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Notation

N natural numbers {0, 1, . . .}
N+ positive natural numbers {1, 2, . . .}
N N ∪ {∞}
Z integers

Z Z ∪ {−∞,∞}
Q rational numbers
R real numbers

R extended real numbers [−∞,∞]
C complex numbers
B(E) Borel-σ-algebra on a topological space E
1A indicator function of the set A
A ⊂ B A is a subset of B, which may be equal to B
Ac complement of A
A\B set difference
A closure of A
int(A) interior of A
(Ω,F ,P) underlying probability space
ω typical element of Ω
E expectation with respect to P
σ(. . .) σ-field generated by sets or random variables
µ� ν µ is absolutely continuous w.r.t. ν
‖f‖∞ supremumnorm ‖f‖∞ := supx |f(x)|
fk ∼ gk lim fk/gk = 1
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Chapter 0

Preliminaries

0.1 Stochastic processes

Let I be a (possibly infinite) interval in Z. By definition, a stochastic process
with discrete time is a collection of random variables X = (Xk)k∈I , defined on
some underlying probability space (Ω,F ,P) and taking values in some measurable
space (E, E). We call the random function

I 3 k 7→ Xk(ω) ∈ E

the sample path of the process X. The sample path of a discrete-time stochastic
process is in fact itself a random variable X = (Xk)k∈I , taking values in the product
space (EI , EI), where

EI := {x = (xk)k∈I : xk ∈ E ∀k ∈ I}

is the space of all functions x : I → E and EI denotes the product-σ-field. It
is well-known that a probability law on (EI , EI) is uniquely characterized by its
finite-dimensional marginals, i.e., even if I is infinite, the law of the sample path
X is uniquely determined by the finite dimensional distributions

P
[
(Xk, . . . , Xk+n) ∈ ·

]
({k, . . . , k + n} ⊂ I).

of the process. Conversely, if (E, E) is a Polish space equipped with its Borel-σ-
field, then by the Daniell-Kolmogorov extension theorem, any consistent collection
of probability measures on the finite-dimensional product spaces (EJ , EJ), with
J ⊂ I a finite interval, uniquely defines a probability measure on (EI , EI). Polish

7
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spaces include many of the most commonly used spaces, such as countable spaces
equipped with the discrete topology, Rd, separable Banach spaces, and much more.
Moreover, open or closed subsets of Polish spaces are Polish, as are countable
carthesian products of Polish spaces, equipped with the product topology.

0.2 Filtrations and stopping times

As before, let I be an interval in Z. A discrete filtration is a collection of σ-fields
(Fk)k∈I such that Fk ⊂ Fk+1 for all k, k + 1 ∈ I. If X = (Xk)k∈I is a stochastic
process, then

FXk := σ
(
{Xj : j ∈ I, j ≤ k}

)
(k ∈ I)

is a filtration, called the filtration generated by X. For any filtration (Fk)k∈I , we
set

F∞ := σ
(⋃
k∈I

Fk
)
.

In particular, FX∞ = σ((Xk)k∈I).

A stochastic process X = (Xk)k∈I is adapted to a filtration (Fk)k∈I if Xk is Fk-
measurable for each k ∈ I. Then (FXk )k∈I is the smallest filtration that X is
adapted to, and X is adapted to a filtration (Fk)k∈I if and only if FXk ⊂ Fk for all
k ∈ I.

Let (Fk)k∈I be a filtration. An Fk- stopping time is a function τ : Ω → I ∪ {∞}
such that the {0, 1}-valued process k 7→ 1{τ≤k} is Fk-adapted. Obviously, this is
equivalent to the statement that

{τ ≤ k} ∈ Fk (k ∈ I).

If (Xk)k∈I is an E-valued stochastic process and A ⊂ E is measurable, then the
first entrance time of X into A

τA := inf{k ∈ I : Xk ∈ A}

with inf ∅ :=∞ is an FXk -stopping time. More generally, the same is true for the
first entrance time of X into A after σ

τσ,A := inf{k ∈ I : k > σ, Xk ∈ A},

where σ is an Fk-stopping time. Deterministic times are stopping times (w.r.t.
any filtration). Moreover, if σ, τ are Fk-stopping times, then also

σ ∨ τ, σ ∧ τ
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are Fk-stopping times. If f : I ∪ {∞} → I ∪ {∞} is measurable and f(k) ≥ k for
all k ∈ I, and τ is an Fk-stopping time, then also f(τ) is an Fk-stopping time.

If X = (Xk)k∈I is an Fk-adapted stochastic process and τ is an Fk-stopping time,
then the stopped process

ω 7→ Xk∧τ(ω)(ω) (k ∈ I)

is also an Fk-adapted stochastic process. If τ < ∞ a.s., then moreover ω 7→
Xτ(ω)(ω) is a random variable. If τ is an Fk-stopping time defined on some filtered
probability space (Ω,F , (Fk)k∈I ,P) (with Fk ⊂ F for all k ∈ I), then the σ-field of
events observable before τ is defined as

Fτ :=
{
A ∈ F∞ : A ∩ {τ ≤ k} ∈ Fk ∀k ∈ I

}
.

Exercise 0.1 If (Fk)k∈I is a filtration and σ, τ are Fk-stopping times, then show
that Fσ∧τ = Fσ ∧ Fτ .

Exercise 0.2 Let (Fk)k∈I be a filtration, let X = (Xk)k∈I be an Fk-adapted
stochastic process and let τ be an FXk -stopping time. Let Yk := Xk∧τ denote the
stopped process Show that the filtration generated by Y is given by

FYk = FXk∧τ
(
k ∈ I ∪ {∞}

)
.

In particular, since this formula holds also for k =∞, one has

FXτ = σ
(
(Xk∧τ )k∈I

)
,

i.e., FXτ is the σ-algebra generated by the stopped process.

0.3 Martingales

By definition, a real stochastic process M = (Mk)k∈I , where I ⊂ Z is an interval,
is an Fk-submartingale with respect to some filtration (Fk)k∈I if M is Fk-adapted,
E[|Mk|] <∞ for all k ∈ I, and

E[Mk+1|Fk] ≥Mk ({k, k + 1} ⊂ I). (0.1)

We say that M is a supermartingale if the reverse inequality holds, i.e., if −M
is a submartingale, and a martingale if equality holds in (0.1), i.e., M is both a
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submartingale and a supermartingale. By induction, it is easy to show that (0.1)
holds more generally when k, k + 1 are replaced by more general times k,m ∈ I
with k ≤ m.

If M is an Fk-submartingale and (F ′k)k≥0 is a smaller filtration (i.e., F ′k ⊂ Fk for
all k ∈ I) that M is also adapted to, then

E[Mk+1|F ′k] = E
[
E[Mk+1|Fk]|F ′k] ≥ E[Mk|F ′k] = Mk ({k, k + 1} ⊂ I),

which shows that M is also an Fk-submartingale. In particular, a stochastic pro-
cess M is a submartingale with respect to some filtration if and only if it is a
submartingale with respect to its own filtration (FMk )k∈I . In this case, we simply
say that M is a submartingale (resp. supermartingale, martingale).

Let (Fk)k∈I be a filtration and let (Fk−1)k∈I be the filtration shifted one step to
left, where we set Fk−1 := {∅,Ω} if k − 1 6∈ I. Let X = (Xk)k∈I be a real Fk-
adapted stochastic process such that E[|Xk|] < ∞ for all k ∈ I. By definition,
a compensator of X w.r.t. the filtration (Fk)k∈I is an Fk−1-adapted real process
K = (Kk)k∈I such that E[|Kk|] < ∞ for all k ∈ I and (Xk − Kk)k∈I is an Fk-
martingale. It is not hard to show that K is a compensator if and only if K is
Fk−1-adapted, E[|Kk|] <∞ for all k ∈ I and

Kk+1 −Kk = E
[
Xk+1

∣∣Fk]−Xk ({k, k + 1} ⊂ I).

