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Preface

It is a fact of everyday life that our knowledge about the world around us is always
incomplete and imperfect. We may feel pretty sure that we locked the front door
when we left our house this morning, but less sure about how much milk there is left
in our fridge. A mathematical theory that deals with such incomplete knowledge is
probability theory. Since the early 1930-ies, in particular since the monograph of
Kolmogorov [Kol33], the basis of probability theory is provided by measure theory.
Incomplete knowledge about a physical system is described by a probability space
(Ω,F , µ), where Ω is a set, called the state space, F is a σ-algebra on Ω, and µ is
a probability measure on F .

At the same time when Kolmogorov’s monograph laid an axiomatic basic for
probability theory as it had been around since the times of Fermat, physicists
were discovering a whole new type of probability theory. With the arrival of the
Copenhagen interpretation of quantum mechanics, it became clear that quantum
mechanics, at its heart, is a theory about probabilities, and that these probabilities
do not fit into Kolmogorov’s scheme. In order to describe incomplete knowledge
about a quantum physical system, instead of a probability space (Ω,F , µ), physi-
cists use a pair (A, ρ) where A is a C∗-algebra and ρ is a positive linear form
on A. If A is noncommutative, then these ‘quantum probability spaces’ do not
correspond to anything classical, and put a severe strain on our imagination.

The aim of the present course is to make acquaintance with this quantum probabil-
ity formalism, its interpretation, and its difficulties. Prerequisites for this course
are elementary knowledge of complex numbers and linear algebra. It is helpful
if one has some familiarity with the basic concepts of probability theory such as
independence, conditional probabilities, expectations, and so on.

Sections marked with * can be skipped at a first reading.



Chapter 1

Linear spaces

1.1 Linear spaces

Let K denote either R or C.1 By definition, a linear space (or vector space) over
K is a set V , with a special element 0 ∈ V called origin, on which an addition
(φ, ψ) 7→ φ+ ψ and multiplication with scalars (a, φ) 7→ aφ are defined, such that

(i) (φ+ ψ) + χ = φ+ (ψ + χ),
(ii) φ+ ψ = ψ + φ,
(iii) φ+ 0 = φ,
(iv) (ab)φ = a(bφ),
(v) 0φ = 0,
(vi) 1φ = φ,
(vii) a(φ+ ψ) = aφ+ aψ,
(viii) (a+ b)φ = aφ+ bφ

for all φ, ψ, χ ∈ V and a, b ∈ K.

A subset of V that is closed under addition and multiplication with scalars is called
a linear subspace. By definition, the span of a subset W ⊂ V is the linear subspace
defined as2

span(W) := {a1φ(1) + · · ·+ anφ(n) : φ(1), . . . , φ(n) ∈ W}

We say that W spans the linear subspace span(W). We say that a linear space V
is finite dimensional if there exists a finite set W such that V = span(W).

1In fact, more generaly, all of Section 1.1 is true when K is division ring, but we will not need
this generality.

2In these lecture notes, the symbol ⊂ means: subset of (and possibly equal to). Thus, in
particular, A ⊂ A.
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6 CHAPTER 1. LINEAR SPACES

A finite collection {φ(1), . . . , φ(n)} of elements of a linear space V is called linearly
independent if the equation

a1φ(1) + · · ·+ anφ(n) = 0

has no other solutions than a1 = a2 = · · · = an = 0. If moreover {φ(1), . . . , φ(n)}
spans V then we call {φ(1), . . . , φ(n)} a basis for V . Let {e(1), . . . , e(n)} be a basis
for V . Then for every φ ∈ V there exist unique φ1, . . . , φn ∈ K such that

φ = φ1e(1) + · · ·+ φne(n).

Thus, given a basis we can set up a linear isomorphism between our abstract vector
space V and the concrete linear space Kn := {(φ1, . . . , φn) : φi ∈ K ∀i = 1, . . . , n}.
We call (φ1, . . . , φn) the coordinates of φ with respect to the basis {e(1), . . . , e(n)}.
Note that if we want to label a collection of vectors in V , such as {φ(1), . . . , φ(n)},
then we put the labels between brackets to distinguish such notation from the
coordinates of a vector with respect to a given basis.

It can be shown that every finite dimensional linear space has a basis. (Note
that this is not completely straightforward from our definitions!) If V is finite
dimensional, then one can check that all bases of V have the same number of
elements n. This number is called the dimension dim(V) of V . From now on, all
linear spaces are finite dimensional, unless stated otherwise.

Let V ,W be linear spaces. By definition, a map A : V → W is called linear if

A(aφ+ bψ) = aAφ+ bAψ (a, b ∈ K, φ, ψ ∈ V).

We denote the space of all linear maps from V into W by L(V ,W). In an obvious
way L(V ,W) is itself a linear space. If A ∈ L(V ,W), {e(1), . . . , e(n)} is a basis
for V , and {f(1), . . . , f(m)} is a basis for W , then

(Aφ)i =
n∑
j=1

Aijφj (i = 1, . . . ,m),

where φj (j = 1, . . . , n) and (Aφ)i (i = 1, . . . ,m) are the coordinates of φ and Aφ
with respect to {e(1), . . . , e(n)} and {f(1), . . . , f(m)}, respectively, and(

Aij
)
i=1,...,m

j=1,...,n

is the matrix of A with respect to the bases {e(1), . . . , e(n)} and {f(1), . . . , f(m)}.
The numbers Aij ∈ K are called the entries of A.
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Exercise 1.1.1 If A ∈ L(U ,V) and B ∈ L(V ,W) , then show that

(AB)ij =
∑
k

AikBkj.

The kernel and range of a linear operator A ∈ L(V ,W) are defined by

Ker(A) := {φ ∈ V : Aφ = 0},
Ran(A) := {Aφ : φ ∈ V}.

One has
dim(Ker(A)) + dim(Ran(A)) = dim(V).

If a linear map A : V → W is a bijection then one can check that its inverse A−1 is
also linear. In this case we call A invertible. A linear map A : V → W is invertible
if and only if Ker(l) = {0} and Ran(l) = W . This is equivalent to Ker(l) = {0}
and dim(V) = dim(W).

For any linear space V , we write L(V) := L(V ,V) for the space of all linear maps
A : V → V . We also call such linear maps linear operators. We define the
commutator of two operators A,B ∈ L(V) by

[A,B] := AB −BA,

and we say that A and B commute if [A,B] = 0, i.e., if AB = BA.

By definition, the trace of a linear operator in L(V) is given by

tr(A) :=
n∑
i=1

Aii.

Here Aij denotes the matrix of A with respect to any basis {e(1), . . . , e(n)} of V ;
it can be shown that the definition of the trace is independent of the choice of the
basis. The trace is linear and satisfies

tr(AB) = tr(BA) (A ∈ L(V ,W), B ∈ L(W ,V)).

By definition, an eigenvector of a linear operator A ∈ L(V) is a vector ψ ∈ V ,
ψ 6= 0, such that

Aψ = λψ

for some λ ∈ K. The constant λ is called the eigenvalue corresponding to the
eigenvector ψ. By definition,

σ(A) := {λ ∈ K : λ is an eigenvalue of A}

is called the spectrum of A.
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Exercise 1.1.2 Show that σ(A) = {λ ∈ K : (λ− A) is not invertible}.

The following proposition holds only for linear spaces over the complex numbers.

Proposition 1.1.3 (Nonempty spectrum) Let V 6= {0} be a linear space over
C and let A ∈ L(V). Then σ(A) is not empty.

A linear operator is called diagonalizable if there exists a basis {e(1), . . . , e(n)} for
V consisting of eigenvectors of A. With respect to such a basis, the matrix of A
has the diagonal form Aij = δijλi, where λi is the eigenvalue corresponding to the
eigenvector φi, and

δij :=

{
1 if i = j,
0 otherwise.

1.2 Inner product spaces

Let H be a linear space over K = R of C. By definition, an inner product on H is
a map (φ, ψ) 7→ 〈φ|ψ〉 from H×H into K such that

(i) 〈φ|aψ+bχ〉 = a〈φ|ψ〉+ b〈φ|χ〉 (φ, ψ, χ ∈ H, a, b∈C),
(ii) 〈φ|ψ〉 = 〈ψ|φ〉∗ (φ, ψ ∈ H),
(iii) 〈φ|φ〉 ≥ 0 (φ ∈ H),
(iv) 〈φ|φ〉 = 0 ⇒ φ = 0.

Here a∗ denotes the complex conjugate of a complex number a. A linear space that
is equipped with an inner product is called an inner product space. By definition,

‖ψ‖ :=
√
〈ψ|ψ〉 (ψ ∈ H)

is the norm associated with the inner product 〈·|·〉. Two vectors φ, ψ are called
orthogonal if 〈φ|ψ〉 = 0. A basis {e(1), . . . , e(n)} of H is called orthogonal if
〈e(i)|e(j)〉 = 0 for all i 6= j. It is called orthonormal if in addition 〈e(i)|e(i)〉 = 1
for all i. Every inner product space has an orthonormal basis.

Dirac’s [Dir58] bracket notation is a clever way to ‘decompose’ the inner product
〈ψ|φ〉 on an inner product space H into two parts, 〈ψ| and |φ〉, which Dirac called
a bra and a ket, so that together they form a bra(c)ket 〈φ|ψ〉. For any ψ ∈ H,
define operators 〈ψ| ∈ L(H,K) and |ψ〉 ∈ L(K,H) ∼= H by

〈ψ|φ := 〈ψ|φ〉 (φ ∈ H),
|ψ〉λ :=λψ (λ ∈ K).
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Then for any φ, ψ ∈ H, the composition 〈φ| |ψ〉 is an operator in L(K,K) ∼= K
that can be associated with the number 〈φ|ψ〉 ∈ K. Here we write ∼= to indicate
that two linear spaces are in a natural way isomorphic.

If {e(1), . . . , e(n)} is an orthonormal basis of H and φ ∈ H, then the coordinates
of φ with respect to this basis are given by

φi = 〈e(i)|φ〉.

If H1,H2 are inner product spaces with respective bases {e(1), . . . , e(n)} and
{f(1), . . . , f(m)}, and A ∈ L(H1,H2), then the matrix of A with respect to these
bases is given by

Aij = 〈f(i)|A|e(j)〉.
One has

A =
∑
ij

Aij|f(i)〉〈e(j)|.

Note that 〈e(j)| ∈ L(H1,K) and |f(i)〉 ∈ L(K,H2), so the composition |f(i)〉〈e(j)|
is an operator in L(H1,H2). In particular, for the identity map 1 ∈ L(H) =
L(H,H) one has the useful relation

1 =
∑
i

|e(i)〉〈e(i)|.

If H1,H2 are inner product spaces and A ∈ L(H1,H2), then there exists a unique
adjoint A∗ ∈ L(H2,H1) of A, such that

〈φ|Aψ〉2 = 〈A∗φ|ψ〉1 (φ ∈ H2, ψ ∈ H1),

where 〈·|·〉1 denotes the inner product in H1 and 〈·|·〉2 denotes the inner product
in H2. It is easy to see that

(aA+ bB)∗ = a∗A∗ + b∗B∗ (A,B ∈ L(H1,H2), a, b ∈ K),

i.e., A 7→ A∗ is colinear, and
(A∗)∗ = A.

If A ∈ L(H1,H2) and B ∈ L(H2,H3) then one has

(AB)∗ = B∗A∗.

Exercise 1.2.1 Let A ∈ L(H1,H2) and let {e(1), . . . , e(n)} and {f(1), . . . , f(n)}
be orthonormal bases for H1 and H2, respectively. Show that the matrix of A∗ is
given by

A∗ij = (Aji)
∗.
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Exercise 1.2.2 We can view K in a natural way as a (one-dimensional) inner
product space with inner product 〈a|b〉 := a∗b. Show that for any inner product
space H and φ ∈ H,

|φ〉∗ = 〈φ|.

Exercise 1.2.3 Let H1,H2 be inner product spaces and let A ∈ L(H1,H2). Show
that 〈φ|A∗ = 〈Aψ| for all φ ∈ H1.

Exercise 1.2.4 Let H1,H2 be inner product spaces and let A,B ∈ L(H1,H2).
Show that

tr(A∗B) =
∑
ij

(Aji)
∗Bji.

Show that 〈A|B〉 := tr(A∗B) defines an inner product on L(H1,H2).

An operator A ∈ L(H) is called normal if it commutes with its adjoint, i.e.,

AA∗ = A∗A.

The following theorem holds only for inner product spaces over C.

Theorem 1.2.5 (Diagonalization of normal operators) Assume that H is an
inner product space over C. Then an operator A ∈ L(H) is normal if and only if
there exists an orthonormal basis {e(1), . . . , e(n)} and complex numbers λ1, . . . , λn
such that

A =
n∑
i=1

λi|e(i)〉〈e(i)|. (1.1)

Note that (1.1) says that the matrix of A with respect to {e(1), . . . , e(n)} is diag-
onal, i.e., Aij = δijλi. The constants λ1, . . . , λn (some of which may be the same)
are the eigenvalues of A.

Proof of Theorem 1.2.5 (sketch) By Proposition 1.1.3, each A ∈ L(H) has
at least one eigenvector φ. Using the fact that A is normal, one can show that A
maps the space {φ}⊥ into itself. Thus, again by Proposition 1.1.3, A must have
another eigenfuction in {φ}⊥. Repeating this process, we arrive at an orthogonal
basis of eigenvectors. Normalizing yields an orthonormal basis.

If H1,H2 are inner product spaces and U ∈ L(H1,H2), then we say that U is
unitary if

〈Uφ|Uψ〉2 = 〈φ|ψ〉1 (φ, ψ ∈ H1),

i.e., U preserves the inner product.
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Exercise 1.2.6 Let H1,H2 be inner product spaces and U ∈ L(H1,H2). Assume
that H1 and H2 have the same dimension. Show that an operator U ∈ L(H1,H2)
is unitary if and only if U is invertible and U−1 = U∗. Hint: consider the image
under U of an orthonormal basis of H1.

Note that since any invertible operator in L(H) = L(H,H) commutes with its
inverse, Exercise 1.2.6 shows that unitary operators in L(H) are normal.

Exercise 1.2.7 Let H be an inner product space over C. Show that an operator
U ∈ L(H) is unitary if and only if U is of the form

U =
n∑
i=1

λi|e(i)〉〈e(i)|

where {e(1), . . . , e(n)} is an orthonormal basis of H and λ1, . . . , λn are complex
numbers such that |λi| = 1 for i = 1, . . . , n.

An operator A ∈ L(H) is called hermitian or self-adjoint if A = A∗. In coordinates
with respect to an orthonormal basis, this means that Aij = (Aji)

∗. Obviously,
hermitian operators are normal.

Exercise 1.2.8 Let H be an inner product space over C with orthonormal basis
{e(1), . . . , e(n)}, and let

A =
n∑
i=1

λi|e(i)〉〈e(i)|

be a normal operator on H. Show that A is hermitian if and only if the eigenvalues
λi are real.

An operator A ∈ L(H) is called positive if and only if A is hermitian and all its
eigenvalues are nonnegative. We define a partial order on the space of all hermitian
operators by

A ≤ B ⇔ B − A is positive.

Let H be an inner product space and let F ⊂ H be a linear subspace of H. Let

F⊥ := {φ ∈ H : 〈φ|ψ〉 = 0 ∀ψ ∈ F}.

denote the orthogonal complement of F . Then each vector φ ∈ H can in a unique
way be written as

φ = φ′ + φ′′ (φ′ ∈ F , φ′′ ∈ F⊥).
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We call φ′ the orthogonal projection of φ on the subspace F , and write

φ′ =: PFφ.

One can check that P ∗
F = PF = P 2

F . The next exercise shows that conversely,
every operator with these properties is of the form PF .

Exercise 1.2.9 Let H be an inner product space and assume that P ∈ L(H)
satisfies P ∗ = P = P 2. Show that there exists a linear subspace F ⊂ H such that
P = PF . Hint: since P is hermitian, we can write P =

∑
i λi|e(i)〉〈e(i)|. Consider

F := span{e(i) : λi = 1}.

In view of Exercise 1.2.9, we call any operator P ∈ L(H) such that P ∗ = P = P 2

a projection. Obviously, projections are hermitian operators.

By definition, a partition of the identity is a finite set of projections {P1, . . . , Pm}
such that

m∑
i=1

Pi = 1 and PiPj = 0 (i 6= j).

If F1, . . . ,Fm are subspaces of H, then PF1 , . . . , PFm is a partition of the identity if
and only if F1, . . . ,Fm are mutually orthogonal and span H. In terms of partitions
of the identity, we can formulate Theorem 1.2.5 slightly differently.

Theorem 1.2.10 (Spectral decomposition) Let H be an inner product space
over C and let A ∈ L(H) be normal. For each λ ∈ σ(A), let

Fλ := {φ ∈ H : Aφ = λφ}

denote the eigenspace corresponding to the eigenvalue λ. Then {PFλ : λ ∈ σ(A)}
is a partition of the unity and

A =
∑

λ∈σ(A)

λPFλ .

Using the spectral decompositon, one can define a ‘functional calculus’ for normal
operators. If H is a complex inner product space, A ∈ L(H), and f : C → C is a
function, then one defines a normal operator f(A) by

f(A) :=
∑

λ∈σ(A)

f(λ)PFλ .

Exercise 1.2.11 Let A be a hermitian operator. Show that eiA (defined with the
functional calculus for normal operators) is a unitary operator.
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Exercise 1.2.12 Let H be an inner product space over C and A ∈ L(H). Show
that A is hermitian if and only if 〈φ|A|φ〉 is real for all φ ∈ H.

Exercise 1.2.13 Let H be an inner product space over C and A ∈ L(H). Show
that the following conditions are equivalent.

(1) A is a positive operator.

(2) 〈φ|A|φ〉 is real and nonnegative for all φ ∈ H.

(3) There exists a B ∈ L(H) such that A = B∗B.

1.3 Dual, quotient, sum, and product spaces*

Dual spaces

Let V be a linear space over K = R or C. By definition,

V ′ := L(V ,K)

is the dual of V . The elements of V ′ (usually denoted by l) are called linear forms
on V . The dual space V ′ has the same dimension as V . If {e(1), . . . , e(n)} is a
basis for V then the linear forms {f(1), . . . , f(n)} given by

f(i)(e(j)) := δij

form a basis of V ′, called the dual basis of {e(1), . . . , e(n)}. There exists a natural
isomorphism between V and its double dual:

V ∼= V ′′.

Here we map a φ ∈ V to the linear form Lφ ∈ Lφ(V ′,K) given by

Lφ(l) := l(φ) (l ∈ V ′).

Since the kernel of the map φ 7→ Lφ is zero and V and V ′′ have the same di-
mension, this is a linear isomorphism. Note that since V and V ′ have the same
dimension, there also exist (many) linear isomorphisms between V and V ′. How-
ever, if dim(V) > 1, it is not possible to choose a ‘natural’ or ‘canonical’ linear
isomorphism between V and V ′, and therefore we need to distinguish these as
different spaces.
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If V1,V2 are linear spaces and A ∈ L(V1,V2), then by definition its dual is the
linear map A′ ∈ L(V ′2,V ′1) defined by

A′(l) := l ◦ A (l ∈ V ′2),

where ◦ denotes composition.

If H is an inner product space then the map φ 7→ 〈φ| is a colinear bijection from
H to H′. In particular,

H′ = {〈φ| : φ ∈ H}.

