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1 Effect of selection on population genealogies: Brunet
Derrida conjecture

Branching Brownian motion (BBM) under selection is inspired concerning
the effect of natural selection on the genealogy lines of a population. This
connection can be viewed as follows: imagine that each individual in a
population is represented by a position on the real line, which measures his
or her fitness. Fitness of an individual is obviously influenced by fitness of his
or her parent’s fitness (here we are considering asexual haploid population),
but due to mutation, fitness of an offspring evolves randomly. We describe
here two basic models.

(1) Model 1: BRW with selection We start with a population of size
N individuals. Each individual i ≤ N is completely characterized by
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a number xi ∈ R, which measures its selective advantage (i.e., fitness).
Time is discrete and during each transition, each individual gives birth
to k(≥ 2) many individuals. Fitnesses of all offspring are given by their
parent’s fitness plus i.i.d. copies of a certain displacement law ρ. Now
the natural selection works as follows : after each transition only the
fittest N individuals remain (i.e., the rightmost N individuals).

(2) Model 2: BBM with selection At time t = 0, N independent
Branching Brownian motions with binary branching start from a cloud
or front of N particles on R. To study the effect of natural selection,
at each branching event, we kill the leftmost particle. This ensures
that you are always left with population of N fittest individuals (at
that instant). Note that, if the leftmost particle tries to branch we
ignore the branching event. In what follows we frequently refer this
model as the NBBM model.

What can we say about the above two models of population under selec-
tion. Brunet, Derrida, Mueller and Munier (see [6], [7]) made three stricking
predictions:

(1) Speed conjecture: Suppose at time t, the population is represented
by X1(t) ≥ X2(t) ≥ · · · ≥ XN (t) where Xi(t) denotes the position of
the i-th particle among the selected population of size N , ordered from
right. As time goes to infinity, the typical diameter of the population
of N particles will be of the order of logN and the population, taken
as a whole moves ballistically with asymptotic speed depending on the
size, i.e.,

lim
t→∞

X1(t)

t
= · · · = lim

t→∞

XN (t)

t
= vN .

One remarkable prediction [6] is the following: as N →∞, the asymp-
totic speed vN of the population converges to a limiting value v∞ but
at unexpectedly slow rate of (logN)−2. The precise conjecture is the
following:

v∞ − vN ∼
C

(logN)2
.

(2) MRCA (most recent common ancestor) conjecture: If two in-
dividuals are selected from the population at random in some genera-
tion, then the number of generations that we need to look back to find
their most recent common ancestor is of the order of (logN)3.

(3) Genealogy conjecture: If n individuals are sampled from the popu-
lation at random (after large time), and their ancestral lines are traced
backwards in time, the coalescence of these lineages can be described
by the Bolthausen-Sznitman coalescent.
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While the first conjecture is settled by Beŕard and Gouéré [1] under some
assumptions on the displacement distribution, the remaining two conjectures
(for the above models) are still open. We should mention here that these two
conjectures represent the stricking effect of selection on the genealogy lines
of population. Berestycki, Berestycki and Schweinsberg [2] able to prove
these two conjectures for a closely related but modified model where they
have more independence compared to the selection model. To discuss their
results, we need to understand some notions. We first start with Bolthausen-
Sznitman coalescent process.

2 Coalescent process

We first fix some vocabulary and notation. A partition π of N is an equiva-
lence relation on N. The blocks of the partition are the equivalence classes
of this relation. In other words, the elements i and j are equivalent w.r.t.
π, they are in the same block of π. The blocks of π will be listed in the
increasing order of their least elements: thus, B1 is the block containing 1,
B2 is the block containing the smallest element not in B1, and so on. The
space of partitions of N is denoted by P. There is a natural distance on P,
which is to take d(π, π1) to be equal to 1 over the largest n such that the
restriction of π and π1 to [n] = {1, · · · , n} are identical.
Exercise Show that, equipped with this distance, P is Polish.

This enables us to talk about convergence in distribution for random
variables taking values over P or Pn, where Pn denotes the space of parti-
tions of [n].

2.1 Kingman’s coalescent

Next for each n ≥ 1, we want to consider a process {Πn
t : t ≥ 0} taking

values in Pn. We start with the simplest example of a (consistent and
exchangeable) coalescent process.

Definition 1. Kingman’s coalescent is a process {Πn
t : t ≥ 0} taking values

in Pn such that

(i) Πn
0 := [n];

(ii) {Πn
t : t ≥ 0} is a continuous time strong Markov process, where the

transition rates q(π1, π2) are positive if and only if π2 is obtained from
merging exactly two blocks of π1, in which case the rate is given by
q(π1, π2) = 1.

In words, this process starts with all singleton boxes and at each tran-
sition only binary merging is allowed. The evolution may be described as
follows : every pair of blocks (irrespective of of their sizes) has i.i.d. Pois-
son clocks with rate 1. Because of this, one may think of each block as
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a particle. Each pair of particles merges at rate 1. Memoryless property
of Poisson process ensures that {Πn

t : t ≥ 0} is a continuous time Markov
process. Sometime the role of the initial state [n] is emphasized by referring
it as Kingman’s n-coalescent.

An important property of Kingman’s n-coalescent is consistency: if we
consider the natural restriction of Pn to partitions in Pm, where m < n, we
obtain a new random process Pm,n whose distribution is same as the law of
Kingman’s m- coalescent (and is thus independent of n). In this case, it is
not difficult to verify the claim. By Kokmogrov’s extension theorem, one
important consequence of this property is the following:

Proposition 1. There exists a unique in law process (Πt : t ≥ 0) with values
in P, such that the restriction of P to Pn is an n-coalescent. The process
(Πt : t ≥ 0) is called the Kingman’s coalescent.

For a varety of simple population models, the genealogy of a sample
from that population can be approximated by Kingman’s coalescent. This
will usually be formalized by taking a scaling limit as the population size
N tends to infinity, while the sample size n is fixed but arbitrarily large.
A striking feature of these results is that the limiting process, Kingman’s
coalescent, is to some degree universal, i.e., the microscopic details of the
underlying probability models are of little importance. However, this univer-
sality holds under a number of important assumptions. These assumptions
can be informally described as follows:

(1) Population of constant size, and individuals typically have few o-
springs.

(2) Population is well-mixed (or mean-eld): everybody is liable to in- ter-
act with anybody.

(3) No selection acts on the population.

Wright-Fisher model and Moran model are the two basic models satis-
fying these assumptions and the limiting genealogy is given by Kingman’s
coalescent. In case of Wright-Fisher model time is discrete. Suppose at time
t ∈ Z the population is given by {x1, . . . , xN}, then at time t + 1 the pop-
ulation is represented by {y1, · · · , yN} where parent of each yi is randomly
chosen among {X1, . . . , xN}. In case of Moran model, the only difference is
time is taken as continuous and each individual has i.i.d. Poisson clock of
death. When an individual dies, a new individual/offspring appears whose
parent is uniformly selected among the remaining N−1 individuals present.

Theorem 2. Fix n ≥ 1 and let ΠN,n
t denote the partition obtained from

looking for the ancestors at time −t of n randomly picked individuals at
time 0. Then as N →∞, speeding up time by a factor N , we have

(ΠN,n
Nt : t ≥ 0)⇒ (Πn

t : t ≥ 0),
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where (Πn
t : t ≥ 0) is the Kingman’s n coalescent.

Next we describe coalescent processes which allow multiple merging.

