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Graphs

By definition, a graph is a pair (Λ,E ) with:

I vertex set Λ, a countable set.

I edge set E , a set whose elements are unordered pairs {i , j}
with i , j ∈ Λ, i 6= j .

Let

E :=
{

(i , j) : {i , j} ∈ E
}

and Ni :=
{

j ∈ Λ : {i , j} ∈ E
}
.

Example Λ = Zd . For i = (i1, . . . , id) ∈ Zd , let

‖i‖1 :=
d∑

k=1

|ik | and ‖i‖∞ := max
k=1,...,d

|ik | (i ∈ Zd).

For R ≥ 1, we set

Ed :=
{
{i , j} : ‖i− j‖1 = 1

}
, Ed

R :=
{
{i , j} : 0 < ‖i− j‖∞ ≤ R

}
.
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The square lattice with nearest neighbor edges

(Z2,E 2)

Jan M. Swart Interacting Particle Systems



The one-dimensional integer lattice

(Z1,E 1)
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Next nearest neighbor edges

(Z1,E 1
2 )
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The square lattice with L1 neighborhood

(Z2,E 2
1 )
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The square lattice with L1 neighborhood

Ni in (Z2,E 2
1 )
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Nearest neighbor neighborhood

Ni in (Z2,E 2)
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Range two neighborhood

Ni in (Z2,E 2
2 )
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Interacting particle systems

Λ countable set lattice
S finite set local state space
SΛ Carthesian product set of configurations x =

(
x(i)

)
i∈Λ

with x(i) ∈ S ∀ i ∈ Λ.
X = (Xt)t≥0 interacting particle system, Markov process with state
space SΛ.

Xt =
(
Xt(i)

)
i∈Λ

with Xt(i) ∈ S ∀ i ∈ Λ.

G collection of local maps m : SΛ → SΛ.
(rm)m∈G collection of Poisson rates.

generator Gf (x) =
∑
m∈G

rm
{

f
(
m(x)

)
− f
(
x
)}
.

Interpretation: rm dt is the probability that the map m is applied
during the time interval (t, t + dt].
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Example: the contact process

S = {0, 1}. Interpretation: x ∈ {0, 1}Λ is a particle configuration

x(i) = 0 means the site i is empty,

x(i) = 1 means there is a particle at i .

For each (i , j) ∈ E , define a branching map braij : SΛ → SΛ by

braijx(k) :=

{
x(i) ∨ x(j) if k = j ,

x(k) otherwise.

For each i ∈ Λ, define a death map deathi : SΛ → SΛ by

deathix(k) :=

{
0 if k = i ,

x(k) otherwise.

Rates: rbraij = λ ∀(i , j) ∈ E rdeathi = 1 ∀i ∈ Λ.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 0.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 1.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 2.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 3.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 4.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 5.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 6.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 7.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 8.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 9.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 10.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 11.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 12.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 13.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 14.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 15.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 16.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 17.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 18.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 19.
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The contact process

Contact process on (Z2,E 2) with λ = 2.
Time t = 20.
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The contact process

Claim equilibrium density equals survival probability

θ(λ) := P1[X∞(0) = 1] = P1{0} [Xt 6= 0 ∀t ≥ 0].

λ

θ(λ)

λc = 1.6489± 0.0002.

1
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Example: a finite contact process

time

space

0 1 2 3 4 5 6 7 8 9
0 0 0 0 1 0 1 1 0 0

0 0 0 1 1 1 1 1 0 0
Xt

X0

bra2,1

bra0,1

bra4,3
bra7,8

bra2,3

death4

bra3,4
bra1,2

bra6,5

bra7,6

death8
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Example: a finite contact process

time

space

0 1 2 3 4 5 6 7 8 9
0 0 0 0 1 0 1 1 0 0

0 0 0 1 1 1 1 1 0 0
Xt

X0

bra2,1

bra0,1

bra4,3
bra7,8

bra2,3

death4

bra3,4
bra1,2

bra6,5

bra7,6

death8
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Poisson construction of interacting particle systems

Idea: construct a continuous time Markov chain by applying maps
m : S → S at times of a Poisson process.

Let ω be a Poisson point set on G × R with intensity rm dt.

Interpretation: for each (m, t) ∈ ω, apply the map m at time t.

