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Chapter 1

Topological prerequisites

1.1 Topological spaces

A topological space is a set X equipped with a collection O of subsets of X
that are called open sets, such that

(i) If (Oγ)γ∈Γ is any collection of (possibly uncountably many) sets Oγ ∈
O, then

⋃
γ∈ΓOγ ∈ O.

(ii) If O1, O2 ∈ O, then O1 ∩O2 ∈ O.

(iii) ∅,X ∈ O.

Any such collection of sets is called a topology. It is fairly standard to also
assume the Hausdorff property

(iv) For each x1, x2 ∈ X , x1 6= x2 ∃O1, O2 ∈ O s.t. O1 ∩ O2 = ∅, x1 ∈ O1,
x2 ∈ O2.

A set V ⊂ X is a neighbourhood of a point x ∈ X if x ∈ O ⊂ V for some
O ∈ O. We let Vx denote the set of all neighbourhoods of x. A fundamental
system of neighbourhoods of x is a set V ′x ⊂ Vx such that

∀V ∈ Vx ∃V ′ ∈ V ′x s.t. V ′ ⊂ V.

For example, the set of all O ∈ O such that x ∈ O is a fundamental system
of neighbourhoods of x. A sequence of points xn ∈ X converges to a limit
x in a given topology O if for each V ∈ Vx there is an n such that xm ∈ V
for all m ≥ n. It suffices to check this condition for a fundamental system of
neighbourhoods V ′x. If the topology is Hausdorff, then limits are unique, i.e.,
xn → x and xn → x′ implies x = x′.
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6 CHAPTER 1. TOPOLOGICAL PREREQUISITES

If (X ,O) is a topological space (with O the collection of open subsets of
X ) and X ′ ⊂ X is any subset of X , then X ′ is also naturally equipped with
a topology given by the collection of open subsets O′ := {O ∩ X ′ : O ∈ O}.
This topology is called the induced topology from X . If xn, x ∈ X ′, then
xn → x in the induced topology on X ′ if and only if xn → x in X .

A basis of a topology is a subset O′ ⊂ O such that each element of O
can be written as the union of (possibly uncountably many) elements of O′.
Equivalently, this says that

O = {O ⊂ X : ∀x ∈ O ∃O′ ∈ O′ s.t. x ∈ O′ ⊂ O}.

If O′ is a basis for O, then V ′x := {O ∈ O′ : x ∈ O} is a fundamental system
of neighbourhoods of x. A topology is first countable if every x ∈ X has
a countable fundamental system of neighbourhoods. A topology is second
countable if there exists a countable basis of the topology.

A set C ⊂ X is called closed if its complement is open. Because of
property (i) in the definition of a topology, for each A ⊂ X , the union of all
open sets contained in A is itself an open set. We call this the interior of
A, denoted as int(A) :=

⋃
{O : O ⊂ A, O open}. Then clearly int(A) is the

largest open set contained in A. Similarly, by taking complements, for each
set A ⊂ X there exists a smallest closed set containing A. We call this the
closure of A, denoted as A :=

⋂
{C : C ⊃ A, C closed}. If the topology is

first countable, then

A = {x ∈ X : ∃xn ∈ X s.t. xn → x}, (1.1)

i.e., A is the set of all limits of sequences in A. A similar statement holds
for general topological spaces if we replace sequences by the more general
concept of a net, that we will not discuss here. Since a set is closed if and only
if it coincides with its closure, it follows from (1.1) that in a first countable
topological space, knowing all convergent sequences and their limits uniquely
determines the closed sets and their complements, the open sets, and hence
the whole topology.

A topological space is called separable if there exists a countable set D ⊂
X such that D is dense in X , where we say that a set D ⊂ X is dense if
its closure is X , or equivalently, if every nonempty open subset of X has a
nonempty intersection with D.

A metric on a set X is a function d : X × X → [0,∞) such that for all
x, y, z ∈ X ,

(i) d(x, y) = d(y, x),

(ii) d(x, z) ≤ d(x, y) + d(y, z),
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(iii) d(x, y) = 0 implies x = y.

A metric space is a space with a metric defined on it. If d is a metric on X ,
and Bε(x) := {y ∈ X : d(x, y) < ε} denotes the open ball around x of radius
ε, then

O :=
{
O ⊂ X : ∀x ∈ O ∃ε > 0 s.t. Bε(x) ⊂ O

}
defines a Hausdorff topology on X such that convergence xn → x in this
topology is equivalent to d(xn, x) → 0. Note that the open balls form a
basis for this topology. Since open balls of radius 1/n around a point x form
a fundamental system of neighbourhoods, metric spaces are first countable.
We say that the metric d generates the topology O. If for a given topology
O there exists a metric d that generates O, then we say that the topological
space (X ,O) is metrisable. Such a metric, if it exist, can always be chosen
such that it is bounded. For example, if d is any metric on X , then d′(x, y) :=
d(x, y)∧1 is a bounded metric that generates the same topology. A metrisable
space is always first countable. It is second countable if and only if it is
separable.

A sequence xn in a metric space (X , d) is a Cauchy sequence if for all
ε > 0 there is an n such that d(xk, xl) ≤ ε for all k, l ≥ n. A metric
space is complete if every Cauchy sequence converges. Every metric space
(X , d) has a completion, i.e., there exists a complete metric space (X , d) such
that X ⊂ X is dense and the metric on X is the induced metric from X ,
i.e., d(x, y) = d(x, y) for all x, y ∈ X . Such a completion is unique up to
isometries.

A Polish space is a separable topological space (X ,O) such that there
exists a metric d on X with the property that (X , d) is complete and d
generates O. Warning: there may be many different metrics on X that
generate the same topology. It may even happen that X is not complete
in some of these metrics, and complete in others (in which case X is still
Polish). Example: R is separable and complete in the usual metric d(x, y) =
|x − y|, and therefore R is a Polish space. But d′(x, y) := | arctan(x) −
arctan(y)| is another metric that generates the same topology, while (R, d′)
is not complete. (Indeed, the completion of R w.r.t. the metric d′ is [−∞,∞].)

1.2 Compactness

A subset K of a general topological space X (with collection of open sets
O) is called compact if every open cover has a finite subcover, i.e., if for any
collection (Oγ)γ∈Γ of open subsets of X such that

⋃
γ∈Γ Oγ ⊃ K, there exists

a finite ∆ ⊂ Γ such that
⋃
γ∈∆ Oγ ⊃ K. Using this definition, it is easy to
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see that the image of a compact set under a continuous function is again
compact. Compact subsets of Hausdorff topological spaces are closed. A
subset K of a metric space X is compact if and only if it is closed and totally
bounded, which means that for every ε > 0 there exists a finite collection
{Bε(x1), . . . , Bε(xn)} of open balls such that

Bε(x1) ∪ · · · ∪Bε(xn) ⊃ K.

From this, it is not hard to see that compact metrisable spaces are always
separable. If (xn)n∈N is a sequence and m : N → N is a function such that
m(n) → ∞ as n → ∞, then setting x′n := xm(n) (n ∈ N) defines a new
sequence. Such a sequence is called a subsequence of the original sequence.
A cluster point of a sequence is a limit of a subsequence.

Theorem 1.1 (Bolzano-Weierstrass) Let X be a metrisable space and
let K ⊂ X . Then K is compact if and only if every sequence in K has a
subsequence that converges to a limit in K.

The Bolzano-Weierstrass theorem also holds for second countable spaces.
(Note that metrisable spaces need in general not be second countable, and
conversely, not every second countable space is metrisable.) There is also a
version of the Bolzano-Weierstrass theorem that holds in general topological
spaces but in this case one has to replace sequences by the more general nets.
A set A is precompact if its closure is compact. In metrisable spaces, this
is equivalent to the statement that each sequence of points xn ∈ A has a
convergent subsequence. Note that in this case we do not require that the
limit is an element of A. The following simple lemma is often useful.

Lemma 1.2 (Convergence and compactness) Let X be a metrisable
space and let x, xn ∈ X . Then xn → x if and only if the following two
conditions are satisfied.

(i) The set {xn : n ∈ N} is precompact.

(ii) For every subsequence xn(m) such that xn(m) −→
m→∞

x′ for some x′ ∈ X ,

one has x′ = x.

If (X ,O) is a topological space, then a compactification of X is a compact
topological space X such that X is a dense subset of X and the topology
on X is the induced topology from X . If X is metrisable, then we say that
X is a metrisable compactification of X . It turns out that each separable
metrisable space X has a metrisable compactification [Cho69, Theorem 6.3].

A topological space X is called locally compact if for every x ∈ X there
exists a compact neighbourhood of x. We cite the following proposition from
[Eng89, Thms 3.3.8 and 3.3.9].
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Proposition 1.3 (Compactification of locally compact spaces) Let X
be a metrisable topological space. Then the following statements are equiva-
lent.

(i) X is locally compact and separable.

(ii) There exists a metrisable compactification X of X such that X is an
open subset of X .

(iii) For each metrisable compactification X of X , X is an open subset of X .

We note that if X satisfies the equivalent conditions of Proposition 1.3,
then it is possible to find a metrisable compactification X of X such that X\X
consists of just one point, usually denoted by∞. In this case, X = X ∪{∞}
is called the one-point compactification of X . The open sets of X ∪{∞} are
all open sets of X plus all sets of the form {∞}∪O where X\O is a compact
subset of X .

A subset A ⊂ X of a topological space X is called a Gδ-set if A is
a countable intersection of open sets (i.e., there exist Oi ∈ O such that
A =

⋂∞
i=1Oi. If X is metrisable, then every closed set A ⊂ X is a Gδ-set,

since it is the intersection of the open sets {x ∈ X : d(x,A) < 1/n}. The
following result can be found in [Bou58, §6 No. 1, Theorem. 1]. See also
[Oxt80, Thms 12.1 and 12.3].

Proposition 1.4 (Compactification of Polish spaces) Let X be a metris-
able topological space. Then the following statements are equivalent.

(i) X is Polish.

(ii) There exists a metrisable compactification X of X such that X is a
Gδ-subset of X .

(iii) For each metrisable compactification X of X , X is a Gδ-subset of X .

Moreover, a subset Y ⊂ X of a Polish space X is Polish in the induced
topology if and only if Y is a Gδ-subset of X .

We note that if X is a compactification of a Polish space X , equipped with
a concrete metric, then X is also the completion of X in this metric. Thus,
unless X is itself compact, it will never be complete in such a metric (even
though, by the definition of a Polish space, there exists metrics generating
the same topology with respect to which X is complete).
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1.3 Decomposition of measures

Let (X ,F) be a measurable space and let (Y ,B(Y)) be a Polish space,
equipped with its Borel-σ-field. By definition, a probability kernel from X to
Y is a measurable map

X 3 x 7→ K(x, · ) ∈M1(Y).

Since the Borel-σ-field on M1(Y) is generated by the maps µ 7→ µ(A) with
A ∈ B(Y), the measurability of K is equivalent to the statement that for each
A ∈ B(Y), the function K( · , A) is a measurable real function on X . More
generally, if (Y ,B(Y)) is replaced by a general measurable space (Y ,G), then
we define a probability kernel from X to Y to be a map K : X × G → [0, 1]
such that K(x, · ) is a probability measure on Y for each x ∈ X and K( · , A)
is a measurable real function on X for each A ∈ G. With these definitions,
one has the following result.

Theorem 1.5 (Decomposition of probability measures) Let (X ,F)
and (Y ,G) be a measurable spaces. Let µ be a probability measure on X
and let K be a probability kernel from X to Y. Then there exists a unique
probability measure ν on X ×Y, equipped with the product-σ-field, so that for
any measurable function f : X × Y → [0,∞],∫

f(x, y)ν
(
d(x, y)

)
=

∫
µ(dx)

∫
K(x, dy)f(x, y), (1.2)

where on the right-hand side, x 7→
∫
K(x, dy)f(x, y) is a measurable function

on X that is integrated against µ.
Assume that moreover, (Y ,G) = (Y ,B(Y)) is a Polish space equipped with

its Borel-σ-field. Then conversely for each probability measure ν on X × Y,
there exist a probability measure µ on X and probability kernel K from X
to Y such that (1.2) holds. If (1.2) holds, then µ is the first marginal of
ν. Moreover, (1.2) determines the kernel K a.s. uniquely, i.e., if K,K ′ are
probability kernels so that (1.2) holds both for K and K ′, then there exists a
set N ∈ F with µ(N) = 0 such that K(x, · ) = K ′(x, · ) for all x ∈ X\N .

We note that by subtracting a constant, we see that (1.2) holds more
generally for functions f that are bounded from below.

The deep part of Theorem 1.5 is the existence of K given ν;. this may fail
in general if the Polish space (Y ,B(Y)) is replaced by an arbitrary measurable
space (Y ,G). Formally, we may define a ‘measure’ ρ on X with values in
M1(Y) by ρ(A) := ν(A × · ) (A ∈ F). Letting µ denote the first marginal
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of ν, we obviously have ρ(A) = 0 whenever µ(A) = 0, i.e., formally ρ � µ.
Now (1.2) says that

ρ(A) =

∫
A

µ(dx)K(x, · ),

which we can formally read as saying that ρ has a density with respect to µ,
which is given by the function x 7→ K(x, · ). Thus, Theorem 1.5 amounts to
proving something like a Radon-Nikodym theorem for functions and measures
with values in M1(Y). In fact, if we are just interested in K( · , B) for one
fixed B ∈ B(Y), then (1.2) says that

ν(A×B) =

∫
A

µ(dx)K(x,B) (A ∈ F). (1.3)

Since ν( · × B) � µ (where µ is the first marginal of ν), the usual Radon-
Nikodym now tells us that for this fixed B, there exists an a.s. unique function
K( · , B) such that (1.3) holds. This argument does not tell us, however,
whether for fixed x, we can choose K(x, · ) such that it is a probability
measure. Theorem 1.5 tells us that that such a regular version of K exists.

Corollary 1.6 (Regular conditional probability) Let Y be a random
variable defined on an underlying probability space (Ω,F ,P) and taking values
in some Polish space Y, and let G ⊂ F be a sub-σ-field. Then there exists
a M1(Y)-valued random variable P[Y ∈ · | G], which is unique up to a G-
measurable set of probability zero, such that

(i) P[Y ∈ · | G] is G-measurable.

(ii) E
[
1AP[Y ∈ B | G]

]
= E[1A1{Y ∈B}] for all A ∈ G, B ∈ B(Y).

Proof It is not hard to see that there exists a unique probability measure
on ω × Y , equipped with the σ-field G ⊗ B(Y), such that∫

ν
(
d(ω, y)

)
f(ω, y) :=

∫
P(dω) f(ω, Y (ω))

for all f : ω × Y → [0,∞] that are measurable w.r.t. G ⊗ B(Y). Applying
Theorem 1.5 to ν, we obtain a G-measurable,M1(Y)-valued random variable
P[Y ∈ · | G] (i.e., a probability kernel from (Ω,G) to Y), unique up to a G-
measurable set of probability zero, such that∫

P(dω) f(ω, Y (ω)) =

∫
P(dω)

∫
P[Y ∈ dy | G](ω) f(ω, y)
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By the uniqueness theorem (applied to ν), to verify this equation, it suffices
to check it for functions f of the form f = 1A×B with A ∈ G and B ∈ B(Y).
Thus, P[Y ∈ · | G] is a.s. uniquely determined by the requirement that

E
[
1AP[Y ∈ B | G]

]
=

∫
P(dω)P[Y ∈ dy | G](ω)1A×B(ω, y)

= ν(A×B) = E[1A1{Y=B}].

1.4 Weak convergence

Let X be a metrisable space. We let B(X ) denote Borel-σ-field on X , i.e.,
the σ-field generated by the open sets. We let C(X ) denote the space of
all continuous functions f : X → R. We let Bb(X ) denote the space of all
bounded Borel-measurable real functions on X and we let Cb(X ) := C(X ) ∩
Bb(X ) denote the space of all bounded continuous real functions on X . We
equip with Cb(X ) with the supremumnorm

‖f‖∞ := sup
x∈X
|f(x)|.

With this norm, Cb(X ) is a Banach space [Dud02, Theorem 2.4.9]. We let
M(X ) denote the space of all finite measures on (X ,B(X )) and writeM1(X )
for the subspace of all probability measures. We cite the following well-known
fact from [EK86, Theorems 3.1.7 and 3.3.1].

Proposition 1.7 (Weak convergence) Let X be a separable metrisable
space. Then it is possible to equip M1(X ) with a metric dP such that

(i) (M1(X ), dP) is a separable metric space,

(ii) dP(µn, µ)→ 0 if and only if
∫
fdµn →

∫
fdµ for all f ∈ Cb(X ).

If X is a Polish space, then dP can be chosen such that (M1(X ), dP) is
moreover complete.

In many applications, we are not interested in the precise choice of dP

(there are several canonical ways to define such a metric). Since a metrisable
topology is uniquely characterized by its convergent sequences, property (ii)
uniquely characterizes the topology generated by dP in terms of the topology
on X . We call this topology the topology of weak convergence and denote
convergence in this topology as

µn ⇒ µ.
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Proposition 1.7 shows in particular that if X is a Polish space, then so is
M1(X ), equipped with the topology of weak convergence.

One possible choice for a metric dP as in Proposition 1.7 is the Prohorov
metric. For each subset A ⊂ X and ε > 0, we set

Aε :=
{
x ∈ X : d(x,A) < ε

}
with d(x,A) := inf

y∈A
d(x, y).

If (X , d) is a metric space, then the Prohorov metric is the metric dP on
M1(X ) defined as

dP(µ, ν) := inf{ε > 0 : µ(A) ≤ ν(Aε) + ε ∀A ∈ B(X )
}
.

It follows from [EK86, Lemma 3.1.1] that dP is a metric. It is possible to
give an alternative characterisation of dP in terms of coupling. Let C(µ, ν)
denote the space of all probability measures η on X × X whose first and
second marginals are given by µ and ν, respectively. We cite the following
lemma from [EK86, Thm 3.1.2].

Lemma 1.8 (Prohorov metric and coupling) Let (X , d) be a separable
metric space and let µ, ν ∈M1(X ). Then

dP(µ, ν) = inf
{
ε > 0 : ∃η ∈ C(µ, ν) s.t. η({(x, y) ∈ X 2 : d(x, y) ≥ ε}) ≤ ε

}
.

(1.4)

In words, (1.4) says that dP(µ, ν) is the infimum of all ε > 0 for which
it is possible to couple random variables X, Y with laws µ, ν such that
P[d(X, Y ) ≥ ε] ≤ ε. We cite the following lemmas from [EK86, Thms 3.1.7
and 3.3.1].

Lemma 1.9 (Properties of Prohorov metric) Let (X , d) be a separable
metric space and let dP be the Prohorov metric. Then (M1(X ), dP) is a
separable metric space. If (X , d) is complete, then so is (M1(X ), dP).

Lemma 1.10 (Prohorov metric and weak convergence) Let (X , d) be
a separable metric space and let dP be the Prohorov metric. Then µn, µ ∈
M1(X ) satisfy dP(µn, µ) → 0 if and only if

∫
fdµn →

∫
fdµ for all f ∈

Cb(X ).

In particular, Lemmas 1.9 and 1.10 imply Proposition 1.7. The following
well-known alternative characterisation of weak convergence [EK86, Theo-
rem 3.3.1] is sometimes useful.

Lemma 1.11 (Characterization with open and closed sets) Let µn
and µ be probability measures on a metrisable space X . Then the following
statements are equivalent.
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(i) µn ⇒ µ.

(ii) lim supn→∞ µn(C) ≤ µ(C) for all closed C ⊂ X .

(iii) lim infn→∞ µn(O) ≥ µ(O) for all open O ⊂ X .

Exercise 1.12 (Measures concentrated on a subset) Let X be a Pol-
ish space and let X ′ ⊂ X be a Gδ-set, equipped with the induced topology.
We naturally identify M1(X ′) with the subset of M1(X ) consisting of all
µ ∈ M1(X ) such that µ(X ′) = 1. Show that the topology on M1(X ′)
coincides with the induced topology from its embedding in M1(X ). (Hint:
Lemma 1.11.) Use this to conclude that M1(X ′) is a Gδ-subset of M1(X ).
(Hint: Proposition 1.4).

A very useful characterization of weak convergence in terms of coupling
is given by the next theorem [EK86, Cor 3.1.6 and Thm 3.1.8].

Theorem 1.13 (Skorohod representation) Let µn and µ be probability
measures on a Polish space X . Then µn ⇒ µ if and only if it is possible to
couple random variables Xn, X with laws µn, µ, respectively, in such a way
that Xn → X a.s.

The next result is known as Prohorov’s theorem (see, e.g., [EK86, Theo-
rem 3.2.2] or [Bil99, Theorems 5.1 and 5.2]).

Theorem 1.14 (Prohorov) Let X be a Polish space. LetM1(X ) be equipped
with the topology of weak convergence. Then a subset C ⊂ M1(X ) is precom-
pact if and only if C is tight, i.e.,

∀ε > 0 ∃K ⊂ X compact, s.t. sup
µ∈C

µ(X\K) ≤ ε.

1.5 Locally uniform convergence

Let E be a metric space and let I ⊂ R be a closed interval. We let CI(E)
denote the space of all continuous functions w : I → R.

Lemma 1.15 (Locally uniform convergence) For wn, w ∈ CI(E), the
following conditions are equivalent:

(i) sup
t∈C

d
(
wn(t), w(t)

)
−→
n→∞

0 for all compact C ⊂ I,

(ii) wn(tn) −→
n→∞

w(t) for all tn, t ∈ I such that tn −→
n→∞

t.
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Proof Assume (i) and let tn, t ∈ I satisfy tn −→
n→∞

t. By Lemma 1.2 (i), there

exists a compact set C ⊂ I such that tn ∈ C for all n (and hence also t ∈ C).
Then for each ε > 0, there exists an N <∞ such that d(wn(t), w(t)) ≤ ε for
all n ≥ N . Now

d
(
wn(tn), w(t)

)
≤ d
(
wn(tn), w(tn)

)
+ d
(
w(tn), w(t)

)
≤ ε+ d

(
w(tn), w(t)

)
for all n ≥ N , and hence

lim sup
n→∞

d
(
wn(tn), w(t)

)
≤ ε

by the continuity of w. Since ε > 0 is arbitrary, this shows that (i) implies
(ii). On the other hand, if (i) fails for some compact C ⊂ I, then we can
choose tn ∈ C and ε > 0 such that

d
(
wn(tn), w(tn)

)
≥ ε ∀n.

Since C is compact, by going to a subsequence, we can without loss of gen-
erality assume that tn → t for some t ∈ C. Since

d
(
wn(tn), w(t)

)
≥ d
(
wn(tn), w(tn)

)
− d
(
w(tn), w(t)

)
≥ ε+ d

(
w(tn), w(t)

)
,

using the continuity of w, we see that

lim inf
n→∞

d
(
wn(tn), w(t)

)
≥ ε,

which contradicts (ii).

There exists a metrisable topology on CI(E) such that a wn ∈ CI(E) con-
verges to a limit w if and only if the equivalent conditions of Lemma 1.15
are satisfied. Note that by (1.1) and the remarks below it, these condi-
tions uniquely determine the topology. Note also that by condition (ii) of
Lemma 1.15, the topology on CI(E) depends only on the topology on E and
not on the precise choice of the metric on E. A possible choice of a metric
on CI(E) is

ρ(v, w) :=
∞∑
n=1

2−n sup
t∈[0,n]

d
(
v(t), w(t)

)
,

where d is a bounded metric that generates the topology on E. Such a metric
can always be found: if d is any metric generating the topology on E, then
d′(x, y) := d(x, y) ∧ 1 is a bounded metric that generates the same topology.
Usually, we do not care about the precise choice of the metric on CI(E); apart
from ρ, there are many other possible choices. We call this the topology on
CI(E) the topology of locally uniform convergence.
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1.6 The Hausdorff metric

Let (E, d) be a metric space, let K(E) be the space of all compact subsets of
E and set K+(E) := {K ∈ K(E) : K 6= ∅}. Then the Hausdorff metric dH

on K+(E) is defined as

dH(K1, K2) := sup
x1∈K1

d(x1, K2) ∨ sup
x2∈K2

d(x2, K1)

= inf
{
ε > 0 : K1 ⊂ Kε

2 and K2 ⊂ Kε
1

}
,

(1.5)

where as before d(x,A) := infy∈A d(x, y) denotes the distance between a point
x ∈ E and a set A ⊂ E and Aε :=

{
x ∈ X : d(x,A) < ε

}
. The corresponding

topology is naturally called the Hausdorff topology. Note the subtle difference
between “the Hausdorff topology” (the topology generated by the Hausdorff
metric) and “a Hausdorff topology” (any topology satisfying condition (iv)
of Section 1.1). We extend this topology to K(E) by adding ∅ as an isolated
point.

A good source for the Hausdorff topology is [SSS14, Appendix B], where
one can find the proofs of all the lemmas in this section. Some more infor-
mation can be found in [BBI01, Chapter 7]. The first lemma of this section
shows that the Hausdorff topology depends only on the topology on E, and
not on the choice of the metric.

Lemma 1.16 (Convergence criterion) Let Kn, K ∈ K+(E) (n ≥ 1).
Then Kn → K in the Hausdorff topology if and only if there exists a C ∈
K+(E) such that Kn ⊂ C for all n ≥ 1 and

K = {x ∈ E : ∃xn ∈ Kn s.t. xn → x}
= {x ∈ E : ∃xn ∈ Kn s.t. x is a cluster point of (xn)n∈N}.

(1.6)

The following lemma shows that K(E) is Polish if E is.

Lemma 1.17 (Properties of the Hausdorff metric)

(a) If (E, d) is separable, then so is (K+(E), dH).

(b) If (E, d) is complete, then so is (K+(E), dH).

The following lemma shows in particular that K(E) is compact if E is
compact.

Lemma 1.18 (Compactness in the Hausdorff topology) A set A ⊂
K(E) is precompact if and only if there exists a C ∈ K(E) such that K ⊂ C
for each K ∈ A.
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The following lemma is useful when proving convergence of K(E)-valued
random variables.

Lemma 1.19 (Tightness criterion) Assume that E is a Polish space and
let Kn (n ≥ 1) be K(E)-valued random variables. Then the collection of laws
{P[Kn ∈ · ] : n ≥ 1} is tight if and only if for each ε > 0 there exists a
compact C ⊂ E such that P[Kn ⊂ C] ≥ 1− ε for all n ≥ 1.

1.7 Squeezed space

Let (E, d) be a metric space, let {∗} be a set containing a single element
called ∗, and let

R(E) :=
(
E × R) ∪

{
(∗,−∞), (∗,+∞)

}
. (1.7)

We extend d to E ∪ {∗} by setting d(x, ∗) = d(∗, x) :=∞ if x 6= ∗ and := 0
otherwise. Let R := [−∞,∞] denote the usual two-point compactification of
the real line. We fix a continuous function φ : R→ [0,∞) such that φ(t) > 0
for all t ∈ R and φ(±∞) = 0, we choose a metric dR that generates the
topology on R, and we define ρ : R(E)2 → [0,∞) by

ρ
(
(x, s), (y, t)

)
:=
(
φ(s) ∧ φ(t)

)(
d(x, y) ∧ 1

)
+
∣∣φ(s)− φ(t)

∣∣+ dR(s, t) (1.8)

Lemma 1.20 (Metric on squeezed space) The function ρ is a metric on
R(E).

Proof For brevity, we write d′(x, y) := d(x, y)∧ 1. Then d′ is a metric on E.
The only nontrivial statement that we have to prove is the triangle inequality,
and it suffices to prove this for the function

ρ′
(
(x, s), (y, t)

)
:=
(
φ(s) ∧ φ(t)

)
d′(x, y) +

∣∣φ(s)− φ(t)
∣∣.

We estimate

ρ′
(
(x, s), (z, u)

)
≤
(
φ(s) ∧ φ(u)

)(
d′(x, y) + d′(y, z)

)
+
∣∣φ(s)− φ(u)

∣∣. (1.9)

If φ(t) ≥ φ(s) ∧ φ(u), then φ(s) ∧ φ(u) is less than φ(s) ∧ φ(t) and also less
than φ(t)∧φ(u), so we can simply estimate the expression in (1.9) from above
by(
φ(s) ∧ φ(t)

)
d′(x, y) +

(
φ(t) ∧ φ(u)

)
d′(y, z)

)
+
∣∣φ(s)− φ(t)

∣∣+
∣∣φ(t)− φ(u)

∣∣
and we are done. On the other hand, if φ(t) < φ(s) ∧ φ(u), then∣∣φ(s)− φ(t)

∣∣+
∣∣φ(t)− φ(u)

∣∣ =
∣∣φ(s)− φ(u)

∣∣+ 2
(
φ(s) ∧ φ(u)− φ(t)

)
.
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Using the fact that d′ ≤ 1, we can now estimate the right-hand side of (1.9)
from above by

φ(t)
(
d′(x, y) + d′(y, z)

)
+ 2
(
φ(s) ∧ φ(u)− φ(t)

)
+
∣∣φ(s)− φ(u)

∣∣
=
(
φ(s) ∧ φ(t)

)
d′(x, y) +

(
φ(t) ∧ φ(u)

)
d′(y, z)

+
∣∣φ(s)− φ(t)

∣∣+
∣∣φ(t)− φ(u)

∣∣,
and again we are done.

