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Cramér’s theorem

Let (Xk)k≥1 be i.i.d. real random variables with law µ.
Assume that

Z (λ) := E[eλX1 ] =

∫
µ(dx) eλx <∞ (λ ∈ R).

and set ρ := 〈µ〉 = E[X1].

Theorem (Harald Cramér, 1938)

(i) lim
n→∞

1

n
logP

[1

n

n∑
k=1

Xk ≥ y
]

= −I (y) (y > ρ),

(ii) lim
n→∞

1

n
logP

[1

n

n∑
k=1

Xk ≤ y
]

= −I (y) (y < ρ),

where I is defined by

I (y) := sup
λ∈R

[
λy − logZ (λ)

]
(y ∈ R).
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Cramér’s theorem
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The upper bound

Proof We only prove (i). Since 1[0,∞)(z) ≤ ez , we can estimate
for y ∈ R and λ > 0,

P
[1

n

n∑
k=1

Xk ≥ y
]

= P
[1

n

n∑
k=1

(Xk − y) ≥ 0
]

= P
[
λ

n∑
k=1

(Xk − y) ≥ 0
]

≤ E
[
eλ
∑n

k=1(Xk − y)] =
n∏

k=1

E
[
eλ(Xk − y)] = e−nλyE

[
eλX1

]n
= e (logZ (λ)− λy)n.

It follows that

1

n
logP

[1

n

n∑
k=1

Xk ≤ y
]
≤ inf
λ>0

[
logZ (λ)− λy

]
=− sup

λ>0

[
λy − logZ (λ)

]
.
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The upper bound

The function λ 7→ λy − logZ (λ) assumes its maximum in the
point λ that is uniquely characterised by

∂
∂λ logZ (λ) = y .

If y > ρ, then the maximum is achieved for λ > 0 and hence

sup
λ>0

[
λy − logZ (λ)

]
= sup

λ∈R

[
λy − logZ (λ)

]
=: I (y).

This completes the proof of the upper bound.
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The lower bound

To prove the lower bound, we first treat two trivial cases.
Recall that y+ is the supremum of the support of the law of X1.

If y > y+, then P[ 1n
∑n

k=1 Xk ≥ y ] = 0 for all n ≥ 1 while
I (y) =∞ so (i) holds trivially.

If y = y+, then P[ 1n
∑n

k=1 Xk ≥ y ] = P[X1 = y+]n while
I (y+) = − logP[X1 = y+] by, hence again (i) holds.

It remains to treat the case ρ < y < y+.
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The lower bound

Now I (y) = yλ◦ − logZ (λ◦), where is uniquely characterized by
the requirement that

〈µλ◦〉 = ∂ logZ (λ◦) = y .

The idea of the proof is to replace the law µ of the (Xk)k≥1 by µλ◦
at an exponential cost of size I (y).

P
[1

n

n∑
k=1

Xk ≥ y
]

= P
[ n∑
k=1

(Xk − y) ≥ 0
]

=

∫
µ(dx1) · · ·

∫
µ(dxn)1{

∑n
k=1(xk − y) ≥ 0}

= Z (λ◦)
ne−nλ◦y

∫
µλ◦(dx1) · · ·

∫
µλ◦(dxn)

×e−λ◦
∑n

k=1(xk − y)1{
∑n

k=1(xk − y) ≥ 0}

= e−nI (y)E
[
e−λ◦

∑n
k=1(X̂k − y)1{

∑n
k=1(X̂k − y) ≥ 0}

]
.
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The lower bound

To complete the proof, we must show that

lim inf
n→∞

1

n
logE

[
e−λ◦

∑n
k=1(X̂k − y)1{

∑n
k=1(X̂k − y) ≥ 0}

]
≥ 0,

where (X̂k)k≥1 are i.i.d. with law µλ◦ , so E[X̂k ] = y and
σ2 := Var(X̂k) > 0.
We estimate

E
[
e−λ◦

∑n
k=1(X̂k − y)1{

∑n
k=1(X̂k − y) ≥ 0}

]
≥ P

[
0 ≤

n∑
k=1

(X̂k − y) ≤ σ
√
n
]
e−σλ◦

√
n,

where by the central limit theorem,

P
[
0 ≤

n∑
k=1

(X̂k − y) ≤ σ
√
n
]
−→
n→∞

1√
2π

∫ 1

0
e−z

2/2dz =: θ > 0.
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Use of the CLT

Remark Our proof shows that for ρ < y < y+,

e−nI (y)− O(
√
n) ≤ P[

1

n

n∑
k=1

Xk ≥ y ] ≤ e−nI (y) as n→∞,

where the lower bound is based on the central limit theorem.
Alternatively, one can use the weak law of large numbers to deduce
that

P
[
0 ≤

n∑
k=1

(X̃k − y) ≤ ε
]
−→
n→∞

1 (ε > 0)

when X̃k have law µλ with λ > λ◦.
Since ε > 0 and λ > λ◦ are arbitrary, this is enough to derive the
LDP.
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Upper limit of the range

Remark We have proved a bit more than the LDP.
If y+ <∞ and µ({y+}) > 0, then the LDP tells us that

lim sup
n→∞

µn([y+,∞)) ≤ − inf
y∈[y+,∞)

I (y) = −I (y+),

but as shown in Excercise 1.11, the complementary statement for
the limit inferior does not follow from the LDP since [y+,∞) is not
an open set.
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The multi-dimensional case

Remark The multi-dimensional Cramér’s theorem can be proved in
the same way, but we will give a different proof based on the
Gärtner-Ellis theorem.

Remark Cramér’s theorem remains true if the assumption

Z (λ) := E[eλX1 ] <∞ for all λ ∈ R is weakened to Z (λ) <∞ for
λ in an open neighbourhood of the origin. Our proof in the
multi-dimensional case will partly cover this regime but not fully.
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Conditioning on rare events

Remark For ρ < y < y+, it can be shown that for fixed m ≥ 1,

P
[
X1 ∈ dx1, . . . ,Xm ∈ dxm

∣∣ 1
n

n∑
k=1

Xk ≥ y
]

=⇒
n→∞

µλ◦(dx1) · · ·µλ◦(dxm).

This means that conditioned on the rare event 1
n

∑n
k=1 Xk ≥ y , in

the limit n→∞, the random variables X1, . . . ,Xn are
approximately distributed as if they are i.i.d. with common law µλ◦ .
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