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Preface

It is a fact of everyday life that our knowledge about the world around us is always
incomplete and imperfect. We may feel pretty sure that we locked the front door
when we left our house this morning, but less sure about how much milk there is left
in our fridge. A mathematical theory that deals with such incomplete knowledge
is probability theory. Since the early 1930-ies, in particular since the monograph
of Kolmogorov [KoI33|, probability theory is based on measure theory. Incomplete
knowledge about a physical system is described by a probability space (€2, F, ),
where (2 is a set, called the state space, F is a o-algebra on €2, and y is a probability
measure on F.

At the same time when Kolmogorov’s monograph laid the axiomatic basis for
probability theory as it had been around since the times of Fermat, physicists
were discovering a whole new type of probability theory. With the arrival of the
Copenhagen interpretation of quantum mechanics, it became clear that quantum
mechanics, at its heart, is a theory about probabilities, and that these probabilities
do not fit into Kolmogorov’s scheme. In order to describe incomplete knowledge
about a quantum physical system, instead of a probability space (€2, F, i), physi-
cists use a pair (A, p) where A is a C*-algebra and p is a positive linear form
on A. If A is noncommutative, then these ‘quantum probability spaces’ do not
correspond to anything classical, and put a severe strain on our imagination.

The aim of the present course is to make acquaintance with this quantum probabil-
ity formalism, its interpretation, its difficulties, and its applications. Prerequisites
for this course are elementary knowledge of complex numbers and linear algebra. It
is helpful if one has some familiarity with the basic concepts of probability theory
such as independence, conditional probabilities, expectations, and so on.

Sections marked with * can be skipped at a first reading.
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Chapter 1

Linear spaces

1.1 Linear spaces

Let K denote either R or (CE] By definition, a linear space (or vector space) over
K is a set V, with a special element 0 € V called origin, on which an addition
(¢, 1) — ¢ + 1 and multiplication with scalars (a, ) — a¢ are defined, such that

1) (0+v)+x=0¢+ (¥ +x),
) o+v =19+ 9,

) ¢+0=0,

) (ab)o = a(bo),

v) 0¢ =0,

) 1o =9,

) a(¢p+) =ad+ay,
(viii) (a+b)p = agp + bo

for all ¢,¢,x € V and a,b € K.

A subset of V that is closed under addition and multiplication with scalars is called
a linear subspace. By definition, the span of a subset YW C V is the linear subspace
defined ad?

span(W) := {a19(1) + - - + ang(n) : ¢(1), ..., ¢(n) € W}

We say that W spans the linear subspace span(¥)). We say that a linear space V
is finite dimensional if there exists a finite set W such that V = span(W).

'In fact, more generaly, all of Section is true when K is division ring, but we will not need
this generality.

2In these lecture notes, the symbol C means: subset of (and possibly equal to). Thus, in
particular, A C A.
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A finite collection {¢(1),...,¢(n)} of elements of a linear space V is called linearly
independent if the equation

a1¢(1) + -+ + and(n) =0

has no other solutions than a; = ay = --- = a,, = 0. If moreover {¢(1),...,¢(n)}
spans V then we call {¢(1),...,é(n)} a basis for V. Let {e(1),...,e(n)} be a basis
for V. Then for every ¢ € V there exist unique ¢, ..., ¢, € K such that

¢ = ¢re(1) + -+ gne(n).

Thus, given a basis we can set up a linear isomorphism between our abstract vector
space V and the concrete linear space K" := {(¢1,...,¢,) : ¢; e KVi=1,...,n}.
We call (¢1, ..., ¢,) the coordinates of ¢ with respect to the basis {e(1),...,e(n)}.
Note that if we want to label a collection of vectors in V, such as {¢(1),...,¢(n)},
then we put the labels between brackets to distinguish such notation from the
coordinates of a vector with respect to a given basis.

It can be shown that every finite dimensional linear space has a basis. (Note
that this is not completely straightforward from our definitions!) If V is finite
dimensional, then one can check that all bases of V have the same number of
elements n. This number is called the dimension dim(}V) of V. From now on, all
linear spaces are finite dimensional, unless stated otherwise.

Let V, W be linear spaces. By definition, a map A : V — W is called linear if
Alag + b)) = aAd + bAY (a,b e K, ¢, V).

We denote the space of all linear maps from V into W by £(V, W). In an obvious
way L(V, W) is itself a linear space. If A € L(V, W), {e(1),...,e(n)} is a basis
for V, and {f(1),..., f(m)} is a basis for W, then

(Ag)i=> Ayo;  (i=1,...,m),
7=1

where ¢; (j =1,...,n) and (A¢); (i =1,...,m) are the coordinates of ¢ and A¢
with respect to {e(1),...,e(n)} and {f(1),..., f(m)}, respectively, and

All e Aln

Amr o Apn

is the matriz of A with respect to the bases {e(1),...,e(n)} and {f(1),..., f(m)}.
The numbers A;; € K are called the entries of A.
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Exercise 1.1.1 If A€ L(U,V) and B € L(V, W) , then show that

k

The kernel and range of a linear operator A € L(V, W) are defined by
Ker(A):={¢p €V : Ap = 0},
Ran(A):={A¢: ¢ € V}.
One has
dim(Ker(A)) + dim(Ran(A)) = dim(V).

If a linear map A : ¥V — W is a bijection then one can check that its inverse A™! is
also linear. In this case we call A invertible. A linear map A : V — W is invertible
if and only if Ker(l) = {0} and Ran(l) = W. This is equivalent to Ker(l) = {0}
and dim(V) = dim(W).

For any linear space V, we write £L(V) := L(V,V) for the space of all linear maps
AV — V. We also call such linear maps linear operators. We define the
commutator of two operators A, B € L(V) by

[A,B] := AB — BA,
and we say that A and B commute if [A, B] =0, i.e., if AB = BA.

By definition, the trace of a linear operator in £(V) is given by
i=1

Here A;; denotes the matrix of A with respect to any basis {e(1),...,e(n)} of V;
it can be shown that the definition of the trace is independent of the choice of the
basis. The trace is linear and satisfies

tr(AB) = tr(BA) (A€ L(V,W), B € LW,V)).

By definition, an eigenvector of a linear operator A € L(V) is a vector ¢ € V,
¥ # 0, such that

Ap = A
for some A € K. The constant A is called the eigenvalue corresponding to the
eigenvector ¢. By definition,

o(A) :={X € K: \is an eigenvalue of A}

is called the spectrum of A.
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Exercise 1.1.2 Show that o(A) = {\ € K: (A — A) is not invertible}.
The following proposition holds only for linear spaces over the complex numbers.

Proposition 1.1.3 (Nonempty spectrum) Let V # {0} be a linear space over
C and let A € L(V). Then o(A) is not empty.

Proof (sketch) The eigenvalues of A can be found by solving the equation det(A—
A) = 0. Here det(A — ) is a polynomial of order dim()) which, as we know, has
dim (V) complex roots. |

A linear operator is called diagonalizable if there exists a basis {e(1),...,e(n)} for
V consisting of eigenvectors of A. With respect to such a basis, the matrix of A
has the diagonal form A;; = X\;0;;, where ); is the eigenvalue corresponding to the

eigenvector e(i), and

0 otherwise.

1.2 Inner product spaces

Let ‘H be a linear space over K = R of C. By definition, an inner product on H is
amap (¢,v) — (¢¢) from H x H into K such that

(i) (dlav+bx) = al{gl¢Y) +b(olx) (¢, ¢, x € H, a,0€C),
(i) (olv) = (¥[d)" (6,0 € H),
(iii)  {(¢|¢) =0 (¢ € H),
(iv) (¢¢) =0 = ¢=0.

Here a* denotes the complex conjugate of a complex number a. A linear space that
is equipped with an inner product is called an inner product space. By definition,

[0l =V (@lY) (b er)

is the norm associated with the inner product (:|-). Two vectors ¢, are called
orthogonal if (¢[p) = 0. A basis {e(1),...,e(n)} of H is called orthogonal if
(e(i)|e(j)) = 0 for all i # j. It is called orthonormal if in addition (e(i)|e(i)) = 1
for all 7. Every inner product space has an orthonormal basis.

Dirac’s [Dirb§| bracket notation is a clever way to ‘decompose’ the inner product
(1|¢) on an inner product space H into two parts, (| and |¢), which Dirac called
a bra and a ket, so that together they form a bra(c)ket (¢|¢)). For any ¢ € H,
define operators (¢| € L(H,K) and |[¢) € L(K, H) = H by

(Y|d:= (Y]9) (¢ € H),
)N = A (A € K).
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Then for any ¢,v € H, the composition (| |¢) is an operator in L(K,K) = K
that can be associated with the number (¢|1)) € K. Here we write = to indicate
that two linear spaces are in a natural way isomorphic.

If {e(1),...,e(n)} is an orthonormal basis of H and ¢ € H, then the coordinates
of ¢ with respect to this basis are given by

¢i = (e(i)|9).

If H;, Hs are inner product spaces with respective orthonormal bases {e(1),...,e(n)}
and {f(1),...,f(m)}, and A € L(H1,H2), then the matrix of A with respect to
these bases is given by

Aij = (f(D)]|Ale(5)).
One has
A= ZAz-j|f(i)><e(j>|-
Note that (e(j)| € L(H1,K) and |f(i)) € L(K, Hz), so the composition |f(i)){e(j)]

is an operator in L£(H;,Hz). In particular, for the identity map 1 € L(H) =
L(H,H) one has the useful relation

1= Z le(@))(e(@)]-

If Hy,Hs are inner product spaces and A € L(H1, Hz), then there exists a unique
adjoint A* € L(Ha, Hy) of A, such that

<¢’Aw>2 = <A*¢W>1 (¢ € H27 w € Hl)a

where (|-); denotes the inner product in H; and (-|-)2 denotes the inner product
in Hy. It is easy to see that

(@A+bB) = a*A* +b*B* (A, B € L(H1, Hs), a,b € K),

ie., A— A*is colinear, and

(A")* = A.
If A€ L(Hi,Hs2) and B € L(Ha,Hs) then one has

(AB)* = B*A*.
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Exercise 1.2.1 Let A € L(Hy,Hz) and let {e(1),...,e(n)} and {f(1),..., f(n)}
be orthonormal bases for H; and H,, respectively. Show that the matrix of A* is
given by

Ay = (451)"

Exercise 1.2.2 We can view K in a natural way as a (one-dimensional) inner
product space with inner product (a|b) := a*b. Show that for any inner product

space H and ¢ € H,

Exercise 1.2.3 Let H;, Hs be inner product spaces and let A € L£L(H;1,Hz). Show
that (p|A* = (A¢| for all ¢ € H;.

Exercise 1.2.4 Let H;,Hs be inner product spaces and let A, B € L(Hq, Hs).
Show that

tr(A*B) = > (A;;)*By.

Show that (A|B) := tr(A*B) defines an inner product on £(H;, Hz).

An operator A € L(H) is called normal if it commutes with its adjoint, i.e.,
AAT = A*A.
The following theorem holds only for inner product spaces over C.

Theorem 1.2.5 (Diagonalization of normal operators) Assume that H is an
inner product space over C. Then an operator A € L(H) is normal if and only if
there exists an orthonormal basis {e(1),... ,e(n)} and complex numbers Ay, ..., A,
such that

A= 3" Mle(@)eli)] (1.1)

Note that (|1.1]) says that the matrix of A with respect to {e(1),...,e(n)} is diag-
onal, i.e., A;; = \;id;;. The constants Ay, ..., A, (some of which may be the same)
are the eigenvalues of A.

Proof of Theorem (sketch) By Proposition [1.1.3] each A € L(H) has
at least one eigenvector ¢. Using the fact that A is normal, one can show that A

maps the space {¢}* into itself. Thus, again by Proposition [1.1.3] A must have
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another eigenfuction in {¢}+. Repeating this process, we arrive at an orthogonal
basis of eigenvectors. Normalizing yields an orthonormal basis. |

If Hy,Hs are inner product spaces and U € L(Hi, Hz), then we say that U is
unatary if

(UplU)2 = (@lb)1 (&9 € Ha),

i.e., U preserves the inner product.

Exercise 1.2.6 Let H;, Hy be inner product spaces and U € L(H1, Hz). Assume
that H; and Hs have the same dimension. Show that an operator U € L(H;, Hs)
is unitary if and only if U is invertible and U~! = U*. Hint: consider the image
under U of an orthonormal basis of H;.

Note that since any invertible operator in L(H) = L(H,H) commutes with its
inverse, Exercise shows that unitary operators in £(H) are normal.

Exercise 1.2.7 Let H be an inner product space over C. Show that an operator
U € L(H) is unitary if and only if U is of the form

U= Z Aile(@)) (e(i)]

where {e(1),...,e(n)} is an orthonormal basis of H and Aq,...,\, are complex
numbers such that |\;| =1fori=1,...,n.

An operator A € L(H) is called hermitian or self-adjoint if A = A*. In coordinates
with respect to an orthonormal basis, this means that A;; = (A;;)*. Obviously,
hermitian operators are normal.

Exercise 1.2.8 Let H be an inner product space over C with orthonormal basis
{e(1),...,e(n)}, and let

A= Z Aile(D) (e (i)

be a normal operator on H. Show that A is hermitian if and only if the eigenvalues
A; are real.

Remark For hermitian operators, Theorem [1.2.5 also holds for inner product
spaces over R. To see this, let H be an inner product space over R and let
A € L(H) be hermitian. We need to show that A has at least one eigenvector. By
the same arguments used in the proof of Theorem [1.2.5 one can then construct an
orthonormal basis of such eigenvectors. To see that A has at least one eigenvector,
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let {e(1),...,e(n)} be an orthonormal basis for H. The matrix of A with respect
to this basis satisfies A;; = (A;;)*, so we may view A as a hermitian operator on
the space C" := {(¢1,...,0,) : ¢; € C Vi}. By Proposition , A has at least
one eigenvector ¢ = (¢1, ..., ¢,) € C". We are done if we can show that A has an
eigenvector in R™. To this aim, we observe that if ¢ € C™ is an eigenvector with

eigenvalue A, then its complex conjugate ¢* := (¢7,..., ¢}) is also an eigenvector,

with the same eigenvalue. Indeed, (A¢*); = Zj Aij¢; = (Z] Aijidi) = (Apy)* =
A¢F, where we have used that A is real. It follows that Re(¢) := (¢* + ¢)/2 and
Im(¢) := (i¢* —i¢)/2 also satisfy ARe(¢) = ARe(¢) and Alm(¢) = AMm(¢). Since
at least one of these vectors must be nonzero, we have found a real eigenvector
for AP]

An operator A € L(H) is called positive if and only if A is hermitian and all its
eigenvalues are nonnegative. We define a partial order on the space of all hermitian
operators by

A< B < B — Ais positive.

Let ‘H be an inner product space and let F C ‘H be a linear subspace of H. Let
Fti={peH: (g|) =0V e F}.

denote the orthogonal complement of F. Then each vector ¢ € H can in a unique
way be written as

¢:¢/+¢// (Qb/Ef, (b//efj_).
We call ¢ the orthogonal projection of ¢ on the subspace F, and write

¢’ =: Pro.

One can check that Py = Pr = PZ. The next exercise shows that conversely,
every operator with these properties is of the form Pgr.

Exercise 1.2.9 Let H be an inner product space and assume that P € L(H)
satisfies P* = P = P2. Show that there exists a linear subspace F C ‘H such that
P = Pr. Hint: since P is hermitian, we can write P = >, \;|e(7))(e()|. Consider
F :=span{e(i) : \; = 1}.

In view of Exercise [1.2.9] we call any operator P € L(H) such that P* = P = P?
a projection. Obviously, projections are hermitian operators.

30ur proof shows that for any linear space V over R, we may without loss of generality assume
that V is embedded in (i.e., a subspace of) a complex inner product space W on which is defined
a colinear bijection ¢ +— ¢* such that V = {¢ € W : ¢* = ¢}. Such a space W is called a
complezification of V.
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By definition, a partition of the identity is a finite set of projections {P,..., Py}
such that .

Y P=1 and PP=0 (i#)).

i=1
If 7,...,F, are subspaces of ‘H, then Pr,, ..., Pg, is a partition of the identity if

and only if Fq, ..., F,, are mutually orthogonal and span H. In terms of partitions
of the identity, we can formulate Theorem slightly differently.

Theorem 1.2.10 (Spectral decomposition) Let H be an inner product space
over C and let A € L(H) be normal. For each X € o(A), let

Fai={d€H: Ap = \¢}

denote the eigenspace corresponding to the eigenvalue A\. Then {Pr, : A € o(A)}
15 a partition of the unity and

A= )" APf.
)

A€o (A

Using the spectral decompositon, one can define a ‘functional calculus’ for normal
operators. If H is a complex inner product space, A € L(H), and f: C — Cis a
function, then one defines a normal operator f(A) by

f(A) = Z N Pr,.

A€o (A)

Exercise 1.2.11 Let H be an inner product space over C and let A € L(H) be
a normal operator. Let ag,...,a, € C and let p : C — C be the polynomial
p(2) :=ag+ajz+ -+ a,z". Let p(A) be defined with the funcional calculus for
normal operators. Show that p(A) = apl + a1 A+ -+ + a, A".

Exercise 1.2.12 Let H be an inner product space over C and let A € L(H) be
a normal operator. Let f : C — C be the function f(z) := z* and let f(A) be
defined with the funcional calculus for normal operators. Show that f(A) = A*.

Exercise 1.2.13 Let H be an inner product space and A € L(H). By definition,
et =3, %. (Since H is finite dimensional, it is not hard to see that the infinite
sum converges.) In the special case that A is normal, show that e?, defined with

the funcional calculus for normal operators, coincides with our previous definition
A
of e”.
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Exercise 1.2.14 Let A be a hermitian operator. Show that ¢4 (defined with the
functional calculus for normal operators) is a unitary operator.

Exercise 1.2.15 Let H be an inner product space over C and A € L(H). Show
that A is hermitian if and only if (¢|A|¢) is real for all ¢ € H.

Exercise 1.2.16 Let H be an inner product space over C and A € L(H). Show
that the following conditions are equivalent.

(1) A is a positive operator.
(2) (¢|A|p) is real and nonnegative for all ¢ € H.
(3) There exists a B € L(H) such that A = B*B.

1.3 Dual, quotient, sum, and product spaces*

Dual spaces
Let V be a linear space over K = R or C. By definition,
V= LV,K)

is the dual of V. The elements of V' (usually denoted by 1) are called linear forms
on V. The dual space V' has the same dimension as V. If {e(1),...,e(n)} is a
basis for V then the linear forms {f(1),..., f(n)} given by

f(@)(e(5)) = 04

form a basis of V', called the dual basis of {e(1),...,e(n)}. There exists a natural
isomorphism between V and its double dual:

Yy =)
Here we map a ¢ € V to the linear form Ly € L£4(V',K) given by
L) =1()  (1eV)

Since the kernel of the map ¢ +— L, is zero and V and V" have the same di-
mension, this is a linear isomorphism. Note that since V and V' have the same
dimension, there also exist (many) linear isomorphisms between V and V’. How-
ever, if dim(V) > 1, it is not possible to choose a ‘natural’ or ‘canonical’ linear



1.3. DUAL, QUOTIENT, SUM, AND PRODUCT SPACES* 17

isomorphism between V and V', and therefore we need to distinguish these as
different spaces.

If V;,V; are linear spaces and A € L(V,V,), then by definition its dual is the
linear map A’ € L(V}, V) defined by

A(l):=10 A (1eVy),
where o denotes composition.

If H is an inner product space then the map ¢ — (¢| is a colinear bijection from
‘H to H'. In particular,

H ={{(¢| : ¢ € H}.
If Hy,Hsy are inner product spaces and A € L(H;, Hs), then its dual A’ is the map

A((¢]) = (A"¢| (¢ € Ha).

Quotient spaces

Let V be a linear space over K and let WV be a linear subspace of V. For any ¢ € V
write ¢ + W := {¢ + ¥ : b € W}. Then the quotient space

VIW:={p+W:¢ecV}
is a linear space with zero element 0 + WV and

a(@+W) + b + W) = (ap + bip) + W (a,b e K, ¢, V).

Exercise 1.3.1 Show that linear combinations in V/W are well-defined, i.e., if
db+W=0¢p+Wand » + W =1+ W, then (ap + b)) + W = (ad + b)) + W.

Exercise 1.3.2 Let [ : V — V/W be the quotient map [(¢) := ¢+ . Show that
Ker(l) =W and Ran(l) = V/W. Show that

dim(V) = dim(V/W) + dim(W).

Exercise 1.3.3 Let [ : V; — V5 be a linear map. Show that there exists a natural
linear isomorphism

V,/Ker(A) = Ran(A),

Exercise 1.3.4 Let V3 C V, C V; be linear spaces. Show that there exists a
natural linear isomorphism

V1/ Vo) = (Vi/V3)/(V2/V3).
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The direct sum

Let Vi, ..., )V, be linear spaces over K = R or C. By definition, the direct sum of
Vi, ..., V, is the space

Vi@ @V, = {(0(1),...,6(n): 6(1) € Vi, ..., d(n) € V,},

which we equip with a linear structure by putting

a(¢p(1),. .., ¢(n) +0(¥(1),. .., ¢¥(n)) := (ap(1) + bip(1),. .., ad(n) + bib(n)).
If V is some linear space and Vy,...,V, are linear subspaces of V such that every
¢ € V can in a unique way be written as ¢ = ¢(1) + --- + ¢(n) with ¢(1) €
Vi,...,¢(n) € V,, then there is a natural isomorphism V =V, @ --- @V, given
by
¢(1) + -+ o(n) = (o(1),. .., 0(n)).
Also in this case, we say that V is the direct sum of Vy,...,V,. We often look at

a direct sum in this way. Thus, we often view Vi,...,V, as linear subspaces of
Vi@ - @V, and write ¢(1) + - - - + ¢(n) rather than (¢(1),...,¢(n)). One has

dimWV; @ - @ V,) = dim(Vy) + - - - + dim(V,).

If U, W are linear subspaces of V such that ¥V =U @& W, then the projection on U
with respect to this decomposition is the map P : V — U defined by

Plo+¢)=0¢ (ol Y eW).