It follows that any two compensators must be equal up to an additive
⋂
k∈I Fk−1-

measurable random constant. In particular, if I = N, then because of the way
we have defined F−1, such a constant must be deterministic. In this case, it is
customary to put K0 := 0, i.e., we call

Kn :=
n∑
k=1

(
E
[
Xk

∣∣Fk−1]−Xk−1

)
(n ≥ 0)

the (unique) compensator of X with respect to the filtration (Fk)k∈N. We note
that X is a submartingale if and only if its compensator is a.s. nondecreasing.

The proof of the following basic fact can be found in, e.g., [Lach12, Thm 2.4].

Proposition 0.3 (Optional stopping) Let I ⊂ Z be an interval, (Fk)k∈I a
filtration, let τ be an Fk-stopping time and let (Mk)k∈I be an Fk-submartingale.
Then the stopped process (Mk∧τ )k∈I is an Fk-submartingale.

The following proposition is a special case of [Lach12, Prop. 2.1].
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Proposition 0.4 (Conditioning on events up to a stopping time) Let I ⊂ Z
be an interval, (Fk)k∈I a filtration, let τ be an Fk-stopping time and let (Mk)k∈I
be an Fk-submartingale. Then

E
[
Mk

∣∣Fk∧τ] ≥Mk∧τ (k ∈ I).

0.4 Martingale convergence

If F ,Fk (k ≥ 0) are σ-fields, then we say that Fk ↑ F if Fk ⊂ Fk+1 (k ≥ 0) and
F = σ(

⋃
k≥0Fk). Note that this is the same as saying that (Fk)k≥0 is a filtration

and F = F∞, as we have defined it above. Similarly, if F ,Fk (k ≥ 0) are σ-fields,
then we say that Fk ↓ F if Fk ⊃ Fk+1 (k ≥ 0) and F =

⋂
k≥0Fk.

Exercise 0.5 Let (Fk)k∈N be a filtration and let τ be an Fk-stopping time. Show
that

Fk∧τ ↑ Fτ as k ↑ ∞.

The following proposition says that conditional expectations are continuous w.r.t.
convergence of σ-fields. A proof can be found in, e.g., [Lach12, Prop. 4.12], [Chu74,
Thm 9.4.8] or [Bil86, Thms 3.5.5 and 3.5.7].

Proposition 0.6 (Continuity in σ-field) Let X be a real random variable de-
fined on a probability space (Ω,F ,P) and let F∞,Fk ⊂ F (k ≥ 0) be σ-fields.
Assume that E[|X|] <∞ and Fk ↑ F∞ or Fk ↓ F∞. Then

E[X | Fk] −→
k→∞

E[X | F∞] a.s. and in L1-norm.

Note that if Fk ↑ F and E[|X|] < ∞, then Mk := E[X | Fk] defines a martin-
gale. Proposition 0.6 says that such a martingale always converges. Conversely,
we would like to know for which martingales (Mk)k≥0 there exists a final element
X such that Mk = E[X | Fk] . This leads to the problem of martingale conver-
gence. Since each submartingale is the sum of a martingale and a nondecreasing
compensator and since nondecreasing functions always converge, we may more or
less equivalently ask the same question for submartingales. For a proof of the
following fact we refer to, e.g., [Lach12, Thm 4.1].

Proposition 0.7 (Submartingale convergence) Let (Mk)k∈N be a submartin-
gale such that supn≥0 E[Mk ∨ 0] < ∞. Then there exists a random variable M∞
with E[|M∞|] <∞ such that

Mk −→
k→∞

M∞ a.s.



12 CHAPTER 0. PRELIMINARIES

In particular, this implies that nonnegative supermartingales converge almost
surely. The same is not true for nonnegative submartingales: a counterexample is
one-dimensional random walk reflected at the origin.

In general, even if M is a martingale, it need not be true that E[M∞] ≥ E[M0] (a
counterexample is random walk stopped at the origin). We recall that a collection
of random variables (Xk)k∈I is uniformly integrable if

lim
n→∞

sup
k∈I

E
[
|Xk|1{|Xk|≥n}

]
= 0.

Sufficient1 for this is that supk∈I E[ψ(|Xk|)] < ∞, where ψ : [0,∞) → [0,∞) is
nonnegative, increasing, convex, and satisfies limr→∞ ψ(r)/r =∞. Possible choices
are for example ψ(r) = r2 or ψ(r) = (1 + r) log(1 + r) − r. It is well-known that
uniform integrability and a.s. convergence of a sequence of real random variables
imply convergence in L1-norm. For submartingales, the following result is known
[Lach12, Thm 4.8].

Proposition 0.8 (Final element) In addition to the assumptions of Proposi-
tion 0.7, assume that (Mk)k∈N is uniformly integrable. Then

E
[
|Mk −M∞|

]
−→
k→∞

0 a.s.

and E[M∞|Fk] ≥Mk for all k ≥ 0.

Note that in particular, if M is a martingale, then Proposition 0.8 says that Mk =
E[M∞|Fk], which shows that all information about the martingale M is hidden in
its final element M∞.

Combining Propositions 0.8 and 0.3, we see that if τ is an Fk-stopping time such
that τ < ∞ a.s., (Mk)k∈N is an Fk-submartingale, and (Mk∧τ )k∈N is uniformly
integrable, then E[Mτ ] = limk→∞ E[Mk∧τ ] ≥M0.

There also exist convergence results for ‘backward’ martingales (Mk)k∈{−∞,...,0}.

0.5 Markov chains

Proposition 0.9 (Markov property) Let (E, E) be a measurable space, let I ⊂
Z be an interval and let (Xk)k∈I be an E-valued stochastic process. For each n ∈ I,
set I−n := {k ∈ I : k ≤ n} and I+

n := {k ∈ I : k ≥ n}, and let FXn := σ((Xk)k∈I−n )
be the filtration generated by X. Then the following conditions are equivalent.

1By the De la Valle-Poussin theorem, this condition is in fact also necessary.
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(i) P
[
(Xk)k∈I−n ∈ A, (Xk)k∈I+n ∈ B

∣∣Xn

]
= P

[
(Xk)k∈I−n ∈ A

∣∣Xn

]
P
[
(Xk)k∈I+n ∈ B

∣∣Xn

]
a.s.

for all A ∈ EI−n , B ∈ EI+n , n ∈ I.

(ii) P
[
(Xk)k∈I+n ∈ B

∣∣FXn ] = P
[
(Xk)k∈I+n ∈ B

∣∣Xn

]
a.s. for all B ∈ EI+n , n ∈ I.

(iii) P
[
Xn+1 ∈ C

∣∣FXn ] = P
[
Xn+1 ∈ C

∣∣Xn

]
a.s. for all C ∈ E, {n, n+ 1} ⊂ I.

Remarks Property (i) says that the past and future are conditionally independent
given the present. Property (ii) says that the future depends on the past only
through the present, i.e., after we condition on the present, conditioning on the
whole past does not give any extra information. Property (iii) says that it suffices
to check (ii) for single time steps.

Proof of Proposition 0.9 Set GXn := σ((Xk)k∈I+n ). If (i) holds, then, for any
A ∈ FXn and B ∈ GXn , we have

E
[
1AP[B |Xn]

]
= E

[
E
[
1AP[B |Xn]

∣∣Xn

]]
= E

[
E[1A |Xn]P[B |Xn]

]
= E

[
P[A |Xn]P[B |Xn]

]
= E

[
P[A ∩B |Xn]

]
= P[A ∩B],

where we have pulled the σ(Xn)-measurable random variable P[B |Xn] out of the
conditional expectation. Since this holds for arbitrary A ∈ FXn and since P[B |Xn]
is FXn -measurable, it follows from the definition of conditional expectations that

P[B | FXn ] = P[B |Xn],

which is just another way of writing (ii). Conversely, if (ii) holds, then for any
C ∈ σ(Xn),

E
[
P[A |Xn]P[B |Xn]1C

]
= E

[
P[B |Xn]1CE[1A |Xn]

]
= E

[
E[P[B |Xn]1C1A |Xn]

]
= E

[
1A∩CP[B | FXn ]

]
= P[A ∩B ∩ C].

Since this holds for any C ∈ σ(Xn), it follows from the definition of conditional
expectations that

P[A ∩B |Xn] = P[A |Xn]P[B |Xn] a.s.

