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Chapter 1

Some interacting particle
systems

1.1 A branching-killing process

The motivation for these lectures comes from an interacting particle system
that has been called the the biased annihilating branching process by Claudia
Neuhauser and Aidan Sudbury, who introduced the model in [NS93]. We will
focus on the one-dimensional case, for which the best results to date were
proved by Sudbury in [Sud99]. Unknown to these authors, the model belongs
to the class of kinetically constrained models that has been intensively studied
by both physicists and mathematicians in recent years [RS03]. In fact, it is
very similar to the 1-facilitated Frederickson-Anderson model studied, for
example, in [BCMRT, BDT19, MV19].

The one-dimensional biased annihilating branching process, or BAB, to
be short, is a Markov process (Xt)t≥0 taking values in the space {0, 1}Z of all
configurations x = (x(i))i∈Z of zeros and ones on the one-dimensional integer
lattice. We call Xt(i) the local state at the site i ∈ Z at time t ≥ 0. If Xt(i) =
1, then we say that the site i is occupied, and if Xt(i) = 0, then we say that i
is empty. At each site, there is located an independent “exponential clock”,
that rings at i.i.d. time intervals with a mean one exponential distribution.
When the clock rings, the site chooses one of its two neighbours at random,
checks its local state, and if it is occupied, updates its own state by making
it occupied with probability p and empty with probability 1− p.

More formally, we can construct the BAB as follows. For each i, j ∈ Z,
let us define maps braij and killij from the state space {0, 1}Z into itself by

braij(x)(k) :=

{
1 if k = j, x(i) = 1

x(k) otherwise,
(1.1)
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6 CHAPTER 1. SOME INTERACTING PARTICLE SYSTEMS

and

killij(x)(k) :=

{
0 if k = j, x(i) = 1,

x(k) otherwise.
(1.2)

We let ~E :=
{

(i, j) ∈ Z2 : |i − j| = 1
}

. We let ωb and ωk be independent

Poisson point subsets of ~E×R with intensities 1
2
p and 1

2
(1− p), respectively.

More precisely, if µ denotes the counting measure on ~E, that gives each
element weight one, and ` denotes the Lebesgue measure on R, then the
intensity of the Poisson point set ωb is the measure 1

2
p(µ⊗`) and the intensity

of ωk is 1
2
(1 − p)(µ ⊗ `). Note that elements of ωb or ωk are pairs

(
(i, j), t

)
where (i, j) ∈ ~E and t ∈ R.

Let X0 be a {0, 1}-valued random variable, independent of ωb and ωk.
Then it can be shown [Swa22, Thm 4.19] that almost surely, there exists a
unique function (Xt)t≥0 with initial state X0, such that t 7→ Xt(i) is piecewise
constant and right-continuous for each i ∈ Z, and satisfies

Xt =


braij(Xt−) for all t such that

(
(i, j), t

)
∈ ωb,

killij(Xt−) for all t such that
(
(i, j), t

)
∈ ωk,

Xt− for all other t,

(1.3)

where Xt−(i) := lims↑tXs(i) (i ∈ Z) denotes the left-continuous modification
of t 7→ Xt(i). The process (Xt)t≥0 is a Markov process [Swa22, Thm 4.20].
Its transition probabilities form a Feller semigroup with generator

GBABf(x) = 1
2
p
∑

(i,j)∈ ~E

{
f
(
braij(x)

)
− f

(
x
)}

+1
2
(1− p)

∑
(i,j)∈ ~E

{
f
(
killij(x)

)
− f

(
x
)}
,

(1.4)

which is a closed linear operator that is first defined for functions f that
depend on finitely many coordinates and then for more general functions by
taking the closure [Swa22, Thm 4.30].

We can visualise the construction in (1.3) as follows. We draw space Z
horizontally and time vertically. For each

(
(i, j), t) ∈ ωb, we draw a straight

arrow from (i, t) to (j, t), and for each
(
(i, j), t) ∈ ωk, we draw a squiggly

arrow from (i, t) to (j, t). These arrows indicate that the maps braij or killij
should be applied. The effect of a straight arrow is that if the site at the
tail of the arrow is occupied, then the site at its tip becomes occupied as
well. The effect of a squiggly arrow is that if the site at the tail of the arrow
is occupied, then the site at its tip becomes empty, i.e., the particle at the
tail of the arrow kills the particle at the tip, if there is one. See Figure 1.1.
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Figure 1.1: Graphical representation of the one-dimensional biased annihi-
lating branching process. Thick lines indicate occupied sites. Straight and
squiggly arrows indicate the application of a branching or killing map, re-
spectively.

This sort of construction is called a graphical representation of an interacting
particle system.

Our conventions differ from those of Neuhauser and Sudbury [NS93,
Sud99], who choose for ωb and ωk Poisson point sets with intensities λ and 1,
respectively, instead of 1

2
p and 1

2
(1− p) as we do. The two processes can di-

rectly be translated into each other by a change of parameter and a rescaling
of time: if (Xt)t≥0 is our process and (Yt)t≥0 is the process in [NS93, Sud99],
then

Yt = X2(1+λ)t with p =
λ

1 + λ
. (1.5)

Our conventions differ from the literature on kinetically constrained models in
the sense that sites that we call occupied (value 1) are called empty (value 0)
in [BCMRT, BDT19, MV19]. The model studied in these latter papers differs
moreover in the fact that in the BAB, the rate at which a site is updated is 1

2

times the number of occupied neighbours, while for the Fredrickson-Andersen
one spin facilitated model studied in these papers the rate of updating is the
indicator function of the event that at least one neighbour is occupied (or,
by their conventions, empty). This model cannot easily be translated into
the BAB, but its behaviour and the methods available to study it seem to be
similar. We stick to the BAB because its graphical representation is simpler.
For the Fredrickson-Andersen model, one would have to define maps that
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look at three sites instead of just two as for our branching and killing maps.
By checking detailed balance, it is easy to see that for any p > 0, product

measure with intensity p is a reversible law for the BAB. Trivially, the delta
measure on the empty configuration is another reversible law. It has been
proved in [NS93, Thm 3] that on quite general lattices, these are the only
two extremal invariant laws. In one dimension, it has moreover been proved
in [NS93, Thm 4] that for any p ≥ 1/4, the law of the process started in any
nonzero initial state converges weakly to product measure with intensity p.
This sort of behaviour is called complete convergence (compare the definition
in [Lig99, Sect. I.1]). Sudbury later improved this result [Sud99]. With a
computer-assisted proof, he was able to prove complete convergence for all
p ≥ 0.0335. It has been conjectured in [NS93] that complete convergence
holds for all p > 0. A key step in the proofs of complete convergence is
showing that the process has a positive edge speed, i.e., if Rt := sup{i ∈ Z :
Xt(i) = 1} is the position of the right-most particle, then

lim inf
t→∞

Rt/t > 0 a.s. (1.6)

A difficulty in showing this is that one has to control how often the right-
most particle is killed by a particle on the left of it. Since the process is
non-monotone, the usual comparison arguments do not work and there is no
known explicit formula for the equilibrium distribution of the process as seen
from the right-most particle.

It is easy to simulate the BAB on a computer. Some simulation results are
shown in Figure 1.2. When p is small, we observe that the BAB effectively
functions as a system of branching and coalescing particles. It is useful to
rescale time by a factor p−1, so that branching (in each direction) takes place
with rate 1

2
and killing (in each direction) with rate 1

2
(p−1 − 1). A single

particle now creates a new particle on one of its neighbouring sites with
rate 1. When p is small, with high probability, one of the two neighbouring
particles will kill the other one before anything else can happen. Each of the
particles has an equal chance of being killed, so with equal probabilities we
end up either with one particle on the site of the original particle, or on one
of the neighbouring sites. Therefore, in the limit p → 0, on time scales of
order p−1, the BAB started with a single particle effectively behaves like a
random walk that jumps with rate 1

2
to a random neighbouring site.

The behaviour on longer time scales is harder to analyse. Occasionally,
after a particle branches into two, one of the two will create a third particle
on a free site before any of the two have time to kill each other. Once three
neighbouring sites are occupied, there is a probability of approximately 1

2

that the middle particle gets killed before the other two. The result of this
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Figure 1.2: Simulations of one-dimensional biased annihilating branching
processes. Space is plotted horizontally, time vertically, and black indicates
the presence of a particle. On the left a process with p = 0.074. Total elapsed
time in this picture is 54,000 and the shown part of space contains 250 sites.
On the right detail of a process with p = 0.13.

is that the original particle has effectively split into two particles. These two
particles can now each start to move through space as independent random
walks, until they get close enough to each other again so that one kills the
other. The result of all this is that on sufficiently long time scales, when p
is small, the BAB should effectively behave like a system of branching and
coalescing random walks with a small branching rate.

In the coming section, we will study simpler systems of branching and
coalescing particles. For these systems, it is known that in the small branch-
ing rate limit, after a suitable rescaling of space and time, they converge to a
continuum process known as the branching-coalescing point set. It is believed
that the branching-coalescing point set is a universal limit object, that occurs
as the scaling limit of a variety of models. In particular, we will formulate
a precise conjecture that says that the branching-coalescing point set is the
scaling limit of the BAB as p→ 0.
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1.2 Branching-coalescing random walks

For each i, j ∈ Z, let us define a coalescing random walk map rwij and killij
from the state space {0, 1}Z into itself by

rwij(x)(k) :=


0 if k = i

1 if k = j, x(i) = 1

x(k) otherwise.

(1.7)

In words, this has the effect that if there is a particle at i, then this particle
moves to j, coalescing with any particle that may already be present on that
site. In graphical representations, we represent the map rwij by an arrow with
a black rectangle at its tail. This black rectangle is a “blocking symbol” that
indicates that any particle present there at previous times cannot continue
on that site. We will be interested in the interacting particle system with
generator

Gbracof(x) = 1
2
p
∑

(i,j)∈ ~E

{
f
(
braij(x)

)
− f

(
x
)}

+1
2
(1− p)

∑
(i,j)∈ ~E

{
f
(
rwij(x)

)
− f

(
x
)}
,

(1.8)

i.e., compared to (1.4) we have replaced the killing map by the coalescing
random walk map. We can again construct the process from a graphical
representation, which now looks like this:

time

X0

Xt

0 0 0 0 0 1 0 1 0 0

0 0 1 0 0 0 1 0 0 0

Trivially, the delta measure on the empty configuration is a reversible law
for the branching coalescing random walks with generator (1.8). We claim
that moreover, just as for the BAB, product measure with intensity p is a
reversible law.
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Lemma 1.1 (Reversible product law) Product measure with intensity p
is a reversible law for the system of branching and coalescing random walks
with generator as in (1.8).

Proof We check detailed balance. For a product measure with intensity r,
the frequency of jumps 10 7→ 11 is 1

2
pr(1 − r) and the frequency of jumps

11 7→ 10 is 1
2
(1 − p)r2. Detailed balance then gives 1

2
pr(1 − r) = 1

2
(1 − p)r2

which is solved for r = 0, p. Also, the configurations 10 and 01 have the same
probability and due to the coalescing random walk dynamics, the process
jumps between these configurations with rate 1

2
(1− p) in each direction.

An alternative way to obtain the result, that was suggested to me by
Cristina Toninelli, is to observe that the dynamics in (1.8) can be reformu-
lated by saying that each pair of neighbouring sites is activated with rate
1
2
(1− p)2p−1, and then the configuration on these sites is changed according

to the following rules. If both sites are empty, then they remain empty. If at
least one of the sites is occupied, then a new configuration is chosen accord-
ing to the product measure with intensity p, conditioned on the event that
at least one of the two sites is occupied.

It is easy to see that the branching coalescing random walks have a pos-
itive edge speed for all p > 0. If the process is started in a finite initial
configuration, then the position of the right-most particle Rt := sup{i ∈ Z :
Xt(i) = 1} is a random walk that jumps one step to the right with rate 1

2

and one step to the left with rate 1
2
(1− p). The strong law of large numbers

then gives
lim
t→∞

Rt/t = 1
2
p a.s. (1.9)

The main reason why branching coalescing random walks are easier to study
than the BAB is that they are monotone, in the sense that if we construct
two processes (Xt)t≥0 and (X ′t)t≥0 with initial states satisfying X0 ≤ X ′0 a.s.,
using the same graphical representation, then Xt ≤ X ′t for all t ≥ 0 a.s. Even
better, the process is additive in the sense that for three processes that are
constructed using the same graphical representation,

X0 = X ′0 ∨X ′′0 implies Xt = X ′t ∨X ′′t (t ≥ 0). (1.10)

There exists a very useful duality theory for general additive interacting
particle systems [Gri79]. In the next section, we will see that the additive
dual of branching coalescing random walks is the biased voter model.

Because of all these tools that are available, a lot is known about branch-
ing coalescing random walks. In particular, it is known that they have a
scaling limit as p→ 0, which is called the branching-coalescing point set and
which we will introduce in Section 1.4 below.
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1.3 The biased voter model

The graphical representation of branching coalescing random walks is remi-
niscent of oriented percolation. Elaborating on this similarity, let us define an
open path in the graphical representation defined by the Poisson point sets ωb

and ωk to be a piecewise constant, right-continuous function γ : [s, u] → Z,
defined on some compact interval [s, u] ⊂ R, such that:

(i) γ(t) 6= γ(t−) if there is a blocking symbol at
(
γ(t−), t

)
,

(ii) if γ(t) 6= γ(t−), then there is an arrow from
(
γ(t−), t

)
to
(
γ(t), t

)
.

Then for each t ≥ 0,

Xt(i) = 1 ⇔
∃ open path γ : [0, t]→ Z s.t. X0

(
γ(0)

)
= 1 and γ(t) = i.

(1.11)

This leads to the following idea. Let Y0 be a random variable with values
in {0, 1}Z, independent of the Poisson point sets ωb and ωk and of X0. Fix
T > 0 and for t ≥ 0, define Yt by

Yt(i) = 1 ⇔
∃ open path γ : [T − t, T ]→ Z s.t. Y0

(
γ(T )

)
= 1 and γ(T − t) = i.

(1.12)
Then, letting 0 denote the configuration in {0, 1}Z that is identically zero,
for each t ∈ [0, T ], it will be true that

Xt ∧ YT−t 6= 0 ⇔
∃ open path γ : [0, T ]→ Z s.t. X0

(
γ(0)

)
= 1 and X0

(
γ(T )

)
= 1.

(1.13)
In particular, this event a.s. does not depend on t ∈ [0, T ], so setting t = 0, T ,
we see that

X0 ∧ YT 6= 0 ⇔ XT ∧ Y0 6= 0. (1.14)

The interesting thing about this construction is that (Yt)t≥0 is itself a Markov
process. Indeed, we can turn the graphical presentation for the process
(Xt)t≥0 into a graphical presentation for the process (Yt)t≥0 by reversing
the direction of time, reversing the direction of all arrows, and keeping the
blocking symbols:
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time Yt

Y0

0 1 1 1 1 1 0 0 0 1

1 1 0 0 0 0 0 0 0 1

The new symbol that we see here, an arrow with a blocking symbol at
its tip (rather than at its tail as for the map rwij) corresponds to the voter
model map votij which has the following simple desciption:

votij(y)(k) :=

{
y(i) if k = j

y(k) otherwise,
(1.15)

where i represents the tail of the arrow and j the tip. Since there is a blocking
symbol at j, the previous local state at j does not matter and the new local
state at j will be 0 or 1 depending on the local state at i (which remains
unchanged). The generator of the biased voter model is

Gvotf(y) = 1
2
p
∑

(i,j)∈ ~E

{
f
(
braij(y)

)
− f

(
y
)}

+1
2
(1− p)

∑
(i,j)∈ ~E

{
f
(
votij(y)

)
− f

(
y
)}
.

(1.16)

The special case p = 0 corresponds to the standard voter model. Because
of the branching arrows, for p > 0, the 1’s have an advantage over the 0’s,
which is why this model is called the biased voter model.

Lemma 1.2 (Biased voter model duality) Let (Xt)t≥0 be a system of
branching coalescing random walks with generator as in (1.8) and let (Yt)t≥0

be an independent biased voter model with generator as in (1.16) Then

P
[
Xt ∧ Y0 6= 0

]
= P

[
X0 ∧ Yt 6= 0

]
(t ≥ 0). (1.17)
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Proof This follows by taking expectations in (1.14), using the fact that in
(1.14), X0 is independent of YT and XT is independent of Y0.1

Lemma 1.2 relates a system of branching coalescing random walks that
runs forwards in time to a biased voter model that runs backwards in time.
There is also an interesting relation between the two processes both running
forward in time. To formulate this, we need some notation. Let (Pt)t≥0

denote the transition probabilities of the branching coalescing random walks,
i.e., Pt is the probability kernel on {0, 1}Z defined as

Pt(x, · ) := Px
[
Xt ∈ ·

] (
t ≥ 0, x ∈ {0, 1}Z

)
, (1.18)

where Px denotes the law of the process started in the determinstic initial
state X0 = x. Similarly, let (Qt)t≥0 denote the transition probabilities of the
biased voter model, i.e.,

Qt(y, · ) := Py
[
Yt ∈ ·

] (
t ≥ 0, y ∈ {0, 1}Z

)
. (1.19)

Finally, for each r ∈ [0, 1], let
(
χr(i)

)
i∈Z be i.i.d. Bernoulli random variables

with P[χr(i) = 1] = r and P[χr(i) = 0] = 1 − r, and let Kr denote the
probability kernel on {0, 1}Z defined as

Kr(y, · ) := P
[(
χr(i)y(i)

)
i∈Z ∈ ·

] (
y ∈ {0, 1}Z

)
. (1.20)

In words, Kr(y, · ) is the law of a random variable that is obtained by thinning
the configuration y, where independently each occupied site remains occupied
with probability r and is emptied with probability 1 − r. We define the
concatenation of two probability kernels in the usual way, i.e.,

(KL)(x, dz) =

∫
K(x, dy)L(y, dz). (1.21)

For a proof of the following proposition, we refer to [Swa22, Prop. 6.26].

Proposition 1.3 (Thinning relation) The probability kernels defined in
(1.18), (1.19), and (1.20) satisfy

KpPt = QtKp (t ≥ 0). (1.22)

Proposition 1.3 says that the following diagram commutes:

1More generally, in the set-up of (1.14), Xt is independent of YT−t for each t ∈ [0, T ],
since these random variables depend on disjoint parts of space-time, and the restrictions
of a Poisson point set to disjoint sets are independent.
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Y0 Yt

X0 Xt

Qt

Pt

Kp Kp

In other words, for any initial state y ∈ {0, 1}Z, the following two procedures
are equivalent: 1. first run biased voter model dynamics for time t, then thin
the resulting configuration with p, and: 2. first thin the configuration with
p, then run branching coalescing random walk dynamics for time t.

Proposition 1.3 has a natural interpretation. In our original graphical
representation for branching coalescing random walks, let us set

X t(i) := 1 ⇔ ∃ open path γ : (−∞, t]→ Z s.t. γ(t) = i. (1.23)

Then (X t)t∈R is a stationary process that at each time is distributed according
to the product law with intensity p. Since this law is reversible, the processes
(X t)t∈R and (X−t)t∈R are equal in law, so we can also view (X t)t∈R as a system
of branching-coalescing random walks running backwards in time. Now if we
fix T ∈ R and define (Yt)t≥0 as in (1.12), then setting Xt := XT−t∩Yt defines
a system of branching coalescing random walks (Xt)t≥0 that is a p-thinning
of the biased voter model (Yt)t≥0.

If (Yt)t≥0 is a biased voter model, then we can define a process (Zt)t≥0

with values in {−1, 0, 1}Z as follows:

Zt(i) := Yt(i)− Yt(i+ 1) (t ≥ 0, i ∈ Z). (1.24)

It is easy to see that (Zt)t≥0 is itself a Markov process. We call (Zt)t≥0 the
interface process associated with (Yt)t≥0. Because of the nearest-neighbour
property of our processes, the interface process has the following simple de-
scription:

(i) −1’s behave as random walks that jump with rate 1
2
(1−p) to the right

and with rate 1
2

to the left.

(ii) 1’s behave as random walks that jump with rate 1
2

to the right and
with rate 1

2
(1− p) to the left.

(iii) Once a −1 and a 1 land on the same position, the result is a 0.

Note that since the −1’s and 1’s alternate, it cannot happen that two −1’s,
or two 1’s land on the same position.
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1.4 The branching-coalescing point set

In this section, we describe the diffusive scaling limits of the biased voter
model and of systems of branching coalescing random walks in the limit
p → 0, and we formulate a conjecture for the diffusive scaling limit of the
BAB in the limit p → 0. The limiting processes will be Markov processes
taking values in the space of closed subsets of the real line.

For any A ⊂ R, we let int(A) and A denote the interior and closure of A,
respectively, and we denote its boundary by ∂A := A\int(A). We also set

∂−A :=
{
x ∈ A : A ∩ (x− ε, x) = ∅ for some ε > 0

}
,

∂+A :=
{
x ∈ A : A ∩ (x, x+ ε) = ∅ for some ε > 0

}
.

(1.25)

We let Cl(R) denote the set of all closed subsets of R and set

ClI(R) :=
{
A ∈ Cl(R) : ∂A is finite and ∂−A ∩ ∂+A = ∅

}
. (1.26)

Fix A ∈ ClI(R). We wish to define a Markov process (Yt)t≥0 with values
in ClI(R), started in the initial state Y0 = A, that is the scaling limit of the
biased voter model in the limit p → 0. Motivated by the structure of the
interface process defined in (1.24), we proceed as follows. For each y ∈ ∂−A,
we let (By

t )t≥0 be a Brownian motion with drift −1, started in By
0 = y.

Similarly, for each y ∈ ∂+A, we let (By
t )t≥0 be a Brownian motion with drift

1, started in By
0 = y. We assume that the Brownian motions (By

t )t≥0 with
y ∈ ∂A are independent. We order the elements of ∂A as y0 < · · · < yn. For
0 < k ≤ n, we let

τk−1,k := inf{t ≥ 0 : B
yk−1

t = Byk
t } (1.27)

denote the first meeting time of (B
yk−1

t )t≥0 and (Byk
t )t≥0. We set

τy0 := τ0,1, τyk := τk−1,k ∧ τk,k+1 (0 < k < n), and τyn := τn−1,n.
(1.28)

Then there exists a unique process (Yt)t≥0 with values in ClI(R) such that

∂±Yt =
{
By
t : t < τy, y ∈ ∂±A

}
(t ≥ 0). (1.29)

We call (Yt)t≥0 the expanding interval process. We formulate the following
theorem a bit sloppily, since we do not want to go into the topological details,
which will follow later, but the basic idea is quite simple. In (1.30) below,
we rescale space by a factor 1

2
p and time by a factor (1

2
p)2. Since ±1

2
p is the

drift of the boundaries of the discrete process, after diffusive rescaling with
1
2
p, they should converge to Brownian motions with drift ±1.
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Theorem 1.4 (Scaling limit of biased voter models) For each p, let
(Y p

t )t≥0 be a biased voter model with generator as in (1.16). Let (Ypt )t≥0 be
the process with values in Cl(R) defined as

Yp(p/2)2t :=
{
p
2
i : i ∈ Z, Y p

t (i) = 1
}

(t ≥ 0). (1.30)

Assume that the initial states Yp0 converge as p→ 0 in an appropriate sense
to a set A ∈ ClI(R). Then, in an appropriate sense,

P
[
(Ypt )t≥0 ∈ ·

]
=⇒
p→0

P
[
(Yt)t≥0 ∈ ·

]
, (1.31)

where (Yt)t≥0 is the expanding interval process started in the initial state
Y0 = A.

We now turn our attention to the scaling limit of branching coalescing
random walks. We call the Markov process (Xt)t≥0 from the following theo-
rem the branching-coalescing point set.

Theorem 1.5 (Branching-coalescing point set) There exists a Markov
process (Xt)t≥0 with state space Cl(R), whose transition probabilities are
uniquely characterised by the duality relation

P
[
Xt ∩ Y0 6= ∅

]
= P

[
X0 ∩ Yt 6= ∅

]
(t ≥ 0), (1.32)

which holds for each deterministic X0 ∈ Cl(R) and for each expanding inter-
val process (Yt)t≥0 started in a deterministic initial state Y0 ∈ ClI(R).

Remark In order to determine the transition probabilities of (Xt)t≥0, in
(1.32) it suffices to consider deterministic initial states. By integrating over
the initial laws, it is then easy to see that (1.32) holds more generally when
Xt is independent of Y0 and X0 is independent of Yt.

Theorem 1.6 (Scaling limit of branching coalescing random walks)
For each p, let (Xp

t )t≥0 be a system of branching coalescing random walks
with generator as in (1.8). Let (X p

t )t≥0 be the process with values in Cl(R)
defined as

X p
(p/2)2t :=

{
p
2
i : i ∈ Z, Xp

t (i) = 1
}

(t ≥ 0).

