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Preface

The earliest origins of large deviation theory lie in the work of Boltzmann on en-
tropy in the 1870ies and Cramér’s theorem from 1938 [Cra3g|. A unifying math-
ematical formalism was only developed starting with Varadhan’s definition of a
‘large deviation principle’ (LDP) in 1966 [Var66).

Basically, large deviation theory centers around the observation that suitable func-
tions F' of large numbers of i.i.d. random variables (Xi,...,X,,) often have the
property that

P[F(Xy,....X,) €dz] ~ e 5l asn 00, (LDP)

where s, are real contants such that lim,,,, s, = 0o (in most cases simply s,, = n).
In words, (LDP) says that the probability that F(X, ..., X,) takes values near a
point = decays exponentially fast, with speed s,, and rate function I.

Large deviation theory has two different aspects. On the one hand, there is the
question of how to formalize the intuitive formula (LDP). This leads to the al-
ready mentioned definition of ‘large deviation principles’ and involves quite a bit
of measure theory and real analysis. The most important basic results of the ab-
stract theory were proved more or less between 1966 and 1991, when O’Brian en
Verwaat [OV91] and Puhalskii [Puk91] proved that exponential tightness implies
a subsequential LDP. The abstract theory of large deviation principles plays more
or less the same role as measure theory in (usual) probability theory.

On the other hand, there is a much richer and much more important side of large
deviation theory, which tries to identify rate functions I for various functions F' of
independent random variables, and study their properties. This part of the theory
is as rich as the branch of probability theory that tries to prove limit theorems
for functions of large numbers of random variables, and has many relations to the
latter.

There exist a number of good books on large deviation theory. The oldest book
that I am aware of is the one by Ellis [EII85], which is still useful for applications
of large deviation theory in statistical mechanics and gives a good intuitive feeling
for the theory, but lacks some of the standard results. A modern book that gives a
statistical mechanics oriented view of large deviations is the book by Rassoul-Agha
and Seppéldinen [RS15].

The classical books on the topic are the ones of Deuschel and Stroock [DS89)
and especially Dembo and Zeitouni [DZ98], the latter originally published in 1993.



While these are very thorough introductions to the field, they can at places be a
bit hard to read due to the technicalities involved. Also, both books came a bit
too early to pick the full fruit of the developement of the abstract theory.

A very pleasant book to read as a first introduction to the field is the book by
Den Hollander [Hol00], which avoids many of the technicalities in favour of a clear
exposition of the intuitive ideas and a rich choice of applications. A disadvantage
of this book is that it gives little attention to the abstract theory, which means
many results are not proved in their strongest form.

Two modern books on the topic, which each try to stress certain aspects of the
theory, are the books by Dupuis and Ellis [DE97] and Puhalskii [Puh01]. These
books are very strong on the abstract theory, but, unfortunately, they indulge
rather heavily in the introduction of their own terminology and formalism (for
example, in [DE9T], replacing the large deviation principle by the almost equivalent
‘Laplace principle’) which makes them somewhat inaccessible, unless read from the
beginning to the end. The book by Rassoul-Agha and Seppéldinen [RS15] gives a
very readable account of the modern abstract theory.

A difficulty encountered by everyone who tries to teach large deviation theory
is that in order to do it properly, one first needs quite a bit of abstract theory,
which however is intuitively hard to grasp unless one has seen at least a few
examples. I have tried to remedy this by first stating, without proof, a number
of motivating examples. In the proofs, I have tried to make optimal use of some
of the more modern abstract theory, while sticking with the classical terminology
and formulations as much as possible.
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Chapter 0

Some motivating examples

0.1 Cramér’s theorem

Let (Xg)k>1 be a sequence of i.i.d. absolutely integrable (i.e., E[|X;|] < oco) real
random variables with mean p := E[X}], and let

1 n
T, = — .
k=1
be their empirical averages. Then the weak law of large numbers states that
—p| > .
P[|T, p|_€]n_>—0>00 (e >0)

In 1938, the Swedish statistician and probabilist Harald Cramér [Cra3§| studied
the question how fast this probability tends to zero. For laws with sufficiently light
tails (as stated in the condition (0.1]) below), he arrived at the following conclusion.

Theorem 0.1 (Cramér’s theorem) Assume that

Z\) =E[eM] <00 (AER). (0.1)
Then 1
(0 Jim —logP[T, >yl =~1I(y)  (y>p),
X (0.2)
(i) lim —logP[T, <y] = —I(y)  (y <p),
where I is defined by
I(y) == ilé.ﬂg Ay —log Z()\)] (y € R). (0.3)
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The function Z in is called the moment generating function or cumulant gen-
erating function, and its logarithm is consequently called the logarithmic moment
generating function (or logarithmic cumulant generating function of the law of Xj.
In the context of large deviation theory, log Z()) is also called the free energy
function, see [EII85, Section II.4].

The function I defined in is called the rate function. In order to see what
Cramér’s theorem tells us exactly, we need to know some elementary properties of
this function. Note that implies that E[|X;]?] < co. To avoid trivial cases,
we assume that the X are not a.s. constant, i.e., Var(X;) > 0.

Below, int(A) denotes the interior of a set A, i.e., the largest open set contained in
A. We recall that for any finite measure p on R, support(yu) is the smallest closed
set such that p is concentrated on support(u).

Lemma 0.2 (Properties of the rate function) Let u be the law of X, let
p:= (u) and o* := Var(u) denote its mean and variance, and assume that o > 0.
Let y_ := inf(support(u)), v := sup(support(u)). Let I be the function defined

in and set
Dr={yeR:I(y) <oo} and Uj:=int(Dy).

Then:

(i) I is convex.

(i) I is lower semi-continuous.

(iii) 0 < I(y) < oo for ally € R.

(iv) I(y) =0 if and only if y = p.

() Us = (g, ps).

(vi) I is infinitely differentiable on U;.

(vil) limy, I'(y) = —oo and limy,, I'(y) = oco.
(viii) I” >0 onUr and I"(p) = 1/0>.

(ix) If —oo <y_, then I(y_) = —logu({y_}), and
if y+ <00, then I(y4) = —log u({y+}).
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Figure 1: A typical example of a rate function.

See Figure [I| for a picture. Here, if F is any metric space (e.g. E = R), then we
say that a function f : E — [—o00,00] is lower semi-continuous if one (and hence
both) of the following equivalent conditions are satisfied:
(i) iminf, . f(x,) > f(z) whenever z, — .
(ii) For each —oco < a < o0, the level set {x € E : I[(x) < a} is a closed subset
of E.

In view of Lemma [0.2], Theorem [0.1] tells us that the probability that the empirical
average 1), deviates by any given constant from its mean decays exponentially fast
in n. More precisely, formula (0.2)) (i) says that

P[T,, > y| = e—nl(y) +o(n) as m— 0o (y > p),
were, as usual, o(n) denotes any function such that

o(n)/n—0 as n — oo.