If H1,H2 are inner product spaces and A ∈ L(H1,H2), then its dual A′ is the map

A′(〈φ|) = 〈A∗φ| (φ ∈ H2).

Quotient spaces

Let V be a linear space over K and let W be a linear subspace of V . For any φ ∈ V
write φ+W := {φ+ ψ : ψ ∈ W}. Then the quotient space

V/W := {φ+W : φ ∈ V}

is a linear space with zero element 0 +W and

a(φ+W) + b(ψ +W) := (aφ+ bψ) +W (a, b ∈ K, φ, ψ ∈ V).

Exercise 1.3.1 Show that linear combinations in V/W are well-defined, i.e., if
φ+W = φ̃+W and ψ +W = ψ̃ +W , then (aφ+ bψ) +W = (aφ̃+ bψ̃) +W .

Exercise 1.3.2 Let l : V → V/W be the quotient map l(φ) := φ+W . Show that
Ker(l) = W and Ran(l) = V/W . Show that

dim(V) = dim(V/W) + dim(W).

Exercise 1.3.3 Let l : V1 → V2 be a linear map. Show that there exists a natural
linear isomorphism

V1/Ker(A) ∼= Ran(A),

Exercise 1.3.4 Let V3 ⊂ V2 ⊂ V1 be linear spaces. Show that there exists a
natural linear isomorphism

(V1/V2) ∼= (V1/V3)/(V2/V3).
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The direct sum

Let V1, . . . ,Vn be linear spaces over K = R or C. By definition, the direct sum of
V1, . . . ,Vn is the space

V1 ⊕ · · · ⊕ Vn := {(φ(1), . . . , φ(n)) : φ(1) ∈ V1, . . . , φ(n) ∈ Vn},

which we equip with a linear structure by putting

a(φ(1), . . . , φ(n)) + b(ψ(1), . . . , ψ(n)) := (aφ(1) + bψ(1), . . . , aφ(n) + bψ(n)).

If V is some linear space and V1, . . . ,Vn are linear subspaces of V such that every
φ ∈ V can in a unique way be written as φ = φ(1) + · · · + φ(n) with φ(1) ∈
V1, . . . , φ(n) ∈ Vn, then there is a natural isomorphism V ∼= V1 ⊕ · · · ⊕ Vn, given
by

φ(1) + · · ·+ φ(n) 7→ (φ(1), . . . , φ(n)).

Also in this case, we say that V is the direct sum of V1, . . . ,Vn. We often look at
a direct sum in this way. Thus, we often view V1, . . . ,Vn as linear subspaces of
V1 ⊕ · · · ⊕ Vn, and write φ(1) + · · ·+ φ(n) rather than (φ(1), . . . , φ(n)). One has

dim(V1 ⊕ · · · ⊕ Vn) = dim(V1) + · · ·+ dim(Vn).

If U ,W are linear subspaces of V such that V = U ⊕W , then the projection on U
with respect to this decomposition is the map P : V → U defined by

P (φ+ ψ) := φ (φ ∈ U , ψ ∈ W).

Note that this is a good definition since every χ ∈ V can in a unique way be written
as χ = φ + ψ with φ ∈ U and ψ ∈ W . Warning: the definition of P depends not
only on U but also on the choice of W !

Exercise 1.3.5 Show that
(U ⊕W)/W ∼= U .

If V is a linear space and W ⊂ V a linear subspace, are then V and V/W ⊕W in
a natural way isomorphic?

If H1, . . . ,Hn are inner product spaces with inner products 〈·|·〉1, . . . , 〈·|·〉n, respec-
tively, then we equip their direct sum H1 ⊕ · · · ⊕ Hn with the inner product

〈(φ(1), . . . , φ(n))|(ψ(1), . . . , ψ(n))〉 :=
n∑
i=1

〈φ(i)|ψ(i)〉.

Note that if we viewH1, . . . ,Hn as subspaces ofH1⊕· · ·⊕Hn, then these subspaces
are mutually orthogonal in the inner product on H1 ⊕ · · · ⊕ Hn.
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Exercise 1.3.6 Let H be an inner product space and F a linear subspace. Show
that

H ∼= F ⊕ F⊥,

where ∼= means that the two spaces are isomorphic as inner product spaces.

Exercise 1.3.7 Let H be an inner product space and F a linear subspace. Show
that H/F and F⊥ are isomorphic as linear spaces.

The tensor product

Let U ,V , and W be linear spaces. By definition, a map b : U ×V → W is bilinear
if

φ 7→ b(φ, ψ) is linear for each fixed ψ ∈ V ,

ψ 7→ b(φ, ψ) is linear for each fixed φ ∈ U .

Proposition 1.3.8 (Definition of the tensor product) For any two linear
spaces U ,V there exists a linear space U ⊗V, called the tensor product of U and V,
and a bilinear map (φ, ψ) 7→ φ⊗ψ from U ×V into U ⊗V, satisfying the following
equivalent properties

(i) If {e(1), . . . , e(n)} and {f(1), . . . , f(m)} are a bases of U and V, respectively,
then {

e(i)⊗ f(j) : i = 1, . . . , n, j = 1, . . . ,m
}

is a basis for U ⊗ V.

(ii) For any linear space W and for any bilinear map b : U × V → W, there
exists a unique linear map b : U ⊗ V → W such that b(φ⊗ ψ) = b(φ, ψ) for
all φ ∈ U , ψ ∈ V.

We postpone the proof of Proposition 1.3.8 to the end of this section. The next
lemma says that the tensor product of two linear spaces is unique up to linear
isomorphisms.

Lemma 1.3.9 (Uniqueness of the tensor product) Let U ,V be linear spaces.
Then the tensor product U ⊗ V of U and V is unique in the following sense. If
a linear space U⊗̃V together with a bilinear map (φ, ψ) 7→ φ⊗̃ψ from U × V into
U⊗̃V satisfy properties (i) and (ii) of Proposition 1.3.8, then there exist a unique
linear bijection l : U⊗̃V → U ⊗ V such that l(φ⊗̃ψ) = φ⊗ ψ for all φ ∈ U , ψ ∈ V.
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Proof Since (φ, ψ) 7→ φ⊗ψ is bilinear, by the fact that U⊗̃V satisfies property (ii),
there exists a unique linear map l : U⊗̃V → U ⊗ V such that l(φ⊗̃ψ) = φ⊗ ψ for
all φ ∈ U , ψ ∈ V . By property (i), l maps some basis of U⊗̃V into a basis of U ⊗V ,
hence l is a linear bijection.

It is obvious from Proposition 1.3.8 that

dim(U ⊗ V) = dim(U) dim(V).

IfH1,H2 are inner product spaces with inner products 〈·|·〉1 and 〈·|·〉1, respectively,
then we equip the tensor product H1 ⊗H2 with the inner product

〈φ(1)⊗ φ(2)|ψ(1)⊗ ψ(2)〉 := 〈φ(1)|ψ(1)〉1〈φ(2)|ψ(2)〉2,

for any φ(1), ψ(1) ∈ H1 and φ(2), ψ(2) ∈ H2. In this case, if {e(1), . . . , e(n)}
and {f(1), . . . , f(nm)} are orthonormal bases of H1 and H2, respectively, then
{e(i)⊗ f(j) : i = 1, . . . , n, j = 1, . . . ,m} is an orthonormal bases of H1 ⊗H2.
The next Proposition summarizes some useful additional properties of the tensor
product.

Proposition 1.3.10 (Properties of the tensor product) Let U ,V, and U ⊗V
be linear spaces and let (φ, ψ) 7→ φ⊗ ψ from U × V into U ⊗ V be bilinear. Then
U ⊗V, equipped with this map, is the tensor product of U and V if and only if the
following equivalent conditions hold:

(iii) There exist bases {e(1), . . . , e(n)} and {f(1), . . . , f(m)} of U and V, respec-
tively, such that {

e(i)⊗ f(j) : i = 1, . . . , n, j = 1, . . . ,m
}

is a basis for U ⊗ V.

(iv) For any k ∈ U ′ and l ∈ V ′ there exists a unique p ∈ (U ⊗ V)′ such that
p(φ⊗ ψ) = k(φ)l(ψ) for all φ ∈ U , ψ ∈ V.

(v) For any linear space W and for any map b : U × V → W that is colinear
in each of its arguments, there exists a unique colinear map b : U ⊗ V → W
such that b(φ⊗ ψ) = b(φ, ψ) for all φ ∈ U , ψ ∈ V.

Proof of Propositions 1.3.8 and 1.3.10 Consider the properties (i)–(v) from
Propositions 1.3.8 and 1.3.10. It is easy to see that there exists a linear space
V ⊗ W and a bilinear map (φ, ψ) 7→ φ ⊗ ψ from U × V into U ⊗ V satisfying
property (iii): choose any bases {e(1), . . . , e(n)} and {f(1), . . . , f(m)} of U and V ,
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let U ⊗ V be any linear space with dimension nm, choose a basis for U ⊗ V , and
give the nm basis vectors the names

e(i)⊗ f(j) (i = 1, . . . , n, j = 1, . . . ,m).

If we now define a bilinear map (φ, ψ) 7→ φ⊗ ψ from U × V into U ⊗ V by( n∑
i=1

aie(i)
)
⊗

( m∑
j=1

bjf(j)
)

:=
n∑
i=1

m∑
j=1

aibj e(i)⊗ f(j),

then property (iii) holds.
To complete the proof, we will show that (iii)⇒(ii)⇒(iv)⇒(i)⇒(iii) and (ii)⇔(v).
To see that (iii)⇒(ii), we define

b(e(i)⊗ f(j)) := b(e(i), f(j)) (i = 1, . . . , n, j = 1, . . . ,m).

Since the e(i)⊗f(j) are a basis of U ⊗V , this definition extends to a unique linear
map b : U ⊗ V → W . Since b is bilinear, it is easy to see that

b(φ⊗ ψ) = b(φ, ψ) ∀ φ ∈ U , ψ ∈ V .

This proves (ii).
The implication (ii)⇒(iv) is obvious, since (φ, ψ) 7→ k(φ)l(ψ) is bilinear.
To prove (iv)⇒(i), let {e(1), . . . , e(n)} and {f(1), . . . , f(m)} be bases for U and V ,
respectively. We claim that {e(i)⊗ f(j) : i = 1, . . . , n, j = 1, . . . ,m} is a basis for
U ⊗ V . We start by showing that these vectors are linearly independent. Assume
that ∑

ij

aije(i)⊗ f(j) = 0.

By our assumption, for any k ∈ V ′i and l ∈ V ′i, there exists a unique linear form p
on U ⊗ V such that p(φ⊗ ψ) = k(φ)l(ψ) for all φ ∈ U , ψ ∈ V , and therefore,∑

ij

aij k(e(i))l(f(j)) = p
( ∑

ij

aij e(i)⊗ f(j)
)

= p(0) = 0,

In particular, we may choose

k(e(i)) = δii′ and l(f(j)) = δjj′ .

This shows that ai′j′ = 0 for all i′, j′, i.e., the vectors e(i) ⊗ f(j) are linearly
independent. It is easy to see that if these vectors would not span U ⊗V , then the
linear form p would not be unique, hence they must be a basis for U ⊗ V .
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The implication (i)⇒(iii) is trivial. To see that (ii)⇔(v), finally, we use a trick.
If W is a linear space, then we can always find a linear space W together with a
conlinear map l : W →W such that l is a bijection. (To see this, take W with the
same dimension as W , choose bases {e(1), . . . , e(n)} and {f(1), . . . , f(n)} for W
and W , respectively, and set l(

∑
i aie(i)) :=

∑
i a

∗
i f(i).) We call W the complex

conjugate of W . Now if b : U × V → W is colinear in each of its arguments, then
l ◦ b : U × V → W is bilinear, and vice versa, so it is easy to see that (i) and (v)
are equivalent.
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Chapter 2

Two kinds of probability

2.1 Q-algebras

By definition, an algebra is a linear space A 6= {0} over K = C or R, that is
equipped with a multiplication (A,B) 7→ AB from A×A into A that is associative,
bilinear, and has a unit element 1 ∈ A, i.e.,1

(i) (AB)C = A(BC) (A,B,C ∈ A),
(ii) A(bB + cC) = bAB + cAC (A,B,C ∈ A, b, c ∈ K),
(iii) (aA+ bB)C = aAC + bBC (A,B,C ∈ A, a, b ∈ K)
(iv) 1A = A = A1 (A ∈ A).

Another word for the unit element is identity. We say that an algebra A is abelian
if the multiplication is commutative, i.e.,

AB = BA (A,B ∈ A) .

By definition, an adjoint operation (also called involution) on A is a map A 7→ A∗

from A into A that has the following properties:

(v) (A∗)∗ = A (A ∈ A),
(vi) (aA+ bB)∗ = a∗A∗ + b∗B∗ (A,B ∈ A, a, b ∈ C),
(vii) (AB)∗ = B∗A∗ (A,B ∈ A).

Here a∗ denotes the complex conjugate of a complex number a. Let us say that
an adjoint operation is positive if

(viii) A∗A = 0 ⇒ A = 0 (A ∈ A).

1The existence of a unit element is not always included in the definition of an algebra. Actually,
depending on the methematical context, the word algebra can mean many things.

21
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By definition, a ∗-algebra (pronounce: star-algebra) is an algebra A that is equip-
ped with an adjoint operation. Let us say that A is a Q-algebra if A is a finite-
dimensional ∗-algebra over the complex numbers and the adjoint operation is pos-
itive. The term Q-algebra (Q stands for Quantum) is not standard. In fact,
Q-algebras, as we have just defined them, are finite dimensional C∗-algebras; see
Section 3.4.

Exercise 2.1.1 Let H be an inner product space over K = R or C and let L(H)
be the space of linear operators on H, equipped with operator multiplication and
adjugation. Then, obviously, L(H) is a ∗-algebra. Show that the adjoint operation
is positive, i.e., L(H) satisfies property (viii).

Exercise 2.1.2 Let A be a ∗-algebra. Show that the space of self-adjoint elements
Ar := {A ∈ A : A∗ = A} is a real linear subspace of A. Show that each A ∈ A
can in a unique way be written as A = Re(A) + iIm(A) with Re(A), Im(A) ∈ Ar.

Exercise 2.1.3 Let H be an inner product space over C and let A ∈ L(H). Show
that A∗A = Re(A)2 + Im(A)2 if and only if A is normal.

Let A,B be algebras. We say that that a map l : A → B is an algebra homomor-
phism if

(a) l(aA+ bB) = al(A) + bl(B) (A,B ∈ A, a, b ∈ C),
(b) l(AB) = l(A)l(B) (A,B ∈ A),
(c) l(1) = 1.

If A,B are ∗-algebras, then l is called a ∗-algebra homomorphism if moreover

(d) l(A∗) = l(A)∗ (A ∈ A).

If an algebra homomorphism (resp. ∗-algebra homomorphism) l is a bijection then
one can check that also l−1 is also an algebra homomorphism (resp. ∗-algebra
homomorphism). In this case we call l an algebra isomorphism (resp. ∗-algebra
isomorphism) and we say that A and B are isomorphic as algebras (resp. as ∗-al-
gebras).

By definition, a subalgebra of an algebra A is a linear subspace A′ ⊂ A such that
1 ∈ A′ and A′ is closed under multiplication. If A is a ∗-algebra then we call A′

a sub-∗-algebra if moreover A′ is closed under adjugation. If A′ is a subalgebra
(resp. sub-∗-algebra) of A, then A′, equipped with the multiplication and adjoint
operation from A, is itself an algebra (resp. ∗-algebra).
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Exercise 2.1.4 Let A,B be ∗-algebras and let l : A → B be a ∗-algebra homo-
morphism. Show that the range Ran(l) := {l(A) : A ∈ A} of l is a sub-∗-algebra
of B.

A representation of an algebra A over K = C or R is a linear space H over K
together with an algebra homomorphism l : A → L(H). If A is a ∗-algebra, then
we also require that H is equipped with an inner product such that l : A → L(H)
is a ∗-algebra homomorphism. (Otherwise, we speak of a representation of A as an
algebra.) A representation is faithful if l is one-to-one. Note that in this case, l is an
algebra isomorphism (resp. ∗-algebra isomorphism) between A and the subalgebra
(resp. sub-∗-algebra) Ran(l) ⊂ L(H).

A basic result about Q-algebras is:

Theorem 2.1.5 (Representation of positive ∗-algebras) Every Q-algebra
has a faithful representation.

Unfortunately, the proof of Theorem 2.1.5 is mildly complicated. For a proof, we
refer the reader to [GHJ89, Appendix II.a] or [Swa04]. A rough sketch of the proof
will be given in Section 4.5. Those who are not satisfied with this may find some
consolation in hearing that, actually, we will not use Theorem 2.1.5 at all. Replace
‘Q-algebra’ by ‘representable Q-algebra’ in what follows, and all proofs remain
valid. While it is certainly nice to know that these notions coincide, we will never
really need this.

Theorem 2.1.5 says that every Q-algebra A is isomorphic to some sub-∗-algebra
A′ ⊂ L(H), for a suitable inner product space H. Thus, we may think of the
elements ofA as linear operators on an inner product spaceH. We must be careful,
however, since some properties of these operators may depend on the (faithful)
representation. A lot, however, turns out to be representation independent.

Let A be an algebra. By definition, a left inverse of an element A ∈ A is an
algebra element B ∈ A such that BA = 1. A right inverse of A is a B′ ∈ R such
that AB′ = 1.

Exercise 2.1.6 Let A be an algebra. Show that if A ∈ A has both a left inverse
B and a right inverse B′, then B = B′.

By Exercise 2.1.6, if A has both a left and a right inverse, then the left and right
inverse coincide and are necessarily unique. In this case we say that A is invertible
and we call its unique left and right inverse the inverse of A, denoted by A−1.
The next lemma, which will be proved in Section 4.3, shows that an element of
a Q-algebra is invertible as an algebra element if and only if it is invertible as an
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operator in some, and hence every representation. In other words: being invertible
is a property that is representation independent.

Lemma 2.1.7 (Invertible algebra elements) Let H be an inner product space,
let A be a sub-∗-algebra of L(H), and let A ∈ A. Then the following statements
are equivalent:

(1) A has a left inverse B ∈ L(H),
(2) A has a right inverse B′ ∈ L(H),
(3) A has an inverse A−1 ∈ A.

It follows that for an element of a Q-algebra, being a unitary operator is a repres-
entation independent property. The same is true for being normal, hermitian, or a
projection. By Exercise 1.1.2, the spectrum σ(A) of an element A of a Q-algebra
also does not depend on the representation. By Theorem 1.2.10, every normal
operator A can uniquely be written as

A =
∑

λ∈σ(A)

λPλ, (2.1)

where {Pλ : λ ∈ σ(A)} is a partition of the identity. By our previous remarks, this
spectral decomposition of a normal operator is also representation independent.

Just when we start to believe that almost everything we can think of is represen-
tation independent, a little warning is in place:

Exercise 2.1.8 Show that the trace of an operator is not a representation inde-
pendent quantity. Hint: observe that the Q-algebra consisting of all operators of
the form 

a b 0 0
c d 0 0
0 0 a b
0 0 c d

 (a, b, c, d ∈ C)

is isomorphic with L(C2).

Exercise 2.1.9 Let A be the space of all matrices of the form a −c −b
b a −c
c b a

 with a, b, c ∈ C.