Assume that the initial states X p
0 converge as p→ 0 in an appropriate sense

to a set A ∈ Cl(R). Then, in an appropriate sense,

P
[
(X p

t )t≥0 ∈ ·
]

=⇒
p→0

P
[
(Xt)t≥0 ∈ ·

]
,

where (Xt)t≥0 is the branching-coalescing point set started in the initial state
X0 = A.



18 CHAPTER 1. SOME INTERACTING PARTICLE SYSTEMS

The branching-coalescing point set has first been introduced in [SS08] (al-
though with a different definition than in Theorem 1.5) and Theorem 1.6 can
be proved using the methods of that paper. The larger part of these lectures
will be devoted to a sketch of the proof of Theorem 1.6. Our motivation is
the following conjecture. Note that here, the time scaling is different, since
we rescale by (p/2)3 instead of (p/2)2.

Conjecture 1.7 (Scaling limit of the BAB) For each p, let (Xp
t )t≥0 be a

system of biased annihilating branching process (BAB) with generator as in
(1.4). Let (X p

t )t≥0 be the process with values in Cl(R) defined as

X p
(p/2)3t :=

{
p
2
i : i ∈ Z, Xp

t (i) = 1
}

(t ≥ 0).

Assume that the initial states X p
0 converge as p→ 0 in an appropriate sense

to a set A ∈ Cl(R). Then, in an appropriate sense,

P
[
(X p

t )t≥0 ∈ ·
]

=⇒
p→0

P
[
(Xt)t≥0 ∈ ·

]
, (1.33)

where (Xt)t≥0 is the branching-coalescing point set started in the initial state
X0 = A.

Related to Conjecture 1.7 is the conjecture that the BAB has a positive
edge speed for all p > 0. In particular, we believe that for small p, this
edge speed is approximately p2/4. This is based on Conjecture 1.7 and the
fact that the limiting process has edge speed one. In Section 5.3, we will
give arguments for Conjecture 1.7. Before we can do this, we need to better
understand the branching-coalescing point set as well as the precise form of
convergence we will need.



Chapter 2

Topological prerequisites

2.1 Topological spaces

We are interested in diffusive scaling limits of systems of branching and
coalescing particles with small branching rate. In order to to be able to
formulate the convergence, in the present chapter, we introduce the right
spaces. In particular, we will need a space of paths, introduced in Section 2.7,
and the space of all compact sets of paths, equipped with the Hausdorff
metric, introduced in Section 2.5.

A topological space is a set X equipped with a collection O of subsets of
X that are called open sets, such that

(i) If (Oγ)γ∈Γ is any collection of (possibly uncountably many) sets Oγ ∈
O, then

⋃
γ∈ΓOγ ∈ O.

(ii) If O1, O2 ∈ O, then O1 ∩O2 ∈ O.

(iii) ∅,X ∈ O.

Any such collection of sets is called a topology. It is fairly standard to also
assume the Hausdorff property

(iv) For each x1, x2 ∈ X , x1 6= x2 ∃O1, O2 ∈ O s.t. O1 ∩ O2 = ∅, x1 ∈ O1,
x2 ∈ O2.

A set V ⊂ X is a neighbourhood of a point x ∈ X if x ∈ O ⊂ V for some
O ∈ O. We let Vx denote the set of all neighbourhoods of x. A fundamental
system of neighbourhoods of x is a set V ′x ⊂ Vx such that

∀V ∈ Vx ∃V ′ ∈ V ′x s.t. V ′ ⊂ V.

19
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For example, the set of all O ∈ O such that x ∈ O is a fundamental system
of neighbourhoods of x. A sequence of points xn ∈ X converges to a limit
x in a given topology O if for each V ∈ Vx there is an n such that xm ∈ V
for all m ≥ n. It suffices to check this condition for a fundamental system of
neighbourhoods V ′x. If the topology is Hausdorff, then limits are unique, i.e.,
xn → x and xn → x′ implies x = x′.

If (X ,O) is a topological space (with O the collection of open subsets of
X ) and X ′ ⊂ X is any subset of X , then X ′ is also naturally equipped with
a topology given by the collection of open subsets O′ := {O ∩ X ′ : O ∈ O}.
This topology is called the induced topology from X . If xn, x ∈ X ′, then
xn → x in the induced topology on X ′ if and only if xn → x in X .

A basis of a topology is a subset O′ ⊂ O such that each element of O
can be written as the union of (possibly uncountably many) elements of O′.
Equivalently, this says that

O = {O ⊂ X : ∀x ∈ O ∃O′ ∈ O′ s.t. x ∈ O′ ⊂ O}.

If O′ is a basis for O, then V ′x := {O ∈ O′ : x ∈ O} is a fundamental system
of neighbourhoods of x. A topology is first countable if every x ∈ X has
a countable fundamental system of neighbourhoods. A topology is second
countable if there exists a countable basis of the topology.

A set C ⊂ X is called closed if its complement is open. Because of
property (i) in the definition of a topology, for each A ⊂ X , the union of all
open sets contained in A is itself an open set. We call this the interior of
A, denoted as int(A) :=

⋃
{O : O ⊂ A, O open}. Then clearly int(A) is the

largest open set contained in A. Similarly, by taking complements, for each
set A ⊂ X there exists a smallest closed set containing A. We call this the
closure of A, denoted as A :=

⋂
{C : C ⊃ A, C closed}. If the topology is

first countable, then

A = {x ∈ X : ∃xn ∈ X s.t. xn → x}, (2.1)

i.e., A is the set of all limits of sequences in A. A similar statement holds
for general topological spaces if we replace sequences by the more general
concept of a net, that we will not discuss here. Since a set is closed if and only
if it coincides with its closure, it follows from (2.1) that in a first countable
topological space, knowing all convergent sequences and their limits uniquely
determines the closed sets and their complements, the open sets, and hence
the whole topology.

A topological space is called separable if there exists a countable set D ⊂
X such that D is dense in X , where we say that a set D ⊂ X is dense if
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its closure is X , or equivalently, if every nonempty open subset of X has a
nonempty intersection with D.

A metric on a set X is a function d : X × X → [0,∞) such that for all
x, y, z ∈ X ,

(i) d(x, y) = d(y, x),

(ii) d(x, z) ≤ d(x, y) + d(y, z),

(iii) d(x, y) = 0 implies x = y.

A metric space is a space with a metric defined on it. If d is a metric on X ,
and Bε(x) := {y ∈ X : d(x, y) < ε} denotes the open ball around x of radius
ε, then

O :=
{
O ⊂ X : ∀x ∈ O ∃ε > 0 s.t. Bε(x) ⊂ O

}
defines a Hausdorff topology on X such that convergence xn → x in this
topology is equivalent to d(xn, x) → 0. Note that the open balls form a
basis for this topology. Since open balls of radius 1/n around a point x form
a fundamental system of neighbourhoods, metric spaces are first countable.
We say that the metric d generates the topology O. If for a given topology
O there exists a metric d that generates O, then we say that the topological
space (X ,O) is metrisable. Such a metric, if it exist, can always be chosen
such that it is bounded. For example, if d is any metric on X , then d′(x, y) :=
d(x, y)∧1 is a bounded metric that generates the same topology. A metrisable
space is always first countable. It is second countable if and only if it is
separable.

A sequence xn in a metric space (X , d) is a Cauchy sequence if for all
ε > 0 there is an n such that d(xk, xl) ≤ ε for all k, l ≥ n. A metric
space is complete if every Cauchy sequence converges. Every metric space
(X , d) has a completion, i.e., there exists a complete metric space (X , d) such
that X ⊂ X is dense and the metric on X is the induced metric from X ,
i.e., d(x, y) = d(x, y) for all x, y ∈ X . Such a completion is unique up to
isometries.

A Polish space is a separable topological space (X ,O) such that there
exists a metric d on X with the property that (X , d) is complete and d
generates O. Warning: there may be many different metrics on X that
generate the same topology. It may even happen that X is not complete
in some of these metrics, and complete in others (in which case X is still
Polish). Example: R is separable and complete in the usual metric d(x, y) =
|x − y|, and therefore R is a Polish space. But d′(x, y) := | arctan(x) −
arctan(y)| is another metric that generates the same topology, while (R, d′)
is not complete. Indeed, the completion of R w.r.t. the metric d′ is [−∞,∞].
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2.2 Compactness

A subset K of a general topological space X (with collection of open sets
O) is called compact if every open cover has a finite subcover, i.e., if for any
collection (Oγ)γ∈Γ of open subsets of X such that

⋃
γ∈Γ Oγ ⊃ K, there exists

a finite ∆ ⊂ Γ such that
⋃
γ∈∆ Oγ ⊃ K. Using this definition, it is easy to

see that the image of a compact set under a continuous function is again
compact. Compact subsets of Hausdorff topological spaces are closed. A
subset K of a metric space X is compact if and only if it is closed and totally
bounded, which means that for every ε > 0 there exists a finite collection
{Bε(x1), . . . , Bε(xn)} of open balls such that

Bε(x1) ∪ · · · ∪Bε(xn) ⊃ K.

From this, it is not hard to see that compact metrisable spaces are always
separable. If (xn)n∈N is a sequence and m : N → N is a function such that
m(n) → ∞ as n → ∞, then setting x′n := xm(n) (n ∈ N) defines a new
sequence. Such a sequence is called a subsequence of the original sequence.
A cluster point of a sequence is a limit of a subsequence.

Theorem 2.1 (Bolzano-Weierstrass) Let X be a metrisable space and
let K ⊂ X . Then K is compact if and only if every sequence in K has a
subsequence that converges to a limit in K.

The Bolzano-Weierstrass theorem also holds for second countable spaces.
(Note that metrisable spaces need in general not be second countable, and
conversely, not every second countable space is metrisable.) There is also a
version of the Bolzano-Weierstrass theorem that holds in general topological
spaces but in this case one has to replace sequences by the more general nets.
A set A is precompact if its closure is compact. In metrisable spaces, this
is equivalent to the statement that each sequence of points xn ∈ A has a
convergent subsequence. Note that in this case we do not require that the
limit is an element of A. The following simple lemma is often useful.

Lemma 2.2 (Convergence and compactness) Let X be a metrisable
space and let x, xn ∈ X . Then xn → x if and only if the following two
conditions are satisfied.

(i) The set {xn : n ∈ N} is precompact.

(ii) For every subsequence xn(m) such that xn(m) −→
m→∞

x′ for some x′ ∈ X ,

one has x′ = x.
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If (X ,O) is a topological space, then a compactification of X is a compact
topological space X such that X is a dense subset of X and the topology
on X is the induced topology from X . If X is metrisable, then we say that
X is a metrisable compactification of X . It turns out that each separable
metrisable space X has a metrisable compactification [Cho69, Theorem 6.3].

A topological space X is called locally compact if for every x ∈ X there
exists a compact neighbourhood of x. We cite the following proposition from
[Eng89, Thms 3.3.8 and 3.3.9].

Proposition 2.3 (Compactification of locally compact spaces) Let X
be a metrisable topological space. Then the following statements are equiva-
lent.

(i) X is locally compact and separable.

(ii) There exists a metrisable compactification X of X such that X is an
open subset of X .

(iii) For each metrisable compactification X of X , X is an open subset of X .

We note that if X satisfies the equivalent conditions of Proposition 2.3,
then it is possible to find a metrisable compactification X of X such that X\X
consists of just one point, usually denoted by∞. In this case, X = X ∪{∞}
is called the one-point compactification of X . The open sets of X ∪{∞} are
all open sets of X plus all sets of the form {∞}∪O where X\O is a compact
subset of X .

A subset A ⊂ X of a topological space X is called a Gδ-set if A is
a countable intersection of open sets (i.e., there exist Oi ∈ O such that
A =

⋂∞
i=1Oi. If X is metrisable, then every closed set A ⊂ X is a Gδ-set,

since it is the intersection of the open sets {x ∈ X : d(x,A) < 1/n}. The
following result can be found in [Bou58, §6 No. 1, Theorem. 1]. See also
[Oxt80, Thms 12.1 and 12.3].

Proposition 2.4 (Compactification of Polish spaces) Let X be a metris-
able topological space. Then the following statements are equivalent.

(i) X is Polish.

(ii) There exists a metrisable compactification X of X such that X is a
Gδ-subset of X .

(iii) For each metrisable compactification X of X , X is a Gδ-subset of X .

Moreover, a subset Y ⊂ X of a Polish space X is Polish in the induced
topology if and only if Y is a Gδ-subset of X .
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We note that if X is a compactification of a Polish space X , equipped with
a concrete metric, then X is also the completion of X in this metric. Thus,
unless X is itself compact, it will never be complete in such a metric (even
though, by the definition of a Polish space, there exists metrics generating
the same topology with respect to which X is complete).

2.3 Weak convergence

Let X be a metrisable space. We let B(X ) denote Borel-σ-field on X , i.e.,
the σ-field generated by the open sets. We let C(X ) denote the space of
all continuous functions f : X → R. We let Bb(X ) denote the space of all
bounded Borel-measurable real functions on X and we let Cb(X ) := C(X ) ∩
Bb(X ) denote the space of all bounded continuous real functions on X . We
equip with Cb(X ) with the supremumnorm

‖f‖∞ := sup
x∈X
|f(x)|.

With this norm, Cb(X ) is a Banach space [Dud02, Theorem 2.4.9]. We let
M(X ) denote the space of all finite measures on (X ,B(X )) and writeM1(X )
for the subspace of all probability measures. We cite the following well-known
fact from [EK86, Theorems 3.1.7 and 3.3.1].

Proposition 2.5 (Weak convergence) Let X be a separable metrisable
space. Then it is possible to equip M1(X ) with a metric dP such that

(i) (M1(X ), dP) is a separable metric space,

(ii) dP(µn, µ)→ 0 if and only if
∫
fdµn →

∫
fdµ for all f ∈ Cb(X ).

If X is a Polish space, then dP can be chosen such that (M1(X ), dP) is
moreover complete.

In many applications, we are not interested in the precise choice of dP

(there are several canonical ways to define such a metric). Since a metrisable
topology is uniquely characterized by its convergent sequences, property (ii)
uniquely characterizes the topology generated by dP in terms of the topology
on X . We call this topology the topology of weak convergence and denote
convergence in this topology as

µn ⇒ µ.

Proposition 2.5 shows in particular that if X is a Polish space, then so is
M1(X ), equipped with the topology of weak convergence.
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One possible choice for a metric dP as in Proposition 2.5 is the Prohorov
metric. For each subset A ⊂ X and ε > 0, we set

Aε :=
{
x ∈ X : d(x,A) < ε

}
with d(x,A) := inf

y∈A
d(x, y).

If (X , d) is a metric space, then the Prohorov metric is the metric dP on
M1(X ) defined as

dP(µ, ν) := inf{ε > 0 : µ(A) ≤ ν(Aε) + ε ∀A ∈ B(X )
}
.

It follows from [EK86, Lemma 3.1.1] that dP is a metric. It is possible to
give an alternative characterisation of dP in terms of coupling. Let C(µ, ν)
denote the space of all probability measures η on X × X whose first and
second marginals are given by µ and ν, respectively. We cite the following
lemma from [EK86, Thm 3.1.2].

Lemma 2.6 (Prohorov metric and coupling) Let (X , d) be a separable
metric space and let µ, ν ∈M1(X ). Then

dP(µ, ν) = inf
{
ε > 0 : ∃η ∈ C(µ, ν) s.t. η({(x, y) ∈ X 2 : d(x, y) ≥ ε}) ≤ ε

}
.

(2.2)

In words, (2.2) says that dP(µ, ν) is the infimum of all ε > 0 for which
it is possible to couple random variables X, Y with laws µ, ν such that
P[d(X, Y ) ≥ ε] ≤ ε. We cite the following lemmas from [EK86, Thms 3.1.7
and 3.3.1].

Lemma 2.7 (Properties of Prohorov metric) Let (X , d) be a separable
metric space and let dP be the Prohorov metric. Then (M1(X ), dP) is a
separable metric space. If (X , d) is complete, then so is (M1(X ), dP).

Lemma 2.8 (Prohorov metric and weak convergence) Let (X , d) be
a separable metric space and let dP be the Prohorov metric. Then µn, µ ∈
M1(X ) satisfy dP(µn, µ) → 0 if and only if

∫
fdµn →

∫
fdµ for all f ∈

Cb(X ).

In particular, Lemmas 2.7 and 2.8 imply Proposition 2.5. The following
well-known alternative characterisation of weak convergence [EK86, Theo-
rem 3.3.1] is sometimes useful.

Lemma 2.9 (Characterization with open and closed sets) Let µn
and µ be probability measures on a metrisable space X . Then the following
statements are equivalent.
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(i) µn ⇒ µ.

(ii) lim supn→∞ µn(C) ≤ µ(C) for all closed C ⊂ X .

(iii) lim infn→∞ µn(O) ≥ µ(O) for all open O ⊂ X .

Exercise 2.10 (Measures concentrated on a subset) Let X be a Polish
space and let X ′ ⊂ X be a Gδ-set, equipped with the induced topology. We nat-
urally identifyM1(X ′) with the subset ofM1(X ) consisting of all µ ∈M1(X )
such that µ(X ′) = 1. Show that the topology on M1(X ′) coincides with the
induced topology from its embedding inM1(X ). (Hint: Lemma 2.9.) Use this
to conclude that M1(X ′) is a Gδ-subset of M1(X ). (Hint: Proposition 2.4).

A very useful characterization of weak convergence in terms of coupling
is given by the next theorem [EK86, Cor 3.1.6 and Thm 3.1.8].

Theorem 2.11 (Skorohod representation) Let µn and µ be probability
measures on a Polish space X . Then µn ⇒ µ if and only if it is possible to
couple random variables Xn, X with laws µn, µ, respectively, in such a way
that Xn → X a.s.

The next result is known as Prohorov’s theorem (see, e.g., [EK86, Theo-
rem 3.2.2] or [Bil99, Theorems 5.1 and 5.2]).

Theorem 2.12 (Prohorov) Let X be a Polish space. LetM1(X ) be equipped
with the topology of weak convergence. Then a subset C ⊂ M1(X ) is precom-
pact if and only if C is tight, i.e.,

∀ε > 0 ∃K ⊂ X compact, s.t. sup
µ∈C

µ(X\K) ≤ ε.

2.4 Locally uniform convergence

Let E be a metric space and let I ⊂ R be a closed interval. We let CI(E)
denote the space of all continuous functions w : I → R.

Lemma 2.13 (Locally uniform convergence) For wn, w ∈ CI(E), the
following conditions are equivalent:

(i) sup
t∈C

d
(
wn(t), w(t)

)
−→
n→∞

0 for all compact C ⊂ I,

(ii) wn(tn) −→
n→∞

w(t) for all tn, t ∈ I such that tn −→
n→∞

t.
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Proof Assume (i) and let tn, t ∈ I satisfy tn −→
n→∞

t. By Lemma 2.2 (i), there

exists a compact set C ⊂ I such that tn ∈ C for all n (and hence also t ∈ C).
Then for each ε > 0, there exists an N <∞ such that d(wn(t), w(t)) ≤ ε for
all n ≥ N . Now

d
(
wn(tn), w(t)

)
≤ d
(
wn(tn), w(tn)

)
+ d
(
w(tn), w(t)

)
≤ ε+ d

(
w(tn), w(t)

)
for all n ≥ N , and hence

lim sup
n→∞

d
(
wn(tn), w(t)

)
≤ ε

by the continuity of w. Since ε > 0 is arbitrary, this shows that (i) implies
(ii). On the other hand, if (i) fails for some compact C ⊂ I, then we can
choose tn ∈ C and ε > 0 such that

d
(
wn(tn), w(tn)

)
≥ ε ∀n.

Since C is compact, by going to a subsequence, we can without loss of gen-
erality assume that tn → t for some t ∈ C. Since

d
(
wn(tn), w(t)

)
≥ d
(
wn(tn), w(tn)

)
− d
(
w(tn), w(t)

)
≥ ε+ d

(
w(tn), w(t)

)
,

using the continuity of w, we see that

lim inf
n→∞

d
(
wn(tn), w(t)

)
≥ ε,

which contradicts (ii).

There exists a metrisable topology on CI(E) such that a wn ∈ CI(E) con-
verges to a limit w if and only if the equivalent conditions of Lemma 2.13
are satisfied. Note that by (2.1) and the remarks below it, these condi-
tions uniquely determine the topology. Note also that by condition (ii) of
Lemma 2.13, the topology on CI(E) depends only on the topology on E and
not on the precise choice of the metric on E. A possible choice of a metric
on CI(E) is

ρ(v, w) :=
∞∑
n=1

2−n sup
t∈[0,n]

d
(
v(t), w(t)

)
,

where d is a bounded metric that generates the topology on E. Such a metric
can always be found: if d is any metric generating the topology on E, then
d′(x, y) := d(x, y) ∧ 1 is a bounded metric that generates the same topology.
Usually, we do not care about the precise choice of the metric on CI(E); apart
from ρ, there are many other possible choices. We call this the topology on
CI(E) the topology of locally uniform convergence.
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2.5 The Hausdorff metric

Let (E, d) be a metric space, let K(E) be the space of all compact subsets of
E and set K+(E) := {K ∈ K(E) : K 6= ∅}. Then the Hausdorff metric dH

on K+(E) is defined as

dH(K1, K2) := sup
x1∈K1

d(x1, K2) ∨ sup
x2∈K2

d(x2, K1)

= inf
{
ε > 0 : K1 ⊂ Kε

2 and K2 ⊂ Kε
1

}
,

(2.3)

where as before d(x,A) := infy∈A d(x, y) denotes the distance between a point
x ∈ E and a set A ⊂ E and Aε :=

{
x ∈ X : d(x,A) < ε

}
. The corresponding

topology is naturally called the Hausdorff topology. Note the subtle difference
between “the Hausdorff topology” (the topology generated by the Hausdorff
metric) and “a Hausdorff topology” (any topology satisfying condition (iv)
of Section 2.1). We extend this topology to K(E) by adding ∅ as an isolated
point.

A good source for the Hausdorff topology is [SSS14, Appendix B], where
one can find the proofs of all the lemmas in this section. Some more infor-
mation can be found in [BBI01, Chapter 7]. The first lemma of this section
shows that the Hausdorff topology depends only on the topology on E, and
not on the choice of the metric.

Lemma 2.14 (Convergence criterion) Let Kn, K ∈ K+(E) (n ≥ 1).
Then Kn → K in the Hausdorff topology if and only if there exists a C ∈
K+(E) such that Kn ⊂ C for all n ≥ 1 and

K = {x ∈ E : ∃xn ∈ Kn s.t. xn → x}
= {x ∈ E : ∃xn ∈ Kn s.t. x is a cluster point of (xn)n∈N}.

(2.4)

The following lemma shows that K(E) is Polish if E is.

Lemma 2.15 (Properties of the Hausdorff metric)

(a) If (E, d) is separable, then so is (K+(E), dH).

(b) If (E, d) is complete, then so is (K+(E), dH).

The following lemma shows in particular that K(E) is compact if E is
compact.

Lemma 2.16 (Compactness in the Hausdorff topology) A set A ⊂
K+(E) is precompact if and only if there exists a compact C ⊂ E such that
K ⊂ C for each K ∈ A.
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The following lemma is useful when proving convergence of K+(E)-valued
random variables.

Lemma 2.17 (Tightness criterion) Assume that E is a Polish space and
let Kn (n ≥ 1) be K+(E)-valued random variables. Then the collection of
laws {P[Kn ∈ · ] : n ≥ 1} is tight if and only if for each ε > 0 there exists a
compact C ⊂ E such that P[Kn ⊂ C] ≥ 1− ε for all n ≥ 1.

2.6 Squeezed space

Let (E, d) be a metric space, let {∗} be a set containing a single element
called ∗, which we assume is not an element of E, and let

R(E) :=
(
E × R) ∪

{
(∗,−∞), (∗,+∞)

}
. (2.5)

We extend d to E ∪ {∗} by setting d(x, ∗) = d(∗, x) :=∞ if x 6= ∗ and := 0
otherwise. Let R := [−∞,∞] denote the usual two-point compactification of
the real line. We fix a continuous function φ : R→ [0,∞) such that φ(t) > 0
for all t ∈ R and φ(±∞) = 0, we choose a metric dR that generates the
topology on R, and we define ρ : R(E)2 → [0,∞) by

ρ
(
(x, s), (y, t)

)
:=
(
φ(s) ∧ φ(t)

)(
d(x, y) ∧ 1

)
+
∣∣φ(s)− φ(t)

∣∣+ dR(s, t) (2.6)

Lemma 2.18 (Metric on squeezed space) The function ρ is a metric on
R(E).