Note that formulas (0.2)) (i) and (ii) only consider one-sided deviations of T;, from
its mean p. Nevertheless, the limiting behavior of two-sided deviations can easily
be derived from Theorem [0.1] Indeed, for any y_ < p <y,

P[Tn <y_orT1, > y+] = e_n](y—) + 0(") + e_n](y-i-) + O(n)

—e—nmin{l(y-), I(y)} +o(n) 5 1 5 00
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In particular,

lim LlogP[|T, — p| > & = min{I(p— ), I(p +2)} (= > 0).

n—oo N,

Exercise 0.3 Use Theorem[0.I]and Lemmal0.2]to deduce that, under the assump-
tions of Theorem [0.1]

!
lim —logP [T, > y] = —Lw(y) (v > p),

n—oo M

where I, is the upper semi-continuous modification of I, i.e., Iy,(y) = I(y) for
y # Y-, y+ and Lup(y-) = Lup(y4) 1= oo

0.2 Moderate deviations

As in the previous section, let (Xj)g>1 be a sequence of i.i.d. absolutely integrable
real random variables with mean p := E[|.X;|] and assume that (0.1) holds. Let

S, ::ZXk (n>1).
k=1

be the partial sums of the first n random variables. Then Theorem [0.1] says that
P[S, — pn > yn] —em(pFy)+o(n) un oo (y > 0).
On the other hand, by the central limit theorem, we know that
P[S, —pn = yvn| — ®(y/o)  (y€R),
where @ is the distribution function of the standard normal distribution and
o? = Var(X)),

which we assume to be positive. One may wonder what happens at in-between
scales, i.e., how does P[S, — pn > y,] decay to zero if \/n < y, < n? This is
the question of moderate deviations. We will only consider the case y,, = yn® with
% < a < 1, even though other timescales (for example in connection with the law
of the iterated logarithm) are also interesting.
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Theorem 0.4 (Moderate deviations) Let (Xj)r>1 be a sequence of i.i.d. ab-

solutely integrable real random variables with mean p := E[|X1|], variance 0* =
Var(X;) > 0, and E[e**1] < 0o (A € R). Then

1
lim ——logP[S, — pn > yn®] = —55y? (y>0, s <a<l). (0.4)

n—oo p2a—1

Remark Setting y,, := yn®~! and naively applying Cramér’s theorem, pretending
that y, is a constant, using Lemma [0.2] (viii), we obtain

log P[S,, — pn > yn®] = logP[S,, — pn > y,n]

~ —nl(y,) ~ —n#yi = —#gfnza*l.
Dividing both sides of this equation by n?*~! yields formula (0.4)) (although this
derivation is not correct). There does not seem to be a good basic reference

for moderate deviations. Some more or less helpful references are [DB81], [Led92)
Aco02), [ELO3].

0.3 Relative entropy

Imagine that we throw a dice n times, and keep record of how often each of the
possible outcomes 1, ..., 6 comes up. Let N, (z) be the number of times outcome x
has turned up in the first n throws, let M,,(z) := N, (x)/x be the relative frequency
of z, and set

A, = max M,(x) — min M,(z).

1<z<6 1<z<6

By the strong law of large numbers, we know that M, (z) — 1/6 a.s. as n — oo
for each x € {1,...,6}, and therefore P[A,, > €] — 0 as n — oo for each € > 0. It
turns out that this convergence happens exponentially fast.

Proposition 0.5 (Deviations from uniformity) There exists a continuous,
strictly increasing function I : [0,1] — R with I(0) = 0 and I(1) = log6, such that

lim llog]P’[An >e| =—1I(e) (0<e<1). (0.5)

n—oo N,

Proposition follows from a more general result that was already discovered by
the physicist Boltzmann in 1877. A much more general version of this result for
random variables that do not need to take values in a finite space was proved by
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the Russian mathematician Sanov [San61]. We will restrict ourselves to finite state
spaces for the moment. To state the theorem, we first need a few definitions.

Let S be a finite set and let M;(S) be the set of all probability measures on S.
Since S is finite, we may identify M;(S) with the set

M;(S) :={r eR®:m(z) > 0Vx €S, Zw(l) =1},

€S

where R¥ denotes the space of all functions 7 : S — R. Note that M, (S) is
compact, convex subset of the (|S| — 1)-dimensional space {r € R® : 3 _.7(1)

1}.
Let pu,v € M;y(S) and assume that p(z) > 0 for all x € S. Then we define the
relative entropy of v with respect to u by

H(v|p) ==Y v(x) log

zeSs zesS

a

Z“ v(r) v(x)

% (@)

where we use the conventions that log(0) := —oo and 0 - co := 0. Note that since
lim, o zlog z = 0, the second formula shows that H(v|u) is continuous in v. The
function H (v|p) is also known as the Kullback-Leibler distance or divergence.

Lemma 0.6 (Properties of the relative entropy) Assume that u € M;(S)
and assume that p(x) > 0 for all x € S. Then the function v — H(v|u) has the
following properties.

(i) 0 < H(v|p) < oo for allv € My(S).
(i) Hulu) = 0.

(i) () > 0 for all v # .
(iv) v H(v|p) is convex and continuous on My(S).

(V) v H(v|p) is infinitely differentiable on the interior of My (S).

Assume that p € M;(S) satisfies p(x) > 0 for all x € S and let (Xj)g>1 be an

i.i.d. sequence with common law P[X; = x] = p(z). As in the example of the dice
throws, we let

1 n
== Z Lix=2) (xe S, n>1). (0.6)
k=1

Note that M, is a M;(S)-valued random variable. We call M, the empirical
distribution.
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Theorem 0.7 (Boltzmann-Sanov) Let C be a closed subset of M1 (S) such that
C s the closure of its interior. Then

1
lim —logP[M,, € C] = —min H (v|p). (0.7)

n—oo N, veC

Note that (0.7) says that

P[M, € C] = e ™M™ agn — 0o where Io = mig H(v|p). (0.8)
ve

This is similar to what we have already seen in Cramér’s theorem: if I is the
rate function from Theorem[0.1} then I(y) = min, c,.o0) I(y) for y > p and I(y) =
Miny ooy I(y') for y < p. Likewise, as we have seen in , the probability that
T, € (—00,y-] U [y4,00) decays exponentially with rate miny c(—ooy_ jufy, 00 L (¥)-

The proof of Theorem will be delayed till later, but we will show here how
Theorem [0.7] implies Proposition [0.5

Proof of Proposition [0.5| We set S := {1,...,6}, u(z) :=1/6 for all z € S, and
apply Theorem [0.7] For each 0 < e < 1, the set

C. := {v € My(S) : maxv(z) — minv(z) >}

zeSs zeSsS

is a closed subset of M (.S) that is the closure of its interior. (Note that the last
statement fails for e = 1.) Therefore, Theorem implies that

lim llogIP’[An >e| = lim llog]P’[Mn € C.] = —min H(v|p) = —1(¢). (0.9)

n—oo N n—oo N veCe

The fact that I is continuous and satisfies I(0) = 0 follows easily from the
properties of H(v|u) listed in Lemma [0.60 To see that I is strictly increasing,
fix 0 < g1 < g9 < 1. Since H(-|p) is continuous and the C., are compact,
we can find a v, (not necessarily unique) such that H(-|u) assumes its mini-
mum over C., in v,. Now by the fact that H(-|u) is convex and assumes its
unique minimum in p, we see that v/ := Svs + (1— i—;)u € (., and therefore
1)) < H@'\) < Himlp) = 1(=2).

Finally, by the continuity of H( - |u), we see that

I(e) T min H(v|p) = H(61|p) = log 6 ase T 1.

veCh
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To see that (0.5 also holds for ¢ = 1 (which does not follow directly from
Theorem since C is not the closure of its interior), it suffices to note that
PlA, =1] = (g)" % |

Remark 1 It is quite tricky to calculate the function I from Proposition
explicitly. For e sufficiently small, it seems that the minimizers of the entropy
H(-|n) on the set C. are (up to permutations of the coordinates) of the form
v(l) = 3 — 36, v(2) = ¢ + 3¢, and v(3),...,v(6) = ;. For ¢ > g, this solution is
of course no longer well-defined and the minimizer must look differently.

Remark 2 I do not know whether the function [ is convex.