Note that this is a good definition since every x € V can in a unique way be written
as Y = ¢ + ¢ with ¢ € U and ¢» € WW. Warning: the definition of P depends not
only on U but also on the choice of W!

Exercise 1.3.5 Show that
UDW)/ W =U.
If V is a linear space and W C V a linear subspace, are then V and V/W & W in

a natural way isomorphic?

If Hy, ..., H, are inner product spaces with inner products (-|-)1, ..., (:|-),, respec-
tively, then we equip their direct sum H; & - - - & ‘H,, with the inner product

n

(6(1), s D), -, (n))) =Y (S0)]e(0)).-

=1

Note that if we view Hy, ..., H,, as subspaces of H;®- - -®H,,, then these subspaces
are mutually orthogonal in the inner product on ‘H; & --- & H,,.
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Exercise 1.3.6 Let H be an inner product space and F a linear subspace. Show
that

H=FoF,

where = means that the two spaces are isomorphic as inner product spaces.

Exercise 1.3.7 Let ‘H be an inner product space and F a linear subspace. Show
that H/F and F* are isomorphic as linear spaces.

The tensor product

Let U, V, and W be linear spaces. By definition, a map b : U x V — W is bilinear
if
¢ +— b(g,1) s linear for each fixed ¢ € V,

¥+ b(p,1p) s linear for each fixed ¢ € U.

Proposition 1.3.8 (Definition of the tensor product) For any two linear
spaces U,V there exists a linear space U RV, called the tensor product of U and V),
and a bilinear map (¢, V) — ¢ @Y fromU XV into U @V, satisfying the following
equivalent properties

(i) If{e(1),...,e(n)} and {f(1),..., f(m)} are a bases of U and V), respectively,
then

fe()@ f(j):i=1,...,n, j=1,....,m}
1s a basis forU @ V.

(ii) For any linear space W and for any bilinear map b : U x V — W, there
exists a unique linear map b : U @V — W such that b(¢ ® ) = b(p, ) for
adlpeU, eV,

We postpone the proof of Proposition to the end of this section. The next
lemma says that the tensor product of two linear spaces is unique up to linear
isomorphisms.

Lemma 1.3.9 (Uniqueness of the tensor product) Let U,V be linear spaces.
Then the tensor product U @V of U and V is unique in the following sense. If
a linear space URV together with a bilinear map (¢,) — ¢@ from U x V into
URYV satisfy properties (i) and (i) of Pmposz'tz’on then there exist a unique
linear bijection | : URY — U @V such that [(pR) = ¢ @) for all p € U,9p € V.
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Proof Since (¢, 1) — ¢®1) is bilinear, by the fact that U@V satisfies property (ii),
there exists a unique linear map [ : YRV — U @ V such that [(¢@) = ¢ @ 1) for
all € U,v € V. By property (i), [ maps some basis of UQV into a basis of U @V,
hence [ is a linear bijection. |

It is obvious from Proposition that
dim(U @ V) = dim(U) dim(V).

If Hy, Ho are inner product spaces with inner products (-|-); and (-|-)1, respectively,
then we equip the tensor product H; ® Ho with the inner product

{0(1) ® ¢(2)[9(1) ® ¢(2)) := (¢(V)[Y(1))1{A(2)[1(2))2,

for any ¢(1),¢(1) € Hy and ¢(2),9(2) € Hs. In this case, if {e(1),...,e(n)} and
{f(1),..., f(m)} are orthonormal bases of H; and Ha,, respectively, then {e(i) ®
f(G):i=1,...,n, j=1,...,m} is an orthonormal bases of H; ® Has.

The next Proposition summarizes some useful additional properties of the tensor
product.

Proposition 1.3.10 (Properties of the tensor product) LetU,V, andU Q@ V
be linear spaces and let (¢, 90) — ¢ @Y fromU XV into U @V be bilinear. Then
URYV, equipped with this map, is the tensor product of U and V if and only if the
following equivalent conditions hold:

(iii) There exist bases {e(1),...,e(n)} and {f(1),..., f(m)} of U and V, respec-
tively, such that
{e()@ f(j):i=1,...,n, j=1,...,m}
18 a basis forU @ V.

(iv) For any k € U and l € V' there exists a unique p € (U @ V) such that
p(¢ @) = k(@)(Y) for all o €U, € V.

(v) For any linear space W and for any map b : U XV — W that is colinear
i each of its arguments, there exists a unique colinear map b: U ® YV — W

such that b(¢p @ ) = b(¢, ) for all p €U, € V.

Proof of Propositions [1.3.8| and |1.3.10| Consider the properties (i)—(v) from
Propositions [1.3.8] and [1.3.10, It is easy to see that there exists a linear space
Y ® W and a bilinear map (¢,1) — ¢ ®@ ¢ from U x V into U ® V satisfying
property (iii): choose any bases {e(1),...,e(n)} and {f(1),..., f(m)} of U and V,
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let U ® V be any linear space with dimension nm, choose a basis for Y ® V, and
give the nm basis vectors the names

e(i) @ f(j) (i=1,....n, j=1,...,m).

If we now define a bilinear map (¢, 1) — ¢ @ ¥ from U x V into U @ V by

1=

> > aibie(i) ® £(7),

=1 j=1

then property (iii) holds.
To complete the proof, we will show that (iii)=-(ii)=-(iv)=-(i)=-(iii) and (ii)<(v).
To see that (iii)=-(ii), we define

ble(i) ® f(5) :=ble(d), f()) (i=1,...,n, j=1,...,m).

Since the e(i) ® f(j) are a basis of U ® V), this definition extends to a unique linear
map b: U ® YV — W. Since b is bilinear, it is easy to see that

blp @) =blg, )  VoelU, peV.
This proves (ii).
The implication (ii)=-(iv) is obvious, since (¢, 1) — k(¢)l(1)) is bilinear.
To prove (iv)=-(i), let {e(1),...,e(n)} and {f(1),..., f(m)} be bases for U and V,
respectively. We claim that {e(i)® f(j):i¢=1,...,n, j=1,...,m} is a basis for
U®YV. We start by showing that these vectors are linearly independent. Assume

that
S aijeli) @ () = 0.

By our assumption, for any k& € V! and | € V!, there exists a unique linear form p
on U ® V such that p(¢ @ ) = k(¢)l(¢) for all ¢ € U, ¢ € V, and therefore,

> ke@FG) = p( 3 ageli) @ 1)) = p(0) =0,

ij ij
In particular, we may choose

k(e(i) = 6 and I(f(})) = 3.

This shows that ay; = 0 for all i/,j’, i.e., the vectors e(i) ® f(j) are linearly
independent. It is easy to see that if these vectors would not span U ® V, then the
linear form p would not be unique, hence they must be a basis for U ® V.
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The implication (i)=-(iii) is trivial.

To see that (ii)<(v), finally, we use a trick. If W is a linear space, then we
can always find a linear space W together with a conlinear map [ : W — W
such that [ is a bijection. (To see this, take ¥V with the same dimension as W,
choose bases {e(1),...,e(n)} and {f(1),..., f(n)} for W and W, respectively, and
set 1(Y"; ae(i)) :== >, a;f(i).) We call W the complex conjugate of W. Now if
b:UxV — W is colinear in each of its arguments, then lob : U x V — W is
bilinear, and vice versa, so it is easy to see that (i) and (v) are equivalent. |



Chapter 2

Two kinds of probability

2.1 Q-algebras

By definition, an algebra is a linear space A # {0} over K = C or R, that is
equipped with a multiplication (A, B) — AB from A X A into A that is associative,
bilinear, and has a unit element 1 € A, i.e.E]

(i) (AB)C = A(BC) (A,B,C € A),

(ii) A(bB+ cC) =bAB + cAC (A,B,C € A, b,ceK),
(ii) (aA+bB)C = aAC + bBC (A,B,C €A, a,beK)
(iv) 1A=A=A1 (Aec A).

Another word for the unit element is identity. We say that an algebra A is abelian
if the multiplication is commutative, i.e.,

AB = BA (A,BeA)

By definition, an adjoint operation (also called involution) on A is a map A +— A*
from A into A that has the following properties:

(v) (A7) =4 (A€ A,
(vi) (aA+bB)" =a*A* 4 b*B* (A,Be A, a,beC),
(vii) (AB)* = B*A* (A,B e A).

Here a* denotes the complex conjugate of a complex number a. Let us say that
an adjoint operation is positive if

(viii) A*A=0 = A=0 (Ae A).

IThe existence of a unit element is not always included in the definition of an algebra. Actually,
depending on the methematical context, the word algebra can mean many things.

23
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By definition, a x-algebra (pronounce: star-algebra) is an algebra A that is equip-
ped with an adjoint operation. Let us say that A is a Q-algebra if A is a finite-
dimensional x-algebra over the complex numbers and the adjoint operation is pos-
itive. The term Q-algebra (Q stands for Quantum) is not standard. In fact,
Q-algebras, as we have just defined them, are finite dimensional Cx-algebras; see

Section [3.4]

Exercise 2.1.1 Let H be an inner product space over K = R or C and let L(H)
be the space of linear operators on H, equipped with operator multiplication and
adjugation. Then, obviously, L£(H) is a *-algebra. Show that the adjoint operation
is positive, i.e., L(H) satisfies property (viii).

Exercise 2.1.2 Let A be a *-algebra. Show that the space of self-adjoint elements
A, :={A e A: A* = A} is a real linear subspace of A. Show that each A € A
can in a unique way be written as A = Re(A) + ilm(A) with Re(A),Im(A) € A,.

Exercise 2.1.3 Let H be an inner product space over C and let A € L(H). Show
that A*A = Re(A)? + Im(A)? if and only if A is normal.

Let A, B be algebras. We say that that a map [ : A — B is an algebra homomor-
phism if

a) 1(aA+bB) = al(A) + bi(B) (A,B€ A, a,beC),
(b) I(AB) = I(A)i(B) (A,B € A),

If A, B are x-algebras, then [ is called a *-algebra homomorphism if moreover
(d) 1(A") =1(A)* (Ae A).

If an algebra homomorphism (resp. *-algebra homomorphism) [ is a bijection then
one can check that also [7! is also an algebra homomorphism (resp. *-algebra
homomorphism). In this case we call [ an algebra isomorphism (resp. x-algebra
isomorphism) and we say that A and B are isomorphic as algebras (resp. as *-al-
gebras).

By definition, a subalgebra of an algebra A is a linear subspace A" C A such that
1 € A" and A’ is closed under multiplication. If A is a *x-algebra then we call A’
a sub-x-algebra if moreover A’ is closed under adjugation. If A’ is a subalgebra
(resp. sub-x-algebra) of A, then A’, equipped with the multiplication and adjoint
operation from A, is itself an algebra (resp. x-algebra).
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Exercise 2.1.4 Let A, B be x-algebras and let [ : A — B be a x-algebra homo-
morphism. Show that the range Ran(l) := {l{(A) : A € A} of [ is a sub-x-algebra
of B.

A representation of an algebra A over K = C or R is a linear space H over K
together with an algebra homomorphism [ : 4 — L(H). If A is a x-algebra, then
we also require that H is equipped with an inner product such that [ : A — L(H)
is a *-algebra homomorphism. (Otherwise, we speak of a representation of A as an
algebra.) A representation is faithful if [ is one-to-one. Note that in this case, [ is an
algebra isomorphism (resp. x-algebra isomorphism) between .4 and the subalgebra

(resp. sub-x-algebra) Ran(l) C L(H).

A basic result about Q-algebras is:

Theorem 2.1.5 (Representation of positive x-algebras) Fvery Q-algebra
has a faithful representation.

Unfortunately, the proof of Theorem is mildly complicated. For a proof, we
refer the reader to [GHJ89, Appendix II.a] or [Swa04]. A rough sketch of the proof
will be given in Section 5.8 Those who are not satisfied with this may find some
consolation in hearing that, actually, we will not use Theorem [2.1.5]at all. Replace
‘Q-algebra’ by ‘representable Q-algebra’ in what follows, and all proofs remain
valid. While it is certainly nice to know that these notions coincide, we will never
really need this.

Theorem says that every Q-algebra A is isomorphic to some sub-x-algebra
A" C L(H), for a suitable inner product space H. Thus, we may think of the
elements of A as linear operators on an inner product space H. We must be careful,
however, since some properties of these operators may depend on the (faithful)
representation. A lot, however, turns out to be representation independent.

We start by noting that being a normal operator is, obviously, representation
independent. The same is true for being a hermitian operator, being a projection,
or being a partition of the unity. (Note that { P, ..., P,} is a partition of the unity
ifft P, = P}, P,P; = 0,jFP,and ) , P, = 1.) In fact, the whole spectral decomposition
of normal operators is representation independent:

Lemma 2.1.6 (Spectral decomposition is representation independent)
Let H be a complex inner product space and let A be a sub-algebra of L(H). As-
sume that A € A is normal. Then A can uniquely be written as

A= AP,
(4)

A€o
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where o(A) is a finite subset of C and {P : A € a(A)} is a partition of the unity.
Moreover, Py € A for all A € o(A).

Proof By Theorem the operator A can uniquely be written as A =
> reo(a) APy, where o(A) is a finite subset of C and {P) : A € o(A)} is a par-
tition of the unity. Fix A € 0(A). We claim that P, € A. To prove this, choose
a polynomial p such that p(A) = 1 and p(\) = 0 for all X' € o(A), N # A\
Then P\, = p(A), where p(A) is defined using the functional calculus for normal
operators. By Excercise |1.2.11], p(A) € A. |

By Lemma [2.1.6] the spectrum of a normal operator is representation indepen-
dent. It follows that being a unitary operator, or a positive operator, is also
representation independent. The functional calculus for normal operators is also
representation independent.

Lemma 2.1.7 (Functional calculus is representation independent) Let A
and A be ()-algebras, let A € A be normal, let f : C — C be a function, and let
l: A— A be an algebra homomorphism. Then f(A) € A and f(I(A)) =1(f(A)).

Proof Immediate from Lemma 2.1.6] ]

Just when we start to believe that almost everything we can think of is represen-
tation independent, a little warning is in place:

Exercise 2.1.8 Show that the trace of an operator is not a representation inde-
pendent quantity. Hint: observe that the Q-algebra consisting of all operators of
the form

(a,b,c,d € C)

SO 0O
S O Qo
o Q@ O O
QU OO

is isomorphic with £(C?).

Exercise 2.1.9 Let A be the space of all matrices of the form

a —c —b
b a —c with a,b,c € C.
c b a

Equip A with the usual matrix multiplication and define an adjoint operation on
A by

*
a —c —b a® —c* —b*

b a —c = b*  a* —c
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Show that A is a x-algebra. Is A abelian? Is the adjoint operation positive? (Hint:
consider the operator

X =

O = O
— o O

-1
0
0
Show that a general element of A is of the form al + bX + c¢X?.)

2.2 Probability spaces

For any set €2, we write P(2) := {A : A C Q} to denote the set of all subsets of
Q2. On P(Q) are defined set operations such as AN B, AU B, and

A\B:={we A:w¢ B},
Ac:=0Q\A.

By definition, a finite probability space is a triple (2, P(Q2), ), where € is a finite
(€2)

set, P(€) is the set of all subsets of 2, and p : P(Q) — [0,1] is a function with
the following properties:

(a) u(Q2)=1,
(b) A, BCQ, ANB=0= u(AUB) = u(A)+ uB).

We call Q the state space, P(Q2) the space of events and u a probability law.

Exercise 2.2.1 Show that every probability law on a finite set €2 is of the form

weA
where m : Q — [0, 1] is a function satisfying > ., m(w) = 1.
We interpret a finite probability space (£2, P(2), 1) as follows.

1° A finite probability space (£2, P(2), u) describes incomplete knowledge about
a system in the physical reality.

2° The state space () contains elements w, called states. Each state gives an
exhausting description of all properties of the physical system that are of
interest to us.
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3° A subset A C  is interpreted as the event that the actual state of the
physical system lies in A. In this interpretation, A° is the event ‘not A’
AN B is the event ‘A and B’, AU B is the event ‘A and/or B’, A\B is the
event ‘A and not B’, and so on.

4° The probability law u assigns to each event A € P(Q2) a number u(A) € [0, 1],
called the probability of A. The probability law p(A) measures how likely
we judge the event A to be true on the basis of our incomplete knowledge.
The larger 1(A) is, the more likely is A. If u(A) =1 then A is sure.

5° If we observe that an event B is true, then our knowledge about the physical
system changes. We express our changed knowledge with a new probability
law i on P(S2), defined as fi(A) := u(A N B)/u(B). This formula is not
defined if u(B) = 0 but in that case we were sure that the event B was
not true before we performed our observation, so in this situation there
was something wrong with the way we described our knowledge before the
observation.

In point 5°, we call fi(A) := pu(A N B)/u(B) the conditional probability of the
event A given B, and we call i the conditioned probability law. We also use the
notation

WAIB) == (AN B)/u(B) (A, B € P(Q), u(B) > 0).

The interpretation of finite probability spaces we have just given is not undisputed.
Many authors insist that an interpretation of probability spaces must link proba-
bilities in some way to relative frequencies, either by saying that the probability
of an event is likely to be the relative frequency of that event in a long sequence
of independent trials, or by saying that the probability of an event is the relative
frequency of that event in an infinite sequence of independent trials. The appeal of
these interpretations lies in the fact that they refer directly to the way probabilities
are experimentally measured.

The difficulty with the first definition is that ‘likely to be’ seems to involve the
concept of probability again, while the difficulty with the second definition is that
infinite sequences of independent trials do not occur in reality. Both definitions
have the difficulty that they lean heavily on the concept of independence, the
definition of which also seems to involve probabilities. The disadvantage of the
interpretation we have just given is that the additive property (b) of probability
laws has no justification, but the point of view taken here is that nature is as it is
and does not need justification.
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By definition, a real-valued random wvariable, defined on a finite probability space
(Q,P(Q), 1), is a function X : Q@ — R. We interpret the event

{X=2}={weQ: X(w) =1}

as the event that the random variable X takes on the value x. Similarly, we
write {X < 2} = {w € @ : X(w) < z} to denote the event that X takes
on a value smaller than z, and so on. Note that since () is finite, the range
R(X) ={X(w) : w € Q} is finite. We call

[Xdu= 3 X@uw = Y wullx =a})

we 2€ER(X)
the expected value of X.

Example Consider a shuffled deck of cards from which the jacks, queens, kings,
and aces have been removed. Let V := {2,3,4,5,6,7,8,9,10} be the set of values
and C := {heart,spade,diamond,clover} the set of colors. Then C' x V' = {(c,v) :
c € C,v € V} is the set of all cards in our deck and

Q= {((c1,v1),- .. (c36,036)) : (i, 05) # (¢j,05) Vi # j, (¢, v5) € C x D Vi)

is the set of all permutations of C' x V. We choose () as our state space. A state
w = ((c1,v1) ..., (36, v36)) € 2 describes the cards in our reduced deck, ordered
from top to bottom. Since we believe that every order of the cards has the same
probability, we choose as our probability law

mmﬁﬁﬁ (4 € P(Q).

where |A| denotes the number of elements in a set A. For example, the set

A:={((c1,v1) ..., (c36,v36)) €EQ:c1 = o}

describes the event that the first two cards have the same color. The probability
of this event is A 36834 .
A =101= "3 3
The random variable
X((cl, v1) ..., (C36, v36)) =
describes the value of the first card. The expected value of X is

10

/Xdpszu({sz})zész%zG .

r=2

Q=
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2.3 Quantum probability spaces

By definition, a (finite dimensional) quantum probability space is a pair (A, p)
where A is a Q-algebra and p : A — C is a function with the following properties:

(a) p(aA+bB) =ap(A)+ bp(B) (A,Be A, a,beC),
(b) p(A7) = p(A)* (A e A,

(©) p(A4) >0 (AeA).

(d) p(1) =1.

We call p a probability law on A. Note that by property (b), p(A*A) is a real
number for all A € A. By Exercise , property (c) is equivalent to saying that
p(A) > 0 whenever A is a positive operator. Note that by linearity this implies
that p(A) < p(B) whenever A < B.

We interpret a quantum probability space (A, p) as follows.

1° A quantum probability space (A, p) describes incomplete knowledge about
a system in the physical reality.

2° We interpret a projection P € A as a possible observation on the system. We
interpret a partition of the identity { P, ..., P,} as an ideal measurement on
the system, that can yield the observations Py, ..., P,.

3° The probability law p assigns to each observation P € A a probability p(P).
The probability p(P) measures how likely we judge it to be that an ideal
measurement { P, P, ..., P,} with P = P, for some i, will yield the observa-
tion P, if we perform the measurement. The larger p(P) is, the more likely
is P. If p(P) = 1, then any measurement that can yield P will surely yield
it, if we perform the measurement.

4° If we know that someone performs the ideal measurement { Py, ..., P,} on the
system, then our knowledge about the system changes. We must describe our
changed knowledge with a new probability law p’ on A, defined as p'(A) :=

Z?:l p(PAP;).

5° If an ideal measurement is performed on the system and we learn that this
measurement has yielded the observation P, then our knowledge about the
system changes. We must describe our changed knowledge with a new prob-
ability law p on A, defined as p(A) := p(PAP)/p(P). This formula is not
defined if p(P) = 0 but in that case we were sure that the ideal measurement
would not yield P, so that in this situation there was something wrong with
the way we described our knowledge before the observation.
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Exercise 2.3.1 If p is a probability law on A and { Py, ..., P,} is a partition of the
identity, then show that p(Py),..., p(P,) are nonnegative real numbers, summing
up to one. Show that the functions p’ and p defined in point 4° and 5°, respectively,
are probability laws on A.

A characteristic property of the interpretation of quantum probability we have
just given is the central role played by ideal measurements. While not every
measurement is ‘ideal’; for the interpretation given above it is essential that we
have a collection of measurements at our disposal that for all practical purposes
may be regarded as ideal. Typically, observations in our everyday macroscopic
world that do not disturb the subject we are measuring are ideal. For example,
seeing a subject with our eyes of hearing it make a sound may typically be regarded
as an ideal observation on that subject.