Proof For brevity, we write d′(x, y) := d(x, y)∧ 1. Then d′ is a metric on E.
The only nontrivial statement that we have to prove is the triangle inequality,
and it suffices to prove this for the function

ρ′
(
(x, s), (y, t)

)
:=
(
φ(s) ∧ φ(t)

)
d′(x, y) +

∣∣φ(s)− φ(t)
∣∣.

We estimate

ρ′
(
(x, s), (z, u)

)
≤
(
φ(s) ∧ φ(u)

)(
d′(x, y) + d′(y, z)

)
+
∣∣φ(s)− φ(u)

∣∣. (2.7)

If φ(t) ≥ φ(s) ∧ φ(u), then φ(s) ∧ φ(u) is less than φ(s) ∧ φ(t) and also less
than φ(t)∧φ(u), so we can simply estimate the expression in (2.7) from above
by(
φ(s) ∧ φ(t)

)
d′(x, y) +

(
φ(t) ∧ φ(u)

)
d′(y, z)

)
+
∣∣φ(s)− φ(t)

∣∣+
∣∣φ(t)− φ(u)

∣∣
and we are done. On the other hand, if φ(t) < φ(s) ∧ φ(u), then∣∣φ(s)− φ(t)

∣∣+
∣∣φ(t)− φ(u)

∣∣ =
∣∣φ(s)− φ(u)

∣∣+ 2
(
φ(s) ∧ φ(u)− φ(t)

)
.



30 CHAPTER 2. TOPOLOGICAL PREREQUISITES

Using the fact that d′ ≤ 1, we can now estimate the right-hand side of (2.7)
from above by

φ(t)
(
d′(x, y) + d′(y, z)

)
+ 2
(
φ(s) ∧ φ(u)− φ(t)

)
+
∣∣φ(s)− φ(u)

∣∣
=
(
φ(s) ∧ φ(t)

)
d′(x, y) +

(
φ(t) ∧ φ(u)

)
d′(y, z)

+
∣∣φ(s)− φ(t)

∣∣+
∣∣φ(t)− φ(u)

∣∣,
and again we are done.

The following lemma shows that the topology generated by the metric ρ
depends only on the topology on E and not on the choice of the metric on
E. Recall that by (2.1), a metrisable topology is uniquely characterised by
its convergent sequences, so the topology on R(E) is uniquely characterised
by the conditions (i) and (ii) below.

Lemma 2.19 (Topology on squeezed space) A sequence (xn, tn) ∈ R(E)
converges to a limit (x, t) in the metric ρ defined in (2.6) if and only if the
following two conditions are satisfied:

(i) tn → t in the topology on R,

(ii) if t ∈ R, then xn → x in the topology on E.

Proof This is immediate from the definition of ρ.

We can think of the spaceR(E) as being obtained from E×R by squeezing
the sets E × {±∞} into the single points (∗,±∞). For this reason, we call
R(E) the squeezed space. In the special case that E = R, we can make a
picture ofR(R) by mapping R×R into the closed unit disc using the function

(x, t) 7→
(√

1− ψ(t)2ψ(x), ψ(t)
)

with ψ(z) :=
z

1 + |z|

(with ψ(±∞) := ±1), and mapping the points (∗,±∞) to (0,±1). The
following lemma shows that R(E) is a Polish space if E is Polish.

Lemma 2.20 (Properties of squeezed space)

(a) If (E, d) is separable, then so is (R(E), ρ).

(b) If (E, d) is complete, then so is (R(E), ρ).

Proof If D is a countable dense subset of (E, d), then D×Q is a countable
dense subset of (R(E), ρ), proving (a).

To prove (b), let (xn, tn) be a Cauchy sequence in (R(E), ρ). Then by
(2.6) tn is a Cauchy sequence in R and hence tn → t for some t ∈ R. If t ∈ R,
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then by (2.6) xn is a Cauchy sequence in (E, d) so by the completeness of
the latter, xn → x for some x ∈ E. By Lemma 2.19, it follows that (xn, tn)
converges, proving the completeness of (R(E), ρ).

The following lemma identifies the compact subsets of R(E). In particu-
lar, the lemma shows that R(E) is compact if E is compact.

Lemma 2.21 (Compactness criterion) A set A ⊂ R(E) is precompact
if and only if for each T < ∞, there exists a compact set K ⊂ E such that
{x ∈ E : (x, t) ∈ A, t ∈ [−T, T ]} ⊂ K.

Proof Assume that A ⊂ R(E) has the property that for each T <∞, there
exists a compact set K ⊂ E such that {x ∈ E : (x, t) ∈ A, t ∈ [−T, T ]} ⊂ K.
To show that A is precompact, we will show that each sequence (xn, tn) ∈ A
has a convergent subsequence. By the compactness of R, we can select a
subsequence (x′n, t

′
n) such that t′n → t for some t ∈ R. If t = ±∞, then by

Lemma 2.19 (x′n, t
′
n) → (∗,±∞) and we are done. Otherwise, there exists a

T <∞ such that t′n ∈ [−T, T ] for all n large enough. By assumption, there
then exists a compact set K ⊂ E such that x′n ∈ K for all n large enough,
so we can select a further subsequence such that (x′′n, t

′′
n) converges to a limit

(x, t) ∈ E × R.
Assume, on the other hand, that A ⊂ R(E) has the property that for

some T <∞, there does not exist a compact set K ⊂ E such that {x ∈ E :
(x, t) ∈ A, t ∈ [−T, T ]} ⊂ K. Set

B :=
{
x ∈ E : (x, t) ∈ A for some t ∈ [−T, T ]

}
The closure of B cannot be compact, since this would contradict our assump-
tion. It follows that there exists a sequence xn ∈ B that does not contain a
convergent subsequence, and there exist tn ∈ [−T, T ] such that (xn.tn) ∈ A.
But then, in view of Lemma 2.19, the sequence (xn, tn) cannot contain a
convergent subsequence either, proving that A is not precompact.

2.7 Path space

Let E be a metrisable space and let R(E) be the squeezed space defined
in Section 2.6. By definition, a path in E is a nonempty compact subset
π ⊂ R(E) such that {x ∈ E : (x, t) ∈ π} has at most one element for each
given t ∈ R and the set

Iπ := {t ∈ R : ∃x ∈ E ∪ {∗} s.t. (x, t) ∈ π
}

(2.8)
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is a closed subinterval of R. We call Iπ := Iπ ∩ R the domain of π and we
call

σπ := inf Iπ and τπ := sup Iπ (2.9)

the starting time and final time of the path π. For each t ∈ Iπ, we define
π(t) ∈ E ∪ {∗} by {π(t)} := {x ∈ E : (x, t) ∈ π}. Then Iπ 3 t 7→ π(t) is a
function from Iπ to E. We let Π(E) denote the set of all paths in E.

Lemma 2.22 (Path viewed as a function) The domain Iπ of a path
π ∈ Π(E) is a closed subinterval of R, and t 7→ π(t) is a continuous function
from Iπ to E. Conversely, if I ⊂ R is a closed interval and t 7→ f(t) is a
continuous function from I to E, then there exists a path π ∈ Π(E) such
that Iπ = I and π(t) = f(t) (t ∈ I). The path π is uniquely determined by
the interval I and function f , except in the trivial case when I = ∅, in which
case there are two possible choices for π.

Proof We first show that for each π ∈ Π(E), the function Iπ 3 t 7→ π(t)
is continuous. Assume that tn, t ∈ Iπ and tn → t. Since π is compact,
the sequence (π(tn), tn) is precompact. Since π(t) is the only element of
{x ∈ E : (x, t) ∈ π}, each subsequence of the (π(tn), tn) must converge to
(π(t), t). By Lemma 2.2, we conclude that (π(tn), tn) → (π(t), t). Since
t ∈ R, by Lemma 2.19, we conclude that π(tn) → π(t), which shows that
Iπ 3 t 7→ π(t) is continuous on I as claimed.

Let I ⊂ R be a closed interval and let f : I → E be continuous. Assume
that I is nonempty. Let I be the closure of I in R. Extend f to I by setting
f(t) := ∗ if t = ±∞. Let π := {(f(t), t) : t ∈ I}. It follows from Lemma 2.19
and the continuity of f that the map

I 3 t 7→
(
f(t), t

)
∈ R(E) (2.10)

is continuous. Since I is compact and since π is the image of I under the
continuous map (2.10), we conclude that π is compact. Clearly, {x ∈ E :
(x, t) ∈ π} has precisely one element for t ∈ I, and is empty for t 6∈ I.
This shows that π ∈ Π(E). Since I is the only closed subinterval of R such
that I ∩ R = I, we see that π is uniquely determined by the interval I and
function f .

In the special case that I = ∅, it is easy to see that there exist precisely
two paths π such that Iπ = I (the condition π(t) = f(t) (t ∈ I) is void in this
case). These are the trivial paths with Iπ = {−∞} or = {∞}, respectively.

In view of Lemma 2.22, we often view a path π ∈ Π(E) as a continuous
function defined on a closed interval Iπ ⊂ R. If I ⊂ R is a closed nonempty
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interval, then we identify the space CI(E) defined in Section 2.4 with the
subset of Π(E) defined as {π ∈ Π(E) : Iπ = I}.

Let K+(R(E)) be the set of nonempty compact subsets of the squeezed
space R(E). We equip K+(R(E)) with the Hausdorff topology. We observe
that Π(E) is a subset of K+(R(E)). We naturally equip Π(E) with the
induced topology from its embedding in K+(R(E)).

Lemma 2.23 (Paths with a fixed domain) Let I ⊂ R be a closed
nonempty interval. The induced topology on CI(E) from its embedding in
Π(E) is the topology of locally uniform convergence.

Proof Assume that πn, π ∈ CI(E), viewed as functions, satisfy πn → π
locally uniformly. We need to show that viewed as compact subsets of R(E),
the sets πn, π satisfy πn → π in the Hausdorff topology on K(R(E)). Let I
denote the closure of I in R. By Lemma 2.14, we need to show that

⋃
n πn

is precompact and

π ⊂
{

(x, t) ∈ R(E) : ∃tn ∈ I s.t.
(
πn(tn), tn

)
→ (x, t)

}
,{

(x, t) ∈ R(E) : (x, t) is a cluster

point of
(
πn(tn), tn

)
for some tn ∈ I

}
⊂ π.

(2.11)

To see that
⋃
n πn is precompact, we need to show that each sequence of

the form (πn(m)(tm), tm)m≥1 has a convergent subsequence. If n(m) infinitely
often takes the same value n, then the claim is obvious from the compactness
of πn, so without loss of generality we may assume that n(m) → ∞. Going
to a subsequence if necessary, we may assume that tm → t for some t ∈ I. If
t = ±∞, then the claim is again obvious so we may assume that t ∈ I. In
this case Lemma 2.13 (ii) tells us that πn(m)(tm)→ π(t) so we have found a
convergent subsequence as required.

To prove the first inclusion in (2.11), let (π(t), t) ∈ π and set tn := t for
all n. If t ∈ I, then πn(t) → π(t) since locally uniform convergence implies
pointwise convergence, and if t = ±∞ then trivially (∗, t)→ (∗, t) as n→∞.
To prove the second inclusion, assume that (πn(m)(tn(m)), tn(m)) → (x, t) as
m → ∞ for some (x, t) ∈ R(E), tn ∈ I, and n(m) → ∞. If t ∈ I, then we
can use Lemma 2.13 (ii) which tells us that πn(m)(tn(m)) → π(t) and hence
(x, t) = (π(t), t) ∈ π. If t = ±∞, then trivially x = ∗ and (∗, t) ∈ π.

Assume, conversely, that πn → π in the Hausdorff topology on K(R(E)).
We need to show that πn, π ∈ CI(E) and that πn → π locally uniformly.
Assume that tn, t ∈ I such that tn → t. By Lemma 2.13 (ii), it suffices
to show that πn(tn) → π(t) for all such tn, t. Equivalently, we may show
that (πn(tn), tn) → (π(t), t). By Lemma 2.2, it suffices to show that the
set {(πn(tn), tn) : n ∈ N} is precompact and (π(t), t) is the only cluster
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point of the sequence (πn(tn), tn). By Lemma 2.14, there exists a compact
set C ⊂ R(E) such that πn ⊂ C for all n, so {(πn(tn), tn) : n ∈ N} is
precompact as required. Let (x, t) be any cluster point. By Lemma 2.14 (ii),
(x, t) ∈ π and hence x = π(t), which shows that πn(tn)→ π(t) as required.

Our next proposition says that the space of paths in E is Polish provided
E has this property.

Proposition 2.24 (Polish space) If E is a Polish space, then so is Π(E).

The proof of Proposition 2.24 needs some preparations. Let d be a metric
generating the topology on E and let π ∈ Π(E). For each π ∈ Π(E), δ > 0
and T <∞, we define

mT,δ(π) := sup
{
d
(
π(s), π(t)

)
: s, t ∈ Iπ, −T ≤ s ≤ t ≤ T, t− s ≤ δ

}
.

(2.12)
The quantity mT,δ(π) is called the modulus of continuity of the path π. More
generally, for any compact subset K ⊂ R(E), we can define

mT,δ(K) := sup
{
d
(
x, y
)

: (x, s), (y, t) ∈ K, −T ≤ s ≤ t ≤ T, t− s ≤ δ
}
,

which coincides with our previous definition if π is a path. In analogy with
(2.8), we also define

IK :=
{
t ∈ R : ∃x ∈ E ∪ {∗} s.t. (x, t) ∈ K

}
.

Lemma 2.25 (Characterisation of paths) A compact subset π ⊂ R(E)
is an element of the path space Π(E) if and only if IK is a closed subinterval
of R and lim

δ→0
mT,δ(π) = 0 for all T <∞.

Proof Assume that π ∈ K(R(E)) and lim supδ→0mT,δ(π) > 0 for some
T <∞. Then we can find (xn, sn), (yn, tn) ∈ π and δ > 0 with d(xn, yn) ≥ δ,
−T ≤ sn ≤ tn ≤ T , and tn − sn ≤ 1/n. Since π is compact, by going to a
subsequence, we can assume that (xn, sn) → (x, s) and (yn, tn) → (y, t) for
some (x, s), (y, t) ∈ π with d(x, y) ≥ δ > 0, −T ≤ s ≤ t ≤ T , and t− s = 0.
This shows that π 6∈ Π(E).

Conversely, if π 6∈ Π(E), then either Iπ is not a closed subinterval of
R or there exist (x, t), (y, t) ∈ π with x 6= y. In the latter case, since
(∗,±∞) are the only points in R(E) with time coordinate ±∞ we must
have t ∈ R. But then mT,δ(π) ≥ d(x, y) > 0 for all T ≥ |t|, which shows that
lim supδ→0mT,δ(π) > 0 for some T <∞.

Proof of Proposition 2.24 If E is a Polish space, then by Lemma 2.20 so
is R(E) and hence by Lemma 2.15 so is K(R(E)). Let us set

K′ :=
{
K ∈ K(R(E)) : IK is a closed subinterval of R

}
. (2.13)
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Then K′ is a closed subset of K(R(E)) and hence Polish in the induced
topology by Proposition 2.4. For each ε, δ > 0 and T <∞, the set

AT,ε,δ := {K ∈ K′ : mT,δ(K) ≥ ε}

is a closed subset of K′ and hence its complement Ac
T,ε,δ is open. By Lemma

2.25,

Π(E) =
⋂
n,m

⋃
k

Ac
n,1/m,1/k,

which is a countable intersection of open sets, i.e., a Gδ-set. By Proposi-
tion 2.4, it follows that Π(E) is a Polish space.

A set A ⊂ Π(E) is called equicontinuous if

lim
δ→0

sup
π∈A

mT,δ(π) = 0 (T <∞).

The following theorem identifies the compact subsets of Π(E). Condition (ii)
is called the compact containment condition. If I ⊂ R is a closed nonempty
interval, then CI(E) is a closed subset of Π and hence the following theorem
can also be used to identify the precompact subsets of CI(E). In this con-
text, the result is known as the Arzela-Ascoli theorem. Note that while the
definition of equicontinuity depends (at least a priori) on the choice of the
metric d on E, whether a set A ⊂ Π(E) is precompact only depends on the
topology on E, so when verifying conditions (i) and (ii) below, we are free
to choose any metric d that generates the topology on E.

Theorem 2.26 (Arzela-Ascoli) A set A ⊂ Π(E) is precompact if and only
if

(i) A is equicontinuous,

(ii) for each T <∞, there exists a compact set C ⊂ E such that π(t) ∈ C
for all π ∈ A, t ∈ [−T, T ].

Proof Let K′ be the space defined in (2.13), equipped with the Hausdorff
topology. Let A denote the closure of A, viewed as a subset of the space K′.
Then A is a precompact subset of Π(E) if and only if A is a compact subset
of K′ and A ⊂ Π(E). By Lemmas 2.16 and 2.21, A is a compact subset of K′
if and only if condition (ii) holds. To complete the proof, it suffices to show
that assuming that (ii) holds, one has A ⊂ Π(E) if and only if (i) holds.

We first show that (i) implies A ⊂ Π(E). Assume that πn ∈ A converge
in the Hausdorff topology to a compact subset π ⊂ R(E). To show that
π ∈ Π(E), will apply Lemma 2.25. If (x, s), (y, t) ∈ π, then by Lemma 2.14,
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there exist (xn, sn), (yn, tn) ∈ πn such that (xn, sn) → (x, s) and (yn, tn) →
(y, t). If s, t ∈ [−T, T ] and |t − s| ≤ δ, then for n large enough we have
sn, tn ∈ [−T − 1, T + 1] and |tn − sn| ≤ 2δ. Since d(xn, yn) → d(x, y), it
follows that

lim sup
δ→0

mT,δ(π) ≤ lim sup
δ→0

sup
n
mT+1,2δ(πn) = 0 (δ > 0, T <∞),

which by Lemma 2.25 implies that π ∈ Π(E).
Assume now that (ii) holds but (i) fails. Then there exist T < ∞ and

ε > 0 such that for each n ≥ 1, we can find πn ∈ A with mT,1/n(πn) ≥ ε. This
means that there exist −T ≤ sn ≤ tn ≤ T such that d(πn(sn), πn(tn)) ≥ ε
and tn − sn ≤ 1/n. By (ii), A is a compact subset of K′, so by going a
subsequence we may assume that πn → π ∈ K′. By going to a further
subsequence, we may assume that sn → s and tn → t for some s, t ∈ [−T, T ].
But then s = t since tn − sn ≤ 1/n. Let xn := πn(sn) and yn := πn(tn). By
(ii), we can select a further subsequence such that xn → x and yn → y for
some x, y with d(x, y) ≥ ε. By Lemma 2.14, we have (x, t), (y, t) ∈ π which
shows that π 6∈ Π(E) and hence A is not a subset of Π(E).

2.8 Tightness

In this section, we use the general results from the previous section to derive
a tightness criterion for sequences of random variables with values in the
space Π(R).

Lemma 2.27 (Precompactness) Let A be a subset of Π(R). Then A is
precompact if and only if for all T <∞ and ε > 0, there exists a δ > 0 such
that ∣∣π(u)− π(t)

∣∣ ≤ ε for all π ∈ A and σπ ≤ t ≤ u

s.t. (π(t), t), (π(u), u) ∈ [−T, T ]2, u− t ≤ δ.

Proof Let φ : R → [−1, 1] be strictly increasing and continuous with
φ(±∞) = ±1. Then

d(x, y) :=
∣∣φ(x)− φ(y)

∣∣ (x, y ∈ R).

is a metric generating the topology on R. Since R is compact, by the Arzela-
Ascoli theorem (Theorem 2.26), A is precompact if and only if it is equicon-
tinuous, i.e.,

sup
{
d
(
π(t), π(u)

)
: π ∈ A, σπ ≤ t ≤ u ≤ τπ,

t, u ∈ [−T, T ], u− t ≤ δ
}
−→
δ→0

0 ∀T <∞.
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In other words, A is not precompact if and only if

∃T <∞ and ε > 0 s.t. ∀δ > 0 ∃π ∈ A and σπ ≤ t ≤ u ≤ τπ

s.t. t, u ∈ [−T, T ], u− t ≤ δ and d
(
π(t), π(u)

)
> ε.

(2.14)

We claim that this is equivalent to

∃S, T <∞ and ε > 0 s.t. ∀δ > 0 ∃π ∈ A and σπ ≤ t ≤ u ≤ τπ s.t.

t, u ∈ [−T, T ], π(t), π(u) ∈ [−S, S], u− t ≤ δ and d
(
π(t), π(u)

)
> ε/3.

(2.15)
The implication (2.15)⇒(2.14) is trivial. To prove the converse, assume that
(2.14) holds for some T < ∞ and ε > 0. Making ε smaller if necessary,
we can without loss of generality assume that 0 < ε < 1. We can choose
the function φ in the definition of our metric d on R to be symmetric and
then define S > 0 by d(±S,±∞) = ε/3. Now fix δ > 0 and let π be
as in (2.14). If π(t), π(u) ∈ [−S, S] already holds we are done. If π(t) 6∈
[−S, S], then either 1. π(t) ∈ [−∞,−S) or 2. π(t) ∈ (S,∞]. Assume that
we are in case 1. Since d

(
π(t), π(u)

)
> ε, we must have π(u) ∈ (−S,∞].

Therefore, by continuity, there must be some t′ ∈ [t, u] such that π(t′) = −S.
Then d

(
π(t′), π(u)

)
> (2/3)ε. If π(u) ≤ S we are done. Otherwise, by

continuity, there must be some u′ ∈ [t′, u] such that π(u′) = S and now
d
(
π(t′), π(u′)

)
= d(−S, S) > ε/3. Case 2 is similar, by symmetry, and the

case that π(t) ∈ [−S, S] but π(u) 6∈ [−S, S] can also be treated in the same
way.

Replacing S and T by S ∨ T if necessary, we see (2.15) is equivalent to

∃T <∞ and ε > 0 s.t. ∀δ > 0 ∃π ∈ A and σπ ≤ t ≤ u ≤ τπ s.t.

(π(t), t), (π(u), u) ∈ [−T, T ]2, u− t ≤ δ and d
(
π(t), π(u)

)
> ε/3.

Using the fact that for each T < ∞, there exist constants 0 < c < C < ∞
such that

c|x− y| ≤ d(x, y) ≤ C|x− y|
(
x, y ∈ [−T, T ]

)
,

the claim of the lemma now follows.

Proposition 2.28 (Almost sure precompactness) Let A be a random
subset of Π(R). Then A is almost surely a precompact subset of Π(R) if and
only if

P
[ ∣∣π(u)− π(t)

∣∣ ≥ ε for some π ∈ A and σπ ≤ t ≤ u ≤ τπ

s.t. (π(t), t), (π(u), u) ∈ [−T, T ]2, u− t ≤ δ
]
−→
δ→0

0 ∀T <∞, ε > 0.



38 CHAPTER 2. TOPOLOGICAL PREREQUISITES

Proof Let AδT,ε denote the event that∣∣π(u)− π(t)
∣∣ ≥ ε for some π ∈ A and σπ ≤ t ≤ u ≤ τπ

s.t. (π(t), t), (π(u), u) ∈ [−T, T ]2, u− t ≤ δ.

Then δ ≤ δ′ implies AδT,ε ⊂ Aδ
′
T,ε and AT,ε :=

⋂
δ>0A

δ
T,ε is the event that

∀δ > 0 ∃π ∈ A and σπ ≤ t ≤ u ≤ τπ

s.t. (π(t), t), (π(u), u) ∈ [−T, T ]2, u− t ≤ δ, and
∣∣π(u)− π(t)

∣∣ ≥ ε.

The assumption of the proposition implies that P (AT,ε) = 0 for all T < ∞
and ε > 0. In particular, if (Tn)n≥1 and (εm)m≥1 are sequences of positive
constants such that Tn →∞ and εn → 0, then

P
( ⋃
n≥1

⋃
m≥1

ATn,εm
)

= 0,

which shows that almost surely, for all n ≥ 1 and m ≥ 1, there exists a δ > 0
such that ∣∣π(u)− π(t)

∣∣ < εm for all π ∈ A and σπ ≤ t ≤ u ≤ τπ

s.t. (π(t), t), (π(u), u) ∈ [−Tn, Tn]2, u− t ≤ δ.

By Lemma 2.27, it follows that A is almost surely precompact.
On the other hand, if the assumption of the proposition does not hold,

then the event AT,ε has positive probability for some T <∞ and ε > 0, which
by Lemma 2.27 implies that A is with positive probability not precompact.

Proposition 2.29 (Tightness of random compact sets of paths) Let
K(Π(R)) be the set of compact subsets of Π(R), equipped with the Haus-
dorff topology. Let (An)n≥1 be a sequence of random variables with values in
K(Π(R)). Then the probability laws

(
P[An ∈ · ]

)
n≥1

are tight if and only if

sup
n≥1

P
[ ∣∣π(u)− π(t)

∣∣ ≥ ε for some π ∈ An and σπ ≤ t ≤ u ≤ τπ

s.t. (π(t), t), (π(u), u) ∈ [−T, T ]2, u− t ≤ δ
]
−→
δ→0

0

for all T <∞ and ε > 0.