Let {t ≥ 0 : (m, t) ∈ ω} = {t1, t2, . . .} with t1 < t2 < · · ·
Then t1, t2 − t1, t3 − t2,. . . are i.i.d. exponentially distributed with
mean 1/rm.
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Generator construction of interacting particle systems

Let Px [(Xt)t≥0 ∈ · ] := P[(Xt)t≥0 ∈ · |X0 = x ].

Let Pt(x ,A) := Px [Xt ∈ A] denote the transition kernel of (Xt)t≥0.
Semigroup property:

PsPt = Ps+t with PsPt(x ,A) :=

∫
Ps(x ,dy)Pt(y ,A).

Ex [f (Xt)] =
∫

Pt(x , dy)f (y) = f (x) + tGf (x) + O(t2), where

Gf (x) =
∑
m∈G

rm
{

f
(
m(x)

)
− f
(
x
)}
.

is the generator of the semigroup (Pt)t≥0.
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Voter model

S = any finite local state space.

Voter map

votji (x)(k) :=

{
x(j) if k = i ,
x(k) otherwise,

Generator

Gf (x) =
∑

(i ,j)∈E

1

|Ni |
{

f
(
votjix

)
− f
(
x
)}
.

Interpretation: each site with rate 1 copies the state of a uniformly
chosen neighbor.
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The voter model

Time t = 0.
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The voter model

Time t = 0.25.
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The voter model

Time t = 0.5.
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The voter model

Time t = 1.
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The voter model

Time t = 2.
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The voter model

Time t = 4.
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The voter model

Time t = 8.
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The voter model

Time t = 16.
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The voter model

Time t = 31.25.
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The voter model

Time t = 62.5.
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The voter model

Time t = 125.
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The voter model

Time t = 250.

Jan M. Swart Interacting Particle Systems



The voter model

Time t = 500.
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The voter model

The behavior of the voter model strongly depends on the
dimension.

Clustering in dimensions d = 1, 2.

Stable behavior in dimensions d ≥ 3.
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The voter model

Cut of 3-dimensional model, time t = 0.
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The voter model

Cut of 3-dimensional model, time t = 1.
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The voter model

Cut of 3-dimensional model, time t = 2.
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The voter model

Cut of 3-dimensional model, time t = 4.
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The voter model

Cut of 3-dimensional model, time t = 8.
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The voter model

Cut of 3-dimensional model, time t = 16.
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The voter model

Cut of 3-dimensional model, time t = 32.
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The voter model

Cut of 3-dimensional model, time t = 64.
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The voter model

Cut of 3-dimensional model, time t = 125.
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The voter model

Cut of 3-dimensional model, time t = 250.
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A one-dimensional voter model

space

time

0 100 200 300 400 500

0

500

1000

1500

2000

2500

A one-dimensional voter model.
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A stochastic Ising model

S = {−1,+1} spin.

For any x ∈ SΛ, we call

Mi (x) :=
∑
j∈Ni

x(j)

the local magnetization around i ∈ Λ. Let κi (x , · ) denote the law
of a random variable X such that

P[X (i) = ±1] =
eβ±Mi (x)

eβ±Mi (x) + eβ∓Mi (x)
,

and X (j) = x(j) a.s. for all j 6= i . Then κi is a local probability
kernel and

Gf (x) =
∑
i∈Λ

( ∫
κi (x , dy)f (y)− f (x)

)
defines the generator of a stochastic Ising model with Glauber
dynamics.
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A stochastic Ising model

Interpretation: each site i with rate 1 chooses a new state
according to the probability kernel κi .

When the parameter β is large, nearby spins like have the same
sign.

We start the process in product measure for different values of β
and see what happens.
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The Ising model

β = 0.3, time t = 0.
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The Ising model

β = 0.3, time t = 1.
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The Ising model

β = 0.3, time t = 2.
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The Ising model

β = 0.3, time t = 4.
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The Ising model

β = 0.3, time t = 8.
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The Ising model

β = 0.3, time t = 16.
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The Ising model

β = 0.3, time t = 32.
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The Ising model

β = 0.3, time t = 64.
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The Ising model

β = 0.7, time t = 0.
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The Ising model

β = 0.7, time t = 1.
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The Ising model

β = 0.7, time t = 2.
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The Ising model

β = 0.7, time t = 4.