Although the rules of quantum mechanics presumably govern everything around
us, the typical quantum mechanical effects can usually only be observed on par-
ticles that are extremely small, like electrons, protons, or photons. Therefore, we
typically need some delicate measuring equipment to observe these objects. While
the observations we perform on the measuring equipment (e.g. reading off a dis-
play) may for all practical purposes be regarded as an ideal measurement on the
equipment, it is not always true that the resulting effect on our objects of interests
(such as electrons, protons, or photons) is that of an ideal measurement. In order
to determine this, we need to study the complex physical (quantum mechanical)
laws governing the interaction of the measuring equipment with our objects of
interest. Since this falls outside the scope of the present lecture notes, we will
usually take the possibility of performing ideal measurements for granted.

Apart from the central role played by ideal measurements, two awkward differences
between quantum probability and classical probability strike us immediately. First
of all, the states w that play such an important role in classical probability have
completely disappeared from the picture. Second, the bare fact that someone
performs a measurement on a system, even when we don’t know the outcome,
changes the system in such a way that we must describe our knowledge with a
new probability law p’. In the next section we will see that if the algebra A is
abelian, then these differences are only seemingly there, and in fact we are back at
classical probability. On the other hand, if A is not abelian, quantum probabilities
are really different, and pose a serious challenge to our imagination.

The interpretation of quantum mechanics is notoriously difficult, and the interpre-
tation we have just given is not undisputed. There is an extensive literature on the
subject in which innumerably many different interpretations have been suggested,
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with the result that almost everything one can say on this subject has at some
point been fiercely denied by someone. As an introduction to some of the different
points of view, the book by Redhead [Red87] is very readable.

Not only the interpretation of quantum mechanics, but also the presentation of
the mathematical formalism shows a broad variation in the literature. Apart from
the approach taken here, one finds introductions to quantum mechanics based on
wave functions, Hilbert spaces, or projection lattices. To add to the confusion, it is
tradition to call the probability law p a ‘mixed state’, even though it is conceptually
something very different from the states w of classical probability.

In quantum probability, hermitian operators are called observables. They corre-
spond to real-valued physical quantities and may be regarded as the equivalent of
the real random variables from classical probability. Let

A= APy
A€o (A)

be the spectral decomposition of a hermitian operator A in some Q-algebra. We
interpret
{P\: \€o(A)}

as an ideal measurement of the observable A. We interpret P, as the observation
that A takes on the value A\. We call

pA) = D, Mp(P)

A€o (A)
the expected value of A.

Example (Polarization) It is well-known that light can be decomposed into
two polarization directions, perpendicular to the direction in which it travels. For
example, polaroid sunglasses usually filter the vertically polarized component of
light away, leaving only the horizontally polarized component. Using prismas, it
is possible to split a light beam into two orthogonally polarized beams.

On the level of the individual photons (light particles), this amounts to performing
an ideal measurement, along a prechosen direction, the outcome of which is either
that the photon is polarized in that direction, or in the perpendicular direction.
Let us denote directions in which polarization can be measured by an angle a.. Let
H be a two-dimensional inner product space with orthonormal basis {e(1),e(2)}.
Then our knowledge of the polarization of a single photon can be described by a
probability law on the Q-algebra

A= L(H).
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The observation that a photon is polarized in the direction « is described by the
projection operator

where

n(a) == cos(a)e(1) + sin(a)e(2).
Note that P, = P,,,. An ideal measurement of the polarization of the photon in
the direction « is described by the ideal measurement

{Pom Pa+7r/2}7

the outcome of which can be either that the photon is polarized in the direction
a, or in the perpendicular direction a + 7 /2.

Exercise 2.3.2 Show that the projections P, and Py in different directions o and
[ in general do not commute. Show that the conditional probability of the ideal
observation F,, given that before we have done the observation Fjp, is given by
cos(B — a)?.

Example (Spin) Electrons have a property called spin, which is a form of angular
momentum. Let H be a two-dimensional inner product space with orthonormal
basis {e(1),e(2)}. Define hermitian operators S, Sy, S, € L(H) by their matrices
with respect to {e(1),e(2)} as:

—1
SY'_<2' 0 )

1 0
s=(g %)

Chosing an appropriate basis, we can describe the three-dimensional space that we
live in by R?. Let 6 = (6, 6y, 6,) € R® be a vector such that [|0]| = 62 +67 462 = 1.
Then the spin of an electron in the direction # is a physical quantity, described by
the observable

Sy 1= 0xS; + 0,5, +0,S5..

One can check that its spectrum is
0 (Sp) ={-1,+1}.

Thus, no matter in which direction 6 we measure the spin of an electron, we can
always find only two values: —1 (‘spin down’) or +1 (‘spin up’). Ideal measure-
ments of the spin of an electron are possible, using magnetic fields that deflect
electrons in a beam in different directions depending on their spin.
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2.4 (Non)commutative probability

Although the quantum probability spaces and their interpretation from Section
seem rather different from the ‘classical’ probability spaces from Section [2.2] we
will see here that the latter are actually a special case of the former. More precisely,
we will show that a quantum probability space (A, p) is equivalent to a ‘classical’
probability space (2, P(Q2), u) if and only if the algebra A is abelian.

If € is a finite set, we write
Ch:={f:Q—>C}

to denote the space of all functions from € into C. We equip C® with the structure
of a x-algebra in the obvious way, i.e.,

(af +bg)(w) == af (@) +bgw)  (f.g€C abeC, weQ)
(f9)(w) = F(w)gw) (f.9€C% we Q)
(@) = flw) (feco weaq).

It is clear from the second relation that C® is abelian. Note that C* satisfies prop-
erty (viii) from the Section i.e., C% is a Q-algebra. The next theorem shows
that there is a one-to-one correspondence between abelian quantum probability
spaces and classical probability spaces.

Theorem 2.4.1 (Abelian Q-algebras) Let A be a Q-algebra. Then A is abelian
if and only if A is isomorphic to a Q-algebra of the form C%, where Q is a finite
set. If p: P(Q) — R is a probability law, then

p(f) = /f dp (2.1)

defines a probability law on C%, and conversely, every probability law p on C%
arises in this way.

We defer the proof of Theorem to Section [5.7}

It is not hard to see that an element f of the abelian Q-algebra C is a projection
if and only if f = 14 for some A C €, where for any subset A C 2 the indicator
function 14 € C? is defined as

1 ifwe A,
La(w) '_{ 0 fwgA
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An ideal measurement on C* is a collection of indicator functions {14,,...,14,}
where {A;,...,A,} is a partition of Q, i.e., A;NA; =0 forall i # j and A; U
- UA, = Q. Thus, ideal measurements on C* determine which of the mutually
exclusive events Ay, ..., A, takes place. We can list the corresponding notions in
classical and quantum probability in the following table:

Classical probability Quantum probability
Event A  Observation P
Partition {Ay,...,A,} of Q@ Ideal measurement {P,..., P,}
Probability law . Probability law p
Conditioned probability law i Conditioned probability law p
Real random variable X Hermitian operator A

In the abelian case, there is a one-to-one correspondence between the objects on
the left-hand and right-hand side. In general, the objects on the right-hand side
may be seen as a sort of generalization of those on the left-hand side.

The law p’ from point 4° of our interpretation of quantum probability spaces does
not have a classical counterpart. Indeed, if A is abelian and {P;, ..., P, } is an ideal
measurement, then p'(A) := " | p(PAP;) = p(A). Thus, in classical probability,
ideal measurements do not perturb the system they are measuring.

The states w € €2 from classical probability do not have a quantum mechanical
counterpart. Let us say that a probability law p on a Q-algebra A is a precise
state if

p(P) € {0,1} VP € A such that P is a projection.

On an abelian Q-algebra C%, it is easy to see that the precise states are exactly
the probability laws of the form p = J,,, where

0u(f) = flw)  (we),

and that every probability law on C% can in a unique way be written as a convex
combination of these precise states. Thus, ‘precise states’ on an abelian Q-al-
gebra correspond to the states w from classical probability. We will later see
that on a nonabelian Q-algebra, not every probability can be written as a convex
combination of precise states. In fact, if A = L(H) with dim(H) > 2, then there
do not exist any precise states on A at all.
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Chapter 3

Infinite dimensional spaces™

3.1 Measure theory*

In measure theory, it is custom to extend the real numbers by adding the points
oo and —oo, with which one calculates according to the rules

—00 if a <0,
a-00:=<¢ 0 if a =0,
00 ifa >0,

while a 4+ 00 := o0 if a # —o00, and 0o — o0 is not defined.

By definition, measure space is a triple (€2, F, u) with the following properties. 1°
) is a set (possibly infinite). 2° F C P(Q) is a subset of the set of all subsets of
2 with the following properties:

(a) AI,AQ,...E.F:> U;’ZIAZ'EJ:,
(b)) Ae F = A°e F,
(c) QeF.

Such a F is called a o-algebra or o-field. 3° p: F — [0, 0] is a function such that
(a) A, As,...€F, ANA;=0Vi#j = p(UZ 4) =0, n(d).
Such a function is called a measure. If
(b) p(€) =1,

then p is called a probability measure. In this case (2, F, ) is called a probability
space. It is not hard to see that if €2 is a finite set and F = P(Q2), then we are
back at our previous definition of a probability space.

37
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Let (Q,F, ) be a measure space. By definition, a function X : 2 — [—o0, 00] is
measurable if

{w: X(w)<a}leF VaecR.

If X is nonnegative, then this is equivalent to the fact that X can be written as
(e.9]
X=> alsy (120, A4 €F)
i=1

For such functions, one defines the integral as

/Xdu = iam(/li).

One can show that this definition is unambiguous, i.e., does not depend on the
choice of the a; and A;. If X is not nonnegative, then one puts X = X+ X~ where
X', X~ are nonnegative measurable functions and defines [Xdu = [XTdu —
JX~dp. The integral of X is not defined if [X*du — [X~du happens to be

oo — OQ.

3.2 Metric and normed spaces™

Let E be a set. By definition, a metric on E is a function d : E'x E — [0, 00) such

that
(a) d(z,y)=d(y,z) (z,y € E),
(b) d(z,z) < d(x,y) +d(y, z) (,y,2 € E),
(¢) d(z,y) =0if and only if z =y (x,y € E).

A metric space is a pair (E,d) where E is a set and d is a metric on E.

We say that sequence x,, € E converges to a limit x in the metric d, and write
Tp — x, if
Ve>03dnst. Ym>n: d(x,,z) <e.

For any D C E, we call
D:={rcFE:3x,€Dst. z, — 1}

the closure of D. A subset D C E is closed if D = D. A subset D C E is open if
its complement D° is closed. A subset D C E is dense if D = E. A metrix space
is separable if there exists a countable dense set D C E. If E, F' are metric spaces,
then a function f: E — F' is continuous if f(z,) — f(z) whenever z,, — x.
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A Cauchy sequence is a sequence x,, such that
Ve >0 In s.t. d(zg, ) < e Vk,m > n.

A metric space is complete if every Cauchy sequence has a limit.

A metric space is compact if every sequence x,, € F has a convergent subsequence,
i.e., there exist m(n) — oo and & € E such that z,,,) — .

Let V be a linear space (possibly infinite dimensional) over K = R or C. By
definition, a norm on V is a function V 3 ¢ — ||¢|| from V into [0, co) such that

(a) [lagll = lal||]] (€K, peV),

() flo+ull <lél+ 0l (6.0 €V,

(¢) ¢l = 0 implies ¢ = 0 (0 eV).
A normed space is a pair (V, || - ||) where V is a linear space and || - || is a norm on
V. If || - || is a norm on V, then

(¢, ) = [l¢ — ¢
defines a metric on V, which is called the metric associated with | - ||. Two norms
| - || and || - ||" are called equivalent if there exists constants 0 < ¢ < C such that
cdlgll <ol <Cligll (¢ € V).

If |||l and || - || are equivalent norms, then a sequence x,, converges in || - ||, or
is a Cauchy sequence in || - ||, if and only if the corresponding property holds for

|| - |- Thus, concepts such as open, closed, complete, and compact do not depend
on the choice of an equivalent metric.

If H is a linear space (possibly infinite dimensional) equipped with an inner product

(:[-), then
10l == V{¢l¢) (¢ €H)
defines a norm on H, called the norm associated with the inner product.

Let K =R or C. Then the space K" equipped with the inner product

(D1 d)|(Prs - ) = ng»z‘wi

and the associated norm and metric, is complete and separable. In fact, all norms
on K" are equivalent and therefore K" is complete and separable in any norm. A
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subset D of K" is compact if and only if it is closed and bounded, i.e., supyep |9 <
0.

In the infinite dimensional case, not all normed spaces are complete. A complete
normed space is called a Banach space. A complete inner product space is called
a Hilbert space.

Example I Let K =R or C. Let E be a compact metric space and let
C(E):={f:FE—K: fis continuous},
equipped with the supremum norm

If1I == sup | f(z)].
zel

Then C(F) is a Banach space.
Example IT Let K = R or C. Let (2, F, 1) be a measure space and

L3(p) :={¢: Q2 — K : ¢ is measurable and /]¢|2 dp < oo}

Let L?(u) be the quotient space

L2 () := L2 () /N (),

where N'(p) := {¢ € L?(u) : [|¢|*dp = 0}. Then L?(u), equipped with the inner
product

(O = /(¢*¢)du

is a Hilbert space.

3.3 Hilbert spaces®

Recall that a Hilbert space is a complete inner product space. For any two Hilbert
spaces Hy, Hs, a linear operator A : 'H; — Hs is continuous if and only if it is
bounded, i.e.,
[ Al := sup [|A¢]| < oc.
lloll<1

We let L(H1, Hs) denote the Banach space of all bounded linear operators A : Hy —
Ho, equipped with the operator norm || A||. Generalizing our earlier definition, we
call the space of all bounded linear forms H' := L(H,K) the dual of H. The Riesz
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lemma says that the map ¢ — (¢| is a colinear bijection from H to H’, which
preserves the norm. In particular

H = {{¢]: ¢ € H}.

If Hy,Hy are Hilbert spaces with inner products (:|-; and (-|-5, respectively, and
A € L(Hy,Hs), then there exists a unique adjoint A* € L(H1, Hz) such that

(P|AY)s = (A"B|U)1 (¢ € Ha, ¥ € Hy).

If 7 C 'H is a closed linear subspace of ‘H, then each vector ¢ € 'H can in a unique
way be written as

¢:¢/+¢// (¢,Ef, ¢//€fj_)‘
We call ¢’ the orthogonal projection of ¢ on the subspace F, and write
¢’ =: Pro.
One can check that Pr € L(H) := L(H,H) satisfies P; = Pr = P#. Conversely,

every P € L(H) := L(H,H) such that P* = P = P? is of the form P = Pr for
some closed subspace F C 'H.

The spectrum of a bounded linear operator A € L(H) is defined as
o(A) :={X e K: (\— A) is not invertible}.

(Compare Exercise|l.1.2)) Warning: the spectrum is in general larger than the set
of eigenvalues of A! One can show that o(A) is a compact subset of K. If K = C,
then o(A) is nonempty.

There is also an analogue of Theorem [1.2.10} Indeed, if A € L(H) is normal,
ie., AA* = A*A, then one can define a spectral measure P that assigns to each
measurable subset D C C a projection operator P(D) € L(H). One can define
integration with respect to the spectral measure, and give sense to the formula

A / AP(AN).
o(A)

In fact, P is concentrated on o(A), so it makes no difference whether we integrate
over o(A) or over C. If f: C — C is a continuous function and A € L(H) is a
normal operator, then one defines a normal operator f(A) by

f(A) = FP(dA).

o(A)
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3.4 Cx-algebras*®

By definition, a Cx-algebra is a (possibly infinite dimensional) complex x-algebra
A equipped with a norm || - || such that, in addition to the properties (i)—(vii) from

Section [2.1][]

" A is complete in the norm | - ||

(ix)" [[AB| < [|AJl|B] (A, B € A)
(x)" 1 AAll = [|A]I*

Note that property (x)’ implies property (viii) from Section 2.1} so finite dimen-
sional Cx-algebras are Q-algebras. Conversely, every Q-algebra can in a unique
way be equipped with a norm || - || such that (viii)'—(x)’ hold.

(viii)

~— —

If 'H is a Hilbert space, then the space L(H) of bounded linear operators on
‘H, equipped with the operator product, adjoint, and norm, is a Cx-algebra. In
analogy with Theorem one has the following theorem about representations
of Cx-algebras.

Theorem 3.4.1 (Gelfand-Naimark) Let A be a Cx-algebra. Then there exists
a Hilbert space H and a sub-x-algebra A" of L(H) such that A is isomorphic to
A'. If A is separable then we may take H separable.

Probability laws on Cx-algebras are defined exactly as in the finite dimensional
case. We can therefore define an infinite dimensional quantum probability space
as a pair (A, p) where A is a Cx-algebra and p is a probability on A.

Let E be a compact metric space and let C(F) := {f : E — C continuous},
equipped with the supremum norm. We equip C(E) with the structure of a *-al-
gebra by putting fg(z) := f(z)g(x) and f*(z) := f(z)*. Then C(F) is a separable
abelian Cx-algebra. The following infinite dimensional analogue of Theorem [2.4.1]
says that conversely, every separable abelian Cx-algebra arises in this way.

Theorem 3.4.2 (Abelian Cx-algebras) Let A be a separable abelian Cx-alge-
bra. Then there exists a compact metric space E such that A is isomorphic to

C(E).

It can moreover be proved that if i is a probability measure on F, equipped with
the o-field generated by the open sets, then

or) = [ 1

Here, we only consider Cx-algebras which contain a unit element.
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defines a probability law p on the Cx-algebra C(F), and conversely, every proba-
bility law on C(E) arises in this way. Thus, abelian quantum probability spaces
correspond to classical probability spaces. (The facts that A is separable and E is
a compact metric space are not really restrictions. In fact, in quantum probabil-
ity, it is standard to assume that the Cx-algebra is separable, while all interesting
models of classical probability can be constructed with probabilities defined on
compact metric spaces.)
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Chapter 4

Some quantum mechanics

4.1 States

The next proposition says that if A is a Q-algebra and 7 is a faithful pseudotrace
on A, then every probability law p has a density (or density operator) R with
respect to 7.

Proposition 4.1.1 (Density operator) Let A be a Q-algebra and let T be a
faithful pseudotrace on A. Let R € A be positive hermitian such that T(R) = 1.
Then the formula

p(A) :=1(RA) (A€ A)

defines a probability on A. Conversely, every probability on A arises in this way
and R is uniquely determined by p.

Proof It is easy to check that the formula p(A) := 7(RA) defines a probability.
To prove that every probability arises in this way, we use that (A|B), := 7(A*B)
defines an inner product on A. Therefore, since a probability p is a linear form on
A, there exists a unique R € A such that

p(A) = (R|A); =7(R*A) (A€ A).
Since p is real,
T(R*A*) = p(A") = p(A)" = 1(R*A)" = 7(A"R) = 7(RA").

Since this holds for all A € A, we must have R* = R, i.e., R is hermitian. Write
R = ), \iP;; assume that one of the eigenvalues \; is strictly negative. Then
p(Pi) = 7((32; AjPy)P;) = AT(P?) < 0), which gives a contradiction. Thus R
must be positive. |

45
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Exercise 4.1.2 Let A be a Q-algebra. Show that every real linear form p on A
can be written as p = p, — p_, where p,, p_ are positive linear forms. Show that
every linear form [ on A be written as Re(l) + iIm((), where Re(l), Im([) are real
linear forms.

Exercise 4.1.3 Show that the pure states on a Q-algebra A span the space of all
linear forms on A.

Let A be a Q-algebra. In quantum mechanics, it is a (bad) tradition to call a
probability p on A a state. Note that the set of all probabilities is a convex
subset of the space of all real linear forms, i.e., if py,..., p, are probabilities and
P1s---,Pn > 0 with Y. p; =1, then

pP= Zpipz‘

is a probability on A. By definition, a pure state is a probability p that is not
a nontrivial convex combination of other states, i.e., it is not possible to write
p=pp1+ (1 —p)p2 with 0 < p <1 and p; # p. A probability that is not a pure
state is called a mized state.

Lemma 4.1.4 (Pure states on factor algebras) Let H be an inner product
space. Then p is a pure state on L(H) if and only if there exists a vector ¢» € 'H
with ||| =1 such that

p(A) = (WlA[y) (A€ L(H)).

For any state p on L(H) there exists an orthonormal basis {e(1),...,e(n)} and
nonnegative numbers py, ..., pn, summing up to one, such that

p(A) = pre(i)lz‘l\e(i)) (A e L(H)).

Proof It is easy to see that p(A) := (¢|A|¢) defines a state if ¢ € H satisfies
||| = 1. Now let p be any state and let R be its density with respect to the usual
trace on L(H). Since R is a positive operator, there exists an orthonormal basis
{e(1),...,e(n)} and nonnegative numbers py, ..., p, such that

R= Zpile(i»(@(i)l-

Now p(A) =tr(RA) = > . pi{e(i)|Ale(7)). Since tr(R) = 1, the p; sum up to one.
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It remains to show that states of the form py,(A) := (¢|A|y) are pure. Imagine
that py, = pp1 + (1 — p)ps for some 0 < p < 1. By what we have just shown, there
exists an orthonormal basis {e(1),...,e(n)} and nonnegative numbers pq,...,p,
such that p;(A) = >, pi(e(i)|Ale(i)). For each ¢ such that (|¢) = 0, we have

zoz:pi|<6(i)lcb>|2 = pp1(|9)(2]) < pu(l)(0]) =0,

hence for each i such that p; > 0 we must have (e(i)|¢) = 0 for each ¢ that is
orthogonal to 1. It follows that there exists one i such that p; = 1 and e(i) = A\
for some || = 1. In particular, p; = py. By the same argument, also ps = p, so
Py 1s not a nontrivial convex combination of other states. |

Let A be a Q-algebra. By definition, a minimal projection is a projection P € A
such that P # 0 and the only projections () with () < P are Q =0 and ) = P. By
definition, a maximally fine partition of the identity is a partition of the identity
that consists of minimal projections.

Lemma 4.1.5 (Pure states and minimal projections) If P is a minimal
projection in a QQ-algebra A then there exists a pure state pp on A such that

PAP = pp(A)P (A€ A).

Conversely, for every pure state is of this form. Every state p on A can be written
as

p(A) = pipp,
j=1

where {Py,...,P,} is a mazimally fine partition of the identity and the p; are
nonnegative numbers, summing up to one.