0.4 Non-exit probabilities

In this section we move away from the i.i.d. setting and formulate a large devi-
ation result for Markov processes. To keep the technicalities to a minimum, we
restrict ourselves to Markov processes with a finite state space. We recall that a
continuous-time, time-homogeneous Markov process X = (X;);>o taking value in
a finite set S is uniquely characterized (in law) by its initial law p(z) := P[Xy = z]
and its transition probabilities P;(z,y). Indeed, X has piecewise constant, right-
continuous sample paths and its finite-dimensional distributions are characterized

by
]P)I:Xh =T1y. .- 7th - wn:| - ZM(xO)Ptl (ZEOa xl)PtQ—tl (xlv ZL'Q) e Ptn—tn_l(xna xn)

o

(t1 < -+ <tp, x1,...,2, € S). The transition probabilities are continuous in ¢,
have Py(z,y) = 1=, and satisfy the Chapman-Kolmogorov equation

ZPS(x,y)Pt(y, z) = Pyyy(x, 2) (s,t >0, z,z €9).
y

As a result, they define a semigroup (P;);>o of linear operators P, : RS — R® by

Pf(e) =3 Pila,y)fy) = E7[F (X))

where E* denotes expectation with respect to the law P* of the Markov process
with initial state Xo = . One has
=1
Pt — th — _Gntn’

n!
n=0
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where G : R® — R called the generator of the semigroup (P;)¢>o, is an operator
of the form

Gf(z)= > rlxy)(fly) - flx) (feR’ zed),

Y y#z

where r(z,y) (z,y € S, x # y) are nonnegative contants. We call r(x,y) the rate
of jumps from x to y. Indeed, since P, = 1 +tG + O(t?) as t — 0, we have that

. tr(z,y) + O(t?) if x # v,

PPLX =y = { 1=t (@) +0()  ifr =y
Let U C S be some strict subset of S and assume that Xy, € U a.s. We will be
interested in the probability that X, stays in U for a long time. Let us say that
the transition rates r(x,y) are irreducible on U if for each z,z € U we can find
Yo, - - -, Yn such that yo = x, y, = 2z, and r(yx_1,yx) > 0 for each k = 1,...,n. Note
that this says that it is possible for the Markov process to go from any point in U
to any other point in U without leaving U.

Theorem 0.8 (Non-exit probability) Let X be a Markov process with finite
state space S, transition rates r(x,y) (x,y € S, © # y), and generator G. Let
U C S and assume that the transition rates are irreducible on U. Then there
exists a function f, unique up to a multiplicative constant, and a constant X > 0,

such that
(i) f>0onU,

(i) f=0 on S\U,
(i) Gf(x) =—=Af(z) (xeU).

Moreover, the process X started in any initial law such that Xy € U a.s. satisfies

1
lim —logP[X, e U V0 < s <t] =—A\ (0.10)
t—oo t

0.5 Outlook

Our aim will be to prove Theorems [0.1] and [0.8] as well as similar and
more general results in a unified framework. Therefore, in the next chapter, we
will give a formal definition of when a sequence of probability measures satisfies a
large deviation principle with a given rate function. This will allow us to formu-
late our theorems in a unified framework that is moreover powerful enough to deal
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with generalizations such as a multidimensional version of Theorem or a gen-
eralization of Theorem to continuous spaces. We will see that large deviation
principles satisfy a number of abstract principles such as the contraction principle
which we have already used when we derived Proposition [0.5] from Theorem [0.7]
Once we have set up the general framework in Chapter |1} in the following chapters,
we set out to prove Theorems[0.1] [0.7, and [0.8], as well as similar and more general
results, and show how these are related.



Chapter 1

Large deviation principles

1.1 Weak convergence on Polish spaces

Recall that a topological space is a set E equipped with a collection O of subsets
of E that are called open sets, such that

(i) If (Oy)qer is any collection of (possibly uncountably many) sets O, € O,
then |J. O, € O.

yel’

(11) If 01702 € O, then 01 N 02 € O
(iii) 0, E € O.

Any such collection of sets is called a topology. It is fairly standard to also assume
the Hausdorff property

(IV) For each x1, 20 € E, 21 7é X9 301,02 €cO0st.0.NOy = (Z), T € 01, To € Oy,

A sequence of points x,, € E converges to a limit x in a given topology O if for
each O € O such that x € O there is an n such that z,, € O for all m > n. (If
the topology is Hausdorff, then such a limit is unique, i.e., , — x and x,, — 2’
implies x = 2/.) A set C' C E is called closed if its complement is open.

Because of property (i) in the definition of a topology, for each A C E, the union
of all open sets contained in A is itself an open set. We call this the interior of A,
denoted as int(A) := (J{O : U C A, O open}. Then clearly int(A) is the smallest

17
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open set contained in A. Similarly, by taking complements, for each set A C F
there exists a smallest closed set containing A. We call this the closure of A,
denoted as A := ({C : C D A, C closed}. A topological space is called separable
if there exists a countable set D C E such that D is dense in F, where we say that
a set D C F is dense if its closure is F, or equivalently, if every nonempty open
subset of E has a nonempty intersection with D.

In particular, if d is a metric on F, and B.(z) := {y € E : d(z,y) < €}, then
O:={0OCE:Vz €0 I >0s.t. B.(zx) C O}

defines a Hausdorff topology on E such that convergence x,, — x in this topology
is equivalent to d(x,,x) — 0. We say that the metric d generates the topology O.
If for a given topology O there exists a metric d that generates O, then we say
that the topological space (E, Q) is metrizable.

Recall that a sequence z, in a metric space (E,d) is a Cauchy sequence if for all
e > 0 there is an n such that d(xg,x;) < e for all k,I > n. A metric space is
complete if every Cauchy sequence converges.

A Polish space is a separable topological space (E, Q) such that there exists a met-
ric d on E with the property that (E,d) is complete and d generates O. Warning:
there may be many different metrics on E that generate the same topology. It
may even happen that E is not complete in some of these metrics, and complete
in others (in which case FE is still Polish). Example: R is separable and com-
plete in the usual metric d(x,y) = |x — y|, and therefore R is a Polish space. But
d'(z,y) := | arctan(z) —arctan(y)| is another metric that generates the same topol-
ogy, while (R, d’) is not complete. (Indeed, the completion of R w.r.t. the metric
d' is [—o0,0].)

On any Polish space (E,Q) we let B(E) denote the Borel-o-algebra, i.e., the
smallest g-algebra containing the open sets O. We let B,(E) and C,(E) denote the
linear spaces of all bounded Borel-measurable and bounded continuous functions
f: E — R, respectively. Then C,(E) is complete in the supermumnorm || f|| :=
sup,ep | f(2)], ie., (Co(E), || - |l) is a Banach space [Dud02, Theorem 2.4.9]. We
let M(E) denote the space of all finite measures on (E,B(F)) and write M;(FE)
for the space of all probability measures. It is possible to equip M(FE) with a
metric dys such that [EK86, Theorem 3.1.7]

(i) (M(E),dy) is a separable complete metric space.

(i) dpsr(fin, ) — 0 if and only if [ fdp, — [ fdp for all f € Cy(E).
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The precise choice of dy; (there are several canonical ways to define such a metric)
is not important to us. We denote convergence in d,; as p, = p and call the
associated topology (which is uniquely determined by the requirements above) the
topology of weak convergence. By property (i), the space M(E) equipped with the
topology of weak convergence is a Polish space.

Proposition 1.1 (Weak convergence) Let E be a Polish space and let p,, j1 €
M(E). Then one has p, = u if and only if the following two conditions are
satisfied.

(i) limsup p,(C) < p(C) VC' closed,

n—oo

(i) liminf u,(0) > pu(O) YO open.

n—o0

If the p,, v are probability measures, then it suffices to check either (i) or (ii).