Proof (partial) By Theorem 2.12, the probability laws
(
P[An ∈ · ]

)
n≥1

are

tight if and only if for each η > 0, there exists a compact set C ⊂ K(Π(R))
such that

inf
n≥1

P[An ∈ C] ≥ 1− η.
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Equivalently, we may show that there exists a precompact set C ⊂ K(Π(R))
with this property, because its closure C is then compact with P[An ∈ C] ≥
P[An ∈ C]. By Lemma 2.16, a subset C ⊂ K(Π(R)) is precompact if and
only there exists a compact C ⊂ Π(R) such that A ⊂ C for all A ∈ C. It
follows that the probability laws

(
P[An ∈ · ]

)
n≥1

are tight if and only if for

each η > 0, there exists a compact set C ⊂ Π(R) such that1

inf
n≥1

P[An ⊂ C] ≥ 1− η.

Again, this is equivalent to the existence, for each η > 0, of a precompact
set C with this property.

The rest of the argument is similar to the proof of Proposition 2.28. For
brevity, we skip the details.

1Indeed, the existence of such a C is necessary by our previous condition and
Lemma 2.16, and conversely, if such a C exists, then by Lemma 2.16 C := {A : A ⊂ C} is
compact so we can apply our previous condition.
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Chapter 3

The Brownian web

3.1 Arrow configurations

We are interested in diffusive scaling limits of systems of branching and
coalescing particles with small branching rate. To prepare for this, in the
present chapter, we will study the case without branching. In this case, the
limit is coalescing Brownian motions. Although this may seem relatively easy
(and indeed it is significantly easier than the case with branching), we will
see that nonetheless there are already nontrivial phenomena to be studied in
this case, and that a detailed understanding of these phenomena will help us
hugely when we take on the case with branching.

We will be interested in the diffusive scaling limit of coalescing random
walks. Instead of working with coalescing random walks in continuous time,
as we did in Section 1.2, it will often be convenient to work with coalescing
random walks in discrete time, which we introduce now. By definition, we
call

Z2
even :=

{
(x, t) ∈ Z2 : x+ t is even

}
the even sublattice of Z2. Let ω = (ωz)z∈Z2

even
be an i.i.d. collection of random

variables that are uniformly distributed on {−1,+1}. We can use ω to define
a random directed graph with vertex set Z2

even and set of oriented edges

~E :=
{(
x, t), (x+ ω(x,t), t+ 1)

)
: (x, t) ∈ Z2

even

}
.

We call the random directed graph (Z2
even,

~E) an arrow configuration. See
Figure 3.1 for a picture.

In Section 2.7, for any metrisable space X , we gave a definition of the path
space Π(X ). Recall that Iπ denotes the domain of a path π ∈ Π(X ) and that
σπ, τπ denote its starting time and final time, respectively. We will especially

41
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Figure 3.1: An arrow configuration.

be interested in the case that the metrisable space X is R := [−∞,∞], the
extended real line. We let

Π↑ :=
{
π ∈ Π(R) : τπ =∞

}
.

We call Π↑ the space of all upward paths. In view of Lemma 2.22, elements
of Π↑ correspond to continuous functions π : Iπ → R, where Iπ is an interval
of the form [σπ,∞) if the starting time σπ is finite, and

Iπ = R if σπ = −∞ and Iπ = ∅ if σπ = +∞.

We will call the point
zπ :=

(
π(σπ), σπ

)
the starting point of the path π. Note that in general zπ is an element of
R(R), the squeezed space defined in Section 2.6. By definition, a path in the

arrow configuration (Z2
even, ~E), or simply a path in ω, is a path π ∈ Π↑ with

the following properties:

(i)
(
π(t), t

)
∈ Z2

even (t ∈ Z, t ≥ σπ),

(ii) π(t+ 1) = π(t) + ω(π(t),t) (t ∈ Z, t ≥ σπ),

(iii) π(t+ s) = (1− s)π(t) + sπ(t+ 1) (0 ≤ s ≤ 1, t ∈ Z, t ≥ σπ).

In words, these are upward paths that visit points in the even sublattice at
integer times and follow the arrows, with linear interpolation between integer
times. We let

U = U(ω) :=
{
π ∈ Π↑ : π is a path in ω

}
. (3.1)



3.1. ARROW CONFIGURATIONS 43

We let U denote the closure of U in the topology on Π↑. The following
proposition says that U is a.s. compact and compared to U only contains a
few extra trivial paths. Below, we use the notation Z := Z ∪ {−∞,∞}, i.e.,
this is the closure of Z in R.

Proposition 3.1 (Compact set of paths) The closure U of the random
set of upward paths U defined in (3.1) is almost surely a compact subset of
Π↑. Moreover, almost surely, the set U\U consists of all paths π ∈ Π↑ with
σπ ∈ Z and either π(t) = −∞ for all t ∈ Iπ or π(t) = +∞ for all t ∈ Iπ.

Proof Since paths in U are Lipschitz continuous with Lipschitz constant
one, equicontinuity is obvious so U is precompact by Proposition 2.28 and
hence U is compact.

Let s ∈ Z and let π ∈ Π↑ be defined by σπ := s and π(t) := −∞ for all
σπ ≤ t < ∞. To see that π ∈ U , choose xn ∈ Z such that (xn, s) ∈ Z2

even

and xn → −∞. Let πn ∈ U be the unique path started at (xn, t). Since
U is compact, by going to a subsequence if necessary, we can assume that
πn → π′ for some π′ ∈ Π↑. Since πn is a random walk startung from (xn, t)
and xn → −∞, the law of πn(t) converges weakly to the delta measure on
−∞ for each t ≥ s, from which we conclude that π′ = π and hence π ∈ U .
In the same way, we see that U contains all trivial paths π with σπ ∈ Z
and π(t) = ∞ for all σπ ≤ t < ∞. Since U is closed, it also contains all
limits of such paths, so letting σπ → ∞ or σπ → −∞ we see that U also
contains all trivial paths with σπ = −∞ and either π(t) = −∞ for all t ∈ R
or π(t) = +∞ for all t ∈ R, as well as the trivial path with σπ = +∞.

To complete the proof, we must show that if π ∈ U satisfies π(t) ∈ R
for some t ≥ σπ, then π(t) ∈ R for all t ≥ σπ. We first note that paths
in U are noncrossing in the sense that there do not exist π, π′ ∈ U and
σπ ∨ σπ′ ≤ s < t <∞ such that π(s) < π′(s) while π′(t) < π(t). It is easy to
see that this property is preserved in the limit so paths in U are noncrossing
too. Now assume that π ∈ U satisfies π(t) ∈ R for some t ≥ σπ. Choose
zn = (xn, sn) ∈ Z2

even with sn < t such that zn → (∞, s) for some s ∈ R,
and let πn ∈ U denote the path started from zn. Then πn is a random walk
started from zn. By our previous arguments, πn(t)→∞ a.s. so π(t) < πn(t)
for all n large enough. Since paths in U are noncrossing it follows that there
exists an n such that π(t) ≤ πn(t) < ∞ for all t ≥ σπ. In the same way, by
symmetry, we see that −∞ < π(t) for all t ≥ σπ.

We now turn to what we are mainly interested in, which is the diffusive
scaling limit of arrow configurations. For each ε > 0, we define a diffusive
scaling map θε : R2 → R2 by

θε(x, t) := (εx, ε2t)
(
(x, t) ∈ R2

)
. (3.2)
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Let R(R) be the squeezed space defined in Section 2.6. We extend θε con-
tinuously to R(R) in the obvious way, by setting

θε(±∞, t) := (±∞, ε2t) (t ∈ R) and θε(∗,±∞) := (∗,±∞).

For any subset A ⊂ R(R), we let

θε(A) :=
{
θε(z) : z ∈ A

}
denote the image of A under θε. In particular, this notation applies to paths
π ∈ Π(R), which according to their defininition in Section 2.7 correspond to
compact subsets of R(R). It is easy to see that θε(π) ∈ Π↑ for all π ∈ Π↑, so
the diffusive scaling map θε : R(R)→ R(R) naturally gives rise to a diffusive
scaling map from Π↑ to Π↑ which by a slight abuse of notation we also denote
by θε. Going one step further, for any subset A ⊂ Π↑, we let

θε(A) :=
{
θε(π) : π ∈ A

}
denote the image of A under this map.

In Section 2.5, we equipped the space K(X ) of all compact subsets of
a metrisable topological space X with the Hausdorff topology. We make a
simple observation.

Lemma 3.2 (Map acting on compact sets) Let X be a metrisable topo-
logical space and let K(X ) be the set of all compact subsets of X . Let
ψ : X → X be a continuous map and let

ψ̂(K) :=
{
ψ(x) : x ∈ K

} (
K ∈ K(X )

)
.

Then ψ(K) ∈ K(X ) for all K ∈ K(X ), and the map ψ̂ : K(X ) → K(X ) is
continuous with respect to the Hausdorff topology.

Proof The well-known fact that the continuous image of a compact set is
itself a compact set has already been mentioned at the beginning of Sec-
tion 2.2. To see that ψ̂ : K(X )→ K(X ) is continuous, assume that Kn → K.
Then by Lemma 2.14,

∃C ∈ K(X ) s.t. Kn ⊂ C ∀n ≥ 1 (3.3)

and

K = {x ∈ X : ∃xn ∈ Kn s.t. xn → x}
= {x ∈ X : ∃xn ∈ Kn s.t. x is a cluster point of (xn)n∈N}.

(3.4)
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Since ψ̂(C) is compact and ψ̂(Kn) ⊂ ψ̂(C) for all n ≥ 1, by Lemma 2.14, to
prove that ψ̂(Kn)→ ψ̂(K), it suffices to show that

ψ̂(K) = {y ∈ X : ∃yn ∈ ψ̂(Kn) s.t. yn → y}

= {y ∈ X : ∃yn ∈ ψ̂(Kn) s.t. y is a cluster point of (yn)n∈N}.
The latter condition can be rewritten as{

ψ(x) : x ∈ K
}

= {y ∈ X : ∃xn ∈ Kn s.t. ψ(xn)→ y}
= {y ∈ X : ∃xn ∈ Kn s.t. y is a cluster point of

(
ψ(xn)

)
n∈N}.

It therefore suffices to prove that

(i)
{
ψ(x) : x ∈ K

}
⊂ {y ∈ X : ∃xn ∈ Kn s.t. ψ(xn)→ y},

(ii) {y ∈ X : ∃xn ∈ Kn s.t. y is a cluster point of
(
ψ(xn)

)
n∈N}

⊂
{
ψ(x) : x ∈ K

}
.

To prove (i), we use that by (3.4), for each x ∈ K there exist xn ∈ Kn such
that xn → x, and hence ψ(xn) → ψ(x) by the continuity of ψ. To prove
(ii), assume that xn ∈ Kn (n ∈ N) and there exists a sequence (n(m))m≥1

with limm→∞ n(m) = ∞ such that y = limm→∞ ψ(xn(m)). By (3.3) and the
compactness of C, by going to a further subsequence if necessary, we can
assume without loss of generality that limm→∞ xn(m) = x for some x ∈ C.
Then x ∈ K by (3.4) and limm→∞ ψ(xn(m)) = ψ(x) by the continuity of ψ
which shows that y = ψ(x).

As an immediate consequence of Lemma 3.2, we obtain:

Lemma 3.3 (Scaling of paths) For each ε > 0, the map θε : Π↑ → Π↑ is
continuous.

Proof Immediate from Lemma 3.2, the continuity of the map θε : R(R) →
R(R), and the fact that in Section 2.7 we viewed the path space Π(R) as
a subset of K(R(R)) and equipped it with the induced topology from this
embedding.

Let U be the set of all paths in an arrow configuration and let U be its
closure, which by Proposition 3.1 is a random compact subset of Π↑. Then,
since the continuous image of a compact set is compact, by Lemma 3.3, for
each ε > 0, the diffusively rescaled set of paths θε(U) is a random compact
subset of Π↑. Our aim is to prove that

P
[
θε(U) ∈ ·

]
=⇒
ε→0

P
[
W ∈ ·

]
(3.5)

where ⇒ denotes weak convergence of probability laws on the space K(Π↑),
equipped with the Hausdorff topology, and W is a random compact subset
of Π↑ that will be called the Brownian web.



46 CHAPTER 3. THE BROWNIAN WEB

3.2 Coalescing Brownian motions

As a first step towards proving (3.5), we start by proving something like
convergence of finite dimensional distributions. More precisely, for each ε >
0, we choose finitely many points zε1, . . . , z

ε
n in the diffusively rescaled lattice

θε(Z2
even), in such a way that

(zε1, . . . , z
ε
n) −→

ε→0
(z1, . . . , zn)

for some z1, . . . , zn ∈ R2. Letting πε1, . . . , π
ε
n denote the paths in U with start-

ing points zε1, . . . , z
ε
n, we will argue that (πε1, . . . , π

ε
n) converges in distribution

to a collection of coalescing Brownian motions.
Let B1 = (B1

t )t≥0 and B2 = (B2
t )t≥0 be two independent standard one-

dimensional Brownian motions started from initial states Bi
0 = xi (i = 1, 2),

and let
τ := inf{t ≥ 0 : B1

t = B2
t },

which is a.s. finite since (B1
t −B2

t )t≥0 is a Brownian motion (with double the
quadratic variation of a standard Brownian motion), and one-dimensional
Brownian motion is point recurrent. Let B̃2 = (B̃2

t )t≥0 be defined by

B̃2
t :=

{
B2
t if t ≤ τ,

B1
t if τ ≤ t.

Then it is easy to check that B̃2 is a standard Brownian motion. However, B1

and B̃2 are of course not independent. The process (B1
t , B

2
t )t≥0 is a Markov

process that is known as coalescing Brownian motions. Although this is not
completely immediate from our definition (at least if one wants to give a
formal proof), our definition is symmetric in the sense that (B2

t , B
1
t )t≥0 is a

Markov process with the same transition probabilities as (B1
t , B

2
t )t≥0.

We can carry out the same construction for any finite number of Brownian
motions, that can moreover start at different times. Let z1, . . . , zn ∈ R2 with
zi = (xi, si) (i = 1, . . . , n), and let B1, . . . , Bn be independent Brownian
motions such that Bi = (Bi

t)t≥si starts at time si in Bi
si

= xi. We set
τ1 :=∞, A1 := {(B1

t , t) : s1 ≤ t <∞} and define inductively for j = 2, . . . , n

τj := inf
{
t ≥ sj : (Bj

t , t) ∈ A1 ∪ · · · ∪ Aj−1

}
,

Aj :=
{

(Bj
t , t) : sj ≤ t < τj

}
.

By the recurrence of one-dimensional Brownian motion, almost surely τj <∞
for all 2 ≤ j ≤ n. Note that the sets A1, . . . , An are disjoint. In view of this,
we can uniquely define ι(j) ∈ {1, . . . , j − 1} by the requirement that

(Bj
τj
, τj) ∈ Aι(j).
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Using this, we define inductively B̃1 := B1 and

B̃j
t :=

{
Bj
t if si ≤ t ≤ τj,

B̃
ι(j)
t if τj ≤ t.

We call B̃1, . . . , B̃n coalescing Brownian motions starting from the space-time
points z1, . . . , zn ∈ R2.

We are now ready to formulate a result about the convergence in law of
finitely many paths in an arrow configuration. We have already become used
(hopefully!) to the slight abuse of notation by which θε can denote both a
diffusive scaling map acting on space-time points, or on sets of space-time
points such as paths, or even sets of paths. Taking this one step further, we
also denote

θε(z1, . . . , zn) :=
(
θε(z1), . . . , θε(zn)

)
, θε(π1, . . . , πn) :=

(
θε(π1), . . . , θε(πn)

)
when z1, . . . , zn are space-time points and π1, . . . , πn are paths.

Proposition 3.4 (Convergence of finite dimensional distributions)
Let εk > 0 satisfy εk → 0. Fix n ≥ 1 and for each k, let zk1 , . . . , z

k
n ∈ Z2

even.
Assume that

θεk(zk1 , . . . , z
k
n) −→

k→∞
(z1, . . . , zn) ∈ (R2)n.

Fix an arrow configuration and for each k, let πk1 , . . . , π
k
n be the unique paths

in the arrow configuration with starting points zk1 , . . . , z
k
n. Then

P
[
θεk(πk1 , . . . , π

k
n) ∈ ·

]
=⇒
k→∞

P
[
(π1, . . . , πn) ∈ ·

]
,

where ⇒ denotes weak convergence of probability measures on (Π↑)n and
π1, . . . , πn are coalescing Brownian motions starting from z1, . . . , zn.

Proof Our definition of coalescing Brownian motions involved a procedure
that started with n independent Brownian motions (B1, . . . , Bn) and used
them to construct n coalescing Brownian motions (B̃1, . . . , B̃n). More for-
mally, we can view (B̃1, . . . , B̃n) as the image of (B1, . . . , Bn) under a map

(π1, . . . , πn) 7→ (π̃1, . . . , π̃n) (3.6)

that takes n paths π1, . . . , πn in Π↑ with starting points in R2 and maps them
into n new paths π̃1, . . . , π̃n with the same starting points.

For each k, let (Rk,1, . . . , Rk,n) be a collection of independent random
walks started from zk1 , . . . , z

k
n, and let (R̃k,1, . . . , R̃k,n) be its image under the

map from (3.6). Then (R̃k,1, . . . , R̃k,n) are coalescing random walks. It is
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easy to see that they are equal in law with (πk1 , . . . , π
k
n). We want to show

that
P
[
θεk(R̃k,1, . . . , R̃k,n) ∈ ·

]
=⇒
k→∞

P
[
(B̃1, . . . , B̃n) ∈ ·

]
.

It is easy to see that the diffusive scaling map commutes with the map in
(3.6), i.e., the random variable in the left-hand side of our equation is the
same as what we would obtain if we first diffusively rescale the independent
random walk paths and then apply the map from (3.6).

Weak convergence in law of diffusively rescaled independent random walks
to independent Brownian motions follows from Donsker’s invariance princi-
ple. Using Skorohod’s representation theorem (Theorem 2.11), we can couple
our random variables such that

θεk(Rk,1, . . . , Rk,n) −→
k→∞

(B1, . . . , Bn) a.s.

in the topology on (Π↑)n. If the map in (3.6) would be continuous with
respect to the topology on (Π↑)n, then the rest of the proof would now be
easy, since we would just apply this map to both sides of our last equation
and we would be done.

Things are not quite so simple, however, since it is easy to check (even for
n = 2) that the map in (3.6) is not continuous with respect to the topology
on (Π↑)n. It turns out, however, that (B1, . . . , Bn) is almost surely a point of
continuity of this map, which is just as good. Here, with a point of continuity
of the map in (3.6) we mean, of course, a collection of paths (π1, . . . , πn) with
the property that for each (πk1 , . . . , π

k
n) such that

(πk1 , . . . , π
k
n) −→

k→∞
(π1, . . . , πn),

one also has
(π̃k1 , . . . , π̃

k
n) −→

k→∞
(π̃1, . . . , π̃n).

That (B1, . . . , Bn) is almost surely a point of continuity follows quite easily
from our definitions and from Lemma 3.5 and Exercise 3.6 below. We leave
the details to the reader.

Lemma 3.5 (Brownian paths cross when they meet) Let Bi = (Bi
t)t≥si

(i = 1, 2) be independent Brownian motions started from deterministic space-
time points zi = (xi, si) (i = 1, 2), respectively, and let

τ := inf{t ≥ s1 ∨ s2 : B1
t = B2

t }.

Then almost surely, for each ε > 0, there exist times t−, t+ ∈ [τ, τ + ε] such
that

B1
t− < B2

t− and B1
t+
> B2

t+
.
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Proof By the strong Markov property, (B1
τ+t −B2

τ+t)t≥0 is a Brownian mo-
tion, so it suffices to prove that a Brownian motion B started in zero takes
both positive and negative values in each time interval of the form [0, ε] with
ε > 0. By symmetry, it suffices to prove that τ := inf{t ≥ 0 : Bt < 0} = 0
a.s. By Blumenthal’s zero-one law, P[τ = 0] ∈ {0, 1}, so it suffices to prove
P[τ = 0] 6= 0. Assume that, conversely, P[τ = 0] = 0. Then a.s., there exists
some random ε > 0 such that Bt ≥ 0 for all t ∈ [0, ε). By symmetry, there
then also a.s. exists some random ε′ > 0 such that Bt ≤ 0 for all t ∈ [0, ε′).
Setting ε′′ := ε∧ε′ we see that there then also a.s. exists some random ε′′ > 0
such that Bt = 0 for all t ∈ [0, ε′′). But then P [Bt = 0] ≥ P[t < ε′′] > 0
for t > 0 small enough, which contradicts the fact that P[Bt = 0] = 0 for all
t > 0.

Exercise 3.6 (Convergence of meeting times) Let π1, π2 ∈ Π↑ have
starting points zi = (xi, si) (i = 1, 2), respectively, and assume that their first
meeting time

τ := inf{t ≥ s1 ∨ s2 : π1(t) = π2(t)}
satisfies τ < ∞. Assume moreover that for each ε > 0, there exist times
t−, t+ ∈ [τ, τ + ε] such that

π1(t−) < π2(t−) and π1(t+) > π2(t+).

Let πk1 , π
k
2 ∈ Π↑ satisfy πki → πi (i = 1, 2). Then the first meeting times τk of

πk1 and πk2 satisfy τk → τ . Hint: First show that generally τ ≤ lim infk→∞ τk.
Then use the assumption about crossing to prove that lim supk→∞ τk ≤ τk.

3.3 The Brownian web

Let D ⊂ R2 be countable. Since D is countable, we can enumerate it as
D := {zi : i ≥ 1} where (zi)i≥1 be a sequence of space-time points zi ∈
R2. Then for each n ≥ 1, we can construct a collection of random paths
(π1, . . . , πn) that are distributed as coalescing Brownian motions starting
from (z1, . . . , zn). Since these laws are consistent, by Kolmogorov’s extension
theorem, we can construct a random collection of paths (πz)z∈D such that for
each finite set ∆ ⊂ D, the paths (πz)z∈∆ that are distributed as coalescing
Brownian motions starting from the points in ∆. We call (πz)z∈D a collection
of coalescing Brownian motions started from the countable set D.

Proposition 3.7 (Precompactness) Let (πz)z∈D be a collection of coa-
lescing Brownian motions started from a countable set D ⊂ R2. Then
{πz : z ∈ D} is almost surely a precompact subset of Π↑.
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Proof (sketch) We apply Proposition 2.28 to A := {πz : z ∈ D}. Fix
T <∞ and ε, δ > 0 and consider the grid

Gε,δ :=
{

(1
3
kε, lδ) : k, l ∈ Z

}
.

Let A′ = {π′z : z ∈ D ∪ Gε,δ} be a collection of coalescing Brownian motions
started from the countable set D ∪ Gε,δ. We can couple A′ to A such that
π′z = πz for each z ∈ D. Since paths inA cannot cross paths in {π′z : z ∈ Gε,δ},
it is not hard to see (see Figure 3.2) that almost surely on the event∣∣π(u)− π(t)

∣∣ ≥ ε for some π ∈ A and σπ ≤ t ≤ u

s.t. (π(t), t) ∈ [−T, T ]2, u− t ≤ δ

one has that∣∣π′(x,s)(s+ r)− x
∣∣ ≥ 1

3
ε

for some (x, s) ∈ Gε,δ ∩ [−T − ε, T + ε]2 and r ∈ [0, 2δ].
(3.7)

By Lemma 3.12 below, if B is a standard Brownian motion, then

P
[

sup
r∈[0,2δ]

|Br| ≥ 1
3
ε
]
≤ Ce−cε

2/δ,

for some C < ∞ and c > 0. A simple union bound then tells us that the
probability of the event in (3.7) can be estimated from above by

CT ε
−1δ−1e−cε

2/δ

for some CT < ∞ and c > 0. This quantity goes to zero as δ → 0 for fixed
T < ∞ and ε > 0, so by Proposition 2.28 we conclude that {πz : z ∈ D} is
almost surely precompact.

We adopt the following notation. If A ⊂ K(Π↑) is a collection of paths
and D ⊂ R(R) is a set, then we let

A(D) :=
{
π ∈ A : zπ ∈ D

}
(3.8)

denote the subset of A consisting of all paths that have their starting points
in D. In particular, for z ∈ R(R), we write A(z) := A({z}). As before, we
let A denote the closure of a set A ⊂ Π↑.

