\[
\rho(A) := \lim_{n \to \infty} \| A^n \|^{1/n} = \inf_{n \geq 1} \| A^n \|^{1/n}
\]
exists in $[0, \infty)$. In particular, this shows that $\rho(A) \leq \|A^n\|^{1/n}$ ($n \geq 1$) and for each $\epsilon > 0$ there exists an $N \geq 0$ such that

$$\|A^n\|^{1/n} \leq \rho(A) + \epsilon \quad (n \geq N).$$

Raising both sides of our inequalities to the n-th power and choosing

$$C_\epsilon := 1 \vee \sup_{0 \leq n < N} \|A^n\|((\rho(A) + \epsilon)^{-n}$$

yields the desired statement (where we observe that $\rho(A)^0 = 1 = \|1\| = \|A^0\|$). □

Exercise 2.5 (Choice of the norm) Show that the limit $\rho(A)$ from Lemma 2.4 does not depend on the choice of the norm on \mathbb{C}^S. Hint: you can use the fact that on a finite-dimensional space, all norms are equivalent. In particular, if $\| \cdot \|$ and $\| \cdot \|'$ are two different norms on the space $L(\mathbb{C}^S, \mathbb{C}^S)$, then there exist constants $0 < c < C < \infty$ such that $c\|A\| \leq \|A\|' \leq C\|A\|$ for all $A \in L(\mathbb{C}^S, \mathbb{C}^S)$.

2.4 Existence of the leading eigenvector

Let A be a nonnegative real matrix with coordinates indexed by a finite set S. The Perron-Frobenius theorem tells us that if A is irreducible, then A has a unique nonnegative eigenvector with eigenvalue $\rho(A)$. In this section, we will prove the existence of such an eigenvector.

Lemma 2.6 (Existence of eigenvector) Let S be a finite set, let $A : \mathbb{C}^S \to \mathbb{C}^S$ be a linear operator whose matrix is nonnegative, and let $\rho(A)$ be its spectral radius as defined in Lemma 2.4. Then there exists a function $h : S \to [0, \infty)$ that is not identically zero such that $Ah = \rho(A)h$.

Proof We will treat the cases $\rho(A) = 0$ and $\rho(A) > 0$ separately. We start with the latter. In this case, for each $z \in [0, 1/\rho(A))$, let us define a function $f_z : S \to [0, \infty)$ by

$$f_z := \sum_{n=0}^{\infty} z^n A^n 1,$$

where 1 denotes the function on S that is identically one. Note that for each $z < 1/\rho(A)$, this sequence is absolutely summable in any norm on \mathbb{C}^S by (2.3). It follows that

$$Af_z = \sum_{n=0}^{\infty} z^n A^{n+1} 1 = z^{-1}f_z - 1 \quad (0 < z < \rho(A)^{-1}). \quad (2.4)$$
By Exercise 2.3 and the nonnegativity of \(A \) (and hence of \(A^n \) for any \(n \geq 0 \)),

\[
\|A^n1\|_\infty = \sup_{x \in S} \sum_{y \in S} A^n(x, y) = \|A^n\|_\infty.
\]

Let \(\|f\|_1 := \sum_{x \in S} |f(x)| \) denote the \(\ell_1 \)-norm of a function \(f : S \to \mathbb{C} \). Then, by nonnegativity and (2.3)

\[
\|f_z\|_1 = \sum_{n=0}^{\infty} z^n \|A^n1\|_1 \geq \sum_{n=0}^{\infty} z^n \|A^n\|_\infty \geq \sum_{n=0}^{\infty} z^n \rho(A)^n.
\] (2.5)

Let \(h(z) := f_z / \|f_z\|_1 \). Since \(h(z) \) takes values in the compact set \([0, 1]^S\), we can choose \(z_n \uparrow \rho(A)^{-1} \) such that \(h(z_n) \to h \) where \(h \) is a nonnegative function \(h \) with \(\|h\|_1 = 1 \).

By (2.4), \(\|f_z\|_1 \to \infty \) as \(z \uparrow \rho(A)^{-1} \), so letting \(n \to \infty \) we obtain a nonnegative function \(h \) such that \(Ah = \rho(A)h \) and \(\|h\|_1 = 1 \).

We are left with the case \(\rho(A) = 0 \). We will show that this implies \(A^n = 0 \) for some \(n \geq 1 \). Indeed, by the finiteness of the state space, if \(A^{|S|} \neq 0 \), then by nonnegativity there must exist \(x_0, \ldots, x_n \in S \) with \(x_0 = x_n \) and \(A(x_{k-1}, x_k) > 0 \) for each \(k = 1, \ldots, n \). But then \(A^{nm}(x_0, x_0) \geq \eta^m \) where \(\eta := \prod_{k=1}^{n} A(x_{k-1}, x_k) > 0 \), which is easily seen to imply that \(\rho(A) \geq \eta^{1/m} > 0 \). Thus, we see that \(\rho(A) = 0 \) implies \(A^n = 0 \) for some \(n \). Let \(m := \inf\{n \geq 1 : A^n1 = 0\} \). Then \(h := A^{m-1}1 \neq 0 \) while \(Ah = 0 = \rho(A)h \).

2.5 Uniqueness of the leading eigenvector

In the previous section, we have shown that each nonnegative matrix \(A \) has a nonnegative eigenvector with eigenvalue \(\rho(A) \). In this section, we will show that if \(A \) is irreducible, then such an eigenvector is unique. We will use probabilistic methods. Our proof will be based on the following observation.

Lemma 2.7 (Generalized Doob transform) Let \(S \) be a finite set and let \(A : \mathbb{C}^S \to \mathbb{C}^S \) be a linear operator whose matrix is nonnegative. Assume that \(h : S \to [0, \infty) \) is not identically zero, \(\alpha > 0 \), and \(Ah = \alpha h \). Then setting \(S' := \{x \in S : h(x) > 0\} \) and

\[
A^h(x, y) := \frac{A(x, y)h(y)}{\alpha h(x)} \quad (x, y \in S')
\]

defines a transition kernel \(A^h \) on \(S' \).
2.5. **UNIQUENESS OF THE LEADING EIGENVECTOR**

Proof Obviously \(A^h(x, y) \geq 0 \) for all \(x, y \in S' \). Since

\[
\sum_{y \in S'} A^h(x, y) = (\alpha h(x))^{-1} \sum_{y \in S'} A(x, y)h(y) = (\alpha h(x))^{-1} Ah(x) = 1 \quad (x \in S'),
\]

\(A^h \) is a transition kernel. \(\blacksquare \)

We need one more preparatory lemma.

Lemma 2.8 (Eigenfunctions of positively recurrent chains) Let \(P \) be a probability kernel on a finite or countably infinite space \(S \). Assume that the Markov chain \(X \) with transition kernel \(P \) is irreducible and positively recurrent. Let \(f : S \to (0, \infty) \) be a bounded function and let \(\alpha > 0 \) be a constant. Assume that \(Pf = \alpha f \). Then \(\alpha = 1 \) and \(f \) is constant.

Proof Since \(P \) is irreducible and positively recurrent, by Theorem 0.18(b), it has a unique invariant law \(\mu \), which satisfies \(\mu(x) > 0 \) for all \(x \in S \). Now \(\mu f = \mu Pf = \mu \alpha f \) which by the fact that \(f > 0 \) proves that \(\alpha = 1 \) and hence \(f \) is harmonic. Let \(X \) denote the Markov chain with transition kernel \(P \), let \(P^x \) denote the law of the chain started in \(X_0 = x \), and let \(E^x \) denote expectation w.r.t. \(P^x \). Let \(\delta_x \) denotes the delta measure in \(x \), i.e., the probability measure on \(S \) such that \(\delta_x(\{y\}) := 1_{\{x=y\}} \). Then

\[
f(x) = \frac{1}{n} \sum_{k=0}^{n-1} P^k f(x) = \left(\frac{1}{n} \sum_{k=0}^{n-1} \delta_x P^k \right) f = \frac{1}{n} \sum_{k=0}^{n-1} E^x[f(X_k)] \to \mu f \quad (x \in S),
\]

where in the last step we have used Theorem 0.19. In particular, since the limit does not depend on \(x \), the function \(f \) is constant. \(\blacksquare \)

We can now prove parts (i)–(iii) of the Perron-Frobenius theorem.

Proposition 2.9 (Perron-Frobenius) Let \(S \) be a finite set and let \(A : S \to S \) be a linear operator whose matrix is nonnegative and irreducible. Then

(i) There exist an \(f : S \to [0, \infty) \), unique up to multiplication by a positive constant, and a unique \(\alpha \in \mathbb{R} \) such that \(Af = \alpha f \) and \(f \) is not identically zero.

(ii) \(f(x) > 0 \) for all \(x \in S \).

(iii) \(\alpha = \rho(A) > 0 \).
CHAPTER 2. EIGENVALUES

Proof Assume that \(f : S \to [0, \infty) \) is not identically zero and satisfies \(Af = \alpha f \) for some \(\alpha \in \mathbb{R} \). Since \(f \) is nonnegative and not identically zero, we can choose \(x \in S \) such that \(f(x) > 0 \). Since \(A \) is nonnegative, \(Af(x) \geq 0 \) and therefore \(\alpha \geq 0 \). In fact, since \(A \) is irreducible, we can choose some \(n \geq 1 \) such that \(A^n f(x) > 0 \), so we must have \(\alpha > 0 \). Moreover, by irreducibility, for each \(y \in S \) there is an \(m \) such that \(A^m(y, x) > 0 \), and hence \(A^m f(y) > 0 \), which shows that \(f(y) > 0 \) for all \(y \in S \).

Now let \(h : S \to [0, \infty) \) and \(\beta \in \mathbb{R} \) be another function and real constant such that \(h \) is not identically zero and \(Ah = \beta h \). We will show that this implies \(f = \alpha h \) for some \(\alpha > 0 \). In particular, choosing \(h \) as in Lemma 2.6, this then implies the statements of the proposition.

By what we have already proved, \(\beta > 0 \) and \(h(y) > 0 \) for all \(y \in S \). Let \(A^h \) be the probability kernel on \(S' = S \) (since \(h > 0 \) everywhere) defined in Lemma 2.7. Note that \(A^h \) is irreducible since \(A \) is and since \(h > 0 \) everywhere. Set \(g := f/h \). We observe that

\[
A^h g(x) = \sum_{y \in S} \frac{A(x, y)h(y)f(y)}{\beta h(x) h(y)} = \frac{Af(x)}{\beta h(x)} = \frac{\alpha}{\beta} g(x).
\]

Since \(A^h \) is positively recurrent by the finiteness of the state space, Lemma 2.8 implies that \(\alpha/\beta = 1 \) and \(g(x) = c (x \in S) \) for some \(c > 0 \).

2.6 The Jordan normal form

In this section, we recall some facts from linear algebra. Let \(V \) be a finite-dimensional linear vector space over the complex numbers and let \(\mathcal{L}(V, V) \) denote the space of linear operators \(A : V \to V \). If \(\{e_1, \ldots, e_d\} \) is a basis for \(V \), then each vector \(\phi \in V \) can in a unique way be written as

\[
\phi = \sum_{i=1}^{d} \phi(i)e_i,
\]

where the \(\phi(i) \) are complex numbers, the coordinates of \(\phi \) with respect to the basis \(\{e_1, \ldots, e_d\} \). There exist complex numbers \(A(i, j) \) such that for any \(\phi \in V \), the coordinates of \(A\phi \) are given by

\[
A\phi(i) = \sum_{j=1}^{d} A(i, j)\phi(j) \quad (i = 1, \ldots, d).
\]
2.6. THE JORDAN NORMAL FORM

We call $(A(i,j))_{1 \leq i,j \leq d}$ the matrix of A w.r.t. basis $\{e_1, \ldots, e_d\}$. We warn the reader that whether a matrix is nonnegative (i.e., whether its entries $A(x,y)$ are all nonnegative) very much depends on the choice of the basis.\footnote{The statement that the matrix of a linear operator A is nonnegative should not be confused with the statement that A is nonnegative definite. The latter concept, which is defined only for linear spaces that are equipped with an inner product $\langle \phi, \psi \rangle$, means that $\langle \phi, A\phi \rangle$ is real and nonnegative for all ϕ. One can show that A is nonnegative definite if and only if there exists an orthonormal basis of eigenvectors of A and all eigenvalues are nonnegative. Operators whose matrix is nonnegative w.r.t. some basis, by contrast, need not be diagonalizable and their eigenvalues can be negative or even complex.}

The spectrum of A is the set of eigenvalues of A, i.e.,

$$\text{spec}(A) := \{ \lambda \in \mathbb{C} : \exists \phi \neq 0 \in V \text{ s.t. } A\phi = \lambda \phi \}.$$

The function $\mathbb{C} \ni z \mapsto p_A(z)$ defined by

$$p_A(z) := \det(A - z)$$

is the characteristic polynomial of A. We may write

$$p_A(z) = \prod_{i=1}^{n} (\lambda_i - z)^{m_a(\lambda_i)},$$

where $\text{spec}(A) = \{\lambda_1, \ldots, \lambda_n\}$, with $\lambda_1, \ldots, \lambda_n$ all different, and $m_a(\lambda)$ is the algebraic multiplicity of the eigenvalue λ. We need to distinguish the algebraic multiplicity of an eigenvalue λ from its geometric multiplicity $m_g(\lambda)$, which is the dimension of the corresponding eigenspace $\{\phi \in V : A\phi = \lambda \phi\}$. By definition, $\phi \in V$ is a generalized eigenvector of A with eigenvalue λ if $(A - \lambda)^k \phi = 0$ for some $k \geq 1$. Then the algebraic multiplicity $m_a(\lambda)$ of λ is the dimension of the generalized eigenspace $\{\phi \in V : (A - \lambda)^k \phi = 0 \text{ for some } k \geq 1\}$. Note that $m_g(\lambda) \leq m_a(\lambda)$.

It is possible to find a basis $\{e_1, \ldots, e_d\}$ such that the matrix of A w.r.t. this basis has the Jordan normal form, i.e., the matrix of A has the block diagonal form

$$A = \begin{pmatrix} B_1 & & \\ & \ddots & \\ & & B_d \end{pmatrix}, \quad \text{with} \quad B_k = \begin{pmatrix} \lambda_k & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_k \end{pmatrix}.$$

We can read off both the algebraic and geometric multiplicity of an eigenvalue λ from the Jordan normal form of A. Indeed, $m_a(\lambda)$ is simply the number of times
\(\lambda \) occurs on the diagonal, while \(m_g(\lambda) \) is the number of blocks having \(\lambda \) on the diagonal. Note that

\[
\begin{pmatrix}
\lambda & 1 \\
\vdots & \ddots \\
0 & \ddots & 1 \\
& & \ddots & \ddots & 1 \\
& & & & & \ddots & \ddots & \ddots & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 \\
0 \\
\vdots \\
0 \\
\end{pmatrix}
=
\begin{pmatrix}
\lambda \\
0 \\
\vdots \\
0 \\
\end{pmatrix}.
\]

Each block in the Jordan normal form of \(A \) corresponds to an invariant subspace of generalized eigenvectors that contains exactly one eigenvector of \(A \). The subspaces corresponding to all blocks with a given eigenvalue span the generalized eigenspace corresponding to this eigenvalue. To give a concrete example: if \(A \) has the Jordan normal form

\[
\begin{pmatrix}
\lambda_1 & 1 \\
& \lambda_1 & 1 \\
& & \ddots & \ddots \\
& & & \ddots & \ddots & 1 \\
& & & & & \ddots & \ddots & \ddots & \ddots & \ddots & 1 \\
\end{pmatrix}
\]

then the eigenspace and generalized eigenspace corresponding to the eigenvalue \(\lambda_1 \) consist of all vectors of the forms

\[
\begin{pmatrix}
\phi(1) \\
0 \\
\phi(4) \\
0 \\
0 \\
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
\phi(1) \\
\phi(2) \\
\phi(3) \\
\phi(4) \\
\phi(5) \\
0 \\
0 \\
0 \\
\end{pmatrix}
\]

respectively.