To see that (iii) is sufficient for (ii), one first proves by induction that

P
[
Xn+1 ∈ C1, . . . , Xn+m ∈ Cm

∣∣FXn ] = P
[
Xn+1 ∈ C1, . . . , Xn+m ∈ Cm

∣∣Xn

]
,
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and then uses that these sort events uniquely determine conditional probabilities
of events in GXn .

If a process X = (Xk)k∈I satisfies the equivalent conditions of Proposition 0.9,
then we say that X has the Markov property. For processes with countable state
spaces, there is an easier formulation.

Proposition 0.10 (Markov chains) Let I ⊂ Z be an interval and let X =
(Xk)k∈I be a stochastic process taking values in a countable space S. Then X has
the Markov property if and only if for each {k, k+ 1} ⊂ I there exists a probability
kernel Pk,k+1(x, y) on S such that

P[Xk = xk, . . . , Xk+n = xk+n]

= P[Xk = xk]Pk,k+1(xk, xk+1) · · ·Pk+n−1,k+n(xk+n−1, xk+n)
(0.2)

for all {k, . . . , k + n} ⊂ I, xk, . . . , xk+n ∈ S.

Proof See, e.g., [LP11, Thm 2.1].

If I = N, then Proposition 0.10 shows that the finite dimensional distributions,
and hence the whole law of a Markov chain X are defined by its initial law P[X0 ∈
· ] and its transition probabilities Pk,k+1(x, y). If the initial law and transition
probabilities are given, then it is easy to see that the probability laws defined
by (0.2) are consistent, hence by the Daniell-Kolmogorov extension theorem, there
exists a Markov chain X, unique in distribution, with this initial law and transition
probabilies.

We note that conversely, a Markov chain X determines its transition probabilities
Pk,k+1(x, y) only for a.e. x ∈ S w.r.t. the law of Xk. If it is possible to choose
the transition kernels Pk,k+1’s in such a way that they do not depend on k, then
we say that the Markov chain is homogeneous. We are usually not interested in
the problem to find Pk,k+1 given X, but typically we start with a given probability
kernel P on S and are interested in all Markov chains that have P as their transition
probability in each time step, and arbitrary initial law. Often, the word Markov
chain is used in this more general sense. Thus, we often speak of ‘the Markov chain
with state space S that jumps from x to y with probability. . . ’ without specifying
the initial law. From now on, we use the convention that all Markov chains are
homogeneous, unless explicitly stated otherwise. Moreover, if we don’t mention the
initial law, then we mean the process started in an arbitrary initial law.
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We note from Proposition 0.9 (i) that the Markov property is symmetric under
time reversal, i.e., if (Xk)k∈I has the Markov property and I ′ := {−k : k ∈ I}, then
the process X ′ = (X ′k)k∈I′ defined by X ′k := X−k (k ∈ I ′) also has the Markov
property. It is usually not true, however, that X ′ is homogeneous if X is. An
exception are stationary processes, which leads to the useful concept of reversible
laws.

Exercise 0.11 (Stopped Markov chain) Let X = (Xk)k≥0 be a Markov chain
with countable state space S and transition kernel P , let A ⊂ S and let τA :=
inf{k ≥ 0 : Xk ∈ A} be the first entrance time of B. Let Y be the stopped process
Yk := Xk∧τA (k ≥ 0). Show that Y is a Markov chain and determine its transition
kernel. If we replace τA by the second entrance time of A, is Y then still Markov?

By definition, a random mapping representation of a probability kernel P on a
countable state space S is a probability space (E, E , µ) together with a measurable
function f : S×E → S such that if Z1 is a random variable taking values in (E, E)
with law µ, then

P (x, y) = P[f(x, Z1) = y] (x, y ∈ S).

If (Zk)k≥1 are i.i.d. random variables with values in (E, E) and common law µ
and X0 is a random variable taking values in S, independent of the (Zk)k≥1, then
setting, inductively,

Xk := f(Xk−1, Zk) (k ≥ 1)

defines a Markov chain with transition kernel P and initial state X0. Random
mapping representations are essential for simulating Markov chains on a computer.
In addition, they have plenty of theoretical applications, for example for coupling
Markov chains with different initial states. (See Section 1.3 for an introduction
to coupling.) One can show that each probability kernel has a random mapping
representation, but such a representation is far from unique. Often, the key to a
good proof is choosing the right one.

We note that it is in general not true that functions of Markov chains are themselves
Markov chains. An exception is the case when

P
[
f(Xk+1) ∈ · |FXk ]

depends only on f(Xk). In this case, we say that f(X) is an autonomous Markov
chain.
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Lemma 0.12 (Autonomous Markov functional) Let X = (Xk)k∈I be a Mar-
kov chain with countable state space S and transition kernel P . Let S ′ be a count-
able set and let f : S → S ′ be a function. Assume that there exists a probability
kernel P ′ on S ′ such that

P ′(x′, y′) =
∑

y: f(y)=y′

P (x, y′) (x ∈ S, f(x) = x′).

Then f(X) := (f(Xk))k∈I is a Markov chain with state space S ′ and transition
kernel P ′.

0.6 Kernels, operators and linear algebra

Let X = (Xk)k∈I be a stochastic process taking values in a countable space S, and
let P be a probability kernel on S. Then it is not hard to see that X is a Markov
process with transition kernel P (and arbitrary initial law) if and only if

P[Xk+1 = y | FXk ] = P (Xk, y) a.s. (y ∈ S, {k, k + 1} ⊂ I),

where (FXk )k∈I is the filtration generated by X. More generally, one has

P[Xk+n = y | FXk ] = P n(Xk, y) a.s. (y ∈ S, n ≥ 0, {k, k + n} ⊂ I),

where P n denotes the n-th power of the transition kernel P . Here, if K,L are
probability kernels on S, then we define their product as

KL(x, z) :=
∑
y∈S

K(x, y)L(y, z) (x, z ∈ S),

which is again a probability kernel on S. Then Kn is defined as the product of n
times K with itself, where K0(x, y) := 1{x=y}. We may associate each probability
kernel on S with a linear operator, acting on bounded real functions f : S → R,
defined as

Kf(x) :=
∑
y∈S

K(x, y)f(y) (x ∈ S).

Then KL is just the composition of the operators K and L, and for each bounded
f : S → R, one has

E[f(Xk+n) | FXk ] = P nf(Xk) a.s. (n ≥ 0, {k, k + n} ⊂ I), (0.3)
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and this formula holds more generally provided the expectations are well-defined
(e.g., if E[|f(Xk+n)|] <∞ or f ≥ 0).

If µ is a probability measure on S and K is a probability kernel on S, then we
may define a new probability measure µK on S by

µK(y) :=
∑
x∈S

µ(x)K(x, y) (y ∈ S).

In this notation, if X is a Markov process with transition kernel P and initial law
P[X0 ∈ · ] = µ, then P[Xn ∈ · ] = µP n is its law at time n.

We may view transition kernels as (possibly infinite) matrices that act on row
vectors µ or column vectors f by left and right multiplication, respectively.

0.7 Strong Markov property

We assume that the reader is familiar with some basic facts about Markov chains,
as taught in the lecture [LP11]. In particular, this concerns the strong Markov
property, which we formulate now.

Let X = (Xk)k≥0 be a Markov chain with countable state space S and transition
kernel P . As usual, it goes without saying that X is homogeneous (i.e., we use the
same P in each time step) and when we don’t mention the initial law, we mean
the process started in an arbitrary initial law. Often, it is notationally convenient
to assume that our process X is always the same, while the dependence on the
initial law is expressed in the choice of the probability measure on our underlying
probability space.

More precisely, we assume that we have a measurable space (Ω,F) and a collection
X = (Xk)k≥0 of measurable maps Xk : Ω → S, as well as a collection (Px)x∈S of
probability measures on (Ω,F), such that under the measure Px, the process X is
a Markov chain with initial law Px[X0 = x] = 1 and transition kernel P . In this
set-up, if µ is any probability measure on S, then under the law P :=

∑
x∈S µ(x)Px,

the process X is distributed as a Markov chain with initial law µ and transition
kernel P .