The following lemma shows that the topology generated by the metric ρ
depends only on the topology on E and not on the choice of the metric on
E. Recall that by (1.1), a metrisable topology is uniquely characterised by
its convergent sequences, so the topology on R(E) is uniquely characterised
by the conditions (i) and (ii) below.

Lemma 1.21 (Topology on squeezed space) A sequence (xn, tn) ∈ R(E)
converges to a limit (x, t) in the metric ρ defined in (1.8) if and only if the
following two conditions are satisfied:

(i) tn → t in the topology on R,

(ii) if t ∈ R, then xn → x in the topology on E.

Proof This is immediate from the definition of ρ.

We can think of the spaceR(E) as being obtained from E×R by squeezing
the sets E × {±∞} into the single points (∗,±∞). For this reason, we call
R(E) the squeezed space. In the special case that E = R, we can make a
picture ofR(R) by mapping R×R into the closed unit disc using the function

(x, t) 7→
(√

1− ψ(t)2ψ(x), ψ(t)
)

with ψ(z) :=
z

1 + |z|

(with ψ(±∞) := ±1), and mapping the points (∗,±∞) to (0,±1). The
following lemma shows that R(E) is a Polish space if E is Polish.

Lemma 1.22 (Properties of squeezed space)

(a) If (E, d) is separable, then so is (R(E), ρ).

(b) If (E, d) is complete, then so is (R(E), ρ).

Proof If D is a countable dense subset of (E, d), then D×Q is a countable
dense subset of (R(E), ρ), proving (a).

To prove (b), let (xn, tn) be a Cauchy sequence in (R(E), ρ). Then by
(1.8) tn is a Cauchy sequence in R and hence tn → t for some t ∈ R. If t ∈ R,
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then by (1.8) xn is a Cauchy sequence in (E, d) so by the completeness of
the latter, xn → x for some x ∈ E. By Lemma 1.21, it follows that (xn, tn)
converges, proving the completeness of (R(E), ρ).

The following lemma identifies the compact subsets of R(E). In particu-
lar, the lemma shows that R(E) is compact if E is compact.

Lemma 1.23 (Compactness criterion) A set A ⊂ R(E) is precompact
if and only if for each T < ∞, there exists a compact set K ⊂ E such that
{x ∈ E : (x, t) ∈ A, t ∈ [−T, T ]} ⊂ K.

Proof Assume that A ⊂ R(E) has the property that for each T <∞, there
exists a compact set K ⊂ E such that {x ∈ E : (x, t) ∈ A, t ∈ [−T, T ]} ⊂ K.
To show that A is precompact, we will show that each sequence (xn, tn) ∈ A
has a convergent subsequence. By the compactness of R, we can select a
subsequence (x′n, t

′
n) such that t′n → t for some t ∈ R. If t = ±∞, then by

Lemma 1.21 (x′n, t
′
n) → (∗,±∞) and we are done. Otherwise, there exists a

T <∞ such that t′n ∈ [−T, T ] for all n large enough. By assumption, there
then exists a compact set K ⊂ E such that x′n ∈ K for all n large enough,
so we can select a further subsequence such that (x′′n, t

′′
n) converges to a limit

(x, t) ∈ E × R.
Assume, on the other hand, that A ⊂ R(E) has the property that for

some T <∞, there does not exist a compact set K ⊂ E such that {x ∈ E :
(x, t) ∈ A, t ∈ [−T, T ]} ⊂ K. Set

B :=
{
x ∈ E : (x, t) ∈ A for some t ∈ [−T, T ]

}
The closure of B cannot be compact, since this would contradict our assump-
tion. It follows that there exists a sequence xn ∈ B that does not contain a
convergent subsequence, and there exist tn ∈ [−T, T ] such that (xn.tn) ∈ A.
But then, in view of Lemma 1.21, the sequence (xn, tn) cannot contain a
convergent subsequence either, proving that A is not precompact.

1.8 Path space

Let E be a metrisable space and let R(E) be the squeezed space defined
in Section 1.7. By definition, a path in E is a nonempty compact subset
π ⊂ R(E) such that {x ∈ E : (x, t) ∈ π} has at most one element for each
given t ∈ R. The set Iπ := {t ∈ R : ∃x ∈ E s.t. (x, t) ∈ π

}
is called the

domain of π and

σπ := inf Iπ and τπ := sup Iπ (1.10)
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the starting time and final time of the path π. For each t ∈ Iπ, we let
{π(t)} := {x ∈ E : (x, t) ∈ π} denote the unique point π(t) ∈ E such that
(π(t), t) ∈ π. Then t 7→ π(t) is a function from Iπ to E. We let Π(E) denote
the set of all paths in E and set Iπ := Iπ ∩ R.

Lemma 1.24 (Path viewed as a function) The domain Iπ of a path
π ∈ Π(E) is a closed subset of R, and t 7→ π(t) is a continuous function
from Iπ to E. Conversely, if I ⊂ R is closed and t 7→ f(t) is a continuous
function from I to E, then there exists a path π ∈ Π(E) such that Iπ = I
and π(t) = f(t) (t ∈ I).

Proof We first show that for each π ∈ Π(E), the function Iπ 3 t 7→ π(t)
is continuous. Assume that tn, t ∈ Iπ and tn → t. Since π is compact,
the sequence (π(tn), tn) is precompact. Since π(t) is the only element of
{x ∈ E : (x, t) ∈ π}, each subsequence of the (π(tn), tn) must converge to
(π(t), t). By Lemma 1.2, we conclude that (π(tn), tn) → (π(t), t). Since
t ∈ R, by Lemma 1.21, we conclude that π(tn) → π(t), which shows that
Iπ 3 t 7→ π(t) is continuous on I as claimed.

Let I ⊂ R be closed and let f : I → E be continuous. If I is nonempty,
then let I be the closure of I in R, and set I := {∞} otherwise. Extend f
to I by setting f(t) := ∗ if t = ±∞. Let π := {(f(t), t) : t ∈ I}. It follows
from Lemma 1.21 and the continuity of f that the map

I 3 t 7→
(
f(t), t

)
∈ R(E) (1.11)

is continuous. Since I is compact and since π is the image of I under the
continuous map (1.11), we conclude that π is compact. Clearly, {x ∈ E :
(x, t) ∈ π} has precisely one element for t ∈ I, and is empty for t 6∈ I. This
shows that π ∈ Π(E).

In view of Lemma 1.24, we often view a path π ∈ Π(E) as a continuous
function defined on a closed domain Iπ ⊂ R. The correspondence between
paths and continuous functions is almost one-to-one. The only ambiguity
arises when −∞ and/or +∞ are not elements of the closure of Iπ, and we
have the choice whether to include them in Iπ or not. If Iπ is nonempty, then
it is natural to include ±∞ only when they are elements of the closure of Iπ.
With this convention, if I ⊂ R is a closed nonempty interval, then we identify
the space CI(E) defined in Section 1.5 with the set {π ∈ Π(E) : Iπ = I},
where I denotes the closure of I in R.

Let K(R(E)) be the set of compact subsets of the squeezed space R(E).
We equip K(R(E)) with the Hausdorff topology. We observe that Π(E) is
a subset of K(R(E)). We naturally equip Π(E) with the induced topology
from its embedding in K(R(E)).
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Lemma 1.25 (Paths with a fixed domain) Let I ⊂ R be a closed
nonempty interval. The induced topology on CI(E) from its embedding in
Π(E) is the topology of locally uniform convergence.

Proof Assume that πn, π ∈ CI(E), viewed as functions, satisfy πn → π
locally uniformly. We need to show that viewed as compact subsets of R(E),
the sets πn, π satisfy πn → π in the Hausdorff topology on K(R(E)). Let I
denote the closure of I in R. By Lemma 1.16, we need to show that

⋃
n πn

is precompact and

π ⊂
{

(x, t) ∈ R(E) : ∃tn ∈ I s.t.
(
πn(tn), tn

)
→ (x, t)

}
,{

(x, t) ∈ R(E) : (x, t) is a cluster

point of
(
πn(tn), tn

)
for some tn ∈ I

}
⊂ π.

(1.12)

To see that
⋃
n πn is precompact, we need to show that each sequence of

the form (πn(m)(tm), tm)m≥1 has a convergent subsequence. If n(m) infinitely
often takes the same value n, then the claim is obvious from the compactness
of πn, so without loss of generality we may assume that n(m) → ∞. Going
to a subsequence if necessary, we may assume that tm → t for some t ∈ I. If
t = ±∞, then the claim is again obvious so we may assume that t ∈ I. In
this case Lemma 1.15 (ii) tells us that πn(m)(tm)→ π(t) so we have found a
convergent subsequence as required.

To prove the first inclusion in (1.12), let (π(t), t) ∈ π and set tn := t for
all n. If t ∈ I, then πn(t) → π(t) since locally uniform convergence implies
pointwise convergence, and if t = ±∞ then trivially (∗, t)→ (∗, t) as n→∞.
To prove the second inclusion, assume that (πn(m)(tn(m)), tn(m)) → (x, t) as
m → ∞ for some (x, t) ∈ R(E), tn ∈ I, and n(m) → ∞. If t ∈ I, then we
can use Lemma 1.15 (ii) which tells us that πn(m)(tn(m)) → π(t) and hence
(x, t) = (π(t), t) ∈ π. If t = ±∞, then trivially x = ∗ and (∗, t) ∈ π.

Assume, conversely, that πn → π in the Hausdorff topology on K(R(E)).
We need to show that πn, π ∈ CI(E) and that πn → π locally uniformly.
Assume that tn, t ∈ I such that tn → t. By Lemma 1.15 (ii), it suffices
to show that πn(tn) → π(t) for all such tn, t. Equivalently, we may show
that (πn(tn), tn) → (π(t), t). By Lemma 1.2, it suffices to show that the
set {(πn(tn), tn) : n ∈ N} is precompact and (π(t), t) is the only cluster
point of the sequence (πn(tn), tn). By Lemma 1.16, there exists a compact
set C ⊂ R(E) such that πn ⊂ C for all n, so {(πn(tn), tn) : n ∈ N} is
precompact as required. Let (x, t) be any cluster point. By Lemma 1.16 (ii),
(x, t) ∈ π and hence x = π(t), which shows that πn(tn)→ π(t) as required.

Let π ∈ Π(Rd). Assume that Iπ is the closure of Iπ in R. Recall that σπ
and τπ denote the starting time and final time of π. For each t ∈ [σπ, τπ]∩R,
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let us write

btc := sup{s ∈ Iπ : s ≤ t} and dte := inf{u ∈ Iπ : t ≤ u}.

We define a linearly interpolated path π̂ with domain I π̂ := [σπ, τπ] by π̂(t) :=
π(t) (t ∈ Iπ) and

π̂(t) :=
dte − t
dte − btc

π
(
btc
)

+
t− btc
dte − btc

π
(
dte
)

(t ∈ [σπ, τπ]\Iπ).

Note that this is well-defined because our assumption that Iπ is the closure
of Iπ in R ensures that btc and dte are finite for all t ∈ [σπ, τπ]\Iπ. It often
happens that a sequence of functions fn : N→ Rd converges, after a rescaling
of time, to a continuous limit f : [0,∞)→ Rd. To formulate this properly, it
is a common habit to linearly interpolate the functions fn so that all functions
are elements of the space C[0,∞)(Rd). As the following exercise shows, when
one uses the path space Π(Rd), no interpolation is necessary to formulate the
result.

Exercise 1.26 (Convergence of interpolated paths) Let that π, πn ∈
Π(Rd). Assume that Iπ is the closure of Iπ and that Iπn is the closure of
Iπn for each n. Show that πn → π in the topology on Π(Rd) if and only if
π̂n → π̂.

Sometimes, when formulating convergence of a sequence of functions fn
to a limit f , one extrapolates with the aim of ensuring that all functions
are defined on the same space. Let E be a metrisable space and for each
π ∈ Π(E), let π+ denote the path with domain Iπ+ := Iπ ∪ [τπ,∞] defined
as π+(t) := π(t) if t ∈ Iπ and

π+(t) := π(τπ) (τπ < t <∞) and π+(∞) := ∗.

The next exercise shows that when one uses the path space Π(E), no extrap-
olation is necessary.

Exercise 1.27 (Convergence of extrapolated paths) Let πn, π ∈ Π(E).
Show that the following conditions are equivalent:

(i) πn → π

(ii) π+
n → π+ and τπn → τπ.

Our next proposition says that the space of paths in E is Polish provided
E has this property.
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Proposition 1.28 (Polish space) If E is a Polish space, then so is Π(E).

The proof of Proposition 1.28 needs some preparations. Let d be a metric
generating the topology on E and let π ∈ Π(E). For each π ∈ Π(E), δ > 0
and T <∞, we define

mT,δ(π) := sup
{
d
(
π(s), π(t)

)
: s, t ∈ Iπ, −T ≤ s ≤ t ≤ T, t− s ≤ δ

}
.

(1.13)
The quantity mT,δ(π) is called the modulus of continuity of the path π. More
generally, for any compact subset K ⊂ R(E), we can define

mT,δ(K) := sup
{
d
(
x, y
)

: (x, s), (y, t) ∈ K, −T ≤ s ≤ t ≤ T, t− s ≤ δ
}
,

which coincides with our previous definition if π is a path.

Lemma 1.29 (Characterisation of paths) A compact subset π ⊂ R(E)
is an element of the path space Π(E) if and only if lim

δ→0
mT,δ(π) = 0 for all

T <∞.

Proof Assume that π ∈ K(R(E)) and lim supδ→0mT,δ(π) > 0 for some
T <∞. Then we can find (xn, sn), (yn, tn) ∈ π and δ > 0 with d(xn, yn) ≥ δ,
−T ≤ sn ≤ tn ≤ T , and tn − sn ≤ 1/n. Since π is compact, by going to a
subsequence, we can assume that (xn, sn) → (x, s) and (yn, tn) → (y, t) for
some (x, s), (y, t) ∈ π with d(x, y) ≥ δ > 0, −T ≤ s ≤ t ≤ T , and t− s = 0.
This shows that π 6∈ Π(E).

Conversely, if π 6∈ Π(E), then there exist (x, t), (y, t) ∈ π with x 6= y.
Since (∗,±∞) are the only points in R(E) with time coordinate ±∞ we
must have t ∈ R. But then mT,δ(π) ≥ d(x, y) > 0 for all T ≥ |t|, which
shows that lim supδ→0mT,δ(π) > 0 for some T <∞.

Proof of Proposition 1.28 If E is a Polish space, then by Lemma 1.22 so
is R(E) and hence by Lemma 1.17 so is K(R(E)). For each ε, δ > 0 and
T <∞, the set

AT,ε,δ := {K ∈ K(R(E)) : mT,δ(K) ≥ ε}

is a closed subset of K(R(E)) and hence its complement Ac
T,ε,δ is open. By

Lemma 1.29,

Π(E) =
⋂
n,m

⋃
k

Ac
n,1/m,1/k,

which is a countable intersection of open sets, i.e., a Gδ-set.

A set A ⊂ Π(E) is called equicontinuous if

lim
δ→0

sup
π∈A

mT,δ(π) = 0 (T <∞).
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The following theorem identifies the compact subsets of Π(E). Condition (ii)
is called the compact containment condition. If I ⊂ R is a closed nonempty
interval, then CI(E) is a closed subset of Π and hence the following theorem
can also be used to identify the precompact subsets of CI(E). In this con-
text, the result is known as the Arzela-Ascoli theorem. Note that while the
definition of equicontinuity depends (at least a priori) on the choice of the
metric d on E, whether a set A ⊂ Π(E) is precompact only depends on the
topology on E, so when verifying conditions (i) and (ii) below, we are free
to choose any metric d that generates the topology on E.

Theorem 1.30 (Arzela-Ascoli) A set A ⊂ Π(E) is precompact if and only
if

(i) A is equicontinuous,

(ii) for each T < ∞, there exists a compact set K ⊂ E such that
{
π(t) :

π ∈ A, t ∈ Iπ ∩ [−T, T ]
}
⊂ K.

Proof Let A denote the closure of A, viewed as a subset of the space
K(R(E)), equipped with the Hausdorff topology. Then A is a precom-
pact subset of Π(E) if and only if A is a compact subset of K(R(E)) and
A ⊂ Π(E). By Lemmas 1.18 and 1.23, A is a compact subset of K(R(E))
if and only if condition (ii) holds. To complete the proof, it suffices to show
that assuming that (ii) holds, one has A ⊂ Π(E) if and only if (i) holds.

We first show that (i) implies A ⊂ Π(E). Assume that πn ∈ A converge
in the Hausdorff topology to a compact subset π ⊂ R(E). To show that
π ∈ Π(E), will apply Lemma 1.29. If (x, s), (y, t) ∈ π, then by Lemma 1.16,
there exist (xn, sn), (yn, tn) ∈ πn such that (xn, sn) → (x, s) and (yn, tn) →
(y, t). If s, t ∈ [−T, T ] and |t − s| ≤ δ, then for n large enough we have
sn, tn ∈ [−T − 1, T + 1] and |tn − sn| ≤ 2δ. Since d(xn, yn) → d(x, y), it
follows that

lim sup
δ→0

mT,δ(π) ≤ lim sup
δ→0

sup
n
mT+1,2δ(πn) = 0 (δ > 0, T <∞),

which by Lemma 1.29 implies that π ∈ Π(E).
Assume now that (ii) holds but (i) fails. Then there exist T < ∞ and

ε > 0 such that for each n ≥ 1, we can find πn ∈ A with mT,1/n(πn) ≥ ε. This
means that there exist −T ≤ sn ≤ tn ≤ T such that d(πn(sn), πn(tn)) ≥ ε
and tn− sn ≤ 1/n. By (ii), A is a compact subset of K(R(E)), so by going a
subsequence we may assume that πn → π ∈ K(R(E)). By going to a further
subsequence, we may assume that sn → s and tn → t for some s, t ∈ [−T, T ].
But then s = t since tn − sn ≤ 1/n. Let xn := πn(sn) and yn := πn(tn). By
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(ii), we can select a further subsequence such that xn → x and yn → y for
some x, y with d(x, y) ≥ ε. By Lemma 1.16, we have (x, t), (y, t) ∈ π which
shows that π 6∈ Π(E) and hence A is not a subset of Π(E).

For real-valued paths, the compact containment condition of Theorem
1.30 can be relaxed.

Theorem 1.31 (Arzela-Ascoli - real version) Assume that πn ∈ Π(R)
satisfy:

(i) {πn : n ∈ N} is equicontinuous,

(ii) there exist tn ∈ Iπn such that supn |tn| <∞ and a compact set K ⊂ R
such that πn(tn) ∈ K for all n.

Then {πn : n ∈ N} is a precompact subset of Π(R).

Proof For any set A ⊂ R and r ≥ 0, we write Ar := {x ∈ R : infy∈A |x−y| ≤
r}. Then Ar is a closed subset of R. If A is compact, then so is Ar.

To prove the claim of the theorem, it suffices to check condition (ii) of
Theorem 1.30. It suffices to check this for T sufficiently large, so without
loss of generality, we can assume that tn ∈ [−T, T ] for all n. Fix ε > 0. By
equicontinuity, we can choose δ > 0 such that |πn(s) − πn(t)| ≤ ε for all n
and s, t ∈ Iπn ∩ [−T, T ] with |s − t| ≤ δ. Let K be the compact set from
condition (ii) above. Then πn(t) ∈ Kε for all t ∈ Iπn such that |t − tn| ≤ δ,
and by induction, for each k ≥ 1, we obtain that πn(t) ∈ Kkε for all t ∈ Iπn
such that |t − tn| ≤ kδ. Choosing k large enough such that δk ≥ 2T , we
see that {πn(t) : n ∈ N, t ∈ Iπn ∩ [−T, T ]

}
⊂ Kkδ, so condition (ii) of

Theorem 1.30 is satisfied.
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Chapter 2

The excursion

2.1 Scaling limit of simple random walk

Let (Xk)k≥1 be i.i.d. and uniformly distributed on {−1,+1}, and let

Sn :=
n∑
k=1

Xk (n ≥ 0),

with naturally S0 := 0. Then (Sn)n≥0 is a one-dimensional nearest-neighbour
random walk. It will be convenient to interpolate linearly. We set

St :=
(
dte − t

)
Sbtc +

(
t− btc

)
Sdte (t ≥ 0).

Then S = (St)t≥0 is a random variable taking in the space

C0 :=
{
f ∈ C[0,∞)(R) : f0 = 0

}
. (2.1)

Donsker’s invariance principle says that S, diffusively rescaled, converges to
Brownian motion. To formulate this properly, for λ > 0, let θλ : R2 → R2 be
the diffusive scaling map defined as

θλ(x, t) := (λx, λ2t)
(
(x, t) ∈ R2

)
. (2.2)

which we extend to a (clearly unique) continuous map θλ : R(R) → R(R).
For any subset A ⊂ R(R), we let θλA denote the image of A under θλ. In
particular, we can apply this to S, which we can view as an element of the
path space Π(R) and hence as a compact subset of R(R). For each ε > 0,
the diffusively rescaled path

Sε := θεS (2.3)

27
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is then the random variable taking values in the space C0 defined as

Sεt := εSε−2t (t ∈ εN).

The following fact is well-known. Below, we naturally identify the path
(Bt)t≥0 of a Brownian motion with an element of the path space Π(R).

Theorem 2.1 (Donsker’s invariance principle) One has

P
[
(Sεt )t≥0 ∈ ·

]
=⇒
ε→0

P
[
(Bt)t≥0 ∈ ·

]
, (2.4)

where (Bt)t≥0 is a standard Brownian motion and ⇒ denotes weak conver-
gence of probability measures on C0, equipped with the topology of locally
uniform convergence.

As we have seen in Exercise 1.26, to formulate Theorem 2.1, it was in
fact not necessary to interpolate linearly. Instead, we can also view S as an
element of the path space Π(R) with domain IS = N and then formulate
Theorem 2.1, as weak convergence in law of random variables with values in
Π(R). However, in what follows, the linear interpolation will turn out to be
convenient for other purposes.

Note that combining Donsker’s invariance principle with Skorohod’s rep-
resentation theorem (Theorem 1.13), one obtains that if εn are positive con-
stants tending to zero, then the random variables (Sεnt )t≥0 for different values
of n can be coupled to a Brownian motion (Bt)t≥0 in such a way that

sup
t∈[0,T ]

∣∣Sεnt −Bt

∣∣ −→
n→∞

0 a.s. ∀T <∞. (2.5)

We conclude this section with a well-known fact.

Lemma 2.2 (Brownian scaling) If B = (Bt)t≥0 is a Brownian motion
and λ > 0, then the process Bλ := θλB is equally distributed with B.

Proof This is of course well-known, but it is interesting to observe that it
actually follows from Theorem 2.1. Indeed, the latter says that if εn > 0
converge to zero, then the processes θεnS converge weakly in law to B. Since
the map Π(R) 3 π 7→ θλπ ∈ Π(R) is continuous, it follows that the processes
θλεnS converge weakly in law to Bλ. On the other hand, since ε′n := λεn
are positive constants tending to zero, Theorem 2.1 also tells us that the
processes θλεnS converge weakly in law to B, so Bλ and B must be equal in
law. This proof reveals a general fact: a probability law that arises as the
scaling limit of other probability laws must itself be scale invariant.
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2.2 Brownian local time

Recall from (2.1) that C0 is the space of continuous functions f : [0,∞)→ R
that satisfy f0 = 0. We let

mt(f) := inf
0≤s≤t

fs
(
t ≥ 0, f ∈ C0

)
(2.6)

denote the running minimum of the function f . We will be interested in

gt := ft −mt(f) (t ≥ 0).

We observe that gt ≥ 0 and ht := −mt(f) is a nondecreasing function that
increases only at times when gt = 0. The following lemma says that these
properties characterise g and h uniquely. Note that if h ∈ C0 is nondecreasing,
then it is the distribution function of a measure on [0,∞), which we denote
by dh. Condition (iii) below says that this measure is concentrated on the
set {t ∈ [0,∞) : g(t) = 0}. This makes precise the intuitive concept that h
increases only at times when gt = 0.

Lemma 2.3 (Skorohod reflection) For each f ∈ C0, there exist unique
functions g, h ∈ C0 such that

(i) gt = ft + ht (t ≥ 0),

(ii) g ≥ 0 and h is nondecreasing,

(iii)

∫ ∞
0

1{g(t)>0}dh(t) = 0.

These functions are given by

gt = ft −mt(f) and ht = −mt(f) (t ≥ 0). (2.7)

Proof (sketch) It is not hard to check that if we define g and h by (2.7),
then (i)–(iii) are satisfied. To prove uniqueness, it suffices to show that if
g, h and g′, h′ both solve (i)–(iii), then g′ ≤ g. Imagine that g′t > gt for some
t > 0. Let s := sup{u ∈ [0, t] : g′u = gu}. Then g′u > gu for all s < u ≤ t. By
(i) we have h′s = hs. Now

g′t − gt =
(
ft + h′t

)
−
(
ft + ht

)
= h′t − ht. (2.8)

By (ii) we have g ≥ 0 and hence g′u > gu ≥ 0 for all s < u ≤ t, which by
(iii) implies that h′t = h′s. On the other hand, by (ii) h is nondecreasing and
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hence ht ≥ hs. It follows that the right-hand side of (2.8) is ≤ h′s − hs = 0,
which contradicts g′t > gt.

We will especially be interested in the case that the function f from
Lemma 2.3 is Brownian motion. In this case, the function g is reflected
Brownian motion, and h is its local time at the origin. To explain this in a
bit more detail, we need to take a small detour.

If (Bt)t≥0 is a d-dimensional Brownian motion, then we can define a
stochastic process (`t)t≥0 taking values in the space M(Rd) of finite mea-
sures on Rd by∫

Rd
`t(dx) f(x) :=

∫ t

0

ds f(Bs)
(
t ≥ 0, f ∈ Bb(Rd)

)
.

The random measure `t is called the occupation local measure of the Brownian
motion (Bt)t≥0. In particular

`t(A) =

∫ t

0

ds 1A(Bs)
(
A ∈ B(Rd)

)
is the amount of time the Brownian motion has spent inside a measurable
set A up to time t. In one dimension, it is well-known that `t has a density
with respect to the Lebesgue measure. The following theorem is originally
due to Trotter. The process (Lt)t≥0 below is called Brownian local time.

Theorem 2.4 (Brownian local time) Let (Bt)t≥0 be a one-dimensional
Brownian motion. Then almost surely, there exists a random continuous
function L : [0,∞)× R→ [0,∞) such that∫

R
dxLt(x)f(x) =

∫ t

0

ds f(Bs)
(
t ≥ 0, f ∈ Bb(Rd)

)
.

Modern proofs of Theorem 2.4 are based on Tanaka’s formula, which says
that

|Bt| =
∫ t

0

sgn(Bs) dBs + Lt(0) (t ≥ 0), (2.9)

where the integral is an Itô stochastic integral. Tanaka’s formula can be used
as a definition of Brownian local time, for which one then proves the prop-
erties described in Theorem 2.4. For details, we refer to [McK69, Mey76,
RW87]. In fact, in the remainder of this chapter, we will mostly work with
Tanaka’s formula as the definition of Lt(0) and do not really need its inter-
pretation as local time in the sense of Theorem 2.4.
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Proposition 2.5 (Reflected Brownian motion) Let B = (Bt)t≥0 be a
standard Brownian motion and let (Lt(0))t≥0 be its local time at 0. Let W =
(Wt)t≥0 be another standard Brownian motion and let

At := Wt −mt(W ) and Lt := −mt(W ) (t ≥ 0). (2.10)

Then

P
[(
|Bt|, Lt(0)

)
t≥0
∈ ·
]

= P
[
(At, Lt)t≥0 ∈ ·

]
.

Proof (sketch) Let (Bt)t≥0 be a Brownian motion and let

Wt := −
∫ t

0

sgn(Bs) dBs (t ≥ 0).

It is not hard to show that W = (Wt)t≥0 is a Brownian motion. We will
show that At = |Bt| and Lt = Lt(0) (t ≥ 0). We apply Lemma 2.3. Tanaka’s
formula (2.9) says that |Bt| = Lt(0)−Wt (t ≥ 0). Clearly |Bt| is nonnegative
and Lt(0) is nondecreasing and increases only when |Bt| = 0. For the details,
we refer to [KS91, Thm 3.6.17].