Recall that in Lemma 2.4, we defined \(\rho(A) \) as \(\rho(A) := \lim_{n \to \infty} \|A^n\|^{1/n} \). The next lemma relates \(\rho(A) \) to the spectrum of \(A \). This fact is well-known, but for completeness we include a proof in Appendix A.1.

Lemma 2.10 (Gelfand’s formula) Fix any norm on \(V \) and let \(\|A\| \) denote the associated operator norm of an operator \(A \in \mathcal{L}(V,V) \). Let \(\rho(A) \) be defined as in
Lemma 2.4. Then

\[\rho(A) = \sup \{ |\lambda| : \lambda \in \text{spec}(A) \} \quad (A \in \mathcal{L}(V, V)). \]

2.7 The spectrum of a nonnegative matrix

We note that in the proof of Proposition 2.9 which contains the main conclusions of the Perron Frobenius theorem, we have used very little linear algebra. In fact, we have not even very often used the fact that our state space \(S \) is finite. We used the finiteness of \(S \) several times in the proof of Lemma 2.6 (existence of the leading eigenvalue), for example when we used that \(\|1\|_1 < \infty \) or when we used that any sequence of functions that is bounded in \(\ell_1 \)-norm has a convergent subsequence. Later, in the proof of Proposition 2.9 we needed the finiteness of \(S \) when we used that any irreducible transition kernel is positively recurrent. In both of these places, our arguments can sometimes be replaced by more ad hoc calculations to show that certain infinite dimensional nonnegative matrices also have a Perron-Frobenius eigenvector that is unique up to a multiplicative constant, in a suitable space of functions.

In the present section, we will use the finiteness of \(S \) in a more essential way to prove the missing part (iv) of Theorem 2.1, as well as the remark below it. In particular, we will use that each finite-dimensional square matrix can be brought in its Jordan normal form.

Lemma 2.11 (Spectrum and Doob transform) Let \(S \) be a finite set and let \(A : \mathbb{C}^S \rightarrow \mathbb{C}^S \) be a linear operator whose matrix is nonnegative. Assume that \(h : S \rightarrow (0, \infty) \) and \(\alpha > 0 \) satisfy \(Ah = \alpha h \), and let \(A^h \) be the probability kernel defined in Lemma 2.7. Then \(A^h \) is irreducible, resp. aperiodic if and only if \(A \) has these properties. Moreover, a function \(f : S \rightarrow \mathbb{C} \) is an eigenvector, resp. generalized eigenvector of \(A \) corresponding to some eigenvalue \(\lambda \in \mathbb{C} \) if and only if \(f/h \) is an eigenvector, resp. generalized eigenvector of \(A^h \) corresponding to the eigenvalue \(\lambda/\alpha \).

Proof Let us use the symbol \(h \) to denote the linear operator on \(\mathbb{C}^S \) that maps a function \(f \) into \(hf \). Similarly, let \(h^{-1} \) denote pointwise multiplication with the function \(1/h(x) \). Then Lemma 2.7 says that \(A^h = \alpha^{-1} h^{-1} Ah \). Recall that \(f \) is an eigenvector, resp. generalized eigenvector of \(A \) corresponding to the eigenvalue \(\lambda \) if and only if \((A - \lambda)f = 0\), resp. \((A - \lambda)^k f = 0\) for some \(k \geq 1 \). Now
\[
A^h - \lambda/\alpha = \alpha^{-1}h^{-1}Ah - \alpha^{-1}h^{-1}\lambda h = \alpha^{-1}h^{-1}(A - \lambda)h \quad \text{and therefore}
\]

\[
(A^h - \lambda/\alpha)^k = \underbrace{\alpha^{-1}h^{-1}(A - \lambda)h \cdots \alpha^{-1}h^{-1}(A - \lambda)h}_k = \alpha^{-k}h^{-1}(A - \lambda)^k h.
\]

It follows that \((A^h - \lambda/\alpha)(f/h) = \alpha^{-1}h^{-1}(A - \lambda)f\) is zero if and only if \((A - \lambda)f = 0\) and more generally \((A^h - \lambda/\alpha)^k(f/h) = \alpha^{-k}h^{-1}(A - \lambda)^k f\) is zero if and only if \((A - \lambda)^k f = 0\).

Exercise 2.12 (Non-diagonalizable kernel) Give an example of a probability kernel \(P\) that is not diagonalizable. Hint: It is easy to give an example of a nonnegative matrix that is not diagonalizable. Now apply Lemma 2.11.

Remark Regarding the exercise above: I do not know how to give an example such that \(P\) is irreducible.

Proposition 2.13 (Spectrum of a nonnegative matrix) Let \(S\) be a finite set, let \(A : \mathbb{C}^S \to \mathbb{C}^S\) be a linear operator whose matrix is nonnegative and irreducible, and let \(\alpha = \rho(A)\) be its Perron-Frobenius eigenvalue. Then the algebraic multiplicity of \(\alpha\) is one. If \(A\) is moreover aperiodic, then all other eigenvalues \(\lambda\) of \(A\) satisfy \(|\lambda| < \alpha\).

Proof By Lemma 2.11 it suffices to prove the proposition for the case that \(A\) is a probability kernel. Writing \(P\) instead of \(A\) to remind us of this fact, we first observe that since the constant function 1 is nonnegative and satisfies \(P1 = 1\), by Proposition 2.9 this is the Perron-Frobenius eigenfunction of \(P\) and its eigenvalue is 1. In particular, \(\alpha = \rho(P) = 1\).

Let \(\mu\) be the unique invariant law of \(P\), which satisfies \(\mu(x) > 0\) for all \(x \in S\).\(^2\) Set \(V := \{f \in \mathbb{C}^S : \mu f = 0\}\). Since \(f \in V\) implies \(\mu Pf = \mu f = 0\), we see that \(P\) maps the space \(V\) into itself, i.e., \(V\) is an invariant subspace of \(P\). Note that for any \(f \in \mathbb{C}^S\), we have \(f - (\mu f)1 \in V\). We observe that for any \(f \in \mathbb{C}^S\), \(f - (\mu f)1 \in V\). In fact, since \(f - c1 \notin V\) for all \(c \neq \mu f\), each function in \(\mathbb{C}^S\) can in a unique way be written as a linear combination of a function in \(V\) and the constant function 1, i.e., the space \(V\) has codimension one.

Let \(P|_V\) denote the restriction of the linear operator \(P\) to the space \(V\). We claim that 1 is not an eigenvalue of \(P|_V\). To prove this, imagine that \(f \in V\) satisfies

\(^2\)Note that, actually, \(\mu\) is the left Perron-Frobenius eigenvector of \(P\).
2.8. CONVERGENCE TO EQUILIBRIUM

\(Pf = f \). Then, by the reasoning in Lemma 2.8

\[
f(x) = \frac{1}{n} \sum_{k=0}^{n-1} P^k f(x) \xrightarrow[n \to \infty]{\text{}} \mu f = 0 \quad (x \in S).
\]

If \(P \) is aperiodic, a stronger conclusion can be drawn. In this case, if \(0 \neq f \in V \) satisfies \(Pf = \lambda f \) for some \(\lambda \in \mathbb{C} \), then by Theorem 0.19,

\[
\lambda^n f(x) = P^n f(x) = \delta_x P^n f = \mathbb{E}^x [f(X_n)] \xrightarrow[n \to \infty]{\text{}} \mu f = 0 \quad (x \in S),
\]

which is possible only if \(|\lambda| < 1\).

Now imagine that \(f \in \mathcal{C}^S \) (not necessarily \(f \in V \)) is a generalized eigenvector of \(P \) corresponding to some \(\lambda \), i.e., \((P - \lambda)^k f = 0 \). Then we may write \(f \) in a unique way as \(f = g + c1 \) where \(g \in V \) and \(c \in \mathbb{C} \). Now \(0 = (P - \lambda)^k f = (P - \lambda)^k g + c(1 - \lambda)^k 1 \), where \((P - \lambda)^k g \in V \) by the fact that \(V \) is an invariant subspace. Since each function in \(\mathcal{C}^S \) can in a unique way be written as a linear combination of a function in \(V \) and the constant function \(1 \), this implies that both \((P - \lambda)^k g = 0 \) and \(c(1 - \lambda)^k 1 = 0 \). We now distinguish two cases.

If \(\lambda = 1 \), then since we have just proved that \(1 \notin \text{spec}(P|_V) \), the operator \(P|_V \) has no generalized eigenvectors corresponding to the eigenvalue \(\lambda \), and hence \(g = 0 \). This shows that the constant function \(1 \) is (up to constant multiples) the only generalized eigenvector of \(P \) corresponding to the eigenvalue \(1 \), i.e., the algebraic multiplicity of the eigenvalue \(1 \) is 1.

If \(\lambda \neq 1 \), then we must have \(c = 0 \) and hence \(f \in V \). In this case, if \(P \) is aperiodic, then by what we have just proved we must have \(|\lambda| < 1\).

Exercise 2.14 (Periodic kernel) Let \(P \) be the probability kernel on \(\{0, \ldots, n-1\} \) defined by

\[
P(x, y) = 1\{y = x \mod(n)\} \quad (0 \leq x, y < n).
\]

Show that \(P \) is irreducible but not aperiodic. Determine the spectrum of \(P \).

2.8 Convergence to equilibrium

Now that the Perron Frobenius theorem is proved, we can start to reap some of its useful consequences. The next proposition says that for irreducible, aperiodic Markov chains with finite state space, convergence to the invariant law always happens exponentially fast.
CHAPTER 2. EIGENVALUES

Proposition 2.15 (Exponential convergence to equilibrium) Let S be a finite set and let P be an irreducible, aperiodic probability kernel on S. Then the Perron-Frobenius eigenvalue of P is $\rho(P) = 1$ and its associated eigenvector is the constant function 1. Set

$$\gamma := \sup \{|\lambda| : \lambda \in \text{spec}(P), \lambda \neq 1\},$$

and let μ denote the unique invariant law of P. Then $\gamma < 1$ and for any norm on \mathbb{C}^S and $\varepsilon > 0$, there exists a constant $C_\varepsilon < \infty$ such that

$$\|P^n f - (\mu f)1\| \leq C_\varepsilon (\gamma + \varepsilon)^n \|f - (\mu f)1\| \quad (n \geq 0, f \in \mathbb{C}^S).$$

Proof Obviously $P1 = 1$ and 1 is a positive function, so by Proposition 2.9, this is the Perron-Frobenius eigenfunction of P and its eigenvalue is 1. As in the proof of Proposition 2.13, we set $V := \{f \in \mathbb{C}^S : \mu f = 0\}$. We observe that V is an invariant subspace of P and $f - (\mu f)1 \in V$ for all $f \in \mathbb{C}^S$. Let $P|_V$ denote the restriction of the linear operator P to V.

By Lemma 2.4, for any norm on \mathbb{C}^S and its associated operator norm, and for any $\varepsilon > 0$, there exists a $C_\varepsilon < \infty$ such that for any $f \in \mathbb{C}^S$,

$$\|P^n f - (\mu f)1\| = \|P^n (f - (\mu f)1)\| \leq \|P^n|_V\| \|f - (\mu f)\| \leq C_\varepsilon (\rho(P|_V) + \varepsilon)^n \|f - (\mu f)\|.$$

As we have seen near the end of the proof of Proposition 2.13, if f is an eigenvector of P corresponding to an eigenvalue $\lambda \neq 1$, then we must have $f \in V$. By Proposition 2.13, the algebraic multiplicity of 1 is 1, hence $1 \not\in \text{spec}(P|_V)$. It follows that

$$\text{spec}(P) \setminus \{1\} = \text{spec}(P|_V),$$

and therefore $\gamma = \rho(P|_V)$. By Proposition 2.13, all eigenvalues $\lambda \neq 1$ of P satisfy $|\lambda| < 1$, hence $\gamma < 1$.

Remark If γ is as in Proposition 2.13, then the positive quantity $1 - \gamma$ is called the absolute spectral gap of the operator P. If $X = (X_k)_{k \geq 0}$ denotes the Markov chain with transition kernel P, then Proposition 2.15 says that the expectation $\mathbb{E}^x[f(X_n)]$ of any function f at time n converges to its equilibrium value μf exponentially fast:

$$|\mathbb{E}^x[f(X_n)] - \mu f| \leq C_\varepsilon e^{-\eta n}, \quad \text{where} \quad \eta = \log(1 - \gamma).$$

Here C_ε can even be chosen uniformly in x (if we take $\|\cdot\|$ to be the supremum-norm).
2.9 Conditioning to stay inside a set

Let X be a Markov chain with countable state space S and transition kernel P, and let $S' \subset S$ be a finite set of states such that

- $P(x,y) > 0$ for some $x \in S, y \not\in S$, i.e., it is possible leave S'.
- The restriction of P to S' is irreducible, i.e., it is possible to go from any state x in S' to any other state $y \in S'$ without leaving S'.

We will be interested in the process X started in any initial state in S' and conditioned not to leave S' till time n, in the limit that $n \to \infty$. Obviously, our assumptions imply that starting from anywhere in S', there is a positive probability to leave S' at some time in the future. Since S' is finite, this probability is uniformly bounded from below, so by the principle ‘what can happen must happen’ (Proposition 0.14), we have that

$$
P[X_k \in S' \forall k \geq 0] = 0.
$$

Let $P' := P|_{S'}$ denote the restriction of P to S', i.e., the matrix $(P(x,y))_{x,y \in S'}$ and its associated linear operator acting on $\mathbb{C}^{S'}$. Since P' is nonnegative and irreducible, it has a unique Perron-Frobenius eigenvalue α and associated left and right eigenfunctions η and h, unique up to multiplicative constants, i.e., η and h are strictly positive functions on S' such that

$$
\eta P' = \alpha \eta \quad \text{and} \quad P'h = \alpha h.
$$

We choose our normalization of η and h such that

$$
\pi(x) := \eta(x)h(x) \quad (x \in S')
$$

is a probability measure on S'. It turns out that π is the invariant law of the Doob transformed probability kernel $(P')^h$ defined as in Lemma 2.7.

Lemma 2.16 (Invariant law of Doob transformed kernel) Let S' be a finite set and let $A : \mathbb{C}^{S'} \to \mathbb{C}^{S'}$ be linear operator whose matrix is irreducible and nonnegative. Let α, η and h be its Perron-Frobenius eigenvalue and left and right eigenvectors, respectively, normalized such that $\pi(x) := \eta(x)h(x) \ (x \in S')$ is a probability law on S'. Then π is the invariant law of the probability kernel A^h defined in Lemma 2.7.
CHAPTER 2. EIGENVALUES

Proof Note that since A^h is irreducible, its invariant law is unique. Now

$$
\pi A^h(x) = \sum_{y \in S'} \eta(y) h(y) \frac{A(y,x) h(x)}{\alpha h(y)}
= \alpha^{-1} h(x) \sum_{y \in S'} \eta(y) A(y,x) = \alpha^{-1} (\eta A)(x) h(x) = \pi(x),
$$

which proves that π is an invariant law.

For simplicity, we assume below that P' is not only irreducible but also aperiodic.