Theorem 3.8 (The Brownian web) There exists a random compact set
W ⊂ K(Π↑) whose distribution is uniquely determined by the following prop-
erties.
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t

u

π π′

1
3
ε

δ

z

z′

Figure 3.2: The tightness argument. The blue path π moves a distance ≥ ε
during a time interval [t, u] of length ≤ δ, forcing the green path π′ starting
from the point z ∈ Gε,δ to move a distance ≥ ε/3 from its starting position
during a time interval of length 2d. Note that the blue path could have
passed below the point z′ ∈ Gε,δ that lies just above z.

(i) For each z ∈ R2, almost surely there exists a unique πz ∈ Π↑ such that
W(z) = {πz}.

(ii) For each z1, . . . , zn ∈ R2, the paths (πz1 , . . . , πzn) are distributed as
coalescing Brownian motions starting from z1, . . . , zn.

(iii) For each countable dense set D ⊂ R2, almost surely W =W(D).

Remark In Section 3.8, we will see that in point (i) of Theorem 3.8, the
order of the “for all” and “almost surely” statements cannot be interchanged.
Although for a fixed, deterministic z ∈ R2, it is true that almost surely,W(z)
consists of a single path, there exist random points z ∈ R2 in which W(z)
has two, or even three elements.

Proof of Theorem 3.8 Let D ⊂ R2 be countable and dense and let (πz)z∈D
be a collection of coalescing Brownian motions started from D. Then {πz :
z ∈ D} is precompact by Proposition 3.7 and hence

W := {πz : z ∈ D} (3.9)

is a random compact subset of Π↑. We claim that paths in W do not cross,
in the sense that there do not exist π, π′ ∈ W and σπ ∨σπ′ ≤ s < t such that
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π(s) < π′(s) but π′(t) < π(t). Indeed, if such paths would exist, then they
would be limits of paths πn, π

′
n in {πz : z ∈ D} that would also have to cross

for n large enough, which is not possible.
We will now show that W has the properties (i)–(iii) from the theorem.

Fix z = (x, s) ∈ R2. Let εn be positive constants converging to zero, let
z±n := (x, s ± εn), and let D′ := D ∪ {z±n : n ≥ 1}. We can couple (πz)z∈D
to a collection of coalescing Brownian motions (π′z)z∈D′ started from D′ such
that πz = π′z for all z ∈ D. Let

τn := inf{t ≥ 0 : π′
z−n

(t) = π′
z+n

(t)}. (3.10)

Since paths cannot cross, we see that τ1 ≥ τ2 ≥ · · · and hence τn → τ∞ a.s.
for some random variable τ∞. Using Lemma 3.5, it is easy to see that if we
start two independent Brownian motions from z−n and z+

n , then their first
meeting time converges to zero in probability as n→∞. Together with our
earlier observation, this implies that τ∞ = s a.s. Since paths in W do not
cross the paths π′

z±n
, any path π ∈ W that starts in (π(σπ), σπ) = z must

satisfy
π′
z−n

(t) ≤ π(t) ≤ π′
z+n

(t) (t ≥ s). (3.11)

Since τ∞ = s a.s., there can be at most one such path, proving property (i).
Property (ii) now follows from the fact that we can couple (πz)z∈D to a

collection of coalescing Brownian motions (π′z)z∈D∪{z1,...,zn} such that πz = π′z
for all z ∈ D. To prove property (iii), we ust show that our construction does
not depend on the choice of the countable dense set D. Let D and D′ be
countable dense subsets of R2, let (πz)z∈D∪D′ be coalescing Brownian motions
started from D ∪D′, and let

W := {πz : z ∈ D}, W ′ := {πz : z ∈ D′},

and W ′′ := {πz : z ∈ D ∪ D′}.
(3.12)

To prove (iii), it suffices to show that W = W ′. By symmetry, it suffices to
show that W ⊂ W ′. Since both W and W ′ are closed, it suffices to show
that for each z ∈ D, the path πz satisfies πz ∈ W ′. By what we have already
proved, there exists unique paths π′ ∈ W ′ and π′′ ∈ W ′′ with starting points
zπ′ = zπ′′ = z. Since π′ ∈ W ′′ we must have π′ = π′′ and since πz ∈ W ′′ we
must have π′′ = πz, so we conclude that πz = π′′ = π′ ∈ W ′.

For the next lemma, we let

Π↑triv :=
{
π ∈ Π↑ : π(t) = −∞ ∀t ≥ σπ

}
∪
{
π ∈ Π↑ : π(t) = +∞ ∀t ≥ σπ

}
denote the set of trivial paths that are constantly −∞ or ∞.
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Lemma 3.9 (Trivial paths) Let W be a Brownian web. Then Π↑triv ⊂ W
a.s. and each π ∈ W\Π↑triv satisfies π(t) ∈ R for all σπ ≤ t <∞.

Proof This follows from the same argument as in the proof of Proposi-
tion 3.1.

We still need to provide an estimate that we have used in the proof of
Proposition 3.7.

Lemma 3.10 (Reflection principle) Let (Bt)t≥0 be Brownian motion.
Then

P
[

sup
s∈[0,t]

Bs < a
]

= P
[
|Bt| ≤ a

]
(t, a > 0). (3.13)

Proof Let τ := inf{t > 0 : Bt = a}. By the strong Markov property and the
symmetry of Brownian motion, conditional on the event {τ < t}, the events
{Bt > a} and {Bt < a} have equal probabilities. Since P[Bt = a] = 0 and
the event {Bt > a} almost surely implies {τ < t}, it follows that

P
[

sup
s∈[0,t]

Bs < a
]

= 1− 2P[Bt > a] = P
[
|Bt| ≤ a

]
. (3.14)

Lemma 3.11 (Tail estimate) Let N be a standard normal random vari-
able. Then

P[N ≥ a] ≤ 1
2
e−a

2/2. (3.15)

Proof This follows by writing

P[N ≥ a] =
1√
2π

∫ ∞
a

e−x
2/2dx =

1√
2π

∫ ∞
0

e−(x+ a)2/2dx

= e−a
2/2 1√

2π

∫ ∞
0

e−x
2/2− axdx

≤ e−a
2/2 1√

2π

∫ ∞
0

e−x
2/2dx = 1

2
e−a

2/2.

(3.16)

Lemma 3.12 (Large displacements) Let (Bt)t≥0 be Brownian motion.
Then

P
[

sup
s∈[0,t]

|Bs| ≥ a
]
≤ 2ea

2/(2t). (3.17)
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Proof Let N denote a standard normal random variable. We estimate, using
Lemmas 3.10 and 3.11,

P
[

sup
s∈[0,t]

|Bs| ≥ a
]
≤ 2P

[
sup
s∈[0,t]

Bs ≥ a
]

= 2P
[
|Bt| > a

]
= 4P[Bt > a]

= 4P[
√
tN > a] ≤ 2ea

2/(2t).
(3.18)

3.4 Dual arrow configurations

By definition, we call

Z2
odd :=

{
(x, t) ∈ Z2 : x+ t is odd

}
the odd sublattice of Z2. In Section 3.1, we showed how an i.i.d. collection ω =
(ωz)z∈Z2

even
of uniformly distributed {−1,+1}-valued random variables defines

a random directed graph (Z2
even, ~E) that we called an arrow configuration.

Given ω, we define ω̂ = (ω̂z)z∈Z2
odd

by

ω̂(x,t+1) = ω(x,t)

(
(x, t) ∈ Z2

even

)
.

We can use ω̂ to define a random directed graph with vertex set Z2
odd and set

of oriented edges

~F :=
{(
x, t), (x− ω̂(x,t), t− 1)

)
: (x, t) ∈ Z2

odd

}
.

We call the random directed graph (Z2
odd,

~F ) the dual arrow configuration

associated with the original (“forward”) arrow configuration (Z2
even, ~E). The

dual arrows are uniquely characterised in terms of the forward arrows by the
property that dual arrows and forward arrows do not cross. See Figure 3.3
for a picture.

Recall that in general, σπ and τπ denote the starting and final time of a
path π ∈ Π(R). In particular, we define

Π↓ :=
{
π ∈ Π(R) : σπ = −∞

}
.

We call Π↓ the space of all downward paths. Clearly, Π↓ is equal to Π↑ after
a rotation over 180 degrees. When no confusion can arrive,1 we will call the
point

zπ :=
(
π(σπ), σπ

)
1We have to be careful since the intersection of Π↑ and Π↓ is not empty, but consists

of all bi-infinite paths for which σπ = −∞ and τπ = ∞. As we will see in a moment,
however, there are no nontrivial bi-infinite paths in an arrow configuration.
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Figure 3.3: An arrow configuration (black) and its dual (white).

the starting point of a downward path π ∈ Π↓. We define a downward path in
the dual arrow configuration (Z2

odd,
~F ), or simply a path in ω̂ in exactly the

same way as we defined upward paths in the forward arrow configuration.
We let

U ′ = U ′(ω̂) :=
{
π ∈ Π↓ : π is a path in ω̂

}
(3.19)

denote the set of all downward paths in the dual arrow configuration and we
let U ′ denote the closure of U ′ in the topology on Π↓.

3.5 The dual Brownian web

We have already introduced notation for the diffusive scaling map θε which
may be applied to points z = (x, t) in space-time R(R), to subsets of space-
time such as paths, and even to sets of paths. We will use similar notation
for the map

R(R) 3 (x, t) 7→ −(x, t) = (−x,−t) ∈ R(R).

Thus, for any set A ⊂ R(R), we set −A := {−z : z ∈ A}. In particular, this
applies to the case that A = π ∈ Π↑. Then Π↑ 3 π 7→ −π ∈ Π↓ is a bijection
from Π↑ to Π↓. Also, if A ⊂ Π↑ is a sets whose elements are paths, then
we set −A := {−π : π ∈ A}. Using this notation, we say that π̂1, . . . , π̂n
are downward coalescing Brownian motions starting from space-time points
z1, . . . , zn if −π̂1, . . . ,−π̂n are (usual, forward) coalescing Brownian motions
starting from space-time points −z1, . . . ,−zn. In the same way, we define
countable collections of downward coalescing Brownian motions.
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π̂1

π̂2

W (π̂1, π̂2)

Figure 3.4: The wedge W (π̂1, π̂2) defined by the dual paths π̂1 and π̂2.

Let π̂1, π̂2 ∈ Π↓ be two downward paths started from space-time points
(xi, si) ∈ R2 (i = 1, 2), and let

τ = τ(π̂1, π̂2) := sup
{
t < s1 ∧ s2 : π̂1(t) = π̂2(t)

}
be their first meeting time (in the downward direction), which may be −∞.
The open set

W (π̂1, π̂2) :=
{

(x, t) : τ < t < s1 ∧ s2 : π̂1(t) < x < π̂2(t)
}

is called the wedge defined by π̂1, π̂2. See Figure 3.4 for an illustration. We
say that a (forward) path π ∈ Π↑ enters the wedge W (π̂1, π̂2) if there exist
times σπ < s < t such that(

π(s), s)
)
6∈ W (π̂1, π̂2) and

(
π(t), t)

)
∈ W (π̂1, π̂2),

where W (π̂1, π̂2) denotes the closure of W (π̂1, π̂2). In a completely analogous
way, we define the first meeting time of two forward paths, the wedge defined
by two forward paths, and what it means for a downward path to enter such
a wedge. We make the following simple observation.

Lemma 3.13 (Limits of wedges) Let (π̂ni )n≥1 (i = 1, 2) be sequences of
downward paths and let (πn)n≥1 be a sequence of forward paths. Assume that
there exist π̂i ∈ Π↓ (i = 1, 2) and π ∈ Π↑ such that

π̂ni −→
n→∞

π̂i (i = 1, 2) and πn −→
n→∞

π

in the topologies on Π↓ and Π↑, and that moreover

τ(π̂n1 , π̂
n
2 ) −→

n→∞
τ(π̂1, π̂2).
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Assume that for each n, the path πn does not enter the wedge W (πn1 , π
n
2 ).

Then the path π does not enter the wedge W (π1, π2).

Proof By definition, if π enters the wedge W (π1, π2), then there exist times
σπ < s < t such that(

π(s), s)
)
6∈ W (π̂1, π̂2) and

(
π(t), t)

)
∈ W (π̂1, π̂2).

But then our assumptions imply that for n sufficiently large, σπn < s < t
and (

πn(s), s)
)
6∈ W (π̂n1 , π̂

n
2 ) and

(
πn(t), t)

)
∈ W (π̂n1 , π̂

n
2 ),

which contradicts the assumption that πn does not enter W (πn1 , π
n
2 ).

Proposition 3.14 (Dual coalescing Brownian motions) Let D, D̂ be
countable dense subsets of R2. Then it is possible to construct a collection
(πz)z∈D of coalescing Brownian motions together with a collection (π̂z)z∈D̂ of
downward coalescing Brownian motions in such a way that:

� For each z ∈ D and z1, z2 ∈ D̂, the path πz does not enter the wedge
W (π̂z1 , π̂z2).

� For each z ∈ D̂ and z1, z2 ∈ D, the downward path π̂z does not enter
the wedge W (πz1 , πz2).

The proof of Proposition 3.14 makes use of the following simple lemma.

Lemma 3.15 (Tightness of joint law) Let X ,Y be Polish spaces, let
(Xn, Yn)n≥1 be a sequence of random variables with values in X ×Y, and let
X and Y be random variables with values in X and Y, respectively. Assume
that

P[Xn ∈ · ] =⇒
n→∞

P[X ∈ · ] and P[Yn ∈ · ] =⇒
n→∞

P[Y ∈ · ]

Then the probability laws (
P
[
(Xn, Yn) ∈ ·

])
n≥1

are tight.

Proof The convergence of the marginal laws implies that the probability
laws (

P[Xn ∈ · ]
)
n≥1

and
(
P[Yn ∈ · ]

)
n≥1

are tight, so for each ε > 0, there exist compact sets C ⊂ X and K ⊂ Y such
that

sup
n≥1

P[Xn 6∈ C] ≤ ε and sup
n≥1

P[Yn 6∈ K] ≤ ε
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Then C ×K is compact and

sup
n≥1

P
[
(Xn, Yn) 6∈ C ×K

]
≤ 2ε.

Since ε > 0 is arbitrary, it follows that the laws of (Xn, Yn) are tight.

Proof of Proposition 3.14 (sketch) Let U be the collection of paths in
an arrow configuration and let U ′ be the collection of downward paths in the
associated dual arrow configuration. Let εn be positive constants tending to
zero. For each z ∈ D, choose zn ∈ Z2

even such that θεn(zn)→ z, and for each
z ∈ D̂, choose zn ∈ Z2

odd such that θεn(zn) → z. For each z ∈ D and n ≥ 1,
let Rn

z ∈ U be the unique forward path starting at zn, let R̂n
z ∈ U ′ be the

unique downward path starting at zn, and let

πnz := θεn(Rn
z ) and π̂nz := θεn(R̂n

z )

denote the associated diffusively rescaled paths. We claim that

P
[
(πnz )z∈D ∈ ·

]
=⇒
n→∞

P
[
(πz)z∈D ∈ ·

]
,

P
[
(π̂nz )z∈D̂ ∈ ·

]
=⇒
n→∞

P
[
(π̂z)z∈D ∈ ·

]
,

where ⇒ denotes weak convergence of probability laws on the spaces (Π↑)D

and (Π↓)D, respectively, which are equipped with the product topology, and
(πz)z∈D is a collection of coalescing Brownian motions while (π̂z)z∈D̂ is a col-
lection of downward coalescing Brownian motions. Indeed, to prove this, by
the definition of the product topology, it suffices to prove convergence of finite
dimensional distribitions. But this has already been done in Proposition 3.4.

In fact, using Exercise 3.6, we can strengthen our previous claim in a
sense that also includes convergence of meeting times. More precisely, one
can show that

P
[(

(πnz )z∈D, (τ(πnz1 , π
n
z2

))(z1,z2)∈D2

)
∈ ·
]

=⇒
n→∞

P
[(

(πz)z∈D, (τ(πz1 , πz2))(z1,z2)∈D2

)
∈ ·
]
,

and similarly for the collection of downward paths.
By Lemma 3.15, going to a subsequence if necessary, we can assume that

the joint law of the random variables

(πnz )z∈D, (τ(πnz1 , π
n
z2

))(z1,z2)∈D2 , (π̂nz )z∈D, (τ(π̂nz1 , π̂
n
z2

))(z1,z2)∈D2

converges weakly. Then we can use Skorohod’s representation theorem (The-
orem 2.11) to couple our random variables so that the convergence is almost
sure, i.e., we can find a coupling such that

πnz −→
n→∞

πz a.s. and τ(πnz1 , π
n
z2

) −→
n→∞

τ(πz1 , πz2) a.s.
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for all z, z1, z2 ∈ D, and likewise for downward paths. Since paths of U do
not enter wedges of U ′ and vice versa, we can use Lemma 3.13 to conclude
that the same is true for the limit object.

Theorem 3.16 (Wedge characterisation of the Brownian web) Let
D, D̂ be countable dense subsets of R2, let (πz)z∈D be a collection of coalescing
Brownian motions started from D, and let (π̂z)z∈D̂ be a collection of downward

coalescing Brownian motions started from D̂. Assume that paths in (πz)z∈D
do not enter wedges of (π̂z)z∈D̂. Let

W− := {πz : z ∈ D},
W+ :=

{
π ∈ Π↑ : π does not enter wedges of (π̂z)z∈D̂

}
.

Then W− =W+.

Proof (sketch) To prove the inclusion W− ⊂ W+, let π ∈ W−. Then there
exists zn ∈ D such that πzn → π as n→∞. Let z1, z2 ∈ D̂. By assumption,
πzn does not enter the wedge W (π̂z1 , π̂z2) for any n ≥ 1. By Lemma 3.13,
it follows that π does not enter W (π̂z1 , π̂z2). This completes the proof that
W− ⊂ W+.

Before we continue, we note that our assumptions imply that the forward
paths do not cross downward paths, in the sense that if z = (x, s) ∈ D and
z′ = (y, u) ∈ D̂ satisfy s < u, then πz(s) < π̂z′(s) implies πz(t) ≤ π̂z′(t) for all
t ∈ [s, u]. Indeed, we can always choose some z′′ = (y′, u′) ∈ D̂ with u ≤ u′

such that π̂z′(u) < π̂z′′(u) and the meeting time τ(π̂z′ , π̂z′′) is less than s.
Then πz(t) > π̂z′(t) for some t ∈ (s, u] would imply that πz enters the wedge
W (π̂z′ , π̂z′′), contradicting our assumptions.

We now prove that W+ ⊂ W−. Let π ∈ W+. By Lemma 3.9 we can
without loss of generality assume that π(t) ∈ R for all t ∈ Iπ. Fix σπ < t1 <
· · · < tm and ε > 0. We claim that there exists a z = (x, s) ∈ D such that
σπ < s < t1 and |πz(ti)− π(t)| ≤ ε for all i = 1, . . . ,m. To see this, for each
i = 1, . . . ,m, we choose zi± = (xi±, t

i
±) ∈ D̂ such that ti± > ti and

π(ti)− ε < π̂z−(ti) < π(ti) < π̂z+(ti) < π(ti) + ε.

Since π does not enter the wedge W (π̂zi− , π̂zi+), the meeting time of π̂zi− and
π̂zi+ must satisfy

τ(π̂zi− , π̂zi+) ≤ σπ,

and we have π̂zi−(t) ≤ π(t) ≤ π̂zi+(t) for all t ∈ [σπ, ti]. We can now choose

z = (x, s) ∈ D such that σπ < s < t1 and

sup
1≤i≤m

π̂zi−(t1) < πz(t1) < inf
1≤i≤m

π̂zi+(t1).
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Since the path πz cannot cross any of the downward paths π̂zi± , we must have

π̂z−(ti) < πz(ti) < π̂z+(ti) (1 ≤ i ≤ m)

and hence |πz(ti)− π(t)| ≤ ε for all i = 1, . . . ,m, proving our claim.
Now let εn > 0 satisfy εn → 0 and let σπ < t1 < · · · < tm. By what we

have just proved, for each n there exists a zn ∈ D such that |πzn(ti)−π(t)| ≤ ε
for all i = 1, . . . ,m. By Proposition 3.7, the closure of {πz : z ∈ D} is
compact, so we can find a convergent subsequence. It follows that there
exists a π′ ∈ W− such that π′(ti) = π(ti) for all i = 1, . . . ,m. Now let
{ti : i ∈ N} ⊂ (σπ,∞) be countable and dense. By what we have just
proved, for each m, there exists a πm ∈ W− such that πm(ti) = π(ti) for all
i = 1, . . . ,m. Since W− is compact, we can find a convergent subsequence,
the limit of which must be the path π. This proves that W+ ⊂ W−.

3.6 Convergence to the Brownian web

Proposition 3.17 (Tightness of rescaled arrow configurations) Let
U be the set of all paths in an arrow configurations and let U be its closure.
Let εn > 0 be positive constants such that εn → 0. The the probability laws(

P[θεn(U) ∈ · ]
)
n≥1

on K(Π↑) are tight.

Proof (crude sketch) One needs to check the tightness criterion of Propo-
sition 2.29. This is very similar to the proof of Proposition 3.7. One uses
convergence of finite dimensional distributions (Proposition 3.4) and then
uses a grid as in the proof of Proposition 3.7 to estimate the event in Propo-
sition 2.29. We refer to [FINR04, Prop. B2] and [SSS16, Prop. 6.6.4] for
details.

Let D, D̂ be countable dense subsets of R2. By Proposition 3.14, we
can construct a collection (πz)z∈D of coalescing Brownian motions starting
from D and a collection (π̂z)z∈D̂ of downward coalescing Brownian motions

starting from D̂ such that paths in (πz)z∈D do not enter wedges of (π̂z)z∈D̂
and vice versa. We call the pair (W , Ŵ) defined as

W := {πz : z ∈ D} and Ŵ := {π̂z : z ∈ D̂} (3.20)

the double Brownian web.
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Lemma 3.18 (Double Brownian web) The law of the random variable
(W , Ŵ) does not depend on the choice of the countable dense sets D, D̂ ⊂ R2.

Proof The analogue statement for the Brownian web has already been
proved as part of the proof of Theorem 3.8, around (3.12). The statement
for a single web does, as far as I can see, not automatically imply the state-
ment for the double Brownian web, but one can adapt the argument given at
(3.12). Here we give an alternative argument that also reproofs the statement
for a single web and does not depend on the earlier argument.

Let D,D′, D̂ be countable dense subsets of R2. Let (πz)z∈D be a collection
of coalescing Brownian motions starting from D, let (π′z)z∈D′ be a collection
of coalescing Brownian motions starting from D′, and let (π̂z)z∈D̂ be a collec-

tion (π̂z)z∈D̂ of downward coalescing Brownian motions starting from D̂. By
Proposition 3.14, we can couple (πz)z∈D to (π̂z)z∈D̂ in such a way that paths
in (πz)z∈D do not enter wedges of (π̂z)z∈D̂ and vice versa. Similarly, we can
couple (π′z)z∈D′ to (π̂z)z∈D̂ in such a way that paths in (π′z)z∈D′ do not enter
wedges of (π̂z)z∈D̂ and vice versa. We can then couple all three collections
(πz)z∈D, (π′z)z∈D′ , and (π̂z)z∈D̂ in such a way that the joint law of (πz)z∈D
and (π̂z)z∈D̂ is as before and the joint law of (π′z)z∈D′ and (π̂z)z∈D̂ is also as
before. For example, this can be achieved by making (πz)z∈D and (π′z)z∈D′
conditionally indepenent given (π̂z)z∈D̂, and with the same conditional laws
as before.

For this coupling, let (W , Ŵ) be defined using D, D̂ and let (W ′, Ŵ) be
defined using D′, D̂. Then Theorem 3.16 tells us that

W =
{
π ∈ Π↑ : π does not enter wedges of (π̂z)z∈D̂

}
=W ′ a.s.

It follows that the joint law of (W , Ŵ) is the same as the joint law of (W ′, Ŵ).
In the same way, we can also replace D̂ by another countable dense subset
of R2 without changing the law of the double Brownian web.

The following theorem, which is the main result of this chapter, implies
in particular the convergence in (3.5).

Theorem 3.19 (Approximation of the double Brownian web) Let U
be the set of paths in an arrow configuration and let U ′ be the set of downward
paths in the associated dual arrow configuration. Then

P
[
θε(U ,U

′
) ∈ ·

]
=⇒
ε→0

P
[
(W , Ŵ) ∈ ·

]
, (3.21)

where ⇒ denotes weak convergence of probability laws on the space K(Π↑)×
K(Π↓), and (W , Ŵ) is the double Brownian web.



62 CHAPTER 3. THE BROWNIAN WEB

Proof Fix countable dense sets D, D̂ ⊂ R2 and define (W , Ŵ) as in (3.20).
It suffices to prove convergence along any sequence εn of positive constants
tending to zero. It follows from Proposition 3.17 (compare Lemma 3.15) that
the laws (

P
[
θεn(U ,U ′) ∈ ·

])
n≥1

are tight, so by going to a subsequence, we may assume that they converge
to some limit law P[(V , V̂) ∈ · ]. By Lemma 2.2, it suffices to show that each
such subsequential limit is equal to P[(W , Ŵ) ∈ · ].