2.3 Scaling limit of reflected random walk

Let S be the simple random walk defined in Section 2.1 and let (Rt, Kt)t≥0

be defined by

Rt := St −mt(S) and Kt := −mt(S) (t ≥ 0). (2.11)

It is easy to see that (Rt, Kt)t∈[0,∞) is the linear interpolation of the discrete
time process (Rn, Kn)n∈N. Moreover, (Rn)n∈N is a Markov chain with state
space N and transition probabilities

P (x, y) = P
[
Rn = y

∣∣Rn−1 = x
]

(x, y ∈ N)

given by

P (x, x+ 1) = 1
2
,

P (x, x− 1) = 1
2
,

}
(x > 0) and

P (0, 1) = 1
2
,

P (0, 0) = 1
2
.

In words, in each step, the process Rn jumps up or down by one with equal
probabilities, except when this would result in a negative value, in which case
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the chain stays in 0. We call (Rn)n≥0 a random walk with reflection at zero.
It is now easy to see that the process K from (2.11) is given by

Kn =
n∑
k=1

1{Rk−1 = Rk = 0} (n ≥ 0).

Informally, Kn counts the number of times the chain (Rn)n≥0 has “attempted
to jump below zero”, but was reflected. The following theorem says that the
process (R,K) has a diffusive scaling limit.

Theorem 2.6 (Scaling limit of reflected random walk) Let (R,K)
be defined in (2.11) and for each ε > 0, let (Rε, Kε) denote the diffusively
rescaled process

(Rε
t , K

ε
t ) :=

(
εRε−2t, εKε−2t

)
(t ≥ 0). (2.12)

Let B = (Bt)t≥0 be a standard Brownian motion and let (Lt(0))t≥0 be its local
time at 0. Then

P
[
(Rε

t , K
ε
t )t≥0 ∈ ·

]
=⇒
ε→0

P
[(
|Bt|, Lt(0)

)
t≥0
∈ ·
]
,

where ⇒ denotes weak convergence of probability measures on C[0,∞)(R2),
equipped with the topology of locally uniform convergence.

Proof We observe that

Rε
t := Sεt −mt(S

ε) and Kε
t := −mt(S

ε) (t ≥ 0),

where Sε is the diffusively rescaled random walk defined in (2.3). It is
straightforward to check that the map

C0 3 f 7→ (g, h) ∈ C[0,∞)(R2)

defined in (2.7) is continuous with respect to the topology of locally uniform
convergence. Therefore, Theorem 2.1 implies that

P
[
(Rε

t , K
ε
t )t≥0 ∈ ·

]
=⇒
ε→0

P
[
(At, Lt)t≥0 ∈ ·

]
,

where (At, Lt)t≥0 is the reflected Brownian motion defined in (2.10). The
claim now follows from Proposition 2.5.

Theorem 2.6 yields the following useful consequence.
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Lemma 2.7 (Scale invariance) Let (Bt)t≥0 be a standard Brownian mo-
tion and let (Lt(0))t≥0 is its local time at 0. Then

P
[(
|Bt|, Lt(0)

)
t≥0
∈ ·
]

= P
[(
λ|Bλ−2t|, λLλ−2t(0)

)
t≥0
∈ ·
]

(λ > 0).

Proof The proof is very similar to the proof of Lemma 2.2. As we observed
there, a probability law that arises as the scaling limit of other probability
laws must itself be scale invariant. In the present setting, we can make this
general principle precise as follows. Fix λ > 0 and let εn be positive constants
tending to zero. By (2.12),

(Rλε
t , K

λε
t ) = (λRε

λ−2t, λK
ε
λ−2t) (t ≥ 0),

so Theorem 2.6 tells us that

P
[
(Rλε

t , K
λε
t )t≥0 ∈ ·

]
=⇒
ε→0

P
[(
λ|Bλ−2t|, λLλ−2t(0)

)
t≥0
∈ ·
]
.

However, λεn are positive constants tending to zero, so Theorem 2.6 also tells
us that

P
[
(Rλε

t , K
λε
t )t≥0 ∈ ·

]
=⇒
ε→0

P
[(
|Bt|, Lt(0)

)
t≥0
∈ ·
]
.

2.4 Excursion decomposition

We will be interested in the theory of Brownian excursions. Our exposition
is loosely inspired by [Rog89]. Recall from (2.1) that C0 is the space of
continuous functions f : [0,∞)→ R that satisfy f0 = 0. We let

R0 :=
{

(g, h) : g, h ∈ C0, g ≥ 0, h is nondecreasing,

and
∫∞

0
1{g(t)>0}dh(t) = 0

}
,

(2.13)

denote the set of pairs of functions (g, h) that satisfy conditions (ii) and (iii)
of Lemma 2.3. We view R0 as a subset of C[0,∞)(R2) and equip it with the
topology of locally uniform convergence. In Lemma 2.3, we have seen that
setting gt := ft−mt(f) and ht := −mt(f) defines a bijection f 7→ (g, h) from
C0 to R0.

We now want to go one step further, and decompose the function g in
excursions away from zero. Recall that σπ and τπ, defined in (1.10), denote
the starting time and final time of a path π. We define a space of excursions
by

E :=
{
π ∈ Π([0,∞)) : 0 ≤ τπ <∞, Iπ = [0, τπ], π(0) = π(τπ) = 0

}
. (2.14)
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We call the final time τπ of an excursion π ∈ E the duration of π. We observe
that

F := {π : Iπ = [0, τπ], π(0) = 0, and π(τπ) = 0 if τπ <∞}

is a closed subset of Π([0,∞)) and E is an open subset of F , so using Propo-
sition 1.4 we see that E is a Polish space. We set

E̊ :=
{
π ∈ E : τπ > 0, π(t) > 0 ∀0 < t < τπ

}
. (2.15)

We call elements of E̊ proper excursions.
Let h ∈ C0 be nondecreasing. By definition, a plateau of h is an open

interval ι = (ι−, ι+) with 0 ≤ ι− < ι+ < ∞ such that hι− = hι+ , and no
strictly larger open subinterval of [0,∞) has this property. We set

I(h) :=
{
ι : ι is a plateau of h

}
. (2.16)

For brevity, we write

hι := hι− = hι+ (ι ∈ I(h)).

For each (g, h) ∈ R0 and ι ∈ I(h), setting

τι := ι+ − ι− and πg,ιt := gt−ι− (0 ≤ t ≤ τι)

defines an excursion πg,ι ∈ E with duration τι. Given a function f ∈ C0 and
functions (g, h) ∈ R0 defined as in (2.7), we set

Ξ(f) :=
{(
hι, π

g,ι
)

: ι ∈ I(h)
}
. (2.17)

We will especially be interested in the case that f is a (diffusively rescaled)
simple random walk, or Brownian motion. In this case, g is a reflected
random walk or Brownian motion and h is its reflection local time at the
origin. The set Ξ records all excursions of the reflected random walk or
Brownian motion away from the origin together with the reflection local
time when such an excursion happens.

It follows from the way we have defined plateaus that h(ι) 6= h(ι′) for
each ι, ι′ ∈ I(h) with ι 6= ι′. We use this to define a function s 7→ Es from
[0,∞) to E by

Es =

{
π if (s, π) ∈ Ξ for some π ∈ E ,
o otherwise,

(2.18)

where o ∈ E denotes the trivial excursion of duration τo := 0.
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The excursion set Ξ(S) of the simple random walk S of Section 2.1 is
easy to understand. Let (R,K) = (Rt, Kt)t≥0 be the (linearly interpolated)
reflected random walk defined in terms of S as in (2.11). We inductively
define ι±(k) ∈ N (k ∈ N) by ι−(0) := 0 and

ι+(k) := inf
{
i ≥ ι−(k) : Ki+1 > Ki

}
,

ι−(k + 1) := ι+(k) + 1

}
(k ≥ 0).

For each k ∈ N, we define an excursion Ek with duration τk by

τk := ι+(k)− ι−(k) and Ek
t := Rι−(k)+t (0 ≤ t ≤ τk). (2.19)

Note that it may happen that τk = 0, in which case Ek = o, the trivial
excursion of duration zero. Then set of plateaus of the function K is

I(K) =
{(
ι−(k), ι+(k)

)
: k ≥ 0, ι−(k) < ι+(k)

}
,

and the excursion set Ξ(S) is given by

Ξ(S) =
{

(k,Ek) : k ∈ N, Ek 6= o
}
. (2.20)

For the reflected random walk, not all excursions are proper excursions, since
it may happen that Ri = 0 for some ι−(k) < i < ι+(k). Since the process
“starts anew” after each increase of K, it is easy to see that:

The E-valued random variables (Ek)k∈N are i.i.d. (2.21)

For Brownian motion, the situation is more complex, since we can no
longer enumerate the excursions by the time at which they occur. Nev-
ertheless, something similar to the i.i.d. property of (2.21) still holds. The
following theorem is due to Itô [Ito71]. The σ-finite measure ν below is called
the excursion measure.

Theorem 2.8 (Poisson set of excursions) There exists a σ-finite measure
ν on E such that the set Ξ is a Poisson point set with intensity measure `⊗ν,
where ` is the Lebesgue measure on [0,∞). The measure ν is concentrated
on E̊.

As a preparation for the proof of Theorem 2.8, we make the following
observation.

Lemma 2.9 (Only proper excursions) The excursion set Ξ(B) of a
Brownian motion B is concentrated on the set of proper excursions E̊.
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Proof To show that Ξ is concentrated on E̊ , one has to show that Lt(0)
increases each time Bt hits zero. By Proposition 2.5, one may equivalently
show that if a Brownian motion W = (Wt)t≥0 is started at some initial state
W0 = x > 0 and τ0 := inf{t ≥ 0 : Wt = 0}, then W immediately crosses the
time axis, i.e., inf{t ≥ 0 : Wt < 0} = τ0. By the strong Markov property,
it suffices to show that Brownian motion started in zero immediately crosses
the time axis, which is well-known.

Proof of Theorem 2.8 (crude sketch) In Section 2.6 we will give a proof
of Theorem 2.8 based on finite approximation. Traditionally, there is a ten-
dency to view such proofs as ugly.1 Whether that is a good philosophy is
questionable. Here, we sketch the outline of a classical proof using stochastic
analysis.

The idea is to show that for each measurable A ⊂ E , the process

Ns(A) := Ξ
(
[0, s]× A

)
(s ≥ 0)

is stationary with independent increments, and moreover, if A1, . . . , An are
disjoint, then the processes (Ns(A1))s≥0, . . . , (Ns(An))s≥0 are independent.
For each deterministic s ≥ 0, the random time

ρs := inf
{
t ≥ 0 : Lt(0) ≥ s

}
is a stopping time for the Markov process (|Bt|, Lt(0))t≥0. Using the strong
Markov property for the stopping time ρs, one obtains that(

|Bρs+t|, Lρs+t(0)− Lρs(0)
)
t≥0

is independent of
(
|Bt|, Lt(0)

)
0≤t≤ρs

,

and equally distributed with the original process (|Bt|, Lt(0))t≥0. Using this,
one obtains that for any 0 ≤ s1 ≤ s2, the increment Ns2(A) − Ns1(A) is
independent of the restriction of Ξ to [0, s1] × E and equally distributed
with Ns2−s1(A), i.e., the process (Ns(A))s≥0 is stationary with independent
increments as claimed. Using also that it is a pure jump process one can now
apply abstract results to conclude that Ξ must be a Poisson point set with
the claimed properties.

It is possible to “invert” the decomposition into excursions and recon-
struct a reflected random walk or reflected Brownian motion from the set Ξ
defined in (2.17). The construction is slightly different in the discrete and

1For example, it seems the main reason, apart from some minor inaccuracies, why the
original proof of the Jordan curve theorem was not widely accepted, was that it used
discrete approximation.
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continuous cases. For the reflected random walk (Rt, Kt)t≥0, we set

ρs := s +
∑

(u,π)∈Ξ:u<s

τπ (s ≥ 0),

Kt := sup{s ≥ 0 : ρs ≤ t} (t ≥ 0),

Rt :=EKt
t−ρKt

(t ≥ 0).

(2.22)

For the reflected Brownian motion
(
|Bt|, Lt(0)

)
t≥0

, we set

ρs :=
∑

(u,π)∈Ξ:u<s

τπ (s ≥ 0),

Lt(0) := sup{s ≥ 0 : ρs ≤ t} (t ≥ 0),

|Bt| :=E
(Lt)
t−ρLt

(n ≥ 0).

(2.23)

The only difference between these formulas is in the definition of the func-
tion (ρs)s≥0, which is the inverse of the reflection local times (Kt)t≥0 and
(Lt(0))t≥0, respectively. In the discrete case, compared to the continuum
case, we have to add a term +s to to the definition of ρs. This has to do with
the fact that Kt increases at speed one during the times when Rt is zero,
while Lt(0) increases at infinite speed during the times when |Bt| is zero.

Formula (2.23) shows how to construct the absolute value of Brownian
motion, i.e., the process (|Bt|)t≥0, together with the local time at the origin
of (Bt)t≥0, from a Poisson set of excursions. In a similar way, one can also
construct the Brownian motion (Bt)t≥0 itself (instead of its absolute value).
The idea is to assign signs to the excursions that are i.i.d. and uniformly
distributed on {−1,+1}. It is also interesting to consider signs that are
i.i.d. but not uniformly distributed on {−1,+1}. In this case, one obtains a
Markov process known as skew Brownian motion.

The following proposition is a consequence of Brownian scaling. As be-
fore, we view paths as compact subsets of R(R) and we let θλπ denote the
image of π under the diffusive scaling map θλ defined in (2.2). In this way,
in (2.24) below, we naturally view θλ as a map from E to E .

Proposition 2.10 (Diffusive scaling) The excursion measure ν from The-
orem 2.8 satisfies

ν ◦ θ−1
λ = λν (λ > 0). (2.24)

Proof Let (Bt)t≥0 be a standard Brownian motion and let (Lt(0))t≥0 be its
local time at 0. Fix λ > 0 and set

Bλ
t := λBλ−2t and Lλt (0) := λLλ−2t(0) (t ≥ 0).
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By Lemma 2.7, the processes (|Bt|, Lt(0))t≥0 and (|Bλ
t |, Lλt (0))t≥0 are equally

distributed. Define Ξ and Ξλ as in (2.17) in terms of (|Bt|, Lt(0))t≥0 and
(|Bλ

t |, Lλt (0))t≥0, respectively. Then

Ξλ =
{

(λs, θλπ) : (s, π) ∈ Ξ
}
.

Since both Ξ and Ξλ are Poisson point sets on [0,∞) × E with intensity
measure `⊗ ν, we see that the measure `⊗ ν is equal to its image under the
map

(s, π) 7→ (λs, θλπ).

In particular, for any measurable A ⊂ E , we have

λν(A) = `⊗ ν
(
[0, λ]× A

)
= `⊗ ν

(
[0, 1]× θ−1

λ (A)
)

= ν ◦ θ−1
λ (A).

2.5 Standard excursions

We continue our study of the excursion measure ν from Theorem 2.8. We let

Hr :=
{
π ∈ E̊ : sup

0≤t≤τπ
π(t) ≥ r

}
(r ≥ 0) (2.25)

denote the set of proper excursions that have height at least r. The next
lemma determines ν(Hr).

Lemma 2.11 (Height of the excursion) Let ν be the excursion measure
from Theorem 2.8. Then

ν(Hr) = r−1 (r > 0). (2.26)

Proof Let (Bt)t≥0 be a standard Brownian motion and let (Lt(0))t≥0 is its
local time at 0. Let

σr := Lτr with τr := inf
{
t ≥ 0 : |Bt| = r

}
.

Then
σr := inf

{
s ≥ 0 : Ξ ∩ ([0, s]×Hr) 6= ∅

}
.

By Theorem 2.8, σr is exponentially distributed with mean 1/ν(Hr). By
Tanaka’s formula (2.9), |Bt| − Lt(0) is a martingale. By optional stopping,
it follows that

E
[
|Bτr∧t|

]
= E

[
Lτr∧t(0)

]
(t ≥ 0).
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Letting t→∞, using the fact that Lτr∧t(0) increases to Lτr = σr, and using
dominated convergence for the left-hand side, together with |Bτr | = r, we
obtain that E[σr] = r and hence ν(Hr) = 1/r.

Since 0 < ν(Hr) <∞ for each r > 0, we can define a conditional proba-
bility laws ν( · |Hr) on E by the usual formula

ν(A|Hr) :=
ν(A ∩Hr)

ν(Hr)

(
A ∈ B(E)

)
.

For each excursion E ∈ Hr, we let

σE,r := inf{t ≥ 0 : Et = r} (2.27)

denote the first time the excursion E reaches the height r. As before, τE
denotes the duration of E.

Lemma 2.12 (Conditional excursion law) For each r > 0, under the
conditional law ν( · |Hr), the process

(EσE,r+t)0≤t≤τR−σE,r

is distributed as a Brownian motion started at r and stopped at the first time
it hits zero.

Proof (sketch) Let (Bt)t≥0 be a standard Brownian motion. Let

σ1
r := inf{t ≥ 0 : |Bt| = r}, σ2

r := inf{t ≥ σ1
r : |Bt| = 0},

and σ0
r := sup{t < σ1

r : |Bt| = 0},

and let E ∈ E̊ be the excursion with duration τE := σ2
r − σ0

r defined by

Et := Bσ0
r+t (0 ≤ t ≤ τE).

Then Et is the first excursion in the Poisson point set Ξ of Theorem 2.8 that
has height ≥ r. Using the strong Markov property of Poisson point sets, one
sees that E is distributed according to the conditional law ν( · |Hr). Using
the strong Markov property of Brownian motion, one sees that

(Bσ1
r+t)0≤t≤σ2

r−σ1
r

is distributed as a Brownian motion started at r and stopped at the first
time it hits zero.

We let
Dt :=

{
π ∈ E̊ : τπ > t

}
(t ≥ 0)

denote the set of excursions that have duration at least t. The next lemma
determines ν(Dt).
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Lemma 2.13 (Duration of the excursion) Let ν be the excursion mea-
sure from Theorem 2.8. Then

ν(Dt) =
2√
2π
t−1/2 (t > 0). (2.28)

Proof of Lemma 2.13 We define Hr as in (2.25) and for each E ∈ Hr we
define σE,r as in (2.27). As before, τE denotes the duration of E. For each
t > 0, we set

Hr,t :=
{
E ∈ Hr : τE ≥ σE,r + t

}
,

i.e., these are all excursions that reach the height r and after that live for at
least time t. Lemma 2.12 implies that

ν(Hr,t) = ν(Hr)P
[
r +Bs > 0 ∀0 ≤ s ≤ t

]
,

where (Bt)t≥0 is a standard Brownian motion. It is a consequence of the
reflection principle that

P
[
r +Bs > 0 ∀0 ≤ s ≤ t

]
= P

[
|Bt| ≤ r

]
=

∫ r

−r

1√
2πt

e−
1
2t
x2

dx.

Using Lemma 2.11, which tells us that ν(Hr) = r−1, it follows that

ν(Hr,t) = r−1
[2rt−1/2

√
2π

+O(r2)
]

as r → 0.

Letting r → 0, using the fact that Hr,t increases to Dt, the claim follows.

We let
E1 :=

{
π ∈ E : τπ = 1

}
(2.29)

denote the space of excursions of duration one and set E̊1 := E1∩E̊ . A random
variable whose law is the probability measure ν1 from Proposition 2.14 below
is called a standard Brownian excursion.

Proposition 2.14 (Decomposition of the excursion measure) Let ρ
be the measure on (0,∞) defined as

ρ(dt) :=
1√
2π
t−3/2dt. (2.30)

There exists a probability measure ν1 on E̊1 such that the excursion measure
from Theorem 2.8 is the image of the measure ρ⊗ ν1 under the map

(0,∞)× E1 3 (t, f) 7→ θ√tf ∈ E . (2.31)



2.6. SCALING LIMITS OF EXCURSIONS 41

Proof (sketch) The map in (2.31) is invertible. Its inverse is the map

E 3 π 7→
(
τπ, θ1/

√
τπ π
)
∈ (0,∞)⊗ E1,

where as before τπ denotes the duration of an excursion π ∈ E . Let µ
be the image of the excursion measure ν under this inverse map. Then
Proposition 2.10 implies that

µ ◦ ψ−1
λ = λµ where ψλ(s, f) := (λ2s, f) (λ, s > 0, f ∈ E1). (2.32)

Using the fact that by Lemma 2.13, ν(D1) is finite, it follows that we can
decompose µ as

µ(dλ, df) = ρ(dλ)P (λ, df)

for some probability kernel P (compare Theorem 1.5). By (2.32), P (λ, · )
does not depend on λ, so in fact µ = ρ⊗ ν1 for some probability measure ν1

on E̊1. The scaling relation (2.32) moreover implies that

ρ
(
[λ−2t,∞)

)
= λρ

(
[t,∞)

)
(λ, t > 0),

which shows that there exists a constant c > 0 such that

ρ
(
[t,∞)

)
= ct−1/2 (λ > 0).

The correct formula for the constant c follows from Lemma 2.13.

2.6 Scaling limits of excursions

In this section, we give a proof of Theorem 2.8 based on finite approximation.
As a side result, we obtain that if Sε are the diffusively rescaled simple
random walks defined in (2.3) and let B is a standard Brownian motion,
then the excursion sets Ξ(Sε) defined in (2.17) converge in an appropriate
sense to Ξ(B).

We first need a few definitions. By definition, a local subset of the set of
excursions E is a measurable set A ⊂ E such that o 6∈ A, where A denotes the
closure of A and o denotes the trivial excursion of duration τo := 0. Similarly,
a local subset of [0,∞)× E is a measurable set B ⊂ [0,∞)× E such that

B ⊂ [0, S]× A for some S <∞ and local A ⊂ E .

We say that a measure ν on E is locally finite2 if ν(A) < ∞ for all local
A ⊂ E . Similarly, we say that a measure µ on [0,∞) × E is locally finite if

2We use this term in an unusual sense here. More usually, a measure µ on a locally
compact space X is called locally finite if µ(K) <∞ for each compact K ⊂ X . The space
E is, however, not locally compact, so such a definition would not make much sense in our
setting.
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µ(B) < ∞ for all local B ⊂ [0,∞) × E . When X = E or = [0,∞) × E , we
let Mloc(X ) denote the space of locally finite measures on X .

The support of a measurable real function f defined on a topological space
X is the set

supp(f) := {x ∈ X : f(x) 6= 0},
where the overbar denotes closure. In the special case that X = E or =
[0,∞) × E , we define a local function on X to be a measurable function
f : X → R such that supp(f) is a local subset of X . We let Cloc(X ) denote
the space of all local bounded continuous functions on X and we letMloc(X )
denote the space of all locally finite measures on X .

Let X be a Polish space and let (xi)i∈I be a countable collection of points
in X . Then

ξ :=
∑
i∈I

δxi (2.33)

defines a counting measure on X . In particular, if Ξ is a countable subset of
X , then Ξ defines a counting measure by

ξΞ :=
∑
x∈Ξ

δx. (2.34)

Note that ξΞ is simple, in the sense that ξΞ({x}) ≤ 1 for all x ∈ X . In
general, counting measures of the form (2.33) need not be simple, since it
may happen that xi = xj for some i 6= j. We often tacitly identify countable
subsets of X with their associated counting measures. In particular, we say
that a countable subset Ξ of X = E or = [0,∞)× E is locally finite if ξΞ has
this property.

Let φ : X → [0, 1] be measurable and let (χi)i∈I be independent Bernoulli
random variables (i.e., variables with values in {0, 1}) with P[χi = 1] = φ(xi).
Then the random counting measure

ξ′ :=
∑
i∈I

χiδxi

is called a φ-thinning of ξ. In the special case that X is either E or [0,∞)×E ,
we let Nloc(X ) denote the space of all locally finite counting measures on X .
Then

Kφ(ξ, · ) := P
[
ξ′ ∈ ·

]
defines a probability kernel on Nloc(X ). Generalising our earlier definition of
a thinning, when ξ and ξ′ are random locally finite counting measures on X ,
then we say that ξ′ is a φ-thinning of ξ if

P
[
ξ′ ∈ ·

∣∣ ξ] = Kφ(ξ, · ).
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For any counting measure ξ of the form (2.33) and measurable φ : X → [0, 1],
we introduce the notation

φξ :=
∏
i∈I

φ(xi) = e
∫
ξ(dx) log φ(x),

with the convention that e−∞ := 0. If ξ′ is a φ-thinning of ξ, then it is easy
to see that

P
[
ξ′ = 0

]
= E

[
(1− φ)ξ

]
.

We say that µ on a measurable space X is nonatomic if µ({x}) = 0 for all
x ∈ X . Recall that a counting measure ξ is called simple if ξ({x}) ≤ 1 for
all x ∈ X . We need the following result.3

Theorem 2.15 (Poisson counting measure) Let µ be a locally finite
measure on [0,∞) × E. Then there exists a random locally finite counting
measure ξ on [0,∞)× E such that

E
[
(1− φ)ξ

]
= e−

∫
φ dµ (2.35)

for each measurable φ : [0,∞) × E → [0, 1]. The law of ξ is uniquely de-
termined by the requirement that (2.35) holds for all local continuous φ. If
B1, . . . , Bn are disjoint measurable local subsets of [0,∞)× E, then

ξ(B1), . . . , ξ(Bn) are Poisson distributed with mean µ(B1), . . . , µ(Bn).

If µ is nonatomic, then ξ is almost surely simple.

Formula (2.35) has an interpretation in terms of thinning. Let φµ denote
the measure µ weighted with the density φ. If ξ′ is a φ-thinning of ξ, then
ξ′ is a Poisson counting measure with intensity measure φµ. In particular,
if
∫
φ dµ < ∞, then the number of points of ξ′ is Poisson distributed with

mean
∫
φ dµ < ∞, and hence P[ξ′ = 0] = exp(−

∫
φ dµ), which is formula

(2.35).
We now turn our attention to the proof of Theorem 2.8. We will use

discrete approximation. Let S be the simple random walk from Section 2.1,
let Sε be the diffusively rescaled random walk from (2.3), and let B be
standard Brownian motion. We recall from (2.20) that the excursion set of
S is given by

Ξ(S) =
{

(k,Ek) : k ∈ N, Ek 6= o
}
,

3This is largely standard, but many sources such as [Kal97, Chapter 10] treat only
locally compact spaces. Oir definition of local finiteness is also nonstandard.
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where (Ek)k∈N are the i.i.d. excursions from (2.21). It follows that

Ξ(Sε) =
{

(εk, θεE
k) : k ∈ N, Ek 6= o

}
. (2.36)

Note that in view of (2.12), we have to rescale the reflection local time k
by a factor ε and not by ε2. We will prove Theorem 2.8 together with the
following theorem, which describes the tail of the law of E0, i.e., in the small
probabilities of very large excursions.

Theorem 2.16 (Tail of the excursion law) Let ν be the excursion mea-
sure from Theorem 2.8. One has

ε−1E
[
g(θεE

0)
]
−→
ε→0

∫
E
g(π) ν(dπ) (2.37)

for each g ∈ Cloc(E).

The proof of Theorem 2.8 depends on two technical results, the proofs
of which will be postponed till the next section. Recall from (2.1) that
C0 :=

{
f ∈ C[0,∞)(R) : f0 = 0

}
.

Lemma 2.17 (Locally finite excursion set) For each f ∈ C0 such that
lim inft→∞ ft = −∞, the set Ξ(f) defined in (2.17) is locally finite.

We have seen in (2.5) that it is possible to couple diffusively rescaled ran-
dom walks Sεn and a Brownian motion B such that almost surely Sεn → B
locally uniformly. The following theorem says that then also the associ-
ated excursion sets converge. In (2.38) below, we identify the countable sets
Ξ(Sεn) and Ξ(B) with their associated counting measures as in (2.34).

Theorem 2.18 (Scaling limit of excursion sets) Let εn be positive con-
stants tending to zero, let Sεn be the diffusively rescaled simple random walk
defined in (2.3) and let B be a standard Brownian motion. Assume that these
random variables are coupled as in (2.5). Then the excursion sets Ξ(Sεn) and
Ξ(B) defined in (2.17) almost surely satisfy

(1− φ)Ξ(Sεn) −→
n→∞

(1− φ)Ξ(B) (2.38)

for all local continuous φ : [0,∞)× E → [0, 1].