Theorem 2.17 (Process conditioned not to leave a set) Let X be a Markov chain with countable state space S and transition kernel P, and let $S' \subset S$ be finite. Assume that $P' := P|_{S'}$ is irreducible and aperiodic. Let α and η, h denote its Perron-Frobenius eigenvalue and left and right eigenvectors, respectively, normalized such that $\sum_{x \in S'} \eta(x) = 1$ and $\sum_{x \in S'} \eta(x) h(x) = 1$. Set

$$\tau := \inf \{k \geq 0 : X_k \notin S'\}.$$

Then, for any $x \in S'$,

$$\lim_{n \to \infty} \alpha^{-n} P^x[n < \tau] = h(x) \quad (x \in S'). \quad (2.6)$$

Moreover, for each $m \geq 1$ and $x \in S'$,

$$P^x[(X_k)_{0 \leq k \leq m} \in \cdot \mid n < \tau] \Longrightarrow \lim_{n \to \infty} P^x[(X^h_k)_{0 \leq k \leq m} \in \cdot],$$

where X^h denotes the Markov chain with state space S' and Doob transformed transition kernel

$$P^h(x,y) := \frac{P'(x,y) h(y)}{\alpha h(x)} \quad (x, y \in S').$$

Proof We observe that, setting $x_0 := x$,

$$\begin{align*}
P^x[n < \tau] &= \sum_{x_1 \in S'} \cdots \sum_{x_n \in S'} \prod_{k=1}^n P(x_{k-1}, x_k) = \sum_{x_n \in S'} P^n(x_0, x_n) = P^n 1(x).
\end{align*}$$

As in the proof of Lemma 2.11, we let \overline{h} and \overline{h}^{-1} also denote the operators that correspond to multiplication with these functions. Then $P^h = \alpha^{-1} \overline{h}^{-1} P \overline{h}$ and therefore

$$\begin{align*}
\alpha^{-n} P^x[n < \tau] &= \alpha^{-n} P^n 1(x) = \alpha^{-n} \left(\alpha h P^h \overline{h}^{-1} \right)^n 1(x) \\
&= h(x) \left((P^h)^n \overline{h}^{-1} \right)(x) \xrightarrow{n \to \infty} h(x) \pi \overline{h}^{-1} = h(x),
\end{align*}$$

which proves that π is an invariant law.
where
\[\pi h^{-1} = \sum_{x' \in S'} \pi(x) h^{-1}(x) = \sum_{x' \in S'} \eta(x) h(x) h^{-1}(x) = \sum_{x \in S'} \eta(x) = 1 \]
is the average of the function \(h^{-1} \) with respect to the invariant law \(\pi \) of \(P_h \).

To prove the remaining statement of the theorem, we observe that for any \(0 \leq m < n \), \(x_{m+1} \in S' \), and \((x_0, \ldots, x_m) \in S^m \) such that
\[P[(X_0, \ldots, X_m) = (x_0, \ldots, x_m)] > 0, \]
we have
\[
P^{m,n}[X_{m+1} = x_{m+1} \mid (X_0, \ldots, X_m) = (x_0, \ldots, x_m), n < \tau] = \frac{\sum_{x_{m+2} \in S'} \cdots \sum_{x_n \in S'} \prod_{k=1}^{n} P(x_{k-1}, x_k)}{\sum_{x'_{m+1} \in S'} \cdots \sum_{x'_n \in S'} (\prod_{k=1}^{n} P(x'_{k-1}, x'_k))} = \frac{P(x_m, x_{m+1}) P^{n-m-1} 1(x_{m+1})}{P^{m-m} 1(x_m)}. \]

This shows that conditional on the event \(n < \tau \), the process \((X_0, \ldots, X_n) \) is a time-inhomogeneous Markov chain with transition kernel in the \((m + 1) \)-th step given by
\[
P^{(n)}_{m,m+1}(x, y) = \frac{P(x, y) P^{n-m+1} 1(y)}{P^{m-m} 1(x)} = \alpha^{-(n-m)} P^{n-m+1} 1(y) \frac{P(x, y) \alpha^{-(n-m)} P^{n-m+1} 1(y)}{\alpha \alpha^{-(n-m)} P^{m-m} 1(x)}. \]

Since we have already shown that \(\alpha^{-n} P^{m} 1 \to h \) as \(n \to \infty \), the result follows.

Exercise 2.18 (Behavior at typical times) Let \(0 \leq m_n \leq n \) be such that \(m_n \to \infty \) and \(n - m_n \to \infty \) as \(n \to \infty \). Show that for any \(x \in S' \),
\[\mathbb{P}[X_{m_n} \in \cdot \mid n < \tau] = \pi, \]
where \(\pi = \eta h \) is the invariant law of the Doob transformed probability kernel \(P_h \).

Exercise 2.18 shows that conditional on the unlikely event that \(n < \tau \) where \(n \) is large, most of the time up to \(n \), the process \(X \) is approximately distributed according to the invariant law \(\pi \) of the Doob transformed probability kernel \(P_h \). We will see below that at the time \(n \), the situation is different.
Let X be a Markov chain with countable state space S and transition kernel P, and let $S' \subset S$ be finite. By definition, we say that a probability measure ρ on S' is a quasi-stationary law\(^3\) of P on S' if

$$\mathbb{P}[X_0 \in \cdot] = \rho \implies \mathbb{P}[X_1 \in \cdot \mid X_1 \in S'] = \rho.$$

It seems that quasi-stationary laws were first introduced by Darroch and Seneta in [DS67].

Proposition 2.19 (Quasi stationary law) Let X be a Markov chain with countable state space S and transition kernel P, and let $S' \subset S$ be finite. Assume that $P' := \left. P \right|_{S'}$ is irreducible and aperiodic. Let α and η, h denote its Perron-Frobenius eigenvalue and left and right eigenvectors, respectively, normalized such that $\sum_{x \in S'} \eta(x) = 1$ and $\sum_{x \in S'} \eta(x)h(x) = 1$. Then η is the unique quasi-stationary law of P on S' and the process started in any initial law satisfies

$$\lim_{n \to \infty} \mathbb{P}[X_n \in \cdot \mid n < \tau] = \eta,$$

where $\tau := \inf\{k \geq 0 : X_k \notin S'\}$.

Proof Define finite measures μ_n on S' by

$$\mu_n(x) := \mathbb{P}[X_n = x, n < \tau] \quad (x \in S', \ n \geq 0).$$

Then

$$\mu_{n+1}(x) = \mathbb{P}[X_{n+1} = x, n + 1 < \tau] = \sum_{y' \in S'} \mathbb{P}[X_n = y, n < \tau] P(y, x) = \mu_n P'(x)$$

($x \in S'$), i.e., $\mu_{n+1} = \mu_n P'$. As before, we let h and h^{-1} denote the operators that correspond to multiplication with these functions. Then $P^h = \alpha^{-1} h^{-1} P' h$ and therefore

$$\mu_n = \mu_0 P'^n = \mu_0 (\alpha h P^h h^{-1})^n = \alpha^n \mu_0 h (P^h)^n h^{-1}.$$ \hspace{1cm} (2.7)

Let us define a probability measure ν on S' by

$$\nu(x) := (\mu_0 h)^{-1} \mu(x) h(x) \quad (x \in S').$$

\(^3\)Usually, the terms ‘stationary law’ and ‘invariant law’ can be used exchangeably. In this case, this may lead to confusion, however, since the term ‘quasi-invariant measure’ is normally used in ergodic theory for a measure that is mapped into an equivalent measure by some transformation.
2.9. CONDITIONING TO STAY INSIDE A SET

We observe that

$$\alpha^n \mu_0 (P^h)^n = \alpha^n (\mu_0 h) \nu (P^h)^n,$$

where $\nu (P^h)^n$ is just the law at time n of a Markov chain with transition kernel P^h and initial law ν. Since P^h is irreducible and aperiodic, $\nu (P^h)^n$ converges as $n \to \infty$ to the invariant law π given by $\pi(x) = \eta(x) h(x)$. Inserting this into (2.7), we see that

$$\alpha^{-n} \mu_n = \mu_0 (P^h)^{n} h^{-1} \longrightarrow_{n \to \infty} (\mu_0 h) \eta h^{-1} = (\mu_0 h) \eta.$$

It follows that

$$\mathbb{P} \left[X_n \in \cdot \mid n < \tau \right] = \frac{\mu_n}{\mu_n 1} = \frac{\alpha^{-n} \mu_n}{\alpha^{-n} \mu_n 1} \longrightarrow_{n \to \infty} (\mu_0 h) \eta 1 = \eta,$$

where we have used that $\eta 1 = 1$ by the choice of our normalization.
Chapter 3

Intertwining

3.1 Intertwining of Markov chains

In linear algebra, an intertwining relation is a relation between linear operators of the form

$$AB = B\hat{A}.$$

In particular, if B is invertible, then this says that $A = B\hat{A}B^{-1}$, or, in other words, that the matrices A and \hat{A} are similar. In this case, we may associate B with a change of basis, and \hat{A} corresponds to the matrix A written in terms of a different basis. In general, however, B need not be invertible. It is especially in this case that the word intertwining is used.

We will be especially interested in the case that A, \hat{A} and B are (linear operators corresponding to) probability kernels. So let us assume that we have probability kernels P, \tilde{P} on countable spaces S, \tilde{S}, respectively, and a probability kernel K from S to \tilde{S} (i.e., $S \times \tilde{S} \ni (x,y) \mapsto K(x,y)$), such that

$$PK = K\tilde{P}. \tag{3.1}$$

Note that P, \tilde{P} and K correspond to linear operators $P: \mathbb{C}^S \to \mathbb{C}^S$, $\tilde{P}: \mathbb{C}^{\tilde{S}} \to \mathbb{C}^{\tilde{S}}$, and $K: \mathbb{C}^{\tilde{S}} \to \mathbb{C}^S$, so both sides of the equation (3.1) correspond to a linear operator from $\mathbb{C}^{\tilde{S}}$ into \mathbb{C}^S. We need some examples to see this sort of relations between probability kernels can really happen.

Exclusion process. Fix $n \geq 2$ and let $C_n := \mathbb{Z}/n$, i.e., $C_n = \{0, \ldots, n - 1\}$ with addition modulo n. (I.e., C_n is the cyclic group with n elements.) Let
$S := \{0, 1\}^C$, i.e., S consists of all finite sequences $x = (x(0), \ldots, x(n - 1))$ indexed by C_n. Let $(I_k)_{k \geq 1}$ be i.i.d. and uniformly distributed on C_n. For each $x \in S$, we may define a Markov chain $X = (X_k)_{k \geq 0}$, started in $X_0 = x$ and with values in S, by setting

$$X_{k+1}(i) := \begin{cases}
X_k(I + 1) & \text{if } i = I, \\
X_k(I) & \text{if } i = I + 1, \\
X_k(i) & \text{otherwise.}
\end{cases} \quad (3.2)$$

In words, this says that in each time step, we choose a uniformly distributed position $I \in C_n$ and exchange the values of X in I and $I + 1$ (where we calculate modulo n). Note that we have described our Markov chain in terms of a random mapping representation. In particular, it is clear from this construction that X is a Markov chain.

Thinning Let C be any countable set and let $S := \{0, 1\}^C$ be the set of all $x = (x(i))_{i \in C}$ with $x(i) \in \{0, 1\}$ for all $i \in C$, i.e., S is the set of all sequences of zeros and ones indexed by C. Fix $0 \leq p \leq 1$, and let $(\chi_i)_{i \in C}$ be i.i.d. Bernoulli (i.e., \{0, 1\}-valued) random variables with $P[\chi_i = 1] = p$. We define a probability kernel K_p from S to S by

$$K_p(x, \cdot) = P[(\chi_i x(i))_{i \in C} \in \cdot] \quad (x \in S). \quad (3.3)$$

Note that $(\chi_i x(i))_{i \in C}$ is obtained from x by setting some coordinates of x to zero, independently for each $i \in C$, where each coordinate $x(i)$ that is one has probability p to remain one and probability $1 - p$ to become a zero. We describe this procedure as *thinning* the ones with parameter p.

Exercise 3.1 (Thinning of exclusion processes) Let P be the transition kernel of the exclusion process on C_n described above, with state space $S = \{0, 1\}^C$, and for $0 \leq p \leq 1$, let K_p be the kernel from S to S corresponding to thinning with parameter p. Show that

$$PK_p = K_p P \quad (0 \leq p \leq 1).$$

Sum of two processes Let P be a transition kernel on a countable space S and let $X(1) = (X_k(1))_{k \geq 0}$ and $X(2) = (X_k(2))_{k \geq 0}$ be two independent Markov chains with transition kernel P and possibly different deterministic initial states $X_0(i) = x(i) \ (i = 1, 2)$. Then $(X(1), X(2)) = (X_k(1), X_k(2))_{k \geq 0}$ is a Markov chain with values in the product space $S \times S$. We may view $(X(1), X(2))$ as two particles,
walking around in the space S. Now maybe we are not interested in which particle is where, but only in how many particles are on which place. In that case, we may look at the process

$$Y_k(i) := 1\{X_k(1)=i\} + 1\{X_k(2)=i\} \quad (i \in S, \: k \geq 0),$$

which takes values in the space \tilde{S} consisting of all functions $y : S \to \{0, 1, 2\}$ such that $\sum_{i \in S} y(i) = 2$. Note that Y just counts how many particles are present on each site $i \in S$. It is not hard to see that $Y = (Y_k)_{k \geq 0}$ is an autonomous Markov chain.

Exercise 3.2 (Counting process) Let $(X(1), X(2))$ and Y be the Markov chains with state spaces $S \times S$ and \tilde{S} described above. Let P_2 be the transition kernel of $(X(1), X(2))$ and let \tilde{P} be the transition kernel of Y. For each $y \in \tilde{S}$, let $K(y, \cdot)$ be the uniform distribution on the set

$$U_y := \{(x(1), x(2)) \in S \times S : y = 1_{x(1)} + 1_{x(2)}\},$$

where $1_x(i) := 1\{x=i\}$. Note that K is a probability kernel from \tilde{S} to $S \times S$. From y, we can see that there are two particles and where these are, but not which is the first and which is the second particle. All K does is arbitrarily ordering the particles in y. Show that

$$\tilde{P}K = KP_2.$$

This example can easily be generalized to any number of independent Markov chains (all with the same transition kernel).

Conditioning on the future As a third example, we look at a Markov chain X with finite state space S and transition kernel P. We assume that P is such that all states in S are transient, except for two states z_0 and z_1, which are traps. We set

$$h_i(x) := \mathbb{P}_x^* [X_k = z_i \text{ for some } k \geq 0] \quad (i = 0, 1).$$

By Lemma 1.2, we know that h_0 and h_1 are harmonic functions. Since all states except z_0 and z_1 are transient and our state space is finite, we have $h_0 + h_1 = 1$. By Proposition 1.5, the process X conditioned to be eventually trapped in z_i is itself a Markov chain, with state space $\{x \in S : h_i(x) > 0\}$ and Doob transformed transition kernel P^{h_i}. Set

$$\tilde{S} := \{(x, i) : x \in S, \: i \in \{0, 1\}, \: h_i(x) > 0\}.$$
We define a probability kernel \(\tilde{P} \) on \(\tilde{S} \) by
\[
\tilde{P}((x, i), (y, j)) := 1_{\{i = j\}} P^h_i(x, y) \quad (x, y \in S, \ i, j \in \{0, 1\}).
\]
Note that if \((\tilde{X}, I) = (\tilde{X}_k, I_k)_{k \geq 0}\) is a Markov chain with transition kernel \(\tilde{P} \), then
\(I \) never changes its value, and depending on whether \(I_k = 0 \) for all \(k \geq 0 \) or \(I_k = 1 \) for all \(k \geq 0 \), the process \(\tilde{X} \) is our original Markov chain \(X \) conditioned to be trapped in either \(z_0 \) or \(z_1 \).

Exercise 3.3 (Conditioning on the future) In the example above, define a
probability kernel \(K \) from \(S \) to \(\tilde{S} \) by
\[
K(x, (y, i)) := 1_{\{x = y\}} h_i(x) \quad (x, y \in S, \ i \in \{0, 1\}).
\]
Show that
\[
P^m K = K \tilde{P}^n.
\]

Returning to our general set-up, we observe that the intertwining relation \([3.1]\)
implies that for any probability measure \(\mu \) on \(S \)
\[
\mu P^m K = \mu K \tilde{P}^n \quad (n \geq 0).
\]
This function has the following interpretation. If we start the Markov chain with
transition kernel \(P \) in the initial law \(\mu \), run it till time \(n \), and then apply the kernel
\(K \) to its law, then the result is the same as if we start the the Markov chain with
transition kernel \(\tilde{P} \) in the initial law \(\mu K \), run it till time \(n \), and look at its law.

More concretely, in our three examples, this says:

- If we start an exclusion process in some initial law, run it till time \(n \), and
 then thin it with the parameter \(p \), then the result is the same as when we
 thin the initial state with \(p \), and then run the process till time \(n \).