Before we give the proof of Proposition [I.1, we need a few preliminaries. Recall
the definition of lower semi-continuity from Section [0.1} Upper semi-continuity is
defined similarly: a function f : E — [—00,00) is upper semi-continuous if and
only if —f is lower semi-continuous. We set R := [—o00, 0] and define

UE):= {f :E — R : f upper semi—continuous},
U(E):={f eUE): sup| f(z)] < oo},
U (E):= {f CEUE): f> 0},

and Uy (E) = Uy(E) NUL(E). We define L(E), Ly(F), LL(E), Ly (E) respec-
tively C(F),Cy(E),C(E),Cpy 1 (E) similarly, with upper semi-continuity replaced
by lower semi-continuity and resp. continuity. We will also sometimes use the no-
tation B(E), By(E), B+(E), By+(FE) for the space of Borel measurable functions

f+ E — R and its subspaces of bounded, nonnegative, and bounded nonnegative
functions, respectively.

Exercise 1.2 (Topologies of semi-continuity) Let O, := {[—00,a) : —00 <
a < oo} U {0, R}. Show that O,, is a topology on R (albeit a non-Hausdorff
one!) and that a function f : £ — R is upper semi-continuous if and only if it is
continuous with respect to the topology O,,. The topology O, is known as the
Scott topology.
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The following lemma lists some elementary properties of upper and lower semi-
continuous functions. We set a V b := max{a, b} and a A b := min{a, b}.

Lemma 1.3 (Upper and lower semi-continuity)

(a) C(E)=U(E)NL(E).
(b) f €eU(E) (resp. f € L(E)) and A > 0 implies \f € U(E) (resp. A\f € L(E)).
(c) f,g eU(E) (resp. f,g € L(E)) implies f +g € U(E) (resp. f+ g € L(E)).

(d) f,g e U(E) (resp. f,g € L(E)) implies fV g € U(E) and f Ng € U(E) (resp.
fVvgeL(E) and fNg € L(E)).

(e) fn €eU(FE) and f, | f (resp. fn € L(E) and f, T f) implies f € U(E) (resp.
feL(E)).

(f) An upper (resp. lower) semi-continuous function assumes its mazimum (min-
imum) over a compact set.

Proof Part (a) is obvious from the fact that if z, — z, then f(x,) — f(z) if and
only if limsup,, f(z,) < f(z) and liminf, f(z,) > f(x). Since f is lower semi-
continuous iff —f is upper semi-continuous, it suffices to prove parts (b)—(f) for
upper semi-continuous functions. Parts (b) and (d) follow easily from the fact that
f is upper semi-continuous if and only if {z : f(z) > a} is closed for each a € R,
which is equivalent to {z : f(z) < a} being open for each a € R. Indeed, f € U(E)
implies that {z : A\f(z) < a} = {x : f(x) < A"'a} is open for each a € R, A > 0,
hence A\f € U(E) for each A\ > 0, while obviously also 0 - f € U(F). Likewise,
f,9 € U(E) implies that {z : f(x)Vg(x) <a} ={z: f(z) <a}n{x:g(x) <a}is
open for each a € R hence fV g € U(F) and similarly {z : f(z)Ag(z) < a} = {x:
f(z) <a}U{x: g(r) < a} is open implying that f Ag € U(FE). Part (e) is proved
in a similar way: since {z : f,(z) < a} T {2 : f(x) < a}, we conclude that the
latter set is open for all a € R hence f € U(FE). Part (c) follows by observing that
limsup,, oo (f (zn) +g(zn)) < limsup, ., f(zn) +limsup,, .o, 9(zm) < f(2)+g(z)
for all z, — z. To prove part (f), finally let f be upper semi-continuous, K
compact, and choose a,, T sup,cx f(x). Then A, :={z € K : f(z) > a,} is a
decreasing sequence of nonempty compact sets, hence (by [Eng89 Corollary 3.1.5])
there exists some x € (), A, and f assumes its maximum in x. n

We say that an upper or lower semi-continuous function is simple if it assumes
only finitely many values.

Lemma 1.4 (Approximation with simple functions) For each f € U(FE)
there exists simple f, € U(E) such that f, | f. Analogue statements hold for
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U(E), UL (E) and Up+(E). Likewise, lower semi-continuous functions can be
approximated from below with simple lower semi-continuous functions.

Proof Let r_ :=inf,cp f(z) and 7, := sup,cp f(z). Let D C (r_, 1) be countable
and dense and let A, be finite sets such that A, T D. Let A, = {ao, ..., Gnw)}
with ag < -+ < ap(n) and set

agp if f(.ﬁl,’) < ayp,
folx) =< ap  if a1 < f(x) < ag (k=1,...,m(n)),
ry if apm) < f(2).

Then the f, are upper semi-continuous, simple, and f,, | f. If f € Uy(E), U, (E)
or Uy +(E) then also the f, are in these spaces. The same arguments applied to
— f yield the statements for lower semi-continuous functions. |

For any set A C F and x € E, we let
d(z, A) == inf{d(z,y) : y € A}
denote the distance from x to A. Recall that A denotes the closure of A.

Lemma 1.5 (Distance to a set) For each A C E, the function v — d(z, A) is
continuous and satisfies d(z, A) =0 if and only if v € A.

Proof See [Eng89, Theorem 4.1.10 and Corollary 4.1.11]. |

Lemma 1.6 (Approximation of indicator functions) For each closed C C E
there exist continuous f, : E — [0,1] such that f,, | 1¢c. Likewise, for each open
O C E there exist continuous f, : E — [0,1] such that f, T 1¢.

Proof Set f,(z) := (1 —nd(z,C)) V0 resp. fn(x) :=nd(z, E\O) A 1. n

Proof of Proposition Let fin, 0 € M(E) and define the ‘good sets’

=1 € UnlE) tmsup [ fau, < [ ),

n—oo

glow::{f € Ly (B ):hggg}f [ s> [ rauy

We claim that
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(a) f € Gup (resp. f € Giow), A > 0 implies A\f € Gy (resp. Af € Giow).
(b) f,9 € Gup (resp. f,g € Giow) implies f + g € Gup (resp. f+ g € Giow).

(¢) fn € Gup and f, | f (vesp. fu € Giow and f,, T f) implies f € G, (vesp.
f € glow)'

The statements (a) and (b) are easy. To prove (c), let f, € Gup, fn 4 f. Then, for
each k,

lim sup / fdu, < limsup / Jedpin < / Jedp.
n—oo n—oo

Since [ frdp | [ fdp, the claim follows. An analogue argument works for functions

in glow-

We now show that p, = p implies the conditions (i) and (ii). Indeed, by
Lemma [1.6] for each closed C' C E we can find continuous f;, : E — [0, 1] such
that fr | 1l¢. Then f; € Gy, by the fact that p, = p and therefore, by our
claim (c) above, it follows that 1¢ € Gy, which proves condition (i). The proof of
condition (ii) is similar.

Conversely, if condition (i) is satisfied, then by our claims (a) and (b) above, every
simple nonnegative bounded upper semi-continuous function is in G,p, hence by
Lemma and claim (c), Up 4 (F) C Gup. Similarly, condition (ii) implies that
Ly, +(E) C Giow. In particular, this implies that for every f € Cy 1 (E) = U+ (E) N
Ly (E), lim, o0 [ fdp, = [ fdu, which by linearity implies that p, = p.

If the p,, p are probability measures, then conditions (i) and (ii) are equivalent,
by taking complements. |

1.2 Large deviation principles

A subset K of a topological space (E, Q) is called compact if every open covering
of K has a finite subcovering, i.e., if U'yGF O, D K implies that there exist finitely
many O,,,...,0,, with (J;_, O,, D K. If (E, O) is metrizable, then this is equiv-
alent to the statement that every sequence x, € K has a subsequence xy,) that
converges to a limit x € K [Eng89, Theorem 4.1.17]. If (E, Q) is Hausdorff, then
each compact subset of E is closed.
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Let E be a Polish space. We say that a function f : E — R has compact level sets
if
{r € E: f(x) <a} is compact for all a € R.