Proof of Theorems 2.8 and 2.16 Let εn be positive constants tending
to zero. We fix a local continuous function g : E → [0, 1] and a continuous
compactly supported function h : [0,∞) → [0, 1]. Then φ(s, π) := h(s)g(π)
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defines a local continuous function φ : [0,∞) × E → [0, 1]. Applying Theo-
rem 2.18, using bounded pointwise convergence to interchange the integral
and the limit, we see that

E
[
(1− φ)Ξ(Sεn)] −→

n→∞
E
[
(1− φ)Ξ(B)]. (2.39)

By (2.21) and (2.36), we can rewrite the left-hand side as

E
[
(1− φ)Ξ(Sεn)] =

∞∏
k=0

(
1− h(εnk)E

[
g(θεnE

0)
])
.

By going to a subsequence, we can assume that

Gn := ε−1
n E

[
g(θεnE

0)
]
−→
n→∞

G ∈ [0,∞].

We claim that then

E
[
(1− φ)Ξ(Sεn)] −→

n→∞
e−G

∫∞
0
h(t)dt.

The claim is trivial if h = 0, so we assume h 6= 0 without loss of generality.
We use the concavity of the logarithm and Riemman sum approximation of
the integral to estimate

logE
[
(1− φ)Ξ(Sεn)] =

∞∑
k=0

log
(

1− εnGnh(εnk)
)

≤ −Gnεn

∞∑
k=0

h(εnk) −→
n→∞

−G
∫ ∞

0

h(t)dt.

This already proves the statement when G = ∞, so it suffices to prove the
other inequality under the assumption that G < ∞. Then εnGn → 0 while
h ≤ 1, so

log
(

1− εnGnh(εnk)
)

= −εnGnh(εnk) +O(ε2
n).

Since h is compactly supported, only O(ε−1
n ) terms in the sum are nonzero,

so the claim follows easily. Using (2.39), we now see that the limit G has
to be the same for each subsequence, so for each local continuous function
g : E → [0, 1], there exists a constant ν(g) ∈ [0,∞] such that

ε−1
n E

[
g(θεnE

0)
]
−→
n→∞

ν(g). (2.40)

Formula (2.39) moreover tells us that for any local continuous g : E → [0, 1]
and continuous compactly supported h : [0,∞)→ [0, 1],

E
[ ∏
(s,π)∈Ξ(B)

(
1− h(s)g(π)

)]
= e−ν(g)

∫∞
0
h(t)dt.
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By Lemma 2.17, the set Ξ(B) is a.s. locally finite, so only finitely many
factors in the product are different from one. If h ≤ 1

2
, then the product is

with positive probability positive, which proves that ν(g) <∞ for each local
continuous g : E → [0, 1]. Combining this with (2.40), we see that there must
exist a locally finite measure ν on E such that

ν(g) =

∫
E
ν(dπ) g(π),

and (2.40) holds more generally for bounded local continuous g : E → R. To
complete the proof, it suffices to prove that Ξ(B) is a Poisson point set with
intensity measure `⊗ ν. By Theorem 2.15, it suffices to show that

E
[
(1− φ)Ξ(B)] = e−

∫∞
0

ds
∫
Eν(dπ)φ(s, π)

for each local continuous φ : [0,∞) × E → [0, 1]. Our arguments so far
already show that this is true for φ of the form4 φ(s, π) = h(s)g(π) with
local continuous g : E → [0, 1] and continuous compactly supported h :
[0,∞)→ [0, 1]. We again use (2.39) and setting gs(π) := φ(s, π), we write

logE
[
(1− φ)Ξ(Sεn)] =

∞∑
k=0

log
(

1− E
[
gεnk(θεnE

0)
])
,

where we can estimate

log
(

1− E
[
gεnk(θεnE

0)
])

= −εn
∫
ν(dπ)gεnk(π) +O(ε2

n).

The claim then follows from Riemann sum approximation to the integral.

2.7 Limits of excursion sets

In this section we provide the proofs of Lemma 2.17 and Theorem 2.18, which
are still missing.

Proof of Lemma 2.17 and Theorem 2.18 The main work is the proof
of Theorem 2.18. We will obtain Lemma 2.17 as a side result. If the map
C0 3 f 7→ Ξ(f) were continuous with respect to the sort of convergence we
are considering, then the statement of Theorem 2.18 would be trivial. This
is not true, but we will show that if B is a Brownian motion, then the map

4I actually do not know if this is already enough to conclude that Ξ(B) is a Poisson
point set with intensity measure `⊗ ν.
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f 7→ Ξ(f) is almost surely continuous in the point B ∈ C0, which is all we
need.

We will prove the following statement. Assume that fn, f ∈ C0 satisfy
fn → f locally uniformly, that lim inft→∞ f(t) = −∞, and that Ξ(f) is
concentrated on [0,∞)× E̊ . Then

(1− φ)Ξ(fn) −→
n→∞

(1− φ)Ξ(f) (2.41)

for all local continuous φ : [0,∞)×E → [0, 1]. Note that this is a deterministic
statement: the only way randomness enters our proof is in the fact that if B
is a Brownian motion, then almost surely lim inft→∞Bt = −∞ and Ξ(B) is
concentrated on [0,∞)× E̊ , which follows from Theorem 2.8.

Assume, therefore, that fn, f ∈ C0 satisfy fn → f locally uniformly,
that lim inft→∞ f(t) = −∞, and that Ξ(f) is concentrated on [0,∞)×E̊ . Let
(gn, hn) be defined in terms of fn as in (2.7) and let (g, h) be similarly defined
in terms of f . Let I(h) denote the set of plateaus of h, i.e., an open intervals
of maximal length on which h is constant, and let I(hn) be the plateaus of
hn.

Let ι = (ι−, ι+) ∈ I(h). Our assumption that Ξ(f) is concentrated on
[0,∞) × E̊ means that the function g is strictly positive on ι. The locally
uniform convergence gn → g then implies that for each ε > 0, the function
gn must be strictly positive on (ι− + ε, ι+ − ε) for all n large enough. Since
hn increases only at times when gn is zero, this then implies that hn must be
constant on (ι− + ε, ι+ − ε).

On the other hand, since ι is a maximal interval on which h is constant,
h(t) < h(ι−) for all t < ι− and h(ι+) < h(t) for all ι+ < t. The locally
uniform convergence hn → h then implies that for each ε > 0, the function
hn is not constant on (ι−−ε, ι+ +ε) for all n large enough. These arguments
show that for each plateau ι ∈ I(h) and for each ε ≤ ε0 := (ι+− ι−)/3, there
exists an m(ε) such that for all n ≥ m(ε), there exists a (clearly unique)
plateau  ∈ I(hn) with |±− ι±| ≤ ε. For n ≥ m(ε0), we let φn(ι) :=  denote
this plateau, and we define φn(ι) in an abritrary way for the remaining values
of n. Then clearly the left and right boundaries of the plateau φn(ι) satisfy

φn(ι)± −→
n→∞

ι±. (2.42)

Let (s, π) ∈ Ξ(f) denote the excursion of g corresponding to the plateau
ι, and let ψn(s, π) ∈ Ξ(fn) denote the excursion of gn corresponding to the
plateau φn(ι). Using the fact that gn → g and hn → h locally uniformly, we
see that

ψn(s, π) −→
n→∞

(s, π) (2.43)
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in the topology on [0,∞)× E .

For each S <∞ and δ > 0, let us set

IS,δ(h) :=
{
ι ∈ I(h) : h(ι±) < S, ι+ − ι− > δ

}
,

and define IS,δ(hn) similarly. We claim that for large n, the map φn is a
bijection from IS,δ(h) to IS,δ(hn) and hence ψn is a bijection from ΞS,δ(f) to
ΞS,δ(fn). Let T := sup{t : h(t) < S} and Tn := sup{t : hn(t) < S}. Then
T < ∞ by the assumption that lim inft→∞ f(t) = −∞ and Tn → T by the
fact that hn → h locally uniformly. Since all plateaus ι ∈ IS,δ are contained
in [0, T ], the set IS,δ(h) can contain at most T/δ elements and is therefore
finite. It follows from (2.42) and (2.43) that for large enough n, the map
φn maps the space IS,δ(h) into IS,δ(hn). It follows immediately from our
definition of φn that this map is also one-to-one for n large enough.

To see that it is moreover surjective for n large enough, assume that
conversely, for infinitely many values of n, there exists a n ∈ IS,δ(hn) that
is not the image under φn of some ι ∈ IS,δ(h). Since n ⊂ [0, Tn], by going to
a subsequence, we can assume that ±n → ± for some interval . But then h
has to be constant on , which implies that  ⊂ ι for some ι ∈ I(h). But this
implies that n has nonempty intersection with φn(ι) for all n large enough,
which leads to a contradiction.

For S <∞ and δ, ε > 0, let us set

ΞS,δ(f) :=
{

(s, π) ∈ Ξ(f) : s < S, τπ > δ
}
,

Ξε
S(f) :=

{
(s, π) ∈ Ξ(f) : s < S, sup

0≤t≤τπ
π(t) > ε

}
.

There is a one-to-one correspondence between IS,δ(f) and ΞS,δ(f). We have
just proved that the former is finite5 for each S and δ, and hence the same
is true for the latter. We claim that

∀ε > 0 ∃δ > 0 s.t. Ξε
S(f) ⊂ ΞS,δ(f) (S <∞). (2.44)

As before, let T := sup{t : h(t) < S}. Let mT,δ(f) be the modulus of continu-
ity defined in (1.13). If there exists a (s, π) ∈ ΞS,ε such that (s, π) 6∈ ΞS,δ(f),
then mT,δ(f) > ε. Now (2.44) follows from the fact that by Lemma 1.29,
for each ε > 0, there exists a δ > 0 such that mT,δ(f) ≤ ε. By the same
argument, using the equicontinuity of the functions fn, which follows from

5This part of the argument used that lim inft→∞ ft = −∞ and hence T := sup{t :
h(t) < S} is finite, but it did not need the assumption that Ξ(f) is concentrated om
[0,∞)× E̊ .
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the fact that fn → f and The Arzela-Ascoli theorem (Theorem 1.30), we see
that

∀ε > 0 ∃δ > 0 s.t. Ξε
S(fn) ⊂ ΞS,δ(fn) (n ≥ 1, S <∞). (2.45)

We are finally ready to prove (2.41). Fix a local continuous function
φ : [0,∞) × E → [0, 1], and let A := supp(φ) be its support. We claim that
there exist δ, ε > 0 such that

∀π ∈ A τπ > δ or sup
0≤t≤τπ

πt > ε. (2.46)

Indeed, if (2.46) does not hold, then there exist πn ∈ A with τπ ≤ n−1 and
sup0≤t≤τπ πt ≤ n−1. But then πn → o, the trivial excursion, which contradicts
the fact that A is closed with o 6∈ A. Using (2.44) and (2.45), we see that
there exists a δ′ > 0 such that{

(s, π) ∈ Ξ(f) : s ≤ S, π ∈ A
}
⊂ΞS,δ′(f),{

(s, π) ∈ Ξ(fn) : s ≤ S, π ∈ A
}
⊂ΞS,δ′(fn) (n ≥ 1).

Using (2.43) and the fact that for large n, the map ψn is a bijection from the
finite set ΞS,δ′(f) to ΞS,δ′(fn), we see that (2.41) holds. This completes the
proof of Theorem 2.18.

Along the way, we have established that if f ∈ C0 satisfies lim inft→∞ ft =
−∞, then the set {

(s, π) ∈ Ξ(f) : s ≤ S, π ∈ A
}

is finite for each S < ∞ and A ⊂ E that is closed with o 6∈ A, proving
Lemma 2.17.

2.8 Large random walk excursions

Let (R,K) = (Rt, Kt)t≥0 be the (linearly interpolated) reflected random walk
defined in (2.11), and let

τ0 := inf
{
i ∈ N : Ki+1 > Ki

}
and E0 := (Rt)0≤t≤τ0 , (2.47)

i.e., E0 is the first of the i.i.d. excursions (Ek)k∈N of (R,K) defined in (2.19).
Note that since R0 = 0 = Rτ0 and up to time τ0, the reflected random walk
R steps up or down in each time step, τ0 is almost surely an even number. In
Theorem 2.16, we have seen that the Brownian excursion measure ν describes
the tail of the law of E0, i.e., the small probabilities of very large excursions.
In the present section, our aim is to prove the following theorem.
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Theorem 2.19 (Scaling limit of large excursion) Let εn := 1/
√

2n.
Then

P
[
θεnE

0 ∈ ·
∣∣ τ0 = 2n

]
=⇒
n→∞

ν1, (2.48)

where ν1 is the law of the standard Brownian excursion, defined in Proposi-
tion 2.14.

Despite its apparent simplicity, the proof of Theorem 2.19 is quite tricky
and we will not completely prove it in this section. We will get quite close,
however, and indicate what needs to be done to complete the proof. We
want to use excursion theory to prove Theorem 2.19. This may seem natural,
but apparently a proof using this approach has been published only fairly
recently in [LeG10, Thm 6.1]. That paper is concerned with a class of discrete
excursions that is more general than the one we consider, but also a bit
different so that Theorem 2.19 is not formally included in [LeG10, Thm 6.1]
although it is very similar.

The proof of Theorem 2.19 needs some preparations. We say that a
measure ρ on (0,∞) is locally finite if ρ([s, S]) < ∞ for all 0 < s < S < ∞.
We say that a sequence of locally finite measures ρn on (0,∞) converges
vaguely to a limit ρ if∫ ∞

0

ρn(dt)h(t) −→
n→∞

∫ ∞
0

ρ(dt)h(t)

for all continuous compactly supported h : (0,∞) → R. We postpone the
proof of the following simple lemma till later.

Lemma 2.20 (Integrals along paths) Let πn, π ∈ Π(R) be paths such that
Iπ = [0,∞) and Iπn ⊂ [0,∞) for all n. Let ρn, ρ be locally finite measures on
(0,∞) such that ρn is concentrated on Iπn for each n. Assume that πn → π
in the topology on path space Π(R) and that the ρn converge vaguely to ρ.
Then ∫ ∞

0

ρn(dt)h(t)πn(t) −→
n→∞

∫ ∞
0

ρ(dt)h(t)π(t)

for each continuous compactly supported h : (0,∞)→ R.

For each m ∈ 2N := {2n : n ∈ N}, we let µm denote the conditional law

µm := P
[
θ1/
√
mE

0 ∈ ·
∣∣τ0 = m

]
. (2.49)

For any bounded continuous funtion g : E1 → R, we write

〈µm, g〉 :=

∫
E1
µm(dπ) g(π).

We will need the following technical result, that we will not prove in this
chapter.
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Proposition 2.21 (Equicontinuity of conditional laws) Let g : E1 → R
be bounded and continuous. For each δ ∈ (0, 1], let πδ ∈ Π(R) be the path
defined by

Iπδ := 2δ2N ∩ [1,∞) and πδ(t) := 〈µδ−2t, g〉 (t ∈ Iπδ). (2.50)

Then the paths {πδ : δ ∈ (0, 1]} are equicontinuous.

Proof of Theorem 2.19 Let g : E1 → R be bounded and continuous and let
h : (0,∞) → R be continuous and compactly supported. Define f : E → R
by

f(π) := h(τπ)g(θ1/
√
τππ) (π 6= o),

with f(o) := 0. Then f is bounded and continuous with o 6∈ supp(f), so
Theorem 2.16 tells us that

δ−1E
[
f(θδE

0)
]
−→
δ→0

∫
E
ν(dπ) f(π). (2.51)

By Proposition 2.14, we can rewrite the right-hand side of (2.51) as∫
E
ν(dπ) f(π) = 〈ν1, g〉

∫ ∞
0

ρ(dt)h(t), (2.52)

where ρ is the measure in (2.30). We rewrite the left-hand side of (2.51) as

δ−1E
[
f(θδE

0)
]

= δ−1
∑
m∈2N

P
[
τ0 = m

]
h
(
δ2m

)
E
[
g(θ1/

√
mE

0)
∣∣ τ0 = m

]
= δ−1

∑
m∈2N

P
[
τ0 = m

]
h
(
δ2m

)
〈µm, g〉,

where 〈µm, g〉 denotes the integral of g with respect to the measure µm defined
in (2.49). Using the definition

ρδ := δ−1

∞∑
n=1

P
[
τ0 = 2n

]
δ2δ2n,

we can rewrite (2.51) as∫ ∞
0

ρδ(dt)h(t)〈µδ−2t, g〉 −→
δ→0
〈ν1, g〉

∫ ∞
0

ρ(dt)h(t). (2.53)

Assume that δn ∈ (0, 1] satisfy δn → 0. Applying (2.53) with g the function
that is constantly one and general h, we see that the measures ρδn converge
vaguely to ρ as n→∞. Let

tn := inf
(
2δ2
nN ∩ [1,∞)

)
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and let πn ∈ Π(R) be the path defined by

Iπn := 2δ2
nN and πn(t) :=

{
〈µδ−2

n t, g〉 if t ≥ 1,

〈µδ−2
n tn

, g〉 if t < 1.

By Proposition 2.21, the paths πn are equicontinuous. Since g is bounded
and µδ−2tn is a probability measure, there exists a compact set C ⊂ R such
that πn(t) ∈ C for all n and t ∈ Iπn . Therefore, by the Arzela-Ascoli theorem
(Theorem 1.30), {πn : n ∈ N} is a precompact subset of Π(R). As a conse-
quence, by Lemma 1.2, to show that the paths πn converge in the topology
on Π(R) to a limit π, it suffices to show that all cluster points of the sequence
πn are the same.

Assume that a subsequence πn(m) converges as m → ∞ to a limit π ∈
Π(R). Then clearly Iπ = [0,∞). By Lemma 2.20,∫ ∞

0

ρδn(dt)h(t)πn(t) −→
n→∞

∫ ∞
0

ρ(dt)h(t)π(t) (2.54)

for each continuous compactly supported h : (0,∞) → R. Since the paths
πn are constant on [0, 1], their limit π must have the same property. If h :
(0,∞) → R is continuous and compactly supported with supp(h) ⊂ [1,∞),
then combining (2.53) with (2.54) we see that∫ ∞

0

ρ(dt)h(t)π(t) = 〈ν1, g〉
∫ ∞

0

ρ(dt)h(t).

Since π : [0,∞)→ R is a continuous function, the measure ρ in (2.30) has a
density with respect to the Lebesgue measure, and h is arbitrary, we conclude
that π(t) = 〈ν1, g〉 for all t ≥ 1. Since π is constant on [0, 1], this equality
extends to t ≥ 0. This proves that the only cluster point of the sequence πn
is the constant path

π(t) = 〈ν1, g〉 (t ≥ 0),

and hence by Lemma 1.2 πn → π in the topology on Π(R). This clearly
implies (2.48), so the proof is complete.

We conclude this chapter by providing the proof of Lemma 2.20.

Proof Lemma 2.20 We claim that

sup
t∈[0,T ]∩Iπn

∣∣πn(t)− π(t)
∣∣ −→
n→∞

0 (T <∞).

This can be proved directly by the same sort of arguments as used in the last
paragraph of the proof of Lemma 1.25. Alternatively we can extend πn to
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[0,∞) by linear interpolation and constant extrapolation and use Exercises
1.26 and 1.27 to see that the extended paths also converge to π in the topology
on Π(R). Then Lemma 1.25 implies that the extended paths converge locally
uniformly to π, which implies the claim.

Choosing T large enough such that supp(h) ⊂ [0, T ] and setting

εn := sup
t∈[0,T ]∩Iπn

∣∣πn(t)− π(t)
∣∣,

we can now estimate∣∣∣ ∫ ∞
0

ρn(dt)h(t)πn(t)−
∫ ∞

0

ρ(dt)h(t)π(t)
∣∣∣

≤ εn

∫ ∞
0

ρn(dt)
∣∣h(t)

∣∣+
∣∣∣ ∫ ∞

0

ρn(dt)h(t)π(t)−
∫ ∞

0

ρ(dt)h(t)π(t)
∣∣∣.
(2.55)

Here the second term on the right-hand side tends to zero since t 7→ h(t)π(t)
is a continuous compactly supported function and ρn → ρ vaguely. Since
t 7→ |h(t)| is also a continuous compactly supported function, we moreover
have that ∫ ∞

0

ρn(dt)
∣∣h(t)

∣∣ −→
n→∞

∫ ∞
0

ρ(dt)
∣∣h(t)

∣∣,
which shows in particular that

lim sup
n→∞

∫ ∞
0

ρn(dt)
∣∣h(t)

∣∣ <∞
and hence the first term on the right-hand side of (2.55) tends to zero.
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Chapter 3

The tree

3.1 Graphs

By definition, a graph is a pair G = (V,E) where V is a set and E is another
set whose elements are subsets of V containing precisely two elements. A
finite graph is a graph for which V (and hence also E) are finite. Elements
of V are called vertices and elements of E are called edges. Two vertices v, w
are called adjacent if {v, w} ∈ E. The number of vertices w that are adjacent
to v is called the degree of the vertex v. A graph isomorphism between two
graphs G = (V,E) and G′ = (V ′, E ′) is a bijection ψ : V → V ′ such that
{ψ(v), ψ(w)} ∈ E ′ if and only if {v, w} ∈ E. If such an isomorphism exists,
the graphs are called isomorphic. A subgraph of G = (V,E) is a graph
G′ = (V ′, E ′) such that V ′ ⊂ V and E ′ ⊂ E.

Two vertices v, w ∈ V are disconnected if there exists a subset W ⊂ V
such that v ∈ V \W , w ∈ W , and {v′, w′} 6∈ E for all v′ ∈ V \W and w′ ∈ W .
Two vertices that are not disconnected are called connected. We write v! w
if v is connected to w. It is easy to see that! is an equivalence relation on
V . The equivalence classes are called the connected components of G.

A cycle is a nonempty finite connected graph in which each vertex has
degree precisely two. A tree is a nonempty connected graph G that does not
contain cycles, i.e., there exists no subgraph G′ of G that is a cycle. In a
tree, vertices of degree one are called leaves and all other vertices are called
internal vertices. A binary tree is a tree in which each vertex has degree 3
or 1. A path is a finite tree in which each vertex has degree at most two.

If G = (V,E) is a path, then we can enumerate the elements of V as
V = {v0, . . . , vn} with n ≥ 0 and vk 6= vl for all 0 ≤ k < l ≤ n, in such a way
that E =

{
{vk−1, vk} : 1 ≤ k ≤ n}. The integer n is called the length of the

path and v0 and vn are called its endvertices. If G = (V,E) is an arbitrary

55



56 CHAPTER 3. THE TREE

graph and v, w ∈ V , then a path connecting v and w is a subgraph G′ of G
such that G′ is a path and v and w (which may coincide) are its endvertices.

A walk in a graph is an ordered sequence (v0, . . . , vn) of vertices with
n ≥ 0 such that {vk−1, vk} ∈ E for all 1 ≤ k ≤ n. Note that contrary to
paths, walks can pass more than once through the same vertex. We call n
the length and we call v0 and vn its endvertices. We also say that the walk
connects v0 and vn.

If G = (V,E) and v, w ∈ V , then one can check that the following
conditions are equivalent:

(i) v! w,

(ii) there exists a path connecting v and w,

(iii) there exists a walk connecting v and w.

The graph distance d(v, w) between two vertices v, w ∈ V is the length of
the shortest walk connecting v and w if such a walk exists, and d(v, w) :=∞
if there does not exist a walk connecting v and w. One can check that d is
a metric on V . By our earlier remarks, d(v, w) < ∞ if and only if v! w.
Each walk of length d(v, w) connecting v and w is actually a path. One can
check that a graph G = (V,E) is a tree if and only if for each v, w ∈ V , there
exists a unique path connecting v and w.

If T = (V,E) is a tree, then for each x1, x2, x3 ∈ V , there exists a unique
point c = c(x1, x2, x3) ∈ V such that

d(xi, xj) = d(xi, c) + d(c, xj) ∀i, j ∈ {1, 2, 3}, i 6= j.

The point c(x1, x2, x3) is called the branch point of x1, x2, x3. Trees can be
characterised entirely in terms of the branch point map c : V 3 → V , which
must satisfy certain axioms. This leads to the theory of algebraic trees, which
we unfortunately have no time to elaborate on in these lecture notes.

3.2 Random trees

A labeled tree is a tree T = (V,E) with a given vertex set V . We let

T (V ) :=
{

(V,E) : (V,E) is a tree
}

denote the set of all trees with a given vertex set V . Cayley’s formula says
that ∣∣T ({1, . . . , n})

∣∣ = nn−2 (n ≥ 1).
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If L is a finite set, then a cladogram on L is a binary tree (V,E) that
has L as its set of leaves. Two cladograms T = (V,E) and T ′ = (V ′, E ′)
on the same set L are called isomorphic if there exists a graph isomorphism
ψ : V → V ′ that preserves the leaves, i.e., ψ(v) = v for all v ∈ L. We let
C(L) denote the set of all cladograms (up to isomorphism) on a given set of
leaves L. It is easy to see that a cladogram with n ≥ 2 leaves has 2n − 3
edges. We can create a cladogram with n + 1 leaves from one with n leaves
by adding a vertex in the middle of an existing edge and then attaching a
new leaf to this vertex. Using this, it is easy to prove the inductive formula∣∣C({1, . . . , n+ 1})

∣∣ = (2n− 3)|C({1, . . . , n})| (n ≥ 2).

A rooted tree is a tree T = (V,E) with one specially marked vertex ∅ ∈ V ,
which is called the root. Two rooted trees T = (V,E) and T ′ = (V ′, E ′) are
called isomorphic if there exists a graph isomorphism ψ : V → V ′ that
preserves the root, i.e., ψ(∅) = ∅. In a rooted tree, for each {v, w} ∈ E,
either d(∅, v) = d(∅, w) − 1 or d(∅, v) = d(∅, w) + 1. In the first case, we
say that w is a child of v and in the second case, we say that w is the parent
of v. Note that parents are unique.

Recall that in an unrooted tree, vertices of degree one are called leaves.
In rooted trees, the convention is slightly different and the word leaf is used
for vertices without children. Vertices that are not leaves are called internal
vertices. For rooted trees, the definition of a binary tree is also somewhat
different. A rooted tree is binary if each internal vertex has precisely two
children. When we make a picture of T , we draw the root at the bottom and
we draw the children of a vertex above the vertex.1 The children, together
with all their children and their children, recursively, are called the descen-
dants of a vertex. Similarly, the parent, the parent of the parent, and so on
are collectively called the ancestors of a vertex.

A natural way of attaching labels to the vertices of a rooted tree is as
follows. Let T denote the space of all finite words i = i1 · · · in (n ∈ N) made
up from the alphabet N+ = {1, 2, . . .}. We denote the length of a word
i = i1 · · · in by |i| := n and let ∅ denote the word of length zero. We define
the concatenation ij of two words i, j ∈ T with i = i1 · · · im and j = j1 · · · jn
by ij := i1 · · · imj1 · · · jn. A plane tree is a nonempty subset U ⊂ T with the
following properties:

(i) if i1 · · · in ∈ U and n ≥ 1, then i1 · · · in−1 ∈ U,

(ii) if i1 · · · in ∈ U and in > 1, then i1 · · · in−1(in − 1) ∈ U.

1This is a difference between mathematics and computer science. In computer science,
the root of a tree sits at the top and the leaves at the bottom of the tree.
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For each word i = i1 · · · in ∈ T with length n ≥ 1, we write
←
i := i1 · · · in−1.

Then condition (i) says that
←
i ∈ U for all i ∈ U\{∅}. Note that (i) implies

that ∅ ∈ U. We view U as a rooted tree with root ∅ and set of edges

E :=
{
{
←
i, i} : i ∈ U\{∅}

}
. (3.1)

Because of condition (ii), for each i ∈ U, there is a κi ∈ N such that

ij ∈ U if and only if 1 ≤ j ≤ κi. (3.2)

Then
←
i is the parent of i and i1, . . . , iκi are its children. When we make a

picture of U, above each vertex i, we draw its children i1, . . . , iκi ordered
from left to right. Note that in general, when we draw a rooted tree, there
is no prescribed order in which to draw the children of a vertex. Therefore,
there are different ways of drawing the same rooted tree in the plane. There
is (essentially) only one way of drawing a plane tree in the plane, which
explains their name. We set

Un :=
{
U : U is a plane tree with n+ 1 vertices

}
. (3.3)

We will be interested in random rooted trees. We let

Tn := T ({0, . . . , n})

denote the set of all labeled trees with vertex set {0, . . . , n}. A natural way
to create a random rooted tree with n + 1 vertices is to first pick a labeled
tree at random according to the uniform distribution on the set Tn, call 0
the root, and then forget about the labels of all vertices other than the root.
Another way is to choose a random plane tree with n+1 vertices according to
the uniform distribution on Un, and then again forget about all labels except
for the label ∅ of the root. It is easy to check (for example for n = 2, 3, 4
where the calculations can still be done by hand) that these two procedures
are not equivalent, i.e., they lead to different distributions on the set of all
(non-isomorphic) rooted trees with n+ 1 vertices.