2.2 Multiplicative coalescent

In the previous section, we saw that Kingman’s coalescent is a suitable ap-
proximation for genealogy under certain conditions. Recall that Kingman’s
coalescent allows only pairwise merging and when these conditions are not
satisfied, we may need different type of coalescent process to model. When
the population size has excessive fluctuations, e.g., from time to time there
are bottlenecks in which the population size becomes very small, then at
these times large proportion of the ancestry lineages coalesce. Similarly,
in the process of natural selection, individuals with strong favourable mu-
tations will quickly occupy an important fraction of the population, which
results into multiple coalescence of the ancestral lineages. These heuristics
suggest that, for population under selection we may require a coalescent
process which allows multiple merging.

With this motivation we first try to construct a coalescent process with
multiple merging satisfying the consistency conditions. We consider an array
of positive numbers (λb,k)2≤k≤b representing the rate at which any fixed k-
tuple of blocks merges when there are b blocks in total and satisfying the
recursion:

λb,k = λb+1,k + λb+1,k+1. (1)

The interpretation is that a given group of b blocks may coalesce into k
blocks in two ways, reveal an extra block b + 1 either these k coalesce by
themselves without the extra block, or they coalesce together with it.

Definition 2. A Markovian Pn valued n-coalescent, (Πn
t : t ≥ 0), with Πn

t

exchangeable for any t ≥ 0 and consistent in the sense that the law of Πn

restricted to [m] is that of Πm for every 1 ≤ m ≤ n, is uniquely specified
by an array of numbers (λb,k)2≤k≤b satisfying (1). The process (Πt : t ≥ 0)
(whose restriction to Pn has law Πn), is called Λ-coalescent.

The name of Λ-coalescent, comes from the following beautiful character-
isation of coalescents with multiple merging, which is due to Pitman [14].

Theorem 3. Let (Πt : t ≥ 0) be a multiple coalescent associated with an
array of numbers (λb,k)2≤k≤b (satisfying (1)). Then there exists a finite
measure Λ on the interval [0, 1] such that

λb,k =

∫ 1

0
xk−2(1− x)b−kΛ(dx) for all 2 ≤ k ≤ b. (2)
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The measure Λ uniquely characterizes the law of (Πt : t ≥ 0), which is
then called a Λ-coalescent.
Example Observe that for the choice Λ as the unit Dirac mass at 0, the
corresponding Λ-coalescent is nothing but Kingman’s coalescent (i.e., every
pair of blocks is merging at rate 1).

Definition 3. For the choice Λ as uniform measure over [0, 1], the corre-
sponding Λ-coalescent is known as Bolthausen-Sznitman coalescent. In this
case the transition rates λb,k can be explicitly calculated as

λb,k =
(k − 2)!(b− k)!

(b− 1)!
.

The Bolthausen-Sznitman coalescent arose in connection with the physics
of spin glass and believed to be a universal scaling limit for models which
can be described by “random travelling waves”. Now we take digression
and explore a deeper property of Λ coalescent which will be useful later.
Because we treat blocks as exchangeable particles, the coalescent process
(Πt : t ≥ 0) is actually a Levy process, in the sense that for every 0 ≤ s ≤ t,
given Ft = σ(Πs : 0 ≤ s ≤ t),

Πt+s
d
= Πt ?Π′s,

where Π′s is independent from Fs and has the same distribution as Πs.
Here, ? operation is defined as follows : the partition π0 ? π1 is obtained by
coagulating all the blocks of π0 whose labels are in the same block of π1.
Exercise

(i) Show that the operation ? is not commutative.

(ii) Show that (P, ?) forms only a monoid but not a group.

It is useful to recall that a Levy process is a real-valued process (Xt : t ≥ 0)
with independent and stationary increments. In other words, for every t ≥ 0,
the process (Xt+s −Xt : s ≥ 0) is independent of Ft and has same distribu-
tion as the original process X. The simplest example of Levy processes are
of course Brownian motion and the simple Poisson process.

Because of Theorem 2, if instead of picking N fittest or rightmost parti-
cles, at each generation if we choose N particles uniformly then the limiting
coalescent process is given by the Kingman’s coalescent, which allows only
pairwise merging. So the third conjecture by Brunet and Derrida suggests
that in presence of selection the limiting picture is completely different. In
the next section, we introduce another stochastic process: continuous state-
space branching process (CSBP).
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3 Continuous state-space branching process

In this section we discuss continuous state-space branching process (CSBP).
We first start with a continuous time branching process where each member
has independent copies of Poisson death clock and once the clock rings,
it produces offspring according to some common offspring distribution µ
independent of everything else and dies. Clearly, the process (Zt : t ≥ 0) is
a continuous time Markov process with absorbing state 0, where Zt denotes
the size of the population at time t. It is easy to observe that for Zm1+m2

t

denoting the size of the population at time t starting from m1 + m2 ∈ N
individuals, we have

Zm1+m2
t

d
= Zm1

t + Zm2
t for all t ≥ 0.

This is referred as the fundamental branching property.

Definition 4. A continuous state-space branching process (CSBP) is a
Markov process with RCLL paths with values in [0,∞] whose transition ker-
nels (Pt)t≥0 satisfy the branching property

Pt(x, ·) ∗ Pt(y, ·) = Pt(x+ y, ·) for all t, x, y ≥ 0. (3)

In other words, if Zx and Zy are two independent copies of CSBP Z
started respectively at x and y, then Zx +Zy has the same law of Z started
at x + y. CSBP was introduced by Jirina [?] and their connections with
Galton-Watson processes have been studied in particular by Lamperti [12].
Continuous state-space brunching process can also be observed as the limit
of discrete state space branching processes (see [11]).

Consider a convex function ψ : [0,∞)→ R of the type

ψ(u) = αu+ βu2 +

∫ ∞
0

(e−xu − 1 + xu1x≤1)Λ(dx),

where α ∈ R, β ≥ 0, and Λ is a measure on (0,∞) such that
∫

(1∧x2)Λ(dx) <
∞. A CSBP with branching mechanism ψ is a time homogeneous Markov
process (Zt : t ≥ 0) with values in [0,∞], where the boundary points 0
and ∞ are absorbing states, whose semigroup can be characterized via its
Laplace transform as follows. For every λ > 0 and a ∈ [0,∞),

E(e−λXt |X0 = a) = exp{−aut(λ)},

where the function ut(λ) solves

∂ut(λ)

∂t
= −ψ(ut(λ)), u0(λ) = λ.

So in short, for a CSBP, branching mechanism tells us everything about the
process. One can decide whether a CSBP is subcritical, critical or super-
critical depending upon its branching mechanism.

Next we mention that a CSBP can also be viewed as a time changed
Levy process. This correspondence will be particularly useful for us.
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3.1 1-1 correspondence with Levy process

Recall that a Levy process has stationary increments. We start with the
continuous time discrete state space branching process (Zt : t ≥ 0). We
have i.i.d. offspring distributions here. But given Zt = m, the next tran-
sition occurs at the minimum of m i.i.d. Poisson clock ticks. Hence the
transition rate depends on the size of the population and the increments are
not stationary. Since the minimum of m i.i.d. Poisson rate 1 arrivals has the
same law as Poisson rate m arrival, if we appropriately slow down the clock,
i.e., magnify the time scale accordingly (with a factor of the corresponding
population size), then the increments become stationary. This heuristics
suggest that a discrete state space branching process can be regarded as a
time-changed Levy process. In what follows, we will make this correspon-
dence more precise and show that a CSBP also enjoys this correspondence.

Let D denote the metric space of RCLL paths defined over [0,∞) with
values in [0,∞] with the usual Skorohod metric. D1 be the induced metric
space obtained by restricting to the paths which get absorbed at either 0 or
∞. This means that for any f ∈ D1, if f1(s) = 0(or ∞) for some s ≥ 0,
then we must have f1(t) = 0(or ∞) for all t ≥ s.