Equip A with the usual matrix multiplication and define an adjoint operation on
A by  a −c −b

b a −c
c b a

∗ :=

 a∗ −c∗ −b∗
b∗ a∗ −c∗
c∗ b∗ a∗

 .
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Show that A is a ∗-algebra. Is A abelian? Is the adjoint operation positive? (Hint:
consider the operator

X :=

 0 0 −1
1 0 0
0 1 0

 .

Show that a general element of A is of the form a1 + bX + cX2.)

2.2 Probability spaces

For any set Ω, we write P(Ω) := {A : A ⊂ Ω} to denote the set of all subsets of
Ω. On P(Ω) are defined set operations such as A ∩B, A ∪B, and

A\B := {ω ∈ A : ω 6∈ B},
Ac := Ω\A.

By definition, a finite probability space is a triple (Ω,P(Ω), µ), where Ω is a finite
set, P(Ω) is the set of all subsets of Ω, and µ : P(Ω) → [0, 1] is a function with
the following properties:

(a) µ(Ω) = 1,
(b) A,B ⊂ Ω, A ∩B = ∅ ⇒ µ(A ∪B) = µ(A) + µ(B).

We call Ω the state space, P(Ω) the space of events and µ a probability law.

Exercise 2.2.1 Show that every probability law on a finite set Ω is of the form

µ(A) =
∑
ω∈A

m(ω),

where m : Ω → [0, 1] is a function satisfying
∑

ω∈Ωm(ω) = 1.

We interpret a finite probability space (Ω,P(Ω), µ) as follows.

1◦ A finite probability space (Ω,P(Ω), µ) describes incomplete knowledge about
a system in the physical reality.

2◦ The state space Ω contains elements ω, called states. Each state gives an
exhausting description of all properties of the physical system that are of
interest to us.
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3◦ A subset A ⊂ Ω is interpreted as the event that the actual state of the
physical system lies in A. In this interpretation, Ac is the event ‘not A’,
A ∩ B is the event ‘A and B’, A ∪ B is the event ‘A and/or B’, A\B is the
event ‘A and not B’, and so on.

4◦ The probability law µ assigns to each event A ∈ P(Ω) a number µ(A) ∈ [0, 1],
called the probability of A. The probability law µ(A) measures how likely
we judge the event A to be true on the basis of our incomplete knowledge.
The larger µ(A) is, the more likely is A. If µ(A) = 1 then A is sure.

5◦ If we observe that an event B is true, then our knowledge about the physical
system changes. We express our changed knowledge with a new probability
law µ̃ on P(Ω), defined as µ̃(A) := µ(A ∩ B)/µ(B). This formula is not
defined if µ(B) = 0 but in that case we were sure that the event B was
not true before we performed our observation, so in this situation there
was something wrong with the way we described our knowledge before the
observation.

In point 5◦, we call µ̃(A) := µ(A ∩ B)/µ(B) the conditional probability of the
event A given B, and we call µ̃ the conditioned probability law. We also use the
notation

µ(A|B) := µ(A ∩B)/µ(B) (A,B ∈ P(Ω), µ(B) > 0).

The interpretation of finite probability spaces we have just given is not undisputed.
Many authors insist that an interpretation of probability spaces must link proba-
bilities in some way to relative frequencies, either by saying that the probability
of an event is likely to be the relative frequency of that event in a long sequence
of independent trials, or by saying that the probability of an event is the relative
frequency of that event in an infinite sequence of independent trials. The appeal of
these interpretations lies in the fact that they refer directly to the way probabilities
are experimentally measured.

The difficulty with the first definition is that ‘likely to be’ seems to involve the
concept of probability again, while the difficulty with the second definition is that
infinite sequences of independent trials do not occur in reality. Both definitions
have the difficulty that they lean heavily on the concept of independence, the
definition of which also seems to involve probabilities. The disadvantage of the
interpretation we have just given is that the additive property (b) of probability
laws has no justification, but the point of view taken here is that nature is as it is
and does not need justification.
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By definition, a real-valued random variable, defined on a finite probability space
(Ω,P(Ω), µ), is a function X : Ω → R. We interpret the event

{X = x} := {ω ∈ Ω : X(ω) = x}

as the event that the random variable X takes on the value x. Similarly, we
write {X < x} := {ω ∈ Ω : X(ω) < x} to denote the event that X takes
on a value smaller than x, and so on. Note that since Ω is finite, the range
R(X) = {X(ω) : ω ∈ Ω} is finite. We call∫

X dµ :=
∑
ω∈Ω

X(ω)µ(ω) =
∑

x∈R(X)

xµ({X = x})

the expected value of X.

Example Consider a shuffled deck of cards from which the jacks, queens, kings,
and aces have been removed. Let V := {2, 3, 4, 5, 6, 7, 8, 9, 10} be the set of values
and C := {heart,spade,diamond,clover} the set of colors. Then C × V = {(c, v) :
c ∈ C, v ∈ V } is the set of all cards in our deck and

Ω :=
{(

(c1, v1), . . . , (c36, v36)
)

: (ci, vi) 6= (cj, vj) ∀i 6= j, (ci, vi) ∈ C ×D ∀i
}

is the set of all permutations of C × V . We choose Ω as our state space. A state
ω =

(
(c1, v1) . . . , (c36, v36)

)
∈ Ω describes the cards in our reduced deck, ordered

from top to bottom. Since we believe that every order of the cards has the same
probability, we choose as our probability law

µ(A) :=
|A|
|Ω|

(A ∈ P(Ω)),

where |A| denotes the number of elements in a set A. For example, the set

A := {
(
(c1, v1) . . . , (c36, v36)

)
∈ Ω : c1 = c2}

describes the event that the first two cards have the same color. The probability
of this event is

µ(A) =
|A|
|Ω|

=
36 · 8 · 34!

36!
=

8

35
.

The random variable
X

(
(c1, v1) . . . , (c36, v36)

)
:= v1

describes the value of the first card. The expected value of X is∫
X dµ =

10∑
x=2

xµ({X = x}) =
1

9

10∑
x=2

x =
55

9
= 61

9
.
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2.3 Quantum probability spaces

By definition, a (finite dimensional) quantum probability space is a pair (A, ρ)
where A is a Q-algebra and ρ : A → C is a function with the following properties:

(a) ρ(aA+ bB) = aρ(A) + bρ(B) (A,B ∈ A, a, b ∈ C),
(b) ρ(A∗) = ρ(A)∗ (A ∈ A),
(c) ρ(A∗A) ≥ 0 (A ∈ A),
(d) ρ(1) = 1.

We call ρ a probability law on A. Note that by property (b), ρ(A∗A) is a real
number for all A ∈ A. By Exercise 1.2.13, property (c) is equivalent to saying that
ρ(A) ≥ 0 whenever A is a positive operator. Note that by linearity this implies
that ρ(A) ≤ ρ(B) whenever A ≤ B.

We interpret a quantum probability space (A, ρ) as follows.

1◦ A quantum probability space (A, ρ) describes incomplete knowledge about
a system in the physical reality.

2◦ We interpret a projection P ∈ A as a possible observation on the system. We
interpret a partition of the identity {P1, . . . , Pn} as an ideal measurement on
the system, that can yield the observations P1, . . . , Pn.

3◦ The probability law ρ assigns to each observation P ∈ A a probability ρ(P ).
The probability ρ(P ) measures how likely we judge it to be that an ideal
measurement {P1, P2, . . . , Pn} with P = Pi for some i, will yield the observa-
tion P , if we perform the measurement. The larger ρ(P ) is, the more likely
is P . If ρ(P ) = 1, then any measurement that can yield P will surely yield
it, if we perform the measurement.

4◦ If we know that someone performs the ideal measurement {P1, . . . , Pn} on the
system, then our knowledge about the system changes. We must describe our
changed knowledge with a new probability law ρ′ on A, defined as ρ′(A) :=∑n

i=1 ρ(PiAPi).

5◦ If an ideal measurement is performed on the system and we learn that this
measurement has yielded the observation P , then our knowledge about the
system changes. We must describe our changed knowledge with a new prob-
ability law ρ̃ on A, defined as ρ̃(A) := ρ(PAP )/ρ(P ). This formula is not
defined if ρ(P ) = 0 but in that case we were sure that the ideal measurement
would not yield P , so that in this situation there was something wrong with
the way we described our knowledge before the observation.
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Exercise 2.3.1 If ρ is a probability law on A and {P1, . . . , Pn} is a partition of the
identity, then show that ρ(P1), . . . , ρ(Pn) are nonnegative real numbers, summing
up to one. Show that the functions ρ′ and ρ̃ defined in point 4◦ and 5◦, respectively,
are probability laws on A.

A characteristic property of the interpretation of quantum probability we have
just given is the central role played by ideal measurements. While not every
measurement is ‘ideal’, for the interpretation given above is essential that we have
a collection of measurements at our disposal that for all practical purposes may
be regarded as ideal. Typically, observations in our everyday macroscopic world
that do not disturb the subject we are measuring are ideal. For example, seeing a
subject with our eyes of hearing it make a sound may typically be regarded as an
ideal observation on that subject.

Although the rules of quantum mechanics presumably govern everything around
us, the typical quantum mechanical effects can usually only be observed on par-
ticles that are extremely small, like electrons, protons, or photons. Therefore, we
typically need some delicate measuring equipment to observe these objects. While
the observations we perform on the measuring equipment (e.g. reading off a dis-
play) may for all practical purposes be regarded as an ideal measurement on the
equipment, it is not always true that the resulting effect on our objects of interests
(such as electrons, protons, or photons) is that of an ideal measurement. In order
to determine this, we need to study the complex physical (quantum mechanical)
laws governing the interaction of the measuring equipment with our objects of
interest. Since this falls outside the scope of the present lecture notes, we will
usually take the possibility of performing ideal measurements for granted.

Apart from the central role played by ideal measurements, two awkward differences
between quantum probability and classical probability strike us immediately. First
of all, the states ω that play such an important role in classical probability have
completely disappeared from the picture. Second, the bare fact that someone
performs a measurement on a system, even when we don’t know the outcome,
changes the system in such a way that we must describe our knowledge with a
new probability law ρ′. In the next section we will see that if the algebra A is
abelian, then these differences are only seemingly there, and in fact we are back at
classical probability. On the other hand, if A is not abelian, quantum probabilities
are really different, and pose a serious challenge to our imagination.

The interpretation of quantum mechanics is notoriously difficult, and the interpre-
tation we have just given is not undisputed. There is an extensive literature on the
subject in which innumerably many different interpretations have been suggested,
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with the result that almost everything one can say on this subject has at some
point been fiercely denied by someone. As an introduction to some of the different
points of view, the book by Redhead [Red87] is very readable.

Not only the interpretation of quantum mechanics, but also the presentation of
the mathematical formalism shows a broad variation in the literature. Apart from
the approach taken here, one finds introductions to quantum mechanics based on
wave functions, Hilbert spaces, or projection lattices. To add to the confusion, it is
tradition to call the probability law ρ a ‘mixed state’, even though it is conceptually
something very different from the states ω of classical probability.

In quantum probability, hermitian operators are called observables. They corre-
spond to real-valued physical quantities and may be regarded as the equivalent of
the real random variables from classical probability. Let

A =
∑

λ∈σ(A)

λPλ

be the spectral decomposition of a hermitian operator A in some Q-algebra. We
interpret

{Pλ : λ ∈ σ(A)}
as an ideal measurement of the observable A. We interpret Pλ as the observation
that A takes on the value λ. We call

ρ(A) =
∑

λ∈σ(A)

λρ(Pλ)

the expected value of A.

Example (Polarization) It is well-known that light can be decomposed into
two polarization directions, perpendicular to the direction in which it travels. For
example, polaroid sunglasses usually filter the vertically polarized component of
light away, leaving only the horizontally polarized component. Using prismas, it
is possible to split a light beam into two orthogonally polarized beams.

On the level of the individual photons (light particles), this amounts to performing
an ideal measurement, along a prechosen direction, the outcome of which is either
that the photon is polarized in that direction, or in the perpendicular direction.
Let us denote directions in which polarization can be measured by an angle α. Let
H be a two-dimensional inner product space with orthonormal basis {e(1), e(2)}.
Then our knowledge of the polarization of a single photon can be described by a
probability law on the Q-algebra

A = L(H).
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The observation that a photon is polarized in the direction α is described by the
projection operator

Pα := |ηα〉〈ηα|,
where

ηα := cos(α)e(1) + sin(α)e(2).

Note that Pα = Pα+π. An ideal measurement of the polarization of the photon in
the direction α is described by the ideal measurement

{Pα, Pα+π/2},

the outcome of which can be either that the photon is polarized in the direction
α, or in the perpendicular direction α+ π/2.

Exercise 2.3.2 Show that the projections Pα and Pβ in different directions α and
β in general do not commute. Show that the conditional probability of the ideal
observation Pα, given that before we have done the observation Pβ, is given by
cos(β − α)2.

Example (Spin) Electrons have a property called spin, which is a form of angular
momentum. Let H be a two-dimensional inner product space with orthonormal
basis {e(1), e(2)}. Define hermitian operators Sx, Sy, Sz ∈ L(H) by their matrices
with respect to {e(1), e(2)} as:

Sx :=

(
0 1
1 0

)
,

Sy :=

(
0 −i
i 0

)
,

Sz :=

(
1 0
0 −1

)
.

Chosing an appropriate basis, we can describe the three-dimensional space that we
live in by R3. Let θ = (θx, θy, θz) ∈ R3 be a vector such that ‖θ‖ = θ2

x +θ2
y +θ2

z = 1.
Then the spin of an electron in the direction θ is a physical quantity, described by
the observable

Sθ := θxSx + θySy + θzSz.

One can check that its spectrum is

σ(Sθ) = {−1,+1}.

Thus, no matter in which direction θ we measure the spin of an electron, we can
always find only two values: −1 (‘spin down’) or +1 (‘spin up’). Ideal measure-
ments of the spin of an electron are possible, using magnetic fields that deflect
electrons in a beam in different directions depending on their spin.



32 CHAPTER 2. TWO KINDS OF PROBABILITY

2.4 (Non)commutative probability

Although the quantum probability spaces and their interpretation from Section 2.3
seem rather different from the ‘classical’ probability spaces from Section 2.2, we
will see here that the latter are actually a special case of the former. More precisely,
we will show that a quantum probability space (A, ρ) is equivalent to a ‘classical’
probability space (Ω,P(Ω), µ) if the algebra A is abelian.

If Ω is a finite set, we write

CΩ := {f : Ω → C}

to denote the space of all functions from Ω into C. We equip CΩ with the structure
of a ∗-algebra in the obvious way, i.e.,

(af + bg)(ω) := af(ω) + bg(ω) (f, g ∈ CΩ, a, b ∈ C, ω ∈ Ω),
(fg)(ω) := f(ω)g(ω) (f, g ∈ CΩ, ω ∈ Ω),
f ∗(ω) := f(ω)∗ (f ∈ CΩ, ω ∈ Ω).

It is clear from the second relation that CΩ is abelian. Note that CΩ satisfies prop-
erty (viii) from the Section 2.1, i.e., CΩ is a Q-algebra. The next theorem shows
that there is a one-to-one correspondence between abelian quantum probability
spaces and classical probability spaces.

Theorem 2.4.1 (Abelian Q-algebras) Let A be a Q-algebra. Then A is abelian
if and only if A is isomorphic to a Q-algebra of the form CΩ, where Ω is a finite
set. If µ : P(Ω) → R is a probability law, then

ρ(f) :=

∫
f dµ (2.2)

defines a probability law on CΩ, and conversely, every probability law ρ on CΩ

arises in this way.

We defer the proof of Theorem 2.4.1 to Section 4.2.

It is not hard to see that an element f of the abelian Q-algebra CΩ is a projection
if and only if f = 1A for some A ⊂ Ω, where for any subset A ⊂ Ω the indicator
function 1A ∈ CΩ is defined as

1A(ω) :=

{
1 if ω ∈ A,
0 if ω 6∈ A.
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An ideal measurement on CΩ is a collection of indicator functions {1A1 , . . . , 1An}
where {A1, . . . , An} is a partition of Ω, i.e., Ai ∩ Aj = ∅ for all i 6= j and A1 ∪
· · · ∪ An = Ω. Thus, ideal measurements on CΩ determine which of the mutually
exclusive events A1, . . . , An takes place. We can list the corresponding notions in
classical and quantum probability in the following table:

Classical probability Quantum probability
Event A Observation P

Partition {A1, . . . , An} of Ω Ideal measurement {P1, . . . , Pn}
Probability law µ Probability law ρ

Conditioned probability law µ̃ Conditioned probability law ρ̃
Real random variable X Hermitian operator A

In the abelian case, there is a one-to-one correspondence between the objects on
the left-hand and right-hand side. In general, the objects on the right-hand side
may be seen as a sort of generalization of those on the left-hand side.

The law ρ′ from point 4◦ of our interpretation of quantum probability spaces does
not have a classical counterpart. Indeed, ifA is abelian and {P1, . . . , Pn} is an ideal
measurement, then ρ′(A) :=

∑n
i=1 ρ(PiAPi) = ρ(A). Thus, in classical probability,

ideal measurements do not perturb the system they are measuring.

The states ω ∈ Ω from classical probability do not have a quantum mechanical
counterpart. Let us say that a probability law ρ on a Q-algebra A is a precise
state if

ρ(P ) ∈ {0, 1} ∀P ∈ A, P is a projection.

On an abelian Q-algebra CΩ, it is easy to see that the precise states are exactly
the probability laws of the form ρ = δω, where

δω(f) := f(ω) (ω ∈ Ω),

and that every probability law on CΩ can in a unique way be written as a convex
combination of these precise states. Thus, ‘precise states’ on an abelian Q-al-
gebra correspond to the states ω from classical probability. We will later see
that on a nonabelian Q-algebra, not every probability can be written as a convex
combination of precise states.



34 CHAPTER 2. TWO KINDS OF PROBABILITY



Chapter 3

Infinite dimensional spaces*

3.1 Measure theory*

In measure theory, it is custom to extend the real numbers by adding the points
∞ and −∞, with which one calculates according to the rules

a · ∞ :=


−∞ if a < 0,
0 if a = 0,
∞ if a > 0,

while a+∞ := ∞ if a 6= −∞, and ∞−∞ is not defined.

By definition, measure space is a triple (Ω,F , µ) with the following properties. 1◦

Ω is a set (possibly infinite). 2◦ F ⊂ P(Ω) is a subset of the set of all subsets of
Ω with the following properties:

(a) A1, A2, . . . ∈ F ⇒
⋃∞
i=1Ai ∈ F ,

(b) A ∈ F ⇒ Ac ∈ F ,
(c) Ω ∈ F .

Such a F is called a σ-algebra or σ-field. 3◦ µ : F → [0,∞] is a function such that

(a) A1, A2, . . . ∈ F , Ai ∩ Aj = ∅ ∀i 6= j ⇒ µ
( ⋃∞

i=1Ai
)

=
∑∞

i=1 µ(Ai).

Such a function is called a measure. If

(b) µ(Ω) = 1,

then µ is called a probability measure. In this case (Ω,F , µ) is called a probability
space. It is not hard to see that if Ω is a finite set and F = P(Ω), then we are
back at our previous definition of a probability space.

35
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Let (Ω,F , µ) be a measure space. By definition, a function X : Ω → [−∞,∞] is
measurable if

{ω : X(ω) ≤ a} ∈ F ∀a ∈ R.

