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Interacting Particle Systems

I Interacting particle systems are mathematical models for
collective behavior.

I Applications in physics (atoms & molecules), biology
(organisms) & sociology, financial mathematics (people).

I Simple rules lead to complicated behavior.

I Markovian dynamics.

I Easy to simulate, but not always easy to prove; open problems.

I Rigorous methods lead to better understanding.
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Interacting Particle Systems

Interacting Particle Systems are continuous-time Markov processes
X = (Xt)t≥0 with state space of the form SΛ, where:

I S is a finite set, called the local state space.

I Λ is a countable set, called the lattice.

We denote an element x ∈ SΛ as

x =
(
x(i)

)
i∈Λ

with x(i) ∈ S ∀ i ∈ Λ.

We call Xt(i) the local state of the process at time t and position
i ∈ Λ.
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Generator and local maps

The generator G of an interacting particle system can be written in
the form

Gf (x) =
∑
m∈G

rm
{

f
(
m(x)

)
− f
(
x
)}
,

where (rm)m∈G are nonnegative rates and G is a collection of local
maps m : SΛ → SΛ.
Poisson construction: The process can be constructed by
applying each map m ∈ G at the times of a Poisson process with
intensity rm.
Generator construction: If Λ is finite, then the transition
probabilities Pt(x , y) are given by

Pt := e tG :=
∞∑
n=0

1

n!
(tG )n.
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Examples of lattices

Often, the lattice is a graph (Λ,E ) with (undirected) edge set E .
We denote the corresponding set of directed edges by:

E :=
{

(i , j) : {i , j} ∈ E
}

Z2 T2
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Examples of lattices

In particular, we equip Zd with the following edge sets:

Ed :=
{
{i , j} : ‖i − j‖1 = 1

}
,

Ed
R :=

{
{i , j} : 0 < ‖i − j‖∞ ≤ R

}
.

We let Ed and EdR denote the corresponding directed edges and let

Ni resp. NR
i := {j ∈ Zd : {i , j} ∈ Ed resp. Ed

R}

denote the neighborhood of i .
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The voter model

For each i , j ∈ Λ, the voter model map votij : SΛ → SΛ is defined
as

votij(x)(k) :=

{
x(i) if k = j ,

x(k) otherwise.

In words, this copies the state of i onto j . The nearest neighbor
voter model is defined by

Gvotf (x) =
1

|N0|
∑

(i ,j)∈Ed

{
f
(
votij(x)

)
− f
(
x
)}

(x ∈ SΛ).

Similarly, NR
i gives the range R voter model.
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The voter model

With rate one, the site j adopts the type x(i) of a randomly
chosen neighbor.

Interpretation 1 Sites are people, types are political parties; at
rate one, people ask their neighbor whom to vote for.

Interpretation 2 Sites are organisms, types are genetic types; at
rate one, an organism dies and is replaced by a clone of a randomly
chosen neighbor.
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The voter model

Time t = 0.
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The voter model

Time t = 0.25.
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The voter model

Time t = 0.5.
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The voter model

Time t = 1.
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The voter model

Time t = 2.
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The voter model

Time t = 4.
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The voter model

Time t = 8.
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The voter model

Time t = 16.
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The voter model

Time t = 31.25.
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The voter model

Time t = 62.5.
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The voter model

Time t = 125.
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The voter model

Time t = 250.
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The voter model

Time t = 500.
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The voter model

The behavior of the voter model strongly depends on the
dimension.

Clustering in dimensions d = 1, 2.

Stable behavior in dimensions d ≥ 3.
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The voter model

Cut of 3-dimensional model, time t = 0.
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The voter model

Cut of 3-dimensional model, time t = 1.
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The voter model

Cut of 3-dimensional model, time t = 2.
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The voter model

Cut of 3-dimensional model, time t = 4.
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The voter model

Cut of 3-dimensional model, time t = 8.
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The voter model

Cut of 3-dimensional model, time t = 16.
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The voter model

Cut of 3-dimensional model, time t = 32.
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The voter model

Cut of 3-dimensional model, time t = 64.
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The voter model

Cut of 3-dimensional model, time t = 125.
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The voter model

Cut of 3-dimensional model, time t = 250.
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The Contact Process

Let S = {0, 1} with 0 = empty and 1 = occupied.