As in the proof of Proposition 3.14, for each z ∈ D, we choose zn ∈ Z2
even

such that θεn(zn) → z, and for each z ∈ D̂, we choose zn ∈ Z2
odd such that

θεn(zn) → z. For each z ∈ D and n ≥ 1, we let Rn
z ∈ U be the unique

forward path starting at zn, we let R̂n
z ∈ U ′ be the unique downward path

starting at zn, and we let

πnz := θεn(Rn
z ) and π̂nz := θεn(R̂n

z )

denote the associated diffusively rescaled paths. In the proof of Proposi-
tion 3.14, we have shown that

P
[(

(πnz )z∈D, (τ(πnz1 , π
n
z2

))(z1,z2)∈D2

)
∈ ·
]

=⇒
n→∞

P
[(

(πz)z∈D, (τ(πz1 , πz2))(z1,z2)∈D2

)
∈ ·
]
,

and similarly for the collection of downward paths. We argued there that
going to a subsequence if necessary and using Skorohod’s representation the-
orem, we can couple our random variables such that

πnz −→
n→∞

πz a.s. and τ(πnz1 , π
n
z2

) −→
n→∞

τ(πz1 , πz2) a.s.

for all z, z1, z2 ∈ D, and likewise for downward paths. We can extend this
argument to obtain that moreover

θεn(U ,U ′) −→
n→∞

(V , V̂) a.s.

in the topology on K(Π↑)×K(Π↓) for some random compact sets V ⊂ Π↑ and
V̂ ⊂ Π↓. We will show that for this particular coupling, (V , V̂) = (W , Ŵ)
a.s., where the latter is defined in terms of (πz)z∈D and (π̂z)z∈D̂. This shows
that all subsequential limit laws are the same and hence by Lemma 2.2 that
the original sequence converges.

By symmetry between forward and dual webs, it suffices to prove that
V =W . We will prove that W− ⊂ V ⊂ W+, where W− and W+ are defined
as in Theorem 3.16. Since W =W− =W+, the claim then follows.
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Since V is closed, to prove that W− ⊂ V , it suffices to prove that πz ∈ V
for all z ∈ D. Recalling Lemma 2.14, this is obvious since πnz ∈ θεn(U) for all
n while πnz → πz a.s. and θεn(U)→ V a.s.

To prove that V ⊂ W+, we need to show that paths π ∈ V do not enter
wedges of (π̂z)z∈D̂. By Lemma 2.14, for each π ∈ V , there exist πn ∈ θεn(U)
such that πn → π. To see that π does not enter any wedge W (π̂z1 , π̂z2)
of (π̂z)z∈D̂, we use that for each n, the path πn does not enter the wedge
W (π̂nz1 , π̂

n
z2

). By our assumptions, the discrete paths π̂nzi (i = 1, 2) converge
a.s. to π̂zi (i = 1, 2) and moreover their meeting times converge a.s., so we
can use Lemma 3.13 to conclude that π does not enter W (π̂z1 , π̂z2).

3.7 The coalescing point set

Let W be a Brownian web. For each closed set A ⊂ R, we define a process
(ξAt )t≥0 by

ξAt :=
{
π(t) : π ∈ W , σπ = 0, π(0) ∈ A

}
(t ≥ 0).

If A is a finite set, then by Theorem 3.8, the Brownian web W contains a
unique path π(x,0) for each x ∈ A, and these paths are distributed as coalesc-
ing Brownian motions. More generally, we can loosely interpret (ξAt )t≥0 as
a collection of coalescing Brownian motions started from every point in A.
We will see in a moment that no matter what A is, for each t > 0, the set
ξAt is already locally finite. Since clearly, A ⊂ B implies ξAt ⊂ ξBt , it suffices
to prove the statement for ξRt . Roughly speaking, the following result says
that if we start particles performing coalescing Brownian motions from each
point on the real line, then at each positive time there are only locally finitely
many particles left.

Proposition 3.20 (Density of the coalescing point set) One has

E
[∣∣ξRt ∩ [a, b]

∣∣] =
b− a√
πt

(a < b, t > 0).

Proof We first calculate the probability that ξRt ∩ [a, b] 6= ∅. We construct
(W , Ŵ) from collections (πz)z∈D and (π̂z)z∈D̂ of forward and downward co-
alescing Brownian motions, so that paths in (πz)z∈D do not enter wedges of
(π̂z)z∈D̂ and vice versa. We choose D̂ such that (a, t), (b, t) ∈ D̂. Let

τa,b = τ(π̂(a,t), π̂(b,t))
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be the first meeting time of the downward paths started at (a, t) and (b, t).
We claim that2

ξRt ∩ (a, b) 6= ∅ implies τa,b ≤ 0 implies ξRt ∩ [a, b] 6= ∅.

Indeed, if τa,b > 0, then the paths π̂(a,t) and π̂(b,t) form a wedge that prevents
paths inW starting at time zero from passing between (a, t) and (b, t), prov-
ing the first implication. On the other hand, if τa,b ≤ 0, then for each time
s > 0 we can find some x such that π̂(a,t)(s) < x < π̂(b,t)(s). The web W
must contain a path π starting at (x, s) and since such a path cannot cross
the downward paths π̂(a,t) and π̂(b,t), it must satisfy a ≤ π(t) ≤ b. We can
construct such a path πs with starting time s for each s > 0, so using the
compactness of W , we see that W must also contain a path π0 starting at
time zero such that a ≤ π(t) ≤ b, proving the second implication.

The difference (B1(s) − B2(s))s≥0 of two Brownian motions is equally
distributed with (

√
2B(s))s≥0, where (B(s))t≥0 is a single Brownian motion.

Therefore, using the reflection principle,

P
[
τa,b ≤ 0] = P

[
sup

0≤s≤t

(
B2(s)−B1(s)

)
≤ b− a

]
= P

[
sup

0≤s≤t
B(s) ≤ b− a√

2

]
=

1√
2πt

∫ b−a√
2

− b−a√
2

e−x
2/2t dx.

In particular, this implies that

P[x ∈ ξRt ] = lim
ε→0

P
[
ξRt ∩ (x− ε, x+ ε) 6= ∅

]
= 0 (x ∈ R, t > 0),

and hence

P
[
ξRt ∩ (a, b) 6= ∅

]
= P

[
ξRt ∩ [a, b] 6= ∅

]
= P[τa,b ≤ 0].

Now

E
[∣∣ξRt ∩ [0, 1]

∣∣] = lim
n→∞

2n∑
i=1

P
[
ξRt ∩ [(i− 1)2−n, i2−n] 6= ∅

]
= lim

ε→0
ε−1 1√

2πt

∫ ε/
√

2

−ε/
√

2

e−x
2/2t dx =

1√
πt
.

A similar formula holds for the expectation of
∣∣ξRt ∩ [0, r]

∣∣ for any r > 0 and
the general result follows by translation invariance.

We conclude this section with some useful consequences of Proposition
3.20. In the following lemma, we let Πl := Π↑ ∩ Π↓ denote the space of all

2In fact, with a bit extra work, one can show that τa,b ≤ 0 is equivalent to ξRt ∩[a, b] 6= ∅.
In the context of the Brownian net, we will prove a similar statement in Corollary 4.6 below.
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bi-infinite paths and we let Πl(R) := Πl ∩ Π(R) denote the space bi-infinite
paths with values in R (as opposed to R).

Lemma 3.21 (No bi-infinite paths) Let W be a Brownian web. Then
W ∩ Πl(R) = ∅ a.s.

Proof We start by observing that

P
[
W ∩ Πl(R) 6= ∅

]
≤ lim

n→∞
P
[
∃π ∈ W s.t. σπ = −∞, π(0) ∈ [−n, n]

]
,

where by Lemma 3.9 the inequality is in fact an equality. Now Proposi-
tion 3.20 gives

P
[
∃π ∈ W s.t. σπ = −∞, π(0) ∈ [−n, n]

]
≤ lim

t→∞
P
[
∃π ∈ W s.t. σπ ≤ −t, π(0) ∈ [−n, n]

]
= lim

t→∞

2n√
πt

= 0,

Here again, with a bit of extra work, one can show that the inequality is in
fact an equality, but we do not presently need this.

Lemma 3.22 (Coalescence of paths) Almost surely, for all paths π, π′ ∈
W, if π(t) = π′(t) for some t > σπ ∨ σπ′, then π(u) = π′(u) for all u ≥ t.

Proof By Lemma 3.9, it suffices to prove the statement under the additional
assumption that π(t) = π′(t) ∈ R. Let T ⊂ R be countable and dense. If
t > σπ ∨ σπ′ , then there exist r, s ∈ T with σπ ∨ σπ′ < r < s ≤ t and the
paths obtained from π and π′ by cutting off the piece before time r are also
paths in the Brownian web. Therefore, it suffices to prove for deterministic
r < s that if two paths π, π′ ∈ W with σπ = σπ′ = r satisfy π(t) = π′(t) for
some t ≥ s, then π(u) = π′(u) for all u ≥ t.

By Proposition 3.20, the random set

A :=
{
π(s) : π ∈ W , σπ = r

}
∩ R

is locally finite. We claim that for each x ∈ A, there exists a unique path
π(x,s) ∈ W(x, s), and conditional on A, the collection of paths

(π(x,s))x∈A

is distributed as coalescing Brownian motions. Indeed, this follows from the
fact (which can easily be proved using discrete approximation) that restric-
tions of the Brownian web to disjoint parts of space-time are independent.
As a result, the random set A is independent of W

(
R × [s,∞)

)
, so after
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we condition on A, paths started from a countable collection of fixed points
(x, s) with x ∈ R will be distributed as coalescing Brownian motions.

The statement we want to prove now follows from the fact that if two
coalescing Brownian motions meet at some random time, then they coalesce,
i.e., the two paths are equal from that time onwards.

Lemma 3.23 (Strong convergence of paths) Let W be a Brownian web.
Then almost surely, for all πn, π ∈ W such that πn → π, there exist times
tn > σπn ∨ σπ such that tn → σπ and πn(t) = π(t) for all t ≥ tn.

Proof By Lemma 3.9, it suffices to prove the statement under the addi-
tional assumption that π(t) ∈ R. Proposition 3.20 tells us that for each
deterministic s < t, the set

As,t :=
{
π(t) : π ∈ W , σπ ≤ s

}
∩ R

is a.s. a locally finite subset of R. Let T be a countable dense subset of R.
Then almost surely, As,t is locally finite for all s, t ∈ T with s < t. Now
if πn, π ∈ W satisfy πn → π, then for each s, t ∈ T with σπ < s < t, we
have for n sufficiently large that σπn < s and hence πn(t), π(t) ∈ As,t. Since
πn(t) → π(t) and since As,t is locally finite, it follows that πn(t) = π(t) for
n sufficiently large. By Lemma 3.22, πn(t) = π(t) implies πn(u) = π(u) for
all u ≥ t. Since T is dense, we can choose t as close to σπ as we wish, and
hence the statement of the lemma follows.

Lemma 3.24 (Paths do not enter wedges) Let (W , Ŵ) be a Brownian
web and its dual. Then almost surely, for each π ∈ W and π̂1, π̂2 ∈ Ŵ(R2),
the path π does not enter the wedge W (π̂1, π̂2).

Proof (sketch) Let D̂ ⊂ R2 be countable and dense. Then paths π ∈ W do
not enter wedges W (π̂1, π̂2) with π̂1, π̂2 ∈ Ŵ(D) by Theorem 3.16. Applying
Lemma 3.23 to the dual web Ŵ , it is easy to extend the statement to paths
π̂1, π̂2 ∈ Ŵ(R2).

3.8 Special points

We have defined the Brownian web W as the closure of {πz : z ∈ D}, where
(πz)z∈D is a collection of coalescing Brownian motions started from a count-
able dense set D ⊂ R2. Here {πz : z ∈ D} is precompact by Proposition 3.7
and hence W is a compact subset of Π↑. Using compactness and the fact
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that D is dense, we see that for each z ∈ R2, there exists at least one path
π ∈ W that starts at z. For each z ∈ R2, we let

mout(z) :=
∣∣W(z)

∣∣
denote the number of paths in W that start at z. In Theorem 3.8, we have
proved that mout(z) = 1 a.s. for each deterministic z ∈ R2. In this section,
we will prove that in spite of this, almost surely, there exist points z with
mout(z) = 2 and even mout(z) = 3. The key to understanding this is (again)
duality.

We say that a path π ∈ W enters a point z = (x, t) ∈ R2 if σπ < t
and π(t) = x. We call two paths π, π′ entering z equivalent if there exists a
σπ ∨ σπ′ ≤ s < t such that π(r) = π′(r) for all s ≤ r ≤ t. This obviously
defines an equivalence relation on the set of all paths π ∈ W entering z. We
let min(z) denote the number of equivalence classes of paths in W entering
z. We call (min(z),mout(z)) the type of a point z ∈ R2.

Theorem 3.25 (Special points of the Brownian web) Let W be a
Brownian web. Then almost surely, all points in R2 are of one of the following
types:

(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (2, 1),

and all these types occur. For each deterministic t ∈ R, almost surely, all
points in R× {t} are of one of the following types:

(0, 1), (0, 2), (1, 1),

and all these types occur. A deterministic point (x, t) ∈ R2 is almost surely
of type (0, 1).

The proof of Theorem 3.25 is based on the following lemma, which is of
independent interest.

Lemma 3.26 (Types of points in dual web) Let (m̂in(z), m̂out(z)) denote
the type of a point z ∈ R2 in the dual Brownian web Ŵ. Then for each z ∈ R2,

mout(z) = m̂in(z) + 1 and m̂out(z) = min(z) + 1.

Proof (crude sketch) By symmetry, it suffices to prove that mout(z) =
m̂in(z) + 1. If there is an incoming path in Ŵ at z, then forward paths
started on either side of such a dual path cannot coalesce until the starting
time of the dual path, since otherwise the dual path would enter the wedge
defined by these forward paths. As a result, since the incoming paths divide
the area just above z into m̂in(z) + 1 regions, approaching the point z from
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Figure 3.5: Possibe types of points in the Brownian web and its dual.

different directions, using the compactness of W , we see that there are at
least m̂in(z) + 1 distinct paths in W starting at z. On the other hand, if
there are two outgoing paths in W at z, then any dual path that is started
between these paths must stay between these forward paths and pass through
z. Therefore, m̂in ≥ mout−1. Together with our earlier claim that mout(z) ≥
m̂in(z) + 1, this proves the claim.

Proof of Theorem 3.25 (crude sketch) It is clear that there exist points
z with m̂in(z) = 1 and m̂in(z) = 2. On the other hand, using the fact
mentioned at the end of the proof of Lemma 3.26 that for each π ∈ W and
t > σπ, there exists a z = (x, s) ∈ D with s < t such that π(u) = πz(u)
for all u ≥ t, it is easy to see that a deterministic point z almost surely has
m̂in(z) = 0. Using the same fact, one moreover obtains that there are ony
countably many points z with m̂in(z) = 2 and it is not too hard to show that
these points have min(z) = 0.

To see that there exist points with min(z) = 1 = m̂in(z), we observe
that in an arrow configuration, disjoint parts of space-time are independent.
This property carries over to the limit which has the consequence that dual
paths do not “see” forward paths until they hit them. In fact, it is known
that dual paths are reflected off forward paths by Skorohod reflection. At
deterministic times, however, we do not see such points since two Brownian
motions started in the forward and downward directions have zero probability
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to be at a deterministic time at the same position.
These arguments show that all the mentioned types of points exist, and

no other types of points can exist.

3.9 Some historical notes

The Brownian web originated from Arratia’s PhD thesis [Arr79] and a sub-
sequential unfinished manuscript [Arr81]. The topic remained dormant until
the work of Tóth and Werner [TW98] who used the Brownian web to study
a form of one-dimensional self-repellent random walk. They classified all
types of special points. Together with Soucaliuc [STW00] they also proved
that forward and dual paths interact through Skorohod reflection. Fontes,
Isopi, Newman and Stein got interested in the Brownian web motivated by a
one-dimensional model in mathematical physics [FINS01], which led Fontes,
Isopi, Newman and Ravishankar [FINR04] to study this object in more de-
tail. In particular, they were the first to give the Brownian web its name,
view it as a compact set of paths, and prove convergence with respect to
the Hausdorff topology. Wedges were first introduced in the framework of
the Brownian net in [SS08]. A more detailed account of the history of the
Brownian web can be found in [SSS16].
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Chapter 4

The Brownian net

4.1 Adding branching and deaths

As in Chapter 3, we let Z2
even and Z2

odd denote the even and odd sublattices
of Z2. Generalising the set-up of Chapter 3, let ω = (ωz)z∈Z2

even
be an i.i.d.

collection of random variables that take values in the subsets of {−1,+1}.
We can use ω to define a random directed graph with vertex set Z2

even and
set of oriented edges

~E :=
{(

(x, t), (x+ y, t+ 1)
)

: (x, t) ∈ Z2
even, y ∈ ω(x,t)

}
.

We call the random directed graph (Z2
even,

~E) an arrow configuration. In
particular, when ωz takes the values {−1} and {+1} with equal probabilities,
this is an arrow configuration as defined in Section 3.1. In the present chapter,
we look at sequences ωn of arrow configurations where ωn = (ωnz )z∈Z2

even
, for

each n ≥ 1, is a an i.i.d. collection with common law

P
[
ωnz = {−1}

]
= ln, P

[
ωnz = {+1}

]
= rn,

P
[
ωnz = {−1,+1}

]
= bn, P

[
ωnz = ∅

]
= dn.

(4.1)

Here ln is the probability that at a given point z ∈ Z2
even, there starts (only)

an arrow to the left, rn is the probability of an arrow to the right, bn is the
branching probability, i.e., the probability that both arrows are present, and
dn is the death probability, i.e., the probability that no arrows are present.

Recall that σπ and τπ denote the starting time and final time of a path
π ∈ Π(R). Generalising our definition from Section 3.1, we say that π is a
path in the arrow configuration ωn if π ∈ Π(R) has following properties:

(i)
(
π(t), t

)
∈ Z2

even (t ∈ Z, t ≥ σπ),

71
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(ii) π(t+ 1)− π(t) ∈ ω(π(t),t) (t ∈ Z, t ≥ σπ),

(iii) π(t+ s) = (1− s)π(t) + sπ(t+ 1) (0 ≤ s ≤ 1, t ∈ Z, t ≥ σπ).

We let Vn denote the set of all paths in ωn. Note that even in the special
case when ln = rn = 1

2
and bn = dn = 0, this is not quite the same object

as the set U defined in Section 3.1, since we allow paths to end at some final
time τπ < ∞. We let Vn denote the closure of Vn in Π(R). In this chapter,
we will sketch a proof of the following theorem. Recall that θε denotes the
diffusive scaling map defined in (3.2).

Theorem 4.1 (The Brownian net with killing) Let εn be positive con-
stants tending to zero and let α ∈ R and β, δ ∈ [0,∞). Let ωn be arrow
configurations with probabilities ln, rn, bn, dn satisfying

ε−1
n (rn − ln) −→

n→∞
α, ε−1

n bn −→
n→∞

β, and ε−2
n dn −→

n→∞
δ.

Let Vn be the set of paths in the arrow configuration ωn. Then

P
[
θεn(Vn) ∈ ·

]
=⇒
n→∞

P
[
N ∈ ·

]
, (4.2)

where ⇒ denotes weak convergence of probability laws on the space K(Π(R))
of compact sets of paths, equipped with the Hausdorff topology, and N is a
random compact subset of Π(R), whose law only depends on the parameters
α, β, δ.

For most of the chapter, we will be concerned with the case that dn = 0
for all n, and hence also δ = 0. This will allow us to work with the space Π↑

of upward paths as we are used to from Chapter 4. In Section 4.6, we will
briefly indicate how the arguments can be generalised to allow for a positive
death probability. For simplicity, in what follows, we will moreover focus on
the case that α = 0 and β = 1. In this case, the limiting object in (4.2) is
known as the standard Brownian net.

4.2 Left and right paths

We consider a sequence ωn of arrow configurations as in the previous section
with

dn = 0, ε−1
n (rn − ln) −→

n→∞
0 and ε−1

n bn −→
n→∞

1. (4.3)

We define Vn as in the previous section and set Un := Vn ∩ Π↑. Since the
death probability is zero, Vn can simply be recovered from Un by adding
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all shortened paths, that are cut off at an arbitrary time in Z. Thus, all
information is contained in the set Un and we can continue to work with the
space Π↑ that we are used to from the previous chapter.

By definition, a left path in ωn is a path π ∈ Un that satisfies

π(t+ 1) = π(t)− 1 if ωn(π(t),t) = {−1,+1},

i.e., left paths always turn left at branching points. Similarly, we define right
paths as paths in Un that always turn right at branching points. We let U l

n

and U r
n denote the collections of all left and right paths in Un, respectively.

We claim that
P
[
θεn(U l

n) ∈ ·
]

=⇒
n→∞

P
[
W l ∈ ·

]
,

P
[
θεn(U r

n) ∈ ·
]

=⇒
n→∞

P
[
Wr ∈ ·

]
,

whereW l andWr are Brownian webs with drift −1 and +1, respectively, i.e.,
these are objects that are defined exactly in the same way as the Brownian
web, except that the coalescing standard Brownian motions are replaced by
coalescing Brownian motions with drift −1 and +1, respectively.

Indeed, letting Lnz and Rn
z denote the unique left and right paths in Un

starting from a point z ∈ Z2
even, we observe that

E
[
Lnz (t+ 1)− Lnz (t)

]
= rn − ln − bn ∼ −εn,

E
[
Rn
z (t+ 1)− Lnz (t)

]
= rn − ln + bn ∼ +εn

as n → ∞, which is easily seen to imply that Lnz and Rn
z converge after

diffusive rescaling to Brownian motions with drift −1 and +1, respectively.
A more tricky question is how to describe the scaling limit of the joint

law of Lnz and Rn
z . We will use the following proposition to describe the

interaction between a single left and right path.

Proposition 4.2 (Left-right SDE) Let R2
≤ := {(l, r) ∈ R2 : l ≤ r}. Then

for each initial state (L0, R0) ∈ R2
≤, there exists an R2

≤-valued weak solution
(Lt, Rt)t≥0 to the stochastic differential equation (SDE)

dLt = 1{Lt 6=Rt}dB
l
t + 1{Lt=Rt}dB

s
t − dt,

dRt = 1{Lt 6=Rt}dB
r
t + 1{Lt=Rt}dB

s
t + dt,

(4.4)

where Bl, Br, Bs are independent Brownian motions. Moroever, R2
≤-valued

solutions to (4.4) are unique in law.

In words, the SDE (4.4) says that Lt and Rt are Brownian motions with
drift −1 and +1, that evolve independently when they are apart but are
driven by the same Brownian motion when they are on the same position.
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Proof of Proposition 4.2 (crude sketch) This has been proved in [SS08,
Lemma 2.2]. It has been conjectured that solutions to (4.4) are not pathwise
unique. Instead, existence and weak uniqueness of solutions to (4.4) are
proved in [SS08] via a random time change. Let B̃l, B̃r, B̃s be independent
Brownian motions, and consider the equations:

(i) dLt = dB̃l
Tt + dB̃s

St
− dt,

(ii) dRt = dB̃r
Tt + dB̃s

St
+ dt,

(iii) Tt + St = t

(iv)

∫ t

0

1{Ls<Rs}dSs = 0,

where S, T are nonnegative, nondecreasing functions that are adapted to the
filtration generated by the Brownian motions B̃l, B̃r, B̃s. Condition (iv) says
that St increases only at times t when Lt = Rt. In fact, it is shown in the
proof of [SS08, Lemma 2.2] that the conditions (i)–(iv) imply that

(iii)′ Tt =

∫ t

0

1{Ls<Rs}ds

(iv)′ St =

∫ t

0

1{Ls=Rs}ds.

Condition (i) can now informally be interpreted as follows: during an in-
finitesimal time interval [t, t+ dt], we can imagine that either Ls < Rs for all
s ∈ [t, t+ dt] or Ls = Rs for all s ∈ [t, t+ dt]. In the first case, Lt+dt − Lt =
B̃l
Tt+dt − B̃l

Tt
− dt, while in the second case Lt+dt − Lt = B̃s

St+dt − B̃s
St
− dt.

This is similar to (4.4), except that we “stop” the Brownian motions B̃l and
B̃s at times when we do not need them to “steer” the process L, and start
reading them off again at the time when we last stopped them as soon as we
need them again.