If X is nonnegative, then this is equivalent to the fact that X can be written as

X =
∞∑
i=1

ai1Ai (ai ≥ 0, Ai ∈ F).

For such functions, one defines the integral as∫
Xdµ :=

∞∑
i=1

aiµ(Ai).

One can show that this definition is unambiguous, i.e., does not depend on the
choice of the ai and Ai. IfX is not nonnegative, then one putsX = X++X− where
X+, X− are nonnegative measurable functions and defines

∫
Xdµ :=

∫
X+dµ −∫

X−dµ. The integral of X is not defined if
∫
X+dµ −

∫
X−dµ happens to be

∞−∞.

3.2 Metric and normed spaces*

Let E be a set. By definition, a metric on E is a function d : E×E → [0,∞) such
that

(a) d(x, y) = d(y, x) (x, y ∈ E),
(b) d(x, z) ≤ d(x, y) + d(y, z) (x, y, z ∈ E),
(c) d(x, y) = 0 if and only if x = y (x, y ∈ E).

A metric space is a pair (E, d) where E is a set and d is a metric on E.

We say that sequence xn ∈ E converges to a limit x in the metric d, and write
xn → x, if

∀ε > 0 ∃n s.t. ∀m ≥ n : d(xn, x) ≤ ε.

For any D ⊂ E, we call

D := {x ∈ E : ∃xn ∈ D s.t. xn → x}

the closure of D. A subset D ⊂ E is closed if D = D. A subset D ⊂ E is open if
its complement Dc is closed. A subset D ⊂ E is dense if D = E. A metrix space
is separable if there exists a countable dense set D ⊂ E. If E,F are metric spaces,
then a function f : E → F is continuous if f(xn) → f(x) whenever xn → x.
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A Cauchy sequence is a sequence xn such that

∀ε > 0 ∃n s.t. d(xk, xm) ≤ ε ∀k,m ≥ n.

A metric space is complete if every Cauchy sequence has a limit.

A metric space is compact if every sequence xn ∈ E has a convergent subsequence,
i.e., there exist m(n) →∞ and x ∈ E such that xm(n) → x.

Let V be a linear space (possibly infinite dimensional) over K = R or C. By
definition, a norm on V is a function V 3 φ 7→ ‖φ‖ from V into [0,∞) such that

(a) ‖aφ‖ = |a|‖φ‖ (a ∈ K, φ ∈ V),
(b) ‖φ+ ψ‖ ≤ ‖φ‖+ ‖ψ‖ (φ, ψ ∈ V),
(c) ‖φ‖ = 0 implies φ = 0 (φ ∈ V).

A normed space is a pair (V , ‖ · ‖) where V is a linear space and ‖ · ‖ is a norm on
V . If ‖ · ‖ is a norm on V , then

d(φ, ψ) := ‖φ− ψ‖

defines a metric on V , which is called the metric associated with ‖ · ‖. Two norms
‖ · ‖ and ‖ · ‖′ are called equivalent if there exists constants 0 < c < C such that

c‖φ‖ ≤ ‖φ‖′ ≤ C‖φ‖ (φ ∈ V).

If ‖ · ‖ and ‖ · ‖′ are equivalent norms, then a sequence xn converges in ‖ · ‖, or
is a Cauchy sequence in ‖ · ‖, if and only if the corresponding property holds for
‖ · ‖′. Thus, concepts such as open, closed, complete, and compact do not depend
on the choice of an equivalent metric.

IfH is a linear space (possibly infinite dimensional) equipped with an inner product
〈·|·〉, then

‖φ‖ :=
√
〈φ|φ〉 (φ ∈ H)

defines a norm on H, called the norm associated with the inner product.

Let K = R or C. Then the space Kn equipped with the inner product

〈(φ1, . . . , φn)|(φ1, . . . , φn)〉 :=
n∑
i=1

φ∗iψi

and the associated norm and metric, is complete and separable. In fact, all norms
on Kn are equivalent and therefore Kn is complete and separable in any norm. A
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subset D of Kn is compact if and only if it is closed and bounded, i.e., supφ∈D ‖φ‖ <
∞.

In the infinite dimensional case, not all normed spaces are complete. A complete
normed space is called a Banach space. A complete inner product space is called
a Hilbert space.

Example I Let K = R or C. Let E be a compact metric space and let

C(E) := {f : E → K : f is continuous},

equipped with the supremum norm

‖f‖ := sup
x∈E

|f(x)|.

Then C(E) is a Banach space.

Example II Let K = R or C. Let (Ω,F , µ) be a measure space and

L2(µ) := {φ : Ω → K : φ is measurable and

∫
|φ|2 dµ <∞}.

Let L2(µ) be the quotient space

L2(µ) := L2(µ)/N (µ),

where N (µ) := {φ ∈ L2(µ) :
∫
|φ|2 dµ = 0}. Then L2(µ), equipped with the inner

product

〈φ|ψ〉 :=

∫
(φ∗ψ)dµ

is a Hilbert space.

3.3 Hilbert spaces*

Recall that a Hilbert space is a complete inner product space. For any two Hilbert
spaces H1,H2, a linear operator A : H1 → H2 is continuous if and only if it is
bounded, i.e.,

‖A‖ := sup
‖φ‖≤1

‖Aφ‖ <∞.

We let L(H1,H2) denote the Banach space of all bounded linear operators A : H1 →
H2, equipped with the operator norm ‖A‖. Generalizing our earlier definition, we
call the space of all bounded linear forms H′ := L(H,K) the dual of H. The Riesz
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lemma says that the map φ 7→ 〈φ| is a colinear bijection from H to H′, which
preserves the norm. In particular

H′ = {〈φ| : φ ∈ H}.

If H1,H2 are Hilbert spaces with inner products 〈·|·1 and 〈·|·2, respectively, and
A ∈ L(H1,H2), then there exists a unique adjoint A∗ ∈ L(H1,H2) such that

〈φ|Aψ〉2 = 〈A∗φ|ψ〉1 (φ ∈ H2, ψ ∈ H1).

If F ⊂ H is a closed linear subspace of H, then each vector φ ∈ H can in a unique
way be written as

φ = φ′ + φ′′ (φ′ ∈ F , φ′′ ∈ F⊥).

We call φ′ the orthogonal projection of φ on the subspace F , and write

φ′ =: PFφ.

One can check that PF ∈ L(H) := L(H,H) satisfies P ∗
F = PF = P 2

F . Conversely,
every P ∈ L(H) := L(H,H) such that P ∗ = P = P 2 is of the form P = PF for
some closed subspace F ⊂ H.

The spectrum of a bounded linear operator A ∈ L(H) is defined as

σ(A) := {λ ∈ K : (λ− A) is not invertible}.

(Compare Exercise 1.1.2.) Warning: the spectrum is in general larger than the set
of eigenvalues of A! One can show that σ(A) is a compact subset of K. If K = C,
then σ(A) is nonempty.

There is also an analogue of Theorem 1.2.10. Indeed, if A ∈ L(H) is normal,
i.e., AA∗ = A∗A, then one can define a spectral measure P that assigns to each
measurable subset D ⊂ C a projection operator P(D) ∈ L(H). One can define
integration with respect to the spectral measure, and give sense to the formula

A =

∫
σ(A)

λP(dλ).

In fact, P is concentrated on σ(A), so it makes no difference whether we integrate
over σ(A) or over C. If f : C → C is a continuous function and A ∈ L(H) is a
normal operator, then one defines a normal operator f(A) by

f(A) :=

∫
σ(A)

f(λ)P(dλ).
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3.4 C∗-algebras*

By definition, a C∗-algebra is a (possibly infinite dimensional) complex ∗-algebra
A equipped with a norm ‖ ·‖ such that, in addition to the properties (i)–(vii) from
Section 2.1,1

(viii)′ A is complete in the norm ‖ · ‖
(ix)′ ‖AB‖ ≤ ‖A‖‖B‖ (A,B ∈ A)
(x)′ ‖A∗A‖ = ‖A‖2

Note that property (x)’ implies property (viii) from Section 2.1, so finite dimen-
sional C∗-algebras are Q-algebras. Conversely, every Q-algebra can in a unique
way be equipped with a norm ‖ · ‖ such that (viii)’–(x)’ hold.

If H is a Hilbert space, then the space L(H) of bounded linear operators on
H, equipped with the operator product, adjoint, and norm, is a C∗-algebra. In
analogy with Theorem 2.1.5 one has the following theorem about representations
of C∗-algebras.

Theorem 3.4.1 (Gelfand-Naimark) Let A be a C∗-algebra. Then there exists
a Hilbert space H and a sub-∗-algebra A′ of L(H) such that A is isomorphic to
A′. If A is separable then we may take H separable.

Probability laws on C∗-algebras are defined exactly as in the finite dimensional
case. We can therefore define an infinite dimensional quantum probability space
as a pair (A, ρ) where A is a C∗-algebra and ρ is a probability on A.

Let E be a compact metric space and let C(E) := {f : E → C continuous},
equipped with the supremum norm. We equip C(E) with the structure of a ∗-al-
gebra by putting fg(x) := f(x)g(x) and f ∗(x) := f(x)∗. Then C(E) is a separable
abelian C∗-algebra. The following infinite dimensional analogue of Theorem 2.4.1
says that conversely, every separable abelian C∗-algebra arises in this way.

Theorem 3.4.2 (Abelian C∗-algebras) Let A be a separable abelian C∗-alge-
bra. Then there exists a compact metric space E such that A is isomorphic to
C(E).

It can moreover be proved that if µ is a probability measure on E, equipped with
the σ-field generated by the open sets, then

ρ(f) :=

∫
f dµ

1Here, we only consider C∗-algebras which contain a unit element.
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defines a probability law ρ on the C∗-algebra C(E), and conversely, every proba-
bility law on C(E) arises in this way. Thus, abelian quantum probability spaces
correspond to classical probability spaces. (The facts that A is separable and E is
a compact metric space are not really restrictions. In fact, in quantum probabil-
ity, it is standard to assume that the C∗-algebra is separable, while all interesting
models of classical probability can be constructed with probabilities defined on
compact metric spaces.)
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Chapter 4

Algebras

Recall that Theorem 2.1.5 says that every Q-algebra has a faithful representation
on a complex inner product space H. Assuming the validity of this theorem, in the
present chapter, we determine the general structure of Q-algebra’s and their rep-
resentations. In particular, we will prove Lemma 2.1.7 and Theorem 2.4.1. For the
information of the reader, we outline a crude sketch of the proof of Theorem 2.1.5
and its infinite dimensional analogue, Theorem 3.4.1, in Section 4.5.

4.1 Von Neumann’s bicommutant theorem

Let H be an (as usual finite dimensional) inner product space over K = C or R.
For any set A ⊂ H, we let

Ac := {B ∈ L(H) : [A,B] = 0 ∀A ∈ A}

denote the commutant of A. It is easy to see that Ac is a subalgebra of L(H).
Moreover, if A is closed under taking of adjoints, then the same is true for Ac.
In particular, if A is a sub-∗-algebra of L(H), then so is Ac. We call (Ac)c the
bicommutant of A. The following result is known as Von Neumann’s bicommutant
theorem.

Theorem 4.1.1 (Bicommutant theorem) Let H be an inner product space
over K = C or R and let A be a sub-∗-algebra of L(H). Then (Ac)c = A.

We start with a preparatory lemma.

Lemma 4.1.2 Let H be an inner product space over K = C or R and let A be a
sub-∗-algebra of L(H). Then, for all ψ ∈ H and B ∈ (Ac)c, there exists an A ∈ A
such that Aψ = Bψ.

43
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Proof Fix ψ ∈ H, and consider the linear subspace F := {Aψ : A ∈ A}. We
claim that the algebra A leaves the spaces F and F⊥ invariant, i.e., φ ∈ F implies
Aφ ∈ F and φ ∈ F⊥ implies Aφ ∈ F⊥ for all A ∈ A. Indeed, if φ ∈ F then φ
is of the form φ = A′ψ for some A′ ∈ A, hence Aφ = AA′ψ ∈ F , and if φ ∈ F⊥

then 〈φ|Aψ〉 = 0 for all A′ ∈ A, hence 〈Aφ|A′ψ〉 = 〈φ|A∗A′ψ〉 = 0 for all A′ ∈ A,
hence Aφ ∈ F⊥. It follows that each element of A commutes with the orthogonal
projection PF on F , i.e., PF ∈ Ac. Hence, if B ∈ (Ac)c, then B commutes with
PF , which implies that B leaves the spaces F and F⊥ invariant. In particular,
Bψ ∈ F , which shows that Bψ = Aψ for some A ∈ A.

Proof of Theorem 4.1.1 Lemma 4.1.2 says that for each B ∈ (Ac)c and ψ ∈ H
we can find an A ∈ A such that A and B agree on ψ. In order to prove the
theorem, we must show that we can find an A ∈ A such that A and B agree on all
vectors in H. By linearity, it suffices to do this for a basis of H. Thus, we need to
show that for any B ∈ (Ac)c and ψ(1), . . . , ψ(n) ∈ H, there exists an A ∈ A such
that Aψ(i) = Bψ(i) for all i = 1, . . . , n.
Let H1, . . . ,Hn be n identical copies of H, and consider the direct sum H1 ⊕
· · · ⊕ Hn. Let A(n) denote the sub-∗-algebra of L(H1 ⊕ · · · ⊕ Hn) consisting of all
operators of the form

A(n)(φ(1), . . . , φ(n)) := (Aφ(1), . . . , Aφ(n))

for some A ∈ A. We wish to desciribe the commutant (A(n))c. With respect to an
obvious orthonormal basis for H1, . . . ,Hn, each A(n) ∈ A(n) has the block-diagonal
form (for example for n = 3):

A(n) =

 A 0 0
0 A 0
0 0 A

 .

Now any C ∈ L(H1, . . . ,Hn) can be written as

C =

 C11 C12 C13

C21 C22 C23

C31 C32 C33

 ,

where the Cij are linear maps from H into H. We see that

A(n)C =

 AC11 AC12 AC13

AC21 AC22 AC23

AC31 AC32 AC33

 and CA(n) =

 C11A C12A C13A
C21A C22A C23A
C31A C32A C33A

 ,
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and therefore C commutes with each A(n) in A(n) if and only if Cij ∈ Ac for each
i, j.
Now let B ∈ (Ac)c and ψ(1), . . . , ψ(n) ∈ H. By what we have just proved, it is
easy to see that B(n) ∈ ((A(n))c)c. Therefore, applying Lemma 4.1.2 to B(n) and
the vector (ψ(1), . . . , ψ(n)) ∈ H1 ⊕ · · · ⊕ Hn, we conclude that there exists an
A(n) ∈ A(n) such that

A(n)(ψ(1), . . . , ψ(n)) = B(n)(ψ(1), . . . , ψ(n))

i.e., Aψ(i) = Bψ(i) for all i = 1, . . . , n, as desired.

4.2 Abelian algebras

In this section, we look at abelian algebras. In particular, we will prove Theo-
rem 2.4.1. Unlike in the previous section, the results in the present section are
true only for algebras over the complex numbers.

Theorem 4.2.1 (Abelian algebras) Let H be an inner product space over C
and let A be an abelian sub-∗-algebra of L(H). Then there exists a partition of the
identity {P1, . . . , Pn} such that

A =
{ n∑

i=1

aiPi : ai ∈ C ∀i = 1, . . . , n
}
.

Proof Pick any element A ∈ A. Obviously, A is a normal operator, so by
Theorem 1.2.10 there exists a partition of the identity {P1, . . . , Pn} such that
A =

∑n
i=1 aiPi, where the ai are all different. We claim that each operator of the

form

B =
n∑
i=1

biPi (b1, . . . , bn ∈ C)

is also an element of A. To prove this this claim, we will show that we can find
λ0, . . . , λn−1 ∈ C such that

∑n−1
k=0 λkA

k = B, where A0 := 1. Indeed, since

n−1∑
k=0

λkA
k =

n∑
i=1

( n−1∑
k=0

λka
k
i

)
Pi,

this will be true provided that

n−1∑
k=0

λka
k
i = bi (i = 1, . . . , n).
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This means that we are looking for a polynomial of degree n−1 that passes through
all of the points (ai, bi). Since the complex numbers are algebraically complete,
such a polynomial exists.

Now letA′ ∈ A be another element ofA, different fromA =
∑n

i=1 aiPi. By what we
have just proved, Pi ∈ A for each i, so by the fact that A is abelian, A′ commutes
with each Pi. Let F1, . . . ,Fn be orthogonal subspaces ofH such that Pi projects on
Fi. Since A′ commutes with each Pi, it must respect these subspaces, i.e., φ ∈ Fi
implies A′φ ∈ Fi. Since A′ is a normal operator on Fi, we can find an orthonormal
basis of Fi that diagonalizes A′ on Fi. Thus, we can find projection operators
Pi1, . . . , Pik(i) such that PijPij′ = δj,j′ ,

∑k(i)
j=1 Pik(i) = Pi, and complex numbers

a′i1, . . . , a
′
ik(i), all different, such that A′Pi =

∑k(i)
j=1 a

′
ijPij. Since A′Pi ∈ A, by our

previous arguments, the projections Pi1, . . . , Pik(i) and all their linear combinations

are elements of A. We observe that A′ =
∑n

i=1APi =
∑n

i=1

∑k(i)
j=1 a

′
ijPij.

Continuing this process, we see that we can step by step find partitions of the
identity {P1, . . . , Pn} such that at each moment in our construction, all linear
combinations of the P1, . . . , Pn are in A, and whevener A still contains an element
A′ that is not a linear combinations of the P1, . . . , Pn, we can refine our partition
so that A′ is a linear combinations of the new P1, . . . , Pn. By finite dimensionality,
we cannot keep refining partitions ad infinitum, so at some point we are done.

Theorem 4.2.1 has a useful corollary.

Theorem 4.2.2 (Simultaneous diagonalization of normal operators) Let
H be an inner product space over C and let A(1), . . . , A(k) be a collection of
mutually commuting normal operators. Then there exists an orthonormal ba-
sis {e(1), . . . , e(n)} such that for each j = 1, . . . , k there exist complex numbers
λ1(j), . . . , λn(j) with

A(k) =
n∑
i=1

λi(k)|e(i)〉〈e(i)|.

Proof Let A be the ∗-algebra generated by A(1), . . . , A(k), i.e., A consists of all
linear combinations of finite products of the operators A(1), . . . , A(k) and their
adjoints. We claim that A is abelian. This is not quite as obvious as it may seem,
since we have assumed that A(j) commutes with A(j′) for each j, j′, but not that
A(j) commutes with A(j′)∗. For general operators A,B, it is not always true that
A∗ commutes with B if A commutes with B. For normal operators this is true,
however. To see this, choose an orthonormal basis such that A is diagonal. Then
AB = BA implies AiiBij = BijAjj for all i, j, hence, for each i, j we have either
Bij = 0 or Aii = Ajj. It follows that A∗iiBij = BijA

∗
jj for all i, j, hence A∗B = BA∗.
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Once this little complication is out of the way, the proof is easy. Since A is
abelian, there exists a partition of the identity {P1, . . . , Pn} such that each element
of A, in particular each operator A(j), is a linear combination of the P1, . . . , Pn.
Let F1, . . .Fn be the orthogonal subspaces upon which the P1, . . . , Pn project.
Choosing an orthonormal basis of H that is a union of orthonormal bases of the
F1, . . .Fn, we arrive at the desired result.