Proof If A = L(H) is a factor algebra, then minimal projections are of the form
P = |¢)(¢| where ¢ € H satisfies ||¢|| = 1, hence the statement follows from
Lemma [£.1.4, The general case follows by writing A as a direct sum of factor
algebras. |

Lemma {4.1.5[says, among other things, that every state can be written as a convex
combination of pure states. This decomposition is in general not unique! In the
special case that our Q-algebra is a factor algebra £(H), Lemma m shows that
every state vector i € H with ||| = 1 defines a pure state py, and every pure
state is of this form. This correspondence is almost one-to-one, except that the
state vectors

Y and €9 (a € [0,2m)),
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differing only by the phase factor €' describe the same pure state. Note that
by Excersice below, two states p1, ps are equal if and only if they give the
same probability to every observation (projection) P. Thus, there is no ‘redundant
information’ in states p.

State vectors were invented earlier than Q-algebras or Cx-algebras. The celebrated
Copenhagen interpretation of quantum mechanics says that the state of a quantum
mechanical system is described by a unit vector ¢ in a Hilbert space H. Real
observables correspond to self-adjoint operators A. An observable A can assume
values in its spectrum o(A). Let P be the spectral measure associated with A; in
the finite-dimensional case, this means that P (D) is the orthogonal projection on
the space spanned by all eigenvectors with eigenvalues in a set D C R. Then

IP(D)|I* = (P(D)¢IP(D)v) = (IP(D)|W) = py(P(D))

is the probability that an ideal measurement of A yields a value in D. Given that
we do such an observation, we must describe our sytem with the new state

_ nP(D)JAPD)) _ (POWIAPDY)
ps(P(D)) [P(D)I? A

where 9 is the unit vector defined by

py(A)

v = ey P(D)Y-

This recipe for conditioning a pure state is known as the projection postulate and
has been the subject of much discussion. It is worth mentioning that although
historically, the word projection postulate refers to the map p — p from our
interpretation of quantum probability spaces, in modern discussions of this topic,
the same term is sometimes used to refer to the map p — p’ from our interpretation.

Exercise 4.1.6 Show that the projections in a Q-algebra A span the whole alge-

bra A. (Hint: Excercise )

Exercise 4.1.7 Let A be a Q-algebra and let p;, ps be states on A. Show that
p1(P) = p2(P) for all projections P € A if and only if p; = ps.

If A is abelian, then it is easy to see that a state p is pure if under p, each
projection P has either probability zero or one. The next excercise shows that in
the nonabelian case, the situation is quite different.

Exercise 4.1.8 (Unprecise states) If dim(H) > 2, then for every state p there
exists a projection P € L(H) such that 0 < p(P) < 1.
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4.2 The Schrodinger equation

In order to present the Schrodinger equation in a historically correct way, we will
make a small detour to infinite dimensions. The Schrodinger equation describes
the time evolution of a nonrelativistic scalar massive point particle in a potential.

Here nonrelativistic means that we neglect Einstein’s theory of relativity and de-
scribe space and time with Carthesian coordinates. Thus, we specify some coordi-
nate system and we descibe a position in space with coordinates x = (x1,...,24) €
R?, where 1, ...,z are distances measured in meters (d = 3 is the physically
relevant dimension). We describe a moment in time with a coordinate t € R,
measuring time in seconds before or after some specified reference time.

Scalar means that we assume that the particle has no internal degrees of freedom
(such as spin). Massive means that the particle has a mass m > 0, measured in
kilogram. A point particle means a particle that is so small that we can neglect
its spatial extensions. A potential, finally, is a function V : R — R which tells
you that if the particle is at the point € R?, then its potential energyl] is V(x),

measured in Joule, where one Jou is one kg met? sec™2.

With these assumptions, the Schrodinger equatz’mﬂ describing this particle is

d

ihZ(x) = V() (z) - o Zsu(r)  (LER, z €RY). (4.1)

Here h is Planck’s constant
h=1.0546 - 107> Jou sec.

The function 7 : R x R — C is called the wave function. Note that h is very
small. However, if we measure space in angstrom, which is 107!° meter (a typical
distance in atoms), mass in 1.0546 - 1073 kilo (which is a bit more than the mass
of an electron), and time in 107! seconds, then i = 1.

To relate (4.1]) to the formalism of quantum mechanics, consider the linear space

{¢ : R" — C, ¢ measurable, /|¢($)|2dx < o0},

IFor example, due to the force of gravitation, the potential energy of a particle is proportional
to its mass (in kg) times its height (in met) times the gravitational accelaration (which is 9.8
met sec™2). Note that kgxmetxmet sec™?=Jou, the unit of energy.

2Suggested by Schrodinger to describe the behavior of an electron in the Coulomb potential
from the kern of an atom.

3Introduced by Max Planck in 1900 in a formula for black body radiation. In fact, Planck
introduced the constant h = 27h.
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and let H be the space of equivalence classes of a.e. equal functions from this space,
equipped with the inner product

Wle) = [ Do)
Then H is a Hilbert space. The linear operators

Vip () := V()¢ (x),
Py (a) = —ihglp(x),
QY (2) = zpp(2),

can be interpreted as self-adjoint linear operators on H. V is interpreted as the
observable corresponding to the potential energy of the particle. (Py,..., Py) is
the observable corresponding to the momentum of the particle (clasically defined
as mass times velocity), and (@1, ...,Qq) is the observable corresponding to the
position of the particle. Now the self-adjoint operator

d
1 2
H:zvju%;P,c

corresponds to the energy of the particle. The operator H is also called the Hamil-
tonian. Note that with this notation, equation (4.1)) takes the form

ih2y, = Hyy (Lt €R). (4.2)

One can show that for each ¢y € H equation (4.1)) (suitably interpreted) has a
unique solution (¢;);cr in H satisfying

[l = NIl (£ €R).

One usually normalizes such that ||¢]] = 0 and interprets ¢y as the pure state
describing the particle at time t.

There exist also Schrodinger equations to describe the time evolution of two or more
scalar point particles. For example, if we have n particles with masses myq, ..., m,,
and we denote the coordinates of the j-th particle in 3-dimensional space by z; =
(xj1,2;2,%;3), then the corresponding Schrodinger equation reads
n hQ 3
) 02 3
ihgp(x) = V(z)(z) =) oD seati(®)  (LER, z € (R)").
j=1

J =1
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Here V (z) is typically of the form

Vi(z) = ZVj(%‘) + > Vie(lay — ),

J#k
where Vi, ..., V, are external fields and Vj;, are two-point potentials describing the
forces between the particles 7 and k.

4.3 Deterministic time evolution

In this section we return to finite dimensions. We moreover choose units such that
h = 1. Assume that A is a positive *-algebra, minimally represented on some
inner product space H. Let H € A be any hermitian operator. Motivated by the
Schrodinger equation in its form (4.2]) we look at the differential equation

i24, = Hip. (4.3)

This is just a linear differential equation in finite dimensions, so it is easy to see
that for each initial condition ¢y € H there is a unique continuously differentiable
solution ¢ — ;. In fact, this solution is given by

b= My, (tew),
where the linear operator e is defined using the functional calculus for normal
operators.

Exercise 4.3.1 Show that the operators e~ (with t+ € R) are unitary. Show
that |le="H 4| = ||¢|| for all » € H and t € R.

We interpret the vector v, normalized such that ||¢|| = 1, as the pure state of the
physical system under consideration. More precisely, we interpret (4.3)) as saying
that if the system at time ¢ = 0 is described by the pure state

po(A) = pyo(A) = (holArhg) (A € A),
then at time ¢ the state is
pe(A) = (o] Ay) = (e apol Ae™ M ahg) = (tole” Ae™" Tubg) = po(e™ Ae™™H).

Note that the right-hand side of this formula is representation independent, and
also defined for probabilities p that are not pure states. This motivates us to give
the following description of deterministic time evolution in quantum mechanics:
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Let A be a positive *-algebra describing the observables of a physical system.
Then deterministic time evolution of probabilities on A is described by an hermi-
tian operator H € A, called Hamiltonian. If pg is the probability describing our
knowledge about the system at time 0, then our knowledge about the system at
time t is described by the probability

pi(A) = po(e"Ae™™)  (teR, A€ A).

Exercise 4.3.2 Show that adding a constant to the Hamiltonian does not change
the time evolution, a fact well-known in physics.

Exercise 4.3.3 Show that deterministic time evolution of the type just described
preserves pure states, i.e., if py is a pure state then p; is a pure state. (If A is not
a factor algebra this is not completely trivial!)

We will later see that a deeper converse of Exercise holds: any time evolution,
satisfying certain natural conditions, that maps pure states into pure states is of
the type just described.

The fact that our time evolution maps pure states, which are probabilities that give
‘maximal knowledge’ about our system, into pure states, is why we have called the
time evolution described by a Hamiltionian deterministic. A remarkable property
of this sort of time evolution is that it is reversable, in the sense that from the
state at time ¢t we can deduce the state at all earlier times. This is true regardless
of the fact that if the Schrodinger equation (4.1)) with V' = 0 is started in a pure
state 1y that is localized in a small region of space, then as time tends to infinity
the solution of becomes more and more spread out in space.

The description of time evolution we have just given, where probabilities evolve in
time, is called the Schrodinger picture. The so-called Heisenberg picture takes a
somewhat different point of view. Here, there is just one probability p, describing
our knowledge about a physical system at all times, but the observables evolve in
time, in the following way: If Ay € A is a hermitian operator describing a physical
quantity at time 0, then the same physical quantity at another time ¢ is described
by the hermitian(!) operator:

A =T Age=™  (t € R).

It is not hard to see that both pictures are equivalent, i.e., if we know for every
observable the probabilities that an ideal measurement at time 0 yields a certain
outcome, and we want to calculate from that the probability that an ideal mea-
surement of an observable at some other time yields a certain outcome, then we
get the same answer in both pictures.



Chapter 5

Algebras

5.1 Introduction

Recall that Theorem [2.1.5] says that every Q-algebra has a faithful representation
on a complex inner product space H. Assuming the validity of this theorem, in the
present chapter, we will determine the general structure of Q-algebra’s and their
representations. For the information of the reader, we outline a crude sketch of
the proof of Theorem and its infinite dimensional analogue, Theorem [3.4.1]
in Section 5.8

To give the reader a rough idea of what we are up to, recall that the simplest
example of a Q-algebra is an algebra of the form A = L(H), where H is some
complex inner product space. For example, if dim(H) = 3, then, with respect to a
given orthonormal basis, the simplest possible representation of A consists of all
matrices of the form

11 Q12 413
A= ax ax ax (ai1,...,a33 € C).
a3; Aazz ass

This is not the only possible representation of A. For example, on a space with

dimension 6, we may represent the same algebra as the set of all matrices of the
form

a1 Q12 Q13 0 0 0

g1 Q22 Q923 0 0 0

A | s a2 oaz 00 0

0 0 0 a1 a1 Q13

0 0 0 21 929 a23

0 0 0 a31 Q32 ass

(&11a c..,0a33 € C)

23
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of course, we can play the same trick on spaces with dimensions 9,12, .... Now let
us consider something different. Consider a space H with dim(H) = 5, choose an
orthonormal basis, and consider matrices of the form

ayp arp a3 0 0

as; ag az 0 0

a31 Qg ass 0 0 (CLH, e ,b22 € (C)
0 0 0 by by

It is not hard to check that the space of all matrices of this form is a sub-*-algebra
of L(H). Of course, this algebra is isomorphic to the algebra of all matrices of the
form

ajpr a1 13 0 0 0 0

o1 Q22 Q23 0 0 0 0

A 31 Q32 ass 0 0 0 0
B = 0o 0 0 by b 0 0 |,

B 0 b21 bQQ 0 0

0 0
0O 0 0 0 0 b bio
0O 0 0 0 0 Dby by

where we have repeated the second block. Perhaps surprisingly, we will prove that
this is about as general as one can get. For any complex inner product space H
and sub-x-algebra of A C L(H), we can find an orthonormal basis of H such that
with respect to this basis, a general element of A has the block-diagonal form

Ay

A (Ay € LHY), ... A, € LIH)),

'An

where the block Ay is repeated my, times (k = 1,...,n). Note that such an algebra
is abelian if and only if dim(Hj) = 1 for all k, i.e., if each block is a 1 x 1 matrix.
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5.2 Decomposition of algebras

Let A be a Q-algebra. By definition, a positive linear form is a map p : A — C
that is (a) linear, (b) real, and (c) positive, i.e.,

(a) p(aA+bB)=ap(A)+ bp(B) (a,be C, A,B e A),
(b) p(A%) = p(A)" (AeA),
(c) p(A*A) =0 (AeA).

Note that probability laws (states) are normalized positive linear forms. A positive
linear form is called faithful if in addition

(d) p(A*A) =0 implies A = 0.
If p is a faithful positive linear form on A, then
(AlB), = p(A'B) (A, BeA)
defines an inner product on A. A positive linear form 7 is called a pseudotrace if

7(AB) = 7(BA)  (A,Bc A

Lemma 5.2.1 (Existence of a pseudotrace) On every Q-algebra there exists
a faithful pseudotrace.

Proof By Theorem A has a faithful representation. Now the usual trace
has all the desired properties. |
If A,..., A, are algebras, then we equip their direct sum A; @ --- ® A, with the
structure of an algebra by putting

(Ay+--+A)BL+-+By) = (AB, + -+ A,B,).

Here we view A1, ..., A, as linear subspaces of A;®- - -®.A,, with the property that
each Ae A &---P A, can in a unique way be written as A = A; +---+ A,, with
Are Ay, ..., A, e A, If Ay,... A, are x-algebras, then we make A, @ ---H A,
into a x-algebra by putting

(Ar 4+ 4+ A) = (AT +- -+ A)).

Note that if H;, Ho are complex inner product spaces and A;, Ay are sub-x-alge-
bras of L(H;), L(Hs), respectively, then the x-algebra A; @ A, is isomorphic to



26 CHAPTER 5. ALGEBRAS

the algebra of all operators on H; @ Hs of the whose matrices (with respect to an
obvious basis) have the block-diagonal form

(Al A) (A € A1, Ay € Ay).
2

By definition, a left ideal (resp. right ideal) of an algebra A is a linear subspace
Z C A such that AB € 7 (resp. BAe€TI)foral Aec A B e€Z. An idealis a
subspace that is both a left and right ideal. If A is a x-algebra, then a *x-ideal is
an ideal Z with the property that A* € 7 for all A € 7.

Note that if an algebra A is the direct sum of two other algebras, A = A; & A,,
then A; is an ideal of A. It is not a subalgebra, however, since the identity in
A is not the identity in A. If A; and A, are *x-algebras and A is their direct
sum (equipped with the standard adjoint operation), then A; is a *-ideal of A.
By definition, an algebra is a factor algebra if it has no proper ideals, i.e., its only
ideals are {0} and A.

Proposition 5.2.2 (Decomposition into factor algebras) Every ideal of a
Q-algebra is also a x-ideal. Fvery Q-algebra A can be written as a direct sum of
factor algebras

A=A - D A,.

Proof Imagine that A has a proper ideal Z. By Lemma [5.2.1] we can choose
a faithful pseudotrace 7 on A. Let Z be the orthogonal complement of Z with
respect to the inner product (-|-),, i.e.,

It :={CecA:7(C*B)=0VB € T}.

We claim that Z is another ideal of A. Indeed, foreach A € A, B € ZTandC € T+,
we have 7((AC)*B) = 7(C*(A*B)) = 0 and 7((CA)*B) = 7(C*(BA*)) = 0, from
which we see that AC' € Z+ and CA € I+. Since Z+ is the orthogonal complement

of Z in the inner product (-|-),, every element A € A can in a unique way be written
as A=A, + A, with A; € T and A, € Z+. We observe that

(Al + AQ)(Bl + BQ) = (AlBl + AQBQ) (Al, B; € I, AQ, By € IL) (51)

where we have used that A;Bs, AyB; € ZNZI+ = {0}. Write 1 = 1; + 15, where
1, € Z and 1, € T+, Tt is easy to see that 1; is a unit element in Z and 1, is
a unit element in Z+, and that Z and Z+ (equipped with these unit elements)
are algebras. This shows that A is the direct sum of A; and A, in the sense of
algebras.
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To complete the proof, we must show that Z and Z+ are *-ideals; then it will follow
that Z and Z+ are Q-algebras and that A is the direct sum of A; and A in the
sense of x-algebras. By symmetry, it suffices to show that 7 is a *-ideal.

We claim that for any A € A,

A € T if and only if (B|AC), =0 forall B,C € T+. (5.2)

To prove this, write A = A; + Ay with 4, € 7 and Ay, € Z+. Then, for any
B,C € T*, one has (B|AC), = (B|AyC), by (5.1, which is zero if Ay = 0,
and nonzero if C' = 1, and B = A,. Now, if A € Z, then by (5.2), (B|AC), =
7(B*AC) = 7((A*B)*C) = (A*B|C), = 0 for all B,C € I+, which shows that
A el |

5.3 Decomposition of representations

Recall that a representation of an algebra (resp. x-algebra) A is a pair (H, 1) where
H is a linear space (resp. inner product space) and [ : A — L(H) is an algebra
homomorphism (resp. *-algebra homomorphism). A somewhat different way of
looking at representations is as follows. Let A be an algebra and let H be a linear
space. Imagine that we are given a map (A, ¢) — A¢ from A x H to H with the
following properties:

(a) A(ag+ b)) =aAd + bAy (a,beK, A€ A, ¢,9 € H),
(b) (aA+bB)p=aAp+ bB¢ (a,beK, A,Be A, ¢ € H),
(c) (AB)¢=A(B¢) (A, BeA ¢eH),

(d) lp=¢ (¢ € H).

Then the map [ : A — L(H) defined by [(A)¢p := A¢ is an algebra homomorphism.
If moreover, H is equipped with an inner product such that

(e) (9lAy) = (A"0[v) (Ae A, o0 €H),

then [ is a *-algebra homomorphism. Conversely, if [ : A — L(H) is an algebra
homomorphism (resp. *-algebra homomorphism), then setting A¢ := [(A)¢ defines
a map from A x H to ‘H with the properties (a)—(d) (resp. (a)—(e)). We call such
a map an action of the algebra A on H. Thus, we can view representations of an
algebra (resp. x-algebra) A as linear spaces (resp. inner product spaces) on which
there is defined an action of .A. Which is a long way of saying that from now on,
we will often drop the map [ from our notation, write A¢ instead of I[(A)¢, and
write phrases like: ‘let H be a representation of A’.
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Exercise 5.3.1 Let A be an algebra. Show that A, equipped with the action
(A, B) — AB, becomes a representation of itself. If A is a %-algebra and 7 is
a faithful pseudotrace on A, then show that A equipped with the inner product
(-|-)+ is a faithful representation of itself as a x-algebra.

If Hy, ..., H, are representations of an algebra (resp. *-algebra) A, then we equip
the direct sum H; & - - @ H,, with the structure of a representation of A by putting

AG(1) + -+ 0(n)) 1= AD(1) + -+ Ad(n),

where ¢(1) € Hy,...,0(n) € H,. It is not hard to see that this action of A on
H1®...®H, has the properties (a)—(d) (resp. (a)—(e)). By definition, an invariant
subspace of a representation H of some algebra A is a linear subspace F C H such
that

¢ € F implies Ap € F (Ae A).

Note that F, equipped with the obvious action, is itself a representation of A.
We say that a representation H of an algebra A is irreducible if it has no proper
invariant subspaces, i.e., invariant subspaces that are not {0} or H.

Lemma 5.3.2 (Decomposition of representations) FEvery representation of
a Q-algebra can be written as a direct sum of irreducible representations.

Proof If 'H is a representation of a x-algebra and F is an invariant subspace,
then we claim that F* is also an invariant subspace. Indeed, v € F* implies
(A|gp) = (P|A*p) = 0 for all ¢ € F, which implies Ay € F. It follows that
H = F @ F*+. We can continue this process until we arrive at a decomposition of
‘H into invariant subspaces that have no further proper invariant subspaces. |

5.4 Von Neumann’s bicommutant theorem

In the next section, we will study the structure of factor algebras and irreducible
representations. To prepare for this, we need a result that is known as Von Neu-
mann’s bicommutant theorem.

Let ‘H be an (as usual finite dimensional) inner product space over K = C or R.
For any set A C 'H, we let

A= {BeL(H):[A, Bl =0VAec A

denote the commutant of A.
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Exercise 5.4.1 Show that for any set A C £(H), the commutant A° is a sub-al-
gebra of L(H). Show that if A is closed under taking of adjoints, then the same
is true for A°. In particular, if A is a sub-x-algebra of L(H), then so is A°.

We call (A°)° the bicommutant of A. The following result is known as Von Neu-
mann’s bicommutant theorem.

Theorem 5.4.2 (Bicommutant theorem) Let H be an inner product space
over K=C or R and let A be a sub-x-algebra of L(H). Then (A°)° = A.

We start with two preparatory lemmas. By definition, we say that a linear subspace
F C H is invariant under an operator A € L(H) if ¢ € F implies Ay € F.

Lemma 5.4.3 Let A € L(H) be an operator, let F C H be a linear subspace, and
let Pr denote the orthogonal projection on F. Then one has [A, Pr] = 0 if and
only if F and F* are invariant under A.

Proof We observe that for any ¢ € H:
veF & Pryp=1. (5.3)

Moreover
F=A{Pr¢ :¢p € H}. (5.4)

Now if [A, Pr] = 0 and ¢ € F then by (5.3) AY = APryp = PrAyp € F which
shows that F is invariant under A. Moreover, since

P]:J_Il—Pf,

we have [A, Pri| = [A,1 — Pr|] = [A,1] — [A, Pr| = 0, so the same argument as
before shows that also F* is invariant. Conversely, if F is invariant under A, then
by (5.3), APz € F for all ¢ € H, hence PrAPri) = APgy for all ¢ € H. Since
APri) = APrPr this says that PrA(Pry) = APr(Pgt) for all ¢ € H, which by
is equivalent to saying that PrA¢ = APz¢ for all ¢ € F. Now if moreover
F* is invariant under A then the same argument shows that APr¢ = PrA¢ for all
¢ € F1, hence, since span(F U F1) = H, we have APr) = PrAv) for all v € H.M

Exercise 5.4.4 Let A € L(H) be an operator, let 7 C H be a linear subspace,
and let Pz denote the orthogonal projection on F. Assume that F is invariant
under A. Show by counterexample that this does not imply that A and Pz com-
mute.