Using standard techniques, the equation (i)–(iv) can be transformed into a
SDE with immediate Skorohod reflection, which has an almost surely unique
pathwise solution. In these arguments, the condition that Lt ≤ Rt for all
t ≥ 0 is essential; without this condition, uniqueness would not hold. It then
follows that R2

≤-valued solutions to (i)–(iv) are also pathwise unique. Again
by standard techniques, this yields existence and distributional uniqueness
of weak solutions to (4.4). For the details, we refer to [SS08, Lemma 2.2].

As a side result of the proof of [SS08, Lemma 2.2], one obtains that L
and R spend positive Lebesgue time together each time they meet. More
precisely, if I := {t ≥ 0 : Lt = Rt}, and µ is the measure on [0,∞) whose
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density with respect to the Lebesgue measure is the indicator function 1I ,
then I is the support of µ; see [SS08, Prop. 3.1(b)]. One can moreover show
that the set I is nowhere dense, i.e., each open time interval contains smaller
open intervals on which Lt < Rt. We say that L and R interact via a form
of sticky interaction.

There is nothing special about time zero, so generalising slightly, we can
use Proposition 4.2 to describe the joint law of a single left path (Lt)t≥s
and right path (Rt)t≥s, started at the same time s ∈ R from an initial state
such that Ls ≤ Rs. We need to generalise this to multiple paths, started at
different times. The different starting times are easy to deal with: we simply
run the process until the next time one or more new left or right paths are
started. At this time, we start a new process, conditionally independent
given the old one, with left of right paths started at the positions of the old
ones and the new ones. In view of this, our main task is to describe the joint
law of multiple left and right paths, all started at the same time.

To describe the joint law of multiple paths, we use the following rules:

(i) All paths evolve independently when they are in disjoint parts of space.

(ii) As soon as a two left paths meet, they coalesce, and similarly for right
paths.

(iii) After the first time a left and a right path meet, the left path stays
on t the left of the right path and their interaction is described by the
left-right SDE (4.4).

Let us say that a time is a coalescence time if for a given pair of two left or
two right paths, this is the first time they meet. Let us further say that a
time is a crossing time if for a given pair consisting of a left and a right path,
this is the first time they meet, while before this time, the left path is on the
right of the right path. In view of rules (ii) and (iii), if we start with finitely
many left and right paths, then there can be only finitely many coalescence
times and crossing times. By a restart argument, it then suffices to describe
the joint law of multiple left and right paths up to the first coalescence of
crossing time.

We claim that by rule (i), it now suffices to describe only the joint law
of a single left and right path. Imagine, for example, that initially we have
a collection of left and right paths that are ordered from left to right as
LRLLRLRRRLR. We can then group left and right paths that immedi-
ately follow after each other (in this order), leaving the remaining paths as
singletons, as follows:

{LR}{L}{LR}{LR}{R}{R}{LR}.
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Here paths in each group stay away from each other until the next coalescence
or crossing time, and hence evolve independently up to that moment. In
this way, we define a collection of left-right coalescing Brownian motions,
starting from space-time points (z1, . . . , zn, z

′
1, . . . , z

′
m), where (z1, . . . , zn) are

the starting points of left paths and (z′1, . . . , z
′
m) are the starting points of

right paths. We cite the following result from [SS08, Prop. 5.2].

Proposition 4.3 (Convergence of finite dimensional distributions)
Let εk > 0 satisfy εk → 0. Fix n,m ≥ 1 and for each k, let zk1 , . . . , z

k
n ∈ Z2

even

and z′k1, . . . , z
′k
m ∈ Z2

even. Assume that

θεk(zk1 , . . . , z
k
n, z
′k
1, . . . , z

′k
m) −→

k→∞
(z1, . . . , zn, z

′
1, . . . , z

′
m) ∈ (R2)n+m.

Let ωk be arrow configurations with probabilities lk, rk, bk, dk as in 94.1) sat-
isfying (4.3). Let πk1 , . . . , π

k
n denote the unique left paths in ωk starting from

zk1 , . . . , z
k
n and let π′k1, . . . , π

′k
m denote the unique right paths in ωk starting

from z′k1, . . . , z
′k
m. Then

P
[
θεk(πk1 , . . . , π

k
n, π

′k
1, . . . , π

′k
m) ∈ ·

]
=⇒
k→∞

P
[
(π1, . . . , πn, π

′
1, . . . , π

′
m) ∈ ·

]
,

where ⇒ denotes weak convergence of probability measures on (Π↑)n+m, and
π1, . . . , πn, π

′
1, . . . , π

′
m is a collection of left-right coalescing Brownian motions

starting from z1, . . . , zn, z
′
1, . . . , z

′
m.

Proof (crude idea) The proof, which can be found in [SS08], is based on the
time-changed reformulation of the left-right SDE, i.e., formulas (i)–(iv) from
the proof of Proposition 4.2. One can give similar formulas for a discrete left
and right path, where now the driving processes are random walks instead
of Brownian motions. One then uses the fact that rescaled random walks
converge to Brownian motions, shows that any subsequential limit satisfies
(i)–(iv) with respect to these Brownian motions, and finally uses that (i)–(iv)
have a pathwise unique solution.

4.3 The left-right Brownian web

It is clear that left and right random paths in an arrow configuration are
consistent in the sense of Kolmogorov’s extension theorem, and hence by
Proposition 4.3 the same must be true for left-right coalescing Brownian
motions. In view of this, we can construct a collection (πz, π

′
z′)(z,z′)∈D×D′ of
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left and right coalescing Brownian motions started from two countable dense
sets D,D′ ⊂ R2. We set

W l := {πz : z ∈ D} and Wr := {π′z′ : z′ ∈ D′}.

Since (πz)z∈D is a collection of coalescing drifted Brownian motions, The-
orem 3.8 implies that W l is a Brownian web with drift −1, i.e., if W is a
standard Brownian web, then

W∗ := {π∗ : π ∈ W} with π∗(t) := π(t)− t (t ≥ σπ)

is equally distributed with W l. Likewise, Wr is a Brownian web with drift
+1. We call the pair (W l,Wr) a left-right Brownian web. We let Ŵ l, Ŵr

denote the dual Brownian webs associated with W l,Wr. As a side result
of the following theorem, we obtain that the joint law of W l,Wr does not
depend on the choice of the countable dense sets D,D′.

Theorem 4.4 (Approximation of the left-right Brownian web) Let
εk > 0 satisfy εk → 0 and let ωk be arrow configurations with probabilities

lk, rk, bk, dk as in (4.1) satisfying (4.3). Let U l

k,U
r

k be the closures of the sets
of left and right paths in ωk and let Û l

k, Û r
k be the closures of the sets of dual

left and right paths in ωk. Then

P
[
θεk(U l

k,U
r

k, Û l
k, Û r

k) ∈ ·
]

=⇒
k→∞

P
[
(W l,Wr, Ŵ l, Ŵr) ∈ ·

]
.

Proof Convergence of (U l

k, Û l
k) to (W l, Ŵ l) and of (U r

k, Û r
k) to (Wr, Ŵr) fol-

lows from Theorem 3.19. Using Lemma 3.15, it follows that the laws of

the random variables θεk(U l

k,U
r

k, Û l
k, Û r

k) are tight, so by going to a subse-
quence, we may assume that they converge in law to some random variable
(V l,Vr, V̂ l, V̂r). In view of Lemma 2.2, it suffices to show that (V l,Vr, V̂ l, V̂r)
is equal in law to (W l,Wr, Ŵ l, Ŵr). Since a web is a.s. uniquely determined
by its dual, it suffices to show that (V l,Vr) is equal in law to (W l,Wr). By
Theorem 3.19, V l is a Brownian web with drift −1 and Vr is a Brownian web
with drift +1. Therefore, by Theorem 3.8, we know that at each determinis-
tic z ∈ R2, the sets V l(z) and Vr(z) almost surely contain a single path. To
show that (V l,Vr) is equal in law to (W l,Wr), by Theorem 3.8, it suffices
to show that (V l,Vr) has the right finite dimensional distributions, i.e., we
must show that the left and right paths started from finitely many points are
distributed as coalescing left and right Brownian motions. This follows from
Proposition 4.3, so the proof is complete.
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4.4 The hopping and wedge constructions

Ultimately, we are not interested in left and right paths only, but in the
scaling limit of the sets Uk of all paths in the arrow configurations ωk. Let
πl

1, π
r
2, π

l
3, . . . be a finite sequence of paths that are alternatively taken from

W l and Wr, such that
σπl

1
< σπr

2
< σπl

3
< · · ·

and
πr

2(σπr
2
) < πl

1(σπr
2
), πr

2(σπl
3
) < πl

3(σπl
3
), . . .

i.e., the second path, which is a right path, is started on the left of the first
path, which is a left path, and then the third path, which is a left path, is
started on the right of the second path and so on. Let us also assume that

τ(πl
1, π

r
2) < σπl

3
, τ(πr

2, π
l
3) < σπr

4
, . . .

i.e., we start the third path only after the first meeting time of the first two
paths and so on. Then we can define a path π with starting time σπ := σπl

1

by

π(t) :=


πl

1(t)
(
σπl

1
≤ t ≤ τ(πl

1, π
r
2)
)
,

πr
2(t)

(
τ(πl

1, π
r
2) ≤ t ≤ τ(πr

2, π
l
3)
)
,

πl
3(t)

(
τ(πr

2, π
l
3) ≤ t ≤ τ(πl

3, π
r
4)
)
,

and so on, i.e., we start by following the path πl
1, then “hop” onto the path

πr
2 at the first time when πl

1 meets πr
2, and so on, until we arrive at the last

path in our finite sequence, which we follow till time +∞. We fix a countable
dense set D ⊂ R2 and let

N− := the closure of
{
π : π is obtained by hopping

between paths in (πl
z)z∈D and (πr

z)z∈D
}
.

The set N− will play the role of the lower bound in the proof of convergence
to the Brownian net, similar to the set W− in the proof of Theorem 3.19.

We also need an upper bound. This will again involve wedges and be very
similar to what we did for the Brownian web. Let (W l,Wr) be a left-right
Brownian web and let Ŵ l, Ŵr be the associated dual webs. It is not hard
to see that −Ŵ l is equally distributed with W l (both are Brownian webs
with drift −1) and −Ŵr is equally distributed with Wr. In fact, one can
check (this is most easily seen using finite approximation) that (−Ŵ l,−Ŵr)
is equally distributed with (W l,Wr). We now define

N+ :=
{
π ∈ Π↑ : π does not enter wedges

of the form W (π̂r
z1
, π̂l

z2
) with z1, z2 ∈ D

}
.
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Note that here the left boundary of the wedge is formed by a dual right path
and the right boundary is a dual left path. Because of the drift, these paths
may fail to meet so the wedge may be infinite in size. In particular, the fact
that paths do not enter wedges of this form implies that paths in N+ do not
cross dual left paths from right to left, or dual right paths from left to right.
The following theorem is similar to Theorem 3.16 (and in fact historically
predates it). We call the compact set N := N− = N+ from the following
theorem the Brownian net.

π̂r

π̂l

π

Figure 4.1: Illustration of the definition of the set N+. Paths π ∈ N+ cannot
enter wedges W (π̂r, π̂l) defined by a dual right and left path.

Theorem 4.5 (Wedge characterisation of the Brownian net) Let D
be a countable dense subset of R2 and let N− and N+ be defined in terms of
a left-right Brownian web (W l,Wr) and its dual as above. Then N− = N+.

Proof (sketch) The first step is to prove that paths in W l or Wr cannot
enter wedges of the form W (π̂r

z, π̂
l
z). One way to see this is to use finite

approximation and Theorem 4.4. The same is then true for paths that are
constructed by hopping between left and right paths at their first meeting
times, from which we conclude that N− ⊂ N+. The fact that left or right
paths cannot enter wedges also implies that forward left paths cannot cross
dual right paths from left to right, and forward right paths cannot cross dual
left paths from right to left.

The next step is similar to the proof of Theorem 3.16. We fix π ∈ N+,
σπ < t1 < · · · < tm, and ε > 0. We claim that we can construct a path πhop

by hopping finitely often between paths in (πl
z)z∈D and (πr

z)z∈D, such that
σπ < σπhop < t1 and |πhop(ti)−π(ti)| ≤ ε for all i = 1, . . . ,m. To see this, for
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each i = 1, . . . ,m, we choose zi± = (xi±, t
i
±) ∈ D such that ti± > ti and

π(ti)− ε < π̂r
z−(ti) < π(ti) < π̂l

z+
(ti) < π(ti) + ε.

Since π does not enter the wedge W (π̂r
zi−
, π̂l

zi+
), the meeting time of π̂r

zi−
and

π̂l
zi+

must satisfy

τ(π̂r
zi−
, π̂l

zi+
) ≤ σπ,

and we have π̂r
zi−

(t) ≤ π(t) ≤ π̂l
zi+

(t) for all t ∈ [σπ, ti]. We can now choose

z = (x, s) ∈ D such that σπ < s < t1 and

sup
1≤i≤m

π̂r
zi−

(t1) < πl
z(t1) < inf

1≤i≤m
π̂l
zi+

(t1).

The forward left path πl
z cannot cross any of the left downward paths π̂l

zi+
, but

it can cross the right downward paths π̂r
zi−

. Just before it does so, however,

we can hop onto a cleverly chosen forward right path and continue until it
threatens to cross one of the left downward paths π̂l

zi+
. Just before it does,

we can again hop onto a left path, and so on. Using the equicontinuity of
W l and Wr, one can prove that with a finite number of hoppings, one can
steer the hopping path so that it stays between the bounding dual right and
left paths and hence satisfies |πhop(ti)− π(ti)| ≤ ε for all i = 1, . . . ,m.

The rest of the proof is now the same as in the proof of Theorem 3.16.

The proof of Theorem 4.5 has a useful corollary.

Corollary 4.6 (Connections in the Brownian net) Let N be a standard
Brownian net. Then almost surely, for all a, b, s, t, x ∈ R with a ≤ b and
s < t, there exists a path π ∈ N (x, s) such that π(t) ∈ [a, b] if and only if
there exist paths π̂r ∈ Ŵr(a, t) and π̂l ∈ Ŵ l(b, t) such that

τ
(
π̂r, π̂l

)
≤ s and π̂r(s) ≤ x ≤ π̂l(s). (4.5)

Proof If there exist paths π̂r and π̂l with the described properties such
that moreover π̂r(s) < x < π̂l(s), then by the argument in the proof of
Theorem 4.5, there exists a path π ∈ N−(x, s) such that π(t) ∈ [a, b]. Using
the compactness ofN , we can relax the strict inequalities in π̂r(s) < x < π̂l(s)
to inequalities.

Conversely, if there exists a path π ∈ N+(x, s) such that π(t) ∈ [a, b],
then for each ε > 0, paths π̂r ∈ Ŵr(a − ε, t) and π̂l ∈ Ŵ l(b + ε, t) must
satisfy (4.5). Letting ε→ 0, using the compactness ofWr andW l, the claim
follows.
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Theorem 4.7 (Convergence to the Brownian net) Let εn be positive
constants tending to zero and let Un be the set of paths in arrow configurations
ωn for which the probabilities in (4.1) satisfy dn = 0, ε−1

n (rn − ln) → 0, and
ε−1
n bn → 1. Then

P
[
θεn(Un) ∈ ·

]
=⇒
n→∞

P
[
N ∈ ·

]
,

where N := N− = N+ is defined as in Theorem 4.5.

Proof This is very similar to the proof of Theorem 3.19. One first proves
tightness, which in fact follows easily from the convergence of the collections
of left and right paths and the fact that all paths starting from a point must
stay between the left and right path starting from such a point. It then
suffices to prove that all subsequential limit laws are equal. By going to a
subsequence, we can assume that all left and right paths and dual left and
right paths starting from some countable dense set D also converge in law,
and also their meeting times. We can then use Skorohods representation
theorem to construct a coupling such that the convergence is almost sure.
We then use the paths starting from the set D to construct sets N− and
N+. The proof then consists of showing that the limit N of the set of all
paths satisfies N− ⊂ N ⊂ N+. The lower bound follows from the fact that if
discrete left and right paths converge to left and right paths that cross, then
the approximating discrete paths must for n large enough also cross. The
discrete path constructed by hopping between these paths is then certainly
an element of Un, and hence N− ⊂ N . The upper bound follows in the same
way as in the proof of Theorem 3.19, by showing that if the approximating
discrete paths do not enter wedges, then this property must be preserved in
the limit.

4.5 The density of the net

Let N be a Brownian net. For each closed set A ⊂ R, we define a process
(ξAt )t≥0 by

ξAt :=
{
π(t) : π ∈ N , σπ = 0, π(0) ∈ A

}
(t ≥ 0).

We call (ξAt )t≥0 the branching-coalescing point set. Compared to the coalesc-
ing point set introduced in Section 3.7, it is a more complicated process, even
when A is a set consisting of a single point. We will study (ξAt )t≥0 in more
detail in the next chapter. In the present section, we only state a result,
with a sketch of the proof, that similar to the coalescing point set from Sec-
tion 3.7, the branching-coalescing point set comes down from infinity, in the
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sense that for each deterministic t > 0, the set ξAt is a.s. locally finite. As we
will see in the next chapter, however, this result holds only for deterministic
times: there exists a random dense set of times at which ξAt is not locally
finite.

Proposition 4.8 (Density of the Brownian net) The branching-coales-
cing point set satisfies

E
[∣∣ξRt ∩ [a, b]

∣∣] = (b− a) ·
( e−t√

πt
+ 2Φ(

√
2t)
)
, (4.6)

where Φ(x) := 1√
2π

∫ x
−∞ e

−y2/2dy is the distribution function of the normal
distribution.

Proof (sketch) The proof is very similar to the proof of Proposition 3.20.
For a, b ∈ R with a < b, let π̂r

(a,t) and π̂l
(b,t) be the dual right and left paths

started from (a, t) and (b, t), and let τa,b := τ(π̂r
(a,t), π̂

l
(b,t)) be their first meet-

ing time. Then by Corollary 4.6,

ξRt ∩ [a, b[ 6= ∅ if and only if τa,b ≤ 0.

The proof now proceeds in a very similar way to the proof of Proposition 3.20,
except that one needs to calculate the probability that a Brownian motion
with negative drift stays, up to some finite time horizon, below a given con-
stant. For the details, we refer to [SS08, Prop. 1.12].

As a consequence of Proposition 4.8, we obtain the following result.

Lemma 4.9 (No incoming paths at typical points) Let N be a standard
Brownian net and let (x, t) ∈ R2. Then almost surely, there exist no π ∈ N
with σπ < t and π(t) = x.

Proof Let us write ξRs,t :=
{
π(t) : π ∈ N , σπ ≤ s} and let εn be positive

constants converging to zero. By Proposition 4.8 and translation invariance,
P[x ∈ ξRt−εn,t] = 0 for all n.

4.6 Marking constructions

The construction of the Brownian net based on the left-right SDE (4.4) and
wedges closely follows the original construction of the Brownian net in [SS08].
In this section, we outline a completely different marking construction due
to Newman, Ravishankar, and Schertzer [NRS10] and further developed in
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[SSS14]. This approach not only naturally leads to an alternative construc-
tion of the Brownian net but can more generally be used to construct the
scaling limit of branching and coalescing random walks that moreover die
with a positive probability, as in Theorem 4.1. The most general marking
construction, which also involves killing, was developed in [NRS15] and used
to study perturbations of the voter model in [NRS17].

In Section 3.8 we have seen that there exist random space-time points z of
type (1, 2). These are points such that min(z) = 1 = m̂in(z) and consequently
min(z) = 2. At such points, the incoming path in the Brownian web continues
as one of the outgoing paths (either the left or the right one) while the other
outgoing path is not the continuation of an incoming path. It turns out
there are uncountably many such points. Indeed, if we fix a forward and a
dual path, then conditional on the forward path, the law of the dual path
is described by a Brownian motion with Skorohod reflection off the forward
path; this result is originally due to Soucaliuc, Tóth, and Werner [STW00].
For a Brownian motion reflected off a continuous path, it is well-known that
the set of times when the Brownian motion is at the same position as the
path has Lebesgue measure zero, but is nevertheless uncountable. There is a
natural measure on this set, which is the reflection local time measure, and
which is the limit of the Lebesgue measure on the set of times when the paths
are within distance ε, rescaled by ε−1.

The idea is now to construct a Brownian net from a Brownian web by
allowing paths at some of the points of type (1, 2) to continue along both
outgoing paths. More precisely, the idea is to first construct a Poisson point
set whose intensity measure is precisely the reflection local time measure
between (all) forward and dual paths, and then turn the points in this Poisson
point set (which by construction are all of type (1, 2)) into branching points.
We refer to [NRS15, Thm 5.5] or [SSS14, Thm 4.6] for details.

It is also possible to go back: a branching point of a Brownian net is a
point (x, t) ∈ R2 such that there exist paths π, π′ ∈ N with σπ = σπ′ < t
and π(s) = π′(s) for all s ∈ [σπ, t], but there exists an ε > 0 such that
π(u) < π′(u) for all t < u < t+ ε. It can be shown that the set of branching
points is countable. We can modify a Brownian net by turning branching
points in points of type (1, 2), where we decide in an i.i.d. fashion which of
the outgoing paths will be the continuation of the incoming path. The result
is a Brownian web; see [SSS14, Thm 4.4].

By a similar, but simpler Poisson construction, one can also construct
the Brownian net with killing, which is the scaling limit of branching and
coalescing random walks that moreover die with a positive probability as in
Theorem 4.1. In this case, one needs a Poisson marking of the points of type
(1, 1). The set of all points z ∈ R2 that are of type (1, 1) can naturally be
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equipped with a measure µ such that for each π ∈ W and σπ < s < u, one
has

µ
(
{(x, t) ∈ R2 : s < t < u, x = π(t)}

)
= u− s. (4.7)

One can now construct a Poisson point set with intensity δµ, where δ ≥ 0 is
a constant. By construction, all such points are of type (1, 1). One can now
“cut” the paths passing through these points, resulting in a Brownian web
in which Brownian paths are “killed” with rate δ. Combining this with the
marking construction of the Brownian net, one can also obtain a Brownian
net with killing rate δ. Note that Proposition 4.8 says that at determinis-
tic times (and hence also at almost all times w.r.t. Lebesgue measure), the
branching-coalescing point set consists of locally finitely many points. The
effect of the Poisson marking of points of type (1, 1) is then simply that these
points are killed with Poisson rate δ.



Chapter 5

The branching-coalescing point
set

5.1 Brownian net related Markov processes

In Section 1.4, we informally introduced two Markov processes, taking values
in the closed subsets of the real line, that are the diffusive scaling limits of
branching and coalescing random walks and their dual biased voter models,
in the limit when the branching rate is small. With the help of the Brownian
net, we can now formally define these processes and study their properties.

Given a standard Brownian net, for each s, t ∈ R with s ≤ t, we define
random maps acting on compact subsets of R by

Xs,t(A) :=
{
π(t) : π ∈ N (A× {s})

}
,

Yt,s(A) :=
{
x ∈ R : ∃π ∈ N (x, s) s.t. π(t) ∈ A

}
.

Note that these maps are additive in the sense that

Xs,t(∅) = ∅ and Xs,t(A ∪B) = Xs,t(A) ∪Xs,t(B), (5.1)

and similarly for Yt,s.

Lemma 5.1 (Stochastic flows) For each t ∈ R, the maps Xt,t and Yt,t

are the identity maps. For each s ≤ t ≤ u, one has

Xt,u ◦Xs,t = Xs,u a.s. and Yt,s ◦Yu,t = Yu,s a.s. (5.2)

Moreover, for all t0 < · · · < tn, the maps Xt0,t1 , . . . ,Xtn−1,tn are independent,
and so are Ytn,tn−1 , . . . ,Yt1,t0.

85
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Proof (crude sketch) The statement about independence follows from the
fact that restrictions of the Brownian net to disjoint time intervals are inde-
pendent, which can be derived using discrete approximation (Theorem 4.7).

The fact that Xt,t and Yt,t are the identity maps is immediate from the
definitions. It therefore suffices to prove (5.2) under the additional assump-
tion that s < t < u. The claim will now follow provided we can show that for
deterministic s < t < u, almost surely, if there exist π, π′ ∈ N with σπ = s,
σπ′ = t, and π(t) = π′(t), then the path π′′ defined by σπ′′ := s, π′′ := π′ on
[s, t], and π′′ := π′ on [t,∞) satisfies π′′ ∈ N .

We first note that the analogue statement is true for the Brownian web
W by the fact, stated in Theorem 3.25, that at deterministic times almost
surely all points are of type (0, 1), (0, 2), or (1, 1). In particular, whenever
there is an incoming path, there is a unique outgoing path. Note, however,
that even for the Brownian web, because of the existence of points of type
(1, 2), the statement only holds a.s. for deterministic times, and not almost
surely for all times (including random times).