- If we start the counting process \(Y \) in any initial law, run it to time \(n \), and
 then arbitrarily order the particles, then the result is the same as when we
 first arbitrarily order the particles, and then run the process \((X(1), X(2)) \)
 till time \(n \).

- If we run the two-trap Markov chain \(X \) till time \(n \), and then assign it a value
 0 or 1 according to the probability, given its present state \(X_n \), that it will
 eventually get trapped in \(z_0 \) or \(z_1 \), respectively, then the result is the same
 as when we assign such values at time zero, and then run the appropriate
 Doob transformed Markov chain till time \(n \).
None of these statement comes as a big surprise, but we will later see less trivial examples of this phenomenon.

3.2 Markov functionals

We already know that functions of Markov chains usually do not have the Markov property. An exception, as we have seen in Lemma 0.12, is the case when a function of a Markov chain is **autonomous**. Let us quickly recall what this means. Let X be a Markov chain with countable state space S and transition kernel P, and let $\psi : S \to \tilde{S}$ be a function from S into some other countable set \tilde{S}. Then we say that $(Y_k)_{k \geq 0} := (\psi(X_k))_{k \geq 0}$ is an **autonomous Markov chain** if

$$P[\psi(X_{k+1}) = y \mid X_k = x]$$

depends on x only through $\psi(x)$. Equivalently, this says that there exists a transition kernel \tilde{P} on \tilde{S} such that

$$\tilde{P}(y, y') = \sum_{x' : \psi(x') = y'} P(x, x') \quad \forall x \in S \text{ s.t. } \psi(x) = y. \quad (3.4)$$

If (3.4) holds, then, regardless of the initial law of X, one has that the process $\psi(Y) = (\psi(X_k))_{k \geq 0}$ is a Markov chain with transition kernel \tilde{P}.

The next theorem shows that sometimes, a function $\psi(X)$ of a Markov chain X can be a Markov chain itself, even when it is not autonomous. In this case, however, this is usually only true for certain special initial laws of X. It seems this result is due to Rogers and Pitman [RP81]. For better comparison with other results, in the theorem below, it will be convenient to interchange the roles of X and Y, i.e., X will be a function of Y and not the other way around. Note that if X and Y are random variables such that $P[Y \in \cdot \mid X] = K(X, \cdot)$, then formula (3.5) below says that $\psi(Y) = X$ a.s. Thus, the probability kernel K from S to \tilde{S} is in a sense the ‘inverse’ of the function $\psi : \tilde{S} \to S$.

Theorem 3.4 (Markov functionals) Let Y be a Markov chain with countable state space \tilde{S} and transition kernel P, and let $\psi : \tilde{S} \to S$ be a function from \tilde{S} into some other countable set S. Let K be a probability kernel from S to \tilde{S} such that

$$\{y \in \tilde{S} : K(x, y) > 0\} \subset \{y \in \tilde{S} : \psi(y) = x\} \quad (x \in S), \quad (3.5)$$

and let \tilde{P} be a transition kernel on S such that

$$\tilde{P}K = KP. \quad (3.6)$$
Moreover, (3.7) implies that the process

\[Y_n = \psi(Y_0, \ldots, Y_n) \]

implies that

\[P[Y_n = y | (\psi(Y_0), \ldots, \psi(Y_n))] = K(\psi(Y_n), y) \quad \text{a.s.} \quad (y \in \tilde{S}) \quad (3.7) \]

Then

\[P[Y_0 = y | \psi(Y_0)] = K(\psi(Y_0), y) \quad \text{a.s.} \quad (y \in \tilde{S}) \quad (3.7) \]

implies that

\[P[Y_n = y | (\psi(Y_0), \ldots, \psi(Y_n))] = K(\psi(Y_n), y) \quad \text{a.s.} \quad (y \in \tilde{S}, n \geq 0). \quad (3.8) \]

Moreover, (3.7) implies that the process \(\psi(Y) = (\psi(Y_k))_{k \geq 0} \), on its own, is a Markov chain with transition kernel \(P \).

Proof Formula (3.8) says that

\[P[Y_n = y | (\psi(Y_0), \ldots, \psi(Y_n))] = K(x_n, y) \quad \text{a.s.} \]

\(n \geq 0, (x_0, \ldots, x_n) \in S^n \) such that

\[P[(\psi(Y_0), \ldots, \psi(Y_n))] > 0, \]

and \(y \in \tilde{S} \) such that \(\psi(y) = x_n \). We will prove this by induction. Assume that the statement holds for some \(n \geq 0 \). We wish to prove the statement for \(n + 1 \). Let \((x_0, \ldots, x_{n+1}) \) be such that

\[P[(\psi(Y_0), \ldots, \psi(Y_{n+1})) > 0, \]

and let \(y \in \tilde{S} \) be such that \(\psi(y) = x_{n+1} \). Then

\[P[Y_{n+1} = y | (\psi(Y_0), \ldots, \psi(Y_{n+1})) = (x_0, \ldots, x_{n+1})] \]

\[= \frac{P[Y_{n+1} = y, \psi(Y_{n+1}) = x_{n+1} | (\psi(Y_0), \ldots, \psi(Y_n)) = (x_0, \ldots, x_n)]}{P[\psi(Y_{n+1}) = x_{n+1} | (\psi(Y_0), \ldots, \psi(Y_n)) = (x_0, \ldots, x_n)]} \quad (3.9) \]

We will treat the nominator and denominator separately. To shorten notation, let us denote the conditional law given \((\psi(Y_0), \ldots, \psi(Y_n)) = (x_0, \ldots, x_n) \) by

\[P_{(x_0, \ldots, x_n)}[\cdot] := P[\cdot | (\psi(Y_0), \ldots, \psi(Y_n)) = (x_0, \ldots, x_n)]. \]

Then

\[P_{(x_0, \ldots, x_n)}[Y_{n+1} = y] \]

\[= \sum_{y' : \psi(y') = x_n} P_{(x_0, \ldots, x_n)}[Y_{n+1} = y | Y_n = y'] P_{(x_0, \ldots, x_n)}[Y_n = y']. \]
3.2. MARKOV FUNCTIONALS

Here, by our induction assumption,
\[
\mathbb{P}_{(x_0, \ldots, x_n)}[Y_n = y'] = K(x_n, y') \quad \forall y' \in \tilde{S} \text{ s.t. } \psi(y') = x_n,
\]
while by the Markov property of \(Y \),
\[
\mathbb{P}_{(x_0, \ldots, x_n)}[Y_n+1 = y \mid Y_n = y'] = \mathbb{P}[Y_n+1 = y \mid Y_n = y', (\psi(Y_0), \ldots, \psi(Y_n)) = (x_0, \ldots, x_n)]
= \mathbb{P}[Y_n+1 = y \mid Y_n = y'] = P(y', y).
\]
Thus, we see that
\[
\mathbb{P}_{(x_0, \ldots, x_n)}[Y_n+1 = y] = \sum_{y' : \psi(y') = x_n} K(x_n, y')P(y', y)
= \sum_{y' \in \tilde{S}} K(x_n, y')P(y', y) = KP(x_n, y') = \tilde{P}K(x_n, y),
\]
where we have used that \(K(x_n, \cdot) \) is concentrated on \(\{y' : \psi(y') = x_n\} \) and in the last step we have applied our intertwining assumption.

We observe that by (3.5) and the fact that \(\psi(y) = x_{n+1} \),
\[
\tilde{P}K(x_n, y) = \sum_{x \in \tilde{S}} P(x, x)K(x, y)
= \sum_{x \in \tilde{S}} P(x, x)K(x, y)1_{\psi(y) = x} = P(x, x+1)K(x, y),
\]
and therefore
\[
\mathbb{P}_{(x_0, \ldots, x_n)}[Y_{n+1} = y] = P(x_n, x_{n+1})K(x_{n+1}, y).
\]
It follows that
\[
\mathbb{P}_{(x_0, \ldots, x_n)}[\psi(Y_{n+1}) = x_{n+1}] = \sum_{y : \psi(y) = x_{n+1}} \mathbb{P}_{(x_0, \ldots, x_n)}[Y_{n+1} = y]
= \sum_{y : \psi(y) = x_{n+1}} P(x_n, x_{n+1})K(x_{n+1}, y) = \tilde{P}(x_n, x_{n+1}). \quad (3.10)
\]
Inserting our last two formulas into (3.9), we obtain that
\[
\mathbb{P}[Y_{n+1} = y \mid (\psi(Y_0), \ldots, \psi(Y_{n+1})) = (x_0, \ldots, x_{n+1})]
= \frac{P(x_n, x_{n+1})K(x_{n+1}, y)}{P(x_n, x_{n+1})} = K(x_{n+1}, y).
\]
This completes our proof of (3.8). Moreover, formula (3.10) shows that \(\psi(Y) \) is a Markov chain with transition kernel \(\tilde{P} \).

Let us see how Theorem 3.4 relates to the examples developed in the previous section.

Counting process Let \((X(1), X(2))\) be two independent Markov processes, where each process takes values in \(S\) and has transition kernel \(P\), as in Exercise 3.2. Let \(Y\) and \(\tilde{S}\) be as defined there and let \(\psi : S \times S \to \tilde{S}\) be the function

\[
\psi(x(1), x(2)) := 1_{x(1) + 1_{x(2)}},
\]

so that \(Y = \psi(X(1), X(2))\). Then the kernel \(K\) defined in Exercise 3.2 satisfies

\[
\{(x(1), x(2)) : K(y, (x(1), x(2))) > 0\} \subset \{(x(1), x(2)) : \psi(x(1), x(2)) = y\}.
\]

Since moreover \(\tilde{P}K = KP_2\), all assumptions of Theorem 3.4 are fulfilled, so we find that

\[
P[(X_0(1), X_0(2)) = (x(1), x(2)) \mid Y_0] = K(Y_0, (x(1), x(2))) \quad \text{a.s.} \tag{3.11}
\]

for all \((x(1), x(2)) \in S \times S\) implies that

\[
P[(X_n(1), X_n(2)) = (x(1), x(2)) \mid (Y_0, \ldots, Y_n)] = K(Y_n, (x(1), x(2))) \quad \text{a.s.} \tag{3.12}
\]

for all \((x(1), x(2)) \in S \times S\) and \(n \geq 0\), and under the same assumption, \(Y = \psi(X(1), X(2))\) is a Markov chain with transition kernel \(\tilde{P}\). Note that this latter conclusion holds in fact even without the assumption (3.11), since \(Y\) is autonomous. Formula (3.12) tells us that if initially we do not know the order of the particles, then by observing the process \(Y\) up to time \(n\), we obtain no information about the order of the particles.

Conditioning on the future Let \(X\) and \((\tilde{X}, I)\) be Markov chains with state spaces \(S\) and \(\tilde{S}\) and transition kernels \(P\) and \(\tilde{P}\) as in Exercise 3.3. Thus, \(X\) is a Markov chain that eventually gets trapped in one of two traps \(z_0\) and \(z_1\), and \((\tilde{X}, I)\) is the same process where the second coordinate \(I\) tells us from the beginning in which of the two traps we will end up.

Define \(\psi : \tilde{S} \to S\) by

\[
\psi(x, i) := x \quad ((x, i) \in \tilde{S}),
\]

i.e., \(\psi\) is just projection on the first coordinate. Then the kernel \(K\) from Exercise 3.3 satisfies

\[
\{(\tilde{x}, i) \in \tilde{S} : K(x, (\tilde{x}, i)) > 0\} \subset \{(\tilde{x}, i) \in \tilde{S} : \psi(\tilde{x}, i) = x\}
\]
and \(PK = K\tilde{P} \), so all assumptions of Theorem 3.4 are fulfilled. We therefore conclude that
\[
P[(\tilde{X}_0, I_0) = (\tilde{x}, i) \mid \tilde{X}_0] = K\bigl(X_0, (\tilde{x}, i)\bigr) \quad \text{a.s.} \quad \left((\tilde{x}, i) \in \tilde{S} \right)
\]
implies that
\[
P[(\tilde{X}_n, I_n) = (\tilde{x}, i) \mid (\tilde{X}_0, \ldots, \tilde{X}_n)] = K\bigl(X_n, (\tilde{x}, i)\bigr) \quad \text{a.s.}
\]
for all \(n \geq 0 \) and \((\tilde{x}, i) \in \tilde{S} \). More simply formulated, this says that
\[
P[I_0 = i \mid \tilde{X}_0] = h_i(X_0) \quad \text{a.s.} \quad (i = 0, 1)
\]
implies that
\[
P[I_n = i \mid (\tilde{X}_0, \ldots, \tilde{X}_n)] = h_i(\tilde{X}_n) \quad \text{a.s.} \quad (n \geq 0, \ i = 1, 2).
\]
Moreover, under the same assumption, the process \(\tilde{X} \), on its own, is a Markov chain with transition kernel \(P \). Note that this is more surprising than in the previous example, since in the present set-up, \(\tilde{X} \) is not autonomous as part of the joint Markov chain \((\tilde{X}, I) \). Indeed, \(\tilde{X} \) evolves according to the transition kernel \(P^{h_0} \), resp. \(P^{h_1} \), depending on whether \(I = 0 \) or \(= 1 \).

To understand how it is possible that \(\tilde{X} \) has the Markov property even though it is not autonomous, we observe that by (3.13), if we observe the whole path of the process \(\tilde{X} \) up to time \(n \), then we do not gain more information about the present state of \(I \) than we would get from knowing \(X_n \). As a result,
\[
P[\tilde{X}_{n+1} = x_{n+1} \mid (\tilde{X}_0, \ldots, \tilde{X}_n) = (x_0, \ldots, x_n)]
= P[\tilde{X}_{n+1} = x_{n+1} \mid (\tilde{X}_n, I_n) = (x_n, 0)]h_0(x_n)
+ P[\tilde{X}_{n+1} = x_{n+1} \mid (\tilde{X}_n, I) = (x_n, 1)]h_1(x_n),
\]
which depends only on \(x_n \) and not on \((x_0, \ldots, x_{n-1}) \).

Thinning of exclusion processes This example does not satisfy condition (3.5), hence Theorem 3.4 is not applicable. In view of this and other examples, we will prove a more general theorem in the next section.

3.3 Intertwining and coupling

In Theorem 3.4 we have seen how intertwining is related to the problem of Markov functionals, i.e., the question whether certain functions of a Markov chain themselves have the Markov property. The intertwinings in Theorem 3.4 are of a special
CHAPTER 3. INTERTWINING

kind, because of the condition (3.5). In this section, we will see that intertwining relations between two Markov chains X and Y in general give rise to couplings between X and Y such that (3.8) holds. The following result is due to Diaconis and Fill [DF90, Thm 2.17]; the continuous-time analogue has been proved in [FIl92 Thm. 2].

Theorem 3.5 (Intertwining coupling) Let P and \tilde{P} be probability kernels on countable state spaces S and \tilde{S}, respectively. Assume that K is a probability kernel from S to \tilde{S} such that $PK = K\tilde{P}$.

Let

$$P^y(x, x') := \frac{P(x, x')K(x', y')}{PK(x, y')} \quad (x, x' \in S, \ y' \in \tilde{S}, \ PK(x, y') > 0), \quad (3.14)$$

and choose for $P^y(x, \cdot)$ any probability law on S if $PK(x, y') = 0$. Then P^y is a probability kernel on S for each $y' \in \tilde{S}$ and

$$\hat{P}(x, y; x', y') := \hat{P}(y, y')P^y(x, x') \quad ((x, y), (x', y') \in \tilde{S}) \quad (3.15)$$

defines a probability kernel on $\hat{S} := \{(x, y) \in S \times \tilde{S} : K(x, y) > 0\}$, where \hat{P} does not depend on the freedom in the choice of the P^y. If (X, Y) is the Markov chain with transition kernel \hat{P} started in an initial law such that

$$\mathbb{P}[Y_0 = y \mid X_0] = K(X_0, \cdot) \quad (y \in \tilde{S}),$$

then

$$\mathbb{P}[Y_n = y \mid (X_k)_{0 \leq k \leq n}] = K(X_n, \cdot) \quad (y \in \tilde{S}, \ n \geq 0),$$

and X, on its own, is a Markov chain with transition kernel P.