For f ∈ D1, we define θt :=
∫ t

0 f(s)ds ∈ [0,∞] for all t ≥ 0. Let κ denote
the right inverse of θ on [0,∞] given by

κt := inf{u ≥ 0 : θu > t} ∈ [0,∞],

where we follow the convention that inf ∅ =∞. Define the Lamperti trans-
formation

L : D1 7→ D1 by L(f) = f ◦ κ, (4)

where one remembers that L(f)(t) = f(∞) if κt =∞.
Exercise

(i) Show that the Lamperti transform defined above is actually a map
from D1 to D1, i.e., show that L(f) is a RCLL path with absorbing
state at 0 or ∞.

(ii) Show that the map L : D1 7→ D1 is bijective.

(iii) Compute its inverse.

From the earlier discussions, it follows that for the continuous time discrete
Markov chain (Zt : t ≥ 0), Lamperti transform (L(Zt) : t ≥ 0) gives a Levy
process.

Similar argument suggests that it is possible to get back the branching
process from the Levy process by adjusting the rate of the clocks. We first
compute inverse of L (we have already commented that this is a bijective
transformation). Setting g = L(f), one rewrites κ as κt :=

∫ t
0 1/g(s)ds ∈
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[0,∞]. Then it is not difficult to see that f = g ◦ θ where θ is the right
inverse of κ.

The above discussion shows that there is a one-one correspondence be-
tween continuous time discrete state space branching processes and Levy
processes, more formally spectrally positive Levy processes, i.e., class of
Levy processes with no negative jumps and which get absorbed at 0. Lam-
perti representation theorem states that this correspondence continues to
hold for CSBP’s as well.

Theorem 4. The Lamperti transformation is a bijection between continuous-
state branching processes and Levy processes with no negative jumps and
stopped whenever reaching zero. Specifically, for any CSBP Z, the trans-
formed process L(Z) is a Levy process with no negative jumps and stopped
whenever reaching zero. On the other hand for any Levy process X with no
negative jumps and stopped whenever reaching zero, L1(X) is a CSBP.

For a proof we first recall the fact that the CSBP’s are limits of rescaled
DSBP’s (discrete state space branching process) (see [11]). For DSBP’s we
have already given a heuristic argument showing that the Lamperti trans-
formed DSBP is a compound Poisson process. In general Lamperti trans-
form is not continuous w.r.t. the Skorohod topology. But within the conser-
vative and non-explosive scenario this continuity holds and proves the above
theorem. Even in the explosive but non-conservative case Helland [9] was
able to show that if the above convergence is strong enough then continuity
of Lamperti transform holds and able to identify necessary and sufficient
conditions for such type of convergence. In order to prove the above theo-
rem in its full generality (i.e., including the non-conservative case also), [8]
introduced a new topology on the Skorohod space and proved continuity of
Lamperti transform w.r.t. new topology. We refer to [8] for details.

In the next subsection we are going to describe how to obtain the ge-
nealogical structure for a CSBP.

3.2 Genealogy for a CSBP

For a DSBP, it is straightforward to recover the genealogy information from
the graphical tree representation. On the other hand, for a CSBP we don’t
have a tree representation as such and apparently it is not clear how to
recover the genealogy information for a CSBP in a consistent manner. In
a classic work, Bertoin and Le Gall [3] showed how to define precisely the
notion of genealogy for a CSBP. Moreover they found that for a class of
CSBP’s (with certain type of branching mechanism) the genealogy is given
by Bolthausen-Sznitman coalescent. In order to discuss their work we need
to first introduce the notion of a subordinators.

9



Definition 5. Subordinator is a non-decreasing Levy process taking values
in R. Here we will work with a modification which has RCLL paths almost
surely.

We first try to explain the heuristics using a discrete state-space branch-
ing process. Though in this case the genealogical information is evident
from the graphical tree representation, but now we will try to present it in
a mathematical way which does not use the graphical representation. Fix
0 ≤ s ≤ t. For any individual at time t, the ancestor at time s can be found
out in the following way: the population at time s is given by {1, 2, · · · , Zs}.
For each 1 ≤ i ≤ Zs, we consider the sub tree (or better to say sub popu-
lation) at time t (or time t− s) obtained starting from {1, . . . , i} at time s
(or at time 0). We further assume that at time t the population members
are ordered in a certain way which respects ancestry. One way to do this is
the following: each member of {1 . . . , Zt} is appended with the label of its
parent at time s which belongs to the set {1, · · · , Zs} and then follow lexico-
graphic ordering. This construction gives a non-decreasing RCLL path and
given this path it is evident how to read the ancestors from this path. At
this point, it may appear confusing that at one hand we are saying that we
will not use the graphical “tree”, on the other hand we are considering sub
trees. Actually what we use is the fact that for all 1 ≤ i ≤ Zs, the DSBP’s
starting from the initial set {1, . . . , i} exist on the same probability space,
which is evident in this set up. Now we will try to follow this intuition for
a CSBP.

In order to highlight the role of an initial value, we write Zt = Z(t, a)
to denote that the CSBP (Zt : t ≥ 0) starts from Z0 = a ∈ R. By the
fundamental branching property, we have

Z(·, a) + Z ′(·, b) d
= Z(·, a+ b),

where Z ′(·, b) is independent of Z(·, a) and has the same law as Z(·, b). In
other words there exists some probability space such that the CSBP’s, Z(·, a)
and Z(·, a+b), are defined over it with the property that Z(·, a+b)−Z(·, a)
is independent of Z(·, a) and has the same law as Z(·, b). Next we fix any
0 ≤ a1 < a2 < a3 < ∞ and consider three process defined over some
probability space such that:

(i) Z(·, a1);

(ii) Z ′(·, a2− a1) which is independent of Z(·, a1) and has the same distri-
bution as Z(·, a2 − a1);

(ii) Z ′′(·, a3− a2) which is independent of both Z(·, a1), Z ′(·, a2− a1) and
has the same distribution as Z(·, a3 − a2).

Using these three processes it is possible to construct copies of Z(·, ai) :
1 ≤ i ≤ 3 on the same probability space such that for 1 ≤ j < i ≤ 3,
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Z(·, ai)− Z(·, aj) has the law Z(·, ai − aj) and independent of Z(·, al) : 1 ≤
l ≤ j.

Clearly for any k ∈ N, this construction can be carried over for k points
0 ≤ a1 < a2 < · · · < ak < ∞. Moreover, this construction does not
depend on in which order we pick these k points. Hence by Kolmogorov’s
theorem, we can construct a process (Z(t, a) : t ≥ 0 and a ≥ 0) such that
Z(·, 0) = 0 and for every a, b ≥ 0, Z(·, a+ b)− Z(·, a) has law Z(·, b) and is
independent of the family of the processes {Z(·, c) : 0 ≤ c ≤ a}. Hence it
follows that for any t > 0 the process Z(t, ·) has independent and stationary
increments. Further this process is non-decreasing a.s. This gives us that
the process Z(t, ·) is a ‘subordinator’ (defined as in (5)). Relating with our
earlier discussions for DSBP’s, we observe that the RCLL path obtained
there is a subordinator. The next proposition (Proposition 1 of [3]) gives a
deeper connection. We need to recall some notation.

Suppose the semigroup of the CSBP (Z(t, a) : t ≥ 0) can be expressed
through Laplace transform characterized as follows:

E
(
e−λXt |X0 = a

)
= e(−aut(λ)).

If the branching mechanism of the CSBP is given by (ψ(u) : u ≥ 0), then
the function ut(λ) satisfies

∂ut(λ)

∂t
= −ψ(ut(λ)), u0(λ) = λ .

