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Preface

The earliest origins of large deviation theory lie in the work of Boltzmann on en-
tropy in the 1870ies and Cramér’s theorem from 1938 [Cra38]. A unifying math-
ematical formalism was only developed starting with Varadhan’s definition of a
‘large deviation principle’ (LDP) in 1966 [Var66].

Basically, large deviation theory centers around the observation that suitable func-
tions F of large numbers of i.i.d. random variables (X1, . . . , Xn) often have the
property that

P
[
F (X1, . . . , Xn) ∈ dx

]
∼ e−snI(x) as n→ ∞, (LDP)

where sn are real contants such that limn→∞ sn = ∞ (in most cases simply sn = n).
In words, (LDP) says that the probability that F (X1, . . . , Xn) takes values near a
point x decays exponentially fast, with speed sn, and rate function I.

Large deviation theory has two different aspects. On the one hand, there is the
question of how to formalize the intuitive formula (LDP). This leads to the al-
ready mentioned definition of ‘large deviation principles’ and involves quite a bit
of measure theory and real analysis. The most important basic results of the ab-
stract theory were proved more or less between 1966 and 1991, when O’Brian and
Verwaat [OV91] and Puhalskii [Puk91] proved that exponential tightness implies
a subsequential LDP. The abstract theory of large deviation principles plays more
or less the same role as measure theory in (usual) probability theory.

On the other hand, there is a much richer and much more important side of large
deviation theory, which tries to identify rate functions I for various functions F of
independent random variables, and study their properties. This part of the theory
is as rich as the branch of probability theory that tries to prove limit theorems
for functions of large numbers of random variables, and has many relations to the
latter.

There exist a number of good books on large deviation theory. The oldest book
that I am aware of is the one by Ellis [Ell85], which is still useful for applications
of large deviation theory in statistical mechanics and gives a good intuitive feeling
for the theory, but lacks some of the standard results.

The classical books on the topic are the ones of Deuschel and Stroock [DS89]
and especially Dembo and Zeitouni [DZ98], the latter originally published in 1993.
While these are very thorough introductions to the field, they can at places be a
bit hard to read due to the technicalities involved. Also, both books came a bit



6 CONTENTS

too early to pick the full fruit of the developement of the abstract theory.

A very pleasant book to read as a first introduction to the field is the book by
Den Hollander [Hol00], which avoids many of the technicalities in favour of a clear
exposition of the intuitive ideas and a rich choice of applications. A disadvantage
of this book is that it gives little attention to the abstract theory, which means
many results are not proved in their strongest form.

Two other relatively recent books on the topic, that each try to stress certain
aspects of the theory, are the books by Dupuis and Ellis [DE97] and Puhalskii
[Puh01]. These books are very strong on the abstract theory, but, unfortunately,
they indulge rather heavily in the introduction of their own terminology and for-
malism (for example, in [DE97], replacing the large deviation principle by the
almost equivalent ‘Laplace principle’) which makes them somewhat inaccessible,
unless read from the beginning to the end.

A modern book that gives a statistical mechanics oriented view of large deviations
and that includes a very readable account of the modern abstract theory is the
book by Rassoul-Agha and Seppäläinen [RS15].

A difficulty encountered by everyone who tries to teach large deviation theory is
that in order to do it properly, one first needs quite a bit of abstract theory, which
however is intuitively hard to grasp unless one has seen at least a few examples.
For this reason, the lecture notes start with a number of motivating examples
which will be proved in the later sections. Also, the development of the abstract
theory is at regular intervals interrupted in order to show how it can be applied to
concrete examples. I have tried to make optimal use of some of the more modern
abstract theory, while sticking with the classical terminology and formulations as
much as possible.



Chapter 0

Some motivating examples

0.1 Cramér’s theorem

Let (Xk)k≥1 be a sequence of i.i.d. absolutely integrable (i.e., E[|X1|] < ∞) real
random variables with mean ρ := E[X1], and let

Tn :=
1

n

n∑
k=1

Xk (n ≥ 1).

be their empirical averages. Then the weak law of large numbers states that

P
[
|Tn − ρ| ≥ ε

]
−→
n→∞

0 (ε > 0).

In 1938, the Swedish statistician and probabilist Harald Cramér [Cra38] studied
the question how fast this probability tends to zero. For laws with sufficiently light
tails (as stated in the condition (0.1) below), he arrived at the following conclusion.

Theorem 0.1 (Cramér’s theorem) Assume that

Z(λ) := E[eλX1 ] <∞ (λ ∈ R). (0.1)

Then

(i) lim
n→∞

1

n
logP[Tn ≥ y] = −I(y) (y > ρ),

(ii) lim
n→∞

1

n
logP[Tn ≤ y] = −I(y) (y < ρ),

(0.2)

where I is defined by

I(y) := sup
λ∈R

[
λy − logZ(λ)

]
(y ∈ R). (0.3)

7
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The function Z in (0.1) is called the moment generating function or cumulant gen-
erating function, and its logarithm is consequently called the logarithmic moment
generating function (or logarithmic cumulant generating function of the law of X1.
In the context of large deviation theory, logZ(λ) is also called the free energy
function, see [Ell85, Section II.4].

The function I defined in (0.3) is called the rate function. In order to see what
Cramér’s theorem tells us exactly, we need to know some elementary properties of
this function. Note that (0.1) implies that E[|X1|2] < ∞. To avoid trivial cases,
we assume that the Xk are not a.s. constant, i.e., Var(X1) > 0.

Below, int(A) denotes the interior of a set A, i.e., the largest open set contained in
A. We recall that for any finite measure µ on R, support(µ) is the smallest closed
set such that µ is concentrated on support(µ).

Lemma 0.2 (Properties of the rate function) Let µ be the law of X1, let
ρ := ⟨µ⟩ and σ2 := Var(µ) denote its mean and variance, and assume that σ > 0.
Let y− := inf(support(µ)), y+ := sup(support(µ)). Let I be the function defined
in (0.3) and set

DI := {y ∈ R : I(y) <∞} and UI := int(DI).

Then:

(i) I is convex.

(ii) I is lower semi-continuous.

(iii) 0 ≤ I(y) ≤ ∞ for all y ∈ R.

(iv) I(y) = 0 if and only if y = ρ.

(v) UI = (y−, y+).

(vi) I is infinitely differentiable on UI .

(vii) limy↓y− I
′(y) = −∞ and limy↑y+ I

′(y) = ∞.

(viii) I ′′ > 0 on UI and I ′′(ρ) = 1/σ2.

(ix) If −∞ < y−, then I(y−) = − log µ({y−}), and
if y+ <∞, then I(y+) = − log µ({y+}).
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I(y)

y

∞

ρ y+

− log µ({y+})

Figure 1: A typical example of a rate function.

See Figure 1 for a picture. Here, if E is any metric space (e.g. E = R), then we
say that a function f : E → [−∞,∞] is lower semi-continuous if one (and hence
both) of the following equivalent conditions are satisfied:

(i) lim infn→∞ f(xn) ≥ f(x) whenever xn → x.

(ii) For each −∞ ≤ a ≤ ∞, the level set {x ∈ E : I(x) ≤ a} is a closed subset
of E.

In view of Lemma 0.2, Theorem 0.1 tells us that the probability that the empirical
average Tn deviates by any given constant from its mean decays exponentially fast
in n. More precisely, formula (0.2) (i) says that

P[Tn ≥ y] = e−nI(y) + o(n) as n→ ∞ (y > ρ),

were, as usual, o(n) denotes any function such that

o(n)/n→ 0 as n→ ∞.

Note that formulas (0.2) (i) and (ii) only consider one-sided deviations of Tn from
its mean ρ. Nevertheless, the limiting behavior of two-sided deviations can easily
be derived from Theorem 0.1. Indeed, for any y− < ρ < y+,

P[Tn ≤ y− or Tn ≥ y+] = e−nI(y−) + o(n) + e−nI(y+) + o(n)

= e−nmin{I(y−), I(y+)}+ o(n) as n→ ∞.
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In particular,

lim
n→∞

1

n
logP

[
|Tn − ρ| ≥ ε] = min{I(ρ− ε), I(ρ+ ε)} (ε > 0).

Exercise 0.3 Use Theorem 0.1 and Lemma 0.2 to deduce that, under the assump-
tions of Theorem 0.1,

lim
n→∞

1

n
logP

[
Tn > y

]
= −Iup(y) (y ≥ ρ),

where Iup is the upper semi-continuous modification of I, i.e., Iup(y) = I(y) for
y ̸= y−, y+ and Iup(y−) = Iup(y+) := ∞.

0.2 Moderate deviations

As in the previous section, let (Xk)k≥1 be a sequence of i.i.d. absolutely integrable
real random variables with mean ρ := E[|X1|] and assume that (0.1) holds. Let

Sn :=
n∑
k=1

Xk (n ≥ 1).

be the partial sums of the first n random variables. Then Theorem 0.1 says that

P
[
Sn − ρn ≥ yn

]
= e−nI(ρ+ y) + o(n) as n→ ∞ (y > 0).

On the other hand, by the central limit theorem, we know that

P
[
Sn − ρn ≥ y

√
n
]
−→
n→∞

Φ(y/σ) (y ∈ R),

where Φ is the distribution function of the standard normal distribution and

σ2 = Var(X1),

which we assume to be positive. One may wonder what happens at in-between
scales, i.e., how does P[Sn − ρn ≥ yn] decay to zero if

√
n ≪ yn ≪ n? This is

the question of moderate deviations. We will only consider the case yn = ynα with
1
2
< α < 1, even though other timescales (for example in connection with the law

of the iterated logarithm) are also interesting.



0.3. RELATIVE ENTROPY 11

Theorem 0.4 (Moderate deviations) Let (Xk)k≥1 be a sequence of i.i.d. ab-
solutely integrable real random variables with mean ρ := E[|X1|], variance σ2 =
Var(X1) > 0, and E[eλX1 ] <∞ (λ ∈ R). Then

lim
n→∞

1

n2α−1
logP[Sn − ρn ≥ ynα] = − 1

2σ2y
2 (y > 0, 1

2
< α < 1). (0.4)

Remark Setting yn := ynα−1 and naively applying Cramér’s theorem, pretending
that yn is a constant, using Lemma 0.2 (viii), we obtain

logP[Sn − ρn ≥ ynα] = logP[Sn − ρn ≥ ynn]

≈ −nI(yn) ≈ −n 1
2σ2y

2
n = − 1

2σ2y
2n2α−1.

Dividing both sides of this equation by n2α−1 yields formula (0.4) (although this
derivation is not correct). Moderate deviations are treated in [RS15, Section 11.2].
Some other more or less helpful references are [DB81, Led92, Aco02, EL03].

0.3 Relative entropy

Imagine that we throw a dice n times, and keep record of how often each of the
possible outcomes 1, . . . , 6 comes up. Let Nn(x) be the number of times outcome x
has turned up in the first n throws, letMn(x) := Nn(x)/n be the relative frequency
of x, and set

∆n := max
1≤x≤6

Mn(x)− min
1≤x≤6

Mn(x).

By the strong law of large numbers, we know that Mn(x) → 1/6 a.s. as n → ∞
for each x ∈ {1, . . . , 6}, and therefore P[∆n ≥ ε] → 0 as n→ ∞ for each ε > 0. It
turns out that this convergence happens exponentially fast.

Proposition 0.5 (Deviations from uniformity) There exists a continuous,
strictly increasing function I : [0, 1] → R with I(0) = 0 and I(1) = log 6, such that

lim
n→∞

1

n
logP

[
∆n ≥ ε

]
= −I(ε) (0 ≤ ε ≤ 1). (0.5)

Proposition 0.5 follows from a more general result that was already discovered by
the physicist Boltzmann in 1877. A much more general version of this result for
random variables that do not need to take values in a finite space was proved by
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the Russian mathematician Sanov [San61]. We will restrict ourselves to finite state
spaces for the moment. To state the theorem, we first need a few definitions.

Let S be a finite set and let M1(S) be the set of all probability measures on S.
Since S is finite, we may identify M1(S) with the set

M1(S) :=
{
π ∈ RS : π(x) ≥ 0 ∀x ∈ S,

∑
x∈S

π(1) = 1
}
,

where RS denotes the space of all functions π : S → R. Note that M1(S) is a
compact, convex subset of the (|S| − 1)-dimensional space {π ∈ RS :

∑
x∈S π(1) =

1}.

Let µ, ν ∈ M1(S) and assume that µ(x) > 0 for all x ∈ S. Then we define the
relative entropy of ν with respect to µ by

H(ν|µ) :=
∑
x∈S

ν(x) log
ν(x)

µ(x)
=

∑
x∈S

µ(x)
ν(x)

µ(x)
log

ν(x)

µ(x)
,

where we use the conventions that log(0) := −∞ and 0 · ∞ := 0. The function
H(ν|µ) is also known as the Kullback-Leibler distance or divergence.

Lemma 0.6 (Properties of the relative entropy) Assume that µ ∈ M1(S)
and assume that µ(x) > 0 for all x ∈ S. Then the function ν 7→ H(ν|µ) has the
following properties.

(i) 0 ≤ H(ν|µ) <∞ for all ν ∈ M1(S).

(ii) H(µ|µ) = 0.

(iii) H(ν|µ) > 0 for all ν ̸= µ.

(iv) ν 7→ H(ν|µ) is convex and continuous on M1(S).

(v) ν 7→ H(ν|µ) is infinitely differentiable on the interior of M1(S).

Assume that µ ∈ M1(S) satisfies µ(x) > 0 for all x ∈ S and let (Xk)k≥1 be an
i.i.d. sequence with common law P[X1 = x] = µ(x). As in the example of the dice
throws, we let

Mn(x) :=
1

n

n∑
k=1

1{Xk=x} (x ∈ S, n ≥ 1). (0.6)

Note that Mn is a M1(S)-valued random variable. We call Mn the empirical
distribution.
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Theorem 0.7 (Boltzmann-Sanov) Let C be a closed subset of M1(S) such that
C is the closure of its interior. Then

lim
n→∞

1

n
logP[Mn ∈ C] = −min

ν∈C
H(ν|µ). (0.7)

Note that (0.7) says that

P[Mn ∈ C] = e−nIC+o(n) as n→ ∞ where IC = min
ν∈C

H(ν|µ). (0.8)

This is similar to what we have already seen in Cramér’s theorem: if I is the
rate function from Theorem 0.1, then I(y) = miny′∈[y,∞) I(y

′) for y > ρ and I(y) =
miny′∈(−∞,y] I(y

′) for y < ρ. Likewise, as we have seen in (0.1), the probability that
Tn ∈ (−∞, y−] ∪ [y+,∞) decays exponentially with rate miny′∈(−∞,y−]∪[y+,∞) I(y

′).

The proof of Theorem 0.7 will be delayed till later, but we will show here how
Theorem 0.7 implies Proposition 0.5.

Proof of Proposition 0.5 We set S := {1, . . . , 6}, µ(x) := 1/6 for all x ∈ S, and
apply Theorem 0.7. For each 0 ≤ ε < 1, the set

Cε :=
{
ν ∈ M1(S) : max

x∈S
ν(x)−min

x∈S
ν(x) ≥ ε

}
is a closed subset of M1(S) that is the closure of its interior. (Note that the last
statement fails for ε = 1.) Therefore, Theorem 0.7 implies that

lim
n→∞

1

n
logP

[
∆n ≥ ε

]
= lim

n→∞

1

n
logP

[
Mn ∈ Cε

]
= −min

ν∈Cε

H(ν|µ) =: −I(ε). (0.9)

The fact that I is continuous and satisfies I(0) = 0 follows easily from the
properties of H(ν|µ) listed in Lemma 0.6. To see that I is strictly increasing,
fix 0 ≤ ε1 < ε2 < 1. Since H( · |µ) is continuous and the Cε2 are compact,
we can find a ν∗ (not necessarily unique) such that H( · |µ) assumes its mini-
mum over Cε2 in ν∗. Now by the fact that H( · |µ) is convex and assumes its
unique minimum in µ, we see that ν ′ := ε1

ε2
ν∗ + (1 − ε1

ε2
)µ ∈ Cε1 and therefore

I(ε1) ≤ H(ν ′|µ) < H(ν∗|µ) = I(ε2).

Finally, by the continuity of H( · |µ), we see that

I(ε) ↑ min
ν∈C1

H(ν|µ) = H(δ1|µ) = log 6 as ε ↑ 1.
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To see that (0.5) also holds for ε = 1 (which does not follow directly from
Theorem 0.7 since C1 is not the closure of its interior), it suffices to note that
P[∆n = 1] = (1

6
)n−1.

Remark 1 It is quite tricky to calculate the function I from Proposition 0.5
explicitly. For ε sufficiently small, it seems that the minimizers of the entropy
H( · |µ) on the set Cε are (up to permutations of the coordinates) of the form
ν(1) = 1

6
− 1

2
ε, ν(2) = 1

6
+ 1

2
ε, and ν(3), . . . , ν(6) = 1

6
. For ε > 1

3
, this solution is

of course no longer well-defined and the minimizer must look differently.

Remark 2 I do not know whether the function I is convex.

0.4 Non-exit probabilities

In this section we move away from the i.i.d. setting and formulate a large devi-
ation result for Markov processes. To keep the technicalities to a minimum, we
restrict ourselves to Markov processes with a finite state space. We recall that a
continuous-time, time-homogeneous Markov process X = (Xt)t≥0 taking value in
a finite set S is uniquely characterized (in law) by its initial law µ(x) := P[X0 = x]
and its transition probabilities Pt(x, y). Indeed, X has piecewise constant, right-
continuous sample paths and its finite-dimensional distributions are characterized
by

P
[
Xt1 = x1, . . . , Xtn = xn

]
=

∑
x0

µ(x0)Pt1(x0, x1)Pt2−t1(x1, x2) · · ·Ptn−tn−1(xn, xn)

(t1 < · · · < tn, x1, . . . , xn ∈ S). The transition probabilities are continuous in t,
have P0(x, y) = 1{x=y} and satisfy the Chapman-Kolmogorov equation∑

y

Ps(x, y)Pt(y, z) = Ps+t(x, z) (s, t ≥ 0, x, z ∈ S).

As a result, they define a semigroup (Pt)t≥0 of linear operators Pt : RS → RS by

Ptf(x) :=
∑
y

Pt(x, y)f(y) = Ex[f(Xt)],

where Ex denotes expectation with respect to the law Px of the Markov process
with initial state X0 = x. One has

Pt = eGt =
∞∑
n=0

1

n!
Gntn,
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where G : RS → RS, called the generator of the semigroup (Pt)t≥0, is an operator
of the form

Gf(x) =
∑
y: y ̸=x

r(x, y)
(
f(y)− f(x)

)
(f ∈ RS, x ∈ S),

where r(x, y) (x, y ∈ S, x ̸= y) are nonnegative contants. We call r(x, y) the rate
of jumps from x to y. Indeed, since Pt = 1 + tG+O(t2) as t→ 0, we have that

Px[Xt = y] =

{
tr(x, y) +O(t2) if x ̸= y,
1− t

∑
z: z ̸=x r(x, z) +O(t2) if x = y.

Let U ⊂ S be some strict subset of S and assume that X0 ∈ U a.s. We will be
interested in the probability that Xt stays in U for a long time. Let us say that
the transition rates r(x, y) are irreducible on U if for each x, z ∈ U , we can find
y0, . . . , yn such that y0 = x, yn = z, and r(yk−1, yk) > 0 for each k = 1, . . . , n. Note
that this says that it is possible for the Markov process to go from any point in U
to any other point in U without leaving U .

Theorem 0.8 (Non-exit probability) Let X be a Markov process with finite
state space S, transition rates r(x, y) (x, y ∈ S, x ̸= y), and generator G. Let
U ⊂ S and assume that the transition rates are irreducible on U . Then there
exists a function f , unique up to a multiplicative constant, and a constant λ ≥ 0,
such that

(i) f > 0 on U,

(ii) f = 0 on S\U,
(iii) Gf(x) = −λf(x) (x ∈ U).

Moreover, the process X started in any initial law such that X0 ∈ U a.s. satisfies

lim
t→∞

1

t
logP

[
Xs ∈ U ∀0 ≤ s ≤ t

]
= −λ. (0.10)

0.5 Outlook

Our aim will be to prove Theorems 0.1, 0.4, 0.7 and 0.8, as well as similar and
more general results in a unified framework. Therefore, in the next chapter, we
will give a formal definition of when a sequence of probability measures satisfies a
large deviation principle with a given rate function. This will allow us to formu-
late our theorems in a unified framework that is moreover powerful enough to deal
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with generalizations such as a multidimensional version of Theorem 0.1 or a gen-
eralization of Theorem 0.7 to continuous spaces. We will see that large deviation
principles satisfy a number of abstract principles such as the contraction principle
which we have already used when we derived Proposition 0.5 from Theorem 0.7.
Once we have set up the general framework in Chapter 1, in Chapter 2, we will
already be able to prove Theorems 0.1 and 0.7. The proofs of other results, such
as Theorems 0.4 and 0.8 will be postponed till later chapters when we have more
abstract theory at our disposal.