The next lemma is not as trivial as the previous one.
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Lemma 5.4.5 Let H be an inner product space over K = C or R and let A be a
sub-x-algebra of L(H). Then, for all Y € H and B € (A°)°, there exists an A € A
such that Ay = Ba.

Proof Fix ¢ € H, and consider the linear subspace F := {Ay : A € A}. We
claim that the algebra A leaves the spaces F and F* invariant, i.e., ¢ € F implies
Ap € F and ¢ € F* implies Ap € F* for all A € A. Indeed, if ¢ € F then ¢
is of the form ¢ = A’y for some A’ € A, hence Ap = AAY € F, and if ¢ € F+
then (p|Ay) =0 for all A" € A, hence (Ap|A')) = (p|A*A'yp) = 0 for all A" € A,
hence Ap € F*. It follows that each element of A commutes with the orthogonal
projection Pr on F, i.e., Pr € A°. Hence, if B € (A°)°, then B commutes with
Pr, which implies that B leaves the spaces F and F* invariant. In particular,

B1p € F, which shows that By = A for some A € A. |

Proof of Theorem Lemma says that for each B € (A°)° and ¢ € H
we can find an A € A such that A and B agree on . In order to prove the
theorem, we must show that we can find an A € A such that A and B agree on all
vectors in ‘H. By linearity, it suffices to do this for a basis of H. Thus, we need to
show that for any B € (A°)° and 9(1),...,%(n) € H, there exists an A € A such
that Ay(i) = By(i) for alli=1,... n.

Let Hi,...,H, be n identical copies of H, and consider the direct sum H; &
.- ® H,. Let A™ denote the sub-*-algebra of L(H, & ---®H,) consisting of all
operators of the form

A (H(1), ..., d(n)) = (Ad(1), ..., Ad(n))

for some A € A. We wish to desciribe the commutant (A™)¢. With respect to an
obvious orthonormal basis for Hy, ..., H,, each A™ € A™ has the block-diagonal
form (for example for n = 3):

A 0 O
AW =110 A 0
0 0 A
Now any C' € L(Hy,...,H,) can be written as
Cni Crp Cis
C=| Cu Cxn Cy |,
Cs1 Oz Csg
where the Cj; are linear maps from H into H. We see that
ACy ACy ACh3 CnAd CpA CiA

AMC = [ ACy AC, ACH and CAM™ = [ CyA CpA CyuA |,
AC3 ACs ACss CA CipA CsA
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and therefore C' commutes with each A™ in A™ if and only if C;; € A for each
1,].

Now let B € (A°)° and 9(1),...,%(n) € H. By what we have just proved, it is
easy to see that B(™ € ((A™))¢. Therefore, applying Lemma m to B™ and
the vector (¢(1),...,%(n)) € Hi1 & --- & H,, we conclude that there exists an
A™ € A™ such that

A (1), .. () = BM((1), ..., p(n))
e, AY(i) = By(i) for all i = 1,...,n, as desired. |

5.5 Factor algebras

We have seen that any Q-algebra A can be decomposed into factor algebras and
that any representation of A can be decomposed into irreducible representations.
In the present section, we will see that there is a close connection between these
two objects.
By definition, the center of a Q-algebra is the abelian sub-x-algebra C(A) C A
given by

CA) ={CeA:[ACl=0VAe A},

i.e., C(A) consists of those elements of A that commute with all elements of A.
We say that the center is trivial if C(A) = {al : a € C}.

Theorem 5.5.1 (Factor algebras) Let A be a Q-algebra. Then the following
statements are equivalent.

1) A is a factor algebra.

3 L(H) for some inner product space H.

4

(1)
(2) A has a faithful irreducible representation.
(3) A
(4) A has a trivial center.

Proof (1)=-(2): By finite dimensionality each algebra has an irreducible repres-
entation. We claim that representations of factor algebras are always faithful.
Indeed, if (H, 1) is a representation of an algebra A, then it is easy to see that the
kernel Ker(l) = {A € A:1(A) =0} is an ideal of A. In particular, if A is a factor
algebra, we must have Ker(l) = A or Ker(l) = {0}. Since /(1) = 1 # 0, the first
option can be excluded, hence (H,1) is faithful.
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(2)=(3): It suffices to show that if H is an inner product space and A C L(H)
is a sub-x-algebra with no proper invariant subspaces, then A = £(H). By Von
Neumann’s bicommutant theorem, it suffices to prove that A° = {al : a € C}.
By Excercise it suffices to show that each self-adjoint element B € A° is a
multiple of the identity. By Lemma if B is not a multiple of the identity,
then A contains a projection P # 0,1. Let F be the space that P projects upon.
Then F is a proper invariant subspace of H, contradicting our assumptions.
(3)=-(4): It suffices to show that £(H) has a trivial center. Note that every element
of the center is a normal operator. Therefore, by Lemma [2.1.6] if the center is not
trivial, then it contains a projection P # 0, 1. Let F be the space that P projects
upon. Since each element of A commutes with P, by Lemma [5.4.3] F is a proper
invariant subspace of L(H). It is easy to see, however, that £(H) has no proper
invariant subspaces.

(4)=(1): If A is not a factor algebra, then by Proposition [5.2.2) we can write
A= A & Ay, where A; and A, are Q-algebras. Now the identity 1; € A; is a
nontrivial element of the center C(.A), hence the latter is not trivial. |

The proof of Theorem has a useful corollary.
Corollary 5.5.2 (Representations of factors) Let A be a factor algebra. Then

each representation (H,1) of A is faithful. If moreover A is a Q-algebra and (H,1)
is irreducible, then | : A — L(H) is surjective.

Proof This follows from the steps (1)=>(2) and (2)=(3) of the proof of Theo-
rem [0.5.11 |

Exercise 5.5.3 Show that on a factor algebra, there exists up to a multiplicative
constant a unique pseudotrace. Hint: choose an orthonormal basis {e(1),...,e(n)}
and a vector ¢ of norm one, and write |e(i)){e(j)| = |e(i))(p|P)(e(7)].

5.6 Structure of Q-algebras

Let A be an algebra and let H;, Ho be representations of A. By definition, a
representation homomorphism is a linear map U : 'H; — Hs such that

UAp = AU (p € Hy, A€ A).

Note that this says that U preserves the action of the algebra A. If A is a x-algebra
then we also require that U is unitary, i.e., U preserves the inner product. If U is a
bijection then one can check that U~! is also a representation homomorphism. In
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this case we call U a representation isomorphism and we say that H; and H, are
equivalent representations of A. Note that if (Hi,[l;) and (He,ls) are equivalent
representations, then

L(A) =U (AU  (AcA).

Lemma 5.6.1 (Irreducible representations of factor algebras) All irre-
ducible representations of a factor algebra A are equivalent.

Proof We observe that each left ideal Z # {0} of an algebra A becomes a repres-
entation of A if we equip it with the obvious action (A, B) — AB (A€ A, B € I).
Since a subspace Z' C Z is invariant under the action of A if and only if Z’ is a left
ideal, we see that Z is irreducible if and only if Z is a minimal left ideal, i.e., the
only left ideals Z’ of A such that Z' € Z are 7’ = 0 and Z' = Z. Such a minimal
left ideal exists by finite dimensionality and the fact that A is a left ideal of itself.
Now let A be a factor algebra and let H be an irreducible representation of A. By
the previous remarks, A has a minimal left ideal, and each minimal left ideal Z is an
irreducible representation of A. We will show that H and Z are equivalent. Since
7 is arbitrary, this proves that all irreducible representations of A are equivalent.
Fix 0 # C € Z. By Corollary [5.5.2] H is faithful, so we can choose ¢ € H such
that C'¢p # 0. Define U : 7 — H by

UB:=B¢ (BeI).

Then U is a representation homomorphism. It follows that Ran(U) is an invariant
subspace of H and Ker(U) is an invariant subspace of Z. Since C'¢ # 0, we see
that Ran(U) # {0} and Ker(U) # Z. Since H and Z are irreducible, it follows
that Ran(U) = 'H and Ker(U) = {0}, hence U is a linear bijection.

This completes the proof in case A is an algebra. In case A is a Q-algebra, we must
additionaly show that U is unitary. Indeed, if (H;,[l;) and (Hs,ls) are irreducible
representations of a Q-algebra A, then by what we have just shown, there exists a
linear bijection U : 'H; — Hs such that

L(A) =ULAU?  (AcA).

By Corollary [5.5.2, I; and [, are surjective, so the composition [ = I o [;* is a
s-algebra isomorphism from £(H;) to L£(Hz), and

I(A) =UAU™" (A€ L(H)).
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Let {e(1),...,e(n)} be an orthonormal basis of H;. Then
[(Je(@)){e(@)]) = Ule(@)){e(@)|U" = [Ue(i)){(U)e(i)].

Since [ is a x-algebra isomorphism, I(]e(i)){e(i)]) is a projection, which is only
possible if

Ue(i) = (U H)*e(i).
Since this holds for each i, U* = U~!, i.e., U is unitary. |

The following theorem describes the general structure of Q-algebras and their
representations.

Theorem 5.6.2 (Structure theorem for Q-algebras) Let A be a Q-algebra.
Then A has finitely many nonequivalent irreducible representations (Hq,ly), ...,
(Hn, 1), and the map

A (L(A), ..., 1L(A)

defines a *x-algebra isomorphism
A= LMH) @D L(H).
FEvery representation of A is equivalent to a representation of the form

H=H, @D OH)D D (Ha® - DH,y),
— —

mq times m,, times
with m; >0 (1 =1,...,n). H is faithful if and only if m; > 1 for alli=1,... n.

The numbers mq, ..., m, are called the multiplicities of the irreducible represen-
tations ‘Hy, ..., H,.

Proof of Theorem By Proposition [5.2.2] A is isomorphic to a direct sum
of factor algebras A; @ - --®.A,. Let (H,1) be a representation of A. Let 14,...,1,
denote the identities in A1, ..., A,, respectively. Then {I(1;),...,1(1,)} is a parti-
tion of the identity on H. Let F; be the space that (1;) projects on (which may be
zero-dimensional for some 7). Then H = F;®- - -®F,,, where F; is a representation
of A;. By Lemma [5.3.2] we can split F; into irreducible representations of A;, say
Fi = Fir @ -+ - ® Fim(:), where possibly m(i) = 0. Let I;; : A; — L(F;;) denote
the corresponding #-algebra homomorphism. By Corollary [5.5.2] the representa-
tions (Fi, lir),s - -+, (Fim()s lim()) are faithful and i, ..., i) are surjective. By
Lemma , the (Fi1,li), - - -, (Fim(): lim(s)) are equivalent. It is not hard to see
that (Fi;,l;;) and (Fy v, liyj) are not equivalent if ¢ # i'. From these observations
the statements of the theorem follow readily. |
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5.7 Abelian algebras

In this section, we look at abelian algebras. In particular, we will prove Theo-

rem 2.4.11

Theorem 5.7.1 (Abelian algebras) Let H be an inner product space over C
and let A be an abelian sub-x-algebra of L(H). Then there exists a partition of the
identity { Py, ..., P,} such that

AZ{Zaiﬂ:aiECVizl,...,n}. (5.5)
=1
Proof Immediate from Theorem [5.6.2] |

Theorem has a useful corollary.

Theorem 5.7.2 (Simultaneous diagonalization of normal operators) Let
H be an inner product space over C and let A(1),...,A(k) be a collection of
mutually commuting normal operators. Then there exists an orthonormal ba-
sis {e(1),...,e(n)} such that for each j = 1,... k there exist complex numbers

M) An(g) with )
Alk) =D Xilk) (D) (e(0)]

Proof Let A be the *-algebra generated by A(1),..., A(k), i.e., A consists of all
linear combinations of finite products of the operators A(1),..., A(k) and their
adjoints. We claim that A is abelian. This is not quite as obvious as it may seem,
since we have assumed that A(j) commutes with A(j’) for each j, 5/, but not that
A(j) commutes with A(j")*. For general operators A, B, it is not always true that
A* commutes with B if A commutes with B. For normal operators this is true,
however. To see this, choose an orthonormal basis such that A is diagonal. Then
AB = BA implies A;;B;; = B;jA;; for all ¢, 7, hence, for each 7, j we have either
Bij =0or A“ = Ajj‘ It follows that AZBZJ = BIJA;} for all i,j, hence A*B = BA*.
Once this little complication is out of the way, the proof is easy. Since A is
abelian, there exists a partition of the identity { Py, ..., P,} such that each element
of A, in particular each operator A(j), is a linear combination of the Py, ..., P,.
Let Fi,...F, be the orthogonal subspaces upon which the P,..., P, project.
Choosing an orthonormal basis of H that is a union of orthonormal bases of the
Fi,...F,, we arrive at the desired result. |

We can now also easily give the:
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Proof of Theorem By Theorem [5.7.1], there exists a partition of the identity
{P,...,P,} such that A consists of all linear combinations of the P, ..., P,. Set
Q ={1,...,n} and define a map [ : C® — A by

I(f) = Zf(i)l%.

It is easy to see that [ is an isomorhism for x-algebras. |

Exercise 5.7.3 Let A be the real x-algebra consisting of all matrices of the form

(Z _ab> (a,b € R).

Show that A is abelian, but not isomorphic to R for some finite set 2. Does A
remind you of some algebra you know?

5.8 Proof of the representation theorems*

In this section, we give a brief sketch of the proofs of Theorems [2.1.5] and [3.4.1]
The proof of Theorem is standard and can be found in any book on Cx-al-
gebras (e.g. [Con90, [Dav96]). Theorem is rather obscure; I am indebted to
Roberto Conti for pointing out its proof in |[GHJ89, Appendix Ila].

By definition, an algebra A is semisimple if it is the direct sum of factor algebras.
Not every algebra is semisimple; a counterexample is the algebra of all matrices of

the form ,
a
(O c) (a,b,c € K).

Proposition [5.2.2]says that every Q-algebra is semisimple. Unfortunately, our proof
of Proposition leans heavily on the fact that every Q-algebra has a faithful
representation. The crucial step in the proof of Theorem is to show that
Q-algebras are semisimple using only the properties (i)—(viii) from Section [2.1]
By definition, the Jacobson radical J of an algebra A is the intersection of all
maximal (proper) ideals in A. Tt is known that A is semi-simple if and only if
J = {0}. Thus, we need to show that the Jacobson radical J of a Q-algebra is
trivial.

It is easy to see that if 7 is a left ideal in A, then 7% := {A* : A € T} is a right
ideal. Thus, if Z is an ideal, then Z* is also an ideal. If 7 is maximal, then Z* is
also maximal. Hence

T = ﬂ{I* : 7 maximal ideal} = ﬂ{I : 7 maximal ideal} = J.
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Now imagine that 0 # A € J. By what we have just proved A* € J and there-
fore A*A € J. By the positivity condition (viii) from Section 2.1, A*A # 0,
(A*A)*(A*A) = (A*A)? # 0, and by induction, (A*A)*" # 0 for all n > 1. How-
ever, it is known (see e.g. [Lan71]) that the Jacobson radical of a finite-dimensional
algebra is nilpotent, i.e., 7" = {0} for some n. We arrive at a contradiction.
Using again the positivity condition (viii) from Section 2.1} one can show that the
adjoint operation on a QQ-algebra A must respect the factors in the decomposition
A2 A - B A, ie., Ae A; implies A* € A;. It follows from general theory
of algebras that each A; is of the form £(V;), where V; is a complex linear space.
To complete the proof, it then suffices to show that the adjoint operation on £(V;)
arises from an inner product on V;. To show this, choose any inner product (-, )
on V; and let A — A" denote the adjoint operation with respect to this inner
product. Then A +— (A*)" is an algebra isomorphism from £(V;) into itself. It
follows from Lemma that every algebra isomorphism from £()V;) into itself is
an inner isomorphism, i.e., (A*)T = UAU ™! for some linear bijection U : V; — V.
Setting (z,y)" := (Uzx,Uy) then yields an inner product on V; such that A — A*
is the adjoint operation with respect to this inner product.

The proof of Theorem follows a completely different strategy. Let A be a
Cx-algebra and let p be a probability law (state) on 4. We claim that then there
exists a representation H of A and a vector ¢ € H such that

p(A) = (0]Ad) (A e A).

To prove this, put
N ={AecA:p(A*A) =0}.

One can check that N is a closed linear subspace of A, and a left ideal. Moreover,
(A+N,B+N) :=p(A*B) (5.6)
defines an inner product on the quotient space
A/IN ={A+N :Aec A}
Let H be the completion of A/N in this inner product. Then one checks that
AB+N):=AB+N  (A,BeA) (5.7)

defines an action of A on H. Setting ¢ = 1 + N now yields the claims. This
construction is known as the GNS-construction.
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The strategy of the proof of Theorem [3.4.1]is now to show that there exist enough
states p on A so that the direct sum of their corresponding representations, ob-
tained with the GNS-construction, is faithful. The proof is not easy; one more
or less has to derive the whole spectral theory of normal elements of A without
knowing that A has a faithful representation, before one can prove Theorem [3.4.1]



Chapter 6

Subsystems and independence

6.1 Subsystems

As we have seen in Section [2.3] we use a Q-algebra to describe all properties of a
physical system that are of interest to us. Often, a physical system is made up of
several smaller systems. And, of course, since we rarely consider the universe as a
whole, any system we look at will be a subsystem of something larger. In quantum
probability, we describe such subsystems with sub-*-algebras. Such sub-*-algebras
may describe all aspects of our system that can be measured in a certain part of
space, or that refer to one particular particle, or physical quantity, etc.

Thus, if A is a Q-algebra and B C A is a sub-x-algebra, then we may interpret B
as a subsystem of A. A partition of the identity {P,..., P,} such that P, € B,
for all 7 is interpreted as an ideal measurement on the subsystem B. If p is a state
(probability law) on A, then the restriction of p to B describes our knowledge
about B.

If Ais a Q-algebra and D C A is some set, then we let a(D) denote the smallest
sub-x-algebra of A containing D. It is not hard to see that

a(D) :=span({1} U{Dy---D,:n>1, D;eDor D; € DVi=1,...,n}),

i.e., (D) is the linear span of all finite products of elements of D and their adjoints.
We call a(D) the sub-x-algebra generated by D. For example, if By, By are sub-x-
algebras of some larger Q-algebra A, then a(B; U Bs) is the smallest sub-*-algebra
containing both By and B,.

In this section, we will in particular be interested in the case when subsystems that
are independent, i.e., when measurements on one subsystem give no information
about the other.

69
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Recall from Section that if we perform an ideal measurement {P,...,P,}
on a system described by a quantum probability space (A, p), then in general
we perturb our system, which we describe by replacing the state p by the state
p'(A) = > . p(PAP;). We ask ourselves under which conditions performing a
measurement on one subsystem does not perturb another subsystem.

Lemma 6.1.1 (Commuting subalgebras) Let A be a Q-algebra and let By, By
be sub-x-algebras of A. Then the following are equivalent:

1) dr, p(PaPiPa;) = p(P1) VP, € By projection, {Py1,...,Pay} C Bs
partition of the identity, p state on A,
(ii) PP,= PP VP, € By, P, € By, P, P, projections,
(111) BBy = ByB; VB, € Bl, By € Bs.

Proof (i)=-(ii): In particular, setting n = 2, we have for any projections P, € By,
P, € By and for any probability p on A

p(PaPLP3) + p((1 = P2)Pi(1 = Py)) = p(P1)
& p(PPLP) + p(Py) + p(P2PLPy) — p(PLPy) — p(P2Py) = p(Pr)
~ Qp(nglpg) = p(Plpg) + p(PgPl)

By Excersice this holds for every state p if and only if it holds for every
linear form p. Hence, this holds if and only if

2P,P Py = P,P, + P,P,. (6.1)

It follows that P1P2 = 2P2P1P2 — P2P1 hence P2<P1P2) = P2(2P2P1P2 — PQPl) =
2P, P Py — PPy, hence PP Py = P,P;, which together with (6.1)) implies that
PP =P P

(ii)=-(iii): This follows from Excersice [4.1.6]
(iii)=-(i): Obvious, since

n

Y p(PoiBiPoi) =Y p(PoiPaiBi) = Y p(PoiBi) = p(1B1) = p(By)
=1 =1

i—1
for any B; € By and any partition of the identity {Ps1,..., Pan} C Ba. ]

If By and B, are sub-k-algebras that commute with each other, then performing
a measurement on B; does not disturb Bs, and vice versa. Thus, it should be
possible to do simultaneous measurements on By and By. Indeed, if {Py,..., P,}
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and {Q1,...,Qn} are ideal measurements such that P, € B; and @); € B, for each
1,7, then since By and By commute with each other, it is easy to see that

(PQ;:1<i<n, 1<j<m}

is an ideal measurement (partition of the identity). We interpret this as a mea-
surement that carries out {P,..., P,} and {Q1,..., @} simultaneously, i.e., at
some point in time we perform { P, ..., P,} and at some point in time we perform
{Q1,...,Qmn}; the order doesn’t matter. If P, are projections that commute
with each other, then we interpret P() as the simultaneous observation of both P
and (). Note that for any state p, one has

p(QPQ)

p(PQ) = Wﬂ(@) = p(P|Q)p(Q),

which is a well-known formula from classical probability. If P and () do not
commute, then P() is not a projection, so we say that simultaneous measurements
with noncommuting observations are not possible. In this case, p(P|Q)p(Q) is still
well-defined and can be interpreted as the probability of first doing the observation
() and then P, which may be different from p(Q|P)p(P) (first P, then Q).

6.2 Independence

By Lemma [6.1.1] performing a measurement on a sub-x-algebras B; does not have
any effect on a sub-x-algebra B, if and only if B; and B; commute with each other.
We now ask under which circumstances these subsystems are independent, i.e.,
doing an observation on one subsystem gives no information about the other sub-
system. Recall that if in some ideal measurement we do the observation P, we must
describe our new knowledge about the system with the conditioned probability law

p = p(:|P) defined by
p(PAP)

pAlP) =0

(Ae A).