Proposition 5. On some probability space, there exists a process

(S(s,t)(a), 0 ≤ s ≤ t and a ≥ 0) such that:

(i) For every 0 ≤ s ≤ t, (S(s,t) = S(s,t)(a), a ≥ 0) is a subordinator with
Laplace exponent ut−s(·).

(ii) For every integer p ≥ 2 and 0 ≤ t1 ≤ · · · ≤ tp, the subordinators
S(t1,t2), · · · , S(tp−1,tp) are independent and

S(t1,tp)(a) = S(tp−1,tp) ◦ · · · ◦ S(t1,t2)(a) for all a ≥ 0 a.s.

Finally, the processes (S(0,t)(a), t ≥ 0 and a ≥ 0) and (Z(t, a) : t ≥ 0 and a ≥
0) have the same finite-dimensional marginals.

Proof: We present the basic steps here.

Step 1. Fix 0 ≤ t1 ≤ · · · ≤ tp and consider p − 1 independent
subordinators S(t1,t2), · · · , S(tp−1,tp) with respective Laplace exponents
u(t2−t1)(·), · · · , u(tp−tp−1)(·). For every a ≥ 0, set S(ti,ti)(a) = a and

S(ti,tj) = S(tj−1,tj) ◦ · · · ◦ S(ti,ti+1) for all 1 ≤ i < j ≤ p.
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It follows from the construction that S(ti,tj) is a subordinator with
Laplace exponent utj−ti(·) and for any 0 ≤ s1 ≤ · · · ≤ sk ∈ {t1, · · · , tp}
these subordinators {S(si−1,si) : 1 ≤ i ≤ k} are independent.

Step 2 (Consistency) Fix p ∈ N and consider p tuples (ai, bi) with
ai ≤ bi for all 1 ≤ i ≤ p.

– Observe that the earlier construction gives subordinators S(ai,bi)

with respective Laplace exponents ubi−ai(· · · ) for 1 ≤ i ≤ p.
– This construction does not depend on in which order these k

tuples are picked.

– By Kolmogorov’s theorem, the process (S(s,t)(a), 0 ≤ s ≤ t and a ≥
0) exists.

Step 3 (Equality of fdd’s)

– Fix a ≥ 0 and Let Ft be the σ-field generated by the subordi-
nators S(r,s)(a) for 0 ≤ r ≤ s ≤ t. For any s ≥ 0, S(0,t+s)(a) is
defined as S(t,t+s) ◦ S(0,t)(a) where S(t,t+s) is an subordinator in-
dependent of Ft with Laplace exponent us(·). Hence the process
S(0,·)(a) is a homogeneous Markov process starting from a with
semigroup

E(e−λS
(0,t+s)(a)|S(0,s)(a) = x) = E(e−λS

(s,t+s)(x)) = e−xut(λ).

The above shows that the processes S(0,·)(a) and Z(·, a) have the
same law.

– Finally in order to complete the proof we fix general (ai, ti) : 1 ≤
i ≤ p with ti < ti+1 and show that there exists some probability
space where we can have independent copies of these subordina-
tors S(0,ti)(ai) : 1 ≤ i ≤ p. Together with the earlier result, this
completes the proof.

Once we have this construction of subordinators and CSBP’s on the same
probability space we are ready to recover the genealogies.

Definition 6. For every b, c ≥ 0 and 0 ≤ s < t, we say that the individual c
in the population at time t has ancestor (or is a descendant of) the individual
b in the population at time s if b is a jump time of S(s,t) and

S(s,t)(b) < c < S(s,t)(b).

The set of individuals in the population at time t having an ancestor at
time s is the random open subset of [0,∞) with canonical decomposition⋃(
S(s,t)(b−), S(s,t)(b)

)
where the union is taken over the jump times of the
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subordinator S(s,t). Its complement can be identified as the closed range of
S(s,t). Under the assumption that S(s,t) has zero drift, the closed range has
zero Lebesgue measure a.s. In other words, the individuals in the population
at time t having no ancestor at time s are of Lebesgue measure zero a.s.
Clearly an individual in the population at time t has at most one ancestor
at time s.

Suppose 0 ≤ r < s < t. If the individual d in the population at time t
has ancestor c in the population at time s, and if the latter has ancestor b
in the population at time r, then by definition

S(s,t)(c−) < d < S(s,t)(c) and S(s,t)(b−) < c < S(s,t)(b).

Since S(r,t) = S(s,t) ◦ S(r,s), by monotonicity we have

S(r,t)(b−) < d < S(r,t)(b),

i.e., the individual d in the population at time t has ancestor b in the pop-
ulation at time r. This shows that the genealogies obtained through this
construction is consistent.

The last thing we are going to discuss before discussing the results of
[2] is how to study convergence of genealogies. This will be based on a
peoneering work of Bertoin and Le Gall [4].

3.3 Stochastic flows associated to coalescent processes

We start with a haploid population of fixed size N denoted by {1, · · · , N}
and transitions due to generations happen at discrete time steps. For every
generation n ∈ Z and 1 ≤ i ≤ N , ξi,n denote the number of children of the
individual i at generation n. Since the total size of the population is fixed,
we must have ξ1,n + · · · + ξN,n = N . The individuals are labeled in a way
which is compatible with the genealogy. Formally when ξi,n ≥ 1, the labels
of the individual(s) at generation n+1, who are the children of the individual
i at the n-th generation, run from ξ1,n + · · ·+ ξi−1,n + 1 to ξ1,n + · · ·+ ξi,n.
The ancestors of the population at the n-th generation can be obtained from
the function ∆n : {0, · · · , N} 7→ {0, · · · , N} which is defined by

∆n(i) =

{
0 if i = 0

ξ1,n + · · ·+ ξi,n if 1 ≤ i ≤ n.

Note that, the increments of ∆n are exactly the sizes of the blocks of the
partition of the population at generation n who has the same ancestor in
generation n− 1.

For m < n, if we want to obtain the ancestors at generation m for the
population at generation n, then we use the compositions

∆m,n = ∆n ◦∆n−1 ◦ · · ·∆m+1.

13



Now when the sequence {(ξ1,n, · · · , ξN,n) : n ∈ N} gives i.i.d. copies of ex-
changeable N-tuple of random variables (ξ1,n, · · · , ξN,n), i.e., its distribution
is invariant under any permutation of indices, then the sequence of random
maps {∆n : n ∈ Z} is i.i.d. with exchangeable increments. Further for any
m1 < n1 ≤ m2 < n2, the maps ∆m1,n1 and ∆m2,n2 are independent. This
motivates the following definition.

Definition 7. We call (Bm,n : m,n ∈ N and m ≤ n) a flow of discrete
bridges (with exchangeable increments) if the following conditions are satis-
fied :

(a) for all m ∈ N, B(m,m) denotes an identity map a.s.

(b) (cocycle property) For every 0 ≤ m ≤ n,

B0,n = Bm,n ◦B0,m .

(c) The law of Bm,n only depends on n−m, and for every n1 ≤ · · · ≤ nk,
the bridges Bn1,n2 , · · · , Bnk−1,nk

are independent.

In general, we observe that for all 0 ≤ m ≤ n, the process (Bm,n(s) : s ∈
[0, 1]) has RCLL non-decreasing paths with exchangeable increments such
that Bm,n(0) = 0 and Bm,n(1) = 1. With this discrete set up motivation,
we proceed to study the continuous version.

Definition 8. A bridge B = (B(r), r ∈ [0, 1]) is a random process with non-
decreasing RCLL paths and exchangeable increments, such that B(0) = 0
and B(1) = 1.

Let Id denote the identity mapping over [0, 1]. Following [4], we are going
to define a continuous analog of Definition 7.