If X,P,Px are as just described and (FXk )k≥0 is te filtration generated by X, then
it follows from Proposition 0.9 (ii) and homogeneity that

P
[
(Xn+k)k≥0 ∈ ·

∣∣FXn ] = PXn
[
(Xk)k≥0 ∈ ·

]
a.s. (0.4)
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Here, for fixed n ≥ 0, we consider (Xn+k)k≥0 as a random variable taking values
in SN (i.e., this is the process Y defined by Yk := Xn+k (k ≥ 0)). Since SN is a
nice (in particular Polish) space, we can choose a regular version of the conditional
probability on the left-hand side of (0.4), i.e., this is a random probability measure
on SN. Since Xn is random, the same is true for the right-hand side. In words,
formula (0.4) says that given the process up to time n, the process after time n is
distributed as the process started in Xn. The strong Markov property extends this
to stopping times.

Proposition 0.13 (Strong Markov property) Let X,P,Px be as defined above.
Then, for any FXk -stopping time τ such that τ <∞ a.s., one has

P
[
(Xτ+k)k≥0 ∈ ·

∣∣FXτ ] = PXτ
[
(Xk)k≥0 ∈ ·

]
a.s. (0.5)

Proof This follows from [LP11, Thm 2.3].

Remark 1 Even if P[τ = ∞] > 0, formula (0.5) still holds a.s. on the event
{τ <∞}.

Remark 2 Homogeneity is essential for the strong Markov property, at least in
the (useful) formulation of (0.5).

Since this is closely related to formula (0.4), we also mention the following useful
principle here.

Proposition 0.14 (What can happen must eventually happen) Let X =
(Xk)k≥0 be a Markov chain with countable state space S. Let B ⊂ SN be measurable
and set ρ(x) := Px[(Xk)k≥0 ∈ B]. Then the event{

(Xn+k)k≥0 ∈ B for infinitely many n ≥ 0
}
∪
{
ρ(Xn) −→

n→∞
0
}

has probability one.

Proof Let A denote the event that (Xn+k)k≥0 ∈ B for some n ≥ 0. Then by
Proposition 0.6,

ρ(Xn) = PXn
[
(Xk)k≥0 ∈ B

]
= P

[
(Xn+k)k≥0 ∈ B

∣∣FXn ]
≤ P

[
A
∣∣FXn ] −→

n→∞
P
[
A
∣∣FX∞] = 1A a.s.

In particular, this shows that ρ(Xn)→ 0 a.s. on the event A. Applying the same
argument to Am := {(Xn+k)k≥0 ∈ B for some n ≥ m}, we see that the event
Am ∪ {ρ(Xn)→ 0} has probability one for each m. Letting m ↑ ∞ and observing
that Am ↓ {(Xn+k)k≥0 ∈ B for infinitely many n ≥ 0}, the claim follows.
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0.8 Classification of states

Let X be a Markov chain with countable state space S and transition kernel P .
For each x, y ∈ S, we write x  y if P n(x, y) > 0 for some n ≥ 0. Note that
x  y  z implies x  z. Two states x, y are called equivalent if x  y and
y  x. It is easy to see that this defines an equivalence relation on S. A Markov
chain / transition kernel is called irreducible if all states are equivalent.

A state x is called recurrent if

Px[Xk = x for some k ≥ 1] = 1,

otherwise it is called transient. If two states are equivalent and one of them is
recurrent (resp. transient), then so is the other. Fix x ∈ S, let τ0 := 0 and let

τk := inf{n > τk−1 : Xn = x} (k ≥ 1)

be the times of the k-th visit to x after time zero. Consider the process started
in X0 = x. If x is recurrent, then τ1 < ∞ a.s. It follows from the strong Markov
property that τ2− τ1 is equally distributed with and independent of τ1. By induc-
tion, (τk − τk−1)k≥1 are i.i.d. In particular, τk < ∞ for all k ≥ 1, i.e., the process
returns to x infinitely often.

On the other hand, if x is transient, then by the same sort of argument we see
that the number Nx =

∑
k≥1 1{Xk=x} of returns to x is geometrically distributed

Px[Nx = n] = θn(1− θ) where θ := Pn[Xk = x for some k ≥ 1].

In particular, Ex[Nx] <∞ if and only if x is transient.

Lemma 0.15 (Recurrent classes are closed) Let X be a Markov chain with
countable state space S and transition kernel P . Assume that S ′ ⊂ S is an equiv-
alence class of recurrent states. Then P (x, y) = 0 for all x ∈ S ′, y ∈ S\S ′.

Proof Imagine that P (x, y) > 0 for some x ∈ S ′, y ∈ S\S ′. Then, since S ′ is
an equivalence class, y 6 x, i.e., the process cannot return from y to x. Since
P (x, y) > 0, this shows that the process started in x has a positive probability
never to return to x, a contradiction.

A state x is called positively recurrent if

Ex[inf{n ≥ 1 : Xn = x}] <∞.
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Recurrent states that are not positively recurrent are called null recurrent. If two
states are equivalent and one of them is positively recurrent (resp. null recurrent),
then so is the other. From this, it is easy to see that a finite equivalence class of
states can never be null recurrent.

The following lemma is an easy application of the principle ‘what can happen must
happen’ (Proposition 0.14).

Lemma 0.16 (Finite state space) Let X = (Xk)k≥0 be a Markov chain with
finite state space S and transition kernel P . Let Spos denote the set of all positively
recurrent states. Then P[Xk ∈ Spos for some k ≥ 0] = 1.

By definition, the period of a state x is the greatest common divisor of {n ≥ 1 :
P (x, x) > 0}. Equivalent states have the same period. States with period one are
called aperiodic. Irreducible Markov chains are called aperiodic if one, and hence
all states have period one. If X = (Xk)k≥0 is an irreducible Markov chain with
period n, then X ′k := Xkn (k ≥ 0) defines an aperiodic Markov chain X ′ = (X ′k)k≥0.

The following example is of special importance.

Lemma 0.17 (Recurrence of one-dimensional random walk) The Markov
chain X with state space Z and transition kernel P (k, k − 1) = P (k, k + 1) = 1

2
is

null recurrent.

Proof Note that this Markov chain is irreducible and has period two, as it takes
value alternatively in the even and odd integers. Using Stirling’s formula, it is not
hard to show that (see [LP11, Example 2.9])

P2k(0, 0) ∼ 1√
πk

as k →∞.

In particular, this shows that the expected number of returns to the origin E0[N0] =∑∞
k=1 P

2k(0, 0) is infinite, hence X is recurrent. On the other hand, it is not hard to
check that any invariant measure for X must be infinite, hence X has no invariant
law, so it cannot be positively recurrent.

We will later see that, more generally, random walks on Zd are recurrent in dimen-
sions d = 1, 2 and transient in dimensions d ≥ 3.
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0.9 Invariant laws

By definition, an invariant law for a Markov process with transition kernel P and
countable state space S is a probability measure µ on S that is invariant under
left-multiplication with P , i.e., µP = µ, or, written out per coordinate,∑

y∈S

µ(y)P (y, x) = µ(x) (x ∈ S).

More generally, a (possibly infinite) measure µ on S satisfying this equation is
called an invariant measure. A probability measure µ on S is an invariant law
if and only if the process (Xk)k≥0 started in the initial law P[X0 ∈ · ] = µ is
(strictly) stationary. If µ is an invariant law, then there also exists a stationary
process X = (Xk)k∈Z, unique in distribution, such that X is a Markov process with
transition kernel P and P[Xk ∈ · ] = µ for all k ∈ Z (including negative times).

A detailed proof of the following theorem can be found in [LP11, Thms 2.10 and
2.26].

Theorem 0.18 (Invariant laws) Let X be a Markov chain with countable state
space S and transition kernel P . Then

(a) If µ is an invariant law and x is not positively recurrent, then µ(x) = 0.

(b) If S ′ ⊂ S is an equivalence class of positively recurrent states, then there
exists a unique invariant law µ of X such that µ(x) > 0 for all x ∈ S ′ and
µ(x) = 0 for all x ∈ S\S ′.