Lemma 6.2.1 (Independent subalgebras) Let A be a Q-algebra and let By, By
be sub-x-algebras of A that commute with each other. Then the following are
equivalent:
(i) p(P|Py) = p(Py) for all projections Py € By, P» € By
with p(Py) # 0.

(11) IO(Ble) = p(Bl)p(Bg) VBl € Bl, BQ c BQ.



72 CHAPTER 6. SUBSYSTEMS AND INDEPENDENCE

Proof Since By and By commute, p(Py|Py) = p(PoPiPy) = p(PiPPy) = p(P1Py),
so (i) is equivalent to

p(P1Py) = p(P1)p(F2) (6.2)
for all projections P, € By, P» € By with p(P,) # 0. In fact, is automatically
satisfied if p(P,) = 0; to see this, note that since By and By commute, P Ps is a
projection. Now PP, < P, hence p(P,P;) < p(P) = 0. Thus, (i) holds if and only
if holds for all projections P, € By, P» € By. Since the Q-algebras B;, B, are
spanned by their projections (Excercise , this is equivalent to (ii). |

If By, By are sub-x-algebras of some larger Q-algebra A, and B; and By commute
with each other, then we observe that

04(81 U Bz) = 8182,
where for any subsets Dy, D, of a Q-algebra A we introduce the notation
D1D2 = span{D1D2 : D1 S Dl; D2 € DQ}

Therefore, by Lemma m (i), if p; and py are states on By and By, respectively,
then by linearity, there exists at most one state p on «(B; U By) such that B; and
By are independent under p, and the restrictions of p to By and By are p; and po,
respectively. We now ask under which conditions such a state p exists.

Lemma 6.2.2 (Logically independent algebras) Let By, By be sub-x-algebras
of some larger Q)-algebra, which commute with each other. Then the following
statements are equivalent:

(i) PLPy # 0 for all projections Py € By and Py € By with Py # 0
and Py # 0.

(ii) For all states p1 on By and py on By there exists a unique
state p on a(By U By) such that p(B1By) = p1(B1)p2(Bs)
for all By € By, By € Bs.

Proof (i)=-(ii): We first prove the statement when p; and p, are pure states, i.e.,
p1 = pp, and py = pp,, where P, and P, are minimal projections in B; and Bs,
respectively. Using the fact that B; and By commute, it is easy to see that P Py
is a projection in a(B; U By). Now

(Plpg)(BlBg)(Plpg) = PlBlplprQPQ = pl(Bl)p2<Bg)P1P2 (Bl € Bl, B2 € 82)

Since PP, # 0, and since «(3; U By) is spanned by elements of the form B By,
there exists a function p : a(B; U By) — C such that

(P1P2)A(P1P2) = P181P1P282P2 = p(A)Plpg (A € Oé(Bl U 62))
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From this it is easy to see that P; P, is a minimal projection in «(B; U Bs), and
p = pp,p, 1s the pure state asociated with P P,.

In the general case, when p; and py are not pure states, we write

ni na
p1= Zpipu and py = Z qjp2,j
j=1

=1

where the p;; and p,; are pure states. By what we have just proved, there exist
pure states p;; on a(By U By) such that p;;(B1Bs) = p1,i(B1)p2,;(Bs) for all By €
Bl, BQ S Bg. Puttlng

niy n2

pP= Z Zpi%'pij

i=1 j=1
now defines a state with the required property.

To see that (i) is also necessary for (ii), imagine that P, P, = 0 for some nonzero
projections P, € By and P, € By. Then we can find states pi, po on By, By such
that p1(P;) = 1 and po(P,) = 1. However, any state p on a(B; U By) satisfies

0= p(0) = p(PLP2) # p(P1)p2(P2). u

Let us say that two sub-x-algebras By, By of some larger Q-algebra A are logically
independent if B; and By commute with each other and satisfy the equivalent prop-
erties (i)—(ii) from Lemmal6.2.2] In classical probability, property (i) is sometimes
called ‘qualitative independence’ [Ren70]. Note that this says that if no probabil-
ity p on A is specified, then by doing an observation on system B; we can never
rule out an observation on system B,. If By, By are logically independent sub-x-
algebras of some larger Q-algebra A, then we can give a nice description of the
algebra a(B; U By) in terms of By and Bs.

Recall from Section [I.3]that the tensor product of two linear spaces V, W is a linear
space V®@W, equipped with a bilinear map (¢, ) — ¢®v from V x W into V@ W
satisfying the equivalent conditions of Proposition [[.3.8] Such a tensor product
is unique up to equivalence. Now let A;, Ay be Q-algebras and let A; ® Ay be
their tensor product (in the sense of linear spaces). We equip A; ® Ay with the
structure of a Q-algebra by putting

(A1 ® As)(B1 ® By) := (A1B1) ® (A2 Bo) (A1, By € Ay, Ay, By € Ay)

and
(A1 ® Ag)" 1= (A]) ® (A3).
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By the properties of the tensor product, these definitions extend linearly to all of
A ® Ay, making it into a Q-algebra. If H; and H, are representations of A; and
As, respectively, then setting

(A1® A2) (1@ d2) := (A191) ® (A2¢2) (A1 € Ay, Ay € Ay, 91 € Ha, ¢2 € Ha)

(6.3)
makes H; ® Hs into a representation of A; ® Ay. This leads to the natural iso-
morphism

L(H1) ® L(Hs2) = L(H1 ® Ha).

Note that if {e(1),...,e(n)} and {f(1),..., f(m)} are orthonormal bases of H;
and Hs, respectively, then a basis for £(H1) ® L(Hz2) is formed by all elements of
the form (|e(i)){e(j)]) @ (|f(k)){f(1)|), while a basis for L(H; ® Hs) is formed by
all elements of the form |e(i) ® f(k))(e(j) ® f(I)|. The dimension of both spaces
is dim(H;)?dim(Hs)?.

Lemma 6.2.3 (Logical independence and tensor product) If By, By are log-
ically independent sub-x-algebras of some larger Q)-algebra A, then the map

BlBQ = Bl X BQ
is a x-algebra isomorphism from (B U Bs) to the tensor product algebra By & Bs.

Proof By Lemma and Excercise [1.1.3] if 1,1y are linear forms on By, By,
respectively, then there exists a unique linear form [ on a(B; U Bsy) such that
[(B1By) = l1(B1)ls(By) for all By € By, By € By. Therefore, by Proposi-

tion [1.3.10| (iv) and Lemma a(ByUBy) = B ® Bs. |

If p1, po are states (probability laws) on Q-algebras A;, A, respectively, then we
define a unique product state (product law) on A; ® A by

(p1 ® p2)(A1 ® Ag) = p1(A1)p2(A2) (A1 € Ay, Az € As).

(This is good notation, since we can interpret p; ® py as an element of the tensor
product 4] ® A}, where A} and A}, are the dual spaces of A; and A, respectively.)
Product of three and more Q-algebras and states are defined analoguously.
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Chapter 7

Quantum paradoxes

7.1 Hidden variables

As we have already seen, the ‘states’ of quantum probability are something quite
different from the states of classical probability. Rather, what is called a state in
quantum probability corresponds to a probability law in classical probability. Pure
states are probability laws that cannot be written as a mixture of other probability
laws, hence a pure state p on a Q-algebra A corresponds, in a way, to maximal
knowledge. If A is abelian, then pure states have the property that they assign
probability one or zero to every observation (projection operator P € A). Hence,
in the classical case, it is, at least theoretically, possible to know everything we
want to know about a system. In Excercisel4.1.8 we have seen that in the quantum
case this is not so.

Of course, in practice, even for classical systems, our knowledge is often not per-
fect. Especially when systems get large (e.g. contain 10?? molecules), it becomes
impossible to know the exact value of every observable that could be of interest
of us. Also, continuous observables can be measured only with limited precision.
Nevertheless, it is intuitively very helpful to imagine that all observables have a
value -we just don’t know which one. This intuition is very much behind classical
probability theory. In quantum probability, it can easily lead us astray.

Many physicists have felt uncomfortable with this aspect of quantum mechanics.
Most prominently, Einstein had a deep feeling that on the grounds mentioned
above, quantum theory must be incomplete. While his attempts to show that
quantum mechanics is inconsistent failed, the ‘Einstein-Podolsky-Rosen paradox’
put forward in [EPR35] has led to a better understanding of quantum probability,
and the invention of the Bell inequalities.

The absence of ‘perfect knowledge’ in quantum probability has prompted many

7
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attempts to replace quantum mechanics by some more fundamental theory, in
which, at least theoretically, it is possible to have extra information that allows us
to predict the outcome of any experiment with certainty. Such an extended theory
would be called a hidden variable theory, since it would involve adding some extra
variables that give more information than the pure states of quantum mechanics.
These extra variables can presumably never be measured so they are called hidden
variables. It is possible to construct such hidden variable theories (the hidden
variable theory of Bohm enjoys some popularity), but we will see that any hidden
variable theory must have strange properties, making it rather unattractive.

7.2 The Kochen-Specker paradox

The Kochen-Specker paradox [KS67] shows that we run into trouble if we assume
that every observable has a well-defined value. In other words, the next theo-
rem shows that we cannot think about the observations (projection operators)
from quantum probability in the same way as we think about events in classical
probability.

Theorem 7.2.1 (Kochen-Specker paradox) Let H be an inner product space
of dimension at least 3. Then there exists a finite set P whose elements are pro-
jections P € L(H), such that it is not possible to assign to every element P € P a
value ‘true’ or ‘false’, in such a way that in every ideal measurement { P, ..., P,}
consisting of elements of P, exactly one projection has the value ‘true’ and all
others have the value ‘false’.

Remark I The essential assumption is that the value (‘true’ or ‘false’) of a pro-
jection P does not depend on the ideal measurement that it occurs in. Thus, if
{P1,...,P,} and {Q1,...,Q} are ideal measurements and P; = @;, then P; and
(); should either both be ‘true’ or both ‘false’. If one drops this assumption there
is no paradox.

Remark II The fact that we run into trouble even for a finite set P shows that the
paradox is not the result of some (perhaps unnatural) continuity or set-theoretic
assumption.

Remark III The assumption that dim(H) > 3 is necessary. In the next section,
when we discuss the Bell inequality, we will even need spaces of dimension at least
4. It seems that for spaces of dimension 2, there are no serious quantum paradoxes.

Proof of Theorem As will be obvious from our proof, it suffices to prove the
statement for the case dim(H) = 3. Choose an orthonormal basis {e(1),e(2),e(3)}
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of H and consider projections of the form
Po= )| with ¢ =z1e(1) + 22e(2) + 236(3),
where x = (x1, 29, x3) lies on the surface of the three dimensional real unit sphere:
(21,9, 73) € Sy :={x € R®: ||| = 1}.

Note that x and —x correspond to the same projection. If three points x,y, z € S
are orthogonal, then the corresponding projections form an ideal measurement.
Therefore, we need to assign the values ‘true’ or ‘false’ to the points x € Sy in
such a way that z and —x always get the same value, and if three points x,y, 2
are orthogonal, then one of them gets the value ‘true’ and the other two get the
value ‘false’. We will show that there exists a finite set P C S; such that it is not
possible to assign the values ‘true’ or ‘false’ to the points in P in this way.

Note that if two points x,y are orthogonal, then by adding a third point z that is
orthogonal to x and y, we see that x and y cannot both be ‘true’. Therefore, it
suffices to show that there exists a finite set P’ C S5 such that we cannot assign
values to the points in P’ according to the following rules:

(i) Two orthogonal points are never both ‘true’,
(ii) Of three orthogonal points, exactly one has the value ‘true’.

If we cannot assign values to P’ according to these rules then by adding finitely
many points we get a set P that cannot be assigned values to according to our
earlier rules.

Since we are only interested in orthogonality relations between finite subsets of
So, let us represent such subsets by a graph, where the vertices are points in
Sy and there is a bond between two vertices if the corresponding points in S
are orthogonal. We claim that if x(1),z(2) € Sy are close enough together, in
particular, when the angle o 5 between z(1) and z(2) satisfies

0 <sin(agq) < %,

then we can find points z(3),...,2(10) such that the orthogonality relations in
Figure [7.1] hold.
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E

Figure 7.1: Kochen-Specker diagram

To prove this formally, take

z(4)=(1,0,0)

z(5)=(0,0,1)

2(6) = (0,1, \)(1 4+ \?)~1/2

z(7) = (1, A, 0)(1 4+ \?)~1/2

2(8) = (0, A, —1)(1 + \2)~1/2
2(9)= (X, —1,0)(1 + \2)~1/2
z(1)= (A2, =\, 1)(1 4+ X2+ AH)~1/2
2(3) = (1, A\, A2) (1 + A2+ \H)~1/2)

where A > 0 is a parameter to be determined later. It is easy to check that
orthogonality relations as in Figure hold between these points. Since x(10) is
orthogonal to x(1),z(2), and x(3), we need to take x(2) in the plane spanned by
z(1) and z(3). Denote the angle between x(1) and x(3) by aj 3. Then the inner
product of z(1) and z(3) is

(x(1)|x(3)) = cos(aq3).

We calculate \2
D]z(3)) = ————
E0)®) = T
which is zero for A = 0 and % for A = 1. It is not hard to see that for A = 1
the angle between (1) and z(3) is sharp so by varying A, we can construct the
diagram in Figure [7.1/ for any sharp angle a3 with 0 < cos(ay 3) < 3. Since z(2)
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and z(3) are orthogonal, it follows that we can choose x(2) for any sharp angle
a2 between z(1) and z(2) with 0 < sin(ai2) < %, as claimed.

We now claim that if orthogonality relations as in Figure hold between points
x(1),...,2(10), and z(1) has the value ‘true’, then x(2) must also have the value
‘true’.

To prove this, assume that x(1) is ‘true’ and x(2) is ‘false’. Then x(6), z(7), and
x(10) must be ‘false’ since they are orthogonal to z(1). But then z(3) must be
‘true’ since z(2) and x(10) are already ‘false’. Then x(8) and x(9) must be ‘false’
since they are orthogonal to #(3). Now x(4) must be ‘true’ since z(8) and z(6) are
already ‘false’ and x(5) must be ‘true’ since x(9) and x(7) are already false. But
x(4) and x(5) are orthogonal, so they are not allowed to be both ‘true’. We arrive
at a contradiction.

We see that if two points are close enough together, then using only finitely many
other points we can argue that if one is ‘true’ then the other one must also be
‘true’. Now choose three points z, y, z that are orthogonal to each other. Then we
can choose x(1),z(2),...,z(n) close enough together, such that x is ‘true’ = z(1)
is ‘true’ = --- = x(n) is ‘true’ = y is ‘true’. (In fact, it turns out that n = 4
points suffice.) In the same way, using finitely many points, we can argue that y is
‘true’ = z is ‘true’ and z is ‘true’ = x is ‘true’. Since x,y, and z are orthogonal,
exactly one of them must be true, so we arrive at a contradiction. (In fact, it turns
out that a set P’ with 117 points suffices. For our original set P we need even
more points, but still finitely many.) |

7.3 The Bell inequality

The Kochen-Specker paradox shows that the ideal measurements of quantum me-
chanics cannot be interpreted as classical ideal measurements. The attribute ‘ideal’
is essential here: if we assume that our measurements perturb our system, i.e., if
the system can react differently on different measurements, there is no paradox. In
this section we discuss a ‘paradox’ that is more compelling, since in this case, if we
want to keep our classical intuition upright, we would have to assume that a sys-
tem can react on a measurement that is performed in another system -potentially
very far away.
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Entanglement

Let A; and A3 be Q-algebras and let A; ®.A5 be their tensor product. We have seen
that such product algebras are used to model two logically independent subsystems
of a larger physical system. The systems .4; and A5 are independent under a state
(probability law) p if and only if p is of product form, p = p; ® ps where py, ps are
states on A;, Ay, respectively. By definition, a state p is entangled if p can not be
written as a convex combination of product states, i.e., if p is not of the form

p= Zpkpl,k @ P2,k
k=1

where py i, po i are states on Ay, As, respectively, and the p;, are nonnegative num-
bers summing up to one. In classical probability, entangled states do not exist:

Exercise 7.3.1 Let A; and A, be Q-algebras and assume that A; is abelian.
Show that there exist no entangled states on A; ® As,.

On the other hand, if A; and Ay are both nonabelian, then entangled states do
exist. To see this, it suffices to consider the case that A; = L(H;) and Ay = L(Hs)
where H;, Hs are inner product spaces of dimension at least two. Recall that
L(Hy) ® L(H2) = L(H1 ® Hs). Let {e, e’} be orthonormal vectors in H; and let
{f, f'} be orthonormal vectors in Hy. Define a unit vector ) € H; ® Hs by
vi=re®f+se®f (7.1)

and let p = py(A) = (Y|AJ) be the pure state associated with ¢). We claim that
p cannot be written as a convex combination of product states. Since p is pure, it
suffices to show that p is not a product state itself. If it were, it would have to be
the product of its marginals py, po. Here p; is the state on A; defined by

p1(A1) = (Y] A1 ® 1[y)
=1e® flA®1llex f)+3( @ flA @ 1] ® f)
+3(e® flAI®1e® )+ 3¢ ® f|Ai® 1le® f)
= s(elAe)(fIf) + 3¢ [ Al ) (f'If) +0+0
=3(elAile) + 3(e[Ale) (A € L(H)),

ie., p1 = %pe + %pe/. In the same way we see that p, = %pf + %pf/. In particular,
p1 and py are not pure states! It is not hard to see that

p1® p2 = 5 (peas + pews + peap + Peos)

is not a pure state, hence p; ® ps # p, so p is entangled.
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The Bell inequality

The Bell inequality is a test on entanglement. If (A, p) is a quantum probability
space and P, () € A are projections that commute with each other, then we define
their correlation coefficient c,(P, Q) by

(P, Q) = p(PQ) + p((1 = P)(1-Q)) = p(P(1 = Q)) — p((1 = P)Q).

Note that since P and () commute, we can interpret P as the simultaneous
observation of P and (). The next result is due to Bell [Bel64].

Theorem 7.3.2 (Bell inequality) Let By, By be logically independent sub-x-al-
gebras of some larger Q-algebra and let p be a state on a(By U By). If p is not
entangled, then for any projections Py, P| € By and P,, Py € By, one has

ep(Pr, P2) + ¢o(Pl, Py) + cy(Pr, PY) — (P, Pl < 2 (7.2
Proof We first prove the inequality for product states. Set
Sl = 2P1 -1

and define S}, Ss, S, similarly. Note that S; = P, — (1 — P;), so S} is a hermitian
operator with spectrum o(5;) = {—1,+1}, i.e., S; is an observable that can take
on the values 1, such that P, (resp. 1 — P;) corresponds to the observation that
Sy = +1 (resp. S; = —1). Then

CP(Pla PQ) = p(slsQ)v
etc., so if p is a product measure, then
CP(Plv P2) + CP<P1/> PQ) + CP(Ph P2/) - CP(P1I7 P2/>
= p(S182) + p(81S2) + p(S153) — p(S153)

= p(S1)p(S2) + p(S1)p(S2) + p(S1)p(S3) — p(S7)p(S3)
= p(S1)(p(S2) + p(53)) + p(S2)(p(S2) — p(S)),

so the quantity in ([7.2]) can be estimated by
1p(52) + p(S3)] + p(S2) — p(S3)]-

If p(Ss) + p(S%) and p(Sy) — p(S%) have the same sign, then we get 2|p(Ss)|, while
otherwise we get 2|p(S55)|. At any rate, our estimate shows that the quantity in

(7.2)) is less or equal than 2.
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More generally, if p is a convex combination of product states, p = >, prpk, say,
then

|Cp(P17P2) +Cp(P1/7P2) _'_CP(Pl?PQ/) - CP(P1/7P2/>’
< Zpk‘cpk<P1>P2) +Cpk(P1/7P2) +CPk(P17P2I) _Cﬂk<P1/7P2/)| <2
k

by what we have just proved. |

We next show that entangled states can violate the Bell inequality. We will ba-
sically use the same entangled state as in (7.1]), which we interpret in terms of
two polarized photons. Let H; and Hs be two-dimensional inner product spaces
with orthonormal bases {e(1),e(2)} and {f(1), f(2)}, respectively. For v € [0,7),
define n, € H; and ¢, € Hy by

1= cos(7)e(1) +sin()e(2) and ¢, == cos(y) (1) + sin(8) (2).

Set P, := |ny)(n,| and Qs := |(s)(ng|. For each 7,7 we may interpret {P,, Pyir/2}
and {Q,, Q54r/2} as an ideal measurements of the polarization of our first photon

and second photon, respectively, in the directions v and 7 (see Section . We
prepare our system in the entangled state

Y= Jse() @ f(1) + 5e(2) @ f(2).

We claim that for any ~,

Y= \/L§ Ny & C’Y + \/Li Nytm/2 @ <7+7r/2' (7-3)

Note that this says that if we measure the polarization of both photons along the
same direction, we will always find that both photons are polarized in the same
way! To see this, we observe that

1y © G = (cos(y)e(1) +sin(y)e(2)) © (cos(7)f(1) + sin(7) f(2))
=cos(7)*e(1) @ f(1) +sin(v)" e(2) ® f(2)
+cos(y) sin(y)e(1) ® f(2) + sin(y) cos(v)e(2) © f(1)

and

Mytr/2 ® Granyz = (—sin(y)e(1) + cos(v)e(2)) @ (—sin(y) f(1) + cos(v) f(2))
=sin(y)? e(1) @ f(1) + cos(7)* e(2) ® f(2)
—sin(7) cos(y)e(1) ® f(2) — cos(v) sin(y)e(2) ® f(1).
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Adding both expressions and dividing by v/2 we arrive at ||
The probability of finding one photon polarized in the direction v and the other
photon in the direction ¥ is given by

py(Py ® Q3) = py(Fo ® Q5-)
=3{e(1) ® f()|P ® Q5 e(1) ® f(1))
+5(e(2) ® f(2)| P ® Q5—41e(2) ® £(2))
)e(D) (f (DG -G 1f(1))
os(y — 7).

~ e

(Compare Excercise [2.3.2}) Hence

epo(Py @ 1,18 Q5) = cos(7 =) —sin(7 =) = 2cos(§ —7)? — 1 = cos(2(7—7)).