For each i , j ∈ Λ, we define a branching map
braij : {0, 1}Λ → {0, 1}Λ as

braij(x)(k) :=

{
x(i) ∨ x(j) if k = j ,

x(k) otherwise.

For each i ∈ Λ, we also define a death map
deathi : {0, 1}Λ → {0, 1}Λ as

deathi (x)(k) :=

{
0 if k = i ,

x(k) otherwise.
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The Contact Process

The nearest neighbor contact process with infection rate λ is
defined by the generator

Gcontf (x) :=λ
∑

(i ,j)∈Ed

{
f (
(
braij(x))− f

(
x
)}

+
∑
i∈Zd

{
f (
(
deathi (x))− f

(
x
)}

(x ∈ {0, 1}Zd
).

Interpretation 1 1 = infected, 0 = healthy, sites infect each
neighbor with rate λ and recover with rate one.

Interpretation 2 1 = occupied, 0 = empty, sites place offspring on
each neighboring site with rate λ and die with rate one.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 0.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 1.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 2.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 3.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 4.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 5.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 6.

Jan M. Swart Particle Systems



The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 7.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 8.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 9.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 10.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 11.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 12.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 13.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 14.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 15.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 16.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 17.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 18.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 19.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 20.
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The Contact Process

λ

θ(λ)
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0.25
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0.75

1

λc

The survival probability

θ(λ) := P1{0}
[
Xt 6= 0 ∀t ≥ 0

]
exhibits a phase transition. In one dimenson λc ≈ 1.649.
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Ising and Potts models

Let S be any finite set. For any x ∈ SΛ and i ∈ Λ, let

Nx ,i (σ) :=
∑
j∈Ni

1{x(j) = σ} (σ ∈ S)

denote the number of neighbors of site i that have the spin value
σ ∈ S . In the Potts model with Glauber dynamics,

site i flips to the value σ with rate
eβNx,i (σ)∑
τ∈S eβNx,i (τ)

.

I.e., update with rate one, choose new value σ proportional to
eβNx,i (σ). For β ≥ 0 ferromagnetic.
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The Potts model

β = 1.2, time t = 0.
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The Potts model

β = 1.2, time t = 1.
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The Potts model

β = 1.2, time t = 2.
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The Potts model

β = 1.2, time t = 4.
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The Potts model

β = 1.2, time t = 8.
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The Potts model

β = 1.2, time t = 16.
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The Potts model

β = 1.2, time t = 32.
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The Potts model

β = 1.2, time t = 64.
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The Potts model

β = 1.2, time t = 125.
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The Potts model

β = 1.2, time t = 250.
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The Potts model

β = 1.2, time t = 500.
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The Ising model

This looks superficially like the voter model, but:

I Even in large clusters, single sites can still flip to other colors.

I Clustering happens only for β above a critical value βc.

I 0 < βc <∞ in dimensions d ≥ 2 but βc =∞ in dimension
one.
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A one-dimensional Potts model
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In one-dimensional Potts models, the cluster size remains
bounded in time even at very high β (= low temperature).
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The voter model
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A one-dimensional voter model.
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The Ising model

The Ising model is the Potts model with S = {−1,+1}.

On a large, but finite lattice Λ, freeze the boundary spins to +1.

Since Λ is finite, there is a unique invariant law ν+.
The spontaneous magnetization is the function

m∗(β) := lim
Λ↑Zd

∫
ν+(dx) x(0).