Remark It is clear from (3.15) that in the joint Markov chain (X, Y), the second component Y is autonomous with transition kernel \tilde{P}, but X is in general not autonomous, unless P^y can be chosen so that it does not depend on y'.

Proof of Theorem 3.5 We observe that

$$\sum_{x' \in S} P^y(x, x') = \frac{PK(x, y')}{PK(x, y')} = \hat{P}(y, y') \quad (PK(x, y') > 0),$$

which shows that P^y is a probability kernel. To show that the definition of \hat{P} does not depend on how we define $P^y(x, \cdot)$ when $PK(x, y') = 0$, we observe that
(x, y) ∈ S and \(\tilde{P}(y, y') > 0 \) imply that \(K(x, y) \tilde{P}(y, y') > 0 \) and hence \(PK(x, y') = KP(x, y') > 0 \).

To prove the remaining statements, let \(\hat{K} \) be the probability kernel from \(S \) to \(\hat{S} \) defined by
\[
\hat{K}(x, (x', y')) := 1_{x = x'} K(x, y') \quad (x \in S, \ (x', y') \in \hat{S}),
\]
and define \(\psi : \hat{S} \to S \) by \(\psi(x, y) := x \). If we show that
\[
PK = \hat{K}\hat{P},
\]
then the remaining claims follow from Theorem 3.4. We observe that
\[
PK(x, x'; y') = \sum_{y'' \in \hat{S}} K(x, y'') \hat{P}(x, y''; x', y') = PK(x, x') K(x', y'),
\]
and
\[
\hat{K}\hat{P}(x, x'; y') = \sum_{(x'', y'') \in \hat{S}} 1_{x = x''} K(x, y'') \hat{P}(x'', y''; x', y') = \sum_{y'' \in \hat{S}} K(x, y'') \hat{P}(x, y''; x', y'),
\]
so that \(PK = \hat{K}\hat{P} \) can be written coordinatewise as
\[
P(x, x') K(x', y') = \sum_{y'' \in \hat{S}} K(x, y'') \hat{P}(x, y''; x', y') \quad (x \in S, \ (x', y') \in \hat{S}).
\]
To check this, we write
\[
\sum_{y'' \in \hat{S}} K(x, y'') \hat{P}(x, y''; x', y') = \sum_{y'' \in \hat{S}} K(x, y'') \hat{P}(y'', y') \frac{P(x, x') K(x', y')}{PK(x, y')}
\]
\[
= \frac{\hat{K}\hat{P}(x, y')}{PK(x, y')} P(x, x') K(x', y') = P(x, x') K(x', y'),
\]
where we have used our assumption that \(K\hat{P} = PK \).

Thinning of exclusion processes In this example,
\[
\hat{S} = \{(x, y) : x, y \in \{0, 1\}^{C_n}, \ y \leq x \},
\]
and the joint evolution of \((X, Y)\) can be described in the same way as in (3.2), using the same random pair \(I \) for both \(X \) and \(Y \). While this example is rather trivial (we could have invented this coupling without knowing anything about intertwining!), we will see in the next section that there exist less trivial examples of intertwinings where the coupling of Theorem 3.5 is much more surprising.
3.4 First exit problems revisited

In this section we return to the set-up of Section 2.9. We will be interested at the behavior of a Markov chain X until it leaves some finite set S'. For simplicity, we will assume that the whole state space of X just consists of S' plus one additional point z, which is a trap. More generally, the results we derive can be used to study Markov chains stopped at the first time they leave a finite set.

Thus, we let X be a Markov chain with finite state space $S = S' \cup \{z\}$, where z is a trap. We let P denote the transition kernel of X, we write P' for the restriction of P to S' and assume that P' is irreducible. It follows that P' has a unique Perron-Frobenius eigenvalue α and associated positive right eigenvector h, which is unique up to a multiplicative constant. If we extend h to S by putting $h(z) := 0$, then h is an eigenvector of P. Indeed, since $h(z) = 0$, we have

$$Ph(x) = \sum_{y \in S} P(x, y)h(y) = \sum_{y \in S'} P'(x, y)h(y) = P'h(x) = \alpha h(x) \quad (x \in S'),$$

while $Ph(z) = \sum_{y \in S} P(z, y)h(y) = h(z) = 0$ by the fact that z is a trap.

Proposition 3.6 (Intertwining for chain with one trap) Let X be a Markov chain with finite state space $S = S' \cup \{z\}$ and transition kernel P. Assume that z is a trap and the restriction of P to S' is irreducible. Let h be the, up to multiple constants unique, right eigenvector of P such that $h(z) = 0$ and $h > 0$ on S', and assume that h is normalized such that $\sup_{x \in S'} h(x) \leq 1$. Let α be the eigenvalue of h and let Y be a Markov process with state space $\tilde{S} := \{1, 2\}$ and transition kernel \tilde{P}

$$\tilde{P} = \begin{pmatrix} P(1, 1) & P(1, 2) \\ P(2, 1) & P(2, 2) \end{pmatrix} = \begin{pmatrix} \alpha & 1 - \alpha \\ 0 & 1 \end{pmatrix}.$$

Let K be the probability kernel from S to \tilde{S} defined by

$$K(x, y) := \begin{cases} h(x) & \text{if } y = 1, \\ 1 - h(x) & \text{if } y = 2. \end{cases}$$

Then $PK = K\tilde{P}$.

Proof This follows by writing

$$PK(x, y) = \sum_{x' \in S} P(x, x')K(x', y) = \begin{cases} Ph(x) = \alpha h(x) & \text{if } y = 1, \\ P(1 - h)(x) = 1 - \alpha h(x) & \text{if } y = 1, \end{cases}$$
while

\[K\tilde{P}(x,y) = \sum_{y' \in \tilde{S}} K(x,y')P(y',y) \]

\[= \begin{cases}
K(x,1)\alpha = \alpha h(x) & \text{if } y = 1, \\
K(x,2) + K(x,1)(1 - \alpha) = 1 - h(x) + (1 - \alpha)h(x) & \text{if } y = 2,
\end{cases} \]

which shows that \(PK = K\tilde{P} \).

By Theorem 3.5 and the remark following the latter, we see that the processes \(X \) and \(Y \) from Proposition 3.6 can be coupled in such a way that their joint transition probabilities are given by

\[\tilde{P}(x,y;x',y') = \tilde{P}(y,y')P_y(x,x') \quad ((x,y), (x',y') \in \tilde{S}), \]

where \(\tilde{S} := \{(x,y) \in S \times \tilde{S} : K(x,y) > 0\} \) and \(P_y \) is given by

\[P_y(x,x') := \frac{P(x,x')K(x',y')}{PK(x,y')} \quad (PK(x,y') > 0). \]

Filling in the definition of \(K \) and using our formulas for \(PK \), we see that

\[P_1(x,x') = \frac{P(x,x')K(x',1)}{PK(x,1)} = \frac{P(x,x')h(x')}{\alpha h(x')} = P^h(x,x') \quad (x,x' \in S') \]

is the generalized Doob transform of \(P' \) as defined in Lemma 2.7 and more specifically in Theorem 2.17. Thus, as long as the autonomous process \(Y \) stays in 1, the process \(X \) jumps according to the generalized Doob transformed transition kernel \(P^h \). Recall that \(P_0 \) is concentrated on \(S' \), hence \(X \) cannot get trapped as long as \(Y = 1 \). Starting with the time step when \(Y \) jumps to the state 2, and from thereon, the process \(X \) jumps according to the transition kernel

\[P_2(x,x') = \frac{P(x,x')K(x',2)}{PK(x,2)} = \frac{P(x,x')(2 - h(x'))}{2 - \alpha h(x)}, \]

which is well-defined for all \(x \in S \) since \(\alpha < 1 \) and \(h \leq 1 \). Since \(1 - h \) is not an eigenvector of \(P \), this is not a kind of transform we have seen so far.

Remark The coupling of \(X \) and \(Y \) immediately gives us the estimate

\[\mathbb{P}^x[X_n \in S'] \geq K(x,1)\mathbb{P}^1[Y_n = 1] = \alpha^n h(x). \quad (3.16) \]

In view of (2.6), this estimate quite good, but it is not completely sharp since the function \(h \) in Section 2.9 is normalized in a different way than in the present.
Indeed, in Section 2.9 we chose h such that $\sum_{x \in S'} \eta(x) h(x) = 1$, where η is a probability measure, while at present we need $\sup_{x \in S'} h(x) \leq 1$. Thus (unless h is constant on S'), the h in our present section is always smaller than the one in Section 2.9.

Interesting examples of intertwining relations for birth-and-death processes can be found in [DM09, Swa11]. Lower estimates in the spirit of (3.16) but in the more complicated set-up of hierarchical contact processes have been derived in [AS10]. The ‘evolving set process’ in [LPW09, Thm 17.23] (which can be defined for quite general Markov chains) provides another nontrivial example of an intertwining relation.
Chapter 4

Branching processes

4.1 The branching property

Let S be a countable set and let $\mathcal{N}(S)$ be the set of all functions $x : S \to \mathbb{N}$ such that $\sum_{i \in S} x(i) < \infty$. It is easy to check that $\mathcal{N}(S)$ is a countable set (even though the set of all functions $x : S \to \mathbb{N}$ is uncountable). We interpret $x \in \mathcal{N}(S)$ as a collection of finitely many particles or individuals, where $x(i)$ is the number of individuals of type i, where S is the type space, or sometimes also the number of particles at the position i, where S represents physical space. Each $x \in \mathcal{N}(S)$ can be written as

$$x = \sum_{\beta=1}^{\lfloor x \rfloor} \delta_{i_{\beta}},$$

(4.1)

where $|x| := \sum_{i} x(i)$, $i_1, \ldots, i_{|x|} \in S$, and $\delta_i \in \mathcal{N}(S)$ is defined as

$$\delta_i(j) := 1_{\{i=j\}} \quad (i, j \in S).$$

This way of writing x is of course not unique but depends on the way we order the individuals. We will be interested in Markov processes with state space $\mathcal{N}(S)$, where in each time step, each individual, independently of the others, is replaced by a finite number of new individuals (its offspring). Let Q be a probability kernel from S to $\mathcal{N}(S)$. For a given $x \in \mathcal{N}(S)$ of the form (4.1), we can construct independent $\mathcal{N}(S)$-valued random variables $V^1, \ldots, V^{|x|}$ such that

$$\mathbb{P}[V^\beta \in \cdot] = Q(i_\beta, \cdot) \quad (\beta = 1, \ldots, |x|).$$
Then
\[P(x, \cdot) := \mathbb{P}\left[\sum_{\beta=1}^{[x]} V^\beta \in \cdot \right] \]
defines a probability law on \(\mathcal{N}(S) \). Doing this for each \(x \in \mathcal{N}(S) \) defines a probability kernel \(P \) on \(\mathcal{N}(S) \). By definition, the Markov chain \(X \) with state space \(\mathcal{N}(S) \) and transition kernel \(P \) is called the multitype branching process with offspring distribution \(Q \).

Lemma 4.1 (Branching property) Let \(X = (X_k)_{k \geq 0} \) and \(Y = (Y_k)_{k \geq 0} \) be independent branching processes with the same type space \(\mathcal{N}(S) \) and offspring distribution \(Q \). Then \(Z = (Z_k)_{k \geq 0} \), defined by
\[Z_k(i) := X_k(i) + Y_k(i) \quad (k \geq 0, \ i \in S) \] (4.2)
is distributed as a branching processes with type space \(\mathcal{N}(S) \) and offspring distribution \(Q \).

Proof We need to check that
\[\mathbb{P}\left[Z_{k+1} = z \mid \mathcal{F}_k^Z \right] = P(Z_k, z) \quad \text{a.s.} \quad (k \geq 0, \ z \in \mathcal{N}(S)), \]
where \((\mathcal{F}_k^Z)_{k \geq 0} \) is the filtration generated by \(Z \). We will show that actually
\[\mathbb{P}\left[Z_{k+1} = z \mid \mathcal{F}_k^{(X,Y)} \right] = P(Z_k, z) \quad \text{a.s.} \quad (k \geq 0, \ z \in \mathcal{N}(S)), \]
where \((\mathcal{F}_k^{(X,Y)})_{k \geq 0} \) is the filtration generated by \((X,Y) = (X_k, y_k)_{k \geq 0} \). Since \(\mathcal{F}_k^Z \subset \mathcal{F}_k^{(X,Y)} \) and \(P(Z_k, z) \) is \(\mathcal{F}_k^Z \)-measurable, this then implies that
\[\mathbb{P}\left[Z_{k+1} = z \mid \mathcal{F}_k^Z \right] = \mathbb{E}\left[\mathbb{P}\left[Z_{k+1} = z \mid \mathcal{F}_k^{(X,Y)} \right] \mid \mathcal{F}_k^Z \right] = \mathbb{E}\left[P(Z_k, z) \mid \mathcal{F}_k^Z \right] = P(Z_k, z). \]
Thus, by the Markov property of \((X,Y) \), it suffices to show that
\[\mathbb{P}\left[Z_{k+1} = z \mid X_k = x, Y_k = y \right] = P(x + y, z) \quad (k \geq 0, \ x, y, z \in \mathcal{N}(S)). \]
Here
\[\mathbb{P}\left[Z_{k+1} = z \mid X_k = x, Y_k = y \right] = \sum_{x' \leq z} \mathbb{P}\left[X_{k+1} = x', Y_{k+1} = z - x' \mid X_k = x, Y_k = y \right] = \sum_{x' \leq z} P(x, x') P(y, z - x'), \]
where we have used that by the independence of X and Y, the process (X,Y) is a Markov process with transition kernel $P_2(x,y;x',y') := P(x,x')P(y,y')$.

Thus, we are left with the task of showing that
\[
P(x + y, z) = \sum_{x' \leq z} P(x, x')P(y, z - x') \quad (x, y, z \in \mathcal{N}(S)).
\] (4.3)

Let us write
\[
x = \sum_{\beta=1}^{\lfloor x \rfloor} \delta_{i_\beta} \quad \text{and} \quad y = \sum_{\gamma=1}^{\lfloor y \rfloor} \delta_{j_\gamma}.
\]
and let $V^1, \ldots, V^{\lfloor x \rfloor}$ and $W^1, \ldots, W^{\lfloor y \rfloor}$ be all independent of each other such that
\[
\mathbb{P}[V^\beta \in \cdot] = Q(i_\beta, \cdot) \quad (\beta = 1, \ldots, \lfloor x \rfloor),
\]
\[
\mathbb{P}[W^\gamma \in \cdot] = Q(j_\gamma, \cdot) \quad (\gamma = 1, \ldots, \lfloor y \rfloor).
\]
Then
\[
P(x + y, z) = \mathbb{P}\left[\sum_{\beta=1}^{\lfloor x \rfloor} V^\beta + \sum_{\gamma=1}^{\lfloor y \rfloor} W^\gamma = z\right]
\]
\[
= \sum_{x' \leq z} \mathbb{P}\left[\sum_{\beta=1}^{\lfloor x \rfloor} V^\beta = x', \sum_{\gamma=1}^{\lfloor y \rfloor} W^\gamma = z - x'\right] = \sum_{x' \leq z} P(x, x')P(y, z - x'),
\]
as required.

Remark We may define the convolution of two probability laws μ, ν on $\mathcal{N}(S)$ by
\[
\mu * \nu(z) := \sum_{x' \leq z} \mu(x')\nu(z - x').
\]
Then (4.3) says that
\[
P(x + y, \cdot) = P(x, \cdot) * P(y, \cdot) \quad (x, y \in \mathcal{N}(S)).
\] (4.4)

In general, any probability kernel on $\mathcal{N}(S)$ with this property is said to have the branching property. It is not hard to see that a Markov process with state space $\mathcal{N}(S)$ has the branching property (4.2) if and only if its transition kernel has the branching property (4.4). In particular (4.4) implies that if
\[
x = \sum_{\beta=1}^{\lfloor x \rfloor} \delta_{i_\beta},
\]
then
\[P(x, \cdot) = P(\delta_{i_1}, \cdot) \ast \cdots \ast P(\delta_{i_x}, \cdot), \]
where \(P(\delta, \cdot) = Q(\delta, \cdot). \) Thus, each Markov process that has the branching property is a branching process, and its transition probabilities are uniquely characterized by the offspring distribution.