We cannow also easily give the:

Proof of Theorem 2.4.1 By Theorem 4.2.1, there exists a partition of the identity
{P1, . . . , Pn} such that A consists of all linear combinations of the P1, . . . , Pn. Set
Ω = {1, . . . , n} and define a map l : CΩ → A by

l(f) :=
n∑
i=1

f(i)Pi.

It is easy to see that l is an isomorhism for ∗-algebras.

Exercise 4.2.3 Let A be the real ∗-algebra consisting of all matrices of the form(
a −b
b a

)
(a, b ∈ R).

Show that A is abelian, but not isomorphic to RΩ for some finite set Ω. Does A
remind you of some algebra you know?

4.3 Structure of Q-algebras

After we have resolved the structure of abelian Q-algebras in the previous section,
we are now ready to tackle the general, nonabelian case. Let A be a Q-algebra.
By definition, a positive linear form is a map ρ : A → C that is (a) linear, (b) real,
and (c) positive, i.e.,

(a) ρ(aA+ bB) = aρ(A) + bρ(B) (a, b ∈ C, A,B ∈ A),

(b) ρ(A∗) = ρ(A)∗ (A ∈ A),

(c) ρ(A∗A) ≥ 0 (A ∈ A).

Note that probability laws (states) are normalized positive linear forms. A positive
linear form is called faithful if in addition

(d) ρ(A∗A) = 0 implies A = 0.
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If ρ is a faithful positive linear form on A, then

〈A|B〉ρ := ρ(A∗B) (A,B ∈ A)

defines an inner product on A. A positive linear form τ is called a pseudotrace if

τ(AB) = τ(BA) (A,B ∈ A).

Lemma 4.3.1 (Existence of a pseudotrace) On every Q-algebra there exists
a faithful pseudotrace.

Proof By Theorem 2.1.5, A has a faithful representation. Now the usual trace
has all the desired properties.

If A1, . . . ,An are algebras, then we equip their direct sum A1 ⊕ · · · ⊕An with the
structure of an algebra by putting

(A1 + · · ·+ An)(B1 + · · ·+Bn) := (A1B1 + · · ·+ AnBn).

Here we view A1, . . . ,An as linear subspaces of A1⊕· · ·⊕An with the property that
each A ∈ A1⊕ · · ·⊕An can in a unique way be written as A = A1 + · · ·+An with
A1 ∈ A1, . . . , An ∈ An. If A1, . . . ,An are ∗-algebras, then we make A1 ⊕ · · · ⊕ An

into a ∗-algebra by putting

(A1 + · · ·+ An)
∗ := (A∗1 + · · ·+ A∗n).

By definition, a left ideal (resp. right ideal) of an algebra A is a linear subspace
I ⊂ A such that AB ∈ I (resp. BA ∈ I) for all A ∈ A, B ∈ I. An ideal is a
subspace that is both a left and right ideal. If A is a ∗-algebra, then a ∗-ideal is
an ideal I with the property that A∗ ∈ I for all A ∈ I.

Note that if an algebra A is the direct sum of two other algebras, A = A1 ⊕ A2,
then A1 is an ideal of A. It is not a subalgebra, however, since the identity in
A1 is not the identity in A. If A1 and A2 are ∗-algebras and A is their direct
sum (equipped with the standard adjoint operation), then A1 is a ∗-ideal of A.
By definition, an algebra is a factor algebra if it has no proper ideals, i.e., its only
ideals are {0} and A.

Proposition 4.3.2 (Decomposition into factor algebras) Every ideal of a
Q-algebra is also a ∗-ideal. Every Q-algebra A can be written as a direct sum of
factor algebras

A ∼= A1 ⊕ · · · ⊕ An.
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Proof Imagine that A has a proper ideal I. By Lemma 4.3.1, we can choose
a faithful pseudotrace τ on A. Let I be the orthogonal complement of I with
respect to the inner product 〈·|·〉τ , i.e.,

I⊥ := {C ∈ A : τ(C∗B) = 0 ∀B ∈ I}.

We claim that I⊥ is another ideal ofA. Indeed, for each A ∈ A, B ∈ I and C ∈ I⊥,
we have τ((AC)∗B) = τ(C∗(A∗B)) = 0 and τ((CA)∗B) = τ(C∗(BA∗)) = 0, from
which we see that AC ∈ I⊥ and CA ∈ I⊥. Since I⊥ is the orthogonal complement
of I in the inner product 〈·|·〉τ , every element A ∈ A can in a unique way be written
as A = A1 + A2 with A1 ∈ I and A2 ∈ I⊥. We observe that

(A1 + A2)(B1 +B2) = (A1B1 + A2B2) (A1, B1 ∈ I, A2, B2 ∈ I⊥) (4.1)

where we have used that A1B2, A2B1 ∈ I ∩ I⊥ = {0}. Write 1 = 11 + 12, where
11 ∈ I and 12 ∈ I⊥. It is easy to see that 11 is a unit element in I and 12 is
a unit element in I⊥, and that I and I⊥ (equipped with these unit elements)
are algebras. This shows that A is the direct sum of A1 and A2 in the sense of
algebras.
To complete the proof, we must show that I and I⊥ are ∗-ideals; then it will follow
that I and I⊥ are Q-algebras and that A is the direct sum of A1 and A2 in the
sense of ∗-algebras. By symmetry, it suffices to show that I is a ∗-ideal.
We claim that for any A ∈ A,

A ∈ I if and only if 〈B|AC〉τ = 0 for all B,C ∈ I⊥. (4.2)

To prove this, write A = A1 + A2 with A1 ∈ I and A2 ∈ I⊥. Then, for any
B,C ∈ I⊥, one has 〈B|AC〉τ = 〈B|A2C〉τ by (4.1), which is zero if A2 = 0,
and nonzero if C = 12 and B = A2. Now, if A ∈ I, then by (4.2), 〈B|AC〉τ =
τ(B∗AC) = τ((A∗B)∗C) = 〈A∗B|C〉τ = 0 for all B,C ∈ I⊥, which shows that
A∗ ∈ I.

Recall that a representation of an algebra (resp. ∗-algebra) A is a pair (H, l) where
H is a linear space (resp. inner product space) and l : A → L(H) is an algebra
homomorphism (resp. ∗-algebra homomorphism). A somewhat different way of
looking at representations is as follows. Let A be an algebra and let H be a linear
space. Imagine that we are given a map (A, φ) → Aφ from A×H to H with the
following properties:

(a) A(aφ+ bψ) = aAφ+ bAψ (a, b ∈ K, A ∈ A, φ, ψ ∈ H),
(b) (aA+ bB)φ= aAφ+ bBφ (a, b ∈ K, A,B ∈ A, φ ∈ H),
(c) (AB)φ=A(Bφ) (A,B ∈ A, φ ∈ H),
(d) 1φ=φ (φ ∈ H).
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Then the map l : A → L(H) defined by l(A)φ := Aφ is an algebra homomorphism.
If moreover, H is equipped with an inner product such that

(e) 〈φ|Aψ〉= 〈A∗φ|ψ〉 (A ∈ A, φ, ψ ∈ H),

then l is a ∗-algebra homomorphism. Conversely, if l : A → L(H) is an algebra
homomorphism (resp. ∗-algebra homomorphism), then setting Aφ := l(A)φ defines
a map from A×H to H with the properties (a)–(d) (resp. (a)–(e)). We call such
a map an action of the algebra A on H. Thus, we can view representations of an
algebra (resp. ∗-algebra) A as linear spaces (resp. inner product spaces) on which
there is defined an action of A. Which is a long way of saying that from now on,
we will often drop the map l from our notation, write Aφ instead of l(A)φ, and
write phrases like: ‘let H be a representation of A’.

Exercise 4.3.3 Let A be an algebra. Show that A, equipped with the action
(A,B) 7→ AB, becomes a representation of itself. If A is a ∗-algebra and τ is
a faithful pseudotrace on A, then show that A equipped with the inner product
〈·|·〉τ is a faithful representation of itself as a ∗-algebra.

If H1, . . . ,Hn are representations of an algebra (resp. ∗-algebra) A, then we equip
the direct sum H1⊕· · ·⊕Hn with the structure of a representation of A by putting

A(φ(1) + · · ·+ φ(n)) := Aφ(1) + · · ·+ Aφ(n),

where φ(1) ∈ H1, . . . , φ(n) ∈ Hn. It is not hard to see that this action of A on
H1⊕ . . .⊕Hn has the properties (a)–(d) (resp. (a)–(e)). By definition, an invariant
subspace of a representation H of some algebra A is a linear subspace F ⊂ H such
that

φ ∈ F implies Aφ ∈ F (A ∈ A).

Note that F , equipped with the obvious action, is itself a representation of A.
If H is a representation of a ∗-algebra and ψ ∈ F⊥, then we moreover see that
〈Aψ|φ〉 = 〈ψ|A∗φ〉 = 0 for all φ ∈ F , hence F⊥ is also an invariant subspace. It
follows that H ∼= F ⊕ F⊥. We say that a representation H of an algebra A is
irreducible if it has no proper invariant subspaces, i.e., invariant subspaces that are
not {0} or H.

Lemma 4.3.4 (Decomposition of representations) Every representation of
a Q-algebra can be written as a direct sum of irreducible representations.
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Proof Obvious from the discussion above.

By definition, the center of a Q-algebra is the abelian sub-∗-algebra C(A) ⊂ A
given by

C(A) := {C ∈ A : [A,C] = 0 ∀A ∈ A},
i.e., C(A) consists of those elements of A that commute with all elements of A.
We say that the center is trivial if C(A) = {a1 : a ∈ C}.
Theorem 4.3.5 (Factor algebras) Let A be a Q-algebra. Then the following
statements are equivalent.

(1) A is a factor algebra.

(2) A has a faithful irreducible representation.

(3) A ∼= L(H) for some inner product space H.

(4) A has a trivial center.

Proof (1)⇒(2): By finite dimensionality each algebra has an irreducible repres-
entation. We claim that representations of factor algebras are always faithful.
Indeed, if (H, l) is a representation of an algebra A, then it is easy to see that the
kernel Ker(l) = {A ∈ A : l(A) = 0} is an ideal of A. In particular, if A is a factor
algebra, we must have Ker(l) = A or Ker(l) = {0}. Since l(1) = 1 6= 0, the first
option can be excluded, hence (H, l) is faithful.
(2)⇒(3): It suffices to show that if H is an inner product space and A ⊂ L(H)
is a sub-∗-algebra with no proper invariant subspaces, then A = L(H). By Von
Neumann’s bicommutant theorem, it suffices to prove that Ac = {a1 : a ∈ C}.
By Excercise 2.1.2, it suffices to show that each self-adjoint element B ∈ Ac is
a multiple of the identity. Let B be the sub-∗-algebra of A generated by B, i.e.,
B = {

∑n
k=1 bkB

k : n ≥ 0, bk ∈ C} where B0 := 1. If B is not a multiple of the
identity, then by Theorem 4.2.1, there exists a projection 0, 1 6= P ∈ Ac. Let F
be the space that P projects upon. Then F is a proper invariant subspace of H,
contradicting our assumptions.
(3)⇒(4): It suffices to show that L(H) has a trivial center. If the center is not
trivial, then by Theorem 4.2.1 there exists a projection 0, 1 6= P ∈ L(H) that
commutes with all elements of H. In particular, this means that the space that P
projects upon is a proper invariant subspace of L(H). It is easy to see that L(H)
has no proper invariant subspaces.
(4)⇒(1): If A is not a factor algebra, then by Proposition 4.3.2, we can write
A ∼= A1 ⊕ A2, where A1 and A2 are Q-algebras. Now the identity 11 ∈ A1 is a
nontrivial element of the center C(A), hence the latter is not trivial.

The proof of Theorem 4.3.5 has a useful corollary.
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Corollary 4.3.6 (Representations of factors) Let A be a factor algebra. Then
each representation (H, l) of A is faithful. If moreover A is a Q-algebra and (H, l)
is irreducible, then l : A → L(H) is surjective.

Proof This follows from the steps (1)⇒(2) and (2)⇒(3) of the proof of Theo-
rem 4.3.5.

Exercise 4.3.7 Show that on a factor algebra, there exists up to a multiplicative
constant a unique pseudotrace. Hint: choose an orthonormal basis {e(1), . . . , e(n)}
and a vector φ of norm one, and write |e(i)〉〈e(j)| = |e(i)〉〈φ|φ〉〈e(j)|.

4.4 Structure of representations

Let A be an algebra and let H1,H2 be representations of A. By definition, a
representation homomorphism is a linear map U : H1 → H2 such that

UAφ = AUφ (φ ∈ H1, A ∈ A).

Note that this says that U preserves the action of the algebra A. If A is a ∗-algebra
then we also require that U is unitary, i.e., U preserves the inner product. If U is a
bijection then one can check that U−1 is also a representation homomorphism. In
this case we call U a representation isomorphism and we say that H1 and H2 are
equivalent representations of A. Note that if (H1, l1) and (H2, l2) are equivalent
representations, then

l1(A) = U−1l2(A)U (A ∈ A).

Lemma 4.4.1 (Irreducible representations of factor algebras) All irre-
ducible representations of a factor algebra A are equivalent.

Proof We observe that each left ideal I 6= {0} of an algebra A becomes a repres-
entation of A if we equip it with the obvious action (A,B) 7→ AB (A ∈ A, B ∈ I).
Since a subspace I ′ ⊂ I is invariant under the action of A if and only if I ′ is a left
ideal, we see that I is irreducible if and only if I is a minimal left ideal, i.e., the
only left ideals I ′ of A such that I ′ ⊂ I are I ′ = 0 and I ′ = I. Such a minimal
left ideal exists by finite dimensionality and the fact that A is a left ideal of itself.
Now let A be a factor algebra and let H be an irreducible representation of A. By
the previous remarks, A has a minimal left ideal, and each minimal left ideal I is an
irreducible representation of A. We will show that H and I are equivalent. Since
I is arbitrary, this proves that all irreducible representations of A are equivalent.
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Fix 0 6= C ∈ I. By Corollary 4.3.6, H is faithful, so we can choose φ ∈ H such
that Cφ 6= 0. Define U : I → H by

UB := Bφ (B ∈ I).

Then U is a representation homomorphism. It follows that Ran(U) is an invariant
subspace of H and Ker(U) is an invariant subspace of I. Since Cφ 6= 0, we see
that Ran(U) 6= {0} and Ker(U) 6= I. Since H and I are irreducible, it follows
that Ran(U) = H and Ker(U) = {0}, hence U is a linear bijection.
This completes the proof in case A is an algebra. In case A is a Q-algebra, we must
additionaly show that U is unitary. Indeed, if (H1, l1) and (H2, l2) are irreducible
representations of a Q-algebra A, then by what we have just shown, there exists a
linear bijection U : H1 → H2 such that

l2(A) = Ul1(A)U−1 (A ∈ A).

By Corollary 4.3.6, l1 and l2 are surjective, so the composition l = l2 ◦ l−1
1 is a

∗-algebra isomorphism from L(H1) to L(H2), and

l(A) = UAU−1 (A ∈ L(H1)).

Let {e(1), . . . , e(n)} be an orthonormal basis of H1. Then

l(|e(i)〉〈e(i)|) = U |e(i)〉〈e(i)|U−1 = |Ue(i)〉〈(U−1)∗e(i)|.

Since l is a ∗-algebra isomorphism, l(|e(i)〉〈e(i)|) is a projection, which is only
possible if

Ue(i) = (U−1)∗e(i).

Since this holds for each i, U∗ = U−1, i.e., U is unitary.

The following theorem describes the general structure of Q-algebras and their
representations.

Theorem 4.4.2 (Structure theorem for Q-algebras) Let A be a Q-algebra.
Then A has finitely many nonequivalent irreducible representations (H1, l1), . . . ,
(Hn, ln), and the map

A 7→ (l1(A), . . . , ln(A))

defines a ∗-algebra isomorphism

A ∼= L(H1)⊕ · · · ⊕ L(Hn).
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Every representation of A is equivalent to a representation of the form

H = (H1 ⊕ · · · ⊕ H1︸ ︷︷ ︸
m1 times

)⊕ · · · ⊕ (Hn ⊕ · · · ⊕ Hn︸ ︷︷ ︸
mn times

),

with mi ≥ 0 (i = 1, . . . , n). H is faithful if and only if mi ≥ 1 for all i = 1, . . . , n.

The numbers m1, . . . ,mn are called the multiplicities of the irreducible represen-
tations H1, . . . ,Hn.

Proof of Theorem 4.4.2 By Proposition 4.3.2, A is isomorphic to a direct sum
of factor algebras A1⊕· · ·⊕An. Let (H, l) be a representation of A. Let 11, . . . , 1n
denote the identities in A1, . . . ,An, respectively. Then {l(11), . . . , l(1n)} is a parti-
tion of the identity on H. Let Fi be the space that l(1i) projects on (which may be
zero-dimensional for some i). Then H = F1⊕· · ·⊕Fn, where Fi is a representation
of Ai. By Lemma 4.3.4, we can split Fi into irreducible representations of Ai, say
Fi = Fi1 ⊕ · · · ⊕ Fim(i), where possibly m(i) = 0. Let lij : Ai → L(Fij) denote
the corresponding ∗-algebra homomorphism. By Corollary 4.3.6, the representa-
tions (Fi1, li1), . . . , (Fim(i), lim(i)) are faithful and li1, . . . , lim(i) are surjective. By
Lemma 4.4.1, the (Fi1, li1), . . . , (Fim(i), lim(i)) are equivalent. It is not hard to see
that (Fij, lij) and (Fi′j′ , li′j′) are not equivalent if i 6= i′. From these observations
the statements of the theorem follow readily.

As an application of the results in this section, we can give the:

Proof of Lemma 2.1.7 Let A be a sub-∗-algebra of L(H). We start by observing
that an element A ∈ L(H) has a left inverse if and only if Ker(A) = 0 and a
right inverse if and only if Ran(A) = H. Therefore, by finite dimensionality, the
following statements are equivalent:

(1) A has a left inverse,
(2) A has a right inverse,
(3) A has an inverse.

Therefore, we are done if we can show that whenever A ∈ A has an inverse
A−1 ∈ L(H), we have A−1 ∈ A. By Theorem 4.4.2 we can find an orthonormal
basis for H such that a general element A ∈ A has a block-diagonal form of the
type

A =


A1 0 0 0 0 0
0 A1 0 0 0 0
0 0 A2 0 0 0
0 0 0 A3 0 0
0 0 0 0 A3 0
0 0 0 0 0 A3

 .
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(In this example, A has three irreducible representations with multiplicities 2,1,
and 3, respectively.) Now A has an inverse in L(H) if and only if A1, A2, and A3

all have inverses, in which case

A−1 =


A−1

1 0 0 0 0 0
0 A−1

1 0 0 0 0
0 0 A−1

2 0 0 0
0 0 0 A−1

3 0 0
0 0 0 0 A−1

3 0
0 0 0 0 0 A−1

3

 ,

which lies in A.

4.5 Proof of the representation theorems*

In this section, we give a brief sketch of the proofs of Theorems 2.1.5 and 3.4.1.
The proof of Theorem 3.4.1 is standard and can be found in any book on C∗-al-
gebras (e.g. [Con90, Dav96]). Theorem 2.1.5 is rather obscure; I am indebted to
Roberto Conti for pointing out its proof in [GHJ89, Appendix IIa].