Branching processes also provide a natural way to construct random
rooted trees. Let ρ = (ρk)k≥0 be a probability distribution on N, and let
(κi)i∈T be i.i.d. with common law ρ. Then

U :=
{
i1 · · · in ∈ T : ik+1 ≤ κi1···ik ∀0 ≤ k < n

}
(3.4)

defines a random plane tree. We call this the Galton-Watson tree with off-
spring distribution ρ = (ρk)k≥0. If U is such a Galton-Watson tree, then
setting

Xn :=
∣∣{i ∈ U : |i| = n

}∣∣ (n ≥ 0) (3.5)
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defines Galton-Watson branching process (Xn)n≥0 with initial state X0 = 1.
Such a process describes a population in which each individual, independently
of the others, produces a number of children with offspring distribution ρ.
Let

〈ρ〉 :=
∞∑
k=0

ρkk (3.6)

denote the mean of the offspring distribution. A branching process is called
subcritical if 〈ρ〉 < 1, critical if 〈ρ〉 = 1, and supercritical if 〈ρ〉 > 1. It is
well-known that, excluding the trivial case that ρ1 = 1, a Galton-Watson tree
U is a.s. finite if and only if the branching process is subcritical or critical.

There is a convenient way of coding plane trees in terms of random walk
excursions. By definition, a discrete interval is a set of the form

[l : r] := {l, . . . , r} = {k ∈ Z : l ≤ k ≤ r} (3.7)

with l, r ∈ Z. A contour function (also called Dyck path2) of length 2n is a
function f : [0 : 2n]→ N such that

f(0) = f(2n) = 0 and
∣∣f(k)− f(k − 1)

∣∣ = 1 (0 < k ≤ 2n). (3.8)

We set
Dn :=

{
f : f is a contour function of length 2n

}
. (3.9)

Each f ∈ Dn defines a pseudo-metric df on [0 : 2n] by

df (x, z) = f(x) + f(z)− 2 inf
x≤y≤z

f(y) (0 ≤ x ≤ z ≤ 2n).

We write x ∼f z if df (x, z) = 0 and let x := {z : x ∼f z} denote the
equivalence class containing x. Then setting df (x, z) := df (x, z) (x, z ∈ [0 :
2n]) defines a metric on the set of equivalence classes V f := {x : x ∈ [0 : 2n]}.
It is not hard to check (picture!) that

df is the graph distance on a tree T (f) = (V f , Ef ) with vertex set V f .

The children of a vertex x ∈ V f are naturally ordered from left to right, so
we can naturally equip T (f) with the structure of a plane tree. Let U(f)
denote the resulting plane tree. It is not hard to see (picture!) that the map

Dn 3 f 7→ U(f) ∈ Un (3.10)

is a bijection, i.e., for each plane tree U with n + 1 vertices there exists a a
unique contour function f of length 2n such that U = U(f). We call f the
contour function of U.

2After the German mathematician Walther Franz Anton von Dyck.
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Lemma 3.1 (Geometric offspring distribution) Let 0 < p < 1 and let
U be a Galton-Watson tree with offspring distribution ρk = pk(1−p) (k ≥ 0).
Then

P
[
U ∈ ·

∣∣ |U| = n+ 1
]

(3.11)

is the uniform distribution on Un.

Proof Let U be a Galton-Watson tree with offspring distribution ρk = pk(1−
p) (k ≥ 0), and let U ∈ Un be a fixed plane tree U with n + 1 vertices.
Let κi denote the number of children of i ∈ U . Then using the fact that∑

i∈U κi = n, we see that

P
[
U = U

]
=
∏
i∈U

pκi(1− p) = pn(1− p)n+1 (n ≥ 0, U ∈ Un). (3.12)

Since the right-hand side depends only on n and not (otherwise) on U , we see
that the conditional law of U given that U ∈ Un is the uniform distribution
on Un.

Remark Let S = (Sk)k≥0 be a random walk on Z with S0 = 0 and transition
probabilities

P
[
Sn+1 = x+ 1

∣∣Sn = x
]

= p, P
[
Sn+1 = x− 1

∣∣Sn = x
]

= 1− p. (3.13)

Define a random variable N with values in N ∪ {∞} by

2N + 1 := inf
{
k ≥ 1 : Sk = −1

}
. (3.14)

On the event that N <∞, let F be the random element of the space DN of
contour functions of length 2N defined by

F (k) := Sk (0 ≤ k ≤ 2N). (3.15)

Then

P
[
(N,F ) = (n, f)

]
= pn(1− p)n+1 (n ≥ 0, f ∈ Dn), (3.16)

where we have used that up to the time 2N+1, the random walk S makes N
upward jumps and N + 1 downward jumps. Comparing this with (3.12), we
see that the planar tree U(F ) associated with the random contour function F
is a Galton-Watson tree with geometric offspring distribution. More precisely,
if N is the random variable in (3.14) and U is a Galton-Watson tree with
offspring distribution ρk = pk(1− p) (k ≥ 0), then

P[U(F ) = U, N <∞] = P[U = U ]
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for each finite planar tree U . In particular, if p < 1/2, then N <∞ a.s. and
U(F ) and U are equal in law.

For labeled trees, a similar result to Lemma 3.1 is known to hold if the
geometric distribution is replaced by a Poisson distribution with mean one.

For each n ≥ 0, let Un be a random plane tree with n+ 1 vertices, chosen
according to the uniform distribution on Un. We will be interested in the
shape of the tree Un when n is large. In Section 3.7 below, we will see
that the trees Un, properly rescaled, converge in distribution to a continuum
random tree whose contour function is the standard Brownian excursion. To
formulate this properly, in the next sections, we start studying continuum
trees.

3.3 The Gromov-Hausdorff metric

A homeomorphism between two topological spaces A and B is a bijection
ψ : A → B such that both ψ and ψ−1 are continuous. Two topological
spaces are homeomorphic if such a homeomorphism exists. An isometry
between two metric spaces (V, d) and (V ′, d′) is a map ψ : V → V ′ such that

d′
(
ψ(x), ψ(y)

)
= d(x, y) (x, y ∈ V ).

It is easy to see that if ψ : V → V ′ is an isometry and ψ(V ) := {ψ(x) : x ∈ V }
is the image of V under ψ, then ψ : V → ψ(V ) is a homeomorphism. Two
metric spaces (V, d) and (V, d′) are called isometric if there exists a surjective
isometry from V to V ′.

We will be interested in the set of all complete separable metric spaces up
to isomorphism. We have to be a bit careful with our terminology here, since
there is no such thing as the “set of all complete separable metric spaces”,
just as talking about the “set of all sets” entails the risk of running into
paradoxes such as Russel’s paradox. We will argue that nevertheless, it is
possible to define a set that we can effectively interpret as “the set of all
complete separable metric spaces up to isomorphism”.

By definition, the Hilbert cube is the set [0, 1]N, equipped with the product
topology. By Tychonoff’s theorem, [0, 1]N is compact. It is easy to see it is
also metrisable. A possible choice for the metric is

d(x, y) :=
∞∑
n=0

2−n|xn − yn|.

If A ⊂ [0, 1]N is a subset of the Hilbert cube, then we equip A with the
induced topology from [0, 1]N. Then A is a metrisable space. It is moreover
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second countable and hence separable. The following well-known lemma says
that each separable metrisable space is homeomorphic to a space A of this
form.

Lemma 3.2 (Set of all separable metrisable spaces) Each subset A ⊂
[0, 1]N, equipped with the induced topology, is a separable metrisable topologi-
cal space. Moreover, for each separable metrisable topological space B, there
exists a subset A ⊂ [0, 1]N such that A is homeomorphic to B.

Proof (sketch) A subset of [0, 1]N, equipped with the induced topology, is
clearly metrisable and first countable, which implies that it must be separable
too. Now let B be an arbitrary separable metrisable topological space and let
d be a metric generating the topology on B. Since B is separable, there exists
a countable dense set D ⊂ B. For each z ∈ D and n ≥ 1, let fz,n : B → [0, 1]
be the function fz,n(y) := (1− nd(x, z)) ∨ 0. Since D × N+ is countable, we
can enumerate its elements as

D × N+ =
{

(zi, ni) : i ∈ N
}

Let A ⊂ [0, 1]N be the image of B under the map ψ : B → [0, 1]N defined as

ψ(x) :=
(
fzi,ni(x)

)
i∈N.

Then one can check that ψ is a homeomorphism from B to A.

By Proposition 1.4, if A is a subset of the Hilbert cube [0, 1]N, then there
exists a complete metric d on A that generates the induced topology from
[0, 1]N if and only if A is Gδ-set. With this in mind, we define M to be
the set of all pairs (A, d) such that A is a Gδ-subset of [0, 1]N and d is a
complete metric on A that generates the induced topology from [0, 1]N. As
an immediate consequence of Lemma 3.2, we obtain:

Lemma 3.3 (Set of complete separable metric spaces) Each complete
separable metric space (V, d) is isometric to an element (A, d′) ∈M .

Let us write (V, d) ∼ (V ′, d′) to indicate that the complete separable
metric spaces (V, d) and (V ′, d′) are isometric. Then ∼ is an equivalence
relation on M . We let M denote the set of equivalence classes. For each
complete separable metric space (V, d), we define [V, d] ∈M by

[V, d] :=
{

(A, d′) ∈M : (V, d) ∼ (A, d′)
}
.

We say that (V, d) is a representant of the equivalence class [V, d] ∈ M.
We can view M as the set of all complete separable metric spaces, up to
isomorphisms, while avoiding the paradoxes of naive set theory.
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Let (Vi, di) (i = 1, 2) and (V, d) be three metric spaces. By definition,

a joint isometric embedding of V1 and V2 in V is a pair ~ψ = (ψ1, ψ2) of
isometries ψi : Vi → V (i = 1, 2). We let

J (V1, V2) :=
{

(A, d, ψ) : (A, d) ∈M, ~ψ is a joint

isometric embedding of V1 and V2 in A
}
.

(3.17)

We recall that each compact metric space is complete and separable. With
this in mind, we let

Mc :=
{

[V, d] ∈M : (V, d) is compact
}

denote the set of all compact metric spaces, up to isometry. The Gromov-
Hausdorff metric is the metric dGH on Mc defined as

dGH(V1, V2) := inf
(A,d,~ψ)∈J (V1,V2)

dH

(
ψ1(V1), ψ2(V2)

)
, (3.18)

where dH is the Hausdorff metric on the space of compact subsets of (A, d),
defined in (1.5). The fact that dH is a metric on Mc is proved in [BBI01,
Thm 7.3.30]. The Gromov-Hausdorff metric was invented by Edwards in
[Edw75] and independently by Gromov in [Gro81]. A good source of infor-
mation about the Gromov-Hausdorff metric is [BBI01, Chapter 7]. See also
[Eva08].

By definition, a correspondence between two sets V and Y is a set R ⊂
V × Y such that for each x ∈ V , there exists at least one y ∈ Y such that
(x, y) ∈ R, and likewise, for each y ∈ Y , there exists at least one x ∈ V
such that (x, y) ∈ R. If (Vi, di) (i = 1, 2) are metric spaces and R is a
correspondence between V1 and V2, then the distortion of R is defined as

dis(R) := sup
{∣∣d1(x1, y1)− d(x2, y2)

∣∣ : (x1, x2), (y1, y2) ∈ R
}
.

In words, this is how much the distance between two points x1, y1 in V1

can maximally change when we replace them by corresponding points x2, y2

in V2. It is clear that if there exists a correspondence between two metric
spaces that has a small distortion, then these metric spaces are “similar”.
The following result, which we cite from [Eva08, Thm 4.11], relates this to
the Gromov-Hausdorff metric.

Proposition 3.4 (Distortions and the Gromov-Hausdorff metric)
For any [V1, d1], [V2, d2] ∈Mc, one has

dGH(V1, V2) = 1
2

inf
R∈R(V1,V2)

dis(R), (3.19)

where R(V1, V2) denotes the set of all correspondences between V1 and V2.
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Formula (3.19) is often easier to work with as a definition of the Gromov-
Hausdorff metric than (3.18), since it is often easier to construct a correspon-
dence between two metric spaces than a joint isometric embedding in a third
space.

3.4 The Gromov-weak topology

The support of a finite measure µ on a Polish space V , denoted supp(µ), is
defined as

supp(µ) :=
⋂{

A ⊂ V : A is closed and µ(V \A) = 0
}
.

It is well-known that µ(V \supp(µ)) = 0, so supp(µ) is the smallest closed
subset of V such that µ is concentrated on it. Moreover, if V ′ is another
Polish space and ψ : V → V ′ is a continuous map, then

supp
(
µ ◦ ψ−1

)
= ψ

(
supp(µ)

)
,

i.e., the support of the image measure µ ◦ ψ−1 is the image under ψ of the
support of µ.

By definition, a metric measure space (mm-space) is a triple V = (V, d, µ)
where (V, d) is a complete separable metric space and µ is a probability mea-
sure on V (equipped with the Borel-σ-algebra). Two mm-spaces V = (V, d, µ)
and V ′ = (V ′, d′, µ′) are isomorphic if there exists a map ψ : supp(µ) →
supp(µ′) such that

µ′ = µ ◦ ψ−1 and d′
(
ψ(x), ψ(y)

)
= d(x, y) ∀x, y ∈ supp(µ).

We call such a map ψ an isomorphism of mm-spaces. In words, the first
property says that ψ : V → V ′ is measure-preserving. The second property
says that ψ is an isometry from supp(µ) to its image under ψ. Combining this
with the measure-preserving property, it is easy to see that ψ : supp(µ) →
supp(µ′) must be surjective, so ψ is an isometry between the metric spaces
(supp(µ), d) and (supp(µ′), d′).

It follows from this definition that if (V, d, µ) is an arbitrary mm-space
and we set V ′ := supp(µ) and choose for d′ and µ′ the restrictions of d and
µ to supp(µ), then (V, d, µ) and (V ′, d′, µ′) are isomorphic. Thus, if we are
only interested in mm-spaces up to isomorphisms, then we can without loss
of generality assume that supp(µ) = V . There are, nevertheless, sometimes
reasons to allow for the case that V is strictly larger than supp(µ). For
example, it may happen that the metric space (V, d) has a certain additional
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structure (such as the structure of a real-tree, to be discussed below) that
the smaller metric space (supp(µ), d) does not have.

Recall that M is the space of all pairs (A, d) such that A is a Gδ-subset
of the Hilbert cube [0, 1]N and d is a complete metric on A that generates
the induced topology from [0, 1]N. In the previous section, we defined an
equivalence relation on M by setting (A, d) ∼ (A′, d′) if (A, d) and (A′, d′)
are isometric, and we showed that the resulting set of equivalence classes M
could be interpreted as the set of all complete separable metric spaces, up to
isometry.

For metric measure space, we can carry out a similar construction. We
let MM denote the space of all triples (A, d, µ) with (A, d) ∈ M and µ a
probability measure on A. We write (V, d, µ) ∼ (V ′, d′, µ′) to indicate that the
mm-spaces (V, d, µ) and (V ′, d′, µ′) are isomorphic. Then ∼ is an equivalence
relation on MM . We let MM denote the set of equivalence classes. For each
mm-space (V, d, µ), we define [V, d, µ] ∈MM by

[V, d, µ] :=
{

(A, d′, µ′) ∈MM : (V, d, µ) ∼ (A, d′, µ′)
}
.

We say that (V, d, µ) is a representant of the equivalence class [V, d, µ] ∈MM.
Informally, we can view MM as the set of all mm-spaces, up to isomorphisms.

Let V = (V, d, µ) be an mm-space and let X1, . . . , Xm be i.i.d. V -valued
random variables with common law µ. Then setting

Dm[V ](i, j) := d(Xi, Xj) (1 ≤ i, j ≤ m)

defines a random metric on the finite set {1, . . . ,m}. We view Dm[V ] as
a random variable with values in Rm2

, the space of all real functions on
{1, . . . ,m}2. We cite the following theorem from [GPW09, Thm 1].

Theorem 3.5 (The Gromov-weak topology) Let MM be the set of all
mm-spaces, up to isomorphisms. Then it is possible to equip MM with a
metric d such that

(i) (MM, d) is a complete separable metric space,

(ii) d(Vn,V)→ 0 if and only if P
[
Dm[Vn] ∈ ·

]
=⇒
n→∞

P
[
Dm[V ] ∈ ·

]
for each

m ≥ 1.

Since a metrisable topology is uniquely characterised by its convergent
sequences, property (ii) uniquely characterises a topology on MM. We call
this the Gromov-weak topology. Property (i) says that MM, equipped with
the Gromov-weak topology, is a Polish space. Note that Theorem 3.5 implies
that if V = (V, d, µ) and V ′ = (V ′, d′, µ′) are mm-spaces such that Dm[V ] and
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Dm[V ′] are equal in law for all m ≥ 1, then V and V ′ are isomorphic, which
in itself is already a nontrivial statement.

There are several possible choices for a metric d on MM with properties
as described in Theorem 3.5. Two possible choices are the Gromov-Prohorov
metric and the Gromov-Wasserstein metric; see [GPW09, Prop. 10.5], which
moreover lists two further metrics that generate the same topology but are
not complete. Another metric, originally introduced in [Gro01, Chapter 31

2
],

was shown to be equivalent to the Gromov-Prohorov metric in [Loh13]. For
brevity, we describe only one of these metrics, the Gromov-Prohorov metric.

Recall from (3.17) that J (V1, V2) denotes the set of all joint isometric

embeddings (A, d, ~ψ) of the metric spaces (Vi, di) (i = 1, 2) in a metric space
(A, d) ∈ M . By definition, the Gromov-Prohorov metric is the metric on
MM defined as

dGP(V1,V2) := inf
(A,d,~ψ)∈J (V1,V2)

dP

(
µ1 ◦ ψ−1

1 , µ2 ◦ ψ−1
2

)
, (3.20)

where dP is the Prohorov metric on M1(A) defined in Section 1.4. The fact
that dGP is a metric on MM is proved in [GPW09, Lemma 5.4], [GPW09,
Prop. 5.6] says that the space (MM, dGP) is complete and separable, and
[GPW09, Thm 5] says that d(Vn,V) → 0 if and only if P

[
Dm[Vn] ∈ ·

]
⇒

P
[
Dm[V ] ∈ ·

]
as n → ∞ for each m ≥ 1. Together, these results imply

Theorem 3.5. In particular, they show that dGP generates the Gromov-weak
topology.

We will be interested in weak convergence of probability measures on
MM. Let V = [V, d, µ] be an MM-valued random variable and conditional
on V , let X1, . . . , Xm be i.i.d. V -valued random variables with common law
µ. Then setting

Dm[V ](i, j) := d(Xi, Xj) (1 ≤ i, j ≤ m)

defines a random metric on the finite set {1, . . . ,m}.

Lemma 3.6 (Convergence in law of random mm-spaces) Let Vn,V
be random variables with values in MM. Then the following statements are
equivalent:

(i) P
[
Vn ∈ ·

]
=⇒
n→∞

P
[
V ∈ ·

]
, where ⇒ denotes weak convergence of

probability measures on MM, equipped with the Gromov-weak topology.

(ii) P
[
Dm[Vn] ∈ ·

]
=⇒
n→∞

P
[
Dm[V ] ∈ ·

]
for each m ≥ 1.
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Proof (sketch) Let [V, d, µ] ∈ MM and let µm := µ ⊗ · · · ⊗ µ denote the
product measure on V m. Each bounded continuous function φ : Rm2 → R
defines a function Φφ : MM→ R by

Φφ(V, d, µ) :=

∫
V n
µm(dx)φ

(
d(xi, xj)

)
1≤i,j≤m

Then

Φφ(V) = E
[
φ(Dm[V ]) | V

]
,

and hence (ii) is equivalent to the statement that

E
[
Φφ(Vn)

]
−→
n→∞

E
[
Φφ(V)

]
for each m ≥ 1 and bounded continuous function φ : Rm2 → R. Based on
Theorem 3.5, one can show that the Gromov-weak topology on MM is the
weakest topology that makes the functions Φφ : MM→ R continuous for all
bounded continuous function φ : Rm2 → R. In particular, the functions Φφ

are bounded and continuous, so the implication (i)⇒(ii) is trivial.
To prove the converse, one needs to prove that the class of functions of

the form Φφ is convergence determining. It is not hard to see that they are
closed under multiplication, i.e., if φi : Rm2

i → R (i = 1, 2) are bounded and
continuous, then we can find a bounded continuous ψ : R(m1+m2)2 → R such
that

Φφ1(V)Φφ2(V) = Φψ(V).

Since the functions Φφ also generate the topology on MM, one can now
apply an old result of Le Cam [Cam57] to conclude they are convergence
determining. For the details, we refer to [Loh13, Cor. 2.8]. It is interesting
that the functions Φφ are not dense in the space of all bounded continuous
functions Φ : MM→ R, see [Loh13, Remark 2.6]. Very often, one proves that
a class of continuous functions is distribution determining by showing that
it is dense, but in this case, this approach does not work, even though the
function class of interest is distribution determining and even convergence
determining.

Remark Let Vi = (Vi, di, µi) (i = 1, 2) be mm-spaces. Recall from Sec-
tion 1.4 that C(µ1, µ2) denotes the space of all couplings of µ1 and µ2, i.e.,
C(µ1, µ2) is the space of all probability measures η on V1×V2 whose first and
second marginals are µ1 and µ2, respectively. For each ε > 0, let us define
Dε ⊂ (V1 × V2)2 by

Dε :=
{(

(x1, y1), (x2, y2)
)

:
∣∣d1(x1, y1)− d2(x2, y2)

∣∣ ≥ ε
}
.
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Then we can define the distortion of a coupling η ∈ C(µ1, µ2) as

dis(η) := inf
{
ε > 0 : η ⊗ η (Dε) ≤ ε

}
,

where η ⊗ η denotes the product measure on (V1 × V2)2. Here are some
questions that I do not know the answer to. Does setting

d(V1,V2) := inf
η∈C(µ1,µ2)

dis(η) (3.21)

define a metric on the space MM? Is d(Vk,V)→ 0 equivalent to convergence
in the Gromov-weak topology? An affirmative answer to these questions
would allow one to characterise Gromov-weak in terms of distortions, simi-
lar to Proposition 3.4. Anita Winter [personal communication] thinks that,
probably, the answer to these questions is positive, and it should not be hard
to prove so.

3.5 The four-point condition

In Section 3.1 we defined when a graph G = (V,E) is a tree. We also saw
that the vertex set V of a graph, equipped with the graph distance d, forms a
metric space (V, d). Since E =

{
{v, w} : d(v, w) = 1

}
, all information about

the graph G = (V,E) is contained in the metric space (V, d).
In this section, we generalise the concept of a “tree” to more general

metric spaces. Let (V, d) be a metric space such that

d(x, y) <∞ ∀x, y ∈ V.

We will be interested in the following conditions on (V, d).

(i) Four-point condition d(x1, x2) + d(x3, x4) ≤
(
d(x1, x3) + d(x2, x4)

)
∨(

d(x1, x4) + d(x2, x3)
)

for all x1, x2, x3, x4 ∈ V .

(ii) Branch point condition For each x1, x2, x3 ∈ V , there exists a c ∈ V
such that d(xi, xj) = d(xi, c) + d(c, xj) for all i, j ∈ {1, 2, 3}, i 6= j.

As we will see in a moment, the four-point condition (i) already goes a long
way towards saying that the metric space (V, d) is, in some way, a tree. By
definition, a weighted graph is a triple (V,E, `) where G = (V,E) is a graph
and ` : E → (0,∞) is a function that assigns to each edge e ∈ E a positive
length `(e). If (v0, . . . , vn) is a walk in G, then we call

n∑
k=1

`
(
{vk−1, vk}

)
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the length of the walk. The length distance d(v, w) between two vertices
v, w ∈ V is the length of the shortest walk connecting v and w, if such a
walk exists, and d(v, w) := ∞ otherwise. Note that in the special case that
`(e) = 1 for all e ∈ E, this yields the usual graph distance. One can check
that the length distance d is a metric on V and d(v, w) < ∞ if and only if
v and w are connected. A weighted tree is a weighted graph (V,E, `) such
that (V,E) is a tree. The following theorem says that finite metric spaces
satisfying the conditions (i) and (ii) are, basically, weighted trees.

Theorem 3.7 (Length distance) Let (V, d) be a finite metric space. Then
(V, d) satisfies the four-point condition (i) if and only if there exists a weighted
tree T = (W,E, `) such that V ⊂ W and d is the length distance on T . The
metric space (V, d) moreover satisfies the branch point condition (ii) if and
only if T = (W,E, `) can be chosen such that V = W .

Proof Conditions (i) and (ii) are inspired by [ALW17, Def. 1.1], where some
further information may be found. See also [Eva08, Theorem 3.38].

To get a better understanding of the four-point condition, let x1, . . . , x4

be four elements of V . There are three ways of partitioning {x1, . . . , x4} into
two sets of cardinality two. Let us set

A := d(x1, x2) + d(x3, x4),

B := d(x1, x3) + d(x2, x4),

C := d(x1, x4) + d(x2, x3).

The four-point condition gives us

A ≤ B ∨ C, B ≤ A ∨ C, and C ≤ A ∨B. (3.22)

By symmetry, we can without loss of generality assume that A ≤ B ≤ C.
Then it is easy to see that (3.22) is equivalent to B = C. If x1, . . . , x4 ⊂ V
are all different from each other, then we write {x1, x2}|{x3, x4} if

d(x1, x2) + d(x3, x4) ≤ d(x1, x3) + d(x2, x4) = d(x1, x4) + d(x2, x3). (3.23)

Then the four-point condition says that each set A ⊂ V with |A| = 4 can be
partitioned as A = {x1, x2} ∪ {x3, x4} in such a way that {x1, x2}|{x3, x4}.
If the inequality in (3.23) is strict, then such a partition is unique.

By definition, a weighted cladogram on a given set of leaves V is a triple
(W,E, `) where (W,E) is a binary tree with set of leaves V and and ` :
E → [0,∞) is a function that assigns to each edge e ∈ E a nonnegative
length `(e). The length distance d(x, y) between two vertices x, y ∈ W in a
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weighted cladogram is defined just as in the case of weighted graphs. In the
present setting, this is only a pseudo-metric since we allow for edges of length
zero. For any finite (pseudo-) metric space (V, d), we say that the (pseudo-)
metric of V is generated by a weighted cladogram if there exists a weighted
cladogram (W,E, `) with set of leaves V such that d corresponds to the length
distance. In case d is a metric, it is not hard to see (picture!) that this is
equivalent to the statement that there exists a weighted tree (W ′, E ′, `′) such
that V ⊂ W ′ and d corresponds to the length distance on (W ′, E ′, `′). In
particular, if the metric of V is generated by a weighted cladogram, then
we can always contract all vertices at distance zero from each other in the
cladogram to obtain a weighted tree such that the metric on V corresponds
to the length distance in this tree.

It is easy to see (picture!) that if a (pseudo-) metric on a finite set V is
generated by a weighted cladogram, then it satisfies the four-point condition.
We need to prove the converse. If (V, d) is a metric space, then for any
x1, x2, x3 ∈ V we define

d(x1|x2, x3) := 1
2

[
d(x1, x2) + d(x1, x3)− d(x2, x3)

]
,

which is nonnegative by the triangle inequality. Clearly

d(x1, x2) = d(x1|x2, x3) + d(x2|x1, x3).

If the pseudo-metric on (V, d) is generated by a weighted cladogram (W,E, `),
then

d(x1, c) = d(x1|x2, x3), d(x2, c) = d(x2|x1, x3),

and d(x3, c) = d(x3|x1, x2),

where c = c(x1, x2, x3) denotes the branch point of x1, x2, x3, defined in
Section 3.1.

By definition, a cherry of a cladogram (W,E) is a pair of leaves {c1, c2}
such that the branch point c(c1, c2, x) does not depend on x ∈ V \C. If all
edges have positive length, then it is not hard to see that this is equivalent
to the statement that the length distance satisfies

{c1, c2}|{x1, x2} ∀x1, x2 ∈ V \C, x1 6= x2. (3.24)

Generalising, in any pseudo-metric space (V, d) that satisfies the four-point
condition, we take (3.24) as the definition of a cherry.

We can pick a cherry. Let (V, d) be a pseudo-metric space that satisfies
the four-point condition and let C = {c1, c2} ⊂ V be a cherry. We set
V ′ := (V \C) ∪ {c}, where c is an element not contained in V \C, and define
a symmetric function d′ : V ′ × V ′ → [0,∞) by

d′(c, c) := 0, d′(x, c) := d(x|c1, c2), d′(x, y) := d(x, y) (x, y ∈ V \C).
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We call (V ′, d′) the reduced space obtained by picking the cherry C. For any
finite pseudo-metric space (V, d) with |V | ≥ 3 that satisfies the four-point
condition, we will prove the following claims:

I. (V, d) contains a cherry.

II. If (V ′, d′) is the reduced space obtained by picking a cherry from (V, d),
then (V ′, d′) is a pseudo-metric space that satisfies the four-point con-
dition.