4.2 Generating functions

For each function \(\phi : S \to \mathbb{R} \) and \(x \in N(S) \), let us write
\[
\phi^x := \prod_{i \in S} \phi(i)^{x(i)} = \prod_{\beta=1}^{|x|} \phi(i_{\beta}) \quad \text{where} \quad x = \sum_{\beta=1}^{|x|} \delta_{i_{\beta}},
\]
where \(\phi^0 := 1. \) It is easy to see that
\[
\phi^{x+y} = \phi^x \phi^y \quad (x, y \in N(S), \phi : S \to \mathbb{R}).
\]
Because of all the independence coming from the branching property, the linear operator \(P \) associated with the transition kernel of a branching process maps such 'multiplicative functions' into multiplicative functions. We will especially be interested in the case that \(\phi \) takes values in \([0, 1] \). We let \([0, 1]^S \) denote the space of all functions \(\phi : S \to [0, 1] \).

Lemma 4.2 (Generating operator) Let \(P \) denote the transition kernel of a multitype branching process with type space \(S \) and offspring distribution \(Q \). Let \(U \) be the nonlinear operator defined by
\[
1 - U \phi(i) := \sum_{x \in N(S)} Q(i, x)(1 - \phi)^x \quad (i \in S, \phi \in [0, 1]^S).
\]
Then
\[
P f_{\phi} = f_{U \phi} \quad (\phi \in [0, 1]^S),
\]
where for any \(\phi \in [0, 1]^S \), we define \(f_{\phi} : N(S) \to [0, 1] \) by \(f_{\phi}(x) := (1 - \phi)^x \).

Proof If \(X \) is started in \(X_0 = x \) with \(x = \sum_{\beta=1}^{|x|} \delta_{i_{\beta}} \), then \(X_1 \) is equal in distribution to \(\sum_{\beta=1}^{|x|} V^\beta \) where the \(V^\beta \)'s are independent with distribution \(Q(i_{\beta}, \cdot) \). It follows
that
\[Pf_\phi(x) = \mathbb{E}[(1 - \phi)^{\sum_{\beta=1}^{|x|} V^\beta}] = \mathbb{E}\left[\prod_{\beta=1}^{|x|} (1 - \phi)^{V^\beta} \right] = \prod_{\beta=1}^{|x|} \mathbb{E}[(1 - \phi)^{V^\beta}] = \prod_{\beta=1}^{|x|} (1 - U\phi)(i_\beta) = f_{U\phi}(x). \]

\[\left(4.5\right) \]

\[\text{Remark 1} \] It would seem that the formulation of the lemma is simpler if we replace \(\phi \) by \(1 - \phi \) everywhere, but as we will see later there are good reasons to formulate things in terms of \(1 - \phi \).

\[\text{Remark 2} \] Our assumption that \(0 \leq \phi \leq 1 \) guarantees that the sum \(\sum_x Q(i, x)\phi^x \) in the definition of \(U\phi(i) \) is finite. Under more restrictive assumptions on \(Q \), we can define \(U\phi \) also for more general real-valued \(\phi \).

We call the nonlinear operator \(U \) from Lemma 4.2 the \textit{generating operator} of the branching process with offspring distribution \(Q \). By induction, Lemma 4.2 shows that \(P^n f_\phi = f_{U^n\phi} \), or, in other words
\[\mathbb{E}^x[(1 - \phi)^{X_n}] = (1 - U^n\phi)^x \quad (n \geq 0, \ \phi \in [0, 1]^S). \]

The advantage of the operator \(U \) is that it acts on functions ‘living’ on the space \(S \), while \(P \) acts on functions on the much larger space \(\mathcal{N}(S) \). The price we pay for this is that \(U \), unlike \(P \), is not linear.

The next lemma shows that \(U \) contains, in a sense ‘all information we need’.

\[\text{Lemma 4.3 (Generating functions are distribution determining)} \] Let \(\mu, \nu \) be probability measures on \(\mathcal{N}(S) \) such that
\[\sum_{x \in \mathcal{N}(S)} \mu(x)(1 - \phi)^x = \sum_{x \in \mathcal{N}(S)} \nu(x)(1 - \phi)^x \quad (\phi \in [0, 1]^S). \]

Then \(\mu = \nu \).

\[\text{Proof} \] We will prove the statement first under the assumption that \(S \) is finite. Let \(\mathcal{N}(S) \cup \{ \infty \} \) be the one-point compactification of \(\mathcal{N}(S) \). For each \(\psi \in [0, 1]^S \), define \(g_\psi(x) := \psi^x \) and \(g_\psi(\infty) := 0 \). Then the \(g_\psi \)'s are continuous functions on the compact space \(\mathcal{N}(S) \cup \{ \infty \} \). It is not hard to see that they \textit{separate points}, i.e., for each \(x \neq x' \) there exists a \(\psi \in [0, 1]^S \) such that \(g_\psi(x) \neq g_\psi(x') \). Since \(g_\psi g_{\psi'} = g_{\psi\psi'} \),
the class \(\{ g_\psi : \psi \in [0, 1]^S \} \) is closed under multiplication. Let \(\mathcal{H} \) be the space of all linear combinations of functions from this class and the identity function. Then \(\mathcal{H} \) is an algebra that separates points, hence by the Stone-Weierstrass theorem \(\mathcal{H} \) is dense in the space of continuous functions on \(\mathcal{N}(S) \cup \{ \infty \} \), equipped with the supremum norm. By linearity and because \(\mu \) and \(\nu \) are probability measures,

\[
\sum_x \mu(x)f(x) = \sum_x \nu(x)f(x)
\]

for all \(f \in \mathcal{H} \). Since \(\mathcal{H} \) is dense, it follows that \(\mu = \nu \).

If \(S \) is not finite, then by applying our argument to functions \(\psi \) that are zero outside a finite set, we see that the finite-dimensional marginals of \(\mu \) and \(\nu \) agree, which shows that \(\mu = \nu \) in general.

There is a nice suggestive way of writing the relation (4.5). Generalizing (3.3), for any \(\phi \in [0, 1]^S \), we define a probability kernel \(K_\phi \) from \(\mathcal{N}(S) \) to \(\mathcal{N}(S) \) by

\[
K_\phi(x, \cdot) := P\left[\sum_{\beta=1}^{\lfloor x \rfloor} \chi_{\beta} \delta_{i_\beta} \in \cdot \right],
\]

where \(x = \sum_{\beta=1}^{\lfloor x \rfloor} \delta_{i_\beta} \) and the \(\chi_1, \ldots, \chi_{\lfloor x \rfloor} \) are independent Bernoulli random variables with \(P[\chi_\beta = 1] = \phi(i_\beta) \). Thus, if \(Z \) is distributed according to the law \(K_\phi(x, \cdot) \), then \(Z \) is obtained from \(x \) by independent thinning, where a particle of type \(i \) is kept with probability \(\phi(i) \) and thrown away with the remaining probability. Note that \(K_\phi \) has the branching property (4.4) and corresponds in fact to the offspring distribution

\[
Q_\phi(i, y) := K_\phi(\delta_i, y) = \rho(i)1_{\{y=\delta_i\}} + (1 - \rho(i))1_{\{y=0\}} \quad (i \in S, \ y \in \mathcal{N}(S)).
\]

Let \(\text{Thin}_\phi(x) \) denote a random variable with law \(K_\phi(x, \cdot) \). Then

\[
P[\text{Thin}_\phi(x) = 0] = (1 - \phi)^x \quad (x \in \mathcal{N}(S), \ \phi \in [0, 1]^S),
\]

where 0 denotes the configuration in \(\mathcal{N}(S) \) with no particles. In view of this,

\[
1 - U\phi(i) = \sum_{x \in \mathcal{N}(S)} Q(i, x)(1 - \phi)^x = \delta_i PK_\phi(0)
\]

and hence

\[
U\phi(i) = \delta_i QK_\phi(\mathcal{N}(S) \setminus \{0\}).
\]

Note that this says that if we start with one particle of type \(i \), let it produce offspring, and then thin with \(\phi \), then \(U\phi(i) \) is the probability that we are left with at least one individual. Likewise, we may rewrite (4.5) in the form

\[
\delta_x P^n K_\phi(0) = \delta_x K_{U^n \phi}(0),
\]
where \(\mu P^n K_\phi \) is the law obtained by starting the branching process in \(x \), running it till time \(t \), and then applying the kernel \(K_\phi \), while \(\delta_x K_{U^n \phi} \) is the law obtained by thinning \(x \) with \(U^n \phi \).

Exercise 4.4 (Repeated thinning) Show that \(K_\phi K_\psi = K_{\phi \psi} \) (\(\phi, \psi \in [0, 1]^S \)).

Exercise 4.5 (Thinning characterization) Let \(\mu, \nu \) be probability laws on \(\mathcal{N}(S) \) such that \(\mu K_\phi(0) = \nu K_\phi(0) \) for all \(\phi \in [0, 1]^S \). Show that \(\mu = \nu \).

4.3 The survival probability

Let \(X \) be a branching process with type space \(S \) and generating operator \(U \). We observe that

\[
\mathbb{P}^\delta_i \left[X_n \neq 0 \right] = 1 - \mathbb{P}^\delta_i \left[\text{Thin}_1(X_n) = 0 \right] = 1 - \mathbb{P}^\delta_i \left[\text{Thin}_{U^n 1}(\delta_i) = 0 \right] = 1 - (1 - U^n 1(i)) = U^n 1(i),
\]

where we use the symbol 1 also to denote the function that is constantly one. Since 0 is a trap for any branching process,

\[
\mathbb{P}^\delta_i \left[X_n \neq 0 \right] \xrightarrow{n \to \infty} \mathbb{P}^\delta_i \left[X_k \neq 0 \text{ for all } k \geq 0 \right],
\]

where we have used the continuity of our probability measure with respect to decreasing sequences of events. In view of this, let us write

\[
\rho(i) := \lim_{n \to \infty} U^n 1(i) = \mathbb{P}^\delta_i \left[X_k \neq 0 \text{ for all } k \geq 0 \right] \quad (4.9)
\]

for the probability to survive starting from a single particle of type \(i \).

Lemma 4.6 (Survival probability) The function \(\rho \) in (4.9) is the largest solution (in \([0, 1]^S \)) of the equation

\[U \rho = \rho, \]

i.e., \(\rho \) solves this equation and any other solutions \(\rho' \) of this equation, if they exist, satisfy \(\rho' \leq \rho \).

Proof Since

\[U \phi(i) = \sum_x Q(i, x) \left(1 - (1 - \phi)^x \right), \]

...
and since $\phi \mapsto 1 - (1 - \phi)^x$ is a nondecreasing function, we see that
\begin{equation}
\phi \leq \psi \quad \text{implies} \quad U\phi \leq U\psi.
\end{equation}
(4.10)

By monotone convergence, we see moreover that
\begin{equation}
\phi_n \downarrow \phi \quad \text{implies} \quad U\phi_n \downarrow U\phi.
\end{equation}
(4.11)

Since $1 \geq U1$ we see by (4.10) and induction that $U^n1 \geq U^{n+1}1$ and $U^n1 \downarrow \rho$, which was in fact also clear from our probabilistic interpretation. By (4.11), it follows that
\[
U\rho = U \lim_{n \to \infty} U^n1 = \lim_{n \to \infty} U^{n+1}1 = \rho.
\]

Now if $\rho' \in [0,1]^S$ is any other fixed point of U, then by (4.10) and (4.11)
\[
\rho' \leq 1 \quad \text{implies} \quad \rho' = U^n\rho' \leq U^n1 \xrightarrow[\rho \to \infty]{\rho'}
\]
which shows that $\rho' \leq \rho$.

Exercise 4.7 (Galton-Watson process) Let X be a branching process whose
type space $S = \{1\}$ consists of a single point, and let Q be its offspring distribution. We identify $\mathcal{N}(\{1\}) \cong \mathbb{N}$. Since there is only one type of individual, we only need to now with which probability a single individual produces n offspring ($n \geq 0$). Thus, we simply write
\[
Q(n) = Q(1, n\delta_1)
\]
which is a probability law on \mathbb{N}. Assume that Q has a finite second moment and let
\[
a := \sum_{n=0}^{\infty} nQ(n)
\]
denote its mean. We identify $[0,1]^S \cong [0,1]$ and let $U : [0,1] \to [0,1]$ be the
generating operator of X, which is now just a (nonlinear) function from $[0,1]$ to $[0,1]$.

(a) Show that U is a concave function and that $U'(0) = a$.

(b) Assume that $Q(1) < 1$. Show that
\[
P^1[X_k \neq 0 \forall k \geq 0] > 0
\]
if and only if $a > 1$.
Remark Single-type branching processes as in Exercise 4.7 are called Galton-Watson processes after the seminal paper (from 1875) [WG75], where they proved that the survival probability ρ solves $U \rho = \rho$ but incorrectly concluded from this that the process survives for all $a \geq 0$, since ‘obviously the solution of this equation is $\rho = 0$’.

Exercise 4.8 (Spatial branching) Let $(I_k)_{k \geq 0}$ be i.i.d. with $\mathbb{P}[I_k = -1] = 1/2 = \mathbb{P}[I_k = 1]$, and let N be a Poisson distributed random variable with mean a, independent of $(I_k)_{k \geq 0}$. Let X be the branching process with type space \mathbb{Z} and offspring distribution Q given by

$$Q(i, \cdot) := \mathbb{P}\left[\sum_{k=1}^{N} \delta_{i+I_k} \in \cdot \right] (i \in \mathbb{Z}),$$

which says that a particle at i produces Pois(a) offspring which are independently placed on either $i-1$ or $i+1$, with equal probabilities. Show that

$$\mathbb{P}^{0_0}[X_k \neq 0 \ \forall k \geq 0] > 0$$

if and only if $a > 1$.

Exercise 4.9 (Two-type process) Let X be a branching process with type space $S = \{1, 2\}$ and the following offspring distribution. Individuals of both types produce a Poisson number of offspring, with mean a. If the parent is of type 1, then its offspring are, independently of each other, of type 1 or 2 with probability $1/2$ each. All offspring of individuals of type 2 are again of type 2. Starting with a single individual of type 1, for what values of a is there a positive probability that there will be individuals of type 1 at all times?

Exercise 4.10 (Poisson offspring) Let X be a Galton-Watson process where each individual produces a Poisson number of offspring with mean a, and let

$$\rho_n := \mathbb{P}^{1}[X_n = 0] \quad (n \geq 0)$$

be the probability that the process started with a single individual is extinct after n steps. Prove that $\rho_{n+1} = e^{a(\rho_n - 1)}$.
4.4 First moment formula

Proposition 4.11 (First moment formula) Let X be a branching process with type space S and offspring distribution Q. Assume that the matrix

$$A(i, j) := \sum_{x \in \mathcal{N}(S)} Q(i, x) x(j) \quad (i, j \in S) \quad (4.12)$$

satisfies

$$\sup_{i \in S} \sum_{j \in S} A(i, j) < \infty. \quad (4.13)$$

Then

$$E_x[A^n(i, j) \mid X_n = x] = \sum_{i} x(i) A^n(i, j) \quad (x \in \mathcal{N}(S), \ j \in S, \ n \geq 0).$$

Proof We first prove the statement for $n = 1$. If $x = \sum_{|x|} x(i) \delta_{i, x}$, then X_1 is equal in distribution to $\sum_{|x|} x(i) V_{|x|}$ where the $V_{|x|}$'s are independent with distribution $Q(i_{|x|}, \cdot)$. Therefore,

$$E_x[A^n(i, j)] = \sum_{i} x(i) A^n(i, j) = \sum_{i} x(i) A(i, j).$$

By induction, it follows that

$$E_x[A^n(i, j)] = \sum_{x'} P_x[X_n = x'] E_x[A^n(i, j)] = \sum_{x'} A(i, j) \sum_{k} x(k) A^n(k, i) = A^{n+1}(i, k),$$

where all expressions are finite by (4.13).