Chapter 1

Large deviation principles

1.1 Weak convergence on Polish spaces

Recall that a topological space is a set E equipped with a collection O of subsets
of E that are called open sets, such that

(i) If (Oγ)γ∈Γ is any collection of (possibly uncountably many) sets Oγ ∈ O,
then

⋃
γ∈ΓOγ ∈ O.

(ii) If O1, O2 ∈ O, then O1 ∩O2 ∈ O.

(iii) ∅, E ∈ O.

Any such collection of sets is called a topology. It is fairly standard to also assume
the Hausdorff property

(iv) For each x1, x2 ∈ E, x1 ̸= x2 ∃O1, O2 ∈ O s.t. O1∩O2 = ∅, x1 ∈ O1, x2 ∈ O2.

A sequence of points xn ∈ E converges to a limit x in a given topology O if for
each O ∈ O such that x ∈ O there is an n such that xm ∈ O for all m ≥ n. (If
the topology is Hausdorff, then such a limit is unique, i.e., xn → x and xn → x′

implies x = x′.) A set C ⊂ E is called closed if its complement is open.

Because of property (i) in the definition of a topology, for each A ⊂ E, the union
of all open sets contained in A is itself an open set. We call this the interior of A,
denoted as int(A) :=

⋃
{O : U ⊂ A, O open}. Then clearly int(A) is the largest

17
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open set contained in A. Similarly, by taking complements, for each set A ⊂ E
there exists a smallest closed set containing A. We call this the closure of A,
denoted as A :=

⋂
{C : C ⊃ A, C closed}. A topological space is called separable

if there exists a countable set D ⊂ E such that D is dense in E, where we say that
a set D ⊂ E is dense if its closure is E, or equivalently, if every nonempty open
subset of E has a nonempty intersection with D.

In particular, if d is a metric on E, and Bε(x) := {y ∈ E : d(x, y) < ε}, then

O :=
{
O ⊂ E : ∀x ∈ O ∃ε > 0 s.t. Bε(x) ⊂ O

}
defines a Hausdorff topology on E such that convergence xn → x in this topology
is equivalent to d(xn, x) → 0. We say that the metric d generates the topology O.
If for a given topology O there exists a metric d that generates O, then we say
that the topological space (E,O) is metrizable. A metrizable topology is uniquely
characterized by its convergent sequences. Indeed, a subset A of a metrizable space
is closed if and only if xn ∈ A and xn → x imply x ∈ A, and once we know which
sets are closed, we also know which sets are open, since they are the complements
of closed sets.

Recall that a sequence xn in a metric space (E, d) is a Cauchy sequence if for all
ε > 0 there is an n such that d(xk, xl) ≤ ε for all k, l ≥ n. A metric space is
complete if every Cauchy sequence converges.

A Polish space is a separable topological space (E,O) such that there exists a met-
ric d on E with the property that (E, d) is complete and d generates O. Warning:
there may be many different metrics on E that generate the same topology. It
may even happen that E is not complete in some of these metrics, and complete
in others (in which case E is still Polish). Example: R is separable and com-
plete in the usual metric d(x, y) = |x− y|, and therefore R is a Polish space. But
d′(x, y) := | arctan(x)−arctan(y)| is another metric that generates the same topol-
ogy, while (R, d′) is not complete. (Indeed, the completion of R w.r.t. the metric
d′ is [−∞,∞].)

On any Polish space (E,O) we let B(E) denote the Borel-σ-algebra, i.e., the
smallest σ-algebra containing the open sets O. We let Bb(E) and Cb(E) denote the
linear spaces of all bounded Borel-measurable and bounded continuous functions
f : E → R, respectively. Then Cb(E) is complete in the supermumnorm ∥f∥∞ :=
supx∈E |f(x)|, i.e., (Cb(E), ∥ · ∥∞) is a Banach space [Dud02, Theorem 2.4.9]. We
let M(E) denote the space of all finite measures on (E,B(E)) and write M1(E)
for the space of all probability measures. It is possible to equip M(E) with a
metric dM such that [EK86, Theorem 3.1.7]
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(i) (M(E), dH) is a separable complete metric space.

(ii) dM(µn, µ) → 0 if and only if
∫
fdµn →

∫
fdµ for all f ∈ Cb(E).

The precise choice of dM (there are several canonical ways to define such a metric)
is not important to us. We denote convergence in dM as µn ⇒ µ and call the
associated topology (which is uniquely determined by the requirements above) the
topology of weak convergence. By property (i), the space M(E) equipped with the
topology of weak convergence is a Polish space. The following proposition gives yet
another characterization of weak convergence. (This proposition is part of what is
sometimes known as the Portmanteau theorem.)

Proposition 1.1 (Weak convergence) Let E be a Polish space and let µn, µ ∈
M(E). Then one has µn ⇒ µ if and only if the following two conditions are
satisfied.

(i) lim sup
n→∞

µn(C) ≤ µ(C) ∀C closed,

(ii) lim inf
n→∞

µn(O) ≥ µ(O) ∀O open.

If the µn, µ are probability measures, then it suffices to check either (i) or (ii).

Before we give the proof of Proposition 1.1, we need a few preliminaries. Recall
the definition of lower semi-continuity from Section 0.1. Upper semi-continuity is
defined similarly: a function f : E → [−∞,∞) is upper semi-continuous if and
only if −f is lower semi-continuous. We set R := [−∞,∞] and define

U(E) :=
{
f : E → R : f upper semi-continuous

}
,

Ub(E) :=
{
f ∈ U(E) : sup

x∈E
|f(x)| <∞

}
,

U+(E) :=
{
f ∈ U(E) : f ≥ 0

}
,

and Ub,+(E) := Ub(E) ∩ U+(E). We define L(E),Lb(E),L+(E),Lb,+(E) respec-
tively C(E), Cb(E), C+(E), Cb,+(E) similarly, with upper semi-continuity replaced
by lower semi-continuity and resp. continuity. We will also sometimes use the no-
tation B(E), Bb(E), B+(E), Bb,+(E) for the space of Borel measurable functions
f : E → R and its subspaces of bounded, nonnegative, and bounded nonnegative
functions, respectively.
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Exercise 1.2 (Topologies of semi-continuity) Let Oup := {[−∞, a) : −∞ <
a ≤ ∞} ∪ {∅,R}. Show that Oup is a topology on R (albeit a non-Hausdorff
one!) and that a function f : E → R is upper semi-continuous if and only if it is
continuous with respect to the topology Oup. The topology Oup is known as the
Scott topology.

The following lemma lists some elementary properties of upper and lower semi-
continuous functions. We set a ∨ b := max{a, b} and a ∧ b := min{a, b}.

Lemma 1.3 (Upper and lower semi-continuity)
(a) C(E) = U(E) ∩ L(E).

(b) f ∈ U(E) (resp. f ∈ L(E)) and λ ≥ 0 implies λf ∈ U(E) (resp. λf ∈ L(E)).

(c) f, g ∈ U(E) (resp. f, g ∈ L(E)) implies f + g ∈ U(E) (resp. f + g ∈ L(E)).

(d) f, g ∈ U(E) (resp. f, g ∈ L(E)) implies f ∨ g ∈ U(E) and f ∧ g ∈ U(E) (resp.
f ∨ g ∈ L(E) and f ∧ g ∈ L(E)).

(e) fn ∈ U(E) and fn ↓ f (resp. fn ∈ L(E) and fn ↑ f) implies f ∈ U(E) (resp.
f ∈ L(E)).

(f) An upper (resp. lower) semi-continuous function assumes its maximum (min-
imum) over a compact set.

Proof Part (a) is obvious from the fact that if xn → x, then f(xn) → f(x) if and
only if lim supn f(xn) ≤ f(x) and lim infn f(xn) ≥ f(x). Since f is lower semi-
continuous iff −f is upper semi-continuous, it suffices to prove parts (b)–(f) for
upper semi-continuous functions. Parts (b) and (d) follow easily from the fact that
f is upper semi-continuous if and only if {x : f(x) ≥ a} is closed for each a ∈ R,
which is equivalent to {x : f(x) < a} being open for each a ∈ R. Indeed, f ∈ U(E)
implies that {x : λf(x) < a} = {x : f(x) < λ−1a} is open for each a ∈ R, λ > 0,
hence λf ∈ U(E) for each λ > 0, while obviously also 0 · f ∈ U(E). Likewise,
f, g ∈ U(E) implies that {x : f(x)∨g(x) < a} = {x : f(x) < a}∩{x : g(x) < a} is
open for each a ∈ R hence f ∨ g ∈ U(E) and similarly {x : f(x)∧ g(x) < a} = {x :
f(x) < a} ∪ {x : g(x) < a} is open implying that f ∧ g ∈ U(E). Part (e) is proved
in a similar way: since {x : fn(x) < a} ↑ {x : f(x) < a}, we conclude that the
latter set is open for all a ∈ R hence f ∈ U(E). Part (c) follows by observing that
lim supn→∞(f(xn)+g(xn)) ≤ lim supn→∞ f(xn)+lim supm→∞ g(xm) ≤ f(x)+g(x)
for all xn → x. To prove part (f), finally let f be upper semi-continuous, K
compact, and choose an ↑ supx∈K f(x). Then An := {x ∈ K : f(x) ≥ an} is a
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decreasing sequence of nonempty compact sets, hence (by [Eng89, Corollary 3.1.5])
there exists some x ∈

⋂
nAn and f assumes its maximum in x.

We say that an upper or lower semi-continuous function is simple if it assumes
only finitely many values.

Lemma 1.4 (Approximation with simple functions) For each f ∈ U(E)
there exists simple fn ∈ U(E) such that fn ↓ f . Analogue statements hold for
Ub(E), U+(E) and Ub,+(E). Likewise, lower semi-continuous functions can be
approximated from below with simple lower semi-continuous functions.

Proof Let r− := infx∈E f(x) and r+ := supx∈E f(x). LetD ⊂ (r−, r+) be countable
and dense and let ∆n be finite sets such that ∆n ↑ D. Let ∆n = {a0, . . . , am(n)}
with a0 < · · · < am(n) and set

fn(x) :=


a0 if f(x) < a0,
ak if ak−1 ≤ f(x) < ak (k = 1, . . . ,m(n)),
r+ if am(n) ≤ f(x).

Then the fn are upper semi-continuous, simple, and fn ↓ f . If f ∈ Ub(E), U+(E)
or Ub,+(E) then also the fn are in these spaces. The same arguments applied to
−f yield the statements for lower semi-continuous functions.

For any set A ⊂ E and x ∈ E, we let

d(x,A) := inf{d(x, y) : y ∈ A}

denote the distance from x to A. Recall that A denotes the closure of A.

Lemma 1.5 (Distance to a set) For each A ⊂ E, the function x 7→ d(x,A) is
continuous and satisfies d(x,A) = 0 if and only if x ∈ A.

Proof See [Eng89, Theorem 4.1.10 and Corollary 4.1.11].

Lemma 1.6 (Approximation of indicator functions) For each closed C ⊂ E
there exist continuous fn : E → [0, 1] such that fn ↓ 1C. Likewise, for each open
O ⊂ E there exist continuous fn : E → [0, 1] such that fn ↑ 1C.
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Proof Set fn(x) := (1− nd(x,C)) ∨ 0 resp. fn(x) := nd(x,E\O) ∧ 1.

Proof of Proposition 1.1 Let µn, µ ∈ M(E) and define the ‘good sets’

Gup :=
{
f ∈ Ub,+(E) : lim sup

n→∞

∫
fdµn ≤

∫
fdµ

}
,

Glow :=
{
f ∈ Lb,+(E) : lim inf

n→∞

∫
fdµn ≥

∫
fdµ

}
We claim that

(a) f ∈ Gup (resp. f ∈ Glow), λ ≥ 0 implies λf ∈ Gup (resp. λf ∈ Glow).

(b) f, g ∈ Gup (resp. f, g ∈ Glow) implies f + g ∈ Gup (resp. f + g ∈ Glow).

(c) fn ∈ Gup and fn ↓ f (resp. fn ∈ Glow and fn ↑ f) implies f ∈ Gup (resp.
f ∈ Glow).

The statements (a) and (b) are easy. To prove (c), let fn ∈ Gup, fn ↓ f . Then, for
each k,

lim sup
n→∞

∫
fdµn ≤ lim sup

n→∞

∫
fkdµn ≤

∫
fkdµ.

Since
∫
fkdµ ↓

∫
fdµ, the claim follows. An analogue argument works for functions

in Glow.

We now show that µn ⇒ µ implies the conditions (i) and (ii). Indeed, by
Lemma 1.6, for each closed C ⊂ E we can find continuous fk : E → [0, 1] such
that fk ↓ 1C . Then fk ∈ Gup by the fact that µn ⇒ µ and therefore, by our
claim (c) above, it follows that 1C ∈ Gup, which proves condition (i). The proof of
condition (ii) is similar.

Conversely, if condition (i) is satisfied, then by our claims (a) and (b) above, every
simple nonnegative bounded upper semi-continuous function is in Gup, hence by
Lemma 1.4 and claim (c), Ub,+(E) ⊂ Gup. Similarly, condition (ii) implies that
Lb,+(E) ⊂ Glow. In particular, this implies that for every f ∈ Cb,+(E) = Ub,+(E) ∩
Lb,+(E), limn→∞

∫
fdµn =

∫
fdµ, which by linearity implies that µn ⇒ µ.

If the µn, µ are probability measures, then conditions (i) and (ii) are equivalent,
by taking complements.
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1.2 Large deviation principles

A subset K of a topological space (E,O) is called compact if every open covering
of K has a finite subcovering, i.e., if

⋃
γ∈ΓOγ ⊃ K implies that there exist finitely

many Oγ1 , . . . , Oγn with
⋃n
k=1Oγ1 ⊃ K. If (E,O) is metrizable, then this is equiv-

alent to the statement that every sequence xn ∈ K has a subsequence xn(m) that
converges to a limit x ∈ K [Eng89, Theorem 4.1.17]. If (E,O) is Hausdorff, then
each compact subset of E is closed.

Let E be a Polish space. We say that a function f : E → R has compact level sets
if

{x ∈ E : f(x) ≤ a} is compact for all a ∈ R.

Note that since compact sets are closed, this is (a bit) stronger than the statement
that f is lower semi-continuous. We say that I is a good rate function if I has
compact level sets and −∞ < I(x) for all x ∈ E. We observe that:

A good rate function assumes its minimum on closed sets. (1.1)

To see this, let C be closed. The statement is trivial if infx∈C I(x) = ∞. Otherwise,
we can choose infx∈C I(x) < a < ∞. Then the set K := {x ∈ C : I(x) ≤ a}
is compact and hence by Lemma 1.3 (f), there is an y ∈ K such that I(y) =
infx∈C I(x). In particular, applying this to C = E, we see that good rate functions
and bounded from below.

Recall that Bb(E) denotes the space of all bounded Borel-measurable real functions
on E. If µ is a finite measure on (E,B(E)) and p ≥ 1 is a real constant, then we
define the Lp-norm associated with µ by

∥f∥p,µ :=
( ∫

dµ|f |p
)1/p

(f ∈ Bb(E)).

Likewise, if I is a good rate function, then we can define a sort of ‘weighted
supremumnorm’ by

∥f∥∞,I := sup
x∈E

e−I(x)|f(x)| (f ∈ Bb(E)). (1.2)

Note that ∥f∥∞,I < ∞ by the boundedness of f and the fact that I is bounded
from below. It is easy to check that ∥ · ∥∞,I is a seminorm , i.e.,

• ∥λf∥∞,I = |λ| ∥f∥∞,I ,

• ∥f + g∥∞,I ≤ ∥f∥∞,I + ∥g∥∞,I .
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If I <∞ then ∥ · ∥∞,I is moreover a norm, i.e.,

• ∥f∥∞,I = 0 implies f = 0.

Note that what we have just called Lp-norm is in fact only a seminorm, since
∥f∥p,µ = 0 only implies that f = 0 a.e. w.r.t. µ. (This is usually resolved by
looking at equivalence classes of a.e. equal functions, but we won’t need this here.)

(Large deviation principle) Let sn be positive constants converging
to ∞, let µn be finite measures on E, and let I be a good rate function
on E. We say that the µn satisfy the large deviation principle (LDP)
with speed (also called rate) sn and rate function I if

lim
n→∞

∥f∥sn,µn = ∥f∥∞,I

(
f ∈ Cb,+(E)

)
. (1.3)

While this definition may look a bit strange at this point, the next proposition
looks already much more similar to things we have seen in Chapter 0.

Proposition 1.7 (Large Deviation Principle) A sequence of finite measures
µn satisfies the large deviation principle with speed sn and rate function I if and
only if the following two conditions are satisfied.

(i) lim sup
n→∞

1

sn
log µn(C) ≤ − inf

x∈C
I(x) ∀C closed,

(ii) lim inf
n→∞

1

sn
log µn(O) ≥ − inf

x∈O
I(x) ∀O open.

Remark 1 Recall that A and int(A) denote the closure and interior of a set
A ⊂ E, respectively. Since for any measurable set A, one has µn(A) ≤ µn(A) and
µn(A) ≥ µn(int(A)), conditions (i) and (ii) of Proposition 1.7 are equivalent to

(i)’ lim sup
n→∞

1

sn
log µn(A) ≤ − inf

x∈A
I(x),

(ii)’ lim inf
n→∞

1

sn
log µn(A) ≥ − inf

x∈int(A)
I(x),
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for all A ∈ B(E). We say that a set A ∈ B(E) is I-continuous if

inf
x∈int(A)

I(x) = inf
x∈A

I(x)

It is now easy to see that if µn satisfy the large deviation principle with speed sn
and good rate function I, then

lim
n→∞

1

sn
log µn(A) = − inf

x∈A
I(x)

for each I-continuous set A. For example, if I is continuous and A = int(A),
then A is I-continuous. This is the reason, for example, why in our formulation of
the Boltzmann-Sanov Theorem 0.7 we looked at sets that are the closure of their
interior.

Remark 2 The two conditions of Proposition 1.7 are the traditional definition
of a large deviation principle. Moreover, large deviation principles are often only
defined for the special case that the speed sn equals n. However, as the example
of moderate deviations (Theorem 0.4) showed, it is sometimes convenient to allow
more general speeds. Also parts of the abstract theory (in particular, connected
to the concept of exponential tightness) are more easy to formulate if one allows
general speeds. As we will see, allowing more general speeds will not cause any
technical complications so this generality comes basically ‘for free’.

To prepare for the proof of Proposition 1.7, we start with some preliminary lemmas.

Lemma 1.8 (Properties of the generalized supremumnorm) Let I be a
good rate function and let ∥ · ∥∞,I be defined as in (1.2). Then

(a) ∥f ∨ g∥∞,I = ∥f∥∞,I ∨ ∥g∥∞,I ∀f, g ∈ Bb,+(E).

(b) ∥fn∥∞,I ↑ ∥f∥∞,I ∀fn ∈ Bb,+(E), fn ↑ f .

(c) ∥fn∥∞,I ↓ ∥f∥∞,I ∀fn ∈ Ub,+(E), fn ↓ f .

Proof Property (a) follows by writing

∥f ∨ g∥∞,I = sup
x∈E

e−I(x)(f(x) ∨ g(x))

=
(
sup
x∈E

e−I(x)f(x)
)
∨
(
sup
y∈E

e−I(x)g(y)
)
= ∥f∥∞,I ∨ ∥g∥∞,I

To prove (b), we start by observing that the ∥fn∥∞,I form an increasing sequence
and ∥fn∥∞,I ≤ ∥f∥∞,I for each n. Moreover, for any ε > 0 we can find y ∈ E such
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that e−I(y)f(y) ≥ supx∈E e
−I(x)f(x)−ε, hence lim infn ∥fn∥∞,I ≥ limn e

−I(y)fn(y) =
e−I(y)f(y) ≥ ∥f∥∞,I − ε. Since ε > 0 is arbitrary, this proves the claim.