We first show how these statements imply what we want, namely, that if a
finite pseudo-metric space (V, d) satisfies the four-point condition, then its
pseudo-metric is generated by a weighted tree. The proof is by induction on
the number of elements of V . If V contains just two elements x1, x2, then we
connect these by an edge of length d(x1, x2) and we are done. Now assume
that the statement is proved for all spaces with at most n elements. Let (V, d)
be a pseudo-metric space with n + 1 elements that satisfies the four-point
condition. Then by I, (V, d) contains a cherry C = {c1, c2} ⊂ V . Let (V ′, d′)
with V ′ = (V \C)∪{c} be the reduced space obtained by picking the cherry.
By II, (V ′, d′) is a pseudo-metric space that satisfies the four-point condition.
By the induction hypothesis, the pseudo-metric on V ′′ is generated by a
weighted cladogram. We extend this cladogram by connecting ci (i = 1, 2)
to c by edges of length

d(ci, c) := d(ci, x)− d(x|c1, c2) (i = 1, 2), (3.25)

where x is any element of V \C. We need to show that our definition does
not depend on the choice of x. By symmetry, it suffices to prove the claim
for i = 1. Filling in the definition of d(x|c1, c2), we see that

d(c1, c) = 1
2

[
d(x, c1)− d(x, c2) + d(c1, c2)

]
.

To see that this does not depend on the choice of x ∈ V \C, it suffices to
show that for each x1, x2 ∈ V \C,

d(x1, c1)− d(x1, c2) = d(x2, c1)− d(x2, c2),

which holds by (3.23) and (3.24). Recalling the definition of the metric d′

on V ′, we see from (3.25) that d(ci, x) = d(ci, c) + d′(c, x) (x ∈ V \C), from
which we see that the metric on (V, d) corresponds to the length distance on
the exended tree. This completes the induction step.

It remains to prove I and II. We start with the proof of I, which needs
some preparations. The four-point condition implies that {x1, x2}|{x3, x4} is
equivalent to

d(x1, x3) + d(x2, x4) = d(x1, x4) + d(x2, x3).
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As a result, it is easy to see that

{a1, a2}|{b1, b2} and {a2, a3}|{b1, b2} imply {a1, a3}|{b1, b2}. (3.26)

Indeed, subtracting the equalities

d(a1, b1) + d(a2, b2) = d(a1, b2) + d(a2, b1)

and d(a2, b2) + d(a3, b1) = d(a2, b1) + d(a3, b2)

we obtain

d(a1, b1)− d(a3, b1) = d(a1, b2)− d(a3, b2)

⇔ d(a1, b1) + d(a3, b2) = d(a1, b2) + d(a3, b1),

proving (3.26). For any x1, . . . , x4, we write

d(x1, x2|x3, x4) :=
[
d(x1, x3) + d(x2, x4)

]
−
[
d(x1, x2) + d(x3, x4)

]
.

Using the four-point condition, we make the following simple observations:

d(x1, x2|x3, x4) > 0 implies {x1, x2}|{x3, x4},
{x1, x2}|{x3, x4} implies d(x1, x2|x3, x4) ≥ 0

(3.27)

Moreover:

d(x1, x2|x3, x4) = d(x2, x1|x4, x3), and

{x1, x2}|{x3, x4} implies d(x1, x2|x3, x4) = d(x2, x1|x3, x4)
(3.28)

We are now ready to prove I. If |V | = 3, then by (3.24), trivially every
subset C ⊂ V with |C| = 2 is a cherry, so we can without loss of generality
assume that |V | ≥ 4. Since V is finite, we can find x1, . . . , x4 that maximise
d(x1, x2|x3, x4). Using (3.27) it is easy to see that we can without loss of
generality assume that {x1, x2}|{x3, x4}. We will show that C := {x1, x2} is
a cherry. By the maximality of d(x1, x2|x3, x4), for any x′3 ∈ V \C, we have

d(x1, x2|x3, x4) ≥ d(x1, x
′
3|x3, x4).

This says that[
d(x1, x3) + d(x2, x4)

]
−
[
d(x1, x2) + d(x3, x4)

]
≥
[
d(x1, x3) + d(x′3, x4)

]
−
[
d(x1, x

′
3) + d(x3, x4)

]
,

which can be simplified to

d(x1, x
′
3) + d(x2, x4) ≥ d(x1, x2) + d(x′3, x4).
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By (3.28), we have d(x1, x2|x3, x4) = d(x2, x1|x3, x4). Now by the argument
we have already seen d(x2, x1|x3, x4) ≥ d(x2, x

′
3|x3, x4) implies

d(x2, x
′
3) + d(x1, x4) ≥ d(x2, x2) + d(x′3, x4).

Combining this with our previous formula, using the four-point condition, it
follows that

{x1, x2}|{x′3, x4} ∀x′3 ∈ V \C.

In the same way, we obtain that

{x1, x2}|{x3, x
′
4} ∀x′4 ∈ V \C.

Using also {x1, x2}|{x3, x4} and (3.26), it follows that

{x1, x2}|{x′3, x′4} ∀x′3, x′4 ∈ V \C, x′3 6= x′4,

which proves that C is a cherry.
It remains to prove II. We need to show that d′ satisfies the triangle

inequality and the four-point condition. We start with the triangle inequality.
For x1, x2, x3 ∈ V ′, we need to show that

d′(x1, x3) ≤ d′(x1, x2) + d′(x2, x3). (3.29)

The statement is trivial if c 6∈ {x1, x2, x3}. If c = x3, then we need to show
that

d(x1|c1, c2) ≤ d(x1, x2) + d(x2|c1, c2). (3.30)

We have shown in (3.25) that

d(x, c1, c2) = d(x, c1)− d(c, c1) (x ∈ V \C),

where d(c, c1) does not depend on the choice of x ∈ V \C. Using this, we can
rewrite (3.30) as

d(x1, c1)− d(c, c1) ≤ d(x1, x2) + d(x2, c1)− d(c, c1),

which holds since d satisfies the triangle inequality. By symmetry, the case
that c = x1 in (3.29) is the same so it remains to treat the case c = x2. In
this case,

d′(x1, x) + d′(x, x2) = d(x1|c1, c2) + d(x2|c1, c2)

= 1
2

[
d(x1, c1) + d(x1, c2)− d(c1, c2)

]
+ 1

2

[
d(x2, c1) + d(x2, c2)− d(c1, c2)

]
= d(x1, c1) + d(x2, c2)− d(c1, c2) ≥ d(x1, x2),
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where in the last two steps we have used that {c1, c2}|{x1, x2}. This completes
the proof of the triangle inequality. To prove also the four-point condition, let
x1, . . . , x4 be points in V ′ of which precisely one is the point c. By symmetry,
we may assume that x1 = c. Then

d′(c, x2) + d′(x3, x4) = d(c1, x2) + d(x3, x4)− d(c1, c),

d′(c, x3) + d′(x2, x4) = d(c1, x3) + d(x2, x4)− d(c1, c),

d′(c, x4) + d′(x2, x3) = d(c1, x4) + d(x2, x3)− d(c1, c).

To check the four-point condition, we must check that two of these expres-
sions are equal while the third one is at most as large as the other two. Since
we subtract the same constant in each case, this follows from the fact that d
satisfies the four-point condition.

This completes the proof that a finite pseudo-metric space (V, d) satisfies
the four-point condition if and only if the pseudo-metric is generated by a
weighted cladogram. If (V, d) moreover satisfies the branch-point condition
(ii) defined at the beginning of the section, then for each internal vertex x of
the cladogram, there is a leaf x′ ∈ V such that d(x, x′) = 0. From this, the
statements of the theorem follow easily.

3.6 Continuum trees

We now turn our attention to true continuum trees. A topological space V
is connected if there do not exist disjoint open sets O1, O2 such that V =
O1 ∪ O2. A sufficient condition for this is that V is path-connected, which
means that for each x, y ∈ V there exists a continuous map α : [0, 1] → V
such that α(0) = x and α(1) = y. Let (V, d) be a metric space such that
d(x, y) < ∞ for all x, y ∈ V . A geodesic3 in (V, d) is an isometry γ from a
compact real interval [0, T ] into V . We say that γ is a geodesic from γ(0) to
γ(T ). A segment is a set of the form

[x, y] :=
{
γ(t) : t ∈ [0, T ]

}
where γ is a geodesic from x to y.

In general metric spaces, the notation [x, y] is of course ambiguous, but many
metric spaces, such as Rd or the real-trees that we are about to define, have
the property that for each x, y ∈ V , there exists a unique geodesic from x

3Sometimes in the literature one finds a weaker definition of a geodesic, which says
that for all t ∈ [0, T ], there exists an ε > 0 such that d

(
γ(t1), γ(t2)

)
= |t2 − t1| for all

t1, t2 ∈ (t − ε, t + ε) ∩ [0, T ]. Note that this condition says that γ is “locally” a geodesic,
according to our definition.



3.6. CONTINUUM TREES 75

to y, and in such spaces [x, y] is of course good notation. The unit circle is
the set S1 := {x ∈ R2 : |x| = 1}, equipped with the induced topology from
R2. We will be interested in the following conditions on (V, d), the first two
of which are the four-point condition and branch point condition from the
previous section.

(i) d(x1, x2) + d(x3, x4) ≤
(
d(x1, x3) + d(x2, x4)

)
∨
(
d(x1, x4) + d(x2, x3)

)
for all x1, x2, x3, x4 ∈ V .

(ii) For each x1, x2, x3 ∈ V , there exists a y ∈ V such that d(xi, xj) =
d(xi, y) + d(y, xj) for all i, j ∈ {1, 2, 3}, i 6= j.

(iii) (V, d) is connected as a topological space.

(iv) For each x, y ∈ V , there exists a geodesic from x to y.

(v) For each x, z ∈ V , there exists a unique geodesic from x to z.

(vi) If [x, y] and [y, z] are segments such that [x, y] ∩ [y, z] = {y}, then
[x, y] ∪ [y, z] is a segment.

(vii) If α : [0, T ] → V is continuous with x = α(0) and y = α(T ), then
[x, y] ⊂ {α(t) : t ∈ [0, T ]}.

(viii) If α : [0, T ] → V is continuous and injective with x = α(0) and y =
α(T ), then [x, y] = {α(t) : t ∈ [0, T ]}.

(ix) There exists no compact subset C ⊂ V that is homeomorphic to the
unit circle.

If (v) does not hold (or we do not yet know that it holds), then property (vi)
should be interpreted in the sense that if there exist geodesics γ : [0, T ]→ V
and γ′ : [0, T ′]→ V such that

{γ(t) : t ∈ [0, T ]} ∩ {γ′(t) : t ∈ [0, T ′]} = {γ(T )} = {γ′(0)},

then there exists a geodesic γ′′ : [0, T ′′]→ V such that

{γ(t) : t ∈ [0, T ]} ∪ {γ′(t) : t ∈ [0, T ′]} = {γ′′(t) : t ∈ [0, T ′′]}.

Theorem 3.8 (Real-trees) Let (V, d) be a metric space such that d(x, y) <
∞ for all x, y ∈ V . Then conditions (i) and (iii) are equivalent to (iv) and
(vi). Moreover, these conditions imply all the other conditions (ii), (v), and
(vii)–(ix).
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Metric spaces satisfying the conditions (i)–(ix) are called real-trees or R-
trees. In [LeG05, Def 2.1] and [AG15, Def. 1.1], real-trees are defined by
conditions (v) and (viii), which presumably also imply the other conditions.4

I would not be surprised if also (iv) and (ix) imply all the other conditions.
As the example of finite weighted trees shows, conditions (i) and (ii) do
not imply (iii). Metric spaces that only satisfy conditions (i) and (ii) are
sometimes called metric trees [ALW17].

Proof of Theorem 3.8 We will not really prove the theorem but only derive
it from the literature. Good references for real-trees are [Chi01, Eva08]. It
is shown in [Eva08, Lemma 3.12] that the four-point condition is equivalent
to a condition known as 0-hyperbolicity. In [Eva08, Def. 3.15], real-trees are
defined by conditions (iv) and (vi). With this in mind, [Eva08, Theorem 3.40]
proves that conditions (i) and (iii) are equivalent to (iv) and (vi). The fact
that real-trees satisfy (ii) and (v) is now proved in [Eva08, Lemma 3.20].
Property (vii) is proved in [Eva08, Lemma 3.26].

To prove (viii), we first observe that if γ : [0, T ] → V is a geodesic and
0 ≤ s < u ≤ T , then the restriction of γ to [s, u] is also a geodesic. As a
consequence, by (v), if [x, y] is a segment and x′, y′ ∈ [x, y], then [x′, y′] ⊂
[x, y]. We next observe that if [x, y] is a segment and α : [0, T ] → V is
continuous with α(0), α(T ) ∈ [x, y] and α(t) 6∈ [x, y] for all 0 < t < T , then
we must have α(0) = α(T ). Indeed, if we would have x′ := α(0) 6= α(T ) =: y′,
then by (vii) we would have [x′, y′] ⊂ {α(t) : t ∈ [0, T ]}, which contradicts
the assumption that α(t) 6∈ [x, y] for all 0 < t < T . In words, this says
that a continuous curve that leaves a segment and later enters it again must
enter the segment in the same point where it left it. Together with (vii), this
implies (viii).

To prove (ix), finally, we observe that the unit circle is homeomorphic to
the subset S1 := {eit : 0 ≤ t < 2π} of the complex plane. Each continuous
map α : S1 → V corresponds to a continuous function α′ : [0, 2π] → V such
that α′(0) = α′(2π). By (viii), we must have

{α′(t) : t ∈ [0, π]} = {α′(t) : t ∈ [π, 2π]},

which shows that α cannot be one-to-one.

We let

Tc :=
{

[V, d] ∈Mc : (V, d) is a compact real-tree
}
.

We cite the following result from [Eva08, Thm 4.23]. I do not know if the
analogue statement for the larger space Mc also holds.

4Le Gall [LeG05, Def 2.1] only considers compact real-trees.
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Proposition 3.9 (Space of compact real-trees is Polish) The space Tc,
equipped with the Gromov-Hausdorff metric, is a complete separable metric
space.

3.7 Convergence to the CRT

In Section 3.2, we have seen how a contour function f of length 2n can be
used to define a plane tree. For continuum trees, we can use exactly the same
construction. Recall from (2.29) that E1 denotes the space of all continuous
functions f : [0, 1]→ [0,∞) such that f(0) = f(1) = 0. Each f ∈ E1 defines
a pseudo-metric df on [0, 1] by

df (x, z) = f(x) + f(z)− 2 inf
x≤y≤z

f(y) (0 ≤ x ≤ z ≤ 1).

We write x ∼f z if df (x, z) = 0 and let x := {z : x ∼f z} denote the
equivalence class containing x. Then setting df (x, z) := df (x, z) (x, z ∈ [0, 1])
defines a metric on the set of equivalence classes V f := {x : x ∈ [0, 1]}.

Lemma 3.10 (Real-tree defined by an excursion) For each f ∈ E1, the
metric space (V f , df ) is a compact real-tree. Moreover, the map ψ : [0, 1]→
V f defined as ψ(x) := x (x ∈ [0, 1]) is continuous.

Proof We start by showing that the map ψ is continuous. Let x ∈ [0, 1].
We recall from Lemma 1.29 that each continuous function f : [0, 1]→ [0,∞)
is uniformly continuous, i.e., for each ε > 0, there exists a δ > 0 such that
|f(y)− f(x)| ≤ ε for all x, y ∈ [0, 1] such that |y − x| ≤ δ. It follows that

df (x, z) = sup
x≤y≤z

[(
f(x)− f(y)

)
+
(
f(z)− f(y)

)]
≤ 2ε

for all x, z ∈ [0, 1] such that |z − x| ≤ δ, which shows that df (xn, x) → 0
whenever xn → x, proving the continuity of ψ.

Since the continuous image of a compact set is compact, it follows that
the metric space (V f , df ) is compact. For each 0 ≤ x < z ≤ 1, setting
α(y) := y (x ≤ y ≤ z) defines a continuous function α : [x, z] → V f that
starts in x and ends in z, proving that V f is path-connected and hence in
particular connected. Therefore, by Theorem 3.8, to prove that (V f , df ) is
a real-tree it suffices to check the four-point condition (i) from Section 3.6.
Let V := {x1, x2, x3, x4} ⊂ V f . By Theorem 3.7, it suffices to show that
there exists a weighted tree T = (W,E, `) such that V ⊂ W and the metric
df on V corresponds to the length distance on T . This is easily verified in a
picture, by drawing a tree below the excursion f .
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Lemma 3.11 (Map from excursions to real-trees) The map from E1

to Tc that assigns to an excursion f ∈ E1 a compact real-tree [V f , df ] ∈ Tc

is continuous with respect to the topology of uniform convergence on E1 and
the Gromov-Hausdorff metric on Tc.

Proof We apply Proposition 3.4. For each f ∈ E1 and x, z ∈ [0, 1], we write
x ∼f z if df (x, z) = 0 and we let xf := {z : x ∼f z} denote the equivalence
class containing x. Given f, g ∈ E1, we define a correspondence Rf,g between
the sets V f and V g by

Rf,g :=
{

(xf , xg) : x ∈ [0, 1]
}
.

The distortion of Rf,g is given by

dis(Rf,g) = sup
{∣∣df (xf , zf )− dg(xg, zg)∣∣ : x, z ∈ [0, 1]

}
= sup

{∣∣df (x, z)− dg(x, z)∣∣ : 0 ≤ x ≤ z ≤ 1
}
.

Recalling the definition of df , we can estimate∣∣df (x, z)− dg(x, z)∣∣
=
∣∣f(x)− g(x) + f(z)− g(z)− 2 inf

x≤y≤z
f(y) + 2 inf

x≤y≤z
g(y)

∣∣
≤
∣∣f(x)− g(x)

∣∣+
∣∣f(z)− g(z)

∣∣+ 2 sup
x≤y≤z

∣∣f(y)− g(y)
∣∣

≤ 4 sup
x∈[0,1]

∣∣f(x)− g(x)
∣∣,

where in the first inequality we have used that

inf
y∈[x,z]

f(y)− inf
y∈[x,z]

g(y) = sup
y∈[x,z]

[
inf

y′∈[x,z]
f(y′)− g(y)

]
≤ sup

y∈[x,z]

[
f(y)− g(y)

]
,

and similarly with the roles of f and g interchanged. It follows that if fn, f ∈
E1 satisfy fn → f uniformly, then by Proposition 3.4

dGH(V fn , V f ) ≤ 2 sup
x∈[0,1]

∣∣fn(x)− f(x)
∣∣ −→
n→∞

0,

which proves the continuity of the map f 7→ [V f , df ].

Instead of the Gromov-Hausdorff metric, we can also use the Gromov-
weak topology. For each f ∈ E1, let (V f , df ) be the compact real-tree defined
before. Let ψf : [0, 1]→ V f be the map that assigns to each element x ∈ [0, 1]
the corresponding equivalence class xf ∈ V f , let ` be the Lebesgue measure
on [0, 1], and let

µf := ` ◦ ψ−1
f

denote the image of ` under the map ψf . Then (V f , df , µf ) is a metric
measure space.
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Lemma 3.12 (Map from excursions to metric measure spaces) The
map from E1 to MM that assigns to an excursion f ∈ E1 the metric measure
space [V f , df , µf ] ∈MM is continuous with respect to the topology of uniform
convergence on E1 and the Gromov-weak topology on MM.

Proof Assume that fk, f ∈ E1 satisfy fk → f uniformly. Let

Vk := (V fk , dfk , µfk) and V := (V f , df , µf ).

We have to show that

P
[
Dm[Vk] ∈ ·

]
=⇒
k→∞

P
[
Dm[V ] ∈ ·

]
(m ≥ 1).

where Dm(V) is the random metric defined on {1, . . . ,m} defined in Sec-
tion 3.4. Let X1, . . . , Xm be i.i.d. uniformly distributed [0, 1]-valued random
variables. It follows immediately from our definition of µf that setting

Dm[V ](i, j) := df (Xi, Xj) (1 ≤ i, j ≤ m)

defines a random metric on {1, . . . ,m} with the right distribution, and we
can define Dm[Vk] similarly, with f replaced by fk. By precisely the same
estimates as in the proof of Lemma 3.11, we then see that

Dm[Vk](i, j) −→
k→∞

Dm[V ](i, j) a.s. (1 ≤ i, j ≤ m).

Since almost sure convergence implies weak convergence in law, this com-
pletes the proof.

The Brownian Continuum Random Tree, also called Brownian CRT or
simply CRT, is the random compact real-tree [V, d] ∈ Tc defined by

(V, d) := (V π, dπ),

where π is a standard Brownian excursion, i.e., an E1-valued random variable
with law ν1 as defined in Proposition 2.14. Alternatively, we can also view
the CRT as the random metric measure space [V, d, µ] defined by

(V, d, µ) := (V π, dπ, µπ).

The CRT was introduced by David Aldous in [Ald91a, Ald91b, Ald93].

Theorem 3.13 (Convergence to the CRT) For each n ≥ 0, let Vn be
the vertex set of a random plane tree, chosen according to the uniform distri-
bution on the set Un of all plane trees with n+ 1 vertices. Let dn denote the



80 CHAPTER 3. THE TREE

graph distance on Vn and let µn denote the uniform distribution on Vn\{∅}.
Then one has

P
[
[Vn,

1√
2n
dn] ∈ ·

]
=⇒
n→∞

P
[
[V, d] ∈ ·

]
,

where [V, d] is the Brownian CRT and ⇒ denotes weak convergence of proba-
bility measures on Mc with respect to the topology generated by the Gromov-
Hausdorff metric. Also,

P
[
[Vn,

1√
2n
dn, µn] ∈ ·

]
=⇒
n→∞

P
[
[V, d, µ] ∈ ·

]
,

where [V, d, µ] is the CRT, viewed as a random metric measure space, and ⇒
denotes weak convergence of probability measures on MM with respect to the
Gromov-weak topology.

Proof (sketch) We have seen in Section 3.2 that there is a bijection between
the set Dn of all contour functions of length 2n and the set Un of all plane
trees with n + 1 vertices. Let Fn : [0 : 2n] → N be the contour function of
the random plane tree Vn. We let F n : [0, 2n] → [0,∞) denote the function
Fn, linearly interpolated between integer times, and we let πn denote the
E1-valued random variable defined as

πn(t) :=
1√
2n
F n(2nt)

(
t ∈ [0, 1]

)
.

Then Theorem 2.19 tells us that πn converges weakly in law to the standard
Brownian excursion π. Since E1 is a Polish space, we can apply Skorohod’s
representation theorem (Theorem 1.13) to couple the random variables πn, π
such that πn → π a.s. with respect to the topology on E1, which is the
topology of uniform convergence.

Let (V n, dn) := (V πn , dπn) be the random compact real-tree defined by the
random excursion πn. Then (V n, dn) is a “linearly interpolated” and rescaled
version of (Vn, dn), where first neighbouring vertices have been connected by
a segment of length one, and then all distances have been rescaled by a
factor 1/

√
2n. Since for our coupling πn → π a.s., we can use Lemma 3.11

to conclude that
[V n, dn] −→

n→∞
[X, d] a.s.

with respect to the Gromov-Hausdorff distance. Since a.s. convergence im-
plies convergence in law, this shows in particular that the random vari-
ables [V n, dn] converge weakly in law to [[X, d] with respect to the Gromov-
Hausdorff distance. Similarly, let (V n, dn, µn) := (V πn , dπn , µπn) be the
random metric measure space defined by the random excursion πn. Then
Lemma 3.12 implies that

[V n, dn, µn] −→
n→∞

[X, d, µ] a.s.
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with respect to the Gromov-weak topology, which again implies convergence
in law.

To complete the proof, we need to show that the metric space [V n, dn]
is “close” to the metric space [Vn,

1√
2n
dn], and the mm-space [V n, dn, µn] is

“close” to teh mm-space [Vn,
1√
2n
dn, µn]. For each n, we define ψn : [0, 1] →

[0 : 2n] by

ψn(t) :=

{
d2nte if πn(d2nte) ≥ πn(b2ntc),
b2ntc if πn(d2nte) ≤ πn(b2ntc),

and we unambiguously define ψn : V n → Vn by

ψn(x) := ψn(x)
(
x ∈ [0, 1]

)
,

where x := {x′ : dπn(x, x′) = 0} ∈ V n = V πn denotes the equivalence class
containing x, and likewise ψn(x) denotes the equivalence class containing
ψn(x). It is not hard to see (picture!) that ψn : V n → Vn maps a point in
the interpolated tree V n to the nearest point in Vn that lies above it. As a
consequence,

µn = µn ◦ ψ
−1

n

is the uniform distribution on Vn\{∅}. We can use the map ψn to define a
correspondence Rn between V n and Vn by

Rn :=
{(
x, ψn(x)

)
: x ∈ V n

}
.

The distortion of Rn is 2/
√

2n, so using Proposition 3.4, we see that

dGH

(
[Vn,

1√
2n
dn], [X, d]

)
≤ dGH

(
[Vn,

1√
2n
dn], [V n, dn]

)
+ dGH

(
[V n, dn], [X, d]

)
−→
n→∞

0 a.s.,

which implies convergence in law with respect to the topology generated
by the Gromov-Hausdorff metric. For the Gromov-weak topology, we argue
similarly. We can use the map ψn to define a coupling ηn between µn and µn
by

ηn(A) := µn
({
x ∈ V n :

(
x, ψn(x)

)
∈ A

})
,

i.e., ηn is the image of µn under the map x 7→
(
x, ψn(x)

)
. The distortion of

these couplings clearly tends to zero as n→∞, so if (3.21) defines a metric
that generates the Gromov-weak topology, then we can argue in the same
way as for the Gromov-Hausdorff metric. Without (3.21), the argument can
also be completed but the technical details are a bit messier.
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3.8 Distances in the CRT

Theorem 3.13 says that the Brownian CRT, often simply called the CRT,
is the scaling limit of large plane trees, chosen according to the uniform
distribution on the set of all plane trees with a given number of vertices.
Here the convergence is weak convergence in law, both in the space Mc of
all compact metric spaces (up to isometry), equipped with the Gromov-
Hausdorff metric, and in the space MM of all metric measure spaces (up to
isomorphism), equipped with the Gromov-weak topology. By Lemma 3.6, a
sequence Vn of MM-valued random variables converges weakly in law to a
limit V if and only if

P
[
Dm[Vn] ∈ ·

]
=⇒
n→∞

P
[
Dm[V ] ∈ ·

]
(m ≥ 1), (3.31)

where we recall that if V = [V, d, µ] is a random metric measure space (mm-
space), then Dm(V) is the random metric on {1, . . . ,m} defined by

Dm[V ](i, j) := d(Xi, Xj) (1 ≤ i, j ≤ m),

whereX1, . . . , Xm are V -valued random variables whose conditional law given
V is the product law

P
[
(X1, . . . , Xm) ∈ ·

∣∣V] = µ⊗ · · · ⊗ µ︸ ︷︷ ︸
m times

.

We can view (3.31) as a sort of “convergence of finite dimensional distribu-
tions” for random mm-spaces.

For the Brownian CRT, we can actually give an elegant description of
these finite dimensional distributions. Recall that C(L) denotes the set of all
cladograms (up to isomorphism) with a given set of leaves L. Elements of
C(L) are (equivalence classes of) binary trees (V,E) so that L ⊂ V is the set of
leaves of V . In the proof of Theorem 3.7 we also defined weighted cladograms,
which are triples (V,E, `) such that (V,E) is a cladogram and ` : E → [0,∞)
is a function, and we showed that a pseudo-metric d on L satisfies the four-
point condition if and only if there exists a weighted cladogram (V,E, `) with
set of leaves L such that d corresponds to the length distance on (V,E, `).

Theorem 3.14 (Finite dimensional distributions of the CRT) For
each m ≥ 2, let (Vm, Em) be a random cladogram, chosen according to the
uniform distribution on C({1, . . . ,m}), and conditional on (Vm, Em), let `m
be a random variable taking values in [0,∞)E, whose law has a density with
respect to the Lebesgue measure given by(∑

e∈E

l(e)
)∏
e∈E

e−
1
2
l(e)2 (

l ∈ [0,∞)E
)
.
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Let dm denote the length distance on (Vm, Em, `) and let [V , d, µ] denote the
CRT, viewed as a random metric measure space. Then

P
[(
Dm(V)(i, j)

)
1≤i,j≤m ∈ ·

]
= P

[(
dm(i, j)

)
1≤i,j≤m ∈ ·

]
.