Note that since compact sets are closed, this is (a bit) stronger than the statement
that f is lower semi-continuous. We say that I is a good rate function if I has
compact level sets, —oo < I(x) for all x € E, and I(z) < oo for at least one
xr € E. We observe that:

e A good rate function assumes its minimum on closed sets.

To see this, let C' be closed. The statement is trivial if inf,c () = co. Otherwise,
we can choose inf,ec I(z) < a < oco. Then the set K := {z € C : I(x) < a}
is compact and hence by Lemma (f), there is an y € K such that I(y) =
inf,ec I(x). In particular, applying this to C' = E, we see that good rate functions
and bounded from below.

Recall that By(E) denotes the space of all bounded Borel-measurable real functions
on E. If p is a finite measure on (F,B(F)) and p > 1 is a real constant, then we
define the LP-norm associated with u by

= [ ulsP)'™ (0 € Bl

Likewise, if I is a good rate function, then we can define a sort of ‘weighted
supremumnorm’ by

[ flloo.z = Slelgefl(‘”)\f(x)\ (f € By(E)). (1.1)

Note that [|f]|ccs < oo by the boundedness of f and the fact that I is bounded
from below. It is easy to check that || - || s is & seminorm | i.e.,

o M ller = IAIflloors

o f+9llces <N flloor + 1glloor-
If I < oo then || - ||oo,s is moreover a norm, i.e.,

e | flloco,r =0 implies f = 0.

Note that what we have just called LP-norm is in fact only a seminorm, since
| fllp,. = O only implies that f = 0 a.e. w.r.t. p. (This is usually resolved by
looking at equivalence classes of a.e. equal functions, but we won’t need this here.)
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(Large deviation principle) Let s,, be positive constants converging
to oo, let w, be finite measures on E, and let I be a good rate function
on E. We say that the p, satisfy the large deviation principle (LDP)
with speed (also called rate) s, and rate function I if

i [l = Wlles (€ o (B)). (1.2)

While this definition may look a bit strange at this point, the next proposition
looks already much more similar to things we have seen in Chapter [0}

Proposition 1.7 (Large Deviation Principle) A sequence of finite measures
Wy satisfies the large deviation principle with speed s, and rate function I if and
only if the following two conditions are satisfied.

1
(i) limsup — log 1, (C') < — inf I(x) VC' closed,

n—oo Sn zel

1
(ii) liminf — log i, (0) > — ing I(z) YO open.
Te

n—oo Sy

Remark 1 Recall that A and int(A) denote the closure and interior of a set

A C E, respectively. Since for any measurable set A, one has p,(A) < u,(A) and
tn(A) > p,(int(A)), conditions (i) and (ii) of Proposition (1.7 are equivalent to

1
(i)’ limsup — log pu,(A) < — inf I(z),

n—oo Sn €A

1
(ii)" liminf —log pu,(A) > — inf I(x),

n—oo S, z€int(A)

for all A € B(E). We say that a set A € B(F) is I-continuous if

inf I(x) = inf I(z)

z€int(A) €A

It is now easy to see that if u, satisfy the large deviation principle with speed s,
and good rate function I, then

1
lim — log p1,(A) = — inf I(x)

n—00 Sy TEA



1.2. LARGE DEVIATION PRINCIPLES 25

for each I-continuous set A. For example, if I is continuous and A = int(A),
then A is I-continuous. This is the reason, for example, why in our formulation of
the Boltzmann-Sanov Theorem [0.7 we looked at sets that are the closure of their
interior.

Remark 2 The two conditions of Proposition are the traditional definition
of a large deviation principle. Moreover, large deviation principles are often only
defined for the special case that the speed s,, equals n. However, as the example
of moderate deviations (Theorem showed, it is sometimes convenient to allow
more general speeds. Also parts of the abstract theory (in particular, connected
to the concept of exponential tightness) are more easy to formulate if one allows
general speeds. As we will see, allowing more general speeds will not cause any
technical complications so this generality comes basically ‘for free’.

To prepare for the proof of Proposition|l.7] we start with some preliminary lemmas.

Lemma 1.8 (Properties of the generalized supremumnorm) Let I be a
good rate function and let || - ||, be defined as in . Then

(@) 1V glloor = [fllcos VlIgllcos V9 € By (E).
(b) [[falloos T [ flloe,s Vi € Bot(E), fu T f-
(©) [ fallsos 4 I flloor Vfn € U (E), fr L f-

Proof Property (a) follows by writing

1V gl = sup e 'O (f(z)V g(x))

E
= (supe " f(2)) Vv (supe " Dg(y)) = | flloes V [1gllsos
zeE yer

To prove (b), we start by observing that the || f,,||oo.s form an increasing sequence
and || fullco.r < || flloo,r for each n. Moreover, for any € > 0 we can find y € E such
that e~ 1W) f(y) > sup,cp e~ 1@ f(z)—e¢, hence liminf,, || fu|loo.r > lim, e IW) £, (y) =
e T f(y) > || flloosr — €. Since € > 0 is arbitrary, this proves the claim.

To prove also (c), we start by observing that the || f,,||o.r form a decreasing sequence
and || fulloo.s > ||f|lco.r for each n. Since the f, are upper semi-continuous and 1
is lower semi-continuous, the functions e~!f, are upper semi-continuous. Since
the f, are bounded and I has compact level sets, the sets {x : e7 /@ f, (2) > a}
are compact for each @ > 0. In particular, for each a > sup,.; e 1@ f(z), the
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sets {z : e '@ f (x) > a} are compact and decrease to the empty set, hence {z :
e 1@ f.(z) > a} = () for n sufficiently large, which shows that limsup,, || fu|lee.r <
a. |

Lemma 1.9 (Good sets) Let u, € M(E), s, — oo, and let I be a good rate
function. Define the ‘good sets’
gup = {f S Z/{b,+(E) : hmsup Hf”smun S HfHOO,I}7
n—oQ
Guow = { € Lot (B) Bt |l > [ o}

Then

(a) f € Gup (resp. f € Giow), A >0 implies A\f € Gyp (1esp. Af € Giow ).
(b) f.9 € Gup (resp. f,g € Giow) implies fV g € Gup (Tesp. fV g € Giow)-

(¢) fn € Gup and fo, | f (resp. fu € Giow and f, T f) implies f € Gup (Tesp.
f S glow)-

The proof of Lemma makes use of the following elementary lemma.

Lemma 1.10 (The strongest growth wins) For any 0 < a,,b, < oo and
S, — 00, one has

lim sup () + bfl”)l/s" = (limsupa,) V (limsupb,). (1.3)

n—oo n—oo n—oo

Moreover, for any 0 < ¢,,d, < oo and s, — o0,

1 1 1
lim sup — log(c, + d,,) = (lim sup — log cn) Vv (lim sup — log dn). (1.4)

n—oo  Sp n—oo  Sp n—oo  Sp

Proof To see this, set ay := limsup,,_, ., a, and by, := limsup,,_, b,. Then, for
each € > 0, we can find an m such that a,, < as +¢ and b,, < by, +¢ for all n > m.
It follows that

limsup (ai" + bf{’)l/sn < lim ((aco +2)*" + (boo + 5>Sn)l/sn

n—o0 n—00

= (a0 +€) V (boo + ).