To prove also (c), we start by observing that the ∥fn∥∞,I form a decreasing sequence
and ∥fn∥∞,I ≥ ∥f∥∞,I for each n. Since the fn are upper semi-continuous and I
is lower semi-continuous, the functions e−Ifn are upper semi-continuous. Since
the fn are bounded and I has compact level sets, the sets {x : e−I(x)fn(x) ≥ a}
are compact for each a > 0. In particular, for each a > supx∈E e

−I(x)f(x), the
sets {x : e−I(x)fn(x) ≥ a} are compact and decrease to the empty set, hence {x :
e−I(x)fn(x) ≥ a} = ∅ for n sufficiently large, which shows that lim supn ∥fn∥∞,I ≤
a.

Lemma 1.9 (Good sets) Let µn ∈ M(E), sn → ∞, and let I be a good rate
function. Define the ‘good sets’

Gup :=
{
f ∈ Ub,+(E) : lim sup

n→∞
∥f∥sn,µn ≤ ∥f∥∞,I

}
,

Glow :=
{
f ∈ Lb,+(E) : lim inf

n→∞
∥f∥sn,µn ≥ ∥f∥∞,I

}
.

Then

(a) f ∈ Gup (resp. f ∈ Glow), λ ≥ 0 implies λf ∈ Gup (resp. λf ∈ Glow).

(b) f, g ∈ Gup (resp. f, g ∈ Glow) implies f ∨ g ∈ Gup (resp. f ∨ g ∈ Glow).

(c) fn ∈ Gup and fn ↓ f (resp. fn ∈ Glow and fn ↑ f) implies f ∈ Gup (resp.
f ∈ Glow).

The proof of Lemma 1.9 makes use of the following elementary lemma.

Lemma 1.10 (The strongest growth wins) Let 0 ≤ an, bn ≤ ∞ and sn → ∞.
Then

(i) lim sup
n→∞

an ≥ lim sup
n→∞

bn implies lim sup
n→∞

(
asnn + bsnn

)1/sn
= lim sup

n→∞
an,

(ii) lim inf
n→∞

an > lim sup
n→∞

bn implies lim inf
n→∞

(
asnn − bsnn

)1/sn
= lim inf

n→∞
an.

Proof To prove (i), set a∞ := lim supn→∞ an. Trivially

lim sup
n→∞

(
asnn + bsnn

)1/sn ≥ lim sup
n→∞

(
asnn

)1/sn
= a∞.
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On the other hand, the assumption in (i) implies that for each ε > 0, we can find
an m such that an ≤ a∞ + ε and bn ≤ a∞ + ε for all n ≥ m. It follows that

lim sup
n→∞

(
asnn + bsnn

)1/sn ≤ lim
n→∞

(
2(a∞ + ε)sn

)1/sn
= a∞ + ε.

Since ε > 0 is arbitrary, (i) follows. To prove also (ii), set a∞ := lim infn→∞ an. The
assumption in (ii) implies that there exist an ε > 0 and m such that (1−ε)an > bn
for all n ≥ m. It follows that

lim inf
n→∞

(
asnn − bsnn

)1/sn ≥ lim
n→∞

(
1− (1− ε)sn

)1/sn
an = a∞.

On the other hand, trivially

lim inf
n→∞

(
asnn − bsnn

)1/sn ≤ lim inf
n→∞

(
asnn

)1/sn
= a∞,

completing the proof of (ii).

We will often use the following trivial reformulation Lemma 1.10.

Lemma 1.11 (The strongest growth wins) Let 0 ≤ cn, dn ≤ ∞ and sn → ∞.
Then

(i) lim sup
n→∞

1

sn
log cn ≥ lim sup

n→∞

1

sn
log dn

implies lim sup
n→∞

1

sn
log(cn + dn) = lim sup

n→∞

1

sn
log cn,

(ii) lim inf
n→∞

1

sn
log cn > lim sup

n→∞

1

sn
log dn

implies lim inf
n→∞

1

sn
log(cn − dn) = lim inf

n→∞

1

sn
log cn.

Proof This follows trivially by setting an := c
1/sn
n and bn := d

1/sn
n and taking the

logarithm in Lemma 1.10.

We note that Lemma 1.10 (i) says that for any 0 ≤ an, bn ≤ ∞ and sn → ∞, one
has

lim sup
n→∞

(
asnn + bsnn

)1/sn
=

(
lim sup
n→∞

an
)
∨
(
lim sup
n→∞

bn
)
. (1.4)

Similarly, Lemma 1.11 (i) says that for any 0 ≤ cn, dn ≤ ∞ and sn → ∞,

lim sup
n→∞

1

sn
log(cn + dn) =

(
lim sup
n→∞

1

sn
log cn

)
∨
(
lim sup
n→∞

1

sn
log dn

)
. (1.5)
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Proof of Lemma 1.9 Part (a) follows from the fact that for any seminorm
∥λf∥ = λ∥f∥ (λ > 0). To prove part (b), assume that f, g ∈ Gup. Then, by (1.4),

lim sup
n→∞

∥f ∨ g∥sn,µn

= lim sup
n→∞

(∫
{x:f(x)≥g(x)}

f(x)snµn(dx) +

∫
{x:f(x)<g(x)}

g(x)snµn(dx)
)1/sn

≤ lim sup
n→∞

(
∥f∥snsn,µn + ∥g∥snsn,µn

)1/sn ≤ ∥f∥∞,I ∨ ∥g∥∞,I = ∥f ∨ g∥∞,I ,

(1.6)

proving that f ∨ g ∈ Gup. Similarly, but easier, if f, g ∈ Glow, then

lim inf
n→∞

∥f ∨ g∥sn,µn ≥
(
lim inf
n→∞

∥f∥sn,µn
)
∨
(
lim inf
n→∞

∥g∥sn,µn
)

≥ ∥f∥∞,I ∨ ∥g∥∞,I = ∥f ∨ g∥∞,I ,

which proves that f ∨ g ∈ Glow.

To prove part (c), finally, assume that fk ∈ Gup satisfy fk ↓ f . Then f is upper
semi-continuous and

lim sup
n→∞

∥f∥sn,µn ≤ lim sup
n→∞

∥fk∥sn,µn ≤ ∥fk∥∞,I

for each k. Since ∥fk∥∞,I ↓ ∥f∥∞,I , by Lemma 1.8 (c), we conclude that f ∈ Gup.
The proof for fk ∈ Glow is similar, using Lemma 1.8 (b).

Proof of Proposition 1.7 If the µn satisfy the large deviation principe with
speed sn and rate function I, then by Lemmas 1.6 and 1.9 (c), 1C ∈ Gup for each
closed C ⊂ E and 1O ∈ Gup for each open O ⊂ E, which shows that conditions (i)
and (ii) are satisfied. Conversely, if conditions (i) and (ii) are satisfied, then by
Lemma 1.9 (a) and (b),

Gup ⊃ {f ∈ Ub,+(E) : f simple} and Glow ⊃ {f ∈ Lb,+(E) : f simple}.

By Lemmas 1.4 and 1.9 (c), it follows that Gup = Ub,+(E) and Glow = Lb,+(E). In
particular, this proves that

lim
n→∞

∥f∥sn,µn = ∥f∥∞,I ∀f ∈ Cb,+(E),

which shows that the µn satisfy the large deviation principe with speed sn and
rate function I.
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Exercise 1.12 (Robustness of LDP) Let (Xk)k≥1 be i.i.d. random variables
with P[Xk = 0] = P[Xk = 1] = 1

2
, let Z(λ) := E[eλX1 ] (λ ∈ R) and let I : R →

[0,∞] be defined as in (0.3). Let εn ↓ 0 and set

Tn :=
1

n

n∑
k=1

Xk and T ′
n := (1− εn)

1

n

n∑
k=1

Xk.

In Theorem 5.4 below, we will prove that the laws P[Tn ∈ · ] satisfy the large
deviation principle with speed n and rate function I. Using this fact, prove that
also the laws P[T ′

n ∈ · ] satisfy the large deviation principle with speed n and rate
function I. Use Lemma 0.2 to conclude that

lim
n→∞

1

n
logP[T ′

n ≥ y] = −I(y) (1
2
≤ y < 1),

but this formula does not hold for y = 1.

Exercise 1.13 (LDP for linear combination) Let E be a Polish space, let µn
and νn be finite measures on E, and let sn be positive constants converging to ∞.
Assume that the µn satisfy the large deviation principle with speed sn and good
rate function I, and that the µn satisfy the large deviation principle with speed sn
and good rate function J . Let r, q be positive constants. Show that the measures
rµn+qνn satisfy the large deviation principle with speed sn and good rate function
I ∧ J . Hint Formula (1.4).

1.3 Varadhan’s lemma

The two conditions of Proposition 1.7 are the traditional definition of the large
deviation principle, which is due to Varadhan [Var66]. Our alternative, equivalent
definition in terms of convergence of Lp-norms is very similar to the road followed
in Puhalskii’s book [Puh01]. A very similar definition is also given in [DE97],
where this is called a ‘Laplace principle’ instead of a large deviation principle.

From a purely abstract point of view, our definition is frequently a bit easier to
work with. On the other hand, the two conditions of Proposition 1.7 are closer
to the usual interpretation of large deviations in terms of exponentially small
probabilities. Also, when in some practical situation one wishes to prove a large
deviation principle, the two conditions of Proposition 1.7 are often a very natural
way to do so. Here, condition (ii) is usually easier to check than condition (i).
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Condition (ii) says that certain rare events occur wih at least a certain probability.
To prove this, one needs to find one strategy by which a stochastic system can
make the desired event happen, with a certain small probability. Condition (i)
says that there are no other strategies that yield a higher probability for the same
event, which requires one to prove something about all possible ways in which a
certain event can happen.

In practically all applications, we will only be interested in the case that the
measures µn are probability measures and the rate function satisfies infx∈E I(x) =
0, but being slightly more general comes at virtually no cost.

Varadhan [Var66] was not only the first one who formulated large deviation prin-
ciples in the generality that is now standard, he also first proved the lemma that
is called after him, and that reads as follows.

Lemma 1.14 (Varadhan’s lemma) Let E be a Polish space and let µn ∈ M(E)
satisfy the large deviation principle with speed sn and good rate function I. Let
F : E → [−∞,∞) be continuous and assume that supx∈E F (x) <∞. Then

lim
n→∞

1

sn
log

∫
esnFdµn = sup

x∈E
[F (x)− I(x)].

Proof Applying the exponential function to both sides of our equation, this says
that

lim
n→∞

( ∫
esnFdµn)

1/sn = sup
x∈E

eF (x)−I(x).

Setting f := eF , this is equivalent to

lim
n→∞

∥f∥sn,µn = ∥f∥∞,I ,

where our asumptions on F translate into f ∈ Cb,+(E). Thus, Varadhan’s lemma
is just a trivial reformulation of our definition of a large deviation principle. If we
take the traditional definition of a large deviation principle as our starting point,
then Varadhan’s lemma corresponds to the ‘if’ part of Proposition 1.7.

As we have just seen, Varadhan’s lemma is just the statement that the two condi-
tions of Proposition 1.7 are sufficient for (1.3). The fact that these conditions are
also necessary was only proved 24 years later, by Bryc [Bry90].

We conclude this section with a little lemma that says that a sequence of measures
satisfying a large deviation principle determines its rate function uniquely.
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Lemma 1.15 (Uniqueness of the rate function) Let E be a Polish space,
µn ∈ M(E), and let sn be real constants converging to infinity. Assume that the
µn satisfy the large deviation principle with speed sn and good rate function I and
also that the µn satisfy the large deviation principle with speed sn and good rate
function I ′. Then I = I ′.

Proof It follows immediately from our definition of the large deviation principle
that ∥f∥∞,I = ∥f∥∞,I′ for all f ∈ Cb,+(E). By Lemma 1.6, for each x ∈ E, we can
find continuous fn : E → [0, 1] such that fn ↓ 1{x}. By Lemma 1.8 (c), it follows
that

e−I(x) = ∥1{x}∥∞,I = lim
n→∞

∥fn∥∞,I = lim
n→∞

∥fn∥∞,I′ = ∥1{x}∥∞,I′ = e−I
′(x)

for each x ∈ E.

1.4 The contraction principle

As we have seen in Propositions 1.1 and 1.7, there is a lot of similarity between
weak convergence and the large deviation principle. Elaborating on this analogy,
we recall that if Xn is a sequence of random variables, taking values in some
Polish space E, whose laws converge weakly to the law of a random variable X,
and ψ : E → F is a continuous function from E into some other Polish space,
then the laws of the random variables ψ(Xn) converge weakly to the law of ψ(X).
As we will see, an analogue statement holds for sequences of measures satisfying
a large deviation principle.

Recall that if X is a random variable taking values in some measurable space
(E, E), with law P[X ∈ · ] = µ, and ψ : E → F is a measurable function from
E into some other measurable space (F,F), then the law of ψ(X) is the image
measure

µ ◦ ψ−1(A) (A ∈ F), where ψ−1(A) := {x ∈ E : ψ(x) ∈ A}

is the inverse image (or pre-image) of A under ψ.

The next result shows that if Xn are random variables whose laws satisfy a large
deviation principle, and ψ is a continuous function, then also the laws of the ψ(Xn)
satisfy a large deviation principle. This fact is known a the contraction principle.
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Note that we have already seen this principle at work when we derived Propo-
sition 0.5 from Theorem 0.7. As is clear from this example, it is in practice not
always easy to explicitly calculate the ‘image’ of a rate function under a continuous
map, as defined formally in (1.7) below.

Proposition 1.16 (Contraction principle) Let E,F be Polish spaces and let
ψ : E → F be continuous. Let µn be finite measures on E satisfying a large devi-
ation principle with speed sn and good rate function I. Then the image measures
µ◦ψ−1 satisfying the large deviation principle with speed sn and good rate function
J given by

J(y) := inf
x∈ψ−1({y})

I(x) (y ∈ F ), (1.7)

where infx∈∅ I(x) := ∞.

Proof Recall that a function ψ from one topological space E into another topo-
logical space F is continuous if and only if the inverse image under ψ of any open
set is open, or equivalently, the inverse image of any closed set is closed (see, e.g.,
[Eng89, Proposition 1.4.1] or [Kel75, Theorem 3.1]). As a result, condition (i) of
Proposition 1.7 implies that

lim sup
n→∞

1

sn
log µn ◦ ψ−1(C) ≤ − inf

x∈ψ−1(C)
I(x)

= − inf
y∈C

inf
x∈ψ−1({y})

I(x) = − inf
y∈C

J(y),
(1.8)

where we have used that ψ−1(C) =
⋃
y∈C ψ

−1({y}). Condition (ii) of Proposi-
tion 1.7 carries over in the same way. We are left with the task of showing that J
is a good rate function. Indeed, for each a ∈ R, we have that

{y ∈ F : J(y) ≤ a} =
{
y ∈ F : inf

x∈ψ−1({y})
I(x) ≤ a

}
=

{
y ∈ F : ∃x ∈ E s.t. ψ(x) = y, I(x) ≤ a

}
= {ψ(x) : x ∈ E, I(x) ≤ a} = ψ({x : I(x) ≤ a}),

where in the second equality we have used that I assumes its minimum on the
closed set ψ−1({y}). Our calculation shows that the level set {y ∈ F : J(y) ≤
a} is the image under ψ of the level set {x : I(x) ≤ a}. Since the continuous
image of a compact set is compact[Eng89, Theorem 3.1.10],1 this proves that J

1This is a well-known fact that can be found in any book on general topology. It is easy to
show by counterexample that the continuous image of a closed set needs in general not be closed!
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has compact level sets. Finally, we observe (compare (1.8)) that infy∈F J(y) =
infx∈ψ−1(F ) I(x) = infx∈E I(x) > −∞, proving that J is a good rate function.

The following ‘restriction principle’ is sometimes also useful. We note that a subset
F of a Polish space E is Polish in the induced topology if and only if F is a Gδ-
subset of E; see Proposition 3.9 below.

Lemma 1.17 (Restriction principle) Let E be a Polish space and let F ⊂ E be
a subset of E that is Polish in the induced topology. Let (µn)n≥1 be finite measures
on E such that µn(E\F ) = 0 for all n ≥ 1, let sn be positive constants converging
to infinity and let I be a good rate function on E such that I(x) = ∞ for all
x ∈ E\F . Let µn|F and I|F denote the restrictions of µn and I, respectively, to F .
Then I|F is a good rate function on F and the following statements are equivalent.

(i) The µn satisfy the large deviation principle with speed sn and rate function I.

(ii) The µn|F satisfy the large deviation principle with speed sn and rate func-
tion I|F .

Proof Since the level sets of I are compact in E and contained in F , they are
also compact in F , hence I|F is a good rate function. To complete the proof,
by Proposition 1.7, it suffices to show that the large deviations upper and lower
bounds for the µn and µn|F are equivalent. A subset of F is open (resp. closed) in
the induced topology if and only if it is of the form O ∩ F (resp. C ∩ F ) with O
an open subset of E (resp. C a closed subset of E). The equivalence of the upper
bounds now follows from the observation that for each closed C ⊂ E,

lim sup
n→∞

1

sn
log µn

∣∣
F
(C ∩ F ) = lim sup

n→∞

1

sn
log µn(C)

and

inf
x∈C

I(x) = inf
x∈C∩F

I
∣∣
F
(x).

In the same way, we see that the large deviations lower bounds for the µn and µn|F
are equivalent.

Remark The implication (ii)⇒(i) of Lemma 1.17 alternatively follows by applying
the contraction principle to the identity map F ∋ x 7→ x ∈ E.
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1.5 Exponential tilts

In this section we will see that if µn are measures satisfying a large deviation
principle, then we can transform these measures by weighting them with an expo-
nential density, in such a way that the new measures also satisfy a large deviation
principle. Recall that if µ is a measure and f is a nonnegative measurable function,
then setting

fµ(A) :=

∫
A

fdµ

defines a new measure fµ which is µ weighted with the density f .

Lemma 1.18 (Exponential weighting) Let E be a Polish space and let µn ∈
M(E) satisfy the large deviation principle with speed sn and good rate function
I. Let F : E → R be continuous and assume that supx∈E F (x) < ∞. Then the
measures

µ̃n := esnFµn

satisfy the large deviation principle with speed sn and good rate function Ĩ := I−F .

Proof Note that eF ∈ Cb,+(E). Therefore, for any f ∈ Cb,+(E),

∥f∥sn,µ̃n =

∫
f snesnFdµn = ∥feF∥sn,µn

−→
n→∞

∥feF∥∞,I = sup
x∈E

f(x)eF (x)e−I(x) = ∥f∥∞,Ĩ .

Since F is continuous, I − F is lower semi-continuous. Since F is bounded from
above, any level set of I − F is contained in some level set of I, and therefore
compact. The facts that F is bounded from above and I bounded from below
moreover imply that infx∈I(I(x)−F (x)) > −∞, proving that I−F is a good rate
function.

Lemma 1.18 is not so useful yet, since in practice we are usually interested in
probability measures, while exponential weighting may spoil the normalization.
Likewise, we are usually interested in rate functions that are properly ‘normalized’.
Let us say that a function I is a normalized rate function if I is a good rate
function and infx∈E I(x) = 0. Note that if µn are probability measures satisfying
a large deviation principle with speed sn and rate function I, then I must be
normalized, since E is both open and closed, and therefore by conditions (i) and
(ii) of Proposition 1.7

− inf
x∈E

I(x) = lim
n→∞

1

sn
log µn(E) = 0.
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Lemma 1.19 (Exponential tilting) Let E be a Polish space and let µn be
probability measures on E satisfy the large deviation principle with speed sn and
normalized rate function I. Let F : E → R be continuous and assume that
supx∈E F (x) <∞ and infx∈E

(
I(x)− F (x)

)
<∞. Then the measures

µ̃n :=
1∫

esnFdµn
esnFµn

satisfy the large deviation principle with speed sn and normalized rate function
Ĩ(x) := I(x)− F (x)− infy∈E(I(y)− F (y)).

Proof Since eF ∈ Cb,+(E), much in the same way as in the proof of the previous
lemma, we see that

∥f∥sn,µ̃n =
( 1∫

esnFdµn

∫
f snesnFdµn

)1/sn
=

∥feF∥sn,µn
∥eF∥sn,µn

−→
n→∞

∥feF∥∞,I

∥eF∥∞,I

=
supx∈E f(x)e

F (x)e−I(x)

supx∈E e
F (x)e−I(x)

= einfy∈E(I(y)−F (y)) sup
x∈E

f(x)e−(I(x)−F (x)) = ∥f∥∞,Ĩ .