Lemma 4.12 (Subcritical processes) Let X be a branching process with finite type space S and offspring distribution Q. Assume that its first moment matrix A defined in (4.12) is irreducible and satisfies (4.13), and let α be its Perron-Frobenius eigenvalue. If $\alpha < 1$, then

$$\mathbb{P}_x[X_k \neq 0 \ \forall k \geq 0] = 0 \quad (x \in \mathcal{N}(S)).$$
4.4. FIRST MOMENT FORMULA

Proof For any \(f : S \to \mathbb{R} \), let \(l_f : \mathcal{N}(S) \to \mathbb{R} \) denote the ‘linear’ function

\[
l_f(x) := \sum_{i \in S} x(i) f(i) \quad (x \in \mathcal{N}(S), \ f : S \to \mathbb{R}).
\]

Then by Lemma 4.11,

\[
P^n l_f(x) = \mathbb{E}^x [l_f(X_n)] = \sum_i f(i) \mathbb{E}^x [X_n(i)] = \sum_i f(i) \sum_j x(j) A^n(j, i) = \sum_j x(j) A^n f(j) = l_A^f(x).
\]

In particular, if \(h \) is the (strictly positive) right eigenvector of \(A \) with eigenvalue \(\alpha \), then

\[
P^n l_h = l_A^h = l_{\alpha^n h},
\]

which says that

\[
\mathbb{E}^x [h(X_n)] = \alpha^n h(x),
\]

which tends to zero by our assumption that \(\alpha < 1 \). Since \(h \) is strictly positive, it follows that \(\mathbb{P}^x [X_n \neq 0] \to 0 \).

Proposition 4.13 (Critical processes) Let \(X \) be a branching process with finite type space \(S \) and offspring distribution \(Q \). Assume that its first moment matrix \(A \) defined in (4.12) is irreducible and satisfies (4.13), and let \(\alpha \) be its Perron-Frobenius eigenvalue. If \(\alpha = 1 \) and there exists some \(i \in S \) such that \(Q(i, 0) > 0 \), then

\[
\mathbb{P}^x [X_k \neq 0 \ \forall k \geq 0] = 0 \quad (x \in \mathcal{N}(S)).
\]

Proof Let \(\mathcal{A} := \{X_n \neq 0 \ \forall n \geq 0\} \) and let

\[
\rho(i) := \mathbb{P}^i (\mathcal{A}).
\]

By the branching property,

\[
\mathbb{P}^x (\mathcal{A}^c) = (1 - \rho)^x \quad (x \in \mathcal{N}(S)).
\]

By the principle ‘what can happen must happen’ (Proposition 0.14), we have

\[
(1 - \rho)^X_n \xrightarrow{0 \to \infty} \text{ a.s. on the event } \mathcal{A}.
\]
By irreducibility and the fact that $Q(j,0) > 0$ for some j, it is not hard to see that $
ho(i) < 1$ for all $i \in S$. By the finiteness of S, it follows that $\sup_{i \in S} \rho(i) < 1$ and hence
\[
\inf_{x \in N(S), |x| \leq N} (1 - \rho)^x > 0 \quad (N \geq 0).
\]
It follows that
\[
|X_n| \rightarrow \infty \quad \text{a.s. on the event } A,
\]
i.e., the only way for the process to survive is to let the number of particles tend to infinity.

Let h be the (strictly positive) right eigenvector of A with eigenvalue α. Then
\[
\mathbb{E}[l_h(X_{n+1}) \mid \mathcal{F}_n^X] = (Pl_h)(X_n) = l_{ah}(X_n) = \alpha l_h(X_n),
\]
which shows that (provided that $\mathbb{E}[h(X_0)] < \infty$, which is satisfied for processes started in deterministic initial states) the process
\[
M_n := \alpha^{-n} \sum_{i \in S} h(i) X_n(i) \quad (n \geq 0)
\]
is a nonnegative martingale. By martingale convergence, it follows that there exists a random variable M_∞ such that
\[
M_n \rightarrow M_\infty \quad \text{a.s.}
\]
In particular, if $\alpha = 1$, this proves that
\[
|X_n| \xrightarrow{n \to \infty} \infty \quad \text{a.s.,}
\]
which by (4.14) implies that $\mathbb{P}(A) = 0$.

\section{Second moment formula}

We start with some general Markov chain theory. For any probability law μ on a countable set S and functions $f, g : S \to \mathbb{R}$, let us write
\[
\text{Cov}_\mu(f, g) := \mu(fg) - (\mu f)(\mu g)
\]
for the covariance of f and g, whenever this is well-defined. Note that if X is a random variable with law μ, then $\text{Cov}_\mu(f, g) = \mathbb{E}[f(X)g(X)] - \mathbb{E}[f(X)]\mathbb{E}[g(X)]$, in accordance with the usual formula for the covariance of two functions.
Lemma 4.14 (Covariance formula) Let X be a Markov chain with countable state space S and transition kernel P. Let μ be a probability law on S and let C be a class of functions $f : S \to \mathbb{R}$ such that

(i) $f \in C$ implies $Pf \in C$.

(ii) $\sum_{x,y} \mu(x)P(x,y)|f(y)g(y)| < \infty$ for all $x \in S$ and $f, g \in C$.

Then, for any $f, g \in C$,

$$\text{Cov}_{\mu P^n}(f, g) = \text{Cov}_{\mu}(P^n f, P^n g) + \sum_{k=1}^{n} \mu P^{n-k} \Gamma(P^{k-1} f, P^{k-1} g),$$

(4.17)

where

$$\Gamma(f, g) := P(fg) - (Pf)(Pg) \quad (f, g \in C).$$

Remark 1 If $X = (X_k)_{k \geq 0}$ is the Markov chain with initial law μ and transition kernel P, then

$$\text{Cov}_{\mu P^n}(f, g) = \mathbb{E}[f(X_n)g(X_n)] - \mathbb{E}[f(X_n)]\mathbb{E}[g(X_n)],$$

$$=: \text{Cov}(f(X_n), g(X_n)),$$

and similarly

$$\text{Cov}_{\mu}(P^n f, P^n g) = \text{Cov}((P^n f)(X_0), (P^n g)(X_0)).$$

Remark 2 The assumptions of the lemma are trivially fulfilled if we take for C the class of all bounded real functions on S. Often, we also need the lemma for certain unbounded functions, but in this case we need to find a class C satisfying the assumptions of the lemma to ensure that all second moments are finite.

Proof of Lemma 4.14 The statement is trivial for $n = 0$. Fix $n \geq 1$ and define a function $H : \{0, \ldots, n\} \to \mathbb{R}$ by

$$H(k) := P^k((P^{n-k} f)(P^{n-k} g)) \quad (0 \leq k \leq n).$$

Then

$$\mu(H(n) - H(0)) = \mu P^n(fg) - \mu((P^n f)(P^n g))$$

$$= [\mu P^n(fg) - (\mu P^h f)(\mu P^n g)] - [\mu((P^n f)(P^n g)) - (\mu P^h f)(\mu P^n g)]$$

$$= \text{Cov}_{\mu P^n}(f, g) - \text{Cov}_\mu(P^n f, P^n g).$$
It follows that
\[
\text{Cov}_\mu(P^n f, P^n g) - \text{Cov}_\mu(P^n f, P^n g) = \sum_{k=1}^n \mu[H(k) - H(k - 1)]
\]
\[
= \sum_{k=1}^n \mu[P^k((P^{n-k} f)(P^{n-k} g)) - P^{k-1}((P^{n-k+1} f)(P^{n-k+1} g))]
\]
\[
= \sum_{k=1}^n \mu P^{k-1} \Gamma(P^{n-k} f, P^{n-k} g).
\]
Changing the summation order (setting \(k' := n - k + 1 \)), we arrive at (4.17).

We now apply this general formula to branching processes. To simplify matters, we will only look at finite type spaces.

Proposition 4.15 (Second moment formula) Let \(X \) be a branching process with finite type space \(S \) and offspring distribution \(Q \). Let \(V^i \) denote a random variable with law \(Q(i, \cdot) \) and assume that \(A(i, j) := \mathbb{E}[V^i(j)] \), \(C(i; j, k) := \mathbb{E}[V^i(j)V^i(k)] \) are finite for all \(i, j, k \in S \). Let \(A \) be the linear operator with matrix \(A(i, j) \) and for functions \(f, g : S \to \mathbb{R} \), let \(C(f, g) : S \to \mathbb{R} \) be defined by
\[
C(f, g)(i) := \sum_{j,k \in S} C(i; j, k)f(j)g(k).
\]

For \(x \in \mathcal{N}(S) \) and \(f : S \to \mathbb{R} \), let \(xf := \sum_i x(i)f(i) \). Then, for functions \(f, g : S \to \mathbb{R} \), one has
\[
\mathbb{E}^x[X^n f] = xA^n f,
\]
\[
\text{Cov}^x(X_n f, X_n g) = \sum_{k=1}^n xA^{n-k}C(A^{k-1} f, A^{k-1} g),
\]
where \(\text{Cov}^x \) denotes covariance w.r.t. to the law \(\mathbb{P}^x \).

Proof The first formula in (4.19) has already been proved in Lemma 4.11. As in the proof of Lemma 4.12, for any real function \(f \) on \(S \), let \(l_f : \mathcal{N}(S) \to \mathbb{R} \) denote
the ‘linear’ function \(l_f(x) := \sum_i f(i)x(i) \). Then the first formula in (4.19) says that
\[
P^n l_f = l_{A^n f} \quad (f \in \mathbb{R}^S),
\]
which motivates us to take for the class \(C \) in Lemma 4.14 the class of ‘linear’ functions \(l_f \) with \(f : S \to \mathbb{R} \) any function. Using the fact that \(C(i; j, k) < \infty \) for all \(i, j, k \in S \), it is not hard to prove that \(C \) satisfies the assumptions of Lemma 4.14.

Let \(x = \sum_{\beta=1}^{[x]} \delta_{\beta} \) and let \(V^1, \ldots, V^{[x]} \) be independent such that \(V^\beta \) is distributed according to \(Q(i_\beta, \cdot) \). We calculate
\[
\Gamma(l_f, l_g)(x) = (P(l_f l_g) - (Pl_f)(Pl_g))(x)
= \text{Cov}\left(\sum_{j,\beta} f(j)V^\beta(j), \sum_{k,\gamma} g(k)V^\gamma(k) \right)
= \sum_{i,j,k} x(i)f(j)g(k)C(i; j, k) = l_C(f, g)(x),
\]
where we have used that \(\text{Cov}(V^\beta(i), V^\gamma(j)) = 0 \) for \(\beta \neq \gamma \) by independence. Then Lemma 4.14 tells us that
\[
\text{Cov}_{\delta_x P^n}(l_f, l_g) = \sum_{k=1}^{n} \delta_x P^{n-k} \Gamma(A^{k-1} f, A^{k-1} g)
= \sum_{k=1}^{n} \delta_x P^{n-k} C(A^{k-1} f, A^{k-1} g)(x),
\]
which proves the second formula in (4.19).

\section*{4.6 Supercritical processes}

The aim of this section is to prove that supercritical branching processes survive.

\textbf{Proposition 4.16 (Supercritical process)} Let \(X \) be a branching process with finite type space \(S \) and offspring distribution \(Q \). Assume that the first and second moments \(A(i, j) \) and \(C(i; j, k) \) of \(Q \), defined in (4.18), are all finite and that \(A \) is irreducible. Assume that the Perron-Frobenius eigenvalue \(\alpha \) of \(A \) satisfies \(\alpha > 1 \). Then
\[
P^x[X_k \neq 0 \; \forall k \geq 0] > 0 \quad (x \in \mathcal{N}(S), \; x \neq 0).
\]
Proof Let h be the (strictly positive) right eigenvector of A with eigenvalue α. We have already seen in formulas (4.15)–(4.16) in the proof of Proposition 4.13 that $M_n = \alpha^{-n}X_nh$ is a nonnegative martingale that converges to an a.s. limit M_∞. By Proposition 0.8 if we can show that M_n is uniformly integrable, then

$$E^x[M_\infty] = xh > 0$$

for all $x \neq 0$, which shows that the process survives with positive probability. Thus, it suffices to show that

$$\sup_{n \geq 0} E^x[M_n^2] < \infty.$$

We write

$$E^x[M_n^2] = (E^x[\alpha^{-n}X_nh])^2 + \text{Var}^x(\alpha^{-n}X_nh),$$

where by the first formula in (4.19)

$$(E^x[\alpha^{-n}X_nh])^2 = (\alpha^{-n}xA^n h)^2 = (xh)^2$$

is clearly bounded uniformly in n. We observe that since h is strictly positive and S is finite, we can find a constant $K < \infty$ such that

$$C(h,h) \leq Kh.$$

Therefore, applying the second formula in (4.19), we see that

$$\text{Var}^x(\alpha^{-n}X_nh) = \alpha^{-2n} \sum_{k=1}^n xA^{n-k} C(A^{k-1}h, A^{k-1}h)$$

$$= \alpha^{-2n} \sum_{k=1}^n xA^{n-k} \alpha^{2(k-1)} C(h,h) \leq \alpha^{-2n} K \sum_{k=1}^n xA^{n-k} \alpha^{2(k-1)} h$$

$$= \alpha^{-2n} K \sum_{k=1}^n A^{n-k} \alpha^{2(k-1)} xh = Kxh \sum_{k=1}^n \alpha^{k-n-2} \leq Kxh \alpha^{-2} \sum_{k=0}^\infty \alpha^{-k} < \infty,$$

uniformly in $n \geq 1$, where we have used that $\alpha > 1$. \blacksquare

4.7 Trimmed processes

Let X be a multitype branching process with countable type space S and offspring distribution Q. Recall from Lemma 4.6 that

$$\rho(i) := \mathbb{P}^\delta[X_k \neq 0 \ \forall k \geq 0] \quad (i \in S)$$
is the largest solution of the equation \(U\rho = \rho \), where \(U \) is the generating operator of \(X \). Let \(\rho \in [0,1]^{\mathcal{S}} \) be any solution of \(U\rho = \rho \). The aim of the present section is to prove a result similar to conditioning on the future (as in Proposition 1.5) or intertwining of processes with one trap (Proposition 3.6), but now on the level of the individuals in a branching process. More precisely, we will divide the population into two ‘sorts’ of individuals, with probabilities (depending on the type) \(\rho(i) \) and \(1 - \rho(i) \). In particular, if \(\rho \) is the survival probability, then we divide the population at each time \(k \) into those individuals which we know are going to survive (or, more precisely, that have living descendants at all times), and those whose descendants are going to die out completely.

To this aim, let \(x = \sum_{\beta=1}^{\lfloor x \rfloor} \delta_{i_{\beta}} \in \mathcal{N}(S) \) and let \(\chi_1, \ldots, \chi_{\lfloor x \rfloor} \) be independent Bernoulli random variables with \(\mathbb{P}[\chi_\beta = 1] = \rho(i_\beta) \). Doing this for any \(x \in \mathcal{N}(S) \), we define a probability kernel \(L_\rho \) from \(\mathcal{N}(S) \) to \(\mathcal{N}(S \times \{0,1\}) \) by

\[
L_\rho(x, \cdot) := \mathbb{P}\left[\sum_{\beta=1}^{\lfloor x \rfloor} \delta_{(i_\beta, \chi_\beta)} \in \cdot \right].
\]

Another way to describe \(L_\rho \) is to note that \(L_\rho \) has the branching property (4.4) and

\[
L_\rho(\delta_i, y) = \rho(i)1_{\{y = \delta_{(i,1)}\}} + (1 - \rho(i))1_{\{y = \delta_{(i,0)}\}} \quad (i \in S, \ y \in \mathcal{N}(\hat{S})).
\]

Note that this is very similar to the thinning kernel \(K_\rho \) defined in (4.6).