Since € > 0 is arbitrary, this shows that limsup,,_,., (a3 + bf{”)l/ " < oo V Do
Since a,, b, < (af{” + bf{‘)l/ °" the other inequality is trivial. This completes the

proof of (1.3]).
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We claim that 1} is just l) in another guise. Indeed, setting a,, := c/*" and
1.3),

b, := di/*" we see, using that

. 1
limsup,, oo s-log(cn +dn) _ i sup (a;" + dm) L/sn

= (Iim sup an) Vv (lim sup bn) o

_ e(lim SUD;, 00 ilog(cn)) V (limsup,,_, i log(dn))'

Proof of Lemma Part (a) follows from the fact that for any seminorm
IAfll = Al fIl (A > 0). To prove part (b), assume that f, g € Gup,. Then, by (1.3),

limsup || f V ¢lls,

n—oo

. s s 1/sn
—tmsp ([ g+ [ ) 0
nreo {z:f(z)29(2)} {z:f(z)<g(z)}

3 n n 1/8" _
< limsup AN o gl ) < M lloort VNIglloor = 1V glloo.r,
proving that fV g € G,,. Similarly, but easier, if f, g € Giow, then

hggg;)lf ||f \/g||5n7Mn - (1171;]2)101.}{‘ ||f||5nvli'n) \ (]'lgloglf ||g||5n7lln)
2 [ flloos Vllglloo.r = 15V glloors
which proves that fV g € Giow.

To prove part (c), finally, assume that f; € G, satisty fi | f. Then f is upper
semi-continuous and

hmsup ||f||3n7/in S hmsup ||ka5nuUfn S kaHOO,I

n—oo n—oo
for each k. Since || fglloos 4 ||f]lco,rs by Lemma (c), we conclude that f € Gp.
The proof for fi € Gioy is similar, using Lemma (b). |

Proof of Proposition If the pu, satisfy the large deviation principe with
speed s, and rate function I, then by Lemmas and (¢), 1l¢ € Gyp for each
closed C' C E and 1p € G, for each open O C E, which shows that conditions (i)
and (ii) are satisfied. Conversely, if conditions (i) and (ii) are satisfied, then by

Lemma [L.9] (a) and (b),
Gup D {f €U, (E) : f simple} and Gy D {f € Ly +(E) : f simple}.
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By Lemmas and (c), it follows that Gy, = Up +(E) and Giow = L+ (E). In
particular, this proves that

T (| fllsy = 1 flloor Y € Co i (E),

which shows that the pu, satisfy the large deviation principe with speed s, and
rate function 1. [

Exercise 1.11 (Robustness of LDP) Let (Xj),>1 be ii.d. random variables
with P[X), = 0] = P[X; = 1] = 3, let Z(\) := E[e*] (A € R) and let  : R —
[0, 00] be defined as in (0.3)). Let &, | 0 and set

1 & ) 1 &
T, ::EZXk and T ;:(1—5,1)5;)@.

k=1

In Theorem below, we will prove that the laws P[T,, € -| satisfy the large
deviation principle with speed n and rate function /. Using this fact, prove that
also the laws P[T] € -] satisfy the large deviation principle with speed n and rate
function /. Use Lemma [0.2] to conclude that

1
lim —logP[T) >y = —I(y) (

n—oo N,

<y<l),

N |+

but this formula does not hold for y = 1.

1.3 Varadhan’s lemma

The two conditions of Proposition are the traditional definition of the large
deviation principle, which is due to Varadhan [Var66]. Our alternative, equivalent
definition in terms of convergence of L,-norms is very similar to the road followed
in Puhalskii’s book [PuhOl]. A very similar definition is also given in [DE9T],
where this is called a ‘Laplace principle’ instead of a large deviation principle.

From a purely abstract point of view, our definition is frequently a bit easier to
work with. On the other hand, the two conditions of Proposition are closer
to the usual interpretation of large deviations in terms of exponentially small
probabilities. Also, when in some practical situation one wishes to prove a large
deviation principle, the two conditions of Proposition are often a very natural
way to do so. Here, condition (ii) is usually easier to check than condition (i).
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Condition (ii) says that certain rare events occur wih at least a certain probability.
To prove this, one needs to find one strategy by which a stochastic system can
make the desired event happen, with a certain small probability. Condition (i)
says that there are no other strategies that yield a higher probability for the same
event, which requires one to prove something about all possible ways in which a
certain event can happen.

In practically all applications, we will only be interested in the case that the
measures i, are probability measures and the rate function satisfies inf,cp I(x) =
0, but being slightly more general comes at virtually no cost.

Varadhan [Var66] was not only the first one who formulated large deviation prin-
ciples in the generality that is now standard, he also first proved the lemma that
is called after him, and that reads as follows.

Lemma 1.12 (Varadhan’s lemma) Let E be a Polish space and let pi, € M(E)
satisfy the large deviation principle with speed s, and good rate function I. Let
F : E — R be continuous and assume that sup,cp F(x) < co. Then

1
lim - log / e dp, = sup[F(z) — I(z)].

n—oo Sy el

Proof Applying the exponential function to both sides of our equation, this says
that

lim (/GS”Fd,un)l/S” = sup ef"@~ 1),

n—oo zcE

Setting f := ef’, this is equivalent to
Um | fll s, 0 = Il flloo,r:
n—oo

where our asumptions on F translate into f € Cp 4 (£). Thus, Varadhan’s lemma
is just a trivial reformulation of our definition of a large deviation principle. If we
take the traditional definition of a large deviation principle as our starting point,
then Varadhan’s lemma corresponds to the ‘if” part of Proposition [1.7] |

As we have just seen, Varadhan’s lemma is just the statement that the two condi-
tions of Proposition are sufficient for ((1.2). The fact that these conditions are
also necessary was only proved 24 years later, by Bryc [Bry90].

We conclude this section with a little lemma that says that a sequence of measures
satisfying a large deviation principle determines its rate function uniquely.
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Lemma 1.13 (Uniqueness of the rate function) Let E be a Polish space,
tn € M(E), and let s, be real constants converging to infinity. Assume that the
L satisfy the large deviation principle with speed s, and good rate function I and
also that the ., satisfy the large deviation principle with speed s, and good rate
function I'. Then I =1'.

Proof It follows immediately from our definition of the large deviation principle
that || fllso,r = ||flloc,r for all f € C,4(E). By Lemma[1.6] for each z € E, we can
find continuous f,, : £ — [0, 1] such that f, | 1g,;3. By Lemma (c), it follows
that

—I( —1'(z)

e =1y lloor = T [ fullsos = lm | fulloos = [Tl = €
n—oo n—oo

for each z € F. [ |

1.4 The contraction principle

As we have seen in Propositions [1.1] and there is a lot of similarity between
weak convergence and the large deviation principle. Elaborating on this analogy,
we recall that if X,, is a sequence of random variables, taking values in some
Polish space E, whose laws converge weakly to the law of a random variable X,
and ¥ : E — F is a continuous function from FE into some other Polish space,
then the laws of the random variables ¥(X,,) converge weakly to the law of ¢ (X).
As we will see, an analogue statement holds for sequences of measures satisfying
a large deviation principle.

Recall that if X is a random variable taking values in some measurable space
(E,€), with law P[X € -] = pu, and ¥ : E — F is a measurable function from
E into some other measurable space (F,F), then the law of ¢(X) is the image
measure

potp Y (A) (A€ F), where ¢ ' (A):={recE:y(x)ec A}

is the inverse image (or pre-image) of A under .

The next result shows that if X, are random variables whose laws satisfy a large
deviation principle, and v is a continuous function, then also the laws of the (X))
satify a large deviation principle. This fact is known a the contraction principle.
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Note that we have already seen this principle at work when we derived Propo-
sition from Theorem [0.7] As is clear from this example, it is in practice not
always easy to explicitly calculate the ‘image’ of a rate function under a continuous
map, as defined formally in below.

Proposition 1.14 (Contraction principle) Let E, F be Polish spaces and let
v E— F be continuous. Let u,, be finite measures on E satisfying a large devi-
ation principle with speed s, and good rate function I. Then the image measures
ot satisfying the large deviation principle with speed s, and good rate function
J given by

J(y) : mew{r}f{y})[(:v) (v € F), (1.6)
where inf,cg I(x) := 00.