Note that here we have used the assumption infx∈E
(
I(x) − F (x)

)
< ∞ to make

sure we are not dividing by zero after taking the limit, and hence neither before
taking the limit, at least for n large enough. In particular, our assumptions imply
that

∫
esnFdµn > 0 and hence µ̃n is well-defined for n large enough. The fact that

Ĩ is a good rate function follows from the same arguments as in the proof of the
previous lemma, and Ĩ is obviously normalized.

1.6 Robustness

Often, when one wishes to prove that the laws P[Xn ∈ · ] of some random variables
Xn satisfy a large deviation principle with a given speed and rate function, it is
convenient to replace the random variables Xn by some other random variables
Yn that are ‘sufficiently close’, so that the large deviation principle for the laws
P[Yn ∈ · ] implies the LDP for P[Xn ∈ · ]. The next result (which we copy from
[DE97, Thm 1.3.3]) gives sufficient conditions for this to be allowed.

Proposition 1.20 (Superexponential approximation) Let (Xn)n≥1, (Yn)n≥1

be random variables taking values in a Polish space E and assume that the laws
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P[Yn ∈ · ] satisfy a large deviation principle with speed sn and rate function I. Let
d be any metric generating the topology on E, and assume that

lim
n→∞

1

sn
logP

[
d(Xn, Yn) ≥ ε] = −∞ (ε > 0). (1.9)

Then the laws P[Xn ∈ · ] satisfy the large deviation principle with speed sn and rate
function I.

Remark If (1.9) holds, then we say that the random variables Xn and Yn are
exponentially close. Note that condition (1.9) is in particular satisfied if for each
ε > 0 there is an N such that d(Xn, Yn) < ε a.s. for all n ≥ N . We can even allow
for d(Xn, Yn) ≥ ε with a small probability, but in this case these probabilities must
tend to zero faster than any exponential.

Proof of Proposition 1.20 We first prove the large deviations upper bound. Let
C ⊂ E be closed and let Cε := {x ∈ E : d(x,C) ≤ ε}. Then

lim sup
n→∞

1

sn
logP[Xn ∈ C]

≤ lim sup
n→∞

1

sn
log

(
P[Yn ∈ Cε, d(Xn, Yn) ≤ ε] + P[d(Xn, Yn) > ε]

)
≤ lim sup

n→∞

1

sn
logP[Yn ∈ Cε] = − inf

x∈Cε

I(x) −→
ε↓0

− inf
x∈C

I(x),

where we have used the assumption (1.9) and Lemma 1.11 (i), and in the last step
we have applied (the logarithmic version of) Lemma 1.8 (c). Similarly, if O ⊂ E
is open, then we set Oε := {x ∈ E : d(x,E\O) > ε}. The large deviations lower
bound is trivial if infx∈O I(x) = ∞, so we assume without loss of generality that
infx∈O I(x) < ∞ and hence also infx∈Oε I(x) < ∞ for ε small enough. Then we
can use the assumption (1.9) and Lemma 1.11 (ii) to estimate

lim inf
n→∞

1

sn
logP[Xn ∈ O] ≥ lim inf

n→∞

1

sn
P[Yn ∈ Oε, d(Xn, Yn) ≤ ε]

≥ lim inf
n→∞

1

sn
log

(
P[Yn ∈ Oε]− P[d(Xn, Yn) > ε]

)
= lim inf

n→∞

1

sn
logP[Yn ∈ Oε] = − inf

x∈Oε

I(x) −→
ε↓0

− inf
x∈O

I(x),

which completes the proof of the large deviations lower bound.

Proposition 1.20 shows that large deviation principles are ‘robust’, in a certain
sense, with repect to small perturbations. The next result is of a similar nature:
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we will prove that weighting measures with densities does not affect a large de-
viation principle, as long as these densities do not grow exponentially fast. This
complements the case of exponentialy growing densities which has been treated in
Section 1.5.

Lemma 1.21 (Subexponential weighting) Let E be a Polish space and let
µn ∈ M(E) satisfy the large deviation principle with speed sn and good rate func-
tion I. Let Fn : E → R be measurable and assume that limn→∞ ∥Fn∥∞ = 0, where
∥Fn∥∞ := supx∈E |Fn(x)|. Then the measures

µ̃n := esnFnµn

satisfy the large deviation principle with speed sn and rate function I.

Proof We check the large deviations upper and lower bound from Proposition 1.7.
For any closed set C ⊂ E, by the fact that the µn satisfy the large deviation
principle, we have

lim sup
n→∞

1

sn
log µ̃n(C) = lim sup

n→∞

1

sn
log

∫
C

µn(dx)e
snFn(x)

≤ lim sup
n→∞

1

sn
log

(
esn∥Fn∥µn(C)

)
= lim sup

n→∞

(
∥Fn∥+

1

sn
log µn(C)

)
,

where our last expression equals − infx∈C I(x). Similarly, for any open O ⊂ E, we
have

lim inf
n→∞

1

sn
log µ̃n(O) = lim inf

n→∞

1

sn
log

∫
O

µn(dx)e
snFn(x)

≥ lim inf
n→∞

1

sn
log

(
e−sn∥Fn∥µn(O)

)
= lim inf

n→∞

(
− ∥Fn∥+

1

sn
log µn(O)

)
.

Since the last expression equals − infx∈O I(x), this completes the lower bound.

Exercise 1.22 (Exponential weighting) Let E be a Polish space and let µn ∈
M(E) satisfy the large deviation principle with speed sn and good rate function I.
Let F : E → R be continuous and assume that supx∈E F (x) <∞. Let Fn : E → R
be measurable and assume that limn→∞ ∥Fn − F∥∞ = 0. Show that the measures

µ̃n := esnFnµn

satisfy the large deviation principle with speed sn and good rate function J :=
I − F . Hint: combine Lemmas 1.18 and 1.21.
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Chapter 2

Some first results

2.1 Relative entropy

In this chapter we prove some simple large deviation principles. The methods in
the present chapter will largely be superceded by more powerful methods such
as the Gärtner-Ellis theorem that will be proved in Chapter 5, but it is nice to
see what can already be done with the more elementary theory developed so far.
Our first aim is to prove the Boltzmann-Sanov theorem (Theorem 0.7). As a
preparation, we study its rate function, the relative entropy. In particular, in the
present section, we will prove Lemma 0.6.

Lemma 2.1 (Elementary properties) Let S be a finite set and let µ ∈ M1(S)
satisfy µ(x) > 0 for all x ∈ S. Then H(ν|µ) ≥ 0 for all ν ∈ M1(S) with equality
if and only if ν = µ.

Proof Let ψ : [0,∞] → [0,∞] be defined by

ψ(z) :=

∫ z

1

dy

∫ y

1

dx
1

x

(
x ∈ [0,∞]

)
. (2.1)

It is easy to see that ψ is strictly convex, assumes its minimal value 0 in the point
z = 1, and satisfies

ψ(0) = 1, ψ(z) = z log z − z + 1 (0 < z <∞), ψ(∞) = ∞.

39
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We observe that for each ν ∈ M1(S),∑
x∈S

µ(x)ψ
(ν(x)
µ(x)

)
=

∑
x∈S

µ(x)
ν(x)

µ(x)
log

(ν(x)
µ(x)

)
−
∑
x∈S

µ(x)
ν(x)

µ(x)
+
∑
x∈S

µ(x)

= H(ν|µ)− 1 + 1 = H(ν|µ).
(2.2)

Since ψ(z) ≥ 0 with equality if and only if z = 1, the claim of the lemma follows.

Lemma 2.2 (Convexity of the relative entropy) Let S be a finite set and let
µ ∈ M1(S) satisfy µ(x) > 0 for all x ∈ S. Let p1, . . . , pn be nonnegative constants
summing up to one and let ν :=

∑n
k=1 pkνk with νk ∈ M1(S). Then

H(ν|µ) =
n∑
k=1

pkH(νk|µ)−
n∑
k=1

pkH(νk|ν). (2.3)

In particular, the function M1(S) ∋ ν 7→ H
(
ν|µ) is strictly convex.

Proof This follows by writing

H
(
ν|µ)=

∑
x∈S

n∑
k=1

pkνk(x) log
(ν(x)
µ(x)

)
=

n∑
k=1

pk
∑
x∈S

νk(x)
[
log

(νk(x)
µ(x)

)
− log

(νk(x)
ν(x)

)]
=

n∑
k=1

pk

[∑
x∈S

νk(x) log
(νk(x)
µ(x)

)
−
∑
x∈S

νk(x) log
(νk(x)
ν(x)

)]
.

Proof of Lemma 0.6 The fact that H(ν|µ) < ∞ for all ν follows from formula
(2.2). Now properties (i)–(iii) follow from Lemma 2.1. The fact that ν 7→ H(ν|µ)
is convex has been proved in Lemma 2.2. Since the function ψ is continuous on
[0,∞) and infinitely differentiable on (0,∞), we see from formula (2.2) that the
function ν 7→ H(ν|µ) is continuous on M1(S) and infinitely differentiable on the

interior of M1(S), i.e., on the set
◦

M1(S) := {ν ∈ M1(S) : ν(x) > 0 ∀x ∈ S}.

Exercise 2.3 (Joint continuity of relative entropy) Let S be a finite set and

let
◦

M1(S) := {µ ∈ M1(S) : µ(x) > 0 ∀x ∈ S}. Prove the continuity of the map

M1(S)×
◦

M1(S) ∋ (ν, µ) 7→ H(ν|µ).
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2.2 The Boltzmann-Sanov theorem

In this section, we prove the Boltzmann-Sanov theorem (Theorem 0.7 from the
introduction). As in Section 0.3, S is a finite set and µ is a probability measure on
S. We generalize a little bit and drop the condition from Section 0.3 that µ(x) > 0
for all x ∈ S. Generalizing our earlier definition, we set

H(ν|µ) :=


∑
x∈S

ν(x) log
ν(x)

µ(x)
=

∑
x∈S

µ(x)ψ
(ν(x)
µ(x)

)
if ν ≪ µ,

∞ otherwise,

where ψ is defined in (2.1) and the notation ν ≪ µ means that ν is absolutely
continuous with respect to µ, i.e., ν(x) = 0 whenever µ(x) = 0. We let (Xk)k≥1

be i.i.d. with common law µ and define the empirical distributions (Mn)n≥1 as in
(0.6), i.e.,

Mn :=
1

n

n∑
k=1

δXk
,

where δx denotes the delta-measure at x ∈ S. We let

ρn := P
[
Mn ∈ ·

]
denote the law of Mn. Note that Mn ∈ M1(S) and hence the law of Mn is a
probability measure onM1(S), i.e., ρn ∈ M1(M1(S)). We will prove the following
theorem.

Theorem 2.4 (Boltzmann-Sanov) The probability laws ρn satisfy the large de-
viation principle with speed n and good rate function H( · |µ).

Together with Lemma 0.6 this implies Theorem 0.7 from the introduction. Recall
that in Theorem 0.7 we assumed that µ(x) > 0 for all x ∈ S. Now Lemma 0.6 (iv)
tells us that the rate function ν 7→ H(ν|µ) is continuous, and so each closed
set C ⊂ M1(S) that is the closure of its interior is a continuity set for the rate
function. Therefore, the large deviation principle implies (0.7), see Remark 1 below
Proposition 1.7.

We let Mn
1 (S) denote the space of all probability measures on S of the form

1

n

n∑
k=1

δxk
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for some x1, . . . , xn ∈ S. We let

ηn :=
∑

ν∈Mn
n(S)

δν

denote the counting measure on Mn
1 (S) and we define Φn : Mn

1 (S) → R by

Φn(ν) := P
[
Mn = ν

] (
ν ∈ Mn

1 (S)
)
.

We will derive Theorem 2.4 from the following two lemmas.

Lemma 2.5 (LDP for the reference measure) Assume that µ(x) > 0 for all
x ∈ S. Then the measures ηn satisfy the large deviation principle with speed n and
good rate function I defined as I(ν) := 0 (ν ∈ M1(S)).

Lemma 2.6 (Convergence of the exponential density)Assume that µ(x) >
0 for all x ∈ S. Then the functions Fn := n−1 log Φn satisfy

lim
n→∞

sup
ν∈Mn

1 (S)

∣∣Fn(ν) +H(ν|µ)
∣∣ = 0.

We first show that these two lemmas imply Theorem 2.4 and then prove the lem-
mas.

Proof of Theorem 2.4 We first prove the claim under the additional assumption
that that µ(x) > 0 for all x ∈ S. Then by Lemma 0.6, the function F (ν) :=
−H(ν|µ) (ν ∈ M1(S)) is continuous. Since M1(S) is compact, F is moreover
bounded from below and above. We have ρn = eFnηn (n ≥ 1), so by Lemmas
2.5 and 2.6 we can apply Exercise 1.22 to conclude that the ρn satisfy the large
deviation principle with speed n and good rate function I − F = 0 +H( · |µ).

To prove the general claim, we set S ′ := {x ∈ S : µ(x) > 0}. By what we have
already proved, the measures ρn, viewed as measures on M1(S

′), satisfy the large
deviation principle with speed n and good rate function H( · |µ). We can naturally
view M1(S

′) as a closed subset of M1(S). Since H(ν|µ) = ∞ for all ν ̸∈ M1(S
′),

the claim now follows from the restriction principle (Lemma 1.17).

Before we prove Lemmas 2.5 and 2.6, we introduce more notation. We let N n(S)
be the set of all functions κ : S → N such that

∑
x∈S κ(x) = n. Then

Mn
1 (S) =

{
n−1κ : κ ∈ Nn

}
.
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Proof of Lemma 2.5 We check the conditions of Proposition 1.7. If C ⊂ M1(S)
is closed, then we can estimate ρn(C) ≤ ρn(M1(S)) = |N n(S)| ≤ n|S|, which gives

lim sup
n→∞

1

n
log ρn(C) ≤ lim sup

n→∞

|S|
n

log n = 0.

If O ⊂ M1(S) is open and nonempty, then O∩Mn
1 (S) ̸= ∅ for n large enough and

hence

lim inf
n→∞

1

n
log ρn(C) ≥ lim inf

n→∞

1

n
log 1 = 0.

Proof of Lemma 2.6 We have

Φn(n
−1κ) = P

[
Mn = n−1κ

]
= n!

∏
x∈S

1

κ(x)!
µ(x)κ(x)

(
κ ∈ Nn(S)

)
,

Stirling’s formula1 says that log n! = n log n− n+O(log n), which gives

log Φn(n
−1κ)

= (n log n− n)−
∑
x∈S

(
κ(x) log κ(x)− κ(x)

)
+
∑
x∈S

κ(x) log µ(x) +O(log n)

= n log n−
∑
x∈S

κ(x) log κ(x) +
∑
x∈S

κ(x) log µ(x) +O(log n),

where the error term can be estimated from above by C log n, with a constant C
that does not depend on κ ∈ N n(S). Dividing by n, this gives

1

n
log Φn(n

−1κ)=−
∑
x∈S

κ(x)

n
log

( κ(x)

nµ(x)

)
+O(n−1 log n)

=−H
(
n−1κ

∣∣µ)+O(n−1 log n).

2.3 An LDP for pair empirical measures

Let S be a finite set, let µ be a probability law on S such that µ(x) > 0 for all
x ∈ S, and let (Xk)k≥0 be i.i.d. with common law µ. Similar to what we did before,

1Recall that Stirling’s formula says that n! ∼
√
2πn(n/e)n.
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we define the pair empirical distributions (M
(2)
n )n≥1 by

M (2)
n :=

1

n

n∑
k=1

δ(Xk−1,Xk),

where δ(x,y) denotes the delta-measure at (x, y) ∈ S2. We let

ρ(2)n := P
[
M (2)

n ∈ ·
]

denote the law of M
(2)
n . Note that ρ

(2)
n ∈ M1(M1(S

2)). We will prove a large

deviation principle for the measures ρ
(2)
n .

We first define the appropriate rate function. For any ν ∈ M1(S
2), we let

ν−(x) :=
∑
y∈S

ν(x, y) and ν+(y) :=
∑
x∈S

ν(x, y) (2.4)

denote the left and right marginals of ν, and we let

V(S) :=
{
ν ∈ M1(S

2) : ν− = ν+
}

denote the space of probability laws ν on S2 whose left and right marginals agree.
We define I

(2)
µ : M1(S

2) → R by

I(2)µ (ν) :=

{
H(ν|ν− ⊗ µ) if ν ∈ V(S),
∞ otherwise,

where ν−⊗µ denotes the product measure of ν− and µ. We will prove the following
theorem.

Theorem 2.7 (LDP for pair empirical measure) The probability laws ρ
(2)
n

satisfy the large deviation principle with speed n and good rate function I
(2)
µ .

Exercise 2.8 (Contraction principle) Use the contraction principle to derive
the Boltzmann-Sanov theorem (Theorem 2.4) from Theorem 2.7.

Our proof of Theorem 2.7 will be similar to the proof of Theorem 2.4. We start
by transforming the problem into an easier one, by defining

M̃ (2)
n :=

1

n

(
δ(Xn−1,X0) +

n−1∑
k=1

δ(Xk−1,Xk)

)
. (2.5)
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The advantage of defining pair empirical measures in such a way, with periodic
boundary conditions, is that M̃

(2)
n ∈ V(S) a.s. The following exercise shows that

instead of proving a large deviation principle for the laws of M
(2)
n we can equiva-

lently prove a large deviation principle for the laws of M̃
(2)
n .

Exercise 2.9 (Exponential closeness) Prove that the random variables M
(2)
n

and M̃
(2)
n are exponentially close with speed n, in the sense of Proposition 1.20.

We let Vn(S) denote the space of all probability measures on S2 of the form

1

n

(
δ(xn−1,x0) +

n−1∑
k=1

δ(xk−1,xk)

)
for some x0, . . . , xn−1 ∈ S. We let

η(2)n :=
∑

ν∈Vn(S)

δν

denote the counting measure on Vn(S) and we define Φn : Vn(S) → R by

Φ(2)
n (ν) := P

[
M̃ (2)

n = ν
] (

ν ∈ Vn(S)
)
.

We will derive Theorem 2.7 from the following two lemmas. We first show how
the lemmas imply Theorem 2.7 and then prove the lemmas.

Lemma 2.10 (LDP for the reference measure) The measures η
(2)
n satisfy the

large deviation principle with speed n and good rate function I : M1(S
2) → R

defined as I(ν) := 0 if ν ∈ V(S) and := ∞ otherwise.

Lemma 2.11 (Convergence of the exponential density) The function I
(2)
µ :

V(S) → R is continuous and the functions F
(2)
n := n−1 log Φ

(2)
n satisfy

lim
n→∞

sup
ν∈Vn(S)

∣∣F (2)
n (ν) + I(2)µ (ν)

∣∣ = 0.

Proof of Theorem 2.7 Let ρ̃
(2)
n denote the law of M̃

(2)
n . By Exercise 2.9, it

suffices to prove the claim with ρ
(2)
n replaced by ρ̃

(2)
n . By the restriction principle

(Lemma 1.17) it suffices to prove that the measures ρ̃
(2)
n , viewed as probability

measures on V(S) (rather than the larger spaceM1(S
2)) satisfy the large deviation
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principle with speed n and good rate function I
(2)
µ . By Lemma 2.11, the function

I
(2)
µ : V(S) → R is continuous and uniformly approximated by the functions −F (2)

n .

Since F
(2)
n is the exponential density of ρ̃

(2)
n with respect to η

(2)
n , and since by

Lemma 2.10 the latter satisfy the large deviation principle with the trivial rate
function I = 0, the claim follows by applying Exercise 1.22 in exactly the same
was as in the proof of Theorem 2.4.

We still need to prove Lemmas 2.10 and 2.11. The proof of Lemma 2.10 depends
on the following lemma, the proof of which we postpone till the end of this section.

Lemma 2.12 (Approximation with finite spaces) For each ν ∈ V(S), there
exist νn ∈ Vn(S) such that νn → ν.

Proof of Lemma 2.10 We observe that V(S) is a closed subset of M1(S
2),

and hence, since M1(S
2) is compact, so is V(S). By the restriction principle

(Lemma 1.17), we may alternatively show that the restricted measures η
(2)
n

∣∣
V(S)

satisfy the LDP with speed n and trivial rate function I(ν) = 0 for all ν ∈ V(S).

We apply Proposition 1.7. For any closed set C ⊂ V(S), we can estimate

η(2)n (C) =
∣∣Vn(S) ∩ C∣∣ ≤ ∣∣Vn(S)∣∣ ≤ nS

2

which shows that

lim sup
n→∞

1

n
log η(2)n (C) ≤ lim

n→∞

1

n
|S2| log n = 0.