One has clustering, i.e., long-range order, iff m∗(β) > 0.
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The magnetization of the Ising model

β

m∗(β)
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βc

Onsager (1944) proved that for the model on Z2,

m∗(β) =

{ (
1− sinh(β)−4

)1/8
for β ≥ βc := log(1 +

√
2),

0 for β ≤ βc.
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The magnetization of the Ising model

β

m∗(β)

1

βc

For the model on Z3, it is known that m∗ is continuous,
nondecreasing in β, and there exists a 0 < βc <∞ such that
m∗(β) = 0 for β ≤ βc while m∗(β) > 0 for β > βc. Continuity at
βc proved by Aizenman, Duminil-Copin & Sidoravicius (2014).

Jan M. Swart Particle Systems



Phase transitions

The contact process goes through a phase transition at λc.
The Ising model goes through a phase transition at βc.

In both cases, below the critical point (λc resp. βc), the system is
in a phase where there is a unique invariant law and absence of
long-range order.

Above λc resp. βc, there are multiple invariant laws and long-range
order.
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Phase transitions

Since the order parameter θ(λ) resp. m∗(β) is continuous at the
critical point, the phase transitions of the contact process and Ising
model are second order or continuous phase transitions.

By contrast, for Potts models with a high number of colors (in
dimension two, for q := |S | > 4), the analogue of the
magnetization m∗ has a jump at βc. These systems have q ordered
invariant laws for β > βc, one unordered invariant law for β < βc,
while at β = βc, all q + 1 invariant laws coexist (q ordered states
and one disordered state). Such a phase transition is called first
order.
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Critical exponents

β

m∗(β)

1

βc

Nonrigorous renormalization group theory explains that

m∗(β) ∝ (β − βc)c as β ↓ βc,

where the critical exponent c is given by

c = 1/8 in dim 2, c ≈ 0.326 in dim 3, and c = 1/2 in dim ≥ 4.
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Critical exponents

For the contact process, it is believed that

θ(λ) ∝ (λ− λc)c as β ↓ βc,

where the critical exponent c is given by

c ≈ 0.276 in dim 1, c ≈ 0.583 in dim 2,

c ≈ 0.813 in dim 3, and c = 1 in dim ≥ 4.

There are other critical exponents associated with other quantities
(such as the correlation length) or with the power-law decay of
correlations at the critical point.
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Critical exponents

Critical exponents are believed to be universal. For example, for
the range R model, the value of the critical point depends on R
but the critical exponent does not. Critical exponents associated
with the d = 3 Ising model have even been measured in real
physical systems.

Critical exponents and more generally critical behavior are
associated only with second order phase transitions, and for this
reason physicists use the word “critical point” only for second
order phase transitions.
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Critical exponents

Critical exponents are explained by nonrigorous renormalization
group theory but so far, there is no general mathematical theory.
Powerlaw behavior with well-defined critical exponents has been
proved in some special cases:

I In sufficiently high dimensions by means of the lace expansion.

I In a few exactly solvable models like the Ising model on Z2.

I In certain 2-dimensional models related to conformal field
theory and the Schramm Loewner Equation.
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Variations on the voter model

The biased voter model with bias s ≥ 0 is the interacting particle
system with state space {0, 1}Zd

and generator

Gbiasf (x) :=
1

|Ni |
∑

(i ,j)∈Ed

{
f
(
votij(x))− f

(
x
)}

+
s

|Ni |
∑

(i ,j)∈Ed

{
f
(
braij(x))− f

(
x
)}
.

The paremeter s > 0 gives type 1 a (small) advantage.

Contrary to the voter model, even if we start with just a single
person of type 1, there is a positive probability that type 1 never
dies out.