Proof Recall that a function ¢ from one topological space E into another topo-
logical space F'is continuous if and only if the inverse image under v of any open
set is open, or equivalently, the inverse image of any closed set is closed (see, e.g.,
[Eng89| Proposition 1.4.1] or [Kel75, Theorem 3.1]). As a result, condition (i) of
Proposition [1.7] implies that

1
limsup — log i, o™ 1(C) < — inf I(z
msup = log 1 P (0) < e o) (z) a7
= —inf inf [I(x)= —inf J(y),
yeC zey=1({y}) (=) yed @)
where we have used that ¢~ (C') = U, ¢~ (y}). Condition (ii) of Proposition
carries over in the same way. We are left with the task of showing that J is a good
rate function. Indeed, for each a € R, we have that
eF:Jy) <a}=3yeF: inf I(z)<a
{y (y) <a}={y el @) < }
={yeF:qweEst Y(x)=y, I(z) <a}

={¥(@):z e B, I(z) <a} =P({z: [(z) <a}),
where in the second equality we have used that [ assumes its minimum on the
closed set ¢~ !({y}). Our calculation shows that the level set {y € F : J(y) <
a} is the image under ¢ of the level set {z : I(z) < a}. Since the continuous
image of a compact set is compact[Eng89, Theorem 3.1.10][| this proves that J

has compact level sets. Finally, we observe (compare (1.7))) that inf,cp J(y) =
inf,ep-1(pm I(x) = inf,ep I(x) < oo, proving that J is a good rate function. |

IThis is a well-known fact that can be found in any book on general topology. It is easy to
show by counterexample that the continuous image of a closed set needs in general not be closed!
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1.5 Exponential tilts

It is not hard to see that if u, are measures satisfying a large deviation principle,
then we can transform these measures by weighting them with an exponential
density, in such a way that the new measures also satisfy a large deviation principle.
Recall that if pu is a measure and f is a nonnegative measurable function, then
setting

fut) = [ sau
defines a new measure fu which is p weighted with the density f.

Lemma 1.15 (Exponential weighting) Let E be a Polish space and let p,, €
M(E) satisfy the large deviation principle with speed s,, and good rate function I.
Let F : E — R be continuous and assume that —oo < sup,.p F'(r) < co. Then
the measures

fin = e

satisfy the large deviation principle with speed s, and good rate function I := I—F.
Proof Note that e’ € C,; (F). Therefore, for any f € Cy (F),

1 oz = / Py = e o

— |[fe" [loo,r = sup f(a)e" e = | f]l 1
n—oo zcE

Since F'is continuous, I — F' is lower semi-continuous. Since F' is bounded from
above, any level set of I — F' is contained in some level set of I, and therefore
compact. Since F' is not identically —oo, finally, inf,c;(I(z) — F(x)) < oo, proving
that I — F' is a good rate function. |

Lemma is not so useful yet, since in practice we are usually interested in
probability measures, while exponential weighting may spoil the normalization.
Likewise, we are usually interested in rate functions that are properly ‘normalized’.
Let us say that a function I is a normalized rate function if I is a good rate
function and inf,cp I(z) = 0. Note that if pu, are probability measures satisfying
a large deviation principle with speed s, and rate function I, then I must be
normalized, since F is both open and closed, and therefore by conditions (i) and

(ii) of Proposition

1
—inf I(x) = lim — log u,(E) = 0.

z€FE n—o00 Sy,
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Lemma 1.16 (Exponential tilting) Let E be a Polish space and let w, be
probability measures on E satisfy the large deviation principle with speed s, and
normalized rate function I. Let F : E — R be continuous and assume that
—00 < Sup,cp F(z) < co. Then the measures

[l = ;es"FMn
f€San,un

satisfy the large deviation principle with speed s, and normalized rate function

I(z) := I(z) — F(z) — infyep(I(y) — F(y)).

Proof Since e’ € C, , (E), much in the same way as in the proof of the previous
lemma, we see that

1 Sn S 1/Sn ||f€F||5na n
i = (g [ Fores ) = et

J ey TF o
erFHoo,I __ SUDyep f(x)eF(x)e—I(m)
n—o00 ”eFHoo,I - SUP,c eF(x)o—I(x)
= e_infyeE(I(y)_F(y)) sup f(x)e_(](x)—F(x)) _ ||f||Oo ;.
zelk ’

The fact that I is a good rate function follows from the same arguments as in the
proof of the previous lemma, and I is obviously normalized. |

1.6 Robustness

Often, when one wishes to prove that the laws P[X,, € -] of some random variables
X, satisfy a large deviation principle with a given speed and rate function, it is
convenient to replace the random variables X,, by some other random variables
Y, that are ‘sufficiently close’, so that the large deviation principle for the laws
P[Y,, € -] implies the LDP for P[X,, € -]. The next result (which we copy from
[IDE97, Thm 1.3.3]) gives sufficient conditions for this to be allowed.

Proposition 1.17 (Superexponential approximation) Let (X,,)n>1, (Y)n>1
be random wvariables taking values in a Polish space E and assume that the laws
P[Y,, € -] satisfy a large deviation principle with speed s,, and rate function I. Let
d be any metric generating the topology on E, and assume that

lim ilogIP[d(Xn,Yn) >¢e]l=—00 (e >0). (1.8)

n—oo Sn
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Then the laws P[X,, € -] satisfy the large deviation principle with speed s,, and rate
function 1.

Remark If holds, then we say that the random variables X, and Y, are
exponentially close. Note that condition is in particular satisfied if for each
e > 0 there is an N such that d(X,,,Y,) < ¢ a.s. for all n > N. We can even allow
for d(X,,,Y,) > ¢ with a small probability, but in this case these probabilities must
tend to zero faster than any exponential.

Proof of Proposition Let C C E be closed and let C. := {r € E :
d(z,C) < e}. Then

1
lim sup — log P[X,, € C]

n—o0 STL

1
< limsup — log (PY, € C., d(X,,Y,) <] +Pld(X,,Y,) > €])

n—oo S/I’L
1
< limsup — logP[Y,, € C.] = — inf I(z) — — inf I(x),

n—oo Sn xeCe €l0 xeC

where we have used ([1.4) and in the last step we have applied (the logarithmic
version of) Lemma (c). Similarly, if O C E is open and O, = {z € E :
d(x, E\O) > ¢}, then

1 1
lim inf — log P[X,, € O] > liminf — logP[Y,, € O, d(X,,Y,) <¢].

n—oo S?’L n—oo STL

The large deviations lower bound is trivial if inf,co I(x) = 0o, so without loss of
generality we may assume that inf,co [(z) < oco. Since inf,co. I(z) | inf,co I(z),
it follows that for ¢ sufficiently small, also inf,co, I(z) < co. By the fact that the
Y, satisfy the large deviation lower bound and by ,

PlY, € O, d(X,,Y,) <¢] > P[Y, € O] — Pld(X,,Y,) > €]
> ¢~ Sninfzeo. I(x) + o(sn) _ e—sn/o(sn)

as n — 0o, where o(s,,) is the usual small ‘0’ notation, i.e., o(s,) denotes any term
such that o(s,)/s, — 0. It follows that

1
liminf —logP[Y,, € O., d(X,,Y,) <¢] > — inf I(z) — — inf I(x),

n—oo S, €0, el0 €0

which proves the the large deviation lower bound for the X,,. |

Proposition |[1.17] shows that large deviation principles are ‘robust’, in a certain
sense, with repect to small perturbations. The next result is of a similar nature:
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we will prove that weighting measures with densities does not affect a large de-
viation principle, as long as these densities do not grow exponentially fast. This
complements the case of exponentialy growing densities which has been treated in

Section [5Gl

Lemma 1.18 (Subexponential weighting) Let E be a Polish space and let
tn € M(E) satisfy the large deviation principle with speed s, and good rate func-
tion I. Let F,, : E — R be measurable and assume that lim,_, ||Fy|lc = 0, where
| Foulloo := sup,ep | Fn(x)|. Then the measures

Y _ o snkbn

fin, = €7 11y,

satisfy the large deviation principle with speed s, and rate function I.