On the other hand, if O ⊂ V(S) is open and nonempty, then by Lemma 2.12,

η
(2)
n (O) ≥ 1 for all n sufficiently large, and hence

lim sup
n→∞

1

n
log η(2)n (O) ≥ 0.

Proof of Lemma 2.11 The proof will be similar to the proof of Lemma 2.6,
but the combinatorical arguments are more involved. We closely follow [Hol00,
Section II.2] who in turn bases himself on [Ell85, Section I.5].

Let us write Kn(S) for the set of functions κ : S2 → N of the form

κ =
n∑
k=1

δ(xk−1,xk)
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for some x0, . . . , xn ∈ S with x0 = xn. Then Vn(S) = {n−1κ : κ ∈ Kn(S)}. Then
Vn(S) = {n−1κ : κ ∈ Kn(S)}. For κ ∈ Kn(S), let us write

κ(x) :=
∑
y∈S

κ(x, y) =
∑
x∈S

κ(x, y) (x ∈ S)

for the left and right marginals of κ, which are equal. We set

Cn(κ) :=
{
(x0, . . . , xn−1) ∈ Sn : δ(xn−1,x0) +

n−1∑
k=1

δ(xk−1,xk) = κ
}
.

Then
Φ(2)
n (κ/n) =

∣∣Cn(κ)∣∣ ∏
x∈S

µ(x)κ(x)
(
κ ∈ Kn(S)

)
. (2.6)

In order to estimate Cn(κ), we draw a directed graph with vertex set S such that
for each (x, y) ∈ S2, there are κ(x, y) distinct directed edges from x to y. Let
Wn(κ) denote the set of distinct walks in this graph that use each directed edge
precisely once. Note that each such walk must end at its starting point. Then

|Cn(κ)| =
|Wn(κ)|∏

(x,y)∈S2 κ(x, y)!
, (2.7)

where the denominator takes care of the fact that if a walk jumps multiple times
from x to y, then in the set Wn(κ) we do care about which directed edge is used
in which jump, while in Cn(κ) this information is disgarded. We claim that∏

x:κ(x)>0

(
κ(x)− x)! ≤

∣∣Wn(κ)
∣∣ ≤ |S|

∏
x

κ(x)! . (2.8)

To prove the upper bound, it suffices to note that we can uniquely specify a walk
that uses each directed edge precisely once by specifying the starting vertex of
such a walk and then by specifying for each vertex in which order the outgoing
directed edges should be used at each consecutive visit of the vertex.

To prove the lower bound, we use the fact that by the definition of Kn(S), there
is at least one walk in our graph that uses each directed edge precisely once. Let
S ′ be the set if all vertices visited by this walk and let z be the starting vertex.
For each vertex in S ′\{z}, we mark the directed edge that is used the last time
the walk leaves this vertex. We observe that:

From each vertex in S ′\{z}, there is a path of marked edges leading to z. (2.9)
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We can now construct new walks, starting at the same vertex as our old walk, by
changing the order in which the unmarked directed edges leaving a vertex are used,
but keeping the marked directed edges as the last ones. The lower bound in (2.8)
will follow if we show that each chosen order of the unmarked outgoing edges yields
a walk that uses each directed edge precisely once. Since at ach vertex, there is an
equal number of incoming and outgoing edges, if we just “follow the instructions”
until we arrive at a vertex where all outgoing edges have already been used, then
that vertex must be z, and at that point we have used all incoming edges at z.
We observe that if we have used a marked outgoing edge at some vertex x, then
we have used all incoming edges at x. Using this and (2.9), we see that all marked
edges have been used and hence all edges have been used.

Combining (2.6), (2.7), and (2.8), we obtain the bounds

∏
x:κ(x)>0

(
κ(x)− x)!∏

(x,y)∈S2 κ(x, y)!

∏
x∈S

µ(x)κ(x)

≤ Φ(2)
n (κ/n) ≤ |S|

∏
x∈S κ(x)!∏

(x,y)∈S2 κ(x, y)!

∏
x∈S

µ(x)κ(x)

(κ ∈ Kn(S)). We take logarithms and divide by n and as we did in the proof of
Lemma 2.6, we use Stirling’s formula which says that log n! = n log n−n+O(log n).
This yields

1
n
log Φ

(2)
n (κ/n)=

1

n

∑
x∈S

[
κ(x) log κ(x)− κ(x)

]
+

1

n

∑
y∈S

κ(y) log µ(y)

− 1

n

∑
(x,y)∈S2

[
κ(x, y) log κ(x, y)− κ(x, y)

]
+O(n−1 log n).

Using the fact that
∑

x κ(x) =
∑

x,y κ(x, y), we can simplify this to

1

n
log Φ(2)

n (κ/n) =
1

n

∑
x∈S

κ(x) log κ(x) +
1

n

∑
y∈S

κ(y) log µ(y)

− 1

n

∑
(x,y)∈S2

κ(x, y) log κ(x, y) +O(n−1 log n)

=
1

n

∑
(x,y)∈S2

κ(x, y)
[
log κ(x) + log µ(y)− log κ(x, y)

]
+O(n−1 log n).
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Rewriting this in terms of ν = κ/n yields

1

n
log Φ(2)

n (ν)=−
∑

(x,y)∈S2

ν(x, y) log
( ν(x, y)

ν−(x)µ(y)

)
+O(n−1 log n)

=−H(ν− ⊗ µ|ν) +O(n−1 log n),

where the error term is of order n−1 log n as n→ ∞, uniformly in ν ∈ Vn(S).

We still have to provide the proof of Lemma 2.12. This will be done in a number
of steps.

By definition, a cycle in S is an ordered collection C = (x0, . . . , xn) of elements
of S such that n ≥ 1, x0 = xn and x1, . . . , xn are all different. Each cycle C =
(x0, . . . , xn) defines a probability measure νC on S2 through the formula

νC(y0, y1) :=
1

n

n∑
k=1

1{(xk−1,xk)=(y0,y1)} (y0, y1 ∈ S).

Recall that an element x of a convex set K is an extremal element if x cannot be
written as a nontrivial convex combination of other elements of K, i.e., there do
not exist y, z ∈ K, y ̸= z and 0 < p < 1 such that x = py + (1− p)z.

Lemma 2.13 (Extremal elements) The set V(S) is a compact convex subset
of M1(S

2), and its extremal elements are the measures of the form νC where C is
a cycle in S.

Proof It is easy to see that νC ∈ V(S) for each cycle C in S and that measures of
the form νC are extremal. To complete the proof, we must show that each extremal
element if V(S) is of this form νC .

We claim that for each ν ∈ V(S) and (y0, y1) ∈ S2 such that ν(y0, y1) > 0, we can
find a cycle C ∈ C(S2) and a constant p > 0 such that pνC ≤ ν. Indeed, since∑

y2
ν(y1, y2) = ν−(y1) = ν+(y1) ≥ ν(y0, y1), there must be some y2 ∈ S such that

ν(y1, y2) > 0. Continuing in this way, by the finiteness of S, we must arrive back
at y0 at some point, hence there must exist some cycle C = (y0, . . . , yn) such that
ν(yk−1, yk) > 0 for all k = 1, . . . , n. Setting p := n inf{ν(yk−1, yk) : k = 1, . . . , n},
our claim follows.

Now let ν ∈ V(S) be extremal. By what we have just proved, there exists a cycle C
and constant 0 < p < 1 such that pνC ≤ ν. Then we can write ν = pνC +(1−p)µ,
where µ := (1 − p)−1(ν − cνC). Since ν is extremal, we have µ = νC and hence
ν = νC .
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Lemma 2.14 (Approximation of extremal elements) For each cycle C =
(x0, . . . , xn), there exist νn ∈ Vn(S) such that νn → νC.

Proof Let [k] denote the remainder of k after division by n and define (zk)k≥0 by
zk := x[k] (k ≥ 0). Then it is easy to see that

νn(y0, y1) :=
1

n

n∑
k=1

1{(zk−1,zk)=(y0,y1)} (y0, y1 ∈ S)

defines νn ∈ Vn(S) such that νn → νC .

Proof of Lemma 2.12 For any x = (x0, . . . , xn) ∈ Sn+1, let

M (2)(x) :=
1

n

n∑
k=1

δ(xk−1,xk).

Let
A :=

{
ν ∈ V(S) : ∃νn ∈ Vn(S) s.t. νn → ν

}
=

{
ν ∈ V(S) : ∃xn ∈ Sn+1 s.t. M (2)

n (xn) → ν
}
.

We claim that if ν, µ ∈ A and 0 ≤ p ≤ 1, then pν + (1 − p)µ ∈ A. To see this,

choose xn ∈ Sn+1 such that M
(2)
n (xn) → ν and yn ∈ Sn+1 such that M

(2)
n (yn) → µ.

Then it is easy to check that setting

zn := (x
⌊pn⌋
0 , . . . x

⌊pn⌋
⌊pn⌋, y

⌈(1−p)n⌉
1 , . . . y

⌈(1−p)n⌉
⌈(1−p)n⌉)

defines a sequence of sequences zn such thatM
(2)
n (zn) → pν+(1−p)µ. This shows

that A is a convex set.

We next claim that A is a closed subset of V(S). To see this, let d be any metric
generating the topology on V(S), and let d(ν,Vn(S)) := inf{d(ν, ν ′) : ν ′ ∈ Vn(S)}.
Then

A = {ν ∈ V(S) : d(ν,Vn(S)) −→
n→∞

0
}
.

Assume that νm ∈ A converge to a limit ν ∈ V(S). Then for each ε > 0, we can
choose m such that d(ν, νm) ≤ ε/2, and we can choose N such that d(νm,Vn(S)) ≤
ε/2 for all n ≥ N . It follows that d(ν,Vn(S)) ≤ ε for all n ≥ N . Since ε > 0 is
arbitrary, it follows that ν ∈ A.

By Lemmas 2.13 and 2.14, V(S) is a compact convex set and A contains all ex-
tremal elements of V(S). It is well-known that a compact convex set is the closure
of the convex hull of its extremal elements [Roc70, Corollary 18.5.1], so we conclude
that A = V(S).
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2.4 A LDP for Markov chains

In this section we extend Theorem 2.7, which holds for i.i.d. sequences, to Markov
chains. We first introduce some general notation.

Let S be a finite set and let RS be the space of functions f : S → R. We equip RS

with the standard inner product

⟨f, g⟩ :=
∑
x∈S

f(x)g(x) (f, g ∈ RS).

By definition, a matrix indexed by S is a function A : S × S → R. We define the
product of two matrices in the usual way, as

(AB)(x, z) :=
∑
y∈S

A(x, y)B(y, z).

We set A0(x, y) := 1(x, y) with 1(x, x) := 1 and 1(x, y) := 0 for all x ̸= y and we
define An := An−1A (n ≥ 1). If f : S → R is a function, then de define functions
Af and fA by

Af(x) :=
∑
y∈S

A(x, y)f(y) (x ∈ S) and fA(y) :=
∑
x∈S

f(x)A(x, y) (y ∈ S).

We let A†(x, y) := A(y, x) (x, y ∈ S) denote the transpose of A. Then fA = A†f
and

⟨f, Ag⟩ = ⟨fA, g⟩ = ⟨A†f, g⟩ (f, g ∈ RS).

We say that a function f ∈ RS is nonnegative if f(x) ≥ 0 for all x ∈ S and we
say that f is positive if f(x) > 0 for all x ∈ S. A matrix A is nonnegative if
A(x, y) ≥ 0 for all x, y ∈ S. A probability law on S is a nonnegative function µ on
S such that

∑
x∈S µ(x) = 1. A probability kernel on S is a nonnegative matrix P

such that
∑

y∈S P (x, y) = 1 for all x ∈ S.

Let µ be a probability law and let P be a probability kernel. A Markov chain
with state space S, transition kernel P and initial law µ is a collection of S-valued
random variables (Xk)k≥0 whose finite-dimensional distributions are characterized
by

P[X0 = x0, . . . , Xn = xn] = µ(x0)P (x0, x1) · · ·P (xn−1, xn)

(n ≥ 1, x0, . . . , xn ∈ S). We observe that for any function f ∈ RS,

E
[
f(Xn)

]
= ⟨µP n, f⟩
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and µP n is the law of Xn.

For any nonnegative matrix A, we write x A⇝y if there exist n ≥ 0 such that
An(x, y) > 0 or equivalently, there exist x = x0, . . . , xn = y such that A(xk−1, xk) >
0 for each k = 1, . . . , n. A nonnegative matrix A is called irreducible if x A⇝y for
all x, y ∈ S. For a give nonnegative matrix A, the period of a state x ∈ S is the
greatest common divisor of the set {n ≥ 1 : An(x, x) > 0}. If x A↭y, then x and
y have the same period. If A is irreducible and all states have period one, then
we say that A is aperiodic. In this case Lemma A.1 in the appendix implies that
there exists an n ≥ 1 such that An(x, y) > 0 for all x, y ∈ S.

An invariant law of a probability kernel P is a probability law ν on S such that
νP = ν. Equivalently, ν is invariant if the Markov chain (Xk)k≥0 with transition
kernel P and initial law ν is stationary, i.e. (Xk)k≥0 is equal in law to (Yk)k≥0

defined as Yk := Xk+1 (k ≥ 0). Basic results of Markov chain theory tell us that
an irreducible Markov chain with a finite state space S has a unique invariant law
ν, which has the property that ν(x) > 0 for all x ∈ S. If P is moreover aperiodic,
then µP n converges to ν as n→ ∞, for each initial law µ.

For any probability law π on S and probability kernel P , we let π ∗ P denote the
probability law on S2 defined as

π ∗ P (x, y) := π(x)P (x, y) (x, y ∈ S).

The following exercise links this notation to the space V(S) defined in Section 2.3.

Exercise 2.15 (Stationary laws) Show that a probability measure ν ∈ M1(S
2)

satisfies ν ∈ V(S) if and only if there exist a probability law π and probability
kernel P on S such that ν = π ∗ P and π is an invariant law of the Markov chain
with transition kernel P .

The following theorem generalizes Theorem 2.7 to Markov chains. Although we
formulate the result for the pair empirical measures, through the contraction prin-
ciple, this of course also implies a large deviation result for the usual empirical mea-
sures. These sort of large deviation results (for the usual empirical measures) were
first derived in a series of papers by Donsker and Varadhan [DV75a, DV75b, DV76].
The corresponding theory is called Donsker-Varadhan theory.2 A modern account
can be found in [RS15, Chapter 13]. Unfortunately, the latter reference does not

2Another form of large deviation theory for Markov processes is Freidlin-Wentzell theory
[VF79, FW84], which deals with stochastic differential equations with small noise. Large devia-
tions for general Markov processes with continuous time and state space are treated in [FK06].
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treat pair empirical measures. More on pair empirical measures can be found in
[Ell85, Hol00]. The assumption below that P (x, y) > 0 for all x, y ∈ S is stronger
than necessary and will be relaxed in Theorem 6.14 below when we have more
powerful proof methods at our disposal.

Theorem 2.16 (LDP for Markov chains) Let X = (Xk)k≥0 be a Markov chain
with finite state space S, transition kernel P , and arbitrary initial law. Assume
that P[X0 = x] > 0 and P (x, y) > 0 for all x, y ∈ S. Let (M

(2)
n )n≥1 be the pair

empirical distributions of X. Then the laws P[M (2)
n ∈ · ] satisfy the large deviation

principle with speed n and rate function I
(2)
P given by

I
(2)
P (ν) :=

{
H(ν|ν− ∗ P ) if ν ∈ V(S),
∞ otherwise.

Proof Let µ be the law of X0 and let X̂ = (X̂k)k≥0 be an i.i.d. collection of random
variables with common law µ. For any x = (xk)k≥0 ∈ SN, let us write

M (2)
n (x) :=

n∑
k=1

δ(xk−1,xk) (n ≥ 1),

so that in particular, M
(2)
n (X) and M

(2)
n (X̂) are the pair empirical distributions of

X and X̂, respectively. We observe that

P[X0 = x0, . . . , Xn = xn] =µ(x0)e
∑n

k=1 logP (xk−1, xk)

=µ(x0)e
n
∑

(y1,y2)∈S2 logP (y1, y2)M
(2)
n (x)(y1, y2),

while

P[X̂0 = x0, . . . , X̂n = xn] =µ(x0)e
∑n

k=1 log µ(xk)

=µ(x0)e
n
∑

(y1,y2)∈S2 log µ(y2)M
(2)
n (x)(y1, y2).

It follows that for any x = (xk)k≥0 ∈ SN,

P[X0 = x0, . . . , Xn = xn]

P[X̂0 = x0, . . . , X̂n = xn]

= en
∑

(y1,y2)∈S2(logP (y1, y2)− log µ(y2))M
(2)
n (x)(y1, y2),
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and as a consequence, for each ν ∈ M1(S
2),

P[M (2)
n (X) = ν]

P[M (2)
n (X̂) = ν]

= en
∑

(y1,y2)∈S2(logP (y1, y2)− log µ(y2))ν(y1, y2).

We define F : M1(S
2) → R by

F (ν) :=
∑

(y1,y2)∈S2

(logP (y1, y2)− log µ(y2))ν(y1, y2).

Note that F is continuous since we are assuming that µ(y2) > 0 and P (y1, y2) > 0
for all y1, y2 ∈ S. Since M1(S

2) is compact, it follows that F is also bounded. Let

ρ(2)n := P
[
M (2)

n (X) ∈ ·
]

and ρ̂(2)n := P
[
M (2)

n (X̂) ∈ ·
]

denote the laws of M
(2)
n (X) and M

(2)
n (X̂). Then we have just shown that

ρn(ν) = enF (ν)ρ̂n(ν)
(
ν ∈ M1(S

2)
)
.

By Theorem 2.7, the laws P[M (2)
n (X̂) ∈ · ] satisfy the large deviation principle with

speed n and rate function Î
(2)
µ given by

I(2)µ (ν) =

{
H(ν|ν− ⊗ µ) if ν ∈ V(S),
∞ otherwise.

Applying Lemma 1.18 to the function F , we find that the laws ρn satisfy the large
deviation principle with speed n and rate function I(2) = I

(2)
µ − F . Since

H(ν|ν− ⊗ µ)− F (ν)

=
∑

(y1,y2)∈S2

ν(y1, y2)
(
log

ν(y1, y2)

ν−(y1)µ(y2)
+ log µ(y2)− logP (y1, y2)

)
=

∑
(y1,y2)∈S2

ν(y1, y2) log
ν(y1, y2)

ν−(y1)P (y1, y2)
= H(ν|ν− ∗ P ),

this proves the theorem.

The following lemma shows that the rate function of Theorem 2.16 assumes its
minimum in the unique point where one would expect it to do so. We prove the
lemma in a somewhat more general setting than in Theorem 2.16.
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Lemma 2.17 (Minimizer of the rate function) Let P be an irreducible prob-
ability kernel on a finite set S. Then one has

I
(2)
P (ν) ≥ 0

(
ν ∈ M1(S

2)
)
,

with equality if and only if ν = π ∗ P , where π is the invariant law of P .

Proof It follows from Lemma 2.1 that I
(2)
P (ν) ≥ 0 with equality if and only if

ν ∈ V(S) and ν = ν− ∗ P . These conditions imply that ν− = ν+ = ν−P , and
hence ν− is an invariant law of P . Since P is irreducible, it has a unique invariant
law, so ν = π ∗ P . Conversely, if ν is of this form, then clearly I

(2)
P (ν) = 0.

Exercise 2.18 (Arbitrary initial laws) Generalize Theorem 2.16 by dropping
the condition that P[X0 = x] > 0 for all x ∈ S. Hint: Let µ be any probability
law on S such that µ(x) > 0 for all x ∈ S and let µ′ be the law of X0. Let
(X̃k)k≥0 be independent random variables such that X̃0 has law µ′ and X̃k has
law µ for all k ≥ 1. Combine Proposition 1.20 with Theorem 2.7 to prove that
the pair empirical measures M

(2)
n (X̃) satisfy an LDP and then follow the proof of

Theorem 2.16 with X̂ replaced by X̃.

Remark Our proof of Theorem 2.16 closely follows [Hol00, Thm IV.3]. In [Hol00,
Comment (4) from Section IV.3], it is claimed that the theorem still applies when P
is not everywhere positive but irreducible and S2 is replaced by U := {(x1, x2) ∈
S2 : P (x1, x2) > 0}, and ‘the proof is easily adapted’. It is indeed possible to
prove this more general statement by adapting the proof of Theorem 2.7 but the
proof gets a lot more messy because periodic boundary conditions do not work
well anymore in the more general setting. In Theorem 6.14 below, we will use the
Gärtner-Ellis theorem to prove a large deviation principle for irreducible Markov
chains.