Proof See [LeG05, Section 2.6]. There is actually not a perfect agreement in
the literature according to the definition of the Brownian CRT. The CRT as
originally introduced by Aldous in [Ald91a, Ald91b, Ald93] uses a different
normalisation than Le Gall uses in [LeG05]. I believe tthe theorem above
refers to Aldous’ normalisation.
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Chapter 4

The web

4.1 Arrow configurations

By definition, we call

Z2
even :=

{
(x, t) ∈ Z2 : x+ t is even

}
the even sublattice of Z2. Let ω = (ωz)z∈Z2

even
be an i.i.d. collection of random

variables that are uniformly distributed on {−1,+1}. We can use ω to define
a random directed graph with vertex set Z2

even and set of oriented edges

~E :=
{(
x, t), (x+ ω(x,t), t+ 1)

)
: (x, t) ∈ Z2

even

}
.

We call the random directed graph (Z2
even, ~E) an arrow configuration. See

Figure 4.1 for a picture.
In Section 1.8, for any metrisable space X , we gave a definition of the

path space Π(X ). Recall that Iπ denotes the domain of a path π ∈ Π(X )
and that Iπ := Iπ ∩ R. We will especially be interested in the case that the
metrisable space X is R := [−∞,∞], the extended real line. Recall that σπ
denotes the starting of a path π. We let

Π↑ :=
{
π ∈ Π(R) : Iπ = [σπ,∞]

}
.

We call Π↑ the space of all upward paths. In view of Lemma 1.24, elements
of Π↑ correspond to continuous functions π : Iπ → R, where Iπ is an interval
of the form [σπ,∞) if the starting time σπ is finite, and

Iπ = R if σπ = −∞ and Iπ = ∅ if σπ = +∞.

We will call the point
zπ :=

(
π(σπ), σπ

)
85
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Figure 4.1: An arrow configuration.

the starting point of the path π. Note that in general zπ is an element of
R(R), the squeezed space defined in Section 1.7. By definition, a path in the

arrow configuration (Z2
even,

~E), or simply a path in ω, is a path π ∈ Π↑ with
the following properties:

(i)
(
π(σπ), σπ

)
∈ Z2

even,

(ii) π(t+ 1) = π(t) + ω(π(t),t) (t ∈ Z, t ≥ σπ),

(iii) π(t+ s) = (1− s)π(t) + sπ(t+ 1) (0 ≤ s ≤ 1, t ∈ Z, t ≥ σπ).

In words, these are upward paths that start at a point in the even sublattice
and follow the arrows, with linear interpolation between integer times. We
let

U = U(ω) :=
{
π ∈ Π↑ : π is a path in ω

}
. (4.1)

We let U denote the closure of U in the topology on Π↑. The following
proposition says that U is a.s. compact and compared to U only contains a
few extra trivial paths. Below, we use the notation Z := Z ∪ {−∞,∞}, i.e.,
this is the closure of Z in R.

Proposition 4.1 (Compact set of paths) The closure U of the random
set of upward paths U defined in (4.1) is almost surely a compact subset of
Π↑. Moreover, almost surely, the set U\U consists of all paths π ∈ Π↑ with
σπ ∈ Z and either π(t) = −∞ for all t ∈ Iπ or π(t) = +∞ for all t ∈ Iπ.

We postpone the proof of Proposition 4.1 till the end of Section 4.8 and
turn to what we are mainly interested in, which is the diffusive scaling limit
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of arrow configurations. For each ε > 0, we define a diffusive scaling map
θε : R2 → R2 by

θε(x, t) := (εx, ε2t)
(
(x, t) ∈ R2

)
.

Let R(R) be the squeezed space defined in Section 1.7. We extend θε con-
tinuously to R(R) in the obvious way, by setting

θε(±∞, t) := (±∞, ε2t) (t ∈ R) and θε(∗,±∞) := (∗,±∞).

For any subset A ⊂ R(R), we let

θε(A) :=
{
θε(z) : z ∈ A

}
denote the image of A under θε. In particular, this notation applies to paths
π ∈ Π(R), which according to their defininition in Section 1.8 correspond to
compact subsets of R(R). It is easy to see that θε(π) ∈ Π↑ for all π ∈ Π↑, so
the diffusive scaling map θε : R(R)→ R(R) naturally gives rise to a diffusive
scaling map from Π↑ to Π↑ which by a slight abuse of notation we also denote
by θε. Going one step further, for any subset A ⊂ Π↑, we let

θε(A) :=
{
θε(π) : π ∈ A

}
denote the image of A under this map.

In Section 1.6, we equipped the space K(X ) of all compact subsets of
a metrisable topological space X with the Hausdorff topology. We make a
simple observation.

Lemma 4.2 (Map acting on compact sets) Let X be a metrisable topo-
logical space and let K(X ) be the set of all compact subsets of X . Let
ψ : X → X be a continuous map and let

ψ̂(K) :=
{
ψ(x) : x ∈ K

} (
K ∈ K(X )

)
.

Then ψ(K) ∈ K(X ) for all K ∈ K(X ), and the map ψ̂ : K(X ) → K(X ) is
continuous with respect to the Hausdorff topology.

Proof The well-known fact that the continuous image of a compact set is
itself a compact set has already been mentioned at the beginning of Sec-
tion 1.2. To see that ψ̂ : K(X )→ K(X ) is continuous, assume that Kn → K.
Then by Lemma 1.16,

∃C ∈ K(X ) s.t. Kn ⊂ C ∀n ≥ 1 (4.2)
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and

K = {x ∈ X : ∃xn ∈ Kn s.t. xn → x}
= {x ∈ X : ∃xn ∈ Kn s.t. x is a cluster point of (xn)n∈N}.

(4.3)

Since ψ̂(C) is compact and ψ̂(Kn) ⊂ ψ̂(C) for all n ≥ 1, by Lemma 1.16, to
prove that ψ̂(Kn)→ ψ̂(K), it suffices to show that

ψ̂(K) = {y ∈ X : ∃yn ∈ ψ̂(Kn) s.t. yn → y}

= {y ∈ X : ∃yn ∈ ψ̂(Kn) s.t. y is a cluster point of (yn)n∈N}.

The latter condition can be rewritten as{
ψ(x) : x ∈ K

}
= {y ∈ X : ∃xn ∈ Kn s.t. ψ(xn)→ y}

= {y ∈ X : ∃xn ∈ Kn s.t. y is a cluster point of
(
ψ(xn)

)
n∈N}.

It therefore suffices to prove that

(i)
{
ψ(x) : x ∈ K

}
⊂ {y ∈ X : ∃xn ∈ Kn s.t. ψ(xn)→ y},

(ii) {y ∈ X : ∃xn ∈ Kn s.t. y is a cluster point of
(
ψ(xn)

)
n∈N}

⊂
{
ψ(x) : x ∈ K

}
.

To prove (i), we use that by (4.3), for each x ∈ K there exist xn ∈ Kn such
that xn → x, and hence ψ(xn) → ψ(x) by the continuity of ψ. To prove
(ii), assume that xn ∈ Kn (n ∈ N) and there exists a sequence (n(m))m≥1

with limm→∞ n(m) = ∞ such that y = limm→∞ ψ(xn(m)). By (4.2) and the
compactness of C, by going to a further subsequence if necessary, we can
assume without loss of generality that limm→∞ xn(m) = x for some x ∈ C.
Then x ∈ K by (4.3) and limm→∞ ψ(xn(m)) = ψ(x) by the continuity of ψ
which shows that y = ψ(x).

As an immediate consequence of Lemma 4.2, we obtain:

Lemma 4.3 (Scaling of paths) For each ε > 0, the map θε : Π↑ → Π↑ is
continuous.

Proof Immediate from Lemma 4.2, the continuity of the map θε : R(R) →
R(R), and the fact that in Section 1.8 we viewed the path space Π(R) as
a subset of K(R(R)) and equipped it with the induced topology from this
embedding.

Let U be the set of all paths in an arrow configuration and let U be its
closure, which by Proposition 4.1 is a random compact subset of Π↑. Then,
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since the continuous image of a compact set is compact, by Lemma 4.3, for
each ε > 0, the diffusively rescaled set of paths θε(U) is a random compact
subset of Π↑. Our aim is to prove that

P
[
θε(U) ∈ ·

]
=⇒
ε→0

P
[
W ∈ ·

]
(4.4)

where ⇒ denotes weak convergence of probability laws on the space K(Π↑),
equipped with the Hausdorff topology, and W is a random compact subset
of Π↑ that will be called the Brownian web.

4.2 Coalescing Brownian motions

As a first step towards proving (4.4), we start by proving something like
convergence of finite dimensional distributions. More precisely, for each ε >
0, we choose finitely many points zε1, . . . , z

ε
n in the diffusively rescaled lattice

θε(Z2
even), in such a way that

(zε1, . . . , z
ε
n) −→

ε→0
(z1, . . . , zn)

for some z1, . . . , zn ∈ R2. Letting πε1, . . . , π
ε
n denote the paths in U with start-

ing points zε1, . . . , z
ε
n, we will argue that (πε1, . . . , π

ε
n) converges in distribution

to a collection of coalescing Brownian motions.
Let B1 = (B1

t )t≥0 and B2 = (B2
t )t≥0 be two independent standard one-

dimensional Brownian motions started from initial states Bi
0 = xi (i = 1, 2),

and let

τ := inf{t ≥ 0 : B1
t = B2

t },

which is a.s. finite since (B1
t −B2

t )t≥0 is a Brownian motion (with double the
quadratic variation of a standard Brownian motion), and one-dimensional
Brownian motion is point recurrent. Let B̃2 = (B̃2

t )t≥0 be defined by

B̃2
t :=

{
B2
t if t ≤ τ,

B1
t if τ ≤ t.

Then it is easy to check that B̃2 is a standard Brownian motion. However, B1

and B̃2 are of course not independent. The process (B1
t , B

2
t )t≥0 is a Markov

process that is known as coalescing Brownian motions. Although this is not
completely immediate from our definition (at least if one wants to give a
formal proof), our definition is symmetric in the sense that (B2

t , B
1
t )t≥0 is a

Markov process with the same transition probabilities as (B1
t , B

2
t )t≥0.
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We can carry out the same construction for any finite number of Brownian
motions, that can moreover start at different times. Let z1, . . . , zn ∈ R2 with
zi = (xi, si) (i = 1, . . . , n), and let B1, . . . , Bn be independent Brownian
motions such that Bi = (Bi

t)t≥si starts at time si in Bi
si

= xi. We set
τ1 :=∞, A1 := {(B1

t , t) : s1 ≤ t <∞} and define inductively for j = 2, . . . , n

τj := inf
{
t ≥ si : (Bj

t , t) ∈ A1 ∪ · · · ∪ Aj−1
}
,

Aj :=
{

(Bj
t , t) : sj ≤ t < τj

}
.

By the recurrence of one-dimensional Brownian motion, almost surely τj <∞
for all 2 ≤ j ≤ n. Note that the sets A1, . . . , An are disjoint. In view of this,
we can uniquely define i(j) ∈ {1, . . . , j − 1} by the requirement that

(Bj
τj
, τj) ∈ Ai(j).

Using this, we define inductively B̃1 := B1 and

B̃j
t :=

{
Bj
t if si ≤ t ≤ τj,

B̃
i(j)
t if τj ≤ t.

We call B̃1, . . . , B̃n coalescing Brownian motions starting from the space-time
points z1, . . . , zn ∈ R2.

We are now ready to formulate a result about the convergence in law of
finitely many paths in an arrow configuration. We have already become used
(hopefully!) to the slight abuse of notation by which θε can denote both a
diffusive scaling map acting on space-time points, or on sets of space-time
points such as paths, or even sets of paths. Taking this one step further, we
also denote

θε(z1, . . . , zn) :=
(
θε(z1), . . . , θε(zn)

)
, θε(π1, . . . , πn) :=

(
θε(π1), . . . , θε(πn)

)
when z1, . . . , zn are space-time points and π1, . . . , πn are paths.

Proposition 4.4 (Convergence of finite dimensional distributions)
Let εk > 0 satisfy εk → 0. Fix n ≥ 1 and for each k, let zk1 , . . . , z

k
n ∈ Z2

even.
Assume that

θεk(z
k
1 , . . . , z

k
n) −→

k→∞
(z1, . . . , zn) ∈ (R2)n.

Fix an arrow configuration and for each k, let πk1 , . . . , π
k
n be the unique paths

in the arrow configuration with starting points zk1 , . . . , z
k
n. Then

P
[
θεk(π

k
1 , . . . , π

k
n) ∈ ·

]
=⇒
k→∞

P
[
(π1, . . . , πn) ∈ ·

]
,

where ⇒ denotes weak convergence of probability measures on (Π↑)n and
π1, . . . , πn are coalescing Brownian motions starting from z1, . . . , zn.
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Proof Our definition of coalescing Brownian motions involved a procedure
that started with n independent Brownian motions (B1, . . . , Bn) and used
them to construct n coalescing Brownian motions (B̃1, . . . , B̃n). More for-
mally, we can view (B̃1, . . . , B̃n) as the image of (B1, . . . , Bn) under a map

(π1, . . . , πn) 7→ (π̃1, . . . , π̃n) (4.5)

that takes n paths π1, . . . , πn in Π↑ with starting points in R2 and maps them
into n new paths π̃1, . . . , π̃n with the same starting points.

For each k, let (Rk,1, . . . , Rk,n) be a collection of independent random
walks started from zk1 , . . . , z

k
n, and let (R̃k,1, . . . , R̃k,n) be its image under the

map from (4.5). Then (R̃k,1, . . . , R̃k,n) are coalescing random walks. It is
easy to see that they are equal in law with (πk1 , . . . , π

k
n). We want to show

that
P
[
θεk(R̃

k,1, . . . , R̃k,n) ∈ ·
]

=⇒
k→∞

P
[
(B̃1, . . . , B̃n) ∈ ·

]
.

It is easy to see that the diffusive scaling map commutes with the map in
(4.5), i.e., the random variable in the left-hand side of our equation is the
same as what we would obtain if we first diffusively rescale the independent
random walk paths and then apply the map from (4.5).

Weak convergence in law of diffusively rescaled independent random walks
to independent Brownian motions follows from Donsker’s invariance principle
(Theorem 2.1). Using Skorohod’s representation theorem (Theorem 1.13), we
can couple our random variables such that

θεk(R
k,1, . . . , Rk,n) −→

k→∞
(B1, . . . , Bn) a.s.

in the topology on (Π↑)n. If the map in (4.5) would be continuous with
respect to the topology on (Π↑)n, then the rest of the proof would now be
easy, since we would just apply this map to both sides of our last equation
and we would be done.

Things are not quite so simple, however, since it is easy to check (even for
n = 2) that the map in (4.5) is not continuous with respect to the topology
on (Π↑)n. It turns out, however, that (B1, . . . , Bn) is almost surely a point of
continuity of this map, which is just as good. Here, with a point of continuity
of the map in (4.5) we mean, of course, a collection of paths (π1, . . . , πn) with
the property that for each (πk1 , . . . , π

k
n) such that

(πk1 , . . . , π
k
n) −→

k→∞
(π1, . . . , πn),

one also has
(π̃k1 , . . . , π̃

k
n) −→

k→∞
(π̃1, . . . , π̃n).



92 CHAPTER 4. THE WEB

That (B1, . . . , Bn) is almost surely a point of continuity follows quite easily
from our definitions and from Lemma 4.5 and Exercise 4.6 below. We leave
the details to the reader.

Lemma 4.5 (Brownian paths cross when they meet) Let Bi = (Bi
t)t≥si

(i = 1, 2) be independent Brownian motions started from deterministic space-
time points zi = (xi, si) (i = 1, 2), respectively, and let

τ := inf{t ≥ s1 ∨ s2 : B1
t = B2

t }.

Then almost surely, for each ε > 0, there exist times t−, t+ ∈ [τ − ε, τ + ε] ∩
[s1 ∨ s2,∞) such that

B1
t− < B2

t− and B1
t+
> B2

t+
.

Proof By the strong Markov property, (B1
τ+t −B2

τ+t)t≥0 is a Brownian mo-
tion, so it suffices to prove that a Brownian motion B started in zero changes
sign infinitely often in each positive time interval. By symmetry, it suffices
to show that P[Bt ≥ 0 ∀0 ≤ t ≤ ε] = 0 for each ε > 0, which is of course
well-known.

Exercise 4.6 (Convergence of meeting times) Let π1, π2 ∈ Π↑ have
starting points zi = (xi, si) (i = 1, 2), respectively, and assume that their first
meeting time

τ := inf{t ≥ s1 ∨ s2 : π1(t) = π2(t)}

satisfies τ < ∞. Assume moreover that for each ε > 0, there exist times
t−, t+ ∈ [τ − ε, τ + ε] ∩ [s1 ∨ s2,∞) such that

π1(t−) < π2(t−) and π1(t+) > π2(t+).

Let πk1 , π
k
2 ∈ Π↑ satisfy πki → πi (i = 1, 2). Then the first meeting times τk of

πk1 and πk2 satisfy τk → τ . Hint: First show that generally τ ≤ lim infk→∞ τk.
Then use the assumption about crossing to prove that lim supk→∞ τk ≤ τk.

4.3 Tightness

As a preparation for the proof of (4.4), in the present section, we derive a
criterion for a random subset of the path space Π↑ to be compact, and a
criterion for tightness of a sequence of probability laws on the space K(Π↑)
of compact sets of Π↑.
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Proposition 4.7 (Almost sure precompactness) Let A be a random
subset of Π↑. Then A is almost surely a precompact subset of Π↑ if and only
if

P
[ ∣∣π(u)− π(t)

∣∣ ≥ ε for some π ∈ A and σπ ≤ t ≤ u

s.t. (π(t), t) ∈ [−T, T ]2, u− t ≤ δ
]
−→
δ→0

0 ∀T <∞, ε > 0.

Proof For brevity, we skip the proof.

Proposition 4.8 (Tightness of random compact sets of paths) Let
K(Π↑) be the set of compact subsets of Π↑, equipped with the Hausdorff topol-
ogy. Let (An)n≥1 be a sequence of random variables with values in K(Π↑).
Then the probability laws

(
P[An ∈ · ]

)
n≥1

are tight if and only if

sup
n≥1

P
[ ∣∣π(u)− π(t)

∣∣ ≥ ε for some π ∈ An and σπ ≤ t ≤ u

s.t. (π(t), t) ∈ [−T, T ]2, u− t ≤ δ
]
−→
δ→0

0 ∀T <∞, ε > 0.

Proof For brevity, we skip the proof.

4.4 The Brownian web

Let D ⊂ R2 be countable. Since D is countable, we can enumerate it as
D := {zi : i ≥ 1} where (zi)i≥1 be a sequence of space-time points zi ∈
R2. Then for each n ≥ 1, we can construct a collection of random paths
(π1, . . . , πn) that are distributed as coalescing Brownian motions starting
from (z1, . . . , zn). Since these laws are consistent, by Kolmogorov’s extension
theorem, we can construct a random collection of paths (πz)z∈D such that for
each finite set ∆ ⊂ D, the paths (πz)z∈∆ that are distributed as coalescing
Brownian motions starting from the points in ∆. We call (πz)z∈D a collection
of coalescing Brownian motions started from the countable set D.

Proposition 4.9 (Precompactness) Let (πz)z∈D be a collection of coa-
lescing Brownian motions started from a countable set D ⊂ R2. Then
{πz : z ∈ D} is almost surely a precompact subset of Π↑.

Proof (sketch) We apply Proposition 4.7 to A := {πz : z ∈ D}. Fix T <∞
and ε, δ > 0 and consider the grid

Gε,δ :=
{

(1
3
kε, lδ) : k, l ∈ Z

}
.
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Since Gε,δ is countable, we can add coalescing Brownian motions {πz : z ∈
Gε,δ} starting from any point in Gε,δ. Since paths in A cannot cross paths in
{πz : z ∈ Gε,δ}, it is not hard to see that almost surely on the event∣∣π(u)− π(t)

∣∣ ≥ ε for some π ∈ A and σπ ≤ t ≤ u

s.t. (π(t), t) ∈ [−T, T ]2, u− t ≤ δ

one has that∣∣π(x,s)(s+ r)− y
∣∣ ≥ 1

3
ε for some (x, s) ∈ Gε,δ ∩ [−T, T ]2 and r ∈ [0, 2δ].

(4.6)
Using the reflection principle, one can show that if B is a standard Brownian
motion, then

P
[

sup
r∈[0,2δ]

|Br| ≥ 1
3
ε
]
≤ Ce−cε

2/δ,

for some C < ∞ and c > 0. A simple union bound then tells us that the
probability of the event in (4.6) can be estimated from above by

CT ε
−1δ−1e−cε

2/δ

for some CT < ∞ and c > 0. This quantity goes to zero as δ → 0 for fixed
T < ∞ and ε > 0, so by Proposition 4.7 we conclude that {πz : z ∈ D} is
almost surely precompact.

Let (πz)z∈D be a collection of coalescing Brownian motions started from
a countable dense set D ⊂ R2. By Proposition 4.9, we can define a random
compact subset W ⊂ Π↑ by setting

W := {πz : z ∈ D
}
, (4.7)

where A denotes the closure of a set A ⊂ Π↑. We will later see that this
definition does not depend on the choice of the countable dense set D ⊂ R2.
We will callW the Brownian web. Our aim is to show thatW is the limiting
object in (4.4). For that, we need the following proposition.

Proposition 4.10 (Tightness of rescaled arrow configurations) Let
U be the set of all paths in an arrow configurations and let U be its closure.
Let εn > 0 be positive constants such that εn → 0. The the probability laws(

P[θεn(U) ∈ · ]
)
n≥1

on K(Π↑) are tight.
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Proof (crude sketch) One needs to check the tightness criterion of Propo-
sition 4.8. This is very similar to the proof of Proposition 4.9. One uses con-
vergence of finite dimensional distributions (Proposition 4.4 and then uses
a grid as in the proof of Proposition 4.9 to estimate the event in Proposi-
tion 4.8. We refer to [FINR04, Prop. B2] and [SSS16, Prop. 6.6.4] for details.

We let

Π↑triv :=
{
π ∈ Π↑ : π(t) = −∞ ∀t ∈ Iπ

}
∪
{
π ∈ Π↑ : π(t) = +∞ ∀t ∈ Iπ

}
denote the set of trivial paths (with arbitrary starting times σπ ∈ R that are
constantly −∞ or +∞.

Lemma 4.11 (Trivial paths) Let (πz)z∈D be a collection of coalescing
Brownian motions started from a countable dense set D ⊂ R2 and let W :=

{πz : z ∈ D
}

. Then Π↑triv ⊂ W and each π ∈ W\Π↑triv satisfies π(t) ∈ R for
all t ∈ Iπ.

Proof Fix s ∈ R and choose zn ∈ D such that zn → (s,−∞) as n→∞. By
Proposition 4.9, by going to a subsequence if necessary, we can assume that
πzn → π for some π ∈ Π↑ with starting time σπ = s. Then πzn(t)→ π(t) for
all t > s. Since πzn is a Brownian motion starting from zn and zn → (s,−∞),
we have that the law of πzn(t) converges weakly to the delta-measure on −∞,
for each t > s. It follows that π is the trivial path defined by σπ = s and
π(t) = −∞ for all t ∈ [s,∞). In the same way, we see that W contains all
trivial paths π with σπ ∈ R and π(t) = −∞ for all t ∈ Iπ. SinceW is closed,
it also contains all limits of such paths, so letting s→∞ or s→ −∞ we see
that W also contains all trivial paths with σπ = −∞ and either π(t) = −∞
for all t ∈ R or π(t) = +∞ for all t ∈ R, as well as the trivial path with
σπ = +∞. This completes the proof that Π↑triv ⊂ W .

To complete the proof, we must show that if π ∈ W satisfies π(t) ∈ R
for some t ∈ Iπ, then π(t) ∈ R for all t ∈ Iπ. Assume that π ∈ W satisfies
π(t) ∈ R for some t ∈ Iπ. Choose zn = (xn, sn) ∈ D with sn < t such that
zn → (∞, s) for some s ∈ R. Then πzn is a Brownian motion started from
zn. By our previous arguments, πzn(t) → ∞ a.s. so π(t) < πzn(t) for all n
large enough. Since coalescing Brownian motions cannot cross each other,
it follows that π(u) ≤ πzn(u) < ∞ for all u ≥ sn ∨ σπ and for all n large
enough. Since s is arbitrary, it follows that π(t) <∞ for all t ∈ Iπ and by a
symmetric argument also −∞ < π(t) for all t ∈ Iπ.
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4.5 Dual arrow configurations

By definition, we call

Z2
odd :=

{
(x, t) ∈ Z2 : x+ t is odd

}
the odd sublattice of Z2. In Section 4.1, we showed how an i.i.d. collection ω =
(ωz)z∈Z2

even
of uniformly distributed {−1,+1}-valued random variables defines

a random directed graph (Z2
even,

~E) that we called an arrow configuration.
Given ω, we define ω̂ = (ω̂z)z∈Z2

odd
by

ω̂(x,t+1) = ω(x,t)

(
(x, t) ∈ Z2

even

)
.

We can use ω̂ to define a random directed graph with vertex set Z2
odd and set

of oriented edges

~F :=
{(
x, t), (x− ω(x,t), t− 1)

)
: (x, t) ∈ Z2

odd

}
.

We call the random directed graph (Z2
odd,

~F ) the dual arrow configuration

associated with the original (“forward”) arrow configuration (Z2
even,

~E). The
dual arrows are uniquely characterised in terms of the forward arrows by the
property that dual arrows and forward arrows do not cross. See Figure 4.2
for a picture.

Figure 4.2: An arrow configuration (black) and its dual (white).

Recall that in general, σπ and τπ denote the starting and final time of a
path π ∈ Π(R). In particular, we define

Π↓ :=
{
π ∈ Π(R) : Iπ = [−∞, τπ]

}
.
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We call Π↓ the space of all downward paths. Clearly, Π↓ is equal to Π↑ after
a rotation over 180 degrees. When no confusion can arrive,1 we will call the
point

zπ :=
(
π(σπ), σπ

)
the starting point of a downward path π ∈ Π↓. We define a downward path in
the dual arrow configuration (Z2

odd,
~F ), or simply a path in ω̂ in exactly the

same way as we defined upward paths in the forward arrow configuration.
We let

U ′ = U ′(ω̂) :=
{
π ∈ Π↓ : π is a path in ω̂

}
(4.8)

denote the set of all downward paths in the dual arrow configuration and we
let U ′ denote the closure of U ′ in the topology on Π↓.

4.6 The dual Brownian web

We have already introduced notation for the diffusive scaling map θε which
may be applied to points z = (x, t) in space-time R(R), to subsets of space-
time such as paths, and even to sets of paths. We will use similar notation
for the map

R(R) 3 (x, t) 7→ −(x, t) = (−x,−t) ∈ R(R).

Thus, for any set A ⊂ R(R), we set −A := {−z : z ∈ A}. In particular, this
applies to the case that A = π ∈ Π↑. Then Π↑ 3 π 7→ −π ∈ Π↓ is a bijection
from Π↑ to Π↓. Also, if A ⊂ Π↑ is a sets whose elements are paths, then
we set −A := {−π : π ∈ A}. Using this notation, we say that π̂1, . . . , π̂n
are downward coalescing Brownian motions starting from space-time points
z1, . . . , zn if −π̂1, . . . ,−π̂n are (usual, forward) coalescing Brownian motions
starting from space-time points −z1, . . . ,−zn. In the same way, we define
countable collections of downward coalescing Brownian motions.

Let π̂1, π̂2 ∈ Π↓ be two downward paths started from space-time points
(xi, si) ∈ R2 (i = 1, 2), and let

τ = τ(π̂1, π̂2) := sup
{
t ≤ s1 ∧ s2 : π̂1(t) = π̂2(t)

}
be their first meeting time (in the downward direction), which may be −∞.
The open set

W (π̂1, π̂2) :=
{

(x, t) : τ < t < s1 ∧ s2 : π̂1(t) < x < π̂2(t)
}

1We have to be careful since the intersection of Π↑ and Π↓ is not empty, but consists
of all bi-infinite paths for which σπ = −∞ and τπ = ∞. As we will see in a moment,
however, there are no nontrivial bi-infinite paths in an arrow configuration.
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is called the wedge defined by π̂1, π̂2. We say that a (forward) path π ∈ Π↑

enters the wedge W (π̂1, π̂2) if there exist times σπ < s < t such that(
π(s), s)

)
6∈ W (π̂1, π̂2) and

(
π(t), t)

)
∈ W (π̂1, π̂2),

where W (π̂1, π̂2) denotes the closure of W (π̂1, π̂2). In a completely analogous
way, we define the first meeting time of two forward paths, the wedge defined
by two forward paths, and what it means for a downward path to enter such
a wedge. We make the following simple observation.