For the Brownian net N , at deterministic times, all points must be either
of type (0, 1), (0, 2), or (1, 1) in the left webW l, and also in the right webWr.
It is known [SSS09, Thm 1.7] that at deterministic times, all points of the
same type in the left web as in the right web. Moreover, if a point is of type
(1, 1) in the left and right webs, then the concatenation of any incoming net
path and outgoing net path is again a path in the net [SSS09, Thm 1.12(d)].

Below, we let K(R) denote the space of compact subsets of R. We equip
K(R) with a topology such that the induced topology on K+(R) is the Haus-
dorff topology and ∅ is an isolated point, i.e., {∅} is both open and closed as
a subset of K(R).

Lemma 5.2 (Markov processes) For each s ∈ R and compact A ⊂ R,
setting

Xt := Xs,s+t(A) and Yt := Ys,s−t(A) (t ≥ 0)

defines time-homogeneous Markov processes (Xt)t≥0 and (Yt)t≥0 with state
space K(R). The process (Xt)t≥0 has continuous sample paths.

Proof We will only prove the statement for (Xt)t≥0. The proof for (Yt)t≥0

is almost completely the same. By translation invariance, it suffices to prove
the statement for s = 0. We fix A0 ∈ K(R) and define Xt := X0,t(A0) (t ≥ 0).
We will show that (Xt)t≥0 is a time-homogeneous Markov process with state
space K(R) and continuous sample paths.

For each t ≥ 0, we define a probability kernel Pt on the space K(R) by

Pt(A, · ) := P
[
Xs,s+t(A) ∈ ·,

] (
A ∈ K(R), t ≥ 0, s ∈ R

)
,
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where the definition does not depend on the choice of s by the translation-
invariance of the Brownian net. Since by Lemma 5.1, (Xs,t)s≤t is a stochastic
flow with independent increments, for each 0 < t1 < · · · < tn and measurable
sets A1, . . . ,An ⊂ K(R),

P
[
Xt1 ∈ A1, . . . ,Xtn ∈ An

]
=

∫
A1×···×An

P
[
X0,t1(A0) ∈ dA1, . . . ,Xtn−1,tn(An−1) ∈ dAn

]
=

∫
A1

Pt1(A0, dA1) · · ·
∫
An

Ptn(An−1, dAn),

which shows that (Xt)t≥0 is a time-homogeneous Markov process with tran-
sition kernels (Pt)t≥0.

To prove that (Xt)t≥0 has continuous sample paths, we must show that

tn → t implies X0,tn(A0)→ X0,t(A0),

where the convergence on the right is in the topology on K(R). The case
A0 = ∅ is trivial, so from now on we assume that A0 6= ∅. We have to show
that the sets Kn := X0,tn(A0) and K := X0,t(A0) satisfy the convergence
criterion (2.4). For each x ∈ K, there exists a path π ∈ N (A0 × {0}). Then
π(tn) ∈ Kn satisfy π(tn)→ π(t), which shows that K is contained in the set
of all limit points of sequences xn ∈ Kn. To complete the proof, we must
show that if a sequence xn ∈ Kn has a subsequential limit x, then x ∈ K.
Each xn ∈ K is of the form xn = πn(tn) for some πn ∈ N (A0 × {0}). By the
compactness of N , by going to a further subsequence if necessary, we can
assume that πn → π ∈ N . By Lemma 2.23, this means that πn → π locally
uniformly. It follows that π ∈ N (A0 × {0}) and hence x = limn→∞ πn(tn) =
π(t) ∈ K, where in the last step we have used Lemma 2.13 (ii).

Remark The process (Yt)t≥0 does not have continuous sample paths, since
it may happen that Y0 6= ∅ while Yt = ∅ for some t > 0, and ∅ is an isolated
point of K(R). In fact, one can check that the only discontinuities of (Yt)t≥0

are due to this sort of (local) extinctions and the sample paths of (Yt)t≥0 are
in fact left-continuous.

Remark It has been shown in [SS08, Thm 1.11] that (Xt)t≥0 is a Feller
process, which means that the map

K(R) 3 (x, t) 7→ Pt(x, · )

is continuous with respect to weak convergence of probability measures on
K(R). Since by Lemma 2.16, the state space K(R) is compact, standard
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theory now tells us that the Feller semigroup (Pt)t≥0 is uniquely characterised
by its generator G, which is a closed linear operator defined on a dense
subspace of the space of all continuous real functions on K(R), equipped with
the supremumnorm. It is an open problem to give an explicit characterisation
of G, in particular, to find some explicit linear operator G′ defined on a dense
set of functions such that G is the closure of G′.

Making our informal definitions from Chapter 1 precise, we call the
Markov process (Xt)t≥0 the branching-coalescing point set and we call (Yt)t≥0

the expanding interval process. The following lemma, together with the ad-
ditive property (5.1) of the stochastic flow (Ys,t)s≤t, shows that our present
definition of the expanding interval process coincides with the definition for
special initial states given in Chapter 1.

Lemma 5.3 (Expanding interval process) Let a, b ∈ R satisfy a < b and
let Bl, Br be independent Brownian motions. Set

Lt := Bl
t − t, Rt := Br

t + t, and τ := inf{t > 0 : Lt = Rt}.

Then setting

Yt :=

{
[Lt, Rt] if t ≤ τ,

∅ otherwise

defines an expanding interval process (Yt)t≥0.

Remark The expanding interval process can also be defined for a Brownian
net with killing. The behaviour of this process is much less trivial than in
the case without killing, since even if the initial state is an interval, the set
Yt at positive times a.s. contains infinitely many (small) holes. Processes of
this and more general form have been studied in [NRS17].

Proof of Lemma 5.3 Let N be a standard Brownian net with associated
left-right Brownian web (W l,Wr) and dual left-right Brownian web (Ŵ l, Ŵr).
Let π̂r ∈ Ŵr(a, 0) and π̂l ∈ Ŵ l(b, 0) be the a.s. unique dual right and left
paths starting from (a, 0) and (b, 0) and let τ := τ

(
π̂r, π̂l) be their first

meeting time. For t ≥ 0, let

Yt := Y0,−t([a, b]) =
{
x ∈ R : ∃π ∈ N s.t. π(0) ∈ [a, b]

}
.

Then Corollary 4.6 implies that

Yt =

{ [
π̂r(−t), π̂l(−t)

]
if τ ≤ t,

∅ otherwise.
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Since π̂r and π̂l are drifted Brownian motions, the claim follows.

In Chapter 1, we introduced the branching-coalescing point set via its
duality to the expanding interval process described in Theorem 1.5. There,
we stated the duality only in the case Y0 was a finite union of intervals of
positive length. We can now state and prove the duality for general initial
states Y0.

Theorem 5.4 (Duality of continuum processes) The branching-coales-
cing point set (Xt)t≥0 and the expanding interval process (Yt)t≥0 started in
arbitrary deterministic initial states X0,Y0 ∈ K(R) satisfy

P
[
Xt ∩ Y0 6= ∅

]
= P

[
X0 ∩ Yt 6= ∅

]
(t ≥ 0). (5.3)

Proof We fix t ≥ 0 and define

Xs := X0,s(X0) and Ys := Yt,t−s(Y0) (s ≥ 0).

Then the claim follows from the observation that

Xt ∩ Y0 6= ∅ ⇔ X0,t(X0) ∩ Y0 6= ∅
⇔ ∃π ∈ N (X0 × {0}) s.t. π(t) ∈ Y0

⇔ X0 ∩Yt,0(Y0) 6= ∅ ⇔ X0 ∩ Yt 6= ∅

Remark In Section 1.4, we informally stated Theorems 1.4 and 1.6, which
said that the branching-coalescing point set and the expanding interval pro-
cess and are the scaling limits of diffusively rescaled continuous-time branch-
ing and coalescing random walks with small branching rates, and their dual
voter models with a small bias. We now have all the tools available to state
and prove precise versions of these theorems. Recall that in Sections 1.2 and
1.3 we constructed branching and coalescing random walks and their dual
biased voter models from a graphical representation with two kinds of ar-
rows, which represent coalescing random walk jumps and branching events.
In Section 1.3, we defined open paths in such a graphical representation.
Similar to Theorem 4.7, one can show that the collection of all half-infinite
open paths in such a graphical representation, properly rescaled, converges
to a Brownian net. The proof is almost completely the same as the proof of
Theorem 4.7. Using this, one can also prove convergence of branching and
coalescing random walks and biased voter models to the branching-coalescing
point set and the expanding interval process, in an appropriate sense. For
brevity, we skip the details.
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Remark The proof of Theorem 4.7 essentially uses the nearest-neighbour
nature of the random walks and non-crossing properties of random walk
paths. Nevertheless, it is believed that even if we allow random walk jumps
and infections between points in Z that are at distance two or more, the
collection of all half-infinite open paths should still converge to the Brownian
net, provided the jump rates satisfy a suitable moment condition. In the
context of the Brownian web, this has been proved in [NRS05, BMSV06].
For the Brownian net, it is an open problem.

5.2 The branching-coalescing point set

In this section, we study some of the properties of the branching-coalescing
point set.

Proposition 5.5 (Finiteness of the branching-coalescing point set)
Let (Xt)t≥0 be a branching-coalescing point set started in a compact set X0 ⊂
R. Then for each t > 0, the set Xt is a.s. finite. But there almost surely
exists a dense set of times t at which Xt is infinite.

Proof (crude sketch) Finiteness at deterministic times follows from Propo-
sition 4.8 and the fact that if X0 ⊂ [a, b] for some compact interval [a, b], then
Xt ⊂ [πl(t), πr(t)] (t ≥ 0), where πl, πr are the a.s. unique left and right paths
started in (a, 0) and (b, 0).

To see why there exists a dense set of times t at which Xt is infinite, it
is instructive to consider the case that a = b. We have seen in Section 4.2
that the interaction between left and right paths is described by the left-right
SDE (4.4), which describes a form of sticky interaction. It has been shown
in [SS08, Prop. 3.1(a)] that the set of times when a left and right paths are
on the same location has positive Lebesgue measure bit is nowhere dense,
which means that each time interval of positive length contains (small) open
time intervals during which the two processes are not at the same position.

For the branching-coalescing point set started in a single point X0 = {x},
this means that although for small times, most of the time Xt consists of
a single point, there is a dense set of small time intervals during which Xt
has split into at least two points that however quickly coalesce again. On a
smaller scale, these points also split into two points, so one can inductively
find open time intervals, nested inside each other, during which Xt contains
at least 2, 4, 8, 16, . . . points. At the intersection of infinitely many of such
nested time intervals, one finds random times at which Xt is infinite.

Remark For the branching-coalescing point set started in X0 = R it is shown
in [SSS09, Prop. 3.14] that there even exists a dense set of times when Xt
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does not contain isolated points.

Remark It is an interesting open problem to describe the excursions of the
branching-coalescing point set away from the set of singletons by means of an
excursion measure, similar to the theory of excursions of Brownian motion.
In [SSS16, Conjecture 6.8.1], a precise conjecture is formulated about the
structure of these excursions.

We recall from Lemma 1.1 that product measure with intensity p is a
reversible law for branching and coalescing continuous-time random walks
with paremeter p. In the scaling limit of Theorem 1.6, this product measure
converges to the law of a Poisson point process with intensity 2. The following
proposition says that this is a reversible law for the branching-coalescing
point process.

Lemma 5.6 (Reversible law) The law of a Poisson point process with
intensity 2 is a reversible invariant law for the branching-coalescing point
process.

Proof (sketch) Let εn be positive constants tending to zero and let ωn be an
arrow configuration with probabilities of a left arrow, right arrow, branching
or death given by ln = (1 − ε)/2, rn = (1 − ε)/2, bn = ε, and dn = 0. Let
Un be the set of paths in ωn and let Un(∗,−∞) be the set of paths π ∈ Un
with starting point (∗,−∞). It is shown in [SS08, Prop. 1.14(a)] that A :={
π(0) : π ∈ Un(∗,−∞)} is a random subset of Zeven such that independently,

each i ∈ Zeven is included in A with probability 4εn/(1 + εn)2. Taking the
limit, using Theorem 4.7, it follows that the set {π(0) : π ∈ N (∗,−∞)}
stochastically dominates a Poisson point set with intensity 2. On the other
hand, letting t→∞ in formula (4.6) of Proposition 4.8, it is easy to see that
the expected intensity of the point process {π(0) : π ∈ N (∗,−∞)} is at most
two, so we can conclude that {π(0) : π ∈ N (∗,−∞)} is a Poisson point set
with intensity 2.

Using the definition of the branching-coalescing point process, it follows
that the law of a Poisson point process with intensity 2 is an invariant law
for the branching-coalescing point process. It is moreover shown in [SS08,
Prop. 1.14(a)] that Un(∗,−∞) and −Un(∗,−∞) are equal in law. Taking the
limit, it follows that also N (∗,−∞) and −N (∗,−∞) are equal in law, and
hence the Poissonian invariant law of the branching-coalescing point process
is reversible.

In this proof, we have used approximation with discrete-time branching
and coalescing random walks, but one could equally use approximation with
continuous-time branching and coalescing random walks defined by a graphi-
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cal representation as in Section 1.2 and then use Lemma 1.1 instead of [SS08,
Prop. 1.14].

Proposition 5.7 (Ergodicity) Let (Xt)t≥0 be a branching-coalescing point
set started in any nonempty initial state X0. Then Xt converges in law as
t→∞ to a Poisson point set with intensity 2.

Proof (crude sketch) We only prove the statement when X0 = {x} consists
of a single point. Then Xt is equal in law to X−t,0({x}). Let πl

(x,−t) and πr
(x,−t)

be the left and right paths started at (x,−t). Then

X−t,0({x}) = X−t,0(R) ∩
[
πl

(x,−t)(0), πl
(x,−t)(0)

]
.

Here X−t,0(R) almost surely converges as t→∞ to {π(0) : π ∈ N (∗,−∞)},
which is a Poisson point set with intensity 2, and πl

(x,−t)(0) → −∞ a.s. and

πr
(x,−t)(0)→ +∞ a.s. We refer to [SS08, Prop. 1.15(iii)] for details.

5.3 The branching-killing process revisited

In this final section we return to the biased annihilating branching process
(BAB) introduced in Section 1.1. We outline a very rough idea of a possible
proof of Conjecture 1.7. We first introduce an auxilary process.

Let Z + 1
2

:= {k + 1
2

: k ∈ Z} and 1
2
Z := {1

2
k : k ∈ Z}. Let

~E :=
{

(i, j) ∈ (1
2
Z)2 : |i− j| = 1

2

}
For each (i, j) ∈ ~E, we define a coalescing random walk map rwij as in
(1.7), except that this map acts on configurations z of zeros and ones on 1

2
Z.

Moreover, for each i ∈ Z + 1
2
, we define a splitting map spliti by

spliti(z)(k) :=


0 if k = i

1 if k ∈ {i− 1
2
, i+ 1

2
}, z(i) = 1

z(k) otherwise.

In words, the effect of this map is that if there is a particle at i, then this
particle splits into two particles that are placed on the sites i− 1

2
and i+ 1

2
and

coalesce with any particles that may already be present on these sites. We
will be interested in the interacting particle system (Zt)t≥0 with generator
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given by

Gcovf(z) := 1
2
p
∑

(i,j)∈ ~E
i∈Z

{
f
(
rwij(z)

)
− f

(
z
)}

+1
2
(1− p)

∑
(i,j)∈ ~E
i∈Z+

1
2

{
f
(
rwij(z)

)
− f

(
z
)}

+p
∑
i∈Z+

1
2

{
f
(
spliti(z)

)
− f

(
z
)}
.

For reasons that will become clear later, we call (Zt)t≥0 the covering bran-
ching-coalescent. We can represent the covering branching-coalescent with
a graphical representation as in Section 1.2, where as in that section, we
represent the application of a coalescing random walk map rwij at time t by
an arrow with a blocking symbol at its tail that points from (i, t) to (j, t).
Similarly, we represent the application of a splitting map spliti at time t
by two arrows with blocking symbols at their tails, that point from (i, t) to
(i− 1

2
, t) and to (i+ 1

2
, t). It is easy to check from this construction that the

interacting particle system (Zt)t≥0 is additive in the sense of (1.10).
For the graphical representation of (Zt)t≥0, we define open paths as in

Section 1.3 and let Up denote the set of all half infinite or infinite open
paths, i.e., these are functions γ : [s,∞) → 1

2
Z with s ∈ R or γ : R → 1

2
Z

that satisfy the conditions listed in Section 1.3. We let Up denote the closure
of Up in Π↑ and we let Θp : R2 → R2 denote the scaling map

Θp(x, t) := (px, 1
2
p3t),

which we extend continuously to the squeezed space R(R). We make the
following conjecture.

Conjecture 5.8 (Convergence of the covering branching-coalescent)
Let Up be the collection of half-infinite or infinite open paths in the graphical
representation of the covering branching-coalescent with parameter p. Then

P
[
Θp(U

p
) ∈ ·

]
=⇒
p→0

P
[
N ∈ ·

]
,

where N is the standard Brownian net.

Proof (idea) Because of the nearest-neighbour nature of the covering bran-
ching-coalescent, open paths in its graphical representation have a non-
crossing property: two open paths that change their order must for some
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time coincide. As a result, all open paths starting at a given point are con-
tained between the left-most and right-most open paths starting at such a
point. Because of this, known techniques for proving convergence to the
Brownian net should be available.

To see that the limit is the standard Brownian net, it should therefore suf-
fices to check that rescaled right-most paths converge to Brownian motions
with drift one. Let (Rt)t≥0 be a right-most path in the graphical representa-
tion. Then

Mt := Rt − 1
2
p

∫ t

0

1
{Rs∈Z+

1
2
}
ds

is a martingale, since the only asymmetric jumps are due to the splitting,
which happens with rate p when Rt ∈ Z + 1

2
and leads to an increment of

size 1
2
. The quadratic variation of this martingale is

〈M〉t = 1
4
p

∫ t

0

1{Rs∈Z}ds+ 1
4

∫ t

0

1
{Rs∈Z+

1
2
}
ds,

since Rt makes random walk jumps with rate p while it is at an integer
position, and, due to the combined effect of random walk jumps and splitting,
jumps with rate (1 − p) + p = 1 while it is at a half integer position, and
the square of the jump size is 1/4 for all types of jumps. When t is large, Rt

spends approximately a p fraction of its time at half integer positions, so we
see that

E[Rt] ≈ 1
2
p2t and Var(Rt) ≈ 1

2
pt for large t,

which gives
E[pR2t/p3 ] ≈ t and Var(pR2t/p3) ≈ t,

i.e., after rescaling with Θp, right-most paths should converge to Brownian
motions with drift +1.

We next turn our attention to the scaling limit of the BAB, which is much
more challenging. It is easy to see that the covering branching-coalescent and
the BAB, started with a single particle, behave very similarly up to the first
splitting of a particle of the covering branching-coalescent or the first time
the BAB has three particles. Indeed, as long as the BAB has at most two
particles, it behaves essentially in the same way as the covering branching-
coalescent, when we interpret two particles of the BAB at positions i and
i+ 1 as a single particle of the covering branching-coalescent at i+ 1

2
.

To compare the two processes after the first splitting of a particle of the
covering branching-coalescent, we must determine the “effective” branching
rate of both processes. Particles of the covering branching-coalescent can
split only when they are at half integer positions, in which case the splitting
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rate is p. After splitting, a particle has been replaced by two particles at
distance 1 from each other. If we ignore further branching, then the distance
between these particles is a martingale with absorption at zero. Therefore,
the probability that the two particles manage to separate to a distance L
is approximately 1/L. When the BAB contains two particles next to each
other, which corresponds to a particle in the covering branching-coalescent at
a half integer site, then these two particles produce with rate p a third particle
directly the left or right of the two existing particles. When p is small, briefly
after this, either the middle particle or one of the outer particles dies. If the
middle particle dies, then this results in two particles at distance 2 of each
other. When p is small, the distance between these particles is approximately
a martingale as long as there is at least one free site between them. In fact,
we can approximate them by two particles on 1

2
Z that behave as in the

covering branching-coalescent, except that when they come within distance
3/2 of each other, very quickly, with equal probabilities, their distance either
increases again to 2 or the two particles coalesce. We see from this that
effectively, the distance is a martingale with absorption at 1. As a result,
the probability that the two particles manage to separate to a distance L is
approximately 1/(L− 1).

We see from this that a particle in the BAB produces three particles at
neighbouring positions at the same rate at which the covering branching-
coalescent splits; these three particles then have a probability 1/2 to kill
the middle one, after which the two remaining particles have roughly the
same probability to separate to a large distance L as the two particles of the
covering branching-coalescent. The upshot of this is that the scaling limit
of the BAB should be similar to the scaling limit of the covering branching-
coalescent, except that the “effective” branching rate (or equivalently the
drift of the right-most particle) should be a factor 1/2 smaller. We can
compensate this by scaling space by another factor 1/2 and time by (1/2)2.
This motivates Conjecture 1.7, which we can now formulate more precisely by
replacing the space Cl(R) of closed subsets of R by the space K(R) of compact
subsets of R, and specifying that in (1.33) we mean weak convergence of
probability measures on the space of continuous functions from [0,∞) into
K(R), equipped with the topology of locally uniform convergence.

5.4 Relevant separation points

In this final section, we collect some ideas that could possibly be used to
prove Conjecture 1.7. The main idea is to show that in a space-time box
with spatial size of order p−1 and temporal size of order p−3, the BAB can be
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closely controlled in terms of the covering branching-coalescent, in the sense
that for each particle of the BAB, there is a nearby particle of the covering
branching-coalescent. Moreover, at each instance where a particle of the
covering branching-coalescent splits, the corresponding particle of the BAB
has a probability of 1/2 to also split, while with the remaining probability
it stays close to one of the outgoing particles of the covering branching-
coalescent. In the limit, space-time points where a particle of the branching-
coalescing point set splits into two particles correspond to separation points
of the Brownian net, which we now discuss.

By definition, for given times s < u, an (s, u)-relevant separation point
of the Brownian net N is a space-time point (x, t) ∈ R2 with s < t < u such
that there exist paths π, π′ ∈ N with σπ = s = σπ′ , π = π′ on (s, t), π(t) =
x = π′(t), and π < π′ on (t, u). We simply call (x, t) a separation point if it is
an (s, u)-relevant separation point for some s < t < u. The following lemma
gives an alternative characterisation of (s, u)-relevant separation points that
is surprisingly symmetric with respect to webs and dual webs. See Figure 5.1
for an illustration.

Figure 5.1: A relevant separation point

Lemma 5.9 (Relevant separation points) Let N be a standard Brownian
net, let (W l,Wr) be the associated left-right Brownian web, and let (Ŵ l, Ŵr)
be their associated dual Brownian webs. Then for each s, u ∈ R with s < u, a
point z = (x, t) ∈ (s, u)×R is an (s, u)-relevant separation point if and only
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if there exist πl ∈ W l(z), πr ∈ W l(z), π̂l ∈ Ŵ l(z), and π̂r ∈ Ŵr(z), such that
πl < πr on (t, u) and π̂r < π̂l on (s, t).

Proof (sketch) This follows roughly from the same arguments as Corol-
lary 4.6, using moreover [SSS09, Thm 1.12(d)] to see that the concatenation
of an incoming path of N with either πl or πr is a path in N .

We cite the following fact from [SSS09, Prop. 2.9]

Proposition 5.10 (Density of relevant points) For each deterministic
s, u ∈ R with s < t, almost surely, the set of (s, u)-relevant separation points
is a locally finite subset of R2.

Proof (rough idea) By calculating the probability of the event that a left
and right path, started closely together at time t, do not meet during the
time interval (t, u), and of the independent event that a dual left and dual
right path, started closely together at time t, do not meet during the time
interval (s, u), it is possible to derive an explicit formula for the density of
(s, u)-relevant separation points as a function of t ∈ (s, u). This density
diverges as t approaches s or u, but in an integrable way, so that the total
number of (s, u)-relevant separation points is finite in each compact subset
of R× [s, u].

In particular, if we start the covering branching-coalescent with a single
particle and run it up to a final time of order p−3, then in view of Proposi-
tion 5.10, for small p, there should only be finitely many space-time points
where the splitting of a particle has a significant effect on the state of the
process at the final time.1 The hope is that we only need to give a precise
description of the coupling between the BAB and its covering branching-
coalescent at this finite collection of relevant separation points, while (hope-
fully) in the rest of space-time more crude arguments suffice to show that the
BAB cannot wander too far away from its covering branching-coalescent. In
particular, for this last statement, one only needs upper bounds on the drift
of the right-most particle, which are easier to obtain than lower bounds.

1Here we are implicitly using that separation points of the Brownian net arise as
limits of a single branching point of the approximating branching-coalescent. For the
usual discrete approximation of the Brownian net, this has indeed been proved in [SSS14,
Prop. 6.14].
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[STW00] F. Soucaliuc, B. Tóth, W. Werner. Reflection and coales-
cence between one-dimensional Brownian paths. Ann. Inst. Henri
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