2.5 Cramér’s moment generating function

In this section we start preparing for the proof of Cramér’s theorem (Theorem 0.1)
by studying the moment generating function Z defined in (0.1) and its logarithm,
the so-called free energy. For any probability measure µ on R which has at least a
finite first, respectively second moment, we let

⟨µ⟩ :=
∫
µ(dx)x,

Var(µ) :=

∫
µ(dx)x2 −

(∫
µ(dx)x(i)

)2
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denote the mean and variance of µ.

Lemma 2.19 (Smoothness of the free energy) Let µ be a probability measure
on R and let Z be given by

Z(λ) :=

∫
eλxµ(dx) (λ ∈ Rd). (2.10)

Assume that Z(λ) <∞ for all λ ∈ R. For λ ∈ R, let µλ denote the tilted law

µλ(dx) :=
1

Z(λ)
eλxµ(dx) (λ ∈ R). (2.11)

Then λ 7→ logZ(λ) is infinitely differentiable and

(i) ∂
∂λ

logZ(λ) = ⟨µλ⟩,

(ii) ∂2

∂λ2
logZ(λ) = Var(µλ)

}
(λ ∈ R).

Proof We claim that λ 7→ Z(λ) is infinitely differentiable and(
∂
∂λ

)n
Z(λ) =

∫
xneλxµ(dx).

To justify this, we must show that the interchanging of differentiation and integral
is allowed. By symmetry, it suffices to prove this for λ ≥ 0. We observe that

∂
∂λ

∫
xneλxµ(dx) = lim

ε→0

∫
xnε−1(e(λ+ε)x − eλx)µ(dx),

where

|x|nε−1
∣∣e(λ+ε)x − eλx

∣∣ = |x|n
∣∣∣ε−1

∫ λ+ε

λ

xeκxdκ
∣∣∣ ≤ |x|n+1e(λ+1)x (x ∈ R, ε ≤ 1).

It follows from the existence of all exponential moments that this function is in-
tegrable, hence we may use dominated convergence to interchange the limit and
integral.

It follows that

(i) ∂
∂λ

logZ(λ)= ∂
∂λ

log

∫
eλxµ(dx) =

∫
xeλxµ(dx)∫
eλxµ(dx)

= ⟨µλ⟩,

(ii) ∂2

∂λ2
logZ(λ)=

Z(λ)
∫
x2eλxµ(dx)− (

∫
xeλxµ(dx))2

Z(λ)2

=

∫
x2µλ(dx)−

(∫
xµλ(dx)

)2

= Var(µλ).

(2.12)
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Exercise 2.20 (Maximal and minimal mean of tilted law) Let µ be a prob-
ability law on R such that

∫
eλxµ(dx) < ∞ for all λ ∈ R and let µλ be defined as

in Lemma 2.19. Show that

lim
λ→−∞

⟨µλ⟩ = y− and lim
λ→+∞

⟨µλ⟩ = y+,

where y− := inf(support(µ)), y+ := sup(support(µ)).

2.6 Cramér’s theorem for simple variables

Let us say that a real random variable X is simple if there exists a finite subset
R ⊂ R such that X ∈ R a.s. In this section, we prove Cramér’s theorem for simple
random variables. This is of course much weaker than Theorem 0.1, but the proof
is instructive and a good warm-up for the theory that will follow.

Theorem 2.21 (Simple version of Cramér’s theorem) Let (Xk)k≥1 be i.i.d.
random variables taking values in a finite subset R ⊂ R. Then the probability
measures

ηn := P
[ 1
n

n∑
k=1

Xk ∈ ·
]

(n ≥ 1)

satisfy the large deviation principle with speed n and good rate function I given by

I(y) := sup
λ∈R

[
λy − logZ(λ)

]
(y ∈ R),

where Z(λ) := E[eλX1 ] (λ ∈ R).

To prepare for the proof of Theorem 2.21 we introduce some notation. Let S be
a finite set. For functions ϕ : S → R and probability measures ν, µ ∈ M1(S), we
introduce the notation

⟨ν, ϕ⟩ :=
∑
x∈S

ν(x)ϕ(x) and Γµ(ϕ) := log
∑
x∈S

µ(x)eϕ(x).

For each ϕ : S → R and µ ∈ M1(S), we define a probability law µϕ ∈ M1(S) on
S by

µϕ(x) :=
1

Z(ϕ)
µ(x)eϕ(x) (x ∈ S) with Z(ϕ) :=

∑
z∈S

µ(z)eϕ(z). (2.13)
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Lemma 2.22 (Duality relation) For each ν, µ ∈ M1(S) and ϕ : S → R, one
has

⟨ν, ϕ⟩ ≤ H(ν|µ) + Γµ(ϕ), (2.14)

with equality if and only if ν = µϕ.

Proof We trivially have a strict inequality if H(ν|µ) = ∞ so without loss of
generality we may assume that ν ≪ µ. Reducing the set S if necessary, we
can also without loss of generality assume that µ(x) > 0 for all x ∈ S. Let
S ′ := {x ∈ S : ν(x) > 0}. Since r 7→ log(r) is a strictly concave function, Jensen’s
inequality gives

⟨ν, ϕ⟩ −H(ν|µ) =
∑
x∈S

ν(x)
(
log

(
eϕ(x)

)
− log

(ν(x)
µ(x)

))
=

∑
x∈S′

ν(x) log
(
eϕ(x)

µ(x)

ν(x)

)
≤ log

(∑
x∈S′

ν(x)eϕ(x)
µ(x)

ν(x)

)
≤ log

(∑
x∈S

µ(x)eϕ(x)
)
= Γµ(ϕ).

This proves (2.14). Since the logarithm is a strictly concave function, the first
inequality here (which is an application of Jensen’s inequality) is an equality if

and only if the function eϕ(x) µ(x)
ν(x)

is constant on S ′. Since the logarithm is a

strictly increasing function and eϕ is strictly positive, the second inequality is an
equality if and only if µ(x) = 0 whenever ν(x) = 0. Thus, we have equality in
(5.7) if and only if

ν(x) =
1

Z
eϕ(x)µ(x) (x ∈ S),

where Z is some constant. Since ν is a probability measure, we must have Z =
Z(ϕ).

Proof of Theorem 2.21 Let (Xk)k≥1 be i.i.d. random variables with common
law µ taking values in a finite set S, and let ϕ : S → R ⊂ R be a bijection. We
will prove that the probability measures

ηn := P
[ 1
n

n∑
k=1

ϕ(Xk) ∈ ·
]

(n ≥ 1)

satisfy the large deviation principle with speed n and good rate function I given
by

I(y) := sup
λ∈R

[
λy − Γµ(λϕ)

]
(y ∈ R). (2.15)
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In particular, applying this with S = R ⊂ R and ϕ the identity function, this then
yields the statement of the theorem.

By Theorem 2.4, the laws ρn of the empirical distributions Mn := n−1
∑n

k=1 δXk

satisfy the large deviation principle with speed n and good rate function H( · |µ).
The function ψ : M1(S) → R defined as

ψ(ν) := ⟨ν, ϕ⟩
(
ν ∈ M1(S)

)
is continuous, so by the contraction principle (Proposition 1.16), the measures
ηn = ρn ◦ ψ−1 satisfy the large deviation principle with speed n and good rate
function I ′ defined by

I ′(y) := inf
{
H(ν|µ) : ν ∈ M1(S), ⟨ν, ϕ⟩ = y

}
(y ∈ R). (2.16)

To complete the proof, we need to show that I ′ = I, the function defined in (2.15).
To evaluate the infimum in (2.16), we use the method of Lagrange multipliers: we
first try to find the minimum of the function ν 7→ H(ν|µ) − λ⟨ν, ϕ⟩ for general
λ ∈ R, and then try to choose λ in such a way that the minimizer ν satisfies the
constraint ⟨ν, ϕ⟩ = y. Lemma 2.22 tells us that H(ν|µ)−⟨ν, λϕ⟩ ≥ −Γµ(λϕ), with
equality if and only if ν = µλϕ. In other words, for each λ ∈ R, the function
ν 7→ H(ν|µ) − λ⟨ν, ϕ⟩ attains its minimal value in the unique point µλϕ, and the
function value in this point is −Γµ(λϕ).

Let y− := min{ϕ(x) : µ(x) > 0} and y+ := max{ϕ(x) : µ(x) > 0} be the min-
imal and maximal values that the random variables

(
ϕ(Xk)

)
k≥1

can obtain. By

Lemma 2.19, the function λ 7→ ⟨µλϕ, ϕ⟩ is infinitely differentiable and strictly in-
creasing. Using also Exercise 2.20, it follows that for each y− < y < y+, there
exists a unique λ◦ ∈ R such that ⟨µλ◦ϕ, ϕ⟩ = y. The method of Lagrange multipli-
ers then tells us that the function ν 7→ H(ν|µ) attains its minimal value over the
set {ν ∈ M1(S) : ⟨ν, ϕ⟩ = y} in the unique point ν = µλ◦ϕ, and in this point

H(ν|µ) = λ◦⟨ν, ϕ⟩ − Γµ(λ◦ϕ) = λ◦y − Γµ(λ◦ϕ).

In view of this, to prove that the functions in (2.15) and (2.16) satisfy I(y) = I ′(y),
it suffices to show that the function λ 7→ λy − Γµ(λϕ) attains its minimum in the
point λ◦. Differentiating using Lemma 2.19 gives

∂
∂λ

[
λy − Γµ(λϕ)

]
= y − ⟨µλϕ, ϕ⟩.

Since λ 7→ ⟨µλϕ, ϕ⟩ is continuous and strictly increasing, the right-hand side of our
formula is negative for λ < λ◦, zero for λ = λ◦, and positive for λ > λ◦. This
completes the proof that I(y) = I ′(y) for y− < y < y+.
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We next consider the case that y = y+. By our assumption that ϕ is a bijection,
there is a unique x+ ∈ S such that ϕ(x+) = y+. Now the only ν ≪ µ such that
⟨ν, ϕ⟩ = y+ is given by ν = δx+ and hence I ′(y+) = H(δx+|µ) = − log µ({x+}).
By Lemma 2.19 and Exercise 2.20, the function λ 7→ λy+ − Γµ(λϕ) is strictly
increasing, and hence

I(y+) = lim
λ→∞

[
λy+ − Γµ(λϕ)

]
= − lim

λ→∞
log

(
e−λy+Γµ(λϕ)

)
= − lim

λ→∞
log

∑
x∈S

µ(x)eλ(ϕ(x)− ϕ(x+)) = − log µ({x+}).

This proves that I ′(y+) = I(y+). By symmetry, also I ′(y−) = I(y−).

We finally treat the case that y+ > y. In this case, there exist no ν ≪ µ such that
⟨ν, ϕ⟩ = y and hence we see from (2.16) that I ′(y) = inf ∅ = ∞. By Lemma 2.19
and Exercise 2.20, ∂

∂λ
Γµ(λϕ) ≤ y+ for all λ ∈ R, so we see from (2.15) that

I(y) = limλ→∞[λy+ − Γµ(λϕ)] = ∞. By the same argument I(y) = ∞ = I ′(y) for
y < y−.

2.7 Cramér’s theorem

In the previous section, we gave a proof of Cramér’s theorem that was based on
the Boltzmann-Savov theorem and the contraction principle. A disadvantage of
this approach is that we only obtained the result for simple random variables. In
the present section we give a direct proof of Cramér’s theorem that does not have
this disadvantage. Our proof makes use of Lemma 0.2. Although it is possible to
prove Lemma 0.2 by elementary means, for convenience, we postpone the proof
till Section 5.1 when we have the tools available to give a short and elegant proof.

Proof of Theorem 0.1 By symmetry, it suffices to prove (0.2) (i). In view of the
fact that 1[0,∞)(z) ≤ ez, we have, for each y ∈ R and λ > 0,

P
[ 1
n

n∑
k=1

Xk ≥ y
]
= P

[ 1
n

n∑
k=1

(Xk − y) ≥ 0
]
= P

[
λ

n∑
k=1

(Xk − y) ≥ 0
]

≤ E
[
eλ

∑n
k=1(Xk − y)] = n∏

k=1

E
[
eλ(Xk − y)] = e−nλyE

[
eλX1

]n
= e (logZ(λ)− λy)n.
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If y > ρ, then, by Lemma 2.19, ∂
∂λ
[logZ(λ) − λy]|λ=0 = ρ − y < 0, so, by the

convexity of the function λ 7→ [logZ(λ)− λy],

inf
λ≥0

[logZ(λ)− λy] = inf
λ∈R

[logZ(λ)− λy] =: −I(y).

Together with our previous formula, this shows that

P
[ 1
n

n∑
k=1

Xk ≥ y
]
≤ e−nI(y) (y > ρ),

and hence, in particular,

lim sup
n→∞

1

n
logP

[
Tn ≥ y

]
≤ −I(y) (y > ρ).

To estimate the limit inferior from below, we distinguish three cases. If y > y+,
then P[Tn ≥ y] = 0 for all n ≥ 1 while I(y) = ∞ by Lemma 0.2 (v), so (0.2) (i)
is trivially fulfilled. If y = y+, then P[Tn ≥ y] = P[X1 = y+]

n while I(y+) =
− logP[X1 = y+] by Lemma 0.2 (ix), hence again (0.2) (i) holds.

If y < y+, finally, then differentiating using Lemma 2.19, we see that the function
λ 7→ [yλ− logZ(λ)] assumes its maximum in the point λ◦ that is uniquely charac-
terized by the condition ⟨µλ◦⟩ = y. We observe that if (X̂k)k≥1 are i.i.d. random

variables with common law µλ◦ , and T̂n := 1
n

∑n
k=1 X̂k, then limn→∞ P[T̂n ≥ y] = 1

2

by the central limit theorem and therefore limn→∞
1
n
logP[T̂n ≥ y] = 0. The idea

of the proof is to replace the law µ of the (Xk)k≥1 by µλ◦ at an exponential cost
of size I(y). More precisely, we estimate

P
[
Tn ≥ y

]
= P

[ n∑
k=1

(Xk − y) ≥ 0
]
=

∫
µ(dx1) · · ·

∫
µ(dxn)1{

∑n
k=1(xk − y) ≥ 0}

= Z(λ◦)
n

∫
e−λ◦x1µλ◦(dx1) · · ·

∫
e−λ◦xnµλ◦(dxn)1{

∑n
k=1(xk − y) ≥ 0}

= Z(λ◦)
ne−nλ◦y

∫
µλ◦(dx1) · · ·

∫
µλ◦(dxn)

×e−λ◦
∑n

k=1(xk − y)1{
∑n

k=1(xk − y) ≥ 0}

= e−nI(y)E
[
e−nλ◦(T̂n − y)1{T̂n − y ≥ 0}

]
.

(2.17)
By the central limit theorem,

P
[
y ≤ T̂n ≤ y + σn−1/2

]
−→
n→∞

1√
2π

∫ 1

0

e−z
2/2dz =: θ > 0.



62 CHAPTER 2. SOME FIRST RESULTS

Since

E
[
e−nλ◦(T̂n − y)1{T̂n − y ≥ 0}

]
≥ P

[
y ≤ T̂n ≤ y + σn−1/2

]
e−

√
nσλ◦ ,

this implies that

lim inf
n→∞

1

n
logE

[
e−nλ◦(T̂n − y)1{T̂n − y ≥ 0}

]
≥ lim inf

n→∞

1

n
log

(
θe−

√
nσλ◦

)
= − lim inf

n→∞

1

n

(
log θ +

√
nσλ◦

)
= 0.

Inserting this into (2.17) we find that

lim inf
n→∞

1

n
logP

[
Tn ≥ y

]
≥ −I(y) (y > ρ).

Remark Our proof of Cramér’s theorem actually shows that for any ρ < y < y+,

e−nI(y)−O(
√
n) ≤ P[Tn ≥ y] ≤ e−nI(y) as n→ ∞.

Here the term of order
√
n in the lower bound comes from the central limit theorem.

A simpler method to obtain a more crude lower bound is to use the weak law of
large numbers instead. For each λ∗ > λ◦, the calculation in (2.17) shows that

P[Tn ≥ y] = e−n[λ∗y − logZ(λ∗)]E
[
e−nλ∗(T̂n − y)1{T̂n − y ≥ 0}

]
,

where T̂n now denotes the mean of n i.i.d. random variables with common law
µλ∗ , instead of µλ◦ . Let ε := ⟨µλ∗⟩ − ⟨µλ◦⟩ = ⟨µλ∗⟩ − y. By the weak law of large
numbers

P
[
y ≤ T̂n ≤ y + 2ε

]
−→
n→∞

1.

Inserting this into our previous formula yields

P[Tn ≥ y] ≥ e−n[λ∗y − logZ(λ∗)]e−n2ελ∗ ,

and hence
lim inf
n→∞

P[Tn ≥ y] ≥ λ∗y − logZ(λ∗)− 2ελ∗.

Since ε ↓ 0 as λ∗ ↓ λ◦, taking the limit, we obtain that

lim inf
n→∞

P[Tn ≥ y] ≥ λ◦y − logZ(λ◦) = I(y).



2.8. EXCERCISES 63

Remark Using Theorem 0.1, it is not hard to show that indeed, the laws P[Tn ∈ · ]
satisfy a large deviation principle with speed n and good rate function I. We will
postpone this until we treat the multi-dimensional case in Theorem 5.4. Theo-
rem 0.1 is in fact a bit stronger than the large deviation principle. Indeed, if
y+ <∞ and µ({y+}) > 0, then the large deviation principle tells us that

lim sup
n→∞

µn([y+,∞)) ≤ − inf
y∈[y+,∞)

I(y) = −I(y+),

but, as we have seen in Excercise 1.12, the complementary statement for the limit
inferior does not follow from the large deviation principle since [y+,∞) is not an
open set.

Remark Let UZ be the interior of the interval {λ ∈ R : Z(λ) <∞}. Theorem 0.1
remains true if the assumption that UZ = R is replaced by the weaker condition
that 0 ∈ UZ , see [DZ98, Section 2.2.1].

Remark For ρ < y < y+, it can be shown that for fixed m ≥ 1,

P
[
X1 ∈ dx1, . . . , Xm ∈ dxm

∣∣ 1
n

n∑
k=1

Xk ≥ y
]
=⇒
n→∞

µλ◦(dx1) · · ·µλ◦(dxm),

where µλ denotes a tilted law as in Lemma 2.19 and λ◦ is defined by the requirement
that ⟨µλ◦⟩ = y. This means that conditioned on the rare event 1

n

∑n
k=1Xk ≥ y, in

the limit n→ ∞, the random variables X1, . . . , Xn are approximately distributed
as if they are i.i.d. with common law µλ◦ .

2.8 Excercises

Exercise 2.23 (Testing the fairness of a dice) Imagine that we want to test
if a dice is fair, i.e., if all sides come up with equal probabilities. To test this
hypothesis, we throw the dice n times. General statistical theory tells us that
any test on the distribution with which each side comes up can be based on the
relative freqencies Mn(x) of the sides x = 1, . . . , 6 in these n throws. Let µ0 be
the uniform distribution on S := {1, . . . , 6} and imagine that sides the dice come
up according to some other, unknown distribution µ1. We are looking for a test
function T : M1(S) → {0, 1} such that if T (Mn) = 1, we reject the hypothesis
that the dice is fair. Let Pµ denote the distribution of Mn when in a single throw,
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the sides of the dice come up with law µ. Then

αn := Pµ0 [T (Mn) = 1] and βn := Pµ1 [T (Mn) = 0]

are the probability that we incorrectly reject the hypothesis that the dice is fair and
the probability that we do not reckognize the non-fairness of the dice, respectively.
A good test minimalizes βn when αn is subject to a bound of the form αn ≤ ε,
with ε > 0 small and fixed. Consider a test of the form

T (Mn) := 1{H(Mn|µ0) ≥ λ},

where λ > 0 is fixed and small enough such that {µ ∈ M1(S) : H(µ|µ0) ≥ λ} ≠ ∅.
Prove that

lim
n→∞

1

n
logαn = −λ,

and, for any µ1 ̸= µ0,

lim
n→∞

1

n
log βn = − inf

µ: H(µ|µ0)<λ
H(µ|µ1).

Let T̃ : M1(S) → {0, 1} be any other test such that {µ ∈ M1(S) : T̃ (µ) = 1} is
the closure of its interior and let α̃n, β̃n be the corresponding error probabilities.
Assume that

lim sup
n→∞

1

n
log α̃n ≤ −λ.

Show that for any µ1 ̸= µ0,

lim inf
n→∞

1

n
log β̃n ≥ − inf

µ: H(µ|µ0)<λ
H(µ|µ0).