Definition 9. B = (Bs,t(x), 0 ≤ s ≤ t, 0 ≤ x ≤ 1) is a flow of bridges,
which is a collection (Bs,t, 0 ≤ s ≤ t) of bridges such that:

• For every s < t < u, we have Bs,u = Bt,u ◦Bs,t .

• The law of Bs,t only depends on t− s.

• If s1 < s2 < · · · < sn, then the bridges Bs1,s2 , ..., Bsn−1,sn are indepen-
dent.

• B0,0 = Id and B0,t → Id as t → 0 in probability, in the sense of
Skorohod topology.

Definition 10. Consider {Vn : n ∈ N}, an i.i.d. collection of U(0, 1)
random variables. Define a random partition Π(B) of N by the equivalence
relation given by,

i ∼Π j ⇔ B−1(Vi) = B−1(Vj) for i, j ∈ N,
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where B−1 denotes the usual right inverse given by

B−1(r) = inf{s ∈ [0, 1] : B(s) > r} for r ∈ [0, 1] and B−1(1) = 1.

When B has exchangeable increments then Π(B) is also an exchangeable
partition.

We present a continuity lemma taken from [4], which is very useful for
studying convergence of genealogies. Let D([0, 1],R+) be the space of RCLL
non-decreasing paths defined over [0, 1] such that f(0) = 0 and f(1) = 1 for
all f ∈ D([0, 1],R+).

Lemma 6. Consider a sequence of bridges {Bn : n ∈ N}. The following are
equivalent.

(i) The exchangeable partition Π(Bn)⇒ Π(B∞) (w.r.t. the topology men-
tioned in the beginning of Section 2).

(ii) Bn ⇒ B∞ in D([0, 1],R+) endowed with the Skorohod topology.

In a little more generally, this lemma can be stated as follows: if we start
from a sequence {(Bn) : n ∈ N} of bridges and assume that the exchangeable
partitions Π(Bn) converge in distribution, then the limit has to be of the
form Π(B∞). We will not present the prof of this lemma here. In the next
section we present a stronger version of this lemma and prove that.

Bertoin and Le Gall [3] proved that the genealogy for the CSBP with
branching mechanism ψ(u) = u log(u), studied by Neveu, is given by Bolthausen-
Sznitman coalescent process.

Theorem 7. Fix a, t > 0. Let V1, V2, · · · be a sequence of random vari-
ables such that conditionally on Ft, Vi’s are independently and uniformly
distributed over [0, Z(t, a)]. For any 0 ≤ s ≤ t with probability 1 we can de-
fine an equivalence relation Γ̃s on N by declaring m ∼Γ̃s

n (i.e., m,n belong

to the same class of Γ̃s if Vm and Vn has the same ancestor at time t− s).
Then

(Γ̃s : 0 ≤ s ≤ t)and (Γs : 0 ≤ s ≤ t) has same f.d.d.’s.

Here we just present how to construct a flow of bridges to represent
genealogy when population size no longer remains constant. Then we have
to normalize properly.

We fix an integer p ≥ 1 and choose finitely many ordered time points
0 ≤ t0 < t1 < · · · < tp ≤ t. In order to simplify notation, for every
0 ≤ k ≤ p, we take ak = Z(tk, a) = S(0,tk)(a) . For 0 ≤ k ≤ p − 1, define a
process Bk = (Bk(s) : 0 ≤ s ≤ 1) by setting

Bk(s) =
(
S(tk,tk+1)(sak)

)
/
(
S(tk,tk+1)(ak)

)
=
(
S(tk,tk+1)(sak)

)
/ak+1.
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Clearly, Bk(0) = 0 and Bk(1) = 1. By construction, Bk has non-decreasing
RCLL paths.
Exercise Show that Bk’s are independent for different k’s.

For any 0 ≤ k ≤ p− 1, we consider the compositions

Bp1 ◦ · · · ◦BK(s) = a−1
p S(tk,tp)(sak).

4 Branching Brownian motion with absorption

In 1978, Kesten [10] introduced branching Brownian motion with absorption.
In the beginning, one particle starts branching Brownian motion from a
location x > 0 and as soon as a particle hits the line starting from the origin
with slope µ it is killed. It is equivalent to say that this process follows the
same dynamics as branching Brownian motion with drift µ, where µ > 0,
starting with one particle located at x > 0 in the beginning and particles
are killed when they reach the origin. Kesten showed that there exists a
critical value µc =

√
2 such that if µ ≥ µc, then the process dies out almost

surely, while if µ < µc, the process survives with positive probability.
Branching Brownian motion with absorption can also be interpreted as

a model for population with natural selection. Imagine that each individual
in a population is represented by a position on the real line, representing his
or her fitness. Due to mutations, fitness of an individual evolves according
to Brownian motion, and initially the fitness of a child is identical to the
fitness of the parent. Selection progressively eliminates all individuals whose
fitness becomes too low and falls beyond a line with constant speed (or
slope) . Every individual whose fitness falls beyond the current threshold
is instantly removed from the population. This prevents the population to
grow too much. Clearly, the population size no longer remains the same,
but we will see later if the threshold parameter µ (the drift of the threshold
line) is chosen suitably, then the order of the population size remains the
same. On the other hand, compared to the NBBM model where the number
of Brownian particles are fixed due to natural selection (described in the
beginning of Section 1), this model is relatively easier to deal with as the
particles enjoy more independence. Berestycki, Berestycki and Schweinsberg
[2] studied this model in detail. Before discussing their result, we describe
some other predictions made by Brunet and Derrida ([6], [7]), which will
help us to understand the heuristics of the choice of different parameters in
[2].

(1) Most of the time, the particles are in a meta-stable state. In this
state, the cloud of particles (also called the front) has a diameter of
logN + O(1). The empirical density of particles seen from the left-
most is proportional to e−x sin(πx/ logN), and the system moves at
a linear speed vcutoff = 1 − π2/(2 log2N). In particular, most of the
particles are at O(1) distance from the left-most particle.
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(2) They further observed that this meta-stable state is perturbed from
time to time by particles moving far to the right. Fix a point in the
bulk, for example the median, and say that a particle reaches a point y
if it moves to distance y from that fixed point. It was predicted that a
particle moving up to the point logN+x causes, after a relaxation time
of order log2N , a shift of the front by ∆ = log(1 + Cex/ log3N) ; for
some constant C > 0. Hence, in order to have an effect on the position
of the front, a particle has to reach a point near logN + 3 log logN .

(3) Assuming that such an event where a particle reaching to the point
logN + x happens at rate proportional to ex, the time taken by a
particle to come close to logN + 3 log logN (and thus causing shifts
of the front) is of the order of log3N .

The first observation suggests that as long as the particles do not reach
logN + 3 log logN , the size of the population does not change too much
and the particles hitting logN + 3 log logN require special attention. For
the ease of notation we take LN = logN + 3 log logN . In order to study
asymptotic results, the authors of [2] considered a sequence of branching
Brownian motions {(XN (t), t ≥ 0) : N ∈ N} with absorption where for each
N ≥ 2 the corresponding drift µ = µN is given by,

µN :=

√
2− 2π2 logN

(logN + 3 log logN)
. (5)

Clearly this choice allows them to work with the near-critical set up and
in order to keep the growth of the population in control, it is intuitive to
take µn ↑

√
2. But the specific choice of µN comes from the fact that, for a

branching Brownian motion with drift µ starting from a single particle at x,
and particles killed upon reaching 0 or L, the expected number of particles
in a set B at a sufficiently large time t is approximately

∫
B pt(x, y)dy, where

pt(x, y) =
2

L
e(1−µ2/2−π2/(2L2))t.eµx sin(

πx

L
)e−µy sin(

πy

L
).