Jan M. Swart Interacting Particle Systems



The Ising model

β = 0.7, time t = 8.
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The Ising model

β = 0.7, time t = 16.
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The Ising model

β = 0.7, time t = 32.
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The Ising model

β = 0.7, time t = 64.

Jan M. Swart Interacting Particle Systems



The Ising model

β = 0.7, time t = 125.
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The Ising model

β = 0.7, time t = 250.
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The Ising model

β = 1, time t = 0.
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The Ising model

β = 1, time t = 1.
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The Ising model

β = 1, time t = 2.
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The Ising model

β = 1, time t = 4.
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The Ising model

β = 1, time t = 8.
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The Ising model

β = 1, time t = 16.
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The Ising model

β = 1, time t = 32.
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The Ising model

β = 1, time t = 64.
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The Ising model

β = 1, time t = 125.
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The Ising model

β = 1, time t = 250.
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The Ising model

β = 1, time t = 500.
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The spontaneous magnetization

The spontaneous magnetization is defined as

m∗(β) := the equilibrium expectation of Xt(0)
started from X0 = 1.

For the model on (Z2,E 2), Onsager (1944) proved

m∗(β) =

{ (
1− sinh(β)−4

)1/8
for β ≥ βc := log(1 +

√
2),

0 for β ≤ βc.

For Z3, the graph of m∗(β) looks roughly similar with βc ≈ 0.442
but no explicit formulas are known.
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The spontaneous magnetization

β

m∗(β)

0 0.5 1 1.5

0.25

0.5

0.75

1

βc

The spontaneous magnetization of the
two-dimensional Ising model.

Jan M. Swart Interacting Particle Systems



A stochastic Potts model

Instead of allowing only two states −1,+1, we can more generally
allow q ≥ 2 states 1, . . . , q.
Each person i chooses a new state at times of a Poisson process
with rate 1.
The probability that the newly chosen state is k ∈ {1, . . . , q}
equals

eβMi (k)∑q
m=1 eβMi (m)

,

where Mi (k) denotes the number of neighbors of i that are in the
state k .
Setting q = 2 and replacing β by 2β yields the Ising model.

On Z2 for q > 4 the “magnetization” makes a jump at the point
of the phase transition.
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The Potts model

β = 1.2, time t = 0.
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The Potts model

β = 1.2, time t = 1.
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The Potts model

β = 1.2, time t = 2.
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The Potts model

β = 1.2, time t = 4.

Jan M. Swart Interacting Particle Systems



The Potts model

β = 1.2, time t = 8.
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The Potts model

β = 1.2, time t = 16.
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The Potts model

β = 1.2, time t = 32.
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The Potts model

β = 1.2, time t = 64.
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The Potts model

β = 1.2, time t = 125.
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The Potts model

β = 1.2, time t = 250.
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The Potts model

β = 1.2, time t = 500.
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A one-dimensional Potts model

space

time

0 100 200 300 400 500

0

500

1000

1500

2000

2500

In one-dimensional Potts models, the cluster size remains
bounded in time even at very high β (= low temperature).
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The biased voter model

In the biased voter model with two states {0, 1}, each organism i
changes its type Xt(i) with the rates

0 7→ 1 with rate (1 + s) · fraction of type 1 neighbors,

1 7→ 0 with rate 1 · fraction of type 0 neighbors,

where s > 0 gives type 1 a (small) advantage.

Contrary to the voter model, even if we start with just a single
organism of type 1, there is a positive probability that type 1 never
dies out.

Models spread of advantageous mutation.
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The biased voter model

Biased voter model with s = 0.2. Time t = 0 .
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The biased voter model

Biased voter model with s = 0.2. Time t = 10.
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The biased voter model

Biased voter model with s = 0.2. Time t = 20.
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The biased voter model

Biased voter model with s = 0.2. Time t = 30.
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The biased voter model

Biased voter model with s = 0.2. Time t = 40.
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The biased voter model

Biased voter model with s = 0.2. Time t = 50.
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The biased voter model

Biased voter model with s = 0.2. Time t = 60.
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The biased voter model

Biased voter model with s = 0.2. Time t = 70.
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The biased voter model

Biased voter model with s = 0.2. Time t = 80.
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The biased voter model

Biased voter model with s = 0.2. Time t = 90.
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The biased voter model

Biased voter model with s = 0.2. Time t = 100.
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The biased voter model

Biased voter model with s = 0.2. Time t = 110.
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The biased voter model

Biased voter model with s = 0.2. Time t = 120.
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The biased voter model

Biased voter model with s = 0.2. Time t = 130.
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The biased voter model

Biased voter model with s = 0.2. Time t = 140.
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The biased voter model

Biased voter model with s = 0.2. Time t = 150.