By definition, an algebra A is semisimple if it is the direct sum of factor algebras.
Not every algebra is semisimple; a counterexample is the algebra of all matrices of
the form (

a b
0 c

)
(a, b, c ∈ K).

Proposition 4.3.2 says that every Q-algebra is semisimple. Unfortunately, our proof
of Proposition 4.3.2 leans heavily on the fact that every Q-algebra has a faithful
representation. The crucial step in the proof of Theorem 2.1.5 is to show that
Q-algebras are semisimple using only the properties (i)–(viii) from Section 2.1.
By definition, the Jacobson radical J of an algebra A is the intersection of all
maximal (proper) ideals in A. It is known that A is semi-simple if and only if
J = {0}. Thus, we need to show that the Jacobson radical J of a Q-algebra is
trivial.
It is easy to see that if I is a left ideal in A, then I∗ := {A∗ : A ∈ I} is a right
ideal. Thus, if I is an ideal, then I∗ is also an ideal. If I is maximal, then I∗ is
also maximal. Hence

J ∗ =
⋂
{I∗ : I maximal ideal} =

⋂
{I : I maximal ideal} = J .

Now imagine that 0 6= A ∈ J . By what we have just proved A∗ ∈ J and there-
fore A∗A ∈ J . By the positivity condition (viii) from Section 2.1, A∗A 6= 0,
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(A∗A)∗(A∗A) = (A∗A)2 6= 0, and by induction, (A∗A)2n 6= 0 for all n ≥ 1. How-
ever, it is known (see e.g. [Lan71]) that the Jacobson radical of a finite-dimensional
algebra is nilpotent, i.e., J n = {0} for some n. We arrive at a contradiction.
Using again the positivity condition (viii) from Section 2.1, one can show that the
adjoint operation on a Q-algebra A must respect the factors in the decomposition
A ∼= A1 ⊕ · · · ⊕ An, i.e., A ∈ Ai implies A∗ ∈ Ai. It follows from general theory
of algebras that each Ai is of the form L(Vi), where Vi is a complex linear space.
To complete the proof, it then suffices to show that the adjoint operation on L(Vi)
arises from an inner product on Vi. To show this, choose any inner product 〈·, ·〉
on Vi and let A 7→ A† denote the adjoint operation with respect to this inner
product. Then A 7→ (A∗)† is an algebra isomorphism from L(Vi) into itself. It
follows from Lemma 4.4.1 that every algebra isomorphism from L(Vi) into itself is
an inner isomorphism, i.e., (A∗)† = UAU−1 for some linear bijection U : Vi → Vi.
Setting 〈x, y〉′ := 〈Ux, Uy〉 then yields an inner product on Vi such that A 7→ A∗

is the adjoint operation with respect to this inner product.

The proof of Theorem 3.4.1 follows a completely different strategy. Let A be a
C∗-algebra and let ρ be a probability law (state) on A. We claim that then there
exists a representation H of A and a vector φ ∈ H such that

ρ(A) = 〈φ|Aφ〉 (A ∈ A).

To prove this, put
N := {A ∈ A : ρ(A∗A) = 0}.

One can check that N is a closed linear subspace of A, and a left ideal. Moreover,

〈A+N , B +N〉 := ρ(A∗B) (4.3)

defines an inner product on the quotient space

A/N := {A+N : A ∈ A}

Let H be the completion of A/N in this inner product. Then one checks that

A(B +N ) := AB +N (A,B ∈ A) (4.4)

defines an action of A on H. Setting φ = 1 + N now yields the claims. This
construction is known as the GNS-construction.
The strategy of the proof of Theorem 3.4.1 is now to show that there exist enough
states ρ on A so that the direct sum of their corresponding representations, ob-
tained with the GNS-construction, is faithful. The proof is not easy; one more
or less has to derive the whole spectral theory of normal elements of A without
knowing that A has a faithful representation, before one can prove Theorem 3.4.1.



Chapter 5

States and independence

5.1 States

The next proposition says that if A is a Q-algebra and τ is a faithful pseudotrace
on A, then every probability law ρ has a density (or density operator) R with
respect to τ .

Proposition 5.1.1 (Density operator) Let A be a Q-algebra and let τ be a
faithful pseudotrace on A. Let R ∈ A be positive hermitian such that τ(R) = 1.
Then the formula

ρ(A) := τ(RA) (A ∈ A)

defines a probability on A. Conversely, every probability on A arises in this way
and R is uniquely determined by ρ.

Proof It is easy to check that the formula ρ(A) := τ(RA) defines a probability.
To prove that every probability arises in this way, we use that 〈A|B〉τ := τ(A∗B)
defines an inner product on A. Therefore, since a probability ρ is a linear form on
A, there exists a unique R ∈ A such that

ρ(A) = 〈R|A〉τ = τ(R∗A) (A ∈ A).

Since ρ is real,

τ(R∗A∗) = ρ(A∗) = ρ(A)∗ = τ(R∗A)∗ = τ(A∗R) = τ(RA∗).

Since this holds for all A ∈ A, we must have R∗ = R, i.e., R is hermitian. Write
R =

∑
i λiPi; assume that one of the eigenvalues λi is strictly negative. Then

ρ(Pi) = τ((
∑

j λjPj)Pi) = λjτ(P
2
i ) < 0), which gives a contradiction. Thus R

must be positive.

57
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Exercise 5.1.2 Let A be a Q-algebra. Show that every real linear form ρ on A
can be written as ρ = ρ+ − ρ−, where ρ+, ρ− are positive linear forms. Show that
every linear form l on A be written as Re(l) + iIm(l), where Re(l), Im(l) are real
linear forms.

Exercise 5.1.3 Show that the pure states on a Q-algebra A span the space of all
linear forms on A.

Let A be a Q-algebra. In quantum mechanics, it is a (bad) tradition to call a
probability ρ on A a state. Note that the set of all probabilities is a convex
subset of the space of all real linear forms, i.e., if ρ1, . . . , ρn are probabilities and
p1, . . . , pn ≥ 0 with

∑
i pi = 1, then

ρ :=
∑
i

piρi

is a probability on A. By definition, a pure state is a probability ρ that is not
a nontrivial convex combination of other states, i.e., it is not possible to write
ρ = pρ1 + (1− p)ρ2 with 0 < p < 1 and ρ1 6= ρ2. A probability that is not a pure
state is called a mixed state.

Lemma 5.1.4 (Pure states on factor algebras) Let H be an inner product
space. Then ρ is a pure state on L(H) if and only if there exists a vector ψ ∈ H
with ‖ψ‖ = 1 such that

ρ(A) = 〈ψ|A|ψ〉 (A ∈ L(H)).

For any state ρ on L(H) there exists an orthonormal basis {e(1), . . . , e(n)} and
nonnegative numbers p1, . . . , pn, summing up to one, such that

ρ(A) =
∑
i

pi〈e(i)|A|e(i)〉 (A ∈ L(H)).

Proof It is easy to see that ρ(A) := 〈ψ|A|ψ〉 defines a state if ψ ∈ H satisfies
‖ψ‖ = 1. Now let ρ be any state and let R be its density with respect to the usual
trace on L(H). Since R is a positive operator, there exists an orthonormal basis
{e(1), . . . , e(n)} and nonnegative numbers p1, . . . , pn such that

R =
∑
i

pi|e(i)〉〈e(i)|.

Now ρ(A) = tr(RA) =
∑

i pi〈e(i)|A|e(i)〉. Since tr(R) = 1, the pi sum up to one.
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It remains to show that states of the form ρψ(A) := 〈ψ|A|ψ〉 are pure. Imagine
that ρψ = pρ1 + (1− p)ρ2 for some 0 < p < 1. By what we have just shown, there
exists an orthonormal basis {e(1), . . . , e(n)} and nonnegative numbers p1, . . . , pn
such that ρ1(A) =

∑
i pi〈e(i)|A|e(i)〉. For each φ such that 〈ψ|φ〉 = 0, we have

p
∑
i

pi|〈e(i)|φ〉|2 = pρ1(|φ〉〈φ|) ≤ ρψ(|φ〉〈φ|) = 0,

hence for each i such that pi > 0 we must have 〈e(i)|φ〉 = 0 for each φ that is
orthogonal to ψ. It follows that there exists one i such that pi = 1 and e(i) = λψ
for some |λ| = 1. In particular, ρ1 = ρψ. By the same argument, also ρ2 = ρψ so
ρψ is not a nontrivial convex combination of other states.

Let A be a Q-algebra. By definition, a minimal projection is a projection P ∈ A
such that P 6= 0 and the only projections Q with Q ≤ P are Q = 0 and Q = P . By
definition, a maximally fine partition of the identity is a partition of the identity
that consists of minimal projections.

Lemma 5.1.5 (Pure states and minimal projections) If P is a minimal
projection in a Q-algebra A then there exists a pure state ρP on A such that

PAP = ρP (A)P (A ∈ A).

Conversely, for every pure state is of this form. Every state ρ on A can be written
as

ρ(A) =
n∑
j=1

pjρPj

where {P1, . . . , Pn} is a maximally fine partition of the identity and the pj are
nonnegative numbers, summing up to one.

Proof If A = L(H) is a factor algebra, then minimal projections are of the form
P = |ψ〉〈ψ| where ψ ∈ H satisfies ‖ψ‖ = 1, hence the statement follows from
Lemma 5.1.4. The general case follows by writing A as a direct sum of factor
algebras.

Lemma 5.1.5 says, among other things, that every state can be written as a convex
combination of pure states. This decomposition is in general not unique! In the
special case that our Q-algebra is a factor algebra L(H), Lemma 5.1.4 shows that
every state vector ψ ∈ H with ‖ψ‖ = 1 defines a pure state ρψ, and every pure
state is of this form. This correspondence is almost one-to-one, except that the
state vectors

ψ and eiαψ (α ∈ [0, 2π)),
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differing only by the phase factor eiα describe the same pure state. Note that
by Excersice 5.1.6 below, two states ρ1, ρ2 are equal if and only if they give the
same probability to every observation (projection) P . Thus, there is no ‘redundant
information’ in states ρ.

State vectors were invented earlier than Q-algebras or C∗-algebras. The celebrated
Copenhagen interpretation of quantum mechanics says that the state of a quantum
mechanical system is described by a unit vector ψ in a Hilbert space H. Real
observables correspond to self-adjoint operators A. An observable A can assume
values in its spectrum σ(A). Let P be the spectral measure associated with A; in
the finite-dimensional case, this means that P(D) is the orthogonal projection on
the space spanned by all eigenvectors with eigenvalues in a set D ⊂ R. Then

‖P(D)ψ‖2 = 〈P(D)ψ|P(D)ψ〉 = 〈ψ|P(D)|ψ〉 = ρψ(P(D))

is the probability that an ideal measurement of A yields a value in D. Given that
we do such an observation, we must describe our sytem with the new state

ρ̃ψ(A) =
ρψ(P(D)AP(D))

ρψ(P(D))
=
〈P(D)ψ|A|P(D)ψ〉

‖P(D)ψ‖2
= ρψ̃(A),

where ψ̃ is the unit vector defined by

ψ̃ := 1
‖P(D)ψ‖P(D)ψ.

This recipe for conditioning a pure state is known as the projection postulate and
has been the subject of much discussion.

Exercise 5.1.6 Show that the projections in a Q-algebra A span the whole alge-
bra A. (Hint: Excercise 2.1.2.)

Exercise 5.1.7 Let A be a Q-algebra and let ρ1, ρ2 be states on A. Show that
ρ1(P ) = ρ2(P ) if and only if ρ1 = ρ2.

If A is abelian, then it is easy to see that a state ρ is pure if under ρ, each
projection P has either probability zero or one. The next excercise shows that in
the nonabelian case, the situation is quite different.

Exercise 5.1.8 (Unprecise states) If dim(H) ≥ 2, then for every state ρ there
exists a projection P ∈ L(H) such that 0 < ρ(P ) < 1.
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5.2 Subsystems

As we have seen in Section 2.3, we use a Q-algebra to describe all properties of a
physical system that are of interest to us. Often, a physical system is made up of
several smaller systems. And, of course, since we rarely consider the universe as a
whole, any system we look at will be a subsystem of something larger. In quantum
probability, we describe such subsystems with sub-∗-algebras. Such sub-∗-algebras
may describe all aspects of our system that can be measured in a certain part of
space, or that refer to one particular particle, or physical quantity, etc.

Thus, if A is a Q-algebra and B ⊂ A is a sub-∗-algebra, then we may interpret B
as a subsystem of A. A partition of the identity {P1, . . . , Pn} such that Pi ∈ B1

for all i is interpreted as an ideal measurement on the subsystem B. If ρ is a state
(probability law) on A, then the restriction of ρ to B describes our knowledge
about B.

If A is a Q-algebra and D ⊂ A is some set, then we let α(D) denote the smallest
sub-∗-algebra of A containing D. It is not hard to see that

α(D) := span({1} ∪ {D1 · · ·Dn : n ≥ 1, Di ∈ D or D∗
i ∈ D ∀i = 1, . . . , n}),

i.e., α(D) is the linear span of all finite products of elements of D and their adjoints.
We call α(D) the sub-∗-algebra generated by D. For example, if B1,B2 are sub-∗-
algebras of some larger Q-algebra A, then α(B1∪B2) is the smallest sub-∗-algebra
containing both B1 and B2.

In this section, we will in particular be interested in the case when subsystems that
are independent, i.e., when measurements on one subsystem give no information
about the other.

Recall from Section 2.3 that if we perform an ideal measurement {P1, . . . , Pn}
on a system described by a quantum probability space (A, ρ), then in general
we perturb our system, which we describe by replacing the state ρ by the state
ρ′(A) :=

∑
i ρ(PiAPi). We ask ourselves under which conditions performing a

measurement on one subsystem does not perturb another subsystem.

Lemma 5.2.1 (Commuting subalgebras) Let A be a Q-algebra and let B1,B2

be sub-∗-algebras of A. Then the following are equivalent:

(i)
∑n

i=1 ρ(P2,iP1P2,i) = ρ(P1) ∀P1 ∈ B1 projection, {P2,1, . . . , P2,n} ⊂ B2

partition of the identity, ρ state on A,
(ii) P1P2 = P2P1 ∀P1 ∈ B1, P2 ∈ B2, P1, P2 projections,
(iii) B1B2 = B2B1 ∀B1 ∈ B1, B2 ∈ B2.
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Proof (i)⇒(ii): In particular, setting n = 2, we have for any projections P1 ∈ B1,
P2 ∈ B2 and for any probability ρ on A

ρ(P2P1P2) + ρ((1− P2)P1(1− P2)) = ρ(P1)
⇔ ρ(P2P1P2) + ρ(P1) + ρ(P2P1P2)− ρ(P1P2)− ρ(P2P1) = ρ(P1)
⇔ 2ρ(P2P1P2) = ρ(P1P2) + ρ(P2P1).

By Excersice 5.1.3, this holds for every state ρ if and only if it holds for every
linear form ρ. Hence, this holds if and only if

2P2P1P2 = P1P2 + P2P1. (5.1)

Represent A on some inner product space H and let H1,H2 be the subspaces that
P1, P2 project on. By (5.1),

P1P2ψ = 2P2P1P2ψ − P2P1ψ ∈ H2

for each ψ, hence P1P2 = P2P1P2, which together with (5.1) implies that P1P2 =
P2P1 for all P1 ∈ B1, P2 ∈ B2.

(ii)⇒(iii): This follows from Excersice 5.1.6.

(iii)⇒(i): Obvious, since

n∑
i=1

ρ(P2,iB1P2,i) =
n∑
i=1

ρ(P2,iP2,iB1) =
n∑
i=1

ρ(P2,iB1) = ρ(1B1) = ρ(B1)

for any B1 ∈ B1 and any partition of the identity {P2,1, . . . , P2,n} ⊂ B2.

If B1 and B2 are sub-∗-algebras that commute with each other, then performing
a measurement on B1 does not disturb B2, and vice versa. Thus, it should be
possible to do simultaneous measurements on B1 and B2. Indeed, if {P1, . . . , Pn}
and {Q1, . . . , Qm} are ideal measurements such that Pi ∈ B1 and Qj ∈ B2 for each
i, j, then since B1 and B2 commute with each other, it is easy to see that

{PiQj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

is an ideal measurement (partition of the identity). We interpret this as a mea-
surement that carries out {P1, . . . , Pn} and {Q1, . . . , Qm} simultaneously, i.e., at
some point in time we perform {P1, . . . , Pn} and at some point in time we perform
{Q1, . . . , Qm}; the order doesn’t matter. If P,Q are projections that commute
with each other, then we interpret PQ as the simultaneous observation of both P
and Q. Note that for any state ρ, one has

ρ(PQ) =
ρ(QPQ)

ρ(Q)
ρ(Q) = ρ(P |Q)ρ(Q),
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which is a well-known formula from classical probability. If P and Q do not
commute, then PQ is not a projection, so we say that simultaneous measurements
with noncommuting observations are not possible. In this case, ρ(P |Q)ρ(Q) is still
well-defined and can be interpreted as the probability of first doing the observation
Q and then P , which may be different from ρ(Q|P )ρ(P ) (first P , then Q).

5.3 Independence

By Lemma 5.2.1, performing a measurement on a sub-∗-algebras B1 does not have
any effect on a sub-∗-algebras B2 if and only if B1 and B2 commute with each
other. We now ask under which circumstances these subsystems are independent,
i.e., doing an observation on one subsystem gives no information about the other
subsystem. Recall that if in some ideal measurement we do the observation P , we
must describe our new knowledge about the system with the conditioned proba-
bility law ρ̃ = ρ(·|P ) defined by

ρ(A|P ) :=
ρ(PAP )

ρ(P )
(A ∈ A).

Lemma 5.3.1 (Independent subalgebras) Let A be a Q-algebra and let B1,B2

be sub-∗-algebras of A that commute with each other. Then the following are
equivalent:

(i) ρ(P1|P2) = ρ(P1) for all projections P1 ∈ B1, P2 ∈ B2

with ρ(P2) 6= 0.

(ii) ρ(B1B2) = ρ(B1)ρ(B2) ∀B1 ∈ B1, B2 ∈ B2.

Proof Since B1 and B2 commute, ρ(P1|P2) = ρ(P2P1P2) = ρ(P1P2P2) = ρ(P1P2),
so (i) is equivalent to

ρ(P1P2) = ρ(P1)ρ(P2) (5.2)

for all projections P1 ∈ B1, P2 ∈ B2 with ρ(P2) 6= 0. In fact, (5.2) is automatically
satisfied if ρ(P2) = 0; to see this, note that since B1 and B2 commute, P1P2 is a
projection. Now P1P2 ≤ P2, hence ρ(P1P2) ≤ ρ(P) = 0. Thus, (i) holds if and only
if (5.2) holds for all projections P1 ∈ B1, P2 ∈ B2. Since the Q-algebras B1,B2 are
spanned by their projections (Excercise 5.1.6), this is equivalent to (ii).

If B1,B2 are sub-∗-algebras of some larger Q-algebra A, and B1 and B2 commute
with each other, then we observe that

α(B1 ∪ B2) = B1B2,
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where for any subsets D1,D2 of a Q-algebra A we introduce the notation

D1D2 := span{D1D2 : D1 ∈ D1, D2 ∈ D2}.