This shows that the test T is, in a sense, optimal.

Exercise 2.24 (Sampling without replacement) For each n ≥ 1, consider
an urn with n balls that have colors taken from some finite set S. Let cn(x) be
the number of balls of color x ∈ S. Imagine that we draw mn balls from the urn
without replacement. We assume that the numbers cn(x) andmn are deterministic
(i.e., non-random), and that

1

n
cn(x) −→

n→∞
µ(x) (x ∈ S) and

mn

n
−→
n→∞

κ,
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where µ is a probability measure on S and 0 < κ < 1. Let Mn(x) be the (random)
number of balls of color x that we have drawn. Let kn(x) satisfy

kn(x)

mn

−→
n→∞

ν1(x) and
cn(x)− kn(x)

n−mn

−→
n→∞

ν2(x) (x ∈ S),

where ν1, ν2 are probability measures on S such that νi(x) > 0 for all x ∈ S,
i = 1, 2. Prove that

lim
n→∞

1

n
logP[Mn = kn] = −κH(ν1|µ)− (1− κ)H(ν2|µ). (2.18)

Sketch a proof, similar to the proof of Theorem 2.4, that the laws P[Mn ∈ · ] satisfy
a large deviation principle with speed n and rate function I given by

I(κ) := κH(ν1|µ) + (1− κ)H(ν2|µ).

Hint: use Stirling’s formula to show that

1

n
log

(
n

m

)
≈ H

(m
n

)
,

where
H(z) := −z log z − (1− z) log(1− z).

Exercise 2.25 (Relative entropy and conditional laws) Let S be a finite
space, let ν, µ be probability measures on S and let Q,P be probability kernels on
S. Show that

H(ν ∗Q|µ ∗ P ) = H(ν|µ) +
∑
x1∈S

ν(x1)H(Qx1|Px1),

where Qx1(x2) := Q(x1, x2) and Px1(x2) := P (x1, x2) ((x1, x2) ∈ S2). In particular,
if Q is a probability kernel such that ν = ν− ∗Q, then

H(ν|ν− ∗ P ) =
∑
x1∈S

ν−(x1)H(Qx1|Px1).

Exercise 2.26 (Minimizer of the rate function) Let P be irreducible. Show
that the unique minimizer of the function V(S) ∋ ν 7→ H(ν|ν− ∗ P ) is given by
ν = µ ∗ P , where µ is the invariant law of P .
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The following exercise asks you to prove that the function

M1(S
2) ∋ ν 7→ H(ν|ν− ∗ P )

is convex.

Exercise 2.27 (Convexity of rate function) Let P be a probability kernel
on S. Let p1, . . . , pn be nonnegative constants summing up to one and let ν :=∑n

k=1 pkνk with νk ∈ V(S). Let Qk and Q be probability kernels on S such that
ν = ν− ∗Q and νk = ν−k ∗Qk (1 ≤ k ≤ n). Prove that

H(ν|ν− ∗ P ) =
n∑
k=1

pkH(νk|ν− ∗ P )−
n∑
k=1

pk
∑
x∈S

ν−k (x)H(Qk
x|Qx),

where Qx is the probability law on S defined as Qx(y) := Q(x, y) (x, y ∈ S) and
Qk
x is defined similarly with Q replaced by Qk.

Exercise 2.28 (Not strictly convex) Let P be any probability kernel on S =
{1, 2}. Define µ, ν ∈ M1(S

2) by(
µ(1, 1) µ(1, 2)
µ(2, 1) µ(2, 2)

)
:=

(
1 0
0 0

)
and

(
ν(1, 1) ν(1, 2)
ν(2, 1) ν(2, 2)

)
:=

(
0 0
0 1

)
.

Define νp := pµ+ (1− p)ν. Show that

[0, 1] ∋ p 7→ H(νp|ν−p ∗ P )

is an affine function. Prove the same statement for

µ :=


0 0 1

2
0

0 0 0 0
1
2

0 0 0
0 0 0 0

 and ν :=


0 0 0 0
0 0 0 1

2

0 0 0 0
0 1

2
0 0

 .

These examples show that M1(S
2) ∋ ν 7→ H(ν|ν− ∗ P ) is not strictly convex.

Do you see a general pattern how to create such examples? Hint: You can use
Excercise 2.25 or Excercise 2.27.
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Exercise 2.29 (Strong law of large numbers) Let X = (Xk)k≥0 be a Markov
chain with finite state space S, transition kernel P , and arbitrary initial law.
Assume that P[X0 = x] > 0 and P (x, y) > 0 for all x, y ∈ S. Let (M

(2)
n )n≥1 be the

pair empirical distributions of X. Show that

M (2)
n −→

n→∞
π ∗ P a.s., (2.19)

where π denotes the invariant law of P . Hint: use Theorem 2.16, Exercise 2.26,
and Borel-Cantelli.

Exercise 2.30 (Approximation lemma) Use Exercises 2.15 and 2.29 to give an
alternative proof of Lemma 2.12. Hint: first prove the claim under the additional
assumption that ν(x, y) > 0 for all (x, y) ∈ S2.
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Chapter 3

Exponential tightness

3.1 Tightness

In Sections 1.1 and 1.2, we have stressed the similarity between weak convergence
of measures and large deviation principles. In this chapter, we will pursue this idea
further. In the present section, we recall the concept of tightness and Prohorov’s
theorem. In particular, we will see that any tight sequence of probability measures
on a Polish space has a weakly convergent subsequence. In the next sections (to
be precise, in Theorem 3.7), we will prove an analogue of this result, which says
that every exponentially tight sequence of probability measures on a Polish space
has a subsequence that satisfies a large deviation principle.

A set A is called relatively compact if its closure A is compact. The next result
is known as Prohorov’s theorem (see, e.g., [Ste87, Theorems III.3.3 and III.3.4] or
[Bil99, Theorems 5.1 and 5.2]).

Proposition 3.1 (Prohorov) Let E be a Polish space and let M1(E) be the
space of probability measures on (E,B(E)), equipped with the topology of weak
convergence. Then a subset C ⊂ M1(E) is relatively compact if and only if C is
tight, i.e.,

∀ε > 0 ∃K ⊂ E compact, s.t. sup
µ∈C

µ(E\K) ≤ ε.

Note that since sets consisting of a single point are always compact, Proposition 3.1
implies that every probability measure (and therefore also every finite measure)
on a Polish space E has the property that for all ε > 0 there exists a compact K

69
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such that µ(E\K) ≤ ε. This result, that is sometimes known as Ulam’s theorem,
is in itself already nontrivial, since Polish spaces need in general not be locally
compact.

By definition, a set of functions D ⊂ Cb(E) is called distribution determining if for
any µ, ν ∈ M1(E),∫

fdµ =

∫
fdν ∀f ∈ D implies µ = ν.

We say that a sequence of probability measures (µn)n≥1 is tight if the set {µn : n ≥
1} is tight, i.e., ∀ε > 0 there exists a compact K such that supn µn(E\K) ≤ ε. By
Prohorov’s theorem, each tight sequence of probability measures has a convergent
subsequence. This fact is often applied as in the following lemma.

Lemma 3.2 (Tight sequences) Let E be a Polish space and let µn, µ be proba-
bility measures on E. Assume that D ⊂ Cb(E) is distribution determining. Then
one has µn ⇒ µ if and only if the following two conditions are satisfied:

(i) The sequence (µn)n≥1 is tight.

(ii)
∫
fdµn →

∫
fdµ for all f ∈ D.

The proof of Lemma 3.2 uses a simple fact from general topology. Recall that
(x′n)n∈N is a subsequence of (xn)n∈N if there exist n(m) → ∞ such that x′m = xn(m)

(m ∈ N).

Lemma 3.3 (Convergence along subsequences) Let E be a topological space
and let xn, x ∈ E. Assume that each subsequence (x′n) of (xn) contains a further
subsequence (x′′n) such that x′′n → x. Then xn → x.

Proof Assume that xn ̸→ x. Then there exists an open set O ∋ x such that xn ̸∈ O
for infinitely many n, hence there exists a subsequence (x′n) such that x′n ̸∈ O for
all n. But then no subsequence (x′′n) of (x

′
n) can converge to x, contradicting our

assumption.

Proof of Lemma 3.2 In any metrizable space, if (xn)n≥1 is a convergent se-
quence, then {xn : n ≥ 1} is relatively compact. Thus, by Prohorov’s theorem,
conditions (i) and (ii) are clearly necessary.

To prove the sufficiency of conditions (i) and (ii) we apply Lemma 3.3. By (i) and
Prohorov’s theorem, each subsequence (µ′

n) of (µn) contains a further subsequence
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(µ′′
n) that converges weakly to some limit µ′′. By (ii)

∫
fdµ′′ =

∫
fdµ for all f ∈ D

so µ′′ = µ and hence by Lemma 3.3 we conclude that the original sequence (µn)
converges weakly to µ.

3.2 LDP’s on compact spaces

Our aim is to prove an analogue of Lemma 3.2 for large deviation principles. To
prepare for this, in the present section, we will study large deviation principles
on compact spaces. The results in this section will also shed some light on some
elements of the theory that have up to now not been very well motivated, such as
why rate functions are lower semi-continuous.

It is well-known that a compact metrizable space is separable, and complete in any
metric that generates the topology. In particular, all compact metrizabe spaces
are Polish. Note that if E is a compact metrizable space, then C(E) = Cb(E),
i.e., continuous functions are automatically bounded. We equip C(E) with the
supremumnorm ∥ · ∥∞, under which it is a separable Banach space.1 Below, |f |
denotes the absolute value of a function, i.e., the function x 7→ |f(x)|.

Proposition 3.4 (Generalized supremumnorms) Let E be a compact met-
rizable space and let Λ : C(E) → [0,∞) be a function such that

(i) Λ is a seminorm.

(ii) Λ(f) = Λ(|f |) for all f ∈ C(E).

(iii) Λ(f) ≤ Λ(g) for all f, g ∈ C+(E), f ≤ g.

(iv) Λ(f ∨ g) = Λ(f) ∨ Λ(g) for all f, g ∈ C+(E).

Then

1The separability of C(E) is an easy consequence of the Stone-Weierstrass theorem [Dud02,
Thm 2.4.11]. Let D ⊂ E be dense and let A := {ϕn,x : x ∈ D, n ≥ 1}, where ϕδ,x(y) :=
0∨ (1−nd(x, y)). Let B be the set containing the function that is identically 1 and all functions
of the form f1 · · · fm with m ≥ 1 and f1, . . . , fm ∈ A. Let C be the linear span of B and let C′ be
the set of functions of the form a1f1+· · ·+amfm with m ≥ 1, a1, . . . , am ∈ Q and f1, . . . , fm ∈ B.
Then C is an algebra that separates points, hence by the Stone-Weierstrass theorem, C is dense
in C(E). Since C′ is dense in C and C′ is countable, it follows that C(E) is separable.
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(a) Λ : C(E) → [0,∞) is continuous w.r.t. the supremumnorm.

Moreover, there exists a function I : E → (−∞,∞] such that

(b) Λ(fn) ↓ e−I(x) for any fn ∈ C+(E) s.t. fn ↓ 1{x}.

(c) I is lower semi-continuous.

(d) Λ(f) = supx∈E e
−I(x)|f(x)|

(
f ∈ C(E)

)
.

Proof To prove part (a), we observe that by (ii), (iii) and (i)

Λ(f) = Λ(|f |) ≤ Λ(∥f∥∞ · 1) = ∥f∥∞Λ(1),

where 1 ∈ C(E) denotes the function that is identically one. Using again that Λ
is a seminorm, we see that∣∣Λ(f)− Λ(g)

∣∣ ≤ Λ(f − g) ≤ Λ(1)∥f − g∥∞.

This shows that Λ is continuous w.r.t. the supremumnorm.

Next, define I : E → (−∞,∞] (or equivalently e−I : E → [0,∞)) by

e−I(x) := inf{Λ(f) : f ∈ C+(E), f(x) = 1} (x ∈ E).

We claim that this function satisfies the properties (b)–(d). Indeed, if fn ∈ C+(E)
satisfy fn ↓ 1{x} for some x ∈ E, then the Λ(fn) decrease to a limit by the
monotonicity of Λ. Since

Λ(fn) ≥ Λ(fn/fn(x)) ≥ inf{Λ(f) : f ∈ C+(E), f(x) = 1} = e−I(x)

we see that this limit is larger or equal than e−I(x). To prove the other inequality,
we note that by the definition of I, for each ε > 0 we can choose f ∈ C+(E)
with f(x) = 1 and Λ(f) ≤ e−I(x) + ε. We claim that there exists an n such
that fn < (1 + ε)f . Indeed, this follows from the fact that the the sets Cn :=
{y ∈ E : fn(y) ≥ (1 + ε)f(y)} are compact sets decreasing to the empty set,
hence Cn = ∅ for some n [Eng89, Corollary 3.1.5]. As a result, we obtain that
Λ(fn) ≤ (1 + ε)Λ(f) ≤ (1 + ε)(e−I(x) + ε). Since ε > 0 is arbitrary, this completes
the proof of property (b).

To prove part (c), consider the functions

ϕδ,y(x) := 0 ∨ (1− d(y, x)/δ) (x, y ∈ E, δ > 0).
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Observe that ϕδ,y(y) = 1 and ϕδ,y = 0 on Bδ(y)
c, and recall from Lemma 1.5 that

ϕδ,y : E → [0, 1] is continuous. Since

∥ϕδ,y − ϕδ,z∥∞ ≤ δ−1 sup
x∈E

|d(x, y)− d(x, z)| ≤ δ−1d(y, z),

we see that the map x 7→ ϕδ,x is continuous w.r.t. the supremumnorm. By part (a),
it follows that for each δ > 0, the functions

x 7→ Λ(ϕδ,x)

are continuous. Since by part (b) these functions decrease to e−I as δ ↓ 0, we con-
clude that e−I is upper semi-continuous or equivalently I is lower semi-continuous.

To prove part (d), by assumption (ii), it suffices to consider the case that f ∈
C+(E). We start by observing that

e−I(x) ≤ Λ(f) ∀x ∈ E, f ∈ C+(E), f(x) = 1,

hence, more generally, for any x ∈ E and f ∈ C+(E) such that f(x) > 0,

e−I(x) ≤ Λ(f/f(x)) = Λ(f)/f(x),

which implies that

e−I(x)f(x) ≤ Λ(f) ∀x ∈ E, f ∈ C+(E),

and therefore

Λ(f) ≥ sup
x∈E

e−I(x)f(x)
(
f ∈ C+(E)

)
.

To prove the other inequality, we claim that for each f ∈ C+(E) and δ > 0 we
can find some x ∈ E and g ∈ C+(E) supported on B2δ(x) such that f ≥ g and
Λ(f) = Λ(g). To see this, consider the functions

ψδ,y(x) := 0 ∨ (1− d(Bδ(y), x)/δ) (x, y ∈ E, δ > 0).

Note that ψδ,y : E → [0, 1] is continuous and equals one on Bδ(y) and zero on
B2δ(y)

c. Since E is compact, for each δ > 0 we can find a finite set ∆ ⊂ E such
that

⋃
x∈∆Bδ(x) = E. By property (iv), it follows that

Λ(f) = Λ
( ∨
x∈∆

ψδ,xf
)
=

∨
x∈∆

Λ(ψδ,xf).
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In particular, we may choose some x such that Λ(f) = Λ(ψδ,xf). Continuing this
process, we can find xk ∈ E and fk ∈ C+(E) supported on B1/k(xk) such that
f ≥ f1 ≥ f2 ≥ · · · and Λ(f) = Λ(f1) = Λ(f2) = · · · . It is not hard to see that the
fn decrease to zero except possibly in one point x, i.e.,

fn ↓ c1{x}

for some 0 ≤ c ≤ f(x) and x ∈ E. By part (b), it follows that Λ(f) = Λ(fn) ↓
ce−I(x) ≤ f(x)e−I(x). This completes the proof of part (d).

Recall the definition of a normalized rate function from page 34. The following
proposition prepares for Theorem 3.7 below.

Proposition 3.5 (LDP along a subsequence) Let E be a compact metrizable
space, let µn be probability measures on E and let sn be positive constants converg-
ing to infinity. Then there exists n(m) → ∞ and a normalized rate function I
such that the µn(m) satisfy the large deviation principle with speed sn(m) and rate
function I.

Proof Since C(E), the space of continuous real functions on E, equipped with
the supremumnorm, is a separable Banach space, we can choose a countable dense
subset D = {fk : k ≥ 1} ⊂ C(E). Using the fact that the µn are probability
measures, we see that

∥f∥sn,µn =
(∫

|f |sndµn
)1/sn

≤
(
∥f∥sn∞

)1/sn
= ∥f∥∞

(
f ∈ C(E)

)
.

By Tychonoff’s theorem, the product space

X :=
∞×
k=1

[
0, ∥fk∥∞

]
,

equipped with the product topology is compact. Therefore, we can find n(m) → ∞
such that (

∥f∥sn(m),µn(m)

)
k≥1

converges as m → ∞ to some limit in X. In other words, this says that we can
find a subsequence such that

lim
m→∞

∥f∥sn(m),µn(m)
=: Λ(f)
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exists for each f ∈ D. We claim that this implies that for the same subsequence,
this limit exists in fact for all f ∈ C(E). To prove this, we observe that for each
f, g ∈ C(E), ∣∣∥f∥sn,µn − ∥g∥sn,µn

∣∣ ≤ ∥f − g∥sn,µn ≤ ∥f − g∥∞.

Letting n(m) → ∞ we see that also

|Λ(f)− Λ(g)| ≤ ∥f − g∥∞ (3.1)

for all f, g ∈ D. Since a uniformly continuous function from one metric space into
another can uniquely be extended to a continuous function from the completion of
one space to the completion of the other, we see from (3.1) that Λ can be uniquely
extended to a function Λ : C(E) → [0,∞) such that (3.1) holds for all f, g ∈ C(E).
Moreover, if f ∈ C(E) is arbitrary and fi ∈ D satisfy ∥f − fi∥∞ → 0, then∣∣∥f∥sn(m),µn(m)

− Λ(f)
∣∣

≤
∣∣∥f∥sn(m),µn(m)

− ∥fi∥sn(m),µn(m)

∣∣+ ∣∣∥fi∥sn(m),µn(m)
− Λ(fi)

∣∣+ ∣∣Λ(fi)− Λ(f)
∣∣

≤
∣∣∥fi∥sn(m),µn(m)

− Λ(fi)
∣∣+ 2∥f − fi∥∞,

hence
lim sup
m→∞

∣∣∥f∥sn(m),µn(m)
− Λ(f)

∣∣ ≤ 2∥f − fi∥∞

for each i, which proves that ∥f∥sn(m),µn(m)
→ Λ(f).

Our next aim is to show that the function Λ : C(E) → [0,∞) satisfies prop-
erties (i)–(iv) of Proposition 3.4. Properties (i)–(iii) are satisfied by the norms
∥ · ∥sn(m),µn(m)

for each m, so by taking the limit m → ∞ we see that also Λ has
these properties. To prove also property (iv), we use an argument similar to the
one used in the proof of Lemma 1.9 (b). Arguing as in (1.6), we obtain

Λ(f ∨ g)= lim
m→∞

∥f ∨ g∥sn(m),µn(m)
≤ lim sup

m→∞

(
∥f∥sn(m)

sn(m),µn(m) + ∥g∥sn(m)
sn(m),µn(m)

)1/sn(m)

=
(
lim sup
m→∞

∥f∥sn(m),µn(m)

)
∨
(
lim sup
m→∞

∥g∥sn(m),µn(m)

)
= Λ(f) ∨ Λ(g),

where we have used (1.4). Since f, g ≤ f ∨ g, it follows from property (iii) that
moreover Λ(f) ∨ Λ(g) ≤ Λ(f ∨ g), completing the proof of property (iv).

By Proposition 3.4, it follows that there exists a lower semi-continuous function
I : E → (−∞,∞] such that

Λ(f) = sup
x∈E

e−I(x)|f(x)|
(
f ∈ C(E)

)
.
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Since E is compact, I has compact level sets, i.e., I is a good rate function, hence
the µn(m) satisfy the large deviation principle with speed sn(m) and rate function
I. Since the µn(m) are probability measures, it follows that I is normalized.

3.3 Exponential tightness

We wish to generalize Proposition 3.5 to spaces that are not compact. To do this,
we need a condition whose role is similar to that of tightness in the theory of weak
convergence.