In order to to study the points hitting LN = logN + 3 log logN separately
(as these point produce a shift by producing large number of particles before
getting absorbed), take L = LN as the right killing boundary. Note that the
time parameter t appears only in the first exponential factor implying that
the population size should be roughly constant provided µ is chosen such
that 1− µ2/2− π2/(2L2) = 0. This motivates the choice µ = µN satisfying
(5).

The above discussion suggests that for a branching Brownian motion
with drift µN starting from a single particle, after a large time t, the number
of particles whose ancestor at time s is within the interval (0, LN ) for all
0 ≤ s ≤ t is roughly constant. On the other hand the fluctuation of the
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population size is largely due to contributions of the points which go too
far to the right and hit LN . As predicted by the physicists, in [2] it was
also proved that the time taken to hit LN is of order log3N which is the
proper time scale to look into. In order to obtain asymptotic results, they
also ensure that the population size fluctuations (which are mainly due to
the ‘far-away’ particles) are of the right order (i.e., of order N) on the time
scale of interest.

It should be noted that in [2], actually the process started with many
particles, rather than just one, satisfying some rather technical assumptions.
In this expository article, we restrain to state the exact technical conditions
at this moment and for interested reader we refer to Proposition 1 of [2].
We comment that these conditions ensure that the number of particles in
the system stays of order of N on the time scale of interest, so that the
process can be viewed as a model of a population of size approximately N.
This again heuristically explains the connection to the NBBM model where
the number of Brownian particles are fixed. Once again we comment that
this model is relatively easier to deal with compared to the NBBM, viz.,
because the particles enjoy more independence. In what follows, we assume
that these technical conditions hold.

With this brief heuristics, we present one of the main results of [2].
Recall that for each N ∈ N, the process (XN (t) : t ≥ 0) denotes a branching
Brownian motion. Let MN (t) denote the number of the Brownian particles
at time t and their positions are denoted by X1,N (t) ≥ X2,N (t) ≥ · · · ≥
XMN ,N (t).

Theorem 8. As N →∞, the finite-dimensional distributions of the process
{MN ((log3N)t) : t > 0} converge to the finite-dimensional distributions of
the continuous-state branching process (CSBP) with branching mechanism
ψ(u) = au+ 2πu log u started with distribution ν at time zero, where a and
ν comes from the initial technical conditions.

Remark 9. (i) Our assumption about initial condition is not strong enough
to guarantee the convergence for t > 0.

(ii) This result proves that the size of the population remains of order n at
log3N time scaling.

(ii) Because of fluctuations, one can not have process convergence while
working with the Skorohod topology. But it might be of interest to see
whether it is possible to achieve process convergence with respect to
some other topology (e.g., Skorohod M1 topology).

Here we present only the brief heuristics. As discussed earlier, by di-
viding the particles at time t into two parts; those that have stayed inside
the interval (0, LN ), and those that have hit the point LN before hitting 0,
roughly corresponds to the division of the process into a deterministic and
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a stochastic part. For the particles that hit LN , the authors of [2] further
showed that

(1) the number of descendants at a later time of such a particle is of the
order of WN , where W is a random variable with tail P(W > x) ∼ 1/x
as x→∞ and

(2) the rate at which particles hit the right barrier is of the order of log3N .

These two findings together yield their result. Having said this, one should
note that proving the above facts is quite involved and we refer to [2] for
full details.

The next result proves the analog of the third conjecture of Brunet et al.
([6], [7]) for branching Brownian motion with absorption. Suppose n parti-
cles are picked randomly after a large time and we trace back their ancestral
lines, the resulting coalescent process, with proper time scaling, converges
to the Bolthausen-Sznitman coalescent. We recall that the Bolthausen-
Sznitman coalescent allows multiple merging. Here multiple merging is due
to the fact that occasionally particles go too far to the right and hit Ln
and these particles before getting killed generate large number of offspring
occupying a positive proportion of the population. This explains why multi-
ple merging appears here. This is in sharp contrast with population models
with no selections where Kingman’s coalescent appear as the universal scal-
ing limit (under some very general conditions).

For a precise formulation of the result, we choose n particles uniformly at
random from the MN ((log3N)t) particles at time (log3N)t, and label these
particles at random by 1, · · · , n. Fix t > 0. For 0 ≤ s ≤ 2πt, let ΠN (s)
to be the partition of {1, · · · , n} such that i and j are in the same block of
ΠN (s) if and only if i, j particles both are descended from the same ancestor
at time (t− s/(2π))(log3N). On the other hand let (Π(s) : 0 ≤ s ≤ 2πt) be
the Bolthausen-Sznitman n coalescent running for time 2πt and restricted
to {1, · · · , n}.

Theorem 10. As N → ∞, the finite-dimensional distributions of of the
process (ΠN (s), 0 ≤ s ≤ 2πt) converge to those of (Π(s), 0 ≤ s ≤ 2πt).

We remark that the (logN)3 time scaling that appears here, as well as
in the previous Theorem, shows that if two particles are chosen at random,
then the time taken to reach to their most recent common ancestor is of
the order (logN)3 and this justifies the second conjecture in the context of
branching Brownian motion with absorption.

We recall that Bertoin and Le Gall [3] showed how to obtain the ge-
nealogy structure of a continuous-state branching process. They found that
the genealogy of Neveu’s continuous-state branching process is given by the
BolthausenSznitman coalescent. These results were further extended in [4]
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and it was shown that the genealogy of any continuous-state branching pro-
cess with branching mechanism, of the form ψ(u) = au + bu log u, can still
be described by the Bolthausen- Sznitman coalescent.

In order to prove Theorem 10 we first need to come up with a flow of
discrete bridges {(BN

s,t(x) : 0 ≤ x ≤ 1) : 0 ≤ s ≤ t} such that for any
0 = t0 < t1 < · · · < tk = t, we have the equality of distribution

(Π(BN
tk−1,tk

), · · · ,Π(BN
t0,tk

))
d
= (ΠN (2π(t− tk−1)), · · · ,ΠN (2π(t− t0))),

where ΠN (2π(t − ti)) is the coalescent process obtained by looking at the
genealogy of n randomly picked individuals from the set of MN (log3Nt)
individuals over the time period [log3Nti, log3Nt] at (logN)3 time scale.
Then we show that, as n→∞, w.r.t. the Skorohod topology

{(BN
tk−1,tk

), · · · ,Π(BN
t0,tk

) : N ∈ N} ⇒ {(Btk−1,t, · · · , Bt1,t)}

where {(Bs,t(x) : 0 ≤ x ≤ 1) : 0 ≤ s ≤ t ≤ 1} represents the corresponding
flow of bridge for a CSBP process with branching mechanism ψ(u) = au+
2π2u log u constructed as in the proof of Theorem 7. On the other hand, from
[4] it follows that the finite dimensional distributions of (Π(Bs,t) : 0 ≤ s ≤ t)
are given by that of the Bolthausen-Sznitmann coalescent process. Hence
because of Lemma 6 (strictly speaking we need a stronger lemma as the
approximating bridges will no longer have exchangeable increments), we
have that

{(ΠN (2π(t− tk−1)), · · · ,ΠN (2π(t− t0))) : N ∈ N}
⇒ (Π(2π(t− tk−1)), · · · ,Π(2π(t− t0))),

as n→∞. This gives the result.

4.1 Genealogy convergence to the Bolthausen-Sznitman co-
alescent for BBM with absorption

In this subsection we will have a deeper look at Theorem 10 and discuss the
steps of the proof in detail.