Therefore, by Lemma 5.3.1 (ii), if ρ1 and ρ2 are states on B1 and B2, respectively,
then by linearity, there exists at most one state ρ on α(B1 ∪ B2) such that B1 and
B2 are independent under ρ, and the restrictions of ρ to B1 and B2 are ρ1 and ρ2,
respectively. We now ask under which conditions such a state ρ exists.

Lemma 5.3.2 (Logically independent algebras) Let B1,B2 be sub-∗-algebras
of some larger Q-algebra, which commute with each other. Then the following
statements are equivalent:

(i) P1P2 6= 0 for all projections P1 ∈ B1 and P2 ∈ B2 with P1 6= 0
and P2 6= 0.

(ii) For all states ρ1 on B1 and ρ2 on B2 there exists a unique
state ρ on α(B1 ∪ B2) such that ρ(B1B2) = ρ1(B1)ρ2(B2)
for all B1 ∈ B1, B2 ∈ B2.

Proof (i)⇒(ii): We first prove the statement when ρ1 and ρ2 are pure states, i.e.,
ρ1 = ρP1 and ρ2 = ρP2 , where P1 and P2 are minimal projections in B1 and B2,
respectively. Using the fact that B1 and B2 commute, it is easy to see that P1P2

is a projection in α(B1 ∪ B2). Now

(P1P2)(B1B2)(P1P2) = P1B1P1P2B2P2 = ρ1(B1)ρ2(B2)P1P2 (B1 ∈ B1, B2 ∈ B2).

Since P1P2 6= 0, and since α(B1 ∪ B2) is spanned by elements of the form B1B2,
there exists a function ρ : α(B1 ∪ B2) → C such that

(P1P2)A(P1P2) = P1B1P1P2B2P2 = ρ(A)P1P2 (A ∈ α(B1 ∪ B2)).

From this it is easy to see that P1P2 is a minimal projection in α(B1 ∪ B2), and
ρ = ρP1P2 is the pure state asociated with P1P2.

In the general case, when ρ1 and ρ2 are not pure states, we write

ρ1 =

n1∑
i=1

piρ1,i and ρ2 =

n2∑
j=1

qjρ2,j

where the ρ1,i and ρ2,j are pure states. By what we have just proved, there exist
pure states ρij on α(B1 ∪ B2) such that ρij(B1B2) = ρ1,i(B1)ρ2,j(B2) for all B1 ∈
B1, B2 ∈ B2. Putting

ρ :=

n1∑
i=1

n2∑
j=1

piqjρij
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now defines a state with the required property.

To see that (i) is also necessary for (ii), imagine that P1P2 = 0 for some nonzero
projections P1 ∈ B1 and P2 ∈ B2. Then we can find states ρ1, ρ2 on B1,B2 such
that ρ1(P1) = 1 and ρ2(P2) = 1. However, any state ρ on α(B1 ∪ B2) satisfies
0 = ρ(0) = ρ(P1P2) 6= ρ(P1)ρ2(P2).

Let us say that two sub-∗-algebras B1,B2 of some larger Q-algebra A are logically
independent if B1 and B2 commute with each other and satisfy the equivalent prop-
erties (i)–(ii) from Lemma 5.3.2. In classical probability, property (i) is sometimes
called ‘qualitative independence’ [Ren70]. Note that this says that if no probabil-
ity ρ on A is specified, then by doing an observation on system B1 we can never
rule out an observation on system B2. If B1,B2 are logically independent sub-∗-
algebras of some larger Q-algebra A, then we can give a nice description of the
algebra α(B1 ∪ B2) in terms of B1 and B2.
Recall from Section 1.3 that the tensor product of two linear spaces V ,W is a linear
space V⊗W , equipped with a bilinear map (φ, ψ) 7→ φ⊗ψ from V×W into V⊗W
satisfying the equivalent conditions of Proposition 1.3.8. Such a tensor product
is unique up to equivalence. Now let A1,A2 be Q-algebras and let A1 ⊗ A2 be
their tensor product (in the sense of linear spaces). We equip A1 ⊗ A2 with the
structure of a Q-algebra by putting

(A1 ⊗ A2)(B1 ⊗B2) := (A1B1)⊗ (A2B2) (A1, B1 ∈ A1, A2, B2 ∈ A2)

and
(A1 ⊗ A2)

∗ := (A∗1)⊗ (A∗2).

By the properties of the tensor product, these definitions extend linearly to all of
A1 ⊗A2, making it into a Q-algebra. If H1 and H2 are representations of A1 and
A2, respectively, then setting

(A1⊗A2)(φ1⊗φ2) := (A1φ1)⊗(A2φ2) (A1 ∈ A1, A2 ∈ A2, φ1 ∈ H1, φ2 ∈ H2)
(5.3)

makes H1 ⊗ H2 into a representation of A1 ⊗ A2. This leads to the natural iso-
morphism

L(H1)⊗ L(H2) ∼= L(H1 ⊗H2).

Note that if {e(1), . . . , e(n)} and {f(1), . . . , f(m)} are orthonormal bases of H1

and H2, respectively, then a basis for L(H1)⊗L(H2) is formed by all elements of
the form (|e(i)〉〈e(j)|)⊗ (|f(k)〉〈f(l)|), while a basis for L(H1 ⊗H2) is formed by
all elements of the form |e(i) ⊗ f(k)〉〈e(j) ⊗ f(l)|. The dimension of both spaces
is dim(H1)

2dim(H2)
2.



66 CHAPTER 5. STATES AND INDEPENDENCE

Lemma 5.3.3 (Logical independence and tensor product) If B1,B2 are log-
ically independent sub-∗-algebras of some larger Q-algebra A, then the map

B1B2 7→ B1 ⊗B2

is a ∗-algebra isomorphism from α(B1 ∪B2) to the tensor product algebra B1⊗B2.

Proof By Lemma 5.3.2 and Excercise 5.1.3, if l1, l2 are linear forms on B1,B2,
respectively, then there exists a unique linear form l on α(B1 ∪ B2) such that
l(B1B2) = l1(B1)l2(B2) for all B1 ∈ B1, B2 ∈ B2. Therefore, by Proposi-
tion 1.3.10 (iv) and Lemma 1.3.9, α(B1 ∪ B2) ∼= B1 ⊗ B2.

If ρ1, ρ2 are states (probability laws) on Q-algebras A1,A2, respectively, then we
define a unique product state (product law) on A1 ⊗A2 by

(ρ1 ⊗ ρ2)(A1 ⊗ A2) := ρ1(A1)ρ2(A2) (A1 ∈ A1, A2 ∈ A2).

(This is good notation, since we can interpret ρ1 ⊗ ρ2 as an element of the tensor
product A′

1⊗A′
2, where A′

1 and A′
2 are the dual spaces of A1 and A2, respectively.)

Product of three and more Q-algebras and states are defined analoguously.



Chapter 6

Quantum paradoxes

6.1 Hidden variables

As we have already seen, the ‘states’ of quantum probability are something quite
different from the states of classical probability. Rather, what is called a state in
quantum probability corresponds to a probability law in classical probability. Pure
states are probability laws that cannot be written as a mixture of other probability
laws, hence a pure state ρ on a Q-algebra A corresponds, in a way, to maximal
knowledge. If A is abelian, then pure states have the property that they assign
probability one or zero to every observation (projection operator P ∈ A). Hence,
in the classical case, it is, at least theoretically, possible to know everything we
want to know about a system. In Excercise 5.1.8, we have seen that in the quantum
case this is not so.

Of course, in practice, even for classical systems, our knowledge is often not per-
fect. Especially when systems get large (e.g. contain 1022 molecules), it becomes
impossible to know the exact value of every observable that could be of interest
of us. Also, continuous observables can be measured only with limited precision.
Nevertheless, it is intuitively very helpful to imagine that all observables have a
value -we just don’t know which one. This intuition is very much behind classical
probability theory. In quantum probability, it can easily lead us astray.

Many physicists have felt uncomfortable with this aspect of quantum mechanics.
Most prominently, Einstein had a deep feeling that on the grounds mentioned
above, quantum theory must be incomplete. While his attempts to show that
quantum mechanics is inconsistent failed, the ‘Einstein-Podolsky-Rosen paradox’
put forward in [EPR35] has led to a better understanding of quantum probability,
and the invention of the Bell inequalities.

The absence of ‘perfect knowledge’ in quantum probability has prompted many

67
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attempts to replace quantum mechanics by some more fundamental theory, in
which, at least theoretically, it is possible to have extra information that allows us
to predict the outcome of any experiment with certainty. Such an extended theory
would be called a hidden variable theory, since it would involve adding some extra
variables that give more information than the pure states of quantum mechanics.
These extra variables can presumably never be measured so they are called hidden
variables. It is possible to construct such hidden variable theories (the hidden
variable theory of Bohm enjoys some popularity), but we will see that any hidden
variable theory must have strange properties, making it rather unattractive.

6.2 The Kochen-Specker paradox

The Kochen-Specker paradox [KS67] shows that we run into trouble if we assume
that every observable has a well-defined value. In other words, the next theo-
rem shows that we cannot think about the observations (projection operators)
from quantum probability in the same way as we think about events in classical
probability.

Theorem 6.2.1 (Kochen-Specker paradox) Let H be an inner product space
of dimension at least 3. Then there exists a finite set P whose elements are pro-
jections P ∈ L(H), such that it is not possible to assign to every element P ∈ P a
value ‘true’ or ‘false’, in such a way that in every ideal measurement {P1, . . . , Pn}
consisting of elements of P, exactly one projection has the value ‘true’ and all
others have the value ‘false’.

Remark I The essential assumption is that the value (‘true’ or ‘false’) of a pro-
jection P does not depend on the ideal measurement that it occurs in. Thus, if
{P1, . . . , Pn} and {Q1, . . . , Qm} are ideal measurements and Pi = Qj, then Pi and
Qj should either both be ‘true’ or both ‘false’. If one drops this assumption there
is no paradox.

Remark II The fact that we run into trouble even for a finite set P shows that the
paradox is not the result of some (perhaps unnatural) continuity or set-theoretic
assumption.

Remark III The assumption that dim(H) ≥ 3 is necessary. In the next section,
when we discuss the Bell inequality, we will even need spaces of dimension at least
4. It seems that for spaces of dimension 2, there are no serious quantum paradoxes.

Proof of Theorem 6.2.1 As will be obvious from our proof, it suffices to prove the
statement for the case dim(H) = 3. Choose an orthonormal basis {e(1), e(2), e(3)}
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of H and consider projections of the form

P := |ψ〉〈ψ| with ψ = x1e(1) + x2e(2) + x3e(3),

where x = (x1, x2, x3) lies on the surface of the three dimensional real unit sphere:

(x1, x2, x3) ∈ S2 := {x ∈ R3 : ‖x‖ = 1}.

Note that x and −x correspond to the same projection. If three points x, y, z ∈ S2

are orthogonal, then the corresponding projections form an ideal measurement.
Therefore, we need to assign the values ‘true’ or ‘false’ to the points x ∈ S2 in
such a way that x and −x always get the same value, and if three points x, y, z
are orthogonal, then one of them gets the value ‘true’ and the other two get the
value ‘false’. We will show that there exists a finite set P ⊂ S2 such that it is not
possible to assign the values ‘true’ or ‘false’ to the points in P in this way.

Note that if two points x, y are orthogonal, then by adding a third point z that is
orthogonal to x and y, we see that x and y cannot both be ‘true’. Therefore, it
suffices to show that there exists a finite set P ′ ⊂ S2 such that we cannot assign
values to the points in P ′ according to the following rules:

(i) Two orthogonal points are never both ‘true’,
(ii) Of three orthogonal points, exactly one has the value ‘true’.

If we cannot assign values to P ′ according to these rules then by adding finitely
many points we get a set P that cannot be assigned values to according to our
earlier rules.

Since we are only interested in orthogonality relations between finite subsets of
S2, let us represent such subsets by a graph, where the vertices are points in
S2 and there is a bond between two vertices if the corresponding points in S2

are orthogonal. We claim that if x(1), x(2) ∈ S2 are close enough together, in
particular, when the angle α1,2 between x(1) and x(2) satisfies

0 ≤ sin(α1,2) ≤ 1
3
,

then we can find points x(3), . . . , x(10) such that the orthogonality relations in
Figure 6.1 hold.
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Figure 6.1: Kochen-Specker diagram

To prove this formally, take

x(4) = (1, 0, 0)
x(5) = (0, 0, 1)
x(6) = (0, 1, λ)(1 + λ2)−1/2

x(7) = (1, λ, 0)(1 + λ2)−1/2

x(8) = (0, λ,−1)(1 + λ2)−1/2

x(9) = (λ,−1, 0)(1 + λ2)−1/2

x(1) = (λ2,−λ, 1)(1 + λ2 + λ4)−1/2

x(3) = (1, λ, λ2)(1 + λ2 + λ4)−1/2,

where λ ≥ 0 is a parameter to be determined later. It is easy to check that
orthogonality relations as in Figure 6.1 hold between these points. Since x(10) is
orthogonal to x(1), x(2), and x(3), we need to take x(2) in the plane spanned by
x(1) and x(3). Denote the angle between x(1) and x(3) by α1,3. Then the inner
product of x(1) and x(3) is

〈x(1)|x(3)〉 = cos(α1,3).

We calculate

〈x(1)|x(3)〉 =
λ2

1 + λ2 + λ4
,

which is zero for λ = 0 and 1
3

for λ = 1. It is not hard to see that for λ = 1
the angle between x(1) and x(3) is sharp so by varying λ, we can construct the
diagram in Figure 6.1 for any sharp angle α1,3 with 0 ≤ cos(α1,3) ≤ 1

3
. Since x(2)
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and x(3) are orthogonal, it follows that we can choose x(2) for any sharp angle
α1,2 between x(1) and x(2) with 0 ≤ sin(α1,2) ≤ 1

3
, as claimed.

We now claim that if orthogonality relations as in Figure 6.1 hold between points
x(1), . . . , x(10), and x(1) has the value ‘true’, then x(2) must also have the value
‘true’.

To prove this, assume that x(1) is ‘true’ and x(2) is ‘false’. Then x(6), x(7), and
x(10) must be ‘false’ since they are orthogonal to x(1). But then x(3) must be
‘true’ since x(2) and x(10) are already ‘false’. Then x(8) and x(9) must be ‘false’
since they are orthogonal to x(3). Now x(4) must be ‘true’ since x(8) and x(6) are
already ‘false’ and x(5) must be ‘true’ since x(9) and x(7) are already false. But
x(4) and x(5) are orthogonal, so they are not allowed to be both ‘true’. We arrive
at a contradiction.

We see that if two points are close enough together, then using only finitely many
other points we can argue that if one is ‘true’ then the other one must also be
‘true’. Now choose three points x, y, z that are orthogonal to each other. Then we
can choose x(1), x(2), . . . , x(n) close enough together, such that x is ‘true’ ⇒ x(1)
is ‘true’ ⇒ · · · ⇒ x(n) is ‘true’ ⇒ y is ‘true’. (In fact, it turns out that n = 4
points suffice.) In the same way, using finitely many points, we can argue that y is
‘true’ ⇒ z is ‘true’ and z is ‘true’ ⇒ x is ‘true’. Since x, y, and z are orthogonal,
exactly one of them must be true, so we arrive at a contradiction. (In fact, it turns
out that a set P ′ with 117 points suffices. For our original set P we need even
more points, but still finitely many.)

6.3 The Bell inequality

The Kochen-Specker paradox shows that the ideal measurements of quantum me-
chanics cannot be interpreted as classical ideal measurements. The attribute ‘ideal’
is essential here: if we assume that our measurements perturb our system, i.e., if
the system can react differently on different measurements, there is no paradox. In
this section we discuss a ‘paradox’ that is more compelling, since in this case, if we
want to keep our classical intuition upright, we would have to assume that a sys-
tem can react on a measurement that is performed in another system -potentially
very far away.
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Entanglement

LetA1 andA2 be Q-algebras and letA1⊗A2 be their tensor product. We have seen
that such product algebras are used to model two logically independent subsystems
of a larger physical system. The systems A1 and A2 are independent under a state
(probability law) ρ if and only if ρ is of product form, ρ = ρ1⊗ ρ2 where ρ1, ρ2 are
states on A1,A2, respectively. By definition, a state ρ is entangled if ρ can not be
written as a convex combination of product states, i.e., if ρ is not of the form

ρ =
n∑
k=1

pkρ1,k ⊗ ρ2,k,

where ρ1,k, ρ2,k are states on A1,A2, respectively, and the pk are nonnegative num-
bers summing up to one. In classical probability, entangled states do not exist:

Exercise 6.3.1 Let A1 and A2 be Q-algebras and assume that A1 is abelian.
Show that there exist no entangled states on A1 ⊗A2.

On the other hand, if A1 and A2 are both nonabelian, then entangled states do
exist. To see this, it suffices to consider the case that A1 = L(H1) and A2 = L(H2)
where H1,H2 are inner product spaces of dimension at least two. Recall that
L(H1) ⊗ L(H2) ∼= L(H1 ⊗H2). Let {e, e′} be orthonormal vectors in H1 and let
{f, f ′} be orthonormal vectors in H2. Define a unit vector ψ ∈ H1 ⊗H2 by

ψ := 1√
2
e⊗ f + 1√

2
e′ ⊗ f ′, (6.1)

and let ρ = ρψ(A) = 〈ψ|A|ψ〉 be the pure state associated with ψ. We claim that
ρ cannot be written as a convex combination of product states. Since ρ is pure, it
suffices to show that ρ is not a product state itself. If it were, it would have to be
the product of its marginals ρ1, ρ2. Here ρ1 is the state on A1 defined by

ρ1(A1) = 〈ψ|A1 ⊗ 1|ψ〉
= 1

2
〈e⊗ f |A1 ⊗ 1|e⊗ f〉+ 1

2
〈e′ ⊗ f ′|A1 ⊗ 1|e′ ⊗ f ′〉

= 1
2
〈e|A1|e〉〈f |f〉+ 1

2
〈e′|A1|e′〉〈f ′|f ′〉

= 1
2
〈e|A1|e〉+ 1

2
〈e′|A1|e′〉 (A1 ∈ L(H1)),

i.e., ρ1 = 1
2
ρe + 1

2
ρe′ . In the same way we see that ρ2 = 1

2
ρf + 1

2
ρf ′ . In particular,

ρ1 and ρ2 are not pure states! It is not hard to see that

ρ1 ⊗ ρ2 = 1
4

(
ρe⊗f + ρe′⊗f + ρe⊗f ′ + ρe′⊗f ′

)
is not a pure state, hence ρ1 ⊗ ρ2 6= ρ, so ρ is entangled.
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The Bell inequality

The Bell inequality is a test on entanglement. If (A, ρ) is a quantum probability
space and P,Q ∈ A are projections that commute with each other, then we define
their correlation coefficient cρ(P,Q) by

cρ(P,Q) := ρ(PQ) + ρ((1− P )(1−Q))− ρ(P (1−Q))− ρ((1− P )Q).

Note that since P and Q commute, we can interpret PQ as the simultaneous
observation of P and Q. The next result is due to Bell [Bel64].