(c) The invariant law µ from part (b) is given by

µ(x) = Ex
[

inf{k ≥ 1 : Xk = x}
]−1

. (0.6)

Sketch of proof For any x ∈ S, define µ(x) as in (0.6), with 1/∞ := 0. Since
consecutive return times are i.i.d., it is not hard to prove that

lim
n→∞

1

n

n∑
k=1

Px[Xk = x] = µ(x), (0.7)

i.e., the process started in x spends a µ(x)-fraction of its time in x. As a result, it
is not hard to show that if x is transient or null-recurrent, then the process started
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in any initial law satisfies P[Xn = x] → 0 for n → ∞, hence no invariant law can
give positive probability to such a state.

On the other hand, if S ′ ⊂ S is an equivalence class of positively recurrent states,
then one can check that (0.7) holds more generally for the process started in any
initial law on S ′. It follows that for any such process, the Césaro-limit

µ = lim
n→∞

1

n

n∑
k=1

P[Xk ∈ · ]

exists and does not depend on the initial law. In particular, if we start in an
invariant law, then this limit must be µ, which proves uniqueness. It is not hard
to check that any such Césaro-limit must be an invariant law, from which we obtain
existence.

Remark Using Lemma 0.15, it is not hard to prove that a general invariant law
of the process is a convex combination of invariant laws that are concentrated on
one equivalence class of positively recurrent states.

Theorem 0.19 (Convergence to invariant law) Let X be an irreducible, pos-
itively recurrent, aperiodic Markov chain with invariant law µ. Then the process
started in any initial law satisfies

P[Xk = x] −→
k→∞

µ(x) (x ∈ S).

If all states of X are transient or null recurrent, then the process started in any
initial law satisfies

P[Xk = x] −→
k→∞

0 (x ∈ S).

Proof See [LP11, Thm 2.26].

If µ is an invariant law and X = (Xk)k∈Z is a stationary process such that P[Xk ∈
· ] = µ for all k ∈ Z, then by the symmetry of the Markov property w.r.t. time
reversal, the process X ′ = (X ′k)k∈Z defined by X ′k := X−k (k ∈ Z) is also a
Markov process. By stationarity, X ′ is moreover homogeneous, i.e., there exists
a transition kernel P ′ such that the transition probabilities P ′k,k+1 of X ′ satisfy
P ′(x, y) = P ′k,k+1(x, y) for a.e. x w.r.t. µ. In general, it will not be true that
P ′ = P . We say that µ is a reversible law if µ is invariant and in addition,
the stationary processes X and X ′ are equal in law. One can check that this is
equivalent to the detailed balance condition

µ(x)P (x, y) = P (x, y)µ(y) (x, y ∈ S),
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which says that the process X started in P[X0 ∈ · ] = µ satisfies P[X0 = x, X1 =
y] = P[X0 = y, X1 = x]. More generally, a (possibly infinite) meaure µ on S
satisfying detaied balance is called an reversible measure. If µ is reversible measure
and we define a (semi-) inner product of real functions f : S → R by

〈f, g〉µ :=
∑
x∈S

f(x)g(x)µ(x),

then P is self-adjoint w.r.t. this inner product:

〈f, Pg〉µ = 〈Pf, g〉µ.
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Chapter 1

Eigenfunctions

1.1 Harmonic functions

Let X be a Markov chain with countable state space S and transition kernel P .
As we have seen, an invariant law of X is a vector that is invariant under left-
multiplication with P . Harmonic functions 1 are functions that are invariant
under right-multiplication with P . More precisely, we will say that a function
h : S → R is subharmonic for X if∑

y

P (x, y)|h(y)| <∞ (x ∈ S),

and
h(x) ≤

∑
y

P (x, y)h(y) (x ∈ S).

We say that h is superharmonic if −h is subharmonic, and harmonic if it is both
subharmonic and superharmonic.

Lemma 1.1 (Harmonic functions and martingales) Assume that h is sub-
harmonic for the Markov chain X = (Xk)k≥0 and that E[|h(Xk)|] < ∞ (k ≥ 0).
Then Mk := h(Xk) (k ≥ 0) defines a submartingale M = (M(Xk))k≥0 w.r.t. to the
filtration (FXk )k≥0 generated by X.

1Historically, the term harmonic function was first used, and is still commonly used, for a
smooth function f : U → R, defined on some open domain U ⊂ Rd, that solves the Laplace
equation

∑d
i=1

∂2

∂xi
2 f(x) = 0. This is basically the same as our definition, but with our Markov

chain X replaced by Brownian motion B = (Bt)t≥0. Indeed, a smooth function f solves the
Laplace equation if and only if (f(Bt))t≥0 is a local martingale.

25
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Proof This follows by writing (using (0.3)),

E
[
h(Xk+1)

∣∣FXk ] =
∑
y

P (Xk, y)h(y) ≥ h(Xk) (k ≥ 0).

We will say that a state x is an absorbing state or trap for a Markov chain X if
P (x, x) = 1.

Lemma 1.2 (Trapping probability) Let X be a Markov chain with countable
state space S and transition kernel P , and let z ∈ S be a trap. Then the trapping
probability

h(x) := Px
[
Xk = z for some k ≥ 0

]
is a harmonic function for X.

Proof Since 0 ≤ h ≤ 1, integrability is not an issue. Now

h(x) = Px
[
Xk = z for some k ≥ 0

]
=
∑
y

Px
[
Xk = z for some k ≥ 0

∣∣X1 = y
]
Px[X1 = y]

=
∑
y

P (x, y)Px
[
Xk = z for some k ≥ 0

]
=
∑
y

P (x, y)h(y).

Lemma 1.3 (Trapping estimates) Let X be a Markov chain with countable
state space S and transition kernel P , and let T := {z ∈ S : z is a trap}. Assume
that the chain gets trapped a.s., i.e., P[∃n ≥ 0 s.t. Xn ∈ T ] = 1 (regardless of the
initial law). Let z ∈ T and let h : S → [0, 1] be a subharmonic function such that
h(z) = 1 and h ≡ 0 on T\{z}. Then

h(x) ≤ Px
[
Xk = z for some k ≥ 0

]
If h is superharmonic, then the same holds with the inequality sign reversed.

Proof Since h is subharmonic, Mk := h(Xk) is a submartingale. Since h is
bounded, M is uniformly integrable. Therefore, by Propositions 0.7 and 0.8,
Mk → M∞ a.s. and in L1-norm, where M∞ is some random variable such that
Ex[M∞] ≥ M0 = h(x). Since the chain gets trapped a.s., we have M∞ = h(Xτ ),
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where τ := inf{k ≥ 0 : Xk ∈ T} is the trapping time. Since h(z) = 1 and h ≡ 0
on T\{z}, we have M∞ = 1{Xτ=z} and therefore Px[Xτ = z] = Ex[M∞] ≥ h(x). If
h is superharmonic, the same holds with the inequality sign reversed.

Remark 1 If S ′ ⊂ S is a ‘closed’ set in the sense that P(x, y) = 0 for all x ∈ S ′,
y ∈ S\S ′, then define φ : S → (S\S ′) ∪ {∗} by φ(x) := ∗ if x ∈ S ′ and φ(x) := x
if x ∈ S\S ′. Now (φ(Xk))k≥0 is a Markov chain that gets trapped in ∗ if and only
if the original chain enters the closed set S ′. In this way, Lemma 1.3 can easily be
generalized to Markov chains that eventually get ‘trapped’ in one of finitely many
equivalence classes of recurrent states. In particular, this applies when S is finite.

Remark 2 Lemma 1.3 tells us in particular that, provided that the chain gets
trapped a.s., the function h from Lemma 1.2 is the unique harmonic function
satisfying h(z) = 1 and h ≡ 0 on T\{z}. For a more general statement of this
type, see Exercise 1.7 below.

Remark 3 Even in situations where it is not feasable to calculate trapping prob-
abilities exactly, Lemma 1.3 can sometimes be used to derive lower and upper
bounds for these trapping probabilities.