We set \(\hat{S} := \{(i, \sigma) : i \in S, \ \sigma \in \{0,1\}, \ K(\delta_i, \delta_{(i,\sigma)}) > 0\} \), i.e.,

\[
\hat{S} := S_0 \cup S_1, \quad \text{where} \quad S_0 := \{(i, 0) : 1 - \rho(i) > 0\} \quad \text{and} \quad S_1 := \{(i, 0) : 1 - \rho(i) > 0\}.
\]

Then \(L_\rho \) is in effect a probability kernel from \(\mathcal{N}(S) \) to \(\mathcal{N}(\hat{S}) \).

For any \(x \in \mathcal{N}(S) \) and \(S' \subset S \), let us write

\[
x|_{S'} := (x(i))_{i \in S'} \in \mathcal{N}(S')
\]

for the restriction of \(x \) to \(S' \) (and similarly for subsets of \(\hat{S} \)). With this notation, if \(Y \) is a random variable with law \(L_\rho(x, \cdot) \), then \(Y|_{S_1} \) (resp. \(Y|_{S_0} \)) is a thinning of \(x \) with the function \(\rho \) (resp. \(1 - \rho \)).
Recall that the offspring distribution Q of X is a probability kernel from S to $\mathcal{N}(S)$. Let
\[E := \{ y \in \mathcal{N}(\hat{S}) : y|_{S_1} = 0 \}. \]
Observe that QL_ρ is a probability kernel from S to $\mathcal{N}(\hat{S})$. For given $i \in S$, the probability of E under $QL_\rho(i, \cdot)$ is given by
\[QL_\rho(i, E) = \sum_{x \in \mathcal{N}(\hat{S})} Q(i, x)(1 - \rho)^x = 1 - U_\rho(i) = 1 - \rho(i), \quad (4.20) \]
where we have used that $U_\rho = \rho$. We define a probability kernel \hat{Q} from \hat{S} to $\mathcal{N}(\hat{S})$ by
\[\hat{Q}(i, \sigma; \cdot) := \begin{cases} QL_\rho(i, \cdot | E) & \text{if } \sigma = 0, \\ QL_\rho(i, \cdot | E^c) & \text{if } \sigma = 1, \end{cases} \]
where we are conditioning the probability law $QL_\rho(i, \cdot)$ on the event E and its complement, respectively. By (4.20), these conditional probabilities are well-defined, i.e., $QL_\rho(i, E) > 0$ for all $(i, 0) \in S_0$ and $QL_\rho(i, E^c) > 0$ for all $(i, 1) \in S_1$.

In words, our definition of \hat{Q} says that an individual of type $(i, 0) \in S_0$ produces offspring in the following manner. First, we produce offspring according to the law $Q(i, \cdot)$ of our original branching process. Next, we assign to these individuals independent ‘signs’ 0, 1 with probabilities depending on the type of the individual through the function ρ. Finally, we condition on producing only offspring with sign 0. Individuals of type $(i, 1) \in S_1$ reproduce similarly, but in this case we condition on producing at least one offspring with sign 1. Note that individuals of a type in S_1 always produce at least one offspring in S_1, and possibly also offspring in S_0. Individuals in S_0 produce only offspring in S_0, and possibly no offspring at all.

Theorem 4.17 (Distinguishing surviving particles) Let $X = (X_k)_{k \geq 0}$ be a branching process with finite type space S and irreducible offspring distribution Q. Assume that X survives (with positive probability). Let ρ, L_ρ, \hat{S}, and \hat{Q} be as defined above. Then X can be coupled to a branching process Y with type space \hat{S} and offspring distribution \hat{Q}, in such a way that
\[\mathbb{P}[Y_n = y \mid (X_k)_{0 \leq k \leq n}] = L_\rho(X_n, \cdot) \quad (y \in \hat{S}, \ n \geq 0). \quad (4.21) \]

Proof We apply Theorem 3.5. In fact, for our present purpose Theorem 3.4 is sufficient, where the function ψ occurring there is given by
\[\psi(y)(i) := y(i, 0) + y(i, 1) \quad (y \in \mathcal{N}(\hat{S}), \ i \in S). \]
Let P and \hat{P} denote the transition kernels of X and Y, respectively. We need to check that

$$PL_\rho = L_\rho \hat{P}.$$

Since P, L_ρ, and \hat{P} have the branching property (4.4), it suffices to check that

$$\delta_i PL_\rho = \delta_i L_\rho \hat{P} \quad (i \in S).$$

Indeed, by our definition of \hat{Q},

$$\delta_i L_\rho \hat{P} = (1 - \rho(i))Q(i, 0; \cdot) + \rho(i)Q(i, 1; \cdot) = (1 - \rho(i))QL_\rho(i, \cdot|E) + \rho(i)QL_\rho(i, \cdot|E^c) = QL_\rho(i, \cdot) = \delta_i PL_\rho,$$

where we have used (4.20).

Proposition 4.18 (Trimmed process) Let X and Y be the branching processes with type spaces S and \hat{S} in Theorem 4.17, let ρ be as in that theorem and let U be the generating operator of X. Then

$$\left(Y_k | S_1\right)_{k \geq 0}$$

is a branching process with type space S_1 and generating operator U^ρ given by

$$U^\rho \phi(i) = \rho^{-1}(i)U(\rho \phi)(i) \quad (i \in S_1, \ \phi \in [0, 1]^{S_1}),$$

where $\rho \phi$ denotes the pointwise product of ρ and ϕ, which is extended to a function on S by setting $\rho \phi(j) = 0$ for all $j \in S \setminus S_1$.

Proof Since individuals in S_0 never produce offspring in S_1, it is clear that the restriction of Y to S_1 is a branching process. Let Q' be the offspring distribution of the restricted process. Then $Q'(i, \cdot)$ is just $QK_\rho(i, \cdot)$ conditioned on producing at least one offspring, where K_ρ is the thinning kernel defined in (4.6). Then, setting $\mathcal{G} := \mathcal{N}(S_1) \setminus \{0\}$, we have by (4.7)

$$U^\rho \phi(i) = \delta_i Q'K_\phi(\mathcal{G}) = \frac{\delta_i QK_\rho K_\phi(\mathcal{G})}{\delta_i QK_\rho(\mathcal{G})} = \frac{\delta_i QK_{\rho \phi}(\mathcal{G})}{\delta_i QK_\rho(\mathcal{G})} = \frac{U(\rho \phi)(i)}{U_\rho(i)} = \rho(i)^{-1}U(\rho \phi)(i),$$

where we have used that $U_\rho = \rho$.

Remark In particular, if ρ is the survival probability, then the branching process Y from Proposition 4.18 has been called the trimmed tree of X in [FS04], which deals with continuous type spaces and continuous time. Similar constructions have been used in branching theory long before this paper but it is hard to find a good reference.
Exercise 4.19 (Nonbranching process) Let S be a countable set, let P' be a probability kernel on S, and let Q be the offspring distribution defined by

$$Q(i, \delta_j) := P'(i, j) \quad (i, j \in S),$$

and $Q(i, x) := 0$ if $|x| \neq 1$. In other words: a particle at the position i produces exactly one offspring on a position that is distributed according to $P'(i, \cdot)$. Let X be the branching process with type space S and offspring distribution Q and let U be its generating operator. Show that $U = P'$. In particular, this says that a function $\rho \in [0, 1]^S$ solves $U \rho = \rho$ if and only if ρ is harmonic for P' and $U \rho = (P')^\rho$ is just the classical Doob transform of P'.

If X is a multitype branching process with type space S and offspring distribution Q, then let us write $i \rightarrow j$ if $Q(i, \{x : x(j) > 0\}) > 0$ and $i \sim j$ if there exist $i = i_0 \rightarrow \cdots \rightarrow i_n = j$. We say that Q is irreducible if $i \sim j$ for all $i, j \in S$. In particular, if Q has finite first moments, then this is equivalent to irreducibility of the matrix $A(i, j)$ in (4.18). We also define aperiodicity of Q in the obvious way, i.e., an irreducible Q is aperiodic if the greatest common divisor of $\{n \geq 1 : P^n(\delta_i, \{x : x \geq \delta_i\}) > 0\}$ is one for some, and hence for all $i \in S$. If Q is irreducible and

$$\rho(i) = \mathbb{P}^{\delta_i}[X_k \neq 0 \forall k \geq 0] \quad (i \in S), \quad (4.22)$$

then it is not hard to see that either $\rho(i) > 0$ for all $i \in S$, or $\rho(i) = 0$ for all $i \in S$. In the first case, we say that X survives, while in the second case we say that X dies out.

Exercise 4.20 (Immortal process) Let X be a branching process with finite type space S, offspring distribution Q, and generating operator U. Assume that Q is irreducible and aperiodic and that $Q(i, 0) = 0$ for each $i \in S$, i.e., each individual always produces at least one offspring. Assume also that $Q(i, \{x : |x| \geq 2\}) > 0$ for at least one $i \in S$. Then it is not hard to show that

$$\mathbb{P}^{\delta_i}[X_n(j) \geq N] \xrightarrow{n \to \infty} 1 \quad (i \in S, \ N < \infty).$$

Use this to show that for any $\phi \in [0, 1]^S$ that is not identically zero,

$$U^n \phi(i) \xrightarrow{n \to \infty} 1 \quad (i \in S).$$

In particular, this shows that the equation $U \rho = \rho$ has only two solutions: $\rho = 0$ and $\rho = 1$.

Exercise 4.21 (Fixed points of generating operator) Let X be a branching process with finite type space S, offspring distribution Q, and generating operator U. Assume that Q is irreducible and aperiodic and that $Q(i, \{x : |x| \geq 2\}) > 0$ for at least one $i \in S$. Assume that the survival probability ρ in (4.22) is positive for some, and hence for all $i \in S$. Show that for any $\phi \in [0,1]^S$ that is not identically zero,

$$U^n \phi(i) \xrightarrow{n \to \infty} \rho(i) \quad (i \in S).$$

In particular, this shows that ρ is the only nonzero solution of the equation $U \rho = \rho$. Hint: use Proposition 4.18 to reduce the problem to the set-up of Exercise 4.20.

Exercise 4.22 (Exponential growth) In the set-up of Exercise 4.21, assume that Q has finite first moments. Let α be the Perron-Frobenis eigenvalue of the first moment matrix A defined in (4.12) and let $h > 0$ be the associated right eigenvector. Assume that $\alpha > 0$, let $M = (M_n)_{n \geq 0}$ be the martingale defined in (4.15), and let $M_\infty := \lim_{n \to \infty} M_n$. Set

$$\rho'(i) := \mathbb{P}^\delta_i [M_\infty > 0].$$

Prove that $\rho' = \rho$, where ρ is the survival probability defined in (4.22). Hint: show that $U \rho' = \rho'$.
Appendix A

Supplementary material

A.1 The spectral radius

Proof of Lemma 2.10 Suppose that $\lambda \in \text{spec}(A)$ and let f be an associated eigenvector. Then $\|A^n f\| = |\lambda|^n \|f\|$ which shows that $\|A^n\|^{1/n} \geq |\lambda|$ and hence $\rho(A) \geq |\lambda|$.

To complete the proof, it suffices to show that $\rho(A) \leq \lambda_+$, where $\lambda_+ := \sup\{|\lambda| : \lambda \in \text{spec}(A)\}$. We start with the case that A can be diagonalized, i.e., there exists a basis $\{e_1, \ldots, e_d\}$ of eigenvectors with associated eigenvalues $\lambda_1, \ldots, \lambda_d$. By Exercise 2.5, the choice of our norm on V is irrelevant. We choose the ℓ_1-norm with respect to the basis $\{e_1, \ldots, e_d\}$, i.e.,

$$
\|\phi\| := \sum_{i=1}^{d} |\phi(i)|,
$$

where $\phi(1), \ldots, \phi(d)$ are the coordinates of ϕ w.r.t. this basis. Then

$$
\|A^n \phi\| = \| \sum_{i=1}^{d} \phi(i) \lambda_i^n e_i \| = \sum_{i=1}^{d} |\phi(i)| |\lambda_i|^n \leq \lambda_+^n \|\phi\|,
$$

which proves that $\|A^n\| \leq \lambda_+^n$ for each $n \geq 1$ and hence $\rho(A) \leq \lambda_+$.

In general, A need not be diagonalizable, but we can choose a basis such that the matrix of A w.r.t. this basis has a Jordan normal form. Then we may write $A = D + E$ where D is the diagonal part of A and E has ones only on some places just above the diagonal and zeroes elsewhere. One can check that E is nilpotent,
i.e., $E^m = 0$ for some $m \geq 1$. Moreover E commutes with D and $\|E\| \leq 1$ if we choose the ℓ_1-norm with respect to the basis $\{e_1, \ldots, e_d\}$. Now

$$A^n = (D + E)^n = \sum_{k=0}^{m-1} \binom{n}{k} D^{n-k} E^k$$

and therefore

$$\|A^n\| \leq \sum_{k=0}^{m-1} \binom{n}{k} \|D^{n-k}\| \leq \sum_{k=0}^{m-1} \binom{n}{k} \lambda_+^{n-k} = \lambda_+^n \sum_{k=0}^{m-1} \binom{n}{k} \lambda_+^{-k} =: q(n) \lambda_+^n,$$

where

$$q(n) = 1 + n \lambda_+^{-1} + \frac{1}{2} n(n - 1) \lambda_+^{-2} + \cdots$$

is a polynomial in n of degree m. In particular, this shows that $\|A^n\| \ll (\lambda_+ + \epsilon)^n$ as $n \to \infty$ for all $\epsilon > 0$, which again yields that $\rho(A) \leq \lambda_+$.

\[\blacksquare\]
Bibliography

Index

absorbing state, 24
adaptedness, 6
algebraic multiplicity, 49
autonomous Markov chain, [13, 65]

Bernoulli random variable, 62
branching process, 76
branching property, 77

characteristic polynomial, 49
codimension, 52
compensator, 8
convergence of σ-fields, 9
convolution, 77
coupling, 34
detailed balance, 21
Doob transform, 25
generalized, 46, 56
eigenspace, 49
eigenvector
left or right, 42
equivalence of states, 17
escape probability, 33
extinction, 94
Fekete’s lemma, 43
filtered probability space, 7
filtration, 6
first entrance time, 6
Galton-Watson process, 83
Gelfand’s formula, 50
generalized eigenspace, 49
generalized eigenvector, 49
generating operator, 79
geometric multiplicity, 49

h-transform, 25
harmonic function, 23
homogeneous Markov chain, 12

increments
independent, 31
integer lattice, 34
intertwining, 61
invariant
law, 19
measure, 19
invariant subspace, 52
irreducibility, [17, 41, 94]
Jordan normal form, 49

Markov
chain, 12
functional, 13
property, [10, 15]
strong property, 16
martingale, 7
convergence, 9
multiplicity
algebraic, 49
geometric, 49

nonnegative definite, 49
INDEX

nonnegative matrix, 41
null recurrence, 18

offspring distribution, 76
operator norm, 41
optional stopping, 8

period of a state, 18
periodicity, 18
Perron-Frobenius theorem, 42
positive recurrence, 17, 19

quasi-stationary law, 58
random mapping representation, 13
random walk
 on integer lattice, 34
 on tree, 30
real matrix, 41
recurrence, 17
 null, 18
 positive, 17, 19
reversibility, 21

sample path, 5
self-adjoint transition kernel, 21
similar matrices, 61
spectral gap
 absolute, 34
 spectral radius, 41
 spectrum, 41
stochastic process, 5
stopped
 Markov chain, 13
 stochastic process, 7
 submartingale, 8
stopping time, 6
strong Markov property, 16
subadditivity, 43
subharmonic function, 23
submartingale, 7

corvergence, 9
superharmonic function, 23
supermartingale, 7
 convergence, 9
survival, 94
thinning, 62, 80
total variation distance, 38
transience, 17
transition
 kernel, 12
 probabilities, 12
transposed matrix, 42
trap, 24
type space, 75
uniformly integrable, 10