Lemma 4.12 (Limits of wedges) Let (π̂ni )n≥1 (i = 1, 2) be sequences of
downward paths and let (πn)n≥1 be a sequence of forward paths. Assume that
there exist π̂1 ∈ Π↓ and π ∈ Π↑ such that

π̂ni −→
n→∞

π̂1 (i = 1, 2) and πn −→
n→∞

π

in the topologies on Π↓ and Π↑, and that moreover

τ(π̂n1 , π̂
n
2 ) −→

n→∞
τ(π̂1, π̂2).

Assume that for each n, the path πn does not enter the wedge W (πn1 , π
n
2 ).

Then the path π does not enter the wedge W (π1, π2).

Proof By definition, if π enters the wedge W (π1, π2), then there exist times
σπ < s < t such that(

π(s), s)
)
6∈ W (π̂1, π̂2) and

(
π(t), t)

)
∈ W (π̂1, π̂2).

But then our assumptions imply that for n sufficiently large, σπn < s < t
and (

πn(s), s)
)
6∈ W (π̂n1 , π̂

n
2 ) and

(
πn(t), t)

)
∈ W (π̂n1 , π̂

n
2 ),

which contradicts the assumption that πn does not enter W (πn1 , π
n
2 ).

Proposition 4.13 (Dual coalescing Brownian motions) Let D, D̂ be
countable dense subsets of R2. Then it is possible to construct a collection
(πz)z∈D of coalescing Brownian motions together with a collection (π̂z)z∈D̂ of
downward coalescing Brownian motions in such a way that:

� For each z ∈ D and z1, z2 ∈ D̂, the path πz does not enter the wedge
W (π̂z1 , π̂z2).

� For each z ∈ D̂ and z1, z2 ∈ D, the downward path π̂z does not enter
the wedge W (πz1 , πz2).
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The proof of Proposition 4.13 makes use of the following simple lemma.

Lemma 4.14 (Tightness of joint law) Let X ,Y be Polish spaces, let
(Xn, Yn)n≥1 be a sequence of random variables with values in X ×Y, and let
X and Y be random variables with values in X and Y, respectively. Assume
that

P[Xn ∈ · ] =⇒
n→∞

P[X ∈ · ] and P[Yn ∈ · ] =⇒
n→∞

P[Y ∈ · ]

Then the probability laws (
P
[
(Xn, Yn) ∈ ·

])
n≥1

are tight.

Proof The convergence of the marginal laws implies that the probability
laws (

P[Xn ∈ · ]
)
n≥1

and
(
P[Yn ∈ · ]

)
n≥1

are tight, so for each ε > 0, there exist compact sets C ⊂ X and K ⊂ Y such
that

sup
n≥1

P[Xn 6∈ C] ≤ ε and sup
n≥1

P[Yn 6∈ K] ≤ ε

Then C ×K is compact and

sup
n≥1

P
[
(Xn, Yn) 6∈ C ×K

]
≤ 2ε.

Since ε > 0 is arbitrary, it follows that the laws of (Xn, Yn) are tight.

Proof of Proposition 4.13 (sketch) Let U be the collection of paths in
an arrow configuration and let U ′ be the collection of downward paths in the
associated dual arrow configuration. Let εn be positive constants tending to
zero. For each z ∈ D, choose zn ∈ Z2

even such that θεn(zn)→ z, and for each
z ∈ D̂, choose zn ∈ Z2

odd such that θεn(zn) → z. For each z ∈ D and n ≥ 1,
let Rn

z ∈ U be the unique forward path starting at zn, let R̂n
z ∈ U ′ be the

unique downward path starting at zn, and let

πnz := θεn(Rn
z ) and π̂nz := θεn(R̂n

z )

denote the associated diffusively rescaled paths. We claim that

P
[
(πnz )z∈D ∈ ·

]
=⇒
n→∞

P
[
(πz)z∈D ∈ ·

]
,

P
[
(π̂nz )z∈D̂ ∈ ·

]
=⇒
n→∞

P
[
(π̂z)z∈D ∈ ·

]
,

where ⇒ denotes weak convergence of probability laws on the spaces (Π↑)D

and (Π↓)D, respectively, which are equipped with the product topology, and
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(πz)z∈D is a collection of coalescing Brownian motions while (π̂z)z∈D̂ is a col-
lection of downward coalescing Brownian motions. Indeed, to prove this, by
the definition of the product topology, it suffices to prove convergence of finite
dimensional distribitions. But this has already been done in Proposition 4.4.

In fact, using Exercise 4.6, we can strengthen our previous claim in a
sense that also includes convergence of meeting times. More precisely, one
can show that

P
[(

(πnz )z∈D, (τ(πnz1 , π
n
z2

))(z1,z2)∈D2

)
∈ ·
]

=⇒
n→∞

P
[(

(πz)z∈D, (τ(πz1 , πz2))(z1,z2)∈D2

)
∈ ·
]
,

and similarly for the collection of downward paths.
By Lemma 4.14, going to a subsequence if necessary, we can assume that

the joint law of the random variables

(πnz )z∈D, (τ(πnz1 , π
n
z2

))(z1,z2)∈D2 , (π̂nz )z∈D, (τ(π̂nz1 , π̂
n
z2

))(z1,z2)∈D2

converges weakly. Then we can use Skorohod’s representation theorem (The-
orem 1.13) to couple our random variables so that the convergence is almost
sure, i.e., we can find a coupling such that

πnz −→
n→∞

πz a.s. and τ(πnz1 , π
n
z2

) −→
n→∞

τ(πz1 , πz2) a.s.

for all z, z1, z2 ∈ D, and likewise for downward paths. Since paths of U do
not enter wedges of U ′ and vice versa, we can use Lemma 4.12 to conclude
that the same is true for the limit object.

Theorem 4.15 (Wedge characterisation of the Brownian web) Let
D, D̂ be countable dense subsets of R2, let (πz)z∈D be a collection of coalescing
Brownian motions started from D, and let (π̂z)z∈D̂ be a collection of downward

coalescing Brownian motions started from D̂. Assume that paths in (πz)z∈D
do not enter wedges of (π̂z)z∈D̂. Let

W− := {πz : z ∈ D},
W+ :=

{
π ∈ Π↑ : π does not enter wedges of (π̂z)z∈D̂

}
.

Then W− =W+.

Proof (sketch) To prove the inclusion W− ⊂ W+, let π ∈ W−. Then there
exists zn ∈ D such that πzn → π as n→∞. Let z1, z2 ∈ D̂. By assumption,
πzn does not enter the wedge W (π̂z1 , π̂z2) for any n ≥ 1. By Lemma 4.12,
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it follows that π does not enter W (π̂z1 , π̂z2). This completes the proof that
W− ⊂ W+.

Before we continue, we note that our assumptions imply that the forward
paths do not cross downward paths, in the sense that if z = (x, s) ∈ D and
z′ = (y, u) ∈ D̂ satisfy s < u, then πz(s) < π̂z′(s) implies πz(t) ≤ π̂z′(t) for all
t ∈ [s, u]. Indeed, we can always choose some z′′ = (y′, u′) ∈ D̂ with u ≤ u′

such that π̂z′(u) < π̂z′′(u) and the meeting time τ(π̂z′ , π̂z′′) is less than s.
Then πz(t) > π̂z′(t) for some t ∈ (s, u] would imply that πz enters the wedge
W (π̂z′ , π̂z′′), contradicting our assumptions.

We now prove that W+ ⊂ W−. Let π ∈ W+. By Lemma 4.11 we
can without loss of generality assume that π(t) ∈ R for all t ∈ Iπ. Fix
σπ < t1 < · · · < tm and ε > 0. We claim that there exists a z = (x, s) ∈ D
such that σπ < s < t1 and |πz(ti)−π(t)| ≤ ε for all i = 1, . . . ,m. To see this,
for each i = 1, . . . ,m, wwe choose zi± = (xi±, t

i
±) ∈ D̂ such that ti± > ti and

π(ti)− ε < π̂z−(ti) < π(ti) < π̂z+(ti) < π(ti) + ε.

Since π does not enter the wedge W (π̂zi− , π̂zi+), the meeting time of π̂zi− and
π̂zi+ must satisfy

τ(π̂zi− , π̂zi+) ≤ σπ,

and we have π̂zi−(t) ≤ π(t) ≤ π̂zi+(t) for all t ∈ [σπ, ti]. We can now choose

z = (x, s) ∈ D such that σπ < s < t1 and

sup
1≤i≤m

π̂zi−(t1) < πz(t1) < inf
1≤i≤m

π̂zi+(t1).

Since the path πz cannot cross any of the downward paths π̂zi± , we must have

π̂z−(ti) < πz(ti) < π̂z+(ti) (1 ≤ i ≤ m)

and hence |πz(ti)− π(t)| ≤ ε for all i = 1, . . . ,m, proving our claim.

Now let εn > 0 satisfy εn → 0 and let σπ < t1 < · · · < tm. By what we
have just proved, for each n there exists a zn ∈ D such that |πzn(ti)−π(t)| ≤ ε
for all i = 1, . . . ,m. By Proposition 4.9, the closure of {πz : z ∈ D} is
compact, so we can find a convergent subsequence. It follows that there
exists a π′ ∈ W− such that π′(ti) = π(ti) for all i = 1, . . . ,m. Now let
{ti : i ∈ N} ⊂ (σπ,∞) be countable and dense. By what we have just
proved, for each m, there exists a πm ∈ W− such that πm(ti) = π(ti) for all
i = 1, . . . ,m. Since W− is compact, we can find a convergent subsequence,
the limit of which must be the path π. This proves that W+ ⊂ W−.
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4.7 Convergence to the Brownian web

Let D, D̂ be countable dense subsets of R2. By Proposition 4.13, we can
construct such a collection (πz)z∈D of coalescing Brownian motions starting
from D and a collection (π̂z)z∈D̂ of downward coalescing Brownian motions

starting from D̂ such that paths in (πz)z∈D do not enter wedges of (π̂z)z∈D̂
and vice versa. We call the pair (W , Ŵ) defined as

W := {πz : z ∈ D} and Ŵ := {π̂z : z ∈ D̂} (4.9)

the double Brownian web.

Lemma 4.16 (Double Brownian web) The law of the random variable
(W , Ŵ) does not depend on the choice of the countable dense sets D, D̂ ⊂ R2.

Proof Let D,D′, D̂ be countable dense subsets of R2. Let (πz)z∈D be a
collection of coalescing Brownian motions starting from D, let (π′z)z∈D′ be a
collection of coalescing Brownian motions starting from D′, and let (π̂z)z∈D̂
be a collection (π̂z)z∈D̂ of downward coalescing Brownian motions starting

from D̂. By Proposition 4.13, we can couple (πz)z∈D to (π̂z)z∈D̂ in such a
way that paths in (πz)z∈D do not enter wedges of (π̂z)z∈D̂ and vice versa.
Similarly, we can couple (π′z)z∈D′ to (π̂z)z∈D̂ in such a way that paths in
(π′z)z∈D′ do not enter wedges of (π̂z)z∈D̂ and vice versa. We can then couple
all three collections (πz)z∈D, (π′z)z∈D′ , and (π̂z)z∈D̂ in such a way that the
joint law of (πz)z∈D and (π̂z)z∈D̂ is as before and the joint law of (π′z)z∈D′
and (π̂z)z∈D̂ is also as before. For example, this can be achieved by making
(πz)z∈D and (π′z)z∈D′ conditionally indepenent given (π̂z)z∈D̂, and with the
same conditional laws as before.

For this coupling, let (W , Ŵ) be defined using D, D̂ and let (W ′, Ŵ) be
defined using D′, D̂. Then Theorem 4.15 tells us that

W =
{
π ∈ Π↑ : π does not enter wedges of (π̂z)z∈D̂

}
=W ′ a.s.

It follows that the joint law of (W , Ŵ) is the same as the joint law of (W ′, Ŵ).
In the same way, we can also replace D̂ by another countable dense subset
of R2 without changing the law of the double Brownian web.

The following theorem, which is the main result of this chapter, implies
in particular the convergence in (4.4).

Theorem 4.17 (Approximation of the double Brownian web) Let U
be the set of paths in an arrow configuration and let U ′ be the set of downward
paths in the associated dual arrow configuration. Then

P
[
θε(U ,U

′
) ∈ ·

]
=⇒
ε→0

P
[
(W , Ŵ) ∈ ·

]
, (4.10)
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where ⇒ denotes weak convergence of probability laws on the space K(Π↑)×
K(Π↓), and (W , Ŵ) is the double Brownian web.

Proof Fix countable dense sets D, D̂ ⊂ R2 and define (W , Ŵ) as in (4.9).
It suffices to prove convergence along any sequence εn of positive constants
tending to zero. It follows from Proposition 4.10 (compare Lemma 4.14) that
the laws (

P
[
θεn(U ,U ′) ∈ ·

])
n≥1

are tight, so by going to a subsequence, we may assume that they converge
to some limit law P[(V , V̂) ∈ · ]. By Lemma 1.2, it suffices to show that each
such subsequential limit is equal to P[(W , Ŵ) ∈ · ].

As in the proof of Proposition 4.13, for each z ∈ D, we choose zn ∈ Z2
even

such that θεn(zn) → z, and for each z ∈ D̂, we choose zn ∈ Z2
odd such that

θεn(zn) → z. For each z ∈ D and n ≥ 1, we let Rn
z ∈ U be the unique

forward path starting at zn, we let R̂n
z ∈ U ′ be the unique downward path

starting at zn, and we let

πnz := θεn(Rn
z ) and π̂nz := θεn(R̂n

z )

denote the associated diffusively rescaled paths. In the proof of Proposi-
tion 4.13, we have shown that

P
[(

(πnz )z∈D, (τ(πnz1 , π
n
z2

))(z1,z2)∈D2

)
∈ ·
]

=⇒
n→∞

P
[(

(πz)z∈D, (τ(πz1 , πz2))(z1,z2)∈D2

)
∈ ·
]
,

and similarly for the collection of downward paths. We argued there that
going to a subsequence if necessary and using Skorohod’s representation the-
orem, we can couple our random variables such that

πnz −→
n→∞

πz a.s. and τ(πnz1 , π
n
z2

) −→
n→∞

τ(πz1 , πz2) a.s.

for all z, z1, z2 ∈ D, and likewise for downward paths. We can extend this
argument to obtain that moreover

θεn(U ,U ′) −→
n→∞

(V , V̂) a.s.

in the topology on K(Π↑)×K(Π↓) for some random compact sets V ⊂ Π↑ and
V̂ ⊂ Π↓. We will show that for this particular coupling, (V , V̂) = (W , Ŵ)
a.s., where the latter is defined in terms of (πz)z∈D and (π̂z)z∈D̂. This shows
that all subsequential limit laws are the same and hence by Lemma 1.2 that
the original sequence converges.
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By symmetry between forward and dual webs, it suffices to prove that
V =W . We will prove that W− ⊂ V ⊂ W+, where W− and W+ are defined
as in Theorem 4.15. Since W =W− =W+, the claim then follows.

Since V is closed, to prove that W− ⊂ V , it suffices to prove that πz ∈ V
for all z ∈ D. Recalling Lemma 1.16, this is obvious since πnz ∈ θεn(U) for all
n while πnz → πz a.s. and θεn(U)→ V a.s.

To prove that V ⊂ W+, we need to show that paths π ∈ V do not enter
wedges of (π̂z)z∈D̂. By Lemma 1.16, for each π ∈ V , there exist πn ∈ θεn(U)
such that πn → π. To see that π does not enter any wedge W (π̂z1 , π̂z2)
of (π̂z)z∈D̂, we use that for each n, the path πn does not enter the wedge
W (π̂nz1 , π̂

n
z2

). By our assumptions, the discrete paths π̂nzi (i = 1, 2) converge
a.s. to π̂zi (i = 1, 2) and moreover their meeting times converge a.s., so we
can use Lemma 4.12 to conclude that π does not enter W (π̂z1 , π̂z2).

4.8 The coalescing point set

Let W be a Brownian web. For each closed set A ⊂ R, we define a process
(ξAt )t≥0 by

ξAt :=
{
π(t) : π ∈ W , σπ = 0, π(0) ∈ A

}
(t ≥ 0).

One can check that (ξAt )t≥0 is a Markov process taking values in the space
of closed subsets of R. We will see in a moment that in fact, for each t > 0,
the set ξAt is already locally finite. Since clearly, A ⊂ B implies ξAt ⊂ ξBt , it
suffices to prove the statement for ξRt . Roughly speaking, the following result
says that if we start particles performing coalescing Brownian motions from
each point on the real line, then at each positive time there are only locally
finitely many particles left.

Proposition 4.18 (Density of the coalescing point set) One has

E
[∣∣ξRt ∩ [a, b]

∣∣] =
b− a√
πt

(a < b, t > 0).

Proof We first calculate the probability that ξRt ∩ [a, b] 6= ∅. We construct
(W , Ŵ) from collections (πz)z∈D and (π̂z)z∈D̂ of forward and downward co-
alescing Brownian motions, so that paths in (πz)z∈D do not enter wedges of
(π̂z)z∈D̂ and vice versa. We choose D̂ such that (a, t), (b, t) ∈ D̂. Let

τa,b = τ(π̂(a,t), π̂(b,t))
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be the first meeting time of the downward paths started at (a, t) and (b, t).
We claim that

ξRt ∩ (a, b) 6= ∅ implies τa,b ≤ 0 implies ξRt ∩ [a, b] 6= ∅.

Indeed, if τa,b > 0, then the paths π̂(a,t) and π̂(b,t) form a wedge that prevents
paths in Wi starting at time zero from passing between (a, t) and (b, t),
proving the first implication. On the other hand, if τa,b ≤ 0, then for each
time s > 0 we can find some x such that π̂(a,t)(s) < x < π̂(b,t)(s). The webW
must contain a path π starting at (x, s) and since such a path cannot cross
the downward paths π̂(a,t) and π̂(b,t), it must satisfy a ≤ π(t) ≤ b. We can
construct such a path πs with starting time s for each s > 0, so using the
compactness of W , we see that W must also contain a path π0 starting at
time zero such that a ≤ π(t) ≤ b, proving the second equality.

The difference (B1(s) − B2(s))s≥0 of two Brownian motions is equally
distributed with (

√
2B(s))s≥0, where (B(s))t≥0 is a single Brownian motion.

Therefore, using the reflection principle,

P
[
τa,b ≤ 0] = P

[
sup

0≤s≤t

(
B2(s)−B1(s)

)
≤ b− a

]
= P

[
sup

0≤s≤t
B(s) ≤ b− a√

2

]
=

1√
2πt

∫ b−a√
2

− b−a√
2

e−x
2/2t dx.

In particular, this implies that

P[x ∈ ξRt ] = lim
ε→0

P
[
ξRt ∩ (x− ε, x+ ε) 6= ∅

]
= 0 (x ∈ R, t > 0),

and hence

P
[
ξRt ∩ (a, b) 6= ∅

]
= P

[
ξRt ∩ [a, b] 6= ∅

]
= P[τa,b ≤ 0].

Now

E
[∣∣ξRt ∩ [0, 1]

∣∣] = lim
n→∞

2n∑
i=1

P
[
ξRt ∩ [(i− 1)2−n, i2−n] 6= ∅

]
= lim

ε→0
ε−1 1√

2πt

∫ ε/
√

2

−ε/
√

2

e−x
2/2t dx =

1√
πt
.

A similar formula holds for the expectation of
∣∣ξRt ∩ [0, r]

∣∣ for any r > 0 and
the general result follows by translation invariance.

Proof of Proposition 4.1 Equicontinuity is obvious so U is precompact by
Proposition 4.7. If π ∈ U has a starting point in R2, then clearly π ∈ U .
Also, clearly, each path π ∈ U has a starting time σπ ∈ Z. Let Π̃↑triv :=
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{π ∈ Π↑triv : σπ ∈ Z} By the same arguments as those used in the proof of
Lemma 4.11 we see that Π̃↑triv ⊂ U and each π ∈ U\Π̃↑triv satisfies π(t) ∈ R
for all t ∈ Iπ. To complete the proof, we must show that U does not contain
paths π with σπ = −∞ and π(t) ∈ R for all t ∈ Iπ.

By translation invariance, it suffices to show that U does not contain
paths π with σπ = −∞ and π(0) = 0. If such a path exists, then for each
s ∈ Z with s ≤ 0, the restriction of π to [s,∞] would have to be a path in
U . Thus, it suffices to show that

P
[
π(0) = 0 for some π ∈ U with σπ = s

]
tends to zero as s → −∞. This is very similar to the proof of Propo-
sition 4.18. Letting π̂(−1,0) and π̂(1,0) denote the paths in the dua arrow
configuration starting from (±1, 0), and letting

τ−1,1 := τ
(
π̂(−1,0), π̂(1,0)

)
denote their meeting time, we have that the probability in our previous
formula is equal to P[τ−1,1 < s], which by the recurrence of one-dimensional
random walk tends to zero as s→ −∞.

4.9 Special points

We have defined the Brownian web W as the closure of {πz : z ∈ D}, where
(πz)z∈D is a collection of coalescing Brownian motions started from a count-
able dense set D ⊂ R2. Here {πz : z ∈ D} is precompact by Proposition 4.9
and hence W is a compact subset of Π↑. Using compactness and the fact
that D is dense, we see that for each z ∈ R2, there exists at least one path
π ∈ W that starts at z. For each z ∈ R2, we let

mout(z) :=
∣∣{π ∈ W : π starts at z}

∣∣
denote the number of paths in W that start at z. In this section, we will
prove that almost surely, there exist points z with mout(z) = 2 and even
mout(z) = 3, but a deterministic point z ∈ R2 has almost surely mout(z) = 1.
The key to understanding this is (again) duality.

We say that a path π ∈ W enters a point z = (x, t) ∈ R2 if σπ < t
and π(t) = x. We call two paths π, π′ entering z equivalent if there exists a
σπ ∨ σπ′ ≤ s < t such that π(r) = π′(r) for all s ≤ r ≤ t. This obviously
defines an equivalence relation on the set of all paths π ∈ W entering z. We
let min(z) denote the number of equivalence classes of paths in W entering
z. We call (min(z),mout(z)) the type of a point z ∈ R2.
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Theorem 4.19 (Special points of the Brownian web) Let W be a
Brownian web. Then almost surely, all points in R2 are of one of the following
types:

(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (2, 1),

and all these types occur. For each deterministic t ∈ R, almost surely, all
points in R× {t} are of one of the following types:

(0, 1), (0, 2), (1, 1),

and all these types occur. A deterministic point (x, t) ∈ R2 is almost surely
of type (0, 1).

The proof of Theorem 4.19 is based on the following lemma, which is of
independent interest.

Lemma 4.20 (Types of points in dual web) Let (m̂in(z), m̂out(z)) denote
the type of a point z ∈ R2 in the dual Brownian web Ŵ. Then for each z ∈ R2,

mout(z) = m̂in(z) + 1 and m̂out(z) = min(z) + 1.

Figure 4.3: Possibe types of points in the Brownian web and its dual.

Proof (crude sketch) By symmetry, it suffices to prove that mout(z) =
m̂in(z) + 1. If there is an incoming path in Ŵ at z, then forward paths
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started on either side of such a dual path cannot coalesce until the starting
time of teh dual path, since otherwise the dual path would enter the wedge
define by these forward paths. As a result, since the incoming paths divide
the area just above z into m̂in(z) + 1 regions, approaching the point z from
different directions, using the compactness of W , we see that there are at
least m̂in(z) + 1 distinct paths in W starting at z. On the other hand, if
there are two outgoing paths in W at z, then any dual path that is started
between these paths must stay between these forward paths and pass through
z. Therefore, m̂in ≥ mout−1. Together with our earlier claim that mout(z) ≥
m̂in(z) + 1, this proves the claim.

We have left out quite a bit of detail here. We have defined W and Ŵ as
the closures of {πz : z ∈ D} and {π̂z : z ∈ D̂}, where (πz)z∈D and (π̂z)z∈D̂ are
collections of forward and dual coalescing Brownian motions, started from
countable dense sets D, D̂ ⊂ R2. We have seen that paths in {πz : z ∈ D}
coalesce as soon as they meet and that paths in {πz : z ∈ D} cannot enter
wedges of {π̂z : z ∈ D̂}. These statements can be extended to all paths in
W and Ŵ , where because of the possibility that multiple paths start at the
same time, we must define the first meeting time of two paths π, π′ ∈ W as

τ(π, π′) := inf
{
t > σπ ∨ σπ′ : π(t) = π′(t)

}
.

In particular, we need t > σπ ∨σπ′ in this definition if we want the statement
that π(t) = π′(t) for all t ≥ τ(π, π′) to be true for all π, π′ ∈ W . In the proof
of such statements, Proposition 4.18 plays an important role, which can be
used to show that for each π ∈ W and t > σπ, there exists a z = (x, s) ∈ D
with s < t such that π(u) = πz(u) for all u ≥ t.

Proof of Theorem 4.19 (crude sketch) It is clear that there exist points
z with m̂in(z) = 1 and m̂in(z) = 2. On the other hand, using the fact
mentioned at the end of the proof of Lemma 4.20 that for each π ∈ W and
t > σπ, there exists a z = (x, s) ∈ D with s < t such that π(u) = πz(u)
for all u ≥ t, it is easy to see that a deterministic point z almost surely has
m̂in(z) = 0. Using the same fact, one moreover obtains that there are ony
countably many points z with m̂in(z) = 2 and it is not too hard to show that
these points have min(z) = 0.

To see that there exist points with min(z) = 1 = m̂in(z), we observe
that in an arrow configuration, disjoint parts of space-time are independent.
This property carries over to the limit which has the consequence that dual
paths do not “see” forward paths until they hit them. In fact, it is known
that dual paths are reflected off forward paths by Skorohod reflection. At
deterministic times, however, we do not see such points since two Brownian
motions started in the forward and downward directions have zero probability
to be at a deterministic time at the same position.
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These arguments show that all the mentioned types of points exist, and
no other types of points can exist.

We could have proved the fact that deterministic points in R2 are a.s.
of type (0, 1) earlier, by more elementary methods. Using this fact, one can
prove the classical, “textbook” definition of the Brownian webW , which says
that W is a random compact subset of Π↑ that is uniquely characterised by
the following properties:

(i) For each deterministic z ∈ R2, there a.s. exists a unique path πz ∈ W
with starting point z.

(ii) For deterministic z1, . . . , zn, the paths πz1 , . . . , πzn are distributed as
coalescing Brownian motions.

(iii) For each deterministic countable dense D ⊂ R2, one has almost surely
W = {πz : z ∈ D}.

4.10 Some historical notes

The Brownian web originated from Arratia’s PhD thesis [Arr79] and a sub-
sequential unfinished manuscript [Arr81]. The topic remained dormant until
the work of Tóth and Werner [TW98] who used the Brownian web to study
a form of one-dimensional self-repellent random walk. They classified all
types of special points. Together with Soucaliuc [STW00] they also proved
that forward and dual paths interact through Skorohod reflection. Fontes,
Isopi, Newman and Stein got interested in the Brownian web motivated by a
one-dimensional model in mathematical physics [FINS01], which led Fontes,
Isopi, Newman and Ravishankar [FINR04] to study this object in more de-
tail. In particular, they were the first to give the Brownian web its name,
view it as a compact set of paths, and prove convergence with respect to the
Hausdorff topology. Wedges were first introduced in the concept of the Brow-
nian net in [SS08]. A more detailed account of the history of the Brownian
web can be found in [SSS16].
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metrisable space, 7
mm-space, 64
modulus of continuity, 23
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nonatomic measure, 43

occupation local measure, 30
offspring distribution, 58
one-point

compactification, 9
open set, 5

parent, 57
path

in a graph, 55
in path space, 19

path-connectedness, 74
plane tree, 57
plateau, 34
Polish space, 7
precompactness, 8
probability

kernel, 10
Prohorov metric, 13
Prohorov’s theorem, 14
proper

excursion, 34

real-tree, 76
reflected random walk, 32
regular version

of conditional probability, 11
root

of a tree, 57
rooted tree, 57
running minimum, 29

second countable, 6
separable, 6
simple counting measure, 43
skew Brownian motion, 37
Skorohod

reflection, 29
representation theorem, 14

squeezed space, 18
starting point, 86, 97

starting time, 20
subgraph, 55
support

of a continuous function, 42
of a measure, 64

supremumnorm, 12

Tanaka’s formula, 30
thinning, 42
tightness, 14
topological space, 5
topology, 5
trivial excursion, 34

vertex, 55

walk, 56
weak

convergence, 12
weighted

cladogram, 69, 82
graph, 68
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