The following transformation is usually called an h-transform or Doob’s h-trans-
form. Following [LPW09], we will simply call it a Doob transform.2

Lemma 1.4 (Doob transform) Let X be a Markov chain with countable state
space S and transition kernel P , and let h : S → [0,∞) be a nonnegative harmonic
function. Then setting S ′ := {x ∈ S : h(x) > 0} and

P h(x, y) :=
P (x, y)h(y)

h(x)
(x, y ∈ S ′)

defines a transition kernel P h on S ′.

Proof Obviously P h(x, y) ≥ 0 for all x, y ∈ S ′. Since∑
y∈S′

P h(x, y) = h(x)−1
∑
y∈S′

P (x, y)h(y) = h(x)−1Ph(x) = 1 (x ∈ S ′),

P h is a transition kernel.
2The term h-transform is somewhat inconvenient for several reasons. First of all, having

mathematical symbols in names of chapters or articles causes all kinds of problems for referencing.
Secondly, if one performs an h-transform with a function g, then should one speak of a g-transform
or an h-transform? The situation becomes even more confusing when there are several functions
around, one of which may be called h.
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Proposition 1.5 (Conditioning on the future) Let X = (Xk)k≥0 be a Markov
chain with countable state space S and transition kernel P , and let x ∈ S be a
trap. Set S ′ := {y ∈ S : y  x} and assume that P[X0 ∈ S ′] > 0. Then, under the
conditional law

P[(Xk)k≥0 ∈ ·
∣∣Xk = x for some k ≥ 0

]
,

the process X is a Markov process in S ′ with Doob-transformed transition kernel
P h, where

h(x) := Px
[
Xk = x for some k ≥ 0

]
satisfies h(x) > 0 if and only if x ∈ S ′.

Proof Using the Markov property (in its strong form (0.4)), we observe that

P
[
Xn+1 = y

∣∣ (Xk)0≤k≤n = (xk)0≤k≤n, Xk = x for some k ≥ 0
]

= P
[
Xn+1 = y

∣∣ (Xk)0≤k≤n = (xk)0≤k≤n, Xk = x for some k ≥ n+ 1
]

=
P
[
Xn+1 = y, Xk = x for some k ≥ n+ 1

∣∣ (Xk)0≤k≤n = (xk)0≤k≤n
]

P
[
Xk = x for some k ≥ n+ 1

∣∣ (Xk)0≤k≤n = (xk)0≤k≤n
]

=
P (xn, y)Py[Xk = x for some k ≥ 0]

Pxn [Xk = x for some k ≥ 1]
= P h(xn, y)

for each (xk)0≤k≤n and y such that P[(Xk)0≤k≤n = (xk)0≤k≤n] > 0 and xn, y ∈ S ′.

Remark At first sight, it is surprising that conditioning on the future may preserve
the Markov property. What is essential here is that being trapped in x is a tail
event, i.e., an event measurable w.r.t. the tail-σ-algebra T :=

⋂
k≥0FXk . Similarly,

if we condition a Markov chain (Xk)0≤k≤n that is defined on finite time interval
on its final state Xn, then under the conditional law, (Xk)0≤k≤n is still Markov,
although no longer homogeneous.

Exercise 1.6 (Sufficient conditions for integrability) Let h : S → R be any
function. Assume that E[|h(X0)|] < ∞ and there exists a constant K < ∞ such
that

∑
y P (x, y)|h(y)| ≤ K|h(x)|. Show that E[|h(Xk)|] <∞ (k ≥ 0).

Exercise 1.7 (Boundary conditions) Let X be a Markov chain with countable
state space S and transition kernel P , and let T := {z ∈ S : z is a trap}. Assume
that the chain gets trapped a.s., i.e., P[∃n ≥ 0 s.t. Xn ∈ T ] = 1 (regardless
of the initial law). Show that for each real function φ : T → R there exists a
unique bounded harmonic function h : S → R such that h = φ on T . Hint: take
h(x) := E[φ(Xτ )], where τ := inf{k ≥ 0 : Xk ∈ T} is the trapping time.
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Exercise 1.8 (Conditions for getting trapped) If we do not know a priori that
a Markov chain eventually gets trapped, then the following fact is often useful. Let
X be a Markov chain with countable state space S and transition kernel P , and
let h : S → [0, 1] be a sub- or superharmonic function. Assume that for all ε > 0
there exists a δ > 0 such that

Px
[
|h(X1)− h(x)| ≥ δ

]
≥ δ whenever ε ≤ h(x) ≤ 1− ε.

Show that limk→∞ h(Xk) ∈ {0, 1} a.s. Hint: use martingale convergence to prove
that limk→∞ h(Xk) exists and use the principle ‘what can happen must happen’
(Proposition 0.14) to show that the limit cannot take values in (0, 1).

Exercise 1.9 (Trapping estimate) Let X,S, , P and h be as in Excercise 1.8.
Assume that h is a submartingale and there is a point z ∈ S such that h(z) = 1
and supx∈S\{z} h(x) < 1. Show that

h(x) ≤ Px[Xk = z for some k ≥ 0].

Exercise 1.10 (Compensator) Let X = (Xk)k≥0 be a Markov chain with count-
able state space S and transition kernel P , and let f : S → R be a function such
that

∑
y P (x, y)|f(y)| <∞ for all x ∈ S. Assume that, for some given initial law,

the process X satisfies E[|f(Xk)|] <∞ for all k ≥ 0. Show that the compensator
of (f(Xk))k≥0 is given by

Kn =
n−1∑
k=0

(
Pf(Xk)− f(Xk)

)
(n ≥ 0).

Exercise 1.11 (Expected time till absorption: part 1) Let X be a Markov
chain with countable state space S and transition kernel P , and let T := {z ∈ S :
z is a trap}. Let τ := inf{k ≥ 0 : Xk ∈ T} and assume that Ex[τ < ∞] < ∞ for
all x ∈ S. Show that the function

f(x) := Ex[τ <∞]

satisfies Pf(x)− f(x) = −1 (x ∈ S\T ) and f ≡ 0 on T .
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Exercise 1.12 (Expected time till absorption: part 2) Let X be a Markov
chain with countable state space S and transition kernel P , let T := {z ∈ S :
z is a trap}, and set τ := inf{k ≥ 0 : Xk ∈ T}. Assume that f : S → [0,∞)
satisfies Pf(x)− f(x) ≤ −1 (x ∈ S\T ) and f ≡ 0 on T . Show that

Ex[τ <∞] ≤ f(x) (x ∈ S).

Hint: show that the compensator K of (f(Xk))k≥0 satisfies Kn ≤ −(n ∧ τ).

Exercise 1.13 (Absorption of random walk) Consider a random walk W =
(Wk)k≥0 on Z that jumps from x to x + 1 with probability p and to x − 1 with
the remaining probability q := 1 − p, where 0 < p < 1. Fix n ≥ 1 and set
τ := inf

{
k ≥ 0 : Wk ∈ {0, n}

}
. Calculate, for each 0 ≤ x ≤ n, the probability

P[Wτ = n].

Exercise 1.14 (First ocurrence of a pattern: part 1)

Let (Xk)k≥0 be i.i.d. Bernoulli random variables
with P[Xk = 0] = P[Xk = 1] = 1

2
(k ≥ 0). Set

τ110 := inf
{
k ≥ 0 : (Xk, Xk+1, Xk+2) = (1, 1, 0)

}
,

and define τ010 similarly. Calculate P[τ010 < τ110].

Hint: Set ~Xk := (Xk, Xk+1, Xk+2) (k ≥ 0). Then

( ~Xk)k≥0 is a Markov chain with transition prob-
abilities as in the picture on the right. Now the
problem amounts to calculating the trapping prob-
abilities for the chain stopped at τ010 ∧ τ110.

111

110 011

101

010

100 001

000

Exercise 1.15 (First ocurrence of a pattern: part 2) In the set-up of the
previous exercise, calculate E[τ110] and E[τ111]. Hints: you need to solve a system



1.2. RANDOM WALK ON A TREE 31

of linear equations. To find the solution, it helps to use Theorem 0.18 (c) and the
fact that the uniform distribution is an invariant law. In the case of τ111, it also
helps to observe that Ex[τ111] depends only on the number of ones at the end of x.