We now check that for an appropriate choice of the angles, these correlation coef-
ficients violate the Bell inequality (7.2)). We take

P1:P0®1, P/ Pa+ﬂ®1
P =1® Qa, P’—1®Q_5

The expression in ([7.2]) then becomes
| cos(2ar) + 2 cos(23) — cos(4 + 2a)|.

We want to maximize the expression inside the brackets. Setting the derivatives
with respect to a and ( equal to zero yields the equations

—2sin(2a) + 2sin(45 + 2a) =0,
—4sin(20) + 4sin(46 + 2a) =0

It follows that sin(23) = sin(45 + 2a) = sin(2a). We choose
g = a.
The expression to be maximized then becomes
3 cos(2a) — cos(bar).
Differentiating and setting equal to zero yields

—6sin(2a) 4+ 6sin(6a) =0 = sin(2a) = sin(6a).
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Setting z = €, we need to solve
1 2c —i2a _ 1 (_iba _ —iba
Z(e —¢ ) 2 (e € )

1

& oz l=3 73

s S_A422_1=0

Setting y = 2z? = ¢™®, we obtain the cubic equation

v -y +y—1=0,
We know that y = ¢*?° = 1 is a trivial solution, so factorising this out we get

(y =1 +1) =0,

which has nontrivial solutions y = +4 = e*"/2. Therefore, the maximum we are

interested in occurs at a = %ﬂ'. The expression in ‘) then becomes

3cos(3m) — cos(3m) = 3\% - —\/Li = 2V/2 &~ 2.82847,

which is indeed larger than 2, the bound from the Bell inequality. Correlations be-
tween single photons passing through prismas can be measured, and this violation
of the Bell inequality has been verified experimentally [Red87, [CSTS].

Bell versus Tsirelson

We have seen that in classical probability theory, the quantity in is less or
equal than 2, while in quantum probability, it can be 2v/2. Note that a priori,
this is just a sum of four correlations, each of which could take values between —1
and 1, so it is conceivable that this quantity could be as high as 4. Nevertheless,
the violation of Bell’s inequality that we have found is maximal, as was proved by
B. Tsirelson [Cir80]. In fact, there exist several Bell inequalities; the one in
is just the simplest one. These inequalities have quantum mechanical analogues,
the Tsirelson inequalities.

Another way of looking at these inequalities is as follows. Imagine that we have
s physical systems (separated in space), such on each system, m different ideal
measurements are possible, each of which yields one of n different possible out-
comes. The Bell inequality considers the case s = m = n = 2. Numbering
the systems, measurements, and outcomes in some arbitrary way, we are interested
in (mn)® conditional probabilities, say

play, ... asby ... bs),
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that experiments by,...,bs € {1,...,m} yield outcomes ay,...,a; € {1,...,n}.
We are interested in the case that chosing which measurement to perform on one
system does not influence probabilities on another system. For example, in the
case s = m = n = 2, this yields the ‘no signalling’ requirement

p(1,11,1) +p(1,21,1) = p(1, 1]1,2) + p(1,2[1, 2),

which says that the conditional probability of outcome 1 given that on system 1 we
perform measurement 1, does not depend on the choice of the measurement at the
second system. There are other requirements coming from the fact that probabili-
ties must be nonnegative and sum up to one. Together, these requirements define
a convex set Ppogignal Of functions p that assign probabilities p(ay, ..., as|by ..., bs)
to the outcomes of different measurements.

It turns out that not all these probability functions p can arise from classical
probability. More precisely, clasically, we imagine that there are certain ‘hidden
variables’ that deterministically predict the outcome of each measurement. Thus,
we imagine that

play, ... aslby... b)) = P(h)pu(ar,...,aslb ... b, (7.4)
h

where h represents the ‘hidden’ variables, P(h) is the probability that these hidden
variables take the value h, and p;, is a function satisfying the ‘no signalling’ and
other requirements mentioned above, such that in addition, pp(ay, ..., as|by ..., bs)
is either 0 or 1 for each choice of ay,...,as by ..., bs. Since there are only finitely
many such functions, the collection of functions p of the form is a convex set
Pelasicat With finitely many extreme points, which are the functions p,. It turns
out that Pilasicar is strictly smaller than Phegigna. Here, an essential assumption
is that the functions p, also satisfy our ‘no signalling’ requirements. If we allow
hidden variables to communicate at a distance (possibly with a speed larger than
the speed of light), then there is no problem.

‘Interesting’ faces of Pgasical correspond to inequalities that are not satisfied by
general elements of Ppogignar. In fact, the Tsirelson inequalities show that Pyuantum,
the quantum analogue of Pelasical, is also not equal to Prosignai- The geometric
structure of these convex sets is still very much a topic of research, see [Gil06].
Another interesting question (that I do not know the answer to) is whether there
exist good, consistent probability theories that violate the Tsirelson inequalities.
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Chapter 8

Operations

8.1 Completely positive maps

Let A be a Q-algebra and let A7, denote the space of all states on A. As we
know, a state p € A/, describes incomplete knowledge about the physical system
A. We will be interested in operations on A/, i.e., we want to know how p
can change due to the effects of our physical interference with the system A. In
general, such an operation will be described by a map f : A, — Al that
has the following interpretation: If our knowledge about the system before we
performed the operation was described by the state p, then our knowledge after
we have performed the operation is described by f(p). A natural requirement on

f is that it be linear, in the sense that

foor+ (L =p)p2) =pflp1) + (L =p)f(p2)  (p1.p2 € Apyopy 0 <p < 1) (8.1)

This says that if before we performed our operation f, our knowledge about the
system is with probability p described by p; and with probability 1 — p by po,
then after we have performed the operation f, the system is with probability p
described by f(p1) and with probability 1 — p by f(pa).

At first, it might seem that nothing more can be said about f and that any map
[ Alon — Alop that is linear in the sense of describes a legal operation on
the system A. However, it turns out that this is not the case. Assume that B is
some other system, logically independent of A. (Since our algebra A will typically
not describe the whole universe, there will typically be lots of such systems!) Then
we must be able to say what happens with a probability p on A ® B when we
perform our operation on A and do nothing with 5. For product probabilities, it

is natural to require that the effect of our operation on 4, doing nothing with B,

89
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i1s to map p; ® ps to

F(p1 @ p2) == f(p1) @ pa.
Now we need that F' can be extended to a map F': (A® B),,, — (A® B).
that is linear in the sense of (8.1] . It turns out that such a linear extension does

not always exist, and this leads to a nontrivial requirement on f! As one might
guess, problems occur for entangled states.

Slightly generalizing our set-up, let us consider two Q-algebras A and B and maps
[ Alon = B, that are linear in the sense of (8.1)).

Lemma 8.1.1 (Linear maps acting on states) Let A and B be Q-algebras and
let T : B— A be a linear map satisfying

(i) T(B*)=T(B),
(i) B>0 = T(B) >0, (8.2)
(i) 7T(1)=1.
Let T : A" — B’ be the dual of T, i.e.,
T'(1)(A) =1(T(B))) (le A', BeB).

Then T maps .Aprob nto Bpmb, and conversely, every map from Al
that is linear in the sense of (m arises in this way.

L into B!

pro prob

Proof Assume that f: A, — B/, is linear in the sense of (8.1 . Since A/

spans A’, the map f can uniquely be extended to a linear map fiA =B Ttis
not hard to see that f satisfies

prob

(i) 1real = f(I) real,
(i) [ positive = f(I) positive, (8.3)

(i) f(O)(1) =1(1),

and conversely, if a linear map f : A’ — B satisfies |) then f maps Al Lo into

Bl Let T' denote the dual of f, i.e., the unique linear map 7T : B — A such that

FO(B)=U(T(B) (e A, BeB).

Then it is not hard to see that the conditions ({8.2)) (i)—(iii) are equivalent to the

conditions (8.3) (i)—(iii). |

Exercise 8.1.2 Check that 1) is equivalent to 1) if f =T, the dual of T.
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A linear map T : B — A satisfying (8.2)) (i) and (ii) (but not necessarily (iii)) is
called positive.

Coming back to our earlier discussion, let A, B,C be Q-algebras, let T : B — A
be a positive linear map, and let 7" be its dual. In view of Lemma [8.1.1] we want
to know if there exists a positive linear map S : B® C — A ® C whose dual S’
satisfies

S,(pl & 102) = T,(pl) & p2 (pl € A;;)robv P2 € Cérob)'

Since A, ® Cp .1, is dense in (A'®C') = (A®C)’, we need that S = (I"® 1) =
(T'® 1), which is equivalent to S = T ® 1. This leads to the following definition:
We say that a linear map T : B — A is completely positive if the map

Tol:Be LK) — Ao LK)

is positive for every inner product space K. Surprisingly, we will see below that
positivity does not imply complete positivity. We note that if T is completely
positive and C is some sub-x-algebra of L(K), then T® 1 : B&C — A®C is
positive. Thus, since every Q-algebra can be embedded in some L£(K), it suffices
to consider only factor algebras L(KC).

8.2 A counterexample

We set out to show that positivity does not imply complete positivity and to
characterise all completely positive maps. Before we show this, we first give a
slightly different formulation of complete positivity, that is often useful. Let A be
a positive *-algebra and let K be an inner product space. Let {e(1),...,e(m)} be
an orthonormal basis for K. Then the linear operators

Thus, every A € A® L(K) has a unique decomposition

ij=1
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with A;; € A. Now
(ZAUQ‘@I )(ZBM@\ e(l)]) = Z(ZA”BJO (D)),

which shows that

k
Moreover,

(ZA@]®| e(i)l) = 24 @ el e

which shows that

(A7) = (Aji)"
Thus, we see that, with respect to an orthonormal basis for I, there is a natural
isomorphism between the positive *-algebra A @ L£(K) and the space of m x m

matrices with entries from A. Now if T': B — A is a linear map, then the linear
map (T® 1) : B® LK) — A® L(K) satisfies

o1( LBy lc@ei)l) = (LT(B) @ e ei)l)

which shows that
(T @ 1)(B)),, = T(By). (8.4

If A is a positive *-algebra then we let M,,(A) denote the space of m x m ma-
trices with entries from A, equipped with the structure of a x-algebra by putting

(AB)Z] = Zk; AikBkj and (A*>ZJ = (AJZ)*
Lemma 8.2.1 (Different formulation of complete positivity) Let A, B be

Q-algebras and let T : B — A be a linear map. Then T is completely positive if
and only if the map from M,,(B) to M,,(A) given by

Bll e Blm T(Bll) T T<Blm)

18 positive for each m.

Counterexample 8.2.2 (A positive map that is not completely positive)
Let H be an inner product space of dimension 2 and let {e(1),e(2)} be an or-
thonormal basis. Then the linear map T : L(H) — L(H) given, with respect
to this basis, by T(A);; := Aj;, is positive and satisfies T'(1) = 1, but T is not
completely positive.
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Proof If A is positive then

ZEZ‘Aijl’j Z 0 Vo e H.
i
This implies (take y; :=7;)
S UT(A)y; =D vidiy; >0 VyeH,
ij ij
which shows that T'(A) is positive. However, the map
A Ap - T(An) T(A)
Az Az T(A21) T(As)

is not positive, since under this map

1001 100 0
0000 0010
0000 ]| o100
100 1 0001

The matrix on the left is

1 1
0 0
0 o ||
1 1

93

which is clearly a positive operator. On the other hand, the matrix on the right

has an eigenvalue —1:

1 000 0 0
0010 1| 1
0100 -1 | | -1
0001 0 0

and is therefore not positive.

Remark An operator T : B — A is called n-positive if the map from M, (A) to
M,,(B) in Lemma is positive. One can show that (n+1)-positive = n-positive

but n-positive # (n + 1)-positive.



94 CHAPTER 8. OPERATIONS

8.3 Characterization of complete positivity

Our aim in this section is to describe the form of a general completely positive
map on a given Q-algebra A. For simplicity, we restrict ourselves to the case when
A is a factor algebra.

The next theorem, which describes completely positive maps between factor alge-
bras, is due to Stinespring [Sti55]; see also [Tak79, Thm IV.3.6].

Theorem 8.3.1 (Stinespring) Let H and F be inner product spaces and let
V(1),...,V(n) be linear maps in L(H,F). Then

T(A):= Y V(m)AV(m)* (A€ L(H))

defines a completely positive linear map T : L(H) — L(F) and conversely, every
completely positive linear map from L(H) to L(F) is of this form.

Proof This proof is best done with tensor calculus. We have L(H) 2 H ® H' and
L(F)=F®F. Alinear map T from L(H) to L(F) is therefore an element of

LHOH FRQF)2FQF QHOH)=2FF oH @H

Thus, there is a tensor .
TeFoF oH ®H
such that with respect to bases for F,H and the corresponding dual bases for
F',’H', one has
(T(A)ij =>_ TijuAn-
kl

Note that A € £(H) = H ® H'. We have contracted the third coordinate of T
with the first coordinate of A, which corresponds to contracting H’ with H, and
the fourth coordinate of 7' with the second coordinate of A, which corresponds to
contracting H with H'. In view of what follows, it will be convenient to order the
the spaces in the tensor product F @ /' ® H' ® H in a different way. Let

TeEFOQH HQF

be the tensor defined by T = Tjjx. Then

(T'(A))i; = ZTiklekz. (8.5)
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Now T is of the form T'(A) =Y V(m)AV (m)* if and only if
ZTikUAkz = (T(A))ij = (Z V(m)A Z Z Vzk Aklvjl )
kl m m

which is equivalent to

Tigy = Z Vir(m (8.6)

We must now formulate complete positivity in the language of tensor calculus. If
K is another inner product space then £L(H) ® L(K) = L(H ® K) and

LHOK)ZE (HRK)@(HRK) Z2HRIK@K @ H'.

If we order the spaces H, KC, X', H' in the tensor product in this way, then the map
(T®1l): LH®K) — L(F ®K) takes the form

i.e., T®1 acts only on the coordinates corresponding to H ® H' (compare formula
(8.4)). By definition, T" is completely positive if for each K, T'® 1 maps positive
operators into positive operators. We need the following simple fact, which we
leave as an exercise.

Exercise 8.3.2 Show that an operator A € L(H) = H®H' is positive if and only
if there exist x(n) € H such that A =) |z(n))(x(n)|. Show that in coordinates
this says that A;; = > x;(n)z;(n). Show that the z(n) can be chosen orthogonal.

For the space L(H® K) = 'H ® K ® K' ® H' this means that A is positive if and
only if A is of the form

zykl - Z sz Blk (88)

for some B(n) €e H® K.

So far we have only translated all definitions into the language of tensor calculus.
Now, we must show that the map T'® 1 defined in (8.7) maps A of the form ({.8])
into operators of the form (8.8)) again if and only if 7" is of the form (8.6]).

If T is of the form and A is of the form (8.8) then

<(T ®1)A ”kz Z Z Z Vip(m qu( )Eqk (n)

- Z(V(m)B(n))szlk?
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which is again something of the form (8.8]).

To prove that conversely every completely positive T is of the form (8.6) we use
a trick. For the space K we may in particular choose K = H’. Let 1 denote the
identity in L(H) = H® H' = H ® K. Then

Aijr = Lij1g

defines an operator of the form 1’ Here 1;; = 1;; = 4;;. Since T is completely
positive, T'® 1 maps A into an operator of the form (8.8), and therefore

Tijk = ZTimnzlijkn = ((T ®1)A z - Z Vii(p)Vi(p
for some V(p) € F @ K = F @ H'. This shows that T is of the form (8.6)). |

Exercise 8.3.3 Show that it is possible to choose the V(n) in Theorem [8.3.1]
orthogonal with respect to a suitable inner product on L(H, F).

8.4 Operations

We now return to our original aim of studying completely positive maps. Let
A, B be Q-algebras. By definition, an operation from A to B is a map of the
form 77 : A" — B', where T': B — A is a completely positive linear map satisfying

T(1) = 1. Operations correspond to things that one can do with a physical system,
changing its state, and possibly even the algebra needed to describe the system.

Proposition 8.4.1 (Operations on factor algebras) Let A be a Q-algebra and
let V(1),...,V(n) € Asatisfy >, V(m)V(m)* =1. Let T : A — A be given by

TA = z”: V(m)AV (m
and let T : A" — A’ be given by
(T'p)(A) = p( Y V(m)AV(m)') (A€ L(H)). (8.9)

Then T' is an operation from A to A. If A is a factor algebra, then every operation
from A to A is of this form.
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Proof It is not hard to check that T is completely positive and T'(1) = 1. The fact
that every operation has this form if A is a factor algebra follows from Stinespring’s
theorem. B

Remark 1 Ideal measurements are operations, where in this case V(1),...,V(n)
are projections which form a partition of the identity.

Remark 2 The composition of two ideal measurements, performed one after the
other, is an operation. However, unless the measurements commute, this compo-
sition is in general not itself an ideal measurement.

Remark 3 If A is not a factor algebra, then not all operations are of the form
. Indeed, if A is abelian and dim(.4) > 2, then the only operation of the form
is the identity map p — p, while by Proposition below there are many

nontrivial operations on A.

Proposition 8.4.2 (Operations on abelian algebras) Consider the abelian
Q-algebras C* and C™. Let (T;j)i=1,...n, j=1,..m be nonnegative numbers such that

>.;mij =1 for each i. Define T : C™ — C" by
T(bl, NN ,bm) = <Z7T1jbj, ceey Zﬂ'njbj> .
J J
Then T : (C") — (C™) is an operation from C™ to C™ such that

T,(Si = Z mjéj (Z = 17 ce ,TL), (810)
J

and every operation from C" to C™ is of this form.

Proof It is easy to see that every operation from C" to C™ must be of the form
(8.10)). Conversely, it is straightforward to check that defines an operation.
Note that says that if the state before we perform our operation is the
delta measure in i, then after we perform our operation we are in state j with
probability ;. |

The next lemma is almost a direct consequence of the way complete positivity has
been defined, so we skip the proof.

Lemma 8.4.3 (Operations on logically independent algebras) Let A, B
and C be Q-algebras and let T' : A" — B’ be an operation. Then there exists
a unique operation S": (A®C) — (B®C)" such that

Sl(pl ® p2) = (Tlpl) @ P2 (pl S A;)robv P2 € C;)rob)'
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This operation is given by S = (T ® 1)'. If p is any probability on AR C, then
(T®1l)p)(1eC)=p(1xC) (CeQ).

Note that the second formula says that if A4 and C are logically independent, then
performing an operation 7" on A does not change our knowledge about C.

We next take a look at deterministic operations. Let A, B be Q-algebras and let
T : B — A’ be an operation. We will say T" is deterministic if for each inner
product space IC, the operation

(T"®1): (B LK) — (A LK)

maps pure states into pure states. Since pure states are probabilities describing
maximal information about a physical system, deterministic operations are opera-
tions without loss of information. Slightly generalizing our definition, if 7': A — B
is a completely positive map then let us say that 7" is deterministic if for each i,
(T" ® 1) maps pure states into scalar multiples of pure states.

Proposition 8.4.4 (Deterministic operations) Let A~ L(H,)® - & L(H,)
and B = L(F1) & --- & L(F,) be positive-*-algebras, written as the direct sum
of factor algebras. Let f : {1,...,m} — {1,...,n} be a function and let U; €
L(Hyy, F;) (5 =1,...,m). Then the completely positive map T : A — B given
by

T(Ai,..., An) = (LA Us, .. UnApany U

defines a deterministic T' : B' — A" and conversely, every deterministic T" : B' —
A is of this form. T' is an operation if and only if the U; are unitary.

Proof The spaces H1®---®H,, and F; & --- & F,, are in an obvious way minimal
representations for the algebras A and B. There is a one-to-one correspondence
between linear forms [ € A" and their densities L € A with respect to the trace on
Hi @ - ®H,, given by

I(A) = tr(L*A) (A€ A),

so the linear map 7" : B’ — A’ gives rise to a linear map (also denoted by 7") from
B to A, such that
(T')(A) = tr((T'L)*A) (Ae A).

The fact that (7" ® 1) : (B® L(K)) — (A® L(K))" maps pure states into scalar
multiples of pure states now means that the corresponding map from (B ® L(K))
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to (A® L(K)) maps densities of the form |¢)(¢| with ¢ € F; ® K for some j into
densities of the form |¢)(¢| with ¢ € H; ® K for some 7. (Recall Lemma 4.1.4])

In particular, for each j, the map 7" : L(F;) — L(H1®- - - ®H,,) maps operators of
the form [1)) (1| into operators of this form again. Taking K = F; and mimicking
the proof of Stinespring’s theorem, we see that the restriction of 7" to £(F;) must
be of the form

/(L) = ViLV;

for some V; € L(F;,H1 @ --- & H,,). Since V; must map pure states into scalar
multiples of pure states, for every ¢ € F; there must be an ¢ such that V;¢ € 'H;.
Since Ran(V}) is a linear space, this is only possible if Ran(V;) C H; for some i.
Denote this ¢ by f(j), let U; € L(Hy(;),F;) denote the adjoint of Vj, and let P;
and P; denote the orthogonal projections on F; and H;, respectively. Then

T'L = PyyU; PLP;U; Py

J

So the linear form A — tr(L*A) is mapped under 7" to

w((T'L)* A) = Y te(Pp Uy PL*PiU; Py A) = > tx(L* P;U; Pyjy APy Uy Py).

J J

This shows that
T(A) =Y PU;Py;) APy Us P,
J
as claimed. It is easy to see that conversely if T' is of this form then 7" is deter-
ministic. 7" is an operation if and only if 7”(1) = 1 which is equivalent to the
statement that U;U7 is for each j the identity on F;, which means that the Uj
must be unitary. |
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Chapter 9

Quantum peculiarities

9.1 Cloning, coding, and teleportation

In this section we will meet two surprising quantum impossibilities, and one pos-
sibility. The first theorem that we will prove says that it is not possibly to copy a
quantum system. This result goes under the fancy name ‘no cloning’.

Theorem 9.1.1 (No cloning) Let A be a Q-algebra and let T' : A — (A® A)’
be an operation such that

(Tp)A&1) = (T (18 A) = p(A)  (AeA ped ) (9.1)
Then A is abelian.