4.1.1 Construction of the flow of bridges

We first consider the CSBP (Z(t) : t ≥ 0) with branching mechanism
ψ(u) = au + 2π2u log u. Recall from Proposition 5 that there exists a flow
of subordinators (S(s,t)(x) : 0 ≤ s ≤ t, x ≥ 0) such that

(i) for all 0 ≤ s ≤ t, the process S(s,t) = (S(s,t)(x) : x ≥ 0) is a subordi-
nator with Laplace exponent ut−s where ut−s(·) is as in (??);
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(ii) for k ≥ 2 and for any 0 ≤ t1 ≤ · · · ≤ tk, the subordinators are
independent, and

S(t1,tk) = S(tk−1,tk) ◦ · · · ◦ S(t1,t2), and

(iii) the processes (Z(t, x) : t ≥ 0, x ≥ 0) and (S(0,t)(x) : t ≥ 0, x ≥ 0) have
the same finite dimensional distributions.

Here S(s,t)(x) is understood as the size of the population at time t starting
with a population x at time s.

Next we create a flow of bridges (Bs,t(x) : 0 ≤ x ≤ 1, s ≤ t) from the
flow of subordinators as done in the ending of last section. Assuming that
we are starting with initial population Z(0) = z, we set

Bs,t = S(s,t)(xS(0,s)(z))/S(0,t)(z).

Clearly, Bs,t(0) = 0 and Bs,t(1) = 1.
Exercise Show that Bs,t has non-decreasing RCLL paths with exchange-

able increments.
Exercise Check that (Bs,t(x) : 0 ≤ s ≤ t, 0 ≤ x ≤ 1) constitutes a flow of

bridges, i.e., show that the following conditions hold:

(i) for all s < t < u, Bs,u = Bs,t ◦Bt,u;

(ii) Bs,t only depends on t− s;

(iii) for s1 < s2 < · · · < sn, the bridges Bs1,s2 , Bs2,s3 , · · · , Bsn−1,sn are
independent;

(iv) B0,0 = Id (identity mapping) and B0,t → Id as t → 0 in probability
with respect to Skorohod topology.

Exercise Show that for s < t < u, we have B−1
s,u = B−1

s,t ◦ B
−1
t,u where

B−1(u) = inf{v ∈ [0, 1] : B(v) ≥ v}.
As explained in Subsection 3.3, given a flow of bridges (Bs,t : 0 ≤ s ≤ t)

we can consider the partition valued process (Πs = Π(Bs,t) : 0 ≤ s ≤ t).
In fact Bertoin and Le Gall [4] established that there exists one-one corre-
spondence between flow of bridges and exchangeable coalescent processes.
In particular in this case, i.e., when the flow of bridges obtained from a
CSBP process with branching mechanism ψ(u) = au + 2π2u log u, the pro-
cess (Π(Bs/(2π), t) : 0 ≤ s ≤ 2πt) is the Bolthausen-Sznitman coalescent
running for time 2πt.

Now we need to create the flow of bridges representing the genealogy
of branching Brownian motion with absorption and show that this flow of
bridges converge to the flow (Bs,t : 0 ≤ s ≤ t). In order to do that, we
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need to introduce few notation and describe the two technical assumptions
in detail. Let

ZN (t) =

MN (t)∑
i=1

eµXi,N (t) sin(
πXi,N (t)

L
)1Xi,N (t)≤L and

YN (t) =

MN (t)∑
i=1

eµXi,N (t),

(6)

where Ln := 1√
2
(logN + 3 log logN). For a BBM with drift µ and two

killing barriers at 0 and L, starting from x ∈ (0, L) with a single particle,
the expected number of particles in a set B ⊂ [0, L] after large time, is
approximately given by

∫
B p(x, y)dy, where

pt(x, y) =
2

L
e(1−µ2−π2/(2L2))teµx sin(

πx

L
)e−µy sin(πy/L).

The choice of µN and LN ensures that the first exponential term is indepen-
dent of t and if we sum over all initial positions, then this is proportional to
ZN (0), defined as in (6). In this sense ZN predicts the number of particles
in a given set at later time and provides a useful measure of the size of the
population. Now we are going to describe two technical assumptions about
the initial configurations which are assumed to be hold.

(1) Let VN (t) = 1
N(logN)2

ZN ((logN)3t). As N → ∞, the distribution of

VN (0)converges to ν, a probability distribution on [0,∞) and

(2) as N →∞, the quantity YN (0)/N(logN)2 converges to zero in prob-
ability.

It was proved in [2] that it is the value of ZN (t) rather than MN (t), that
predicts the size of population a short time later. In fact Theorem 8 was
proved first for the process (ZN ((logN)3t) : t ≥ 0) (with a different scaling),
and then using the fact that ZN (t) predicts the size of the population a
short time later, Theorem 8 was proved. Precisely we have the following
proposition (Proposition 1 of [2]):

Proposition 11. (Under the assumptions on the initial configurations)
there exists a constant a ∈ R such that as N → ∞, the finite dimensional
distributions of the process (VN (t) : t ≥ 0) converge to the finite dimensional
distributions of the CSBP with branching mechanism ψ(u) = au+ 2π2 log u
started with initial distribution ν at time zero.

This also explains why we do not have convergence for MN (0), the num-
ber of particles at time 0, as the conditions assumed about initial configura-
tions do not necessarily give convergence for the initial size of the population.

22



Now we are ready to construct the bridges to study the genealogy of BBM
with absorption. Fix K ∈ N and the time points 0 = t0 < t1 < · · · < tK .
For 0 ≤ i < j ≤ k, we will define a process (BN

ti,tj (s) : 0 ≤ s ≤ 1).
We first require an ordering of the population that respects ancestry, i.e.,

we want to assign label to the BBM particles at time tj log3N ,

X1,N (tj log3N) ≥ X2,N (tj log3N) ≥ · · · ≥ XMN ,N (tj log3N).

Let (vi,j : i ≥ 0, 0 ≤ j ≤ k) be a collection of i.i.d. uniform (0, 1) random
variables, independent of the BBM XN . For Brownian particles at time 0,
i.e., for i ≤ MN (0), we take the label as ui,0 = vi,0. For j ≥ 1, ui,j are
sequences of length j + 1 which are defined inductively by setting

ui,j = (up(i),j−1, vi,j),

where up(i),j−1 is the label of the parent particle at time tj−1(log3N). In
other words we concatenate vij with label of the parent particle to obtain
the label of of Xi,N (tj log3N). The Brownian particles are then ordered
using the lexicographic ordering w.r.t. their labels and this ordering respects
ancestry. Let xi,j denote the position of the i-th individual (w.r.t. this
ancestry ordering) at time (tj log3N).

Next we assign weights to the individuals. For 0 ≤ j ≤ k and 1 ≤ i ≤
MN (tj log3N) we take

w(i, j) =


1

ZN (tj log3N)
eµxi,j sin(πxi,j/L)1xi,j≤L if 0 ≤ j ≤ k − 1

1
MN (tk log3N)

if j = k.
(7)

i.e., the particles are weighted according to their contribution to (6). Let

Ai(j, k) = {l : xl,k (at time (tk log3N)) is a descendant of xi,j

at time (tj log3N)}.

For 0 ≤ y ≤ 1 and 0 ≤ j ≤ k define

Lj(y) = max{l ∈ N :

l∑
i=1

w(i,j) ≤ y}, (8)

with the condition that maximum of the empty set is 0.
This allows us to construct the discrete bridges as follows: for 0 ≤ y ≤ 1

and 0 ≤ j < k ≤ K, let

BN
tj ,tk

(y) =

Lj(y)∑
i=1

∑
m∈Ai(j,k)

w(m, k).