1.2 Random walk on a tree

In this section, we study random walk on an infinite tree in which every vertex has
three neighbors. Such random walks have many interesting properties. At present
they are of interest to us because they have many different bounded harmonic
functions. As we will see in the next section, the situation for random walks on
Zd is quite different.

Let T2 be an infinite tree, (i.e., a connected graph without cycles) in which each
vertex has degree 3 (i.e., there are three edges incident to each vertex). We will be
interested in the Markov chain whose state space are the vertices of T2 and that
jumps in each step with equal probabilities to one of the three neighboring sites.

We first need a convenient way to label vertices in such a tree. Consider a finitely
generated group with generators a, b, c satisfying a = a−1, b = b−1 and c = c−1.
More formally, we can construct such a group as follows. Let G be the set of all
finite sequences x = x(1) · · ·x(n) where n ≥ 0 (we allow for the empty sequence
∅), x(i) ∈ {a, b, c} for all 1 ≤ i ≤ n, and x(i) 6= x(i + 1) for all 1 ≤ i ≤ i + 1 ≤ n.
We define a product on V by concatenation, where we apply the rule that any two
a’s, b’s or c’s next to each other cancel each other, inductively, till we obtain an
element of G. So, for example,

(abacb)(cab) = abacbcab, (abacb)(bab) = abacbbab = abacab,

and (abacb)(bcb) = abacbbcb = abaccb = abab.

With these rules, G is a group with unit element ∅, the empty sequence, and
inverse (x(1) · · · x(n))−1 = x(n) · · ·x(1). Note that G is not abelian, i.e., the
group product is not commutative.

We can make G into a graph by drawing an edge between two elements x, y ∈ G
if x = ya, x = yb, or x = yc. It is not hard to see that the resulting graph
is an infinite tree in which each vertex has degree 3; see Figure 1.1. We let
|x| = |x(1) · · ·x(n)| := |n| denote the length of an element x ∈ G. It is not
hard to see that this is the same as the graph distance of x to the ‘origin’ ∅, i.e.,
the length of the shortest path connecting x to ∅.
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Figure 1.1: The regular tree T2

Let X = (Xk)k≥0 be the Markov chain with state space G and transition proba-
bilities

P (x, xa) = P (x, xb) = P (x, xc) =
1

3
(x ∈ G),

i.e., X jumps in each step to a uniformly chosen neighboring vertex in the graph.
We call X the nearest neighbor random walk on G.

We observe that if X is such a random walk on G, then |X| = (|Xk|)k≥0 is a
Markov chain with state space N and transition probabilities given by

Q(n, n− 1) :=
1

3
and Q(n, n+ 1) :=

2

3
(n ≥ 1),

and Q(0, 1) := 1.

For each x = x(1) · · · x(n) ∈ G, let us write x(i) := ∅ if i > n. The following
lemma shows that the random walk X is transient and walks away to infinity in a
well-defined ‘direction’.
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Lemma 1.16 (Transience) Let X be the random walk on G described above,
started in any initial law. Then there exists a random variable X∞ ∈ {a, b, c}N+

such that
lim
n→∞

Xn(i) = X∞(i) a.s. (i ∈ N+).

Proof We may compare |X| to a random walk Z = (Zk)k≥0 on Z that jumps from
n to n − 1 or n + 1 with probabilities 1/3 and 2/3, respectively. Such a random
walk has independent increments, i.e., (Zk − Zk−1)k≥1 are i.i.d. random variables
that take the values −1 and +1 with probabilities 1/3 and 2/3. Therefore, by the
strong law of large numbers, (Zn − Z0)/n → 1/3 a.s. and therefore Zn → ∞ a.s.
In particular Z visits each state only finitely often, which shows that all states are
transient. It follows that the process Z started in Z0 = 0 has a positive probability
of not returning to 0. Since Zn →∞ a.s. and since |X| has the same dynamics as
Z as long as it is in N+, this shows that the process started in X0 = a satisfies

Pa
[
|Xk| ≥ 1 ∀k ≥ 1

]
= P1

[
Zk ≥ 1 ∀k ≥ 1

]
> 0.

This shows that a is a transient state for X. By irreducibility, all states are
transient and |Xk| → ∞ a.s., which is easily seen to imply the lemma.

We are now ready to prove the existence of a many bounded harmonic functions
for the Markov chain X. Let

∂G :=
{
x ∈ {a, b, c}N+ : x(i) 6= x(i+ 1) ∀i ≥ 1

}
.

Elements in ∂G correspond to different ways of walking to infinity. Note that ∂G
is an uncountable set. In fact, if we identify elements of ∂G with points in [0, 1]
written in base 3, then ∂G corresponds to a sort of Cantor set. We equip ∂G with
the product-σ-field, which we denote by B(∂G). (Indeed, one can check that this
is the Borel-σ-field associated with the product topology.)

Proposition 1.17 (Bounded harmonic functions) Let φ : ∂G→ R be bounded
and measurable, let X be the random walk on the tree G described above, and let
X∞ be as in Lemma 1.16. Then

h(x) := Ex
[
φ(X∞)

]
(x ∈ G)

defines a bounded harmonic function for X. Moreover, the process started in an
arbitrary initial law satisfies

h(Xn) −→
n→∞

φ(X∞) a.s..
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Proof It follows from the Markov property (in the form (0.4)) that

h(x) = Ex[φ(X∞)] =
∑
y

P (x, y)Ey[φ(X∞)] =
∑
y

P (x, y)h(y) (x ∈ G),

which shows that h is harmonic. Since ‖h‖∞ ≤ ‖φ‖∞, the function h is bounded.
Moreover, by (0.4) and Proposition 0.6,

h(Xn) = EXn [φ(X∞)] = E[φ(X∞) | FXn ] −→
n→∞

E[φ(X∞) | FX∞] = φ(X∞) a.s.
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Figure 1.2: A bounded harmonic function

For example, in Figure 1.2, we have drawn a few values of the harmonic function

h(x) := Px[X∞(1) = a] (x ∈ G).

Although Proposition 1.17 proves that each bounded measurable function φ on
∂G yields a bounded harmonic function for the process X, we have not actually
shown that different φ’s yield different h’s.
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Lemma 1.18 (Many bounded harmonics) Let µ be the probability measure
on ∂G defined by µ := P∅[X∞ ∈ · ]. Let φ, ψ : ∂G→ R be bounded and measurable
and let

h(x) := Ex
[
φ(X∞)

]
and g(x) := Ex

[
ψ(X∞)

]
(x ∈ G).

Then h = g if and only if φ = ψ a.s. w.r.t. µ.

Proof Let us define more generally µx = Px[X∞ ∈ · ]. Since

µx(A) =
∑
z

P n(x, z)Pz[X∞ ∈ · ] ≤ P n(x, y)µy(A)

(x, y ∈ G, n ≥ 0, A ∈ B(∂G)) and P is irreducible, we see that µx � µy for all
x, y ∈ G, hence the measures (µx)x∈G are all equivalent. Thus, if φ = ψ a.s. w.r.t.
µ, then they are a.s. equal w.r.t. to µx for each x ∈ G, and therefore

h(x) =

∫
φdµx =

∫
ψdµx = g(x) (x ∈ G).

On the other hand, if the set {φ 6= ψ} has positive probability under µ, then by
Proposition 1.17

P∅
[

lim
n→∞

h(Xn) 6= lim
n→∞

g(Xn)
]
> 0,

which shows that there must exist x ∈ G with h(x) 6= g(x).

Exercise 1.19 (Escape probability) Let Z = (Zk)k≥0 be the Markov chain
with state space Z that jumps in each step from n to n − 1 with probability 1/3
and to n + 1 with probability 2/3. Calculate P1[Zk ≥ 1 ∀k ≥ 0]. Hint: find a
suitable harmonic function for the process stopped at zero.