Models spread of new idea or technology, or advantageous
mutation in biology.
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The biased voter model

Biased voter model with s = 0.2. Time t = 0 .
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The biased voter model

Biased voter model with s = 0.2. Time t = 10.
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The biased voter model

Biased voter model with s = 0.2. Time t = 20.
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The biased voter model

Biased voter model with s = 0.2. Time t = 30.
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The biased voter model

Biased voter model with s = 0.2. Time t = 40.
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The biased voter model

Biased voter model with s = 0.2. Time t = 50.
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The biased voter model

Biased voter model with s = 0.2. Time t = 60.
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The biased voter model

Biased voter model with s = 0.2. Time t = 70.
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The biased voter model

Biased voter model with s = 0.2. Time t = 80.
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The biased voter model

Biased voter model with s = 0.2. Time t = 90.
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The biased voter model

Biased voter model with s = 0.2. Time t = 100.
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The biased voter model

Biased voter model with s = 0.2. Time t = 110.
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The biased voter model

Biased voter model with s = 0.2. Time t = 120.
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The biased voter model

Biased voter model with s = 0.2. Time t = 130.
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The biased voter model

Biased voter model with s = 0.2. Time t = 140.
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The biased voter model

Biased voter model with s = 0.2. Time t = 150.
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The biased voter model

Biased voter model with s = 0.2. Time t = 160.
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The biased voter model
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A one-dimensional biased voter model with bias s = 0.2.
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The biased voter model

We can extend the biased voter model by also allowing deaths, i.e.,
spontaneous jumps from 1 to 0.

This models the fact that complicated new ideas may be forgotten
or organisms may die.

Whether 1’s have a positive probability to survive now depends in
a nontrivial way on s and d .

In fact, the model appears to be in the same universality class as
the contact process.
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The biased voter model
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Process with bias s = 0.5, death rate d = 0.02.
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A rebellious voter model

Consider a model with two types {0, 1} and let

fτ :=
1

|Ni |
∑
j∈Ni

1{x(j) = τ}

be the frequency of type τ in the neighborhood Ni .

A person of type τ chooses a new type with rate

fτ + αf1−τ .

For α < 1, persons change their mind less often if they disagree
with a lot of neighbors.

As in a normal voter model, the probability that the newly chosen
type is τ ′ is fτ ′ .

Used by Neuhauser & Pacala (1999) to model balancing selection.
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A rebellious voter model
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Process with α = 0.8 behaves more or less as a voter model.

Jan M. Swart Particle Systems



A rebellious voter model

space

time

0 100 200 300 400 500

0

200

400

600

In the process with α = 0.3, cluster size remains bounded in time.
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Coalescing random walks

Let Xt(i) = 1 (resp. 0) signify the presence (resp. absence) of a

particle and consider the maps rwij : {0, 1}Zd → {0, 1}Zd

rwijx(k) :=


0 if k = i ,

x(i) ∨ x(j) if k = j ,
x(k) otherwise.

The process with generator

Grwf (x) :=
1

|N0|
∑

(i ,j)∈Ed

{
f
(
rwijx

)
− f
(
x
)}

describes coalescing random walks.
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Coalescing random walks
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Reaction diffusion models

We can also add other maps to the dynamics, like the
branching map

braijx(k) :=

{
x(i) ∨ x(j) if k = j ,

x(k) otherwise,

or even cooperative branching

coopii ′jx(k) :=

{ (
x(i) ∧ x(i ′)

)
∨ x(j) if k = j ,

x(k) otherwise.
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Branching and coalescing random walks
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Cooperative branching and coalescence
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Cooperative branching rate 2.2.
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Cooperative branching
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Cooperative branching rate 3.
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A cancellative system

Two more maps of interest are the annihilating random walk map

annijx(k) :=


0 if k = i ,

x(i) + x(j) mod(2) if k = j ,
x(k) otherwise,

and the annihilating branching map

branijx(k) :=

{
x(i) + x(j) mod(2) if k = j ,

x(k) otherwise,
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A cancellative system
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Annihilating random walks.
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A cancellative system
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A system of branching annihilating random walks.
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Killing

Define a killing map as

killijx(k) :=

{ (
1− x(i)

)
∧ x(j) if k = j ,

x(k) otherwise,

which says that the particle at i , if present, kills any particle at j .

Jan M. Swart Particle Systems



Branching and killing
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A system with branching and killing.
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