These processes are not exactly bridge in the sense of (8) as they do not
have exchangeable increments.
Exercise For i < j < k show the following:
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(i) BN
ti,tk

= BN
tj ,tk
◦BN

ti,tj ,

(ii) (BN
ti,tk

)−1 = (BN
ti,tj )

−1 ◦ (BN
tj ,tk

)−1,

4.1.2 Convergence of bridges

In order to prove the convergence of bridges we first show that, under some
reasonable assumptions, if the population at time zero is divided into m
random subgroups, then Proposition 11 holds jointly for branching Brow-
nian motions starting from these m subgroups. In order to have this joint
convergence the initial conditions must hold for each of these m random
subgroups and the next result shows that these assumptions are enough to
obtain joint convergence.

Lemma 12. Suppose the initial population is divided into m random sub-
groups S1, · · · , Sm, and given the position of the initial particles, they start
BBM with drift µ killed at 0. Assume that YN (0)/N(logN)2 converges to
0 in probability. Let Zi,N (t) denote the contribution to the sum in (6) from
particles descended from one of the particles that is in Si at time 0. We

further assume that the initial joint distribution of (
Zi,N (0)
N(logN)2

)mi=1 converges

to some probability measure ρ on [0,∞)m. Then the finite dimensional dis-
tributions of the m-dimensional vector-valued processes

{(Zi,N (t(logN)3)

N(logN)2

)m
i=1

: t ≥ 0
}

converge as N → ∞ to the finite dimensional distributions of {(Zi(t))mi=1 :
t ≥ 0} where (Zi(0))mi=1 has distribution ρ, and conditional on (Zi(0))mi=1,
each Zi evolves independently as a CSBP with branching mechanism ψ(u) =
au+ 2πu log u.

Once one takes care of the fact that them components of the joint process
are not independent, but conditional on the given initial configuration they
are independent, the proof follows from Proposition 11. It is not hard to
see that using Theorem 8 it is possible to have similar joint convergence for
population sizes of these m subgroups. Using the above lemma, we prove
the following, which is our first step towards establishing convergence of
bridges.

Lemma 13. Fix k ∈ N and consider 0 = t0 < t1 < · · · < tk. Let m ≥ 1 and
let 0 = u0 < u1 < · · · < um = 1. Then for each fixed i with 1 ≤ i ≤ k, we
have (

BN
0,ti(uj)

)m
j=1
⇒
(
B0,ti(uj)

)m
j=1

.

Proof: It suffices to prove the joint convergence of the increments,
(BN

0,ti
(uj)−BN

0,ti
(uj−1))mj=1. To do that we take Sj = {L0(uj−1)+1, · · · , L0(uj)}
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where L0 is defined as in (8). In words denote the subset of population at
time 0 associated with the quantiles in [uj−1, uj), when the population is
weighted according to w·,0 (7). By definition, Sj ’s are disjoint and give a
partition of the initial population into m random subgroups. From the ini-
tial assumption it is straightforward to see that Yi,N (0)/(N(logN)3) → 0
in probability as N → ∞ for all 1 ≤ i ≤ m. We also have assumed that
the distribution of VN (0)/(N(logN)2) converges to a probability measure
ν as N → ∞. With some more work, it follows that joint distribution
of
(
Vi,N (0)/(N(logN)2)

)m
i=1

converges to ((uj − uj−1)X)mj=1 where X has
distribution ν. Hence by Lemma 12 we have that

(Zj,N (ti(logN)3)

N(logN)2

)m
j=1
⇒ (Zj(ti))

m
j=1.

This together with some more work completes the proof.
Our goal is to first establish joint convergence of the bridges in terms

of finite dimensional distributions. For any t ≥ 0, let Ft denote the σ-field
generated by (XN (s) : 0 ≤ s ≤ t). We show that

Lemma 14. Fix k ∈ N and consider 0 = t0 < t1 < · · · < tk. Let m ≥ 1
and let 0 = u0 < u1 < · · · < um = 1. Let f : [0, 1]m+1 → R is bounded and
continuous. For 0 ≤ i ≤ K − 1, we have that

E[f(BN
ti,ti+1

(u0), · · · , BN
ti,ti+1

(um))|Fti(logN)3 ]

converges in probability to E[f(Bti,ti+1(u0), . . . , Bti,ti+1(um))] as N →∞.

Proof: Note that, by Proposition 11 for all 1 ≤ i ≤ k we have

ZN (ti(logN)3)

N(logN)2
⇒ Z(ti) as well as

it was proved in [2] that YN (ti(logN)3)/(N(logN)3) converges to 0 in prob-
ability. Using the fact that given Fti(logN)3 , the branching Brownian mo-
tions evolve independently starting from the positions X(ti(logN)3), we
apply Lemma 13 for time interval [ti(logN)3, ti+1(logN)3] and complete
the proof.

With this we are ready to prove the joint convergence of bridges in terms
of finite dimensional distributions.

Lemma 15. Fix k ∈ N and consider 0 = t0 < t1 < · · · < tk. Let m ≥ 1 and
let 0 = u0 < u1 < · · · < um = 1. Then

(BN
ti,ti+1

(uj) : 1 ≤ j ≤ m)o≤i≤k−1 ⇒ (Bti,ti+1(uj) : 1 ≤ j ≤ m)0≤i≤k−1,

where the bridges Bti,ti+1 , 0 ≤ i ≤ k − 1, are independent.
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Proof: Use induction method. For i = 1, this follows from Lemma 13. Now
use the fact thatBN

ti,ti+1
is conditionally independent ofBN

t0,t1 , B
N
t1,t2 , · · · , B

N
ti−1,ti

given Fti(logN)3 together with Lemma 14 to complete the proof.
Now we are almost ready to prove Theorem 10. One important thing to

observe here is that we can not apply Lemma 6 directly here as the discrete
bridges BN ’s do not have exchangeable increments. We need a stronger
version of that lemma. The next lemma which is in deterministic setting
proves that exchangeable increments are not necessary for convergence.

Lemma 16. Suppose b, b1, b2, · · · are functions from [0, 1] to [0, 1] that are
non-decreasing and right continuous and have left limits at every point other
than 0. Suppose limn→∞ ρ(bN , b) = 0, where ρ denotes the Skorohod metric.
Suppose (xn)∞n=1 and (yn)∞n=1 are sequences in [0, 1] such that xn → x and
yn → y as n → ∞. Suppose x and y are not in the closure of the range of
b. Then for sufficiently large n we have b−1

n (xn) = b−1
n (yn) if and only if

b−1(x) = b−1(y). Furthermore,

lim
n→∞

b−1
n (xn) = b−1(x).

Exercise

(1) Let Λ : [0, 1] 7→ [0, 1] denote the class of strictly increasing continuous
onto functions. Show that for a collection of RCLL paths f, f1, f2, . . .,
we have limn→∞ ρ(fn, f) = 0 if and only if there exists a sequence of
functions (λn)∞n=1 in Λ such that

lim
n→∞

sup{|fn(λn(t))f(t)| : 0 ≤ t ≤ 1}

= lim
n→∞

sup{|λn(t)λ(t)| : 0 ≤ t ≤ 1} = 0.

(2) Using the above interpretation of convergence with respect to Skoro-
hod metric, prove Lemma 16.

Once we prove Lemma 16, the proof of Theorem 10 follows from back-
ward method of induction. For the first step, from Lemmas 15 and 16 we
have

Π(BN
tk−1,tk

)⇒ Π(Btk−1,tk) as n→∞.

Assuming that the convergence holds for (Π(BN
tj ,tk

) : i+ 1 ≤ j ≤ k − 1), in

order to study Π(BN
ti,tk

) we use the composition

BN
ti,tk

= BN
ti,ti+1

◦BN
ti+1,tk

.

Further for a uniform [0, 1] random variable U , because of Lemma 2 of [4]
we have that the random variable B−1

ti+1,tk
(U) also has the uniform distribu-

tion on [0, 1]. This fact together with Lemma 16 completes the backward
induction and hence proves Theorem 10.
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