Proof We check the large deviations upper and lower bound from Proposition [1.7]
For any closed set C' C E, by the fact that the pu, satisfy the large deviation
principle, we have

1 1
lim sup — log /i, (C') = lim sup — log/ Ly (d)esn (@)
c

1 1
< timsup —log (¢4, (C)) = imsup (| Fyl| + — log un(C)).
n—oo n

n—oo Sn

which equals — inf, e [(z). Similarly, for any open O C E, we have

1 1
lim inf — log /i, (0) = lim inf — log / i ()o@
(@]

n—oo S, n—oo Sy,

1 1
> lim inf — log (e 1™l 1, (0)) = liminf ( — || .|| + — log 11,(0)),
n—00 S,

n—oo S

which yields —inf,.co I(x), as required. |

1.7 Tightness

In Sections and [I.2] we have stressed the similarity between weak convergence
of measures and large deviation principles. In the remainder of this chapter, we will
pursue this idea further. In the present section, we recall the concept of tightness
and Prohorov’s theorem. In particular, we will see that any tight sequence of
probability measures on a Polish space has a weakly convergent subsequence. In
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the next sections (to be precise, in Theorem [1.25)), we will prove an analogue of this
result, which says that every exponentially tight sequence of probability measures
on a Polish space has a subsequence that satisfies a large deviation principle.

A set A is called relatively compact if its closure A is compact. The next result
is known as Prohorov’s theorem (see, e.g., [Ste87, Theorems I11.3.3 and I11.3.4] or
[Bil99, Theorems 5.1 and 5.2]).

Proposition 1.19 (Prohorov) Let E be a Polish space and let My (E) be the
space of probability measures on (E,B(E)), equipped with the topology of weak
convergence. Then a subset C C M;(E) is relatively compact if and only if C is
tight, i.e.,

Ve >0 3K C E compact, s.t. sup u(E\K) < e.
nel

Note that since sets consisting of a single point are always compact, Proposi-
tion implies that every probability measure (and therefore also every finite
measure) on a Polish space E has the property that for all £ > 0 there exists
a compact K such that u(E\K) < e. This result, that is sometimes known as
Ulam’s theorem, is in itself already nontrivial, since Polish spaces need in general
not be locally compact.

By definition, a set of functions D C Cy(F) is called distribution determining if for
any pu,v € My(E),

/fdu:/fdy VfeD implies pu=uv.

We say that a sequence of probability measures (pi,),>1 is tight if the set {p, : n >
1} is tight, i.e., Ve > 0 there exists a compact K such that sup,, p,(E\K) < e. By
Prohorov’s theorem, each tight sequence of probability measures has a convergent
subsequence. This fact is often applied as in the following lemma.

Lemma 1.20 (Tight sequences) Let E be a Polish space and let pu,,, i be prob-

ability measures on E. Assume that D C Cy(E) is distribution determining. Then
one has p, = w if and only if the following two conditions are satisfied:

(1) The sequence (fy)n>1 1S tight.

(i) [ fdun, — [ fdu for all f € D.
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The proof of Lemma [1.20] uses a simple fact from general topology. Recall that
(@, )nen is a subsequence of (x,,)nen if there exist n(m) — oo such that x], = 2,(m)
(m € N).

Lemma 1.21 (Convergence along subsequences) Let E be a topological space
and let x,,x € E. Assume that each subsequence (x)) of (z,) contains a further

n
subsequence (z') such that x!! — x. Then z, — x.

Proof Assume that x,, /A x. Then there exists an open set O 3 x such that z,, € O
for infinitely many n, hence there exists a subsequence (/) such that =/, & O for
all n. But then no subsequence (z!7) of (x]) can converge to x, contradicting our

assumption. [

Proof of Lemma In any metrizable space, if (x,),>1 is a convergent se-
quence, then {z, : n > 1} is relatively compact. Thus, by Prohorov’s theorem,
conditions (i) and (ii) are clearly necessary.

To prove the sufficiency of conditions (i) and (ii) we apply Lemma By (i) and
Prohorov’s theorem, each subsequence () of (i,) contains a further subsequence
(1) that converges weakly to some limit p”. By (ii) [ fdu” = [ fdufor all f € D
so 1" = p and hence by Lemma we conclude that the original sequence ()
converges weakly to . |

1.8 LDP’s on compact spaces

Our aim is to prove an analogue of Lemma for large deviation principles. To
prepare for this, in the present section, we will study large deviation principles
on compact spaces. The results in this section will also shed some light on some
elements of the theory that have up to now not been very well motivated, such as
why rate functions are lower semi-continuous.

It is well-known that a compact metrizable space is separable, and complete in any
metric that generates the topology. In particular, all compact metrizabe spaces
are Polish. Note that if £ is a compact metrizable space, then C(E) = Cy(E),
i.e., continuous functions are automatically bounded. We equip C(F) with the
supremumnorm || - ||, under which it is a separable Banach spacef| Below, |f]|
denotes the absolute value of a function, i.e., the function x — | f(z)].

2The separability of C(E) is an easy consequence of the Stone-Weierstrass theorem [Dud02,
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Proposition 1.22 (Generalized supremumnorms) Let E be a compact met-
rizable space and let A : C(E) — [0,00) be a function such that

(i) A is a seminorm.

(ii) ACf) = A(f]) for all f € C(E).

(i) A(f) < A(g) forall f.g € CL(E), f <g.
(iv) A(fVg)=A(f)V Alg) for all f,g € Ci(E).
Then

(a) A:C(F)— [0,00) is continuous w.r.t. the supremumnorm.

Moreover, there exists a function I : E — (—o00, 00| such that

(b> A(fn) \l/ e_I(z) fOT’ any fn € C+(E) s.1. fn \l/ 1{1}

(c) I is lower semi-continuous.

(d) A(f) =sup,cpe”@|f ()] (f €C(E)).

Proof To prove part (a), we observe that by (ii), (iii) and (i)
ACF) = A < Al flloe - 1) = [ f loo A(D),

where 1 € C(F) denotes the function that is identically one. Using again that A
is a seminorm, we see that

[A(f) = A9 < Af —9) < ADIf = glle-

This shows that A is continuous w.r.t. the supremumnorm.

Next, define I : E — (—o00, 00] (or equivalently e™! : E — [0,00)) by

e 1@ = inf{A(f): f€CL(E), f(x)=1} (z€E).

Thm 2.4.11]. Let D C E be dense and let A := {¢,, : © € D, n > 1}, where ¢5,(y) :=
0V (1 —nd(z,y)). Let B be the set containing the function that is identically 1 and all functions
of the form f; - - f,, withm > 1 and f1,..., fin € A. Let C be the linear span of B and let C’ be
the set of functions of the form ay f1+- - -+ ap fr, withm > 1, a1,...,a, € Qand f1,..., fin € B.
Then C is an algebra that separates points, hence by the Stone-Weierstrass theorem, C is dense
in C(E). Since C’ is dense in C’ and C’ is countable, it follows that C(E) is separable.
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We claim that this function satisfies the properties (b)—(d). Indeed, if f,, € C, (F)
satisfy f, | 1y for some x € FE, then the A(f,) decrease to a limit by the
monotonicit