Theorem 6.3.2 (Bell inequality) Let B1,B2 be logically independent sub-∗-al-
gebras of some larger Q-algebra and let ρ be a state on α(B1 ∪ B2). If ρ is not
entangled, then for any projections P1, P

′
1 ∈ B1 and P2, P

′
2 ∈ B2, one has

|cρ(P1, P2) + cρ(P
′
1, P2) + cρ(P1, P

′
2)− cρ(P

′
1, P

′
2)| ≤ 2. (6.2)

Proof We first prove the inequality for product states. Set

S1 := 2P1 − 1

and define S ′1, S2, S
′
2 similarly. Note that S1 = P1 − (1− P1), so S1 is a hermitian

operator with spectrum σ(S1) = {−1,+1}, i.e., S1 is an observable that can take
on the values ±1, such that P1 (resp. 1− P1) corresponds to the observation that
S1 = +1 (resp. S1 = −1). Then

cρ(P1, P2) = ρ(S1S2),

etc., so if ρ is a product measure, then

cρ(P1, P2) + cρ(P
′
1, P2) + cρ(P1, P

′
2)− cρ(P

′
1, P

′
2)

= ρ(S1S2) + ρ(S ′1S2) + ρ(S1S
′
2)− ρ(S ′1S

′
2)

= ρ(S1)ρ(S2) + ρ(S ′1)ρ(S2) + ρ(S1)ρ(S
′
2)− ρ(S ′1)ρ(S

′
2)

= ρ(S1)(ρ(S2) + ρ(S ′2)) + ρ(S ′2)(ρ(S2)− ρ(S ′2)),

so the quantity in (6.2) can be estimated by

|ρ(S2) + ρ(S ′2)|+ |ρ(S2)− ρ(S ′2)|.

If ρ(S2) + ρ(S ′2) and ρ(S2)− ρ(S ′2) have the same sign, then we get 2|ρ(S2)|, while
otherwise we get 2|ρ(S ′2)|. At any rate, our estimate shows that the quantity in
(6.2) is less or equal than 2.
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More generally, if ρ is a convex combination of product states, ρ =
∑

k pkρk, say,
then

|cρ(P1, P2) + cρ(P
′
1, P2) + cρ(P1, P

′
2)− cρ(P

′
1, P

′
2)|

≤
∑
k

pk
∣∣cρk(P1, P2) + cρk(P

′
1, P2) + cρk(P1, P

′
2)− cρk(P

′
1, P

′
2)

∣∣ ≤ 2

by what we have just proved.

We next show that entangled states can violate the Bell inequality. We will basi-
cally use the same entangled state as in (6.1), which we interpret interms of two
polarized photons. Let H1 and H2 be two-dimensional inner product spaces with
orthonormal bases {e(1), e(2)} and {f(1), f(2)}, respectively. For γ ∈ [0, π), define
ηγ ∈ H1 and ζγ ∈ H2 by

ηγ := cos(γ)e(1) + sin(γ)e(2) and ζγ := cos(γ)f(1) + sin(β)f(2).

Set Pγ := |ηγ〉〈ηγ| and Qβ := |ζβ〉〈ηβ|. For each γ, γ̃ we may interpret {Pγ, Pγ+π/2}
and {Qγ, Qγ̃+π/2} as an ideal measurements of the polarization of our first photon
and second photon, respectively, in the directions γ and γ̃ (see Section 2.3). We
prepare our system in the entangled state

ψ := 1√
2
e(1)⊗ f(1) + 1√

2
e(2)⊗ f(2).

We claim that for any γ,

ψ = 1√
2
ηγ ⊗ ζγ + 1√

2
ηγ+π/2 ⊗ ζγ+π/2. (6.3)

Note that this says that if we measure the polarization of both photons along the
same direction, we will always find that both photons are polarized in the same
way! To see this, we observe that

ηγ ⊗ ζγ = (cos(γ)e(1) + sin(γ)e(2))⊗ (cos(γ)f(1) + sin(γ)f(2))

= cos(γ)2 e(1)⊗ f(1) + sin(γ)2 e(2)⊗ f(2)

+ cos(γ) sin(γ)e(1)⊗ f(2) + sin(γ) cos(γ)e(2)⊗ f(1)

and

ηγ+π/2 ⊗ ζγ+π/2 = (− sin(γ)e(1) + cos(γ)e(2))⊗ (− sin(γ)f(1) + cos(γ)f(2))

= sin(γ)2 e(1)⊗ f(1) + cos(γ)2 e(2)⊗ f(2)

− sin(γ) cos(γ)e(1)⊗ f(2)− cos(γ) sin(γ)e(2)⊗ f(1).
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Adding both expressions and dividing by
√

2 we arrive at (6.3).
The probability of finding one photon polarized in the direction γ and the other
photon in the direction γ̃ is given by

ρψ(Pγ ⊗ Pγ̃) = ρψ(P0 ⊗ Pγ̃−γ)

= 1
2
〈e(1)⊗ f(1)|P0 ⊗ Pγ̃−γ|e(1)⊗ f(1)〉

+1
2
〈e(2)⊗ f(2)|P0 ⊗ Pγ̃−γ|e(2)⊗ f(2)〉

= 1
2
〈e(1)|e(1)〉〈f(1)|ζγ̃−γ〉〈ζγ̃−γ|f(1)〉

= 1
2
cos(γ̃ − γ)2.

(Compare Excercise 2.3.2.) Hence

cρψ(Pγ⊗ 1, 1⊗Qγ̃) = cos(γ̃−γ)2− sin(γ̃−γ)2 = 2 cos(γ̃−γ)2− 1 = cos(2(γ̃−γ)).

We now check that for an appropriate choice of the angles, these correlation coef-
ficients violate the Bell inequality (6.2). We take

P1 = P0 ⊗ 1, P ′
1 = Pα+β ⊗ 1,

P2 = 1⊗Qα, P ′
2 = 1⊗Q−β.

The expression in (6.2) then becomes∣∣ cos(2α) + 2 cos(2β)− cos(4β + 2α)
∣∣.

We want to maximize the expression inside the brackets. Setting the derivatives
with respect to α and β equal to zero yields the equations

−2 sin(2α) + 2 sin(4β + 2α) = 0,
−4 sin(2β) + 4 sin(4β + 2α) = 0.

It follows that sin(2β) = sin(4β + 2α) = sin(2α). We choose

β = α.

The expression to be maximized then becomes

3 cos(2α)− cos(6α).

Differentiating and setting equal to zero yields

−6 sin(2α) + 6 sin(6α) = 0 ⇒ sin(2α) = sin(6α).
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Setting z = ei2α, we need to solve

1
2i

(
ei2α − e−i2α

)
= 1

2i

(
ei6α − e−i6α

)
⇔ z − z−1 = z3 − z−3

⇔ z6 − z4 + z2 − 1 = 0.

Setting y = z2 = ei4α, we obtain the cubic equation

y3 − y2 + y − 1 = 0.

We know that y = ei20 = 1 is a trivial solution, so factorising this out we get

(y − 1)(y2 + 1) = 0,

which has nontrivial solutions y = ±i = e±iπ/2. Therefore, the maximum we are
interested in occurs at α = 1

8
π. The expression in (6.2) then becomes

3 cos(1
4
π)− cos(3

4
π) = 3 1√

2
−− 1√

2
= 2

√
2 ≈ 2.82847,

which is indeed larger than 2, the bound from the Bell inequality. Correlations be-
tween single photons passing through prismas can be measured, and this violation
of the Bell inequality has been verified experimentally [Red87, CS78].

Bell versus Tsirelson

We have seen that in classical probability theory, the quantity in (6.2) is less or
equal than 2, while in quantum probability, it can be 2

√
2. Note that a priori,

this is just a sum of four correlations, each of which could take values between −1
and 1, so it is conceivable that this quantity could be as high as 4. Nevertheless,
the violation of Bell’s inequality that we have found is maximal, as was proved by
B. Tsirelson [Cir80]. In fact, there exist several Bell inequalities; the one in (6.2)
is just the simplest one. These inequalities have quantum mechanical analogues,
the Tsirelson inequalities.
Another way of looking at these inequalities is as follows. Imagine that we have
s physical systems (separated in space), such on each system, m different ideal
measurements are possible, each of which yields one of n different possible out-
comes. The Bell inequality (6.2) considers the case s = m = n = 2. Numbering
the systems, measurements, and outcomes in some arbitrary way, we are interested
in (mn)s conditional probabilities, say

p(a1, . . . , as|b1 . . . , bs),
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that experiments b1, . . . , bs ∈ {1, . . . ,m} yield outcomes a1, . . . , a1 ∈ {1, . . . , n}.
We are interested in the case that chosing which measurement to perform on one
system does not influence probabilities on another system. For example, in the
case s = m = n = 2, this yields the ‘no signalling’ requirement

p(1, 1|1, 1) + p(1, 2|1, 1) = p(1, 1|1, 2) + p(1, 2|1, 2),

which says that the conditional probability of outcome 1 given that on system 1 we
perform measurement 1, does not depend on the choice of the measurement at the
second system. There are other requirements coming from the fact that probabili-
ties must be nonnegative and sum up to one. Together, these requirements define
a convex set Pnosignal of functions p that assign probabilities p(a1, . . . , as|b1 . . . , bs)
to the outcomes of different measurements.
It turns out that not all these probability functions p can arise from classical
probability. More precisely, clasically, we imagine that there are certain ‘hidden
variables’ that deterministically predict the outcome of each measurement. Thus,
we imagine that

p(a1, . . . , as|b1 . . . , bs) =
∑
h

P (h)ph(a1, . . . , as|b1 . . . , bs) (6.4)

where h represents the ‘hidden’ variables, P (h) is the probability that these hidden
variables take the value h, and ph is a function satisfying the ‘no signalling’ and
other requirements mentioned above, such that in addition, ph(a1, . . . , as|b1 . . . , bs)
is either 0 or 1 for each choice of a1, . . . , as, b1 . . . , bs. Since there are only finitely
many such functions, the collection of functions p of the form (6.4) is a convex set
Pclasical with finitely many extreme points, which are the functions ph. It turns
out that Pclasical is strictly smaller than Pnosignal. Here, an essential assumption
is that the functions ph also satisfy our ‘no signalling’ requirements. If we allow
hidden variables to communicate at a distance (possibly with a speed larger than
the speed of light), then there is no problem.
‘Interesting’ faces of Pclasical correspond to inequalities that are not satisfied by
general elements of Pnosignal. In fact, the Tsirelson inequalities show that Pquantum,
the quantum analogue of Pclasical, is also not equal to Pnosignal. The geometric
structure of these convex sets is still very much a topic of research, see [Gil06].
Another interesting question (that I do not know the answer to) is whether there
exist good, consistent probability theories that violate the Tsirelson inequalities.
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English-Czech glossary

abelian abelovský
ace eso

addition operace sč́ıtáńı
adjoint adjoint / hermitovský združeńı

angular momentum moment hybnosti
block-diagonal form

bounded omezený
closure uzávěr
clover křiže

complete úplný
completion zúplněńı

complex conjugate
composition skladáńı

conditional probability . . . given podmı́něná pravděpodobnost . . . za podmı́nky
conditioning podmı́ňováńı

coordinate souřadnice
density hustota

diagonalizable diagonalizovatelný
diamonds káry

direct sum direktńı suma, př́ıma suma
eigenvector vlastńı vektor
eigenvalue vlastńı č́ıslo

entanglement entanglement, propleteńı
event jev, událost

expectation středńı hodnota, očekáváńı
faithful representation věrná representace

functional calculus funcionálńı počet, funcionálńı kalkulus
hermitian hermitovský

identity identita, jednotový operátor, jednotový prvek
indicator function indikátor

inner automorphism vnitřńı isomorphismus
inner product skalárńı součin, vnitřńı součin

intersection pru̇nik
jack svršek

kernel jádro
matrix matice

measure mı́ra
measurement měřeńı
metric space metrický prostor
mixed state smı́̌seńı stav
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momentum hybnost
multiplication with scalars násobeńı skalary

multiplicity násobnost
normed space normovaný prostor

observable pozorovatelná
observation pozorováńı

origin počátek, nulová vektor
orthogonal complement ortogonálńı doplňek

partition rozklad
physical quantity fyzikálńı veličina

probability law pravděpodobnostńı rozděleńı
probability space pravděpodobnostńı prostor

projection operator projektor
proper subspace vlastńı podprostor

pure state čistý stav
quantum mechanics kvantová mechanika

quotient space kvocientńı prostor, zlomkový prostor
random variable náhodná proměnná

range obor hodnot, dosah
reducible reducibilńı

relative frequencies relativńı četnosti
reversible reversibilńı, vratný

root kořen
self-adjoint samozdružený
semisimple poloprostý

separable separovatelný
set of all subsets of Ω potence množiny Ω

set operation množinová operace
simple algebra prostá algebra

simultaneous measurement simultáńı měřeńı
spades piky

span / to span lineárńı obal / lineárně pokrývat
spectral decomposition spektrálńı rozklad

state stav (elementárńı jev)
state space stavový prostor

super selection rule super vyběrové pravidlo
supremum norm supremová norma
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tensor product tensorový součin
tensor calculus tensorový počet
time evolution časový vývoj

trace stopa
uncertainty relation principa neurčitosti

union sjednoceńı
unit element jednotový prvek

wave function vlnová funkce
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A\B, 25
A ≤ B, 11
Ac, 25
[A,B], 7
Ω, 25
α(A), 61
∗-algebra, 22
∗-ideal, 48
∼=

for algebras, 22
for inner product spaces, 16
for linear spaces, 9
for representations, 52∫

X dµ, 36
〈φ | ψ〉, 8
µ, 25
µ(A | B), 26
D, 36
φ⊗ ψ, 16
ρ, 28
σ-algebra, 35
σ-field, 35
⊂, 5
a∗, 21
C(E), 38
D1D2, 64
H, 8, 22
L(H), 7
L(H1,H2), 38
L(V), 7
L(V ,W), 6
P(Ω), 25

U ⊗ V , 16
V , 5
V ′, 13
V/W , 14
V1 ⊕ V2, 15
CΩ, 32
Im(A), 22
Ker(A), 7
Ran(A), 7
Re(A), 22

abelian, 21
Q-algebra, 32

action
of ∗-algebra on representation, 50

addition, 5
adjoint

of linear map, 9, 39
operation, 21

algebra, 21
∗-, 22

algebraically complete, 46
angular momentum, 31
associative, 21

Banach space, 38
basis, 6

dual, 13
Bell inequality, 73
bicommutant, 43
bilinear map, 16
Bohm, 68
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bounded
linear operator, 38
set, 38

bra, 8
bracket notation, Dirac’s, 8

C∗-algebra, 40
Cauchy sequence, 37
center

of Q-algebra, 51
closed

set, 36
subspace, 39

closure, 36
colinear, 9
commutant, 43
commutative, 21
commutator, 7
commuting

algebras, 61
linear operators, 7
operators, 21

compact
metric space, 37

complete
algebraically, 46
metric space, 37

complex conjugate, 8
of linear space, 19

conditional probability
classical, 26
quantum, 28

conditioning
classical, 26
quantum, 28

conjugate
complex, 8

continuous
function, 36

coordinates, 6
Copenhagen interpretation, 60
correlation coefficient, 73

dense
set, 36

density, 57
density operator, 57
diagonal form, 8
diagonalizable, 8
dimension, 6
Dirac

bracket notation, 8
direct sum

of inner product spaces, 15
of linear spaces, 15

dual
basis, 13
Hilbert space, 38
of linear map, 14

dual space, 13

eigenspace, 12
eigenvector, 7
electron, 31
entanglement, 72
entry

of matrix, 6
equivalent

norm, 37
representation, 52

event, 26
expected value, 27

factor
algebra, 48

faithful
positive linear forms, 47
state, 47

faithful representation, 23
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finite dimensional, 5
functional calculus

for normal operators, 12

generated
sub-∗-algebra, 61

GNS-construction, 56

hidden variable theory, 68, 77
Hilbert space, 38
homomorphism

of ∗-algebras, 22
of algebras, 22
of representations, 52

ideal, 48
left, 48
measurement, 28
minimal left, 52
right, 48

identity, 21
partition of, 12

independence, 63
logical, 65
qualitative, 65

independent algebras, 63
indicator function, 32
inner

isomorphism, 56
inner product, 8

space, 8
integral

definition, 36
interpretation

Copenhagen, 60
of probability space, 25
of quantum mechanics, 29

invariant
subspace, 50

inverse, 23

left, 23
right, 23

invertible
algebra element, 23
linear map, 7
linear operator, 7

involution, 21
irreducible representation, 50
isomorphism

inner, 56
of ∗-algebras, 22
of algebras, 22

Jacobson radical, 55

kernel, 7
ket, 8
Kolmogorov, 4

left
inverse, 23

left ideal, 48
minimal, 52

linear
form, 13
map, 6
operator, 7
space, 5
subspace, 5

linear form
positive, 47
real, 47

linear operator
bounded, 38

linearly independent, 6
logical independence, 65

marginal, 72
matrix, 6
maximally fine partition of the iden-

tity, 59
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measure, 35
space, 35
spectral, 39

measurement
ideal, 28
simultaneous, 62

metric, 36
space, 36

minimal
left ideal, 52
projection, 59

mixed state, 58
multiplication, 21

with scalars, 5
multiplicity

of irreducible representation, 54

norm, 37
inner product, 8
of an operator, 38

normal
operator, 10

functional calculus for, 12
normed

space, 37

observable, 30
observation, 28
open

set, 36
operator

linear, 7
norm, 38

order for hermitian operators, 11
origin, 5
orthogonal, 8

complement, 11
subspace, 15

orthonormal, 8

paradox
Einstein-Podolsky-Rosen, 67
Kochen-Specker, 68

partial order for hermitian operators,
11

partition
of a set, 33

partition of the identity, 12
maximally fine, 59

photon, 30
physical

quantity, 30
subsystem, 61
system, 25

polarization, 30
polaroid sunglasses, 30
positive

linear form, 47
positive adjoint operation, 21
probability

classical, 25, 26
measure, 35
quantum, 28, 40
space, 25, 35

quantum, 28
product

law, 66
state, 66

projection, 15
minimal, 59
on subspace, 12, 39
operator, 12
orthogonal, 12, 39
postulate, 60

proper
ideal, 48
invariant subspace, 50

pseudotrace, 48
pure state, 58
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Q-algebra, 22
abelian, 32

qualitative independence, 65
quantity

physical, 30
quantum

probability space, 28
quotient

map, 14
space, 14

radical
Jacobson, 55

random variable, 27
range, 7
real

linear form, 47
relative frequencies, 26
representation

of ∗-algebra, 23
of algebra, 23

Riesz lemma, 39
right

inverse, 23
right ideal, 48

self-adjoint, 11
semisimple, 55
separable, 36
simultaneous measurement, 62
space

inner product, 8
linear, 5
of events, 25
probability, 25
quantum probability, 40
vector, 5

span, 5
spectral decomposition, 24
spectral measure, 39

spin, 31
state

classical, 25
mixed, 30, 58
precise, 33
quantum, 30, 58
vector, 59

state space, 25
sub-∗-algebra, 22

generated by set, 61
subalgebra, 22
subsequence, 37
subspace

linear, 5
subsystem

physical, 61
supremum norm, 38
system

physical, 25

tensor product
of linear spaces, 16
of Q-algebras, 65
of states, 66

trace, 7
trivial

center, 51
Tsirelson inequality, 76

unit element, 21
unitary

linear map, 10

variable
random, 27

vector space, 5
Von Neumann

bicommutant theorem, 43