Jan M. Swart Interacting Particle Systems



The biased voter model

Biased voter model with s = 0.2. Time t = 160.
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The biased voter model

space

time
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A one-dimensional biased voter model with bias s = 0.2.
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The biased voter model

We can extend the biased voter model by also allowing
spontaneous jumps from 1 to 0.

0 7→ 1 with rate (1 + s) · fraction of type 1 neighbors,

1 7→ 0 with rate 1 · fraction of type 0 neighbors

+ d ,

where s > 0 gives type 1 an advantage and d ≥ 0 is a death rate.

This models the fact that genes may become disfunctional due to
deleterious mutations.

Whether 1’s have a positive probability to survive now depends in
a nontrivial way on s and d .
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The biased voter model

space

time
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Process with bias s = 0.5, death rate d = 0.02.
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A rebellious voter model

The rebellious voter map is defined as

rvotkji (x)(l) :=

{
1− x(i) if l = i and x(k) 6= x(j),

x(l) otherwise.

The rebellious voter model is the one-dimensional model with
generator

Gf (x) :=α
∑
i

{
f
(
voti ,i+1(x)

)
− f
(
x
)}

+α
∑
i

{
f
(
voti ,i−1(x)

)
− f
(
x
)}

+(1− α)
∑
i

{
f
(
rvoti−1,i ,i+1(x)

)
− f
(
x
)}

+(1− α)
∑
i

{
f
(
rvoti+1,i ,i−1(x)

)
− f
(
x
)}
.
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A rebellious voter model
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Process with α = 0.8 behaves more or less as a voter model.
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A rebellious voter model

space

time
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In the process with α = 0.3, cluster size remains bounded in time.
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Reaction diffusion models

Another rich class of models are reaction diffusion models.

These are systems of particles that perform independent random
walks and interact when they are near to each other.

Let Xt(i) = 1 (resp. 0) signify the presence (resp. absence) of a
particle and consider the maps rwij : {0, 1}Z → {0, 1}Z

rwi ,jx(k) :=


0 if k = i ,

x(i) ∨ x(j) if k = j ,
x(k) otherwise.

The process with generator

G = 1
2

∑
i∈Z

{
f
(
rwi ,i+1x

)
− f
(
x
)}

+ 1
2

∑
i∈Z

{
f
(
rwi ,i−1x

)
− f
(
x
)}

describes coalescing random walks.
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Coalescing random walks
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Reaction diffusion models

In analogy with the branching map

braijx(k) :=

{
x(i) ∨ x(j) if k = j ,

x(k) otherwise,

we can also define a cooperative branching map

coopii ′jx(k) :=

{ (
x(i) ∧ x(i ′)

)
∨ x(j) if k = j ,

x(k) otherwise.
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Branching and coalescing random walks

space

time

0 50 100 150 200

0

100

200

300

400

Jan M. Swart Interacting Particle Systems



Cooperative branching and coalescence
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Cooperative branching rate 2.2.
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Cooperative branching
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Cooperative branching rate 3.
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A cancellative system

Two more maps of interest are the annihilating random walk map

arwijx(k) :=


0 if k = i ,

x(i) + x(j) mod(2) if k = j ,
x(k) otherwise,

and the annihilating branching map

abraijx(k) :=

{
x(i) + x(j) mod(2) if k = j ,

x(k) otherwise,
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A cancellative system
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Annihilating random walks.
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A cancellative system
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A system of branching annihilating random walks.
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Killing

Define a killing map as

killijx(k) :=

{ (
1− x(i)

)
∧ x(j) if k = j ,

x(k) otherwise,

which says that the particle at i , if present, kills any particle at j .
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Branching and killing
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A system with branching and killing.
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