Exercise 1.20 (Independent increments) Let (Yk)k≥1 be i.i.d. and uniformly
distributed on {a, b, c}. Define (Xn)n≥0 by the random group product (in the group
G)

Xn := Y1 · · ·Yn (n ≥ 1),

with X0 := ∅. Show that X is the Markov chain with transition kernel P as defined
above.
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1.3 Coupling

For any x = (x(1), . . . , x(d)) ∈ Zd, let |x|1 := maxdi=1 |x(i)| denote the ‘L1-norm’
of x. Set ∆ := {x ∈ Zd : |x|1 = 1}. Let (Yk)k≥1 be i.i.d. and uniformly distributed
on ∆ and let

Xn :=
n∑
k=1

Yk (n ≥ 1),

with X0 := 0. (Here we also use the symbol 0 to denote the origin 0 = (0, . . . , 0) ∈
Zd.) Then, just as in Excercise 1.20, X is a Markov chain, that jumps in each time
step from its present position x to a uniformly chosen position in x+ ∆ = {x+ y :
y ∈ ∆}. We call X the nearest neighbor random walk on the integer lattice Zd.
Sometimes X is also called simple random walk.

Let P denote its transition kernel. We will be interested in bounded harmonic
functions for P . We will show that in contrast to the random walk on the tree,
the random walk on the integer lattice has very few bounded harmonic functions.
Indeed, all such functions are constant. We will prove this using coupling, which
is a technique of much more general interest, with many applications.

Usually, when we talk about a random variable X (which may be the path of a
process X = (Xk)k≥0), we are not so much interested in the concrete probability
space (Ω,F ,P) that X is defined on. Rather, all that we usually care about is
the law P[X ∈ · ] of X. Likewise, when we have in mind two random variables X
and Y (for example, one binomially and the other normally distributed, or X and
Y may be two Markov chains with possibly different initial states or transition
kernels), then we usually do not a priori know what their joint distribution is,
even if we know there individual distributions. A coupling of two random variables
X and Y , in the most general sense of the word, is a way to construct X and
Y together on one underlying probability space (Ω,F ,P). More precisely, if X
and Y are random variables defined on different underlying probability spaces,
then a coupling of X and Y is a pair of random variables (X ′, Y ′) defined on one
underlying probability space (Ω,F ,P), such that X ′ is equally distributed with X
and Y ′ is equally distributed with Y . Equivalently, since the laws of X and Y
are all we really care about, we may say that a coupling of two probability laws
µ, ν defined on measurable spaces (E, E) and (F,F), respectively, is a probability
measure ρ on the product space (E × F, E ⊗ F) such that the first marginal of ρ
is µ and its second marginal is ν.

Obviously, a trivial way to couple any two random variables is to make them
independent, but this is usually not what we are after. A typical coupling is
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designed to compare two random variables, for example by showing that they are
close, or one is larger than the other. The next excercise gives a simple example.

Exercise 1.21 (Monotone coupling) Let X be uniformly distributed on [0, λ]
and let Y be exponentially distributed with mean (λ > 0). Show that X and
Y can be coupled such that X ≤ Y a.s. (Hint: note that this says that you
have to construct a probability measure on [0, λ]× [0,∞) that is concentrated on
{(x, y) : x ≤ y} and has the ‘right’ marginals.) Use your coupling to prove that
E[Xα] ≤ E[Y α] for all α > 0.

Now let ∆ ⊂ Zd be as defined at the beginning of this section and let P be the
transition kernel on Zd defined by

P (x, y) :=
1

2d
1{y − x ∈ ∆} (x, y ∈ Zd).

We are interested in bounded harmonic functions for P , i.e., bounded functions
h : Zd → R such that Ph = h. It is somewhat inconvenient that P is aperiodic.3

In light of this, we define a ‘lazy’ modification of our transition kernel by

Plazy(x, y) := 1
2
P (x, y) + 1

2
1{x=y}.

Obviously, Plazyf = 1
2
Pf + 1

2
f , so a function h is harmonic for P if and only if it

is harmonic for Plazy.

Proposition 1.22 (Coupling of lazy walks) Let Xx and Xy be two lazy random
walks, i.e., Markov chains on Zd with transition kernel Plazy, and initial states
Xx

0 = x and Xy
0 = y, x, y ∈ Zd. Then Xx and Xy can be coupled such that

∃n ≥ 0 s.t. Xx
k = Xy

k ∀k ≥ n a.s.

Proof We start by choosing a suitable random mapping representation. Let
(Uk)k≥1, (Ik)k≥1, and (Wk)k≥1 be collections of i.i.d. random variables, each collec-
tion independent of the others, such that for each k ≥ 1, Uk is uniformly distributed
on {0, 1}, Ik is uniformly distributed on {1, . . . , d}, and Wk is uniformly distributed
on {−1,+1}. Let ei ∈ Zd be defined as ei(j) := 1{i=j}. Then we may construct
Xx inductively by setting Xx

0 := x and

Xx
k = Xx

k−1 + UkWkeIk (k ≥ 1).

3Indeed, the Markov chain with transition kernel P takes values alternatively in Zd
even := {x ∈

Zd :
∑d

i=1 x(i) is even} and Zd
odd := {x ∈ Zd :

∑d
i=1 x(i) is odd}.
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Note that this says that Uk decides if we jump at all, Ik decides which coordinate
jumps, and Wk decides whether up or down.

To construct also Xy on the same probability space, we define inductively Xy
0 := y

and

Xy
k =

{
Xy
k−1 + (1− Uk)WkeIk if Xy

k−1(Ik) 6= Xx
k−1(Ik),

Xy
k−1 + UkWkeIk if Xy

k−1(Ik) = Xx
k−1(Ik),

(k ≥ 1).

Note that this says that Xx and Xy always select the same coordinate Ik ∈
{1, . . . , d} that is allowed to move. As long as Xx and Xy differ in this coor-
dinate, they jump at different times, but after the first time they agree in this
cordinate, they always increase or decrease this coordinate by the same amount at
the same time. In particular, these rules ensure that

Xx
k (i) = Xy

k (i) for all k ≥ τi := inf{n ≥ 0 : Xx
n(i) = Xy

n(i)}.

Since (Xx
k , X

y
k )k≥0 is defined in terms of i.i.d. random variables (Uk, Ik,Wk)k≥1

by a random mapping representation, the joint process (Xx, Xy) is clearly a
Markov chain. We have already seen that Xx, on its own, is also a Markov
chain, with the right transition kernel Plazy. It is straightforward to check that
P[Xy

k = z | (Xx
k , X

y
k )] = Plazy(Xy

k , z) a.s. In particular, this transition probability
depends only on Xy

k , hence by Lemma 0.12, Xy is an autonomous Markov chain
with transition kernel Plazy.

In view of this, our claim will follow provided we show that τi < ∞ a.s. for each
i = 1, . . . , d. Fix i and define inductively σ0 := 0 and

σk := inf{k > σk−1 : Ik = i}.

Consider the difference process

Dk := Xx
σk
−Xy

σk
(k ≥ 0).

Then D = (Dk)k≥0 is a Markov process on Z that in each step jumps from z to
z + 1 or z − 1 with equal probabilities, except when it is in zero, which is a trap.
In other words, this says that D is a simple random walk stopped at the first time
it hits zero. By Lemma 0.17, there a.s. exists some (random) k ≥ 0 such that
Dk = 0 and hence τi = σk <∞ a.s.

As a corollary of Proposition 1.22, we obtain that all bounded harmonic functions
for nearest-neighbor random walk on the d-dimensional integer lattice are constant.
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Corollary 1.23 (Bounded harmonic functions are constant) Let P (x, y) =
(2d)−11{|x−y|1=1} be the transition kernel of nearest-neighbor random walk on the
d-dimensional integer lattice Zd. If h : Zd → R is bounded and satisfies Ph = h,
then h is constant.

Proof Couple Xy and Xy as in Proposition 1.22. Since h is harmonic and bounded,
(h(Xx

k ))k≥0 and (h(Xy
k ))k≥0 are martingales. It follows that

h(x)− h(y) = E[h(Xx
k )]− E[h(Xy

k )]

= E[h(Xx
k )− h(Xy

k )] ≤ 2‖h‖∞P[Xx
k 6= Xy

k ] −→
k→∞

0

for each x, y ∈ Zd, proving that h is constant.
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