Note that says that the operation T” takes a single system in the state p and
produces two logically independent (but not necessarily independent) systems,
both in the state p. The claim is that if the algebra is not abelian, then there
is no operation that does this for any state p. On the other hand, in classical
probability, copying is always possible:

Exercise 9.1.2 Show that if A is abelian, there exists an operation 7" such that
(9.1) holds. Show that 7" can be chosen in such a way that

(T'p)(P&1) = (T'p)(P®P)=(T'p)(1® P)

!/

for every projection P € A and p € Apmb. If T" is chosen in this way, then are the
two subsystems in general independent under T7"p?

101
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We postpone the proof of Theorem and first state another, similar theorem.
This theorem says that it is not possible to extract all information from a non-
abelian algebra, and ‘write it down’ in an abelian algebra, such that with this
information the original nonablian system can later be reconstructed. This result
goes under the name ‘no coding’.

Theorem 9.1.3 (No coding) Let A, B be a Q-algebras and let T' : A" — B’ and
S": B — A’ be operations such that
STp=p (pe ) (9.2)

prob
Then if B is abelian, so is A.

Remark As in the previous theorem, it is important that S” and 7" work for any
peA

prob*

Again we postpone the proof, and first state another theorem. This theorem says
that it is possible to extract information from a quantum system, ‘write it down’
in an abelian algebra, and then send it to someone else, so that he can reconstruct
the original system. This seems to contradict our previous theorem, but the trick is
that the two people who want to send information to each other have prepared two
entangled particles, and each of them keeps one particle with them. By making use
of these entangled particles, they can send the quantum system. This result goes
under the science fiction-like name ‘teleportation’ [B=W93]. For simplicity, we will
only teleport states on an algebra of the form £(H) where H is two-dimensional.
As is standard in this sort of communication problems, the sender will be called
Alice and the recipient will be called Bob. (Which explains why I wrote that ‘he
can reconstruct the original system’.)

Theorem 9.1.4 (Quantum teleportation) Let A and C be Q-algebras of the
form L(H), where H is two-dimensional, and let B be a four-dimensional abelian
Q-algebra. Then there erists a state ) € (C®C),,, and operations T" : (ARC)" —
B and S": (B®C) — A, such that

So(T'®l)p@n=p  (p€ Ayp)- (9.3)
Remark 1 In (9.3), (1" ® 1) is map from (A ® C @ C);,, to (B®C),,,,, s0 that
the composition of operations S’ o (7" ® 1) is a map from (ARC&QC);,, to AL .

The abelian algebra B contains all information that is sent from Alice to Bob.
Therefore, the operation 7’ ® 1 acts only on objects that are under Alice’s control
and S’ acts only on objects that are under the control of Bob.
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Remark 2 It follows from Lemma that entangled states cannot be used to
send information from Alice to Bob, in spite of their seemingly nonlocal behavior
in relation with the Bell inequality. Nevertheless, quantum teleportation shows
that entangled states can be used to upgrade ‘classical information’ to ‘quantum
information’.

We now set out to prove Theorems We start with a preparatory result.
Recall the partial order for hermitian operators defined on page (14l

Theorem 9.1.5 (Cauchy-Schwarz for operations) Let A, B be Q-algebras and
let T': A" — B’ be an operation. Then

T(B*B) > T(B)"T(B) (B € B).
If equality holds for some By € B, then

Remark 1 The inequality is called ‘Cauchy-Schwarz’ since we can view (By, By) —
T(B;Bs) as asort of A-valued (!) ‘inner product’ on B. Then we can rewrite the in-
equality above as T'(B*B)T(1*1) > T(1*B)*T(1* B) which looks like (¢|¢) (]1)) >
[(¥]9)*.

Remark 2 Note that if a Cauchy-Schwarz equality holds for all B € B, then T is
a *-algebra homomorphism.

Proof The operator

BB -B*\ (B -1\ (B -1
-B 1 L0 0 0 O
in Ms(A) is positive. Therefore, since T is completely positive, also

(52 )

is positive. If H is a representation for A then H@®H is a representation for M(.A)
and therefore, for each ¢ € H,

(o) 78) (e )

This means that

(i (g
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and therefore
(|T(B*B) =T(B)'T(B)[v) 20 (v € H),

so T(B*B) — T(B)*T(B) is a positive operator, i.e., T(B*B) > T(B)*T(B).

Now assume that T'(BfBy) = T(B1)*T(B;) for some B; € B. Then, for all B, € B
and A\, Ay € C,

M PT(BiBy) + M AT (B By) + MM T (B By) + | \o|*T(BiBs,)
=T ((M By + AaB2)" (M Bi + A By)))
> (M |PT(B1)*T(By) + MAT(By)*T(By)
+ MM T (By)* T(By) + [ Xo|*T(B2)*T(Bs).

Using our assumption that T'(B}By) = T(B;)*T(B;) this implies that

MAT (B By) + MM T (B3 By) + | Mo |*T(B; Bsy)
> MAT(By)*T(By) + MMT(By) T(By) + |\ |*T(Ba)* T(By).

In particular, setting Ay = 1 and Ay = X where X\ is real, we get

NT(B{By) + T(B3By)) + N\*T(B3Bs)
> AN(T(B1)*T(By) + T(B2)"T(B1)) + N’T(B2)"T(By).

This can only be true for all A € R (in particular, for A very small), if
T(BiB2) +T(ByB1) > T(By)'T(By) +T(Bs)"T'(By).
In the same way, setting A\ = —¢ and Ay = i\, where A is real, we get

—A\(T(B;Bs) + T(B;B1)) + \*T(B; B,)
> —\(T(B1)*T(Bs) + T(By)*T(B1)) + AT (B)*T(Bs)

which together with our previous inequality yields
In the same way, setting \; = 1 and Ay = £i\ gives

T(B:By) — T(BB,) = T(B,)"T(Bs) — T(B2)"T(B,).
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Therefore

Note that these two equalities are actually equivalent, since one can be obtained
from the other by taking adjoints. |

Proof of Theorem If T" satisfies then T': A ® A — A satisfies
TA1) =TI A=A (Ae A).
It follows that for any A € A
T(1®A)F(1®A)=T1e A*A)= A*A=T(1® AT A),

i.e., a Cauchy-Schwarz equality holds for operators of the form 1 ® A. Therefore,
Theorem tells us that for any A, B € A
AB=T(A®1)T(1®B)=T((A®1)(1® B))
=T(1®B)(A®1)) =T(1® B)T(A®1) = BA,

which shows that A is abelian. |

Proof of Theorem Since cloning is possible for states on abelian algebras,
one can show that if states on nonabelian algebras could be completely ‘written
down’ in abelian algebras, then they could also be cloned. In this way, it is
possible to derive Theorem from Theorem [9.1.1f However, we will give a
shorter, independent proof.

If 7" and S’ satisfy (9.2)) then
ToS(A)=A (Ae A).
Cauchy-Schwarz gives

ATA =T o S(A"A) > T(S(A)*S(A)) > T(S(A)) T(S(A) = A"A (A€ A),

so we must have two times equality here. In particular, by Theorem [9.1.5] the
second equality tells us that T'(S(A)S(B)) = T(S(A))T(S(B)) for all A, B € A.
Therefore, since B is abelian,

AB = T(S(A)T(S(B)) = T(S(A)S(B)) = T(S(B)S(A)) = BA (A, B € A),
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which shows that A is abelian. |

Proof of Theorem We take A = C = L(H), where H is a two-dimensional
inner product space with orthonormal basis {e1,es}. For n, we take the entangled
pure state described by the state vector x € H ® ‘H given by

X = \%61@)61—1—%62@62-
It suffices to prove the theorem for the case that p is a pure state. (The general

case then follows by linearity.) In that case, the initial state p@7n € (ARC®C)’
is described by a state vector in H ® H ® ‘H of the form

prob

Y@ x = (y161 + ya2) R X,

where y;, 9 are complex numbers (unknown to Alice and Bob) such that |y, |> +
ly2|* = 1. Now Alice performs an ideal measurement on the joint system consisting
of the state she wants to send and her particle from the entangled pair. This ideal

measurement is described by the partition of the identity {Pi, ..., Py}, where

and

Py = \f€1 ® e + \/62 & ea,
\[61 ®e; — \1[62 ® e,
Py 1= \f€1 @ ex + \[62 & eq,
i = Jme1 @ e — per @ e

<
[\)
'||'

We rewrite the state y ® x as

?/®X:(y1€1+y2€2)®(\%61@)614—\%62@62)

= %ylel Xe e + \%yﬂﬁ X ez K ey
+%y262 ®er ®er + %y262 X ex & e

=y3(Ha®@e+ Hea®e) e +yz(jma®ea - Hade)®ea
+y1%(\[61®62+f62®61)®62—|—y1 ( e1 ® ey — \/%62@)@1)@@2
+y2%<\f61®62—|-f€2®61)®61—y2 ( Se1 @ ey — ﬁ€2®€1)®61
+y22(\[61®€1+f€2®62)®62—y22(\/§61®61 T562 @ €2) ® €

= %@/Jl ® (9161 + 9262) + §¢2 ® (ylel - y26’2)
+3U3 @ (yre2 + y2e1) + 304 @ (yre2 — y2e1).

N[ N |=
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The measurement of Alice produces with equal probabilities any of the outcomes
1,...,4. If the outcome is 1, then Bob’s particle of the entangled pair is in the
state yi1e; + yoes. If the outcome of Alice’s measurement is 2, then Bob’s particle
is in the state ye; — y9e9, and so on.

If Bob learns about the outcome of Alice’s experiment, then he perform a de-
terministic operation on his particle from the entangled pair, so that after this
operation, this particle is in the state y that Alice wanted to send. (Note that y
is still unknown to Alice and Bob!) If the outcome of Alice’s experiment is 7, then
Bob performs the deterministic operation described by the unitary map U;, where
the matrices of Uy, ..., Uy € L(H) with respect to the basis {e;,es} are given by

1 0 1 0 0 1 01
e (D) e (8 0) w00 e (00,

For example, if i = 4, then Bob’s particle is in the state (y1e5 — y2€1), which under
the unitary transformation U, becomes

0 1 2 N
-1 0 Y1 Yo )
It is easy to see that in any of the four cases, Bob ends up with a particle in the
pure state yye; + yseo, which is the state Alice wanted to send.

More formally, the operations of Alice and Bob can be described as follows.

Alice’s operation is a map 7" : L(H ® H)' — B'. Here B is of the form B =
CaCaCapC={b=(by,...,by) :b; e Cland ARC X L(H)QL(H) X L(HH).
Let m; denote the pure state on B defined as 7;(b) := b;. ThenT" : L(HR®H) — B’
maps the pure state described by the state vector v; to the pure state ;. It is not
hard to see that this is achieved by the operator T : B — L(H ® H) given by

4
T(bl, Ce ,b4) - Z V;bz‘/;*7
i=1

where V; : C — (H ® H) is defined as
Vi =) (i=1,...,4).

It follows from Stinespring’s theorem (Theorem |8.3.1)) that 7" is completely positive.
Moreover, T'(1) = >, |¢;) (¥i] = 1.
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Bob’s operation is a map S’ : (B® C)’ — C'. Here C = L(H) and B® C =
(CaCaCo®C)®LMH)=LH)®LMH)®LH)®L(H). Tt is not hard to see
that Bob’s operation is achieved by the operator S : C — (B ® C) given by

S(A) = (UF AU, ..., U; AUY) (A€ L(H)),

where Uy, ..., U, are the unitary operators defined above. Comparing this with
Proposition we see that S’ is a deterministic operation.

Define (1®7n): A®C®C — A by
nA® B) :=n(B)A (A€ A BeC®().

Then the operations 7" and S’ and the state n satisfy (9.3) for all p € A/ if and
only if
po(leno(T®1)oS(A)=p(A) (A€A peA,y),

which is equivalent to
(1@ o(T®1)oS(A) =p(4) (A€ A).

This formula can be checked by straightforward calculation. In fact, we have al-
ready seen all the essential ingredients of this calculation in our informal discussion
of Alice’s and Bob’s operations, so we do not go into details. |

9.2 Quantum cryptography

In the previous section, we saw that quantum probability leads to some surprising
impossibilities: ‘no cloning’ and ‘no coding’. In view of these impossibilities, the
possibility of ‘quantum teleportation’ is surprising, but from the classical point of
view, where copying is possible, this is nothing new. In this section, we will see
that the peculiarities of quantum probability also open some new possibilities that
are not present in classical probability.

Suppose that Alice wants to send a (classical) message to Bob, say, a sequence
(x1,...,2,) of zeros and ones, while making sure that a third party, called Ewve,
is not eavesdropping. Alice can do this if she has another, random sequence
(y1,--.,yn) of zeros and ones, that is known to her and Bob, but to no one else.
With such a sequence, she simply sends Bob the sequence (21, ..., 2,) given by

2z =x; +y; mod 1.
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To anyone who does not know the code (y1, ..., y,), the message (21, ..., 2,) is just
a random sequence of zeros and ones, but Bob, who knows the code, calculates

r; =2z +1y; mod 1

to get Alice’s message (21, ...,z,).

Now Alice and Bob may have prepared their code before, when they were together,
but since each code may be used only oncd| they may run out of code after a
while. This leads to the following question: can Alice send Bob a secret code of
independent zeros and ones, while being sure that Eve is not listening somewhere
on the telephone line?

In classical probability, this is not possible, since Eve can perform a nonperturbing
measurement on the signal passing through the telephone line. But in quantum
probability, the situation is quite different. In [J=Z00], a team around professor
Zeilinger from Vienna shows how Alice can send a code to Bob while making sure
that Eve is not eavesdropping. What is more, they report on an experiment that
shows that this form of communication is possible in practice. On April 27, 2004,
the Studdeutsche Zeitung reported how in Vienna, 3000 euro were transferred from
the town hall to the bank account of the university, using this form of quantum

cryptography.

This is how it works. Alice prepares pairs entangled photons, of which she keeps one
for herself, and sends the other one to Bob through a glass fiber cable. On the pho-
tons that Alice keeps for herself, she performs at random, with equal probabilities,
either the ideal measurement {Fy, P;/;} or the ideal measurement {P,, P, r/},
where P, is the projection defined on page|84|and y is an angle that we will choose
later. Likewise, Bob performs on his photons with equal probabilities either the
measurement {Fy, Pr/o} or {P_, P_,1z/2}. After sending as many photons as she
needs, Alice tells Bob over a regular telephone line which measurements she used
for her photons. Bob then tells Alice which measurements he used, and he tells the
outcomes of all his measurements in those cases where they did not both perform
the measurement {Fy, Pr/2}. As we will see in a moment, Alice can see from this
information whether Eve was eavesdropping or not. If she sees that Eve was not
tapping the phone, Alice sends Bob the message that she wanted to send, using
as a code the outcome of those measurements where she and Bob both performed
the measurement {Fy, Pr/s}.

ITf the same code is use repeatedly, then the coded messages are no longer sequences of
independent random variables, and this dependence may be used to crack the code.
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Let 19 be the entangled state from page |[84] and let
Ta,8(+;+) = py(Pa ® P3)

denote the probability that Alice and Bob do the observations P, and Pj, if they
perform the ideal measurements { Py, Poyr/2} and { Pg, Psix/2}, respectively. Like-
wise, let

Ta,5(+, =) = pyp(Pa ® Payr/2),
To8(—s 1) 1= py(Poyr/2 @ Pp),
ﬂ—aﬁ(_? _) ::pd)(Pa—Hr/Q & PB—i—rr/Q)a

denote the probabilities that one of them, or both, perform the complementary
observation. We calculated on page [85|that

ﬂ-aﬁ(—h +) = ﬂ-aﬂ(_? _> = %COS<6 - Oé)Q,
Tas(+, =) = Tap(—,+) = 3sin(6 — a)”.

In particular, moo(+,+) = moo(—, —) = % and moo(+,—) = moo(—,+) = 0, so
the pairs of photons on which Alice and Bob both performed the measurement
{Py, Pr/2} can be used as a secret code.

If Eve wants to find out this secret code, she has no other choice than to perform a
measurement on all photons that pass through the glass fiber cable on their way to
Bob, since she cannot know in advance which photons are going to be used for the
secret code. We claim that if Eve fiddles with these photons in any way such that
she gets to know the secret code, then she cannot avoid changing the probabilities
in such a way that

Ty0(+, =) + o,y (+, =) = Ty (+, =) 2 0. (9.4)

This is called Wigner’s inequality. 1t follows from the assumptions of anticorrela-
tions and nonentanglement:

Lemma 9.2.1 (Wigner’s inequality). Assume that probabilities w, 5(£, £) sat-
isfy mo0(+, =) = moo(—,+) =0 and

Tap(0n7) = Y pemlH(o)n2i(r) (o7 =+, ),
k

where the 7% (+) are nonnegative numbers such that 7*(+) + 7% (=) = 1 and the
pr are positive numbers summing up to one. Then holds.
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Proof Write
Tas(0,7) = Y pun (o, 7),
k
where 7% (0, T) = W}x’k(d)ﬂ'é’k(T). Since 7y o(+, —) = mo,0(—, +) = 0 we must have

that for each k, either 73" (+) = 70" (4) = 1 or my* (=) = n2* (=) = 1. In the first

case,

o+ =) + 76 (+, =) =7 (+, )
2,k , 2,k
= w4 0+ 1 m2E (=) — b (1) ()
= (1-m*H)a25(-) 2 0,

while in the second case

o =)+ b (=) =k —) =) (1 =7 (=) > 0.

Summing up over k we arrive at ((9.4)). |

We claim that Eve’s measurement of the secret code necessarily destroys the en-
tanglement of the two photons. Indeed, if Eve wants to be sure that she gets the
same code as Alice, she has no other option than to perform the ideal measurement
{Fo, Pr/2} on the photon that is on its way to Bob. If she also wants Bob to recieve
the secret code, she must send the photon on to Bob after she has performed her
measurement, or she must send another photon that is polarized in the direction
that she measured. In any case, in doing so, she will have changed the system
from the pure state p, with

¢:%§¢1®¢1+\%¢2®¢2

to the mixed state
%p¢>1®¢1 + %p¢2®¢>27

which is not entangled, and therefore satisfies Wigner’s inequality.

We now know how Alice can find out from the information that Bob sends her
whether Eve has been eavesdropping. If Eve has not interfered with the signal,
the quantity in Wigner’s inequality is

2

Lsin(y)? + Lsin(y)? — Lsin(27)?,

which reaches a minimal value of —% at v = %77. From the relative frequencies
of outcomes in those measurements where she and Bob did not both perform the
measurement {7, Pr/2}, Alice can check whether Wigner’s inequality is violated.
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Indeed, Wigner’s inequality holds also with 4+ and — reversed, so for greater sta-
tistical precision, Alice checks whether the quantity

7T’Y,0(+7 _) + WU,—V(+7 _> - 71—’77—7(_{—7 _)
+1y0(—, +) + Mo,y (=, +) = Ty, (=, +)
is close enough to —}L. If she is satisfied with the answer, she knows that the
outcomes of the experiments where she and Bob both performed the measurement
{Py, Pr/2} are not known to Eve, and she uses these as a secret code to send her

message to Bob.

Exercise 9.2.2 Eve decides to use the following tactic: She cuts the glass fiber
between Alice and Bob, blocking all direct communication between them. Instead,
Eve communicates now with both Alice and Bob, pretending to be Bob when she
communicates with Alice, and pretending to be Alice when she communicates with
Bob. In this way, she builds up a secret code with Alice and another secret code
with Bob. When Alice sends the coded signal, Eve decodes it using the code she
shares with Alice and then codes it with the code she shares with Bob, before
passing it on to Bob. Can Alice and Bob do anything to detect this kind of
eavesdropping?
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English-Czech glossary

abelian

ace

addition

adjoint

angular momentum
block-diagonal form
bounded

closure

clover

complete
completion
complex conjugate
composition
conditional probability ... given
conditioning
coordinate

density
diagonalizable
diamonds

direct sum
eigenvector
eigenvalue
entanglement

event

expectation

faithful representation
functional calculus
hermitian

identity

indicator function
inner automorphism
inner product
intersection

jack

kernel

matrix

measure
measurement
metric space

mixed state

abelovsky

€eso

operace scitani

adjoint / hermitovsky zdruzeni
moment hybnosti

omezeny
UzZaver
ktize
uplny
ziplnéni

skladani

podminéna pravdépodobnost . ..za podminky
podminovani

soufadnice

hustota

diagonalizovatelny

kary

direktni suma, pfima suma

vlastni vektor

vlastni ¢islo

entanglement, propleteni

jev, udalost

stfedni hodnota, ocekavani

vérna representace

funciondlni pocet, funcionalni kalkulus
hermitovsky

identita, jednotovy operator, jednotovy prvek
indikator

vnitini isomorphismus

skalarni soucin, vnitini souc¢in

prunik

svrsek

jadro

matice

mira

méreni

metricky prostor

smiseni stav
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momentum
multiplication with scalars
multiplicity

normed space
observable

observation

origin

orthogonal complement
partition

physical quantity
probability law
probability space
projection operator
proper subspace

pure state

quantum mechanics
quotient space

random variable

range

reducible

relative frequencies
reversible

root

self-adjoint

semisimple

separable

set of all subsets of ()
set operation

simple algebra
simultaneous measurement
spades

span / to span
spectral decomposition
state

state space

super selection rule
supremum norm

hybnost

nasobeni skalary
nasobnost

normovany prostor
pozorovatelnd

pozorovani

pocatek, nulova vektor
ortogonalni doplnek
rozklad

fyzikalni veli¢ina
pravdépodobnostni rozdéleni
pravdépodobnostni prostor
projektor

vlastni podprostor

Cisty stav

kvantova mechanika
kvocientni prostor, zlomkovy prostor
nahodna proménna

obor hodnot, dosah
reducibilni

relativni cetnosti
reversibilni, vratny

koten

samozdruzeny

poloprosty

separovatelny

potence mnoziny 2
mnozinova operace

prosta algebra

simultani métfeni

piky

linedrni obal / linedrné pokryvat
spektralni rozklad

stav (elementarni jev)
stavovy prostor

super vybérové pravidlo
supremova norma
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tensor product
tensor calculus
time evolution
trace

uncertainty relation
union

unit element

wave function
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tensorovy soucin
tensorovy pocet
¢asovy vyvoj

stopa

principa neurcitosti
sjednoceni
jednotovy prvek
vlnova funkce
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