Let µn be a sequence of finite measures on a Polish space E and let sn be positive
contants, converging to infinity. We say that the µn are exponentially tight with
speed sn if

∀M ∈ R ∃K ⊂ E compact, s.t. lim sup
n→∞

1

sn
log µn(E\K) ≤ −M.

Letting Ac := E\A denote the complement of a set A ⊂ E, it is easy to check that
exponential tightness is equivalent to the statement that

∀ε > 0 ∃K ⊂ E compact, s.t. lim sup
n→∞

∥1Kc∥sn,µn ≤ ε.

The next lemma says that exponential tightness is a necessary condition for a large
deviation principle.

Lemma 3.6 (LDP implies exponential tightness) Let E be a Polish space
and let µn be finite measures on E satisfying a large deviation principle with speed
sn and good rate function I. Then the µn are exponentially tight with speed sn.

Proof This proof of this statement is more tricky than might be expected at first
sight. We follow [DZ93, Excercise 4.1.10]. If the space E is locally compact, then
an easier proof is possible, see [DZ93, 1.2.19].

Let d be a metric generating the topology on E such that (E, d) is complete, and
let Br(x) denote the open ball (w.r.t. this metric) of radius r around x. Since E is
separable, we can choose a dense sequence (xk)k≥1 in E. Then, for every δ > 0, the
open sets Oδ,m :=

⋃m
k=1Bδ(xk) increase to E. By Lemma 1.8 (c), ∥1Oc

δ,m
∥∞,I ↓ 0.

Thus, for each ε, δ > 0 we can choose an m ≥ 1 such that

lim sup
n→∞

∥1Oc
δ,m

∥sn,µn ≤ ∥1Oc
δ,m

∥∞,I ≤ ε.
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In particular, for any ε > 0, we can choose (mk)k≥1 such that

lim sup
n→∞

∥1Oc
1/k,mk

∥sn,µn ≤ 2−kε (k ≥ 1).

It follows that

lim sup
n→∞

∥1⋃∞
k=1O

c
1/k,mk

∥sn,µn ≤ lim sup
n→∞

∞∑
k=1

∥1Oc
1/k,mk

∥sn,µn

≤
∞∑
k=1

lim sup
n→∞

∥1Oc
1/k,mk

∥sn,µn ≤
∞∑
k=1

2−kε = ε.

Here
∞⋃
k=1

Oc
1/k,mk

=
( ∞⋂
k=1

O1/k,mk

)c

=
( ∞⋂
k=1

mk⋃
l=1

B1/k(xl)
)c

.

Let K be the closure of
⋂∞
k=1O1/k,mk

. We claim that K is compact. Recall that a
subset A of a metric space (E, d) is totally bounded if for every δ > 0 there exist a
finite set ∆ ⊂ A such that A ⊂

⋃
x∈∆Bδ(x). It is well-known [Dud02, Thm 2.3.1]

that a subset A of a metric space (E, d) is compact if and only if it is complete
and totally bounded. In particular, if (E, d) is complete, then A is compact if and
only if A is closed and totally bounded. In light of this, it suffices to show that K
is totally bounded. But this is obvious from the fact that K ⊂

⋃mk

l=1B2/k(xl) for
each k ≥ 1. Since

lim sup
n→∞

∥1Kc∥sn,µn ≤ lim sup
n→∞

∥1(⋂∞
k=1O1/k,mk

)c∥sn,µn ≤ ε

and ε > 0 is arbitrary, this proves the exponential tightness of the µn.

The following theorem generalizes Proposition 3.5 to non-compact spaces. This
result is due to O’Brian and Verwaat [OV91] and Puhalskii [Puk91]; see also the
treatment in Dupuis and Ellis [DE97, Theorem 1.3.7].

Theorem 3.7 (Exponential tightness implies LDP along a subsequence)
Let E be a Polish space, let µn be probability measures on E and let sn be positive
constants converging to infinity. Assume that the µn are exponentially tight with
speed sn. Then there exist n(m) → ∞ and a normalized rate function I such
that the µn(m) satisfy the large deviation principle with speed sn(m) and good rate
function I.
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We will derive Theorem 3.7 from Proposition 3.5 using compactification techniques.
For this, we need to recall some general facts about compactifications of metrizable
spaces.

If (E,O) is a topological space (with O the collection of open subsets of E) and
E ′ ⊂ E is any subset of E, then E ′ is also naturally equipped with a topology
given by the collection of open subsets O′ := {O ∩ E ′ : O ∈ O}. This topology
is called the induced topology from E. If xn, x ∈ E ′, then xn → x in the induced
topology on E ′ if and only if xn → x in E.

If (E,O) is a topological space, then a compactification of E is a compact topo-
logical space E such that E is a dense subset of E and the topology on E is the
induced topology from E. If E is metrizable, then we say that E is a metrizable
compactification of E. It turns out that each separable metrizable space E has a
metrizable compactification [Cho69, Theorem 6.3].

A topological space E is called locally compact if for every x ∈ E there exists
an open set O and compact set C such that x ∈ O ⊂ C. We cite the following
proposition from [Eng89, Thms 3.3.8 and 3.3.9].

Proposition 3.8 (Compactification of locally compact spaces) Let E be a
metrizable topological space. Then the following statements are equivalent.

(i) E is locally compact and separable.

(ii) There exists a metrizable compactification E of E such that E is an open
subset of E.

(iii) For each metrizable compactification E of E, E is an open subset of E.

A subset A ⊂ E of a topological space E is called a Gδ-set if A is a countable
intersection of open sets (i.e., there exist Oi ∈ O such that A =

⋂∞
i=1Oi. The

following result can be found in [Bou58, §6 No. 1, Theorem. 1]. See also [Oxt80,
Thms 12.1 and 12.3].

Proposition 3.9 (Compactification of Polish spaces) Let E be a metrizable
topological space. Then the following statements are equivalent.

(i) E is Polish.

(ii) There exists a metrizable compactification E of E such that E is a Gδ-subset
of E.
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(iii) For each metrizable compactification E of E, E is a Gδ-subset of E.

Moreover, a subset F ⊂ E of a Polish space E is Polish in the induced topology if
and only if F is a Gδ-subset of E.

Exercise 3.10 (Weak convergence and the induced topology) Let E be a
Polish space and let E be a metrizable compactification of E. Let d be a metric
generating the topology on E, and denote the restriction of this metric to E also
by d. Let Cu(E) denote the class of functions f : E → R that are uniformly
continuous w.r.t. the metric d, i.e.,

∀ε > 0 ∃δ > 0 s.t. d(x, y) ≤ δ implies |f(x)− f(y)| ≤ ε.

Let (µn)n≥1 and µ be probability measures on E. Show that the following state-
ments are equivalent:

(i)
∫
fdµn →

∫
fdµ for all f ∈ Cb(E),

(ii)
∫
fdµn →

∫
fdµ for all f ∈ Cu(E),

(iii) µn ⇒ µ where ⇒ denotes weak convergence of probability measures on E,

(iv) µn ⇒ µ where ⇒ denotes weak convergence of probability measures on E.

Hint: Identify Cu(E) ∼= C(E) and apply Proposition 1.1.

We note that compactifications are usually not unique, i.e., it is possible to con-
struct many different compactifications of one and the same space E. If E is locally
compact (but not compact), however, then we may take E such that E\E con-
sists one a single point (usually denoted by ∞). This one-point compactification is
(up to homeomorphisms) unique. For example, the one-point compactification of
[0,∞) is [0,∞] and the one-point compactification of R looks like a circle. Another
useful compactification of R is of course R := [−∞,∞]. To see an example of a
compactification of a Polish space that is not locally compact, consider the space
E := M1(R) of probability measures on R, equipped with the topology of weak
convergence. A natural compactification of this space is the space E := M1(R) of
probability measures on R. Note that M1(R) is not an open subset2 of M1(R),

2Indeed (1−n−1)δ0+n−1δ∞ ∈ M1(R)\M1(R) converge to δ0 ∈ M1(R) which show that the
complement of M1(R) is not closed.
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which by Proposition 3.8 proves that M1(R) is not locally compact. On the other
hand, since by Excercise 3.10, M1(R) is Polish in the induced topology, we can
conclude by Proposition 3.9 that M1(R) must be a Gδ-subset M1(R). (Note that
in particular, this is a very quick way of proving that M1(R) is a measurable
subset of M1(R).)

Note that in all these examples, though the topology on E coincides with the
(induced) topology from E, the metrics on E and E may be different. Indeed, if
d is a metric generating the topology on E, then E will never be complete in this
metric (unless E is compact).

Proof of Theorem 3.7 Let E be a metrizable compactification of E. By Propo-
sition 3.5, there exists n(m) → ∞ and a normalized rate function I : E → [0,∞]
such that the µn(m) (viewed as probability measures on E) satisfy the large devi-
ation principle with speed sn(m) and rate function I.

We claim that for each a < ∞, the level set La := {x ∈ E : I(x) ≤ a} is a
compact subset of E (in the induced topology). To see this, choose a < b < ∞.
By exponential tightness, there exists a compact K ⊂ E such that

lim sup
m→∞

1

sn(m)

log µn(m)(K
c) ≤ −b. (3.2)

Note that since the identity map from E into E is continuous, and the continuous
image of a compact set is compact, K is also a compact subset of E. We claim
that La ⊂ K. Assume the converse. Then we can find some x ∈ La\K and open
subset O of E such that x ∈ O and O ∩K = ∅. Since the µn(m) satisfy the LDP
on E, by Proposition 1.7 (ii),

lim inf
m→∞

1

sn(m)

log µn(m)(O) ≥ − inf
x∈O

I(x) ≥ −a,

contradicting (3.2). This shows that La ⊂ K. Since La is a closed subset of E, it
follows that La is a compact subset of E (in the induced topology). In particular,
our arguments show that I(x) = ∞ for all x ∈ E\E. The statement now follows
from the restriction principle (Lemma 1.17) and the fact that the µn(m) viewed as
probability measures on E satisfy the large deviation principle with speed sn(m)

and rate function I.

We will sometimes need a generalization of Theorem 3.7 that holds for finite mea-
sures that are not necessarily probability measures. The following simple corollary
of Theorem 3.7 takes care of this.
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Corollary 3.11 (Exponential tightness of finite measures) Let E be a Polish
space, let µn be finite measures on E and let sn be positive constants converging to
infinity. Assume that the µn are exponentially tight with speed sn and that

lim inf
n→∞

1

sn
log µn(E) <∞. (3.3)

Then there exist n(m) → ∞ and a good rate function I such that the µn(m) satisfy
the large deviation principle with speed sn(m) and rate function I.

Proof In view of (3.3), by going to a subsequence, we can assume that the limit

R := − lim
n→∞

1

sn
log µn(E)

exists in (∞,∞]. If R = ∞, then it is easy to check that the measures µn satisfy
the large deviation principle with rate function I(x) := ∞ (x ∈ E) and we are
done, so without loss of generality we can assume that R ∈ R. Then the measures
µn are nonzero for n large enough, so we can define probability measures µn by

µn := esnRnµn with Rn := − 1

sn
log µn(E).

In other words, this says that for each measurable A ⊂ E,

1

sn
log µn(A) =

1

sn
log µn(A) +Rn. (3.4)

Since the Rn converge to a finite limit, it is now easy to see that since the finite
measures µn are exponentially tight, the same is true for the probability measures
µn. By Theorem 3.7, there exist n(m) → ∞ and a normalized rate function I
such that the probability measures µn(m) satisfy the large deviation principle with
speed sn(m) and rate function I. By (3.4), it follows that the finite measures µn(m)

satisfy the large deviation principle with speed sn(m) and rate function I +R.

3.4 Applications of exponential tightness

In this section, we discuss some applications of Theorem 3.7 that will be needed
in later chapters. We start with a simple observation that does not depend on
Theorem 3.7. The following lemma is very similar to Lemma 3.3, and the proof is
basically the same. Below, instead of saying that µn satisfies the large deviation
principle with speed sn and rate function I, we say more briefly that (µn, sn)
satisfies the large deviation principle with rate function I.
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Lemma 3.12 (Large deviation principles along subsequences) Let E be a
Polish space, let µn be finite measures on E, let sn be positive constants tending
to infinity, and let I be a good rate function on E. Assume that each subsequence
(µ′

n, s
′
n) of (µn, sn) contains a further subsequence (µ′′

n, s
′′
n) that satisfies the large

deviation principle with rate function I. Then (µn, sn) satisfies the large deviation
principle with rate function I.

Proof Assume that (µn, sn) does not satisfy the large deviation principle with
rate function I. Then there exists a function f ∈ Cb,+(E) and an ε > 0 such that∣∣∥f∥sn,µn − ∥f∥∞,I

∣∣ ≥ ε for infinitely many n, hence there exists a subsequence
(µ′

n, s
′
n) such that

∣∣∥f∥s′n,µ′n − ∥f∥∞,I

∣∣ ≥ ε for all n. But then no subsequence
(µ′′

n, s
′′
n) of (µ′

n, s
′
n) can satisfy the large deviation principle with rate function I,

contradicting our assumption.

The following lemma generalizes Lemmas 1.14 and 1.18 to unbounded functions.
Its proof depends on Corollary 3.11 of Theorem 3.7. We will later use this lemma
in the proof of the Gärtner-Ellis theorem (Theorem 4.33 below).

Lemma 3.13 (Varadhan’s lemma for unbounded functions) Let E be a
Polish space and let µn ∈ M(E) satisfy the large deviation principle with speed
sn and good rate function I. Let F : E → [−∞,∞) be continuous and assume

that the weighted measures νn(dx) := esnF (x)µn(dx) are exponentially tight and
satisfy

lim sup
n→∞

1

sn
log νn(E) <∞. (3.5)

Then

lim
n→∞

1

sn
log

∫
esnFdµn = sup

x∈E

[
F (x)− I(x)

]
. (3.6)

Moreover, the weighted measures νn satisfy the large deviation principle with speed
sn and good rate function I − F .

Proof We start by proving the final claim of the lemma. By Lemma 3.12, it
suffices to prove that I − F is a good rate function and that each subsequence
(ν ′n, s

′
n) of (νn, sn) contains a further subsequence (ν ′′n, s

′′
n) that satisfies the large

deviation principle with rate function I − F . Since the νn are exponentially tight
and satisfy (3.5), we can apply Corollary 3.11 to conclude that (ν ′n, s

′
n) contains

a further subsequence (ν ′′n, s
′′
n) that satisfies the large deviation principle for some

good rate function J . It therefore suffices to show that J = I − F .
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Let G : E → [−∞,∞) be continuous and assume that both G and G + F are
bounded from above. Then Varadhan’s lemma tells us that

sup
x∈E

[
G(x) + F (x)− I(x)

]
= lim

n→∞

1

s′′n

∫
E

es
′′
n(G(x) + F (x))µ′′

n(dx)

= lim
n→∞

1

s′′n

∫
E

es
′′
nG(x)ν ′′n(dx) = sup

x∈E

[
G(x)− J(x)

]
.

In other words, setting g := eG, f := eF this says that if g ∈ Cb,+(E) has the
property that also fg ∈ Cb,+(E), then ∥fg∥∞,I = ∥g∥∞,J .

We claim that for each x ∈ E, we can find gn ∈ Cb,+(E) such that fgn ∈ Cb,+(E)
for each n and gn ↓ 1{x}. To prove this, we first use Lemma 1.6 to construct
hn ∈ Cb,+(E) with hn ↓ 1{x}. Setting

gn(y) :=
f(x) ∨ 1

f(y) ∨ 1
hn(y) (y ∈ E)

then does the job, since the inequality (f ∨ 1)gn ≤ (f(x) ∨ 1)hn shows that both
fgn and gn are bounded.

By our earlier claim, Lemma 1.8 (c) now implies that

eF (x)−I(x) = ∥f(x)1{x}∥∞,I = lim
n→∞

∥fgn∥∞,I = lim
n→∞

∥gn∥∞,J = ∥1{x}∥∞,J = e−J(x)

for each x ∈ E, which proves that J = I − F . This completes the proof that the
weighted measures νn satisfy the large deviation principle with speed sn and good
rate function I−F . Applying Varadhan’s lemma to the function that is constantly
zero and the measures νn then implies (3.6).

When proving convergence in law of a discrete-time stochastic process, we are used
to the fact that convergence of finite-dimensional distributions implies convergence
of the laws. In Theorem 3.16 below, we will prove a similar statement for large
deviation principles. This result is quite powerful and will be used in our proof of
Sanov’s theorem (Theorem 5.13 below). We first need some preparations.

By definition, if I is a normalized good rate function, then we say that a set of
functions D ⊂ Cb(E) determines I if for any normalized good rate function J ,

∥f∥∞,I = ∥f∥∞,J ∀f ∈ D implies I = J.

We say that D is rate function determining if D determines any normalized good
rate function I. By combining Lemma 3.6 and Theorem 3.7, we obtain the fol-
lowing analogue of Lemma 3.2. Note that by Lemma 3.6, the conditions (i) and
(ii) below are clearly necessary for the measures µn to satisfy a large deviation
principle.
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Proposition 3.14 (Conditions for LDP) Let E be a Polish space, let µn be
probability measures on E, and let sn be positive constants converging to infinity.
Assume that D ⊂ Cb(E) is rate function determining and that:

(i) The sequence (µn)n≥1 is exponentially tight with speed sn.

(ii) The limit Λ(f) = limn→∞ ∥f∥sn,µn exists for all f ∈ D.

Then there exists a good rate function I on E which is uniquely characterized by
the requirement that Λ(f) = ∥f∥∞,I for all f ∈ D, and the µn satisfy the large
deviation principle with speed sn and rate function I.

Proof By exponential tightness and Theorem 3.7, there exist n(m) → ∞ and a
normalized rate function I such that the µn(m) satisfy the large deviation principle
with speed sn(m) and good rate function I. It follows that

Λ(f) = lim
m→∞

∥f∥sn(m),µn(m)
= ∥f∥∞,I (f ∈ D),

which characterizes I uniquely by the fact that D is rate function determining.
By the same argument, each subsequence (µ′

n, s
′
n) of (µn, sn) contains a further

subsequence (µ′′
n, s

′′
n) such that the µ′′

n satisfy the large deviation principle with
speed s′′n and rate function I. By Lemma 3.12, this implies that the µn satisfy the
large deviation principle with speed sn and rate function I.

A somewhat weaker version of Proposition 3.14 where D is replaced by Cb,+ is
known as Bryc’s theorem [Bry90], which can also be found in [DZ93, Theorem 4.4.2]
and [RS15, Section 3.3].

In view of Proposition 3.14, we are interested in finding sufficient conditions for a
set D ⊂ Cb,+ to be rate function determining. The following simple observation is
useful.

Lemma 3.15 (Sufficient conditions to be rate function determining)
(a) Let E be a Polish space, D ⊂ Cb,+(E), and assume that for each x ∈ E there
exist fk ∈ D such that fk ↓ 1{x}. Then D is rate function determining.
(b) Let E be a compact metrizable space, let C(E) be the Banach space of all
continuous real functions on E, equipped with the supremumnorm, and let D ⊂
C(E) be dense. Then D is rate function determining.
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Proof If fk ↓ 1{x}, then, by Lemma 1.8, ∥fk∥∞,I ↓ ∥1{x}∥∞,I = e−I(x), proving
part (a). Part (b) follows from the fact that the map f 7→ ∥f∥∞,I is continuous
w.r.t. the supremumnorm, as proved in Proposition 3.4.

Let E and F be sets and let (fγ)γ∈Γ be a collection of functions f : E → F . By
definition, we say that (fγ)γ∈Γ separates points if for each x, y ∈ E with x ̸= y,
there exists a γ ∈ Γ such that fγ(x) ̸= fγ(y). The following theorem is a sort of
‘inverse’ of the contraction principle, in the sense that a large deviation principle
for sufficiently many image measures implies a large deviation principle for the
original measures.

Theorem 3.16 (Projective limit) Let E and F be Polish spaces, let µn be prob-
ability measures on E, and let sn be positive constants converging to infinity. Let
(ψi)i∈N+ be continuous functions ψi : E → F . For each m ≥ 1, let ψ⃗m : E → Fm be

defined as ψ⃗m(x) =
(
ψ1(x), . . . , ψm(x)

)
(x ∈ E). Assume that (ψi)i∈N+ separates

points and that:

(i) The sequence (µn)n≥1 is exponentially tight with speed sn.

(ii) For each finite m ≥ 1, there exists a good rate function Im on Fm, equipped

with the product topology, such that the measures µn ◦ ψ⃗−1
m satisfy the large

deviation principle with speed sn and rate function Im.

Then there exists a good rate function I on E which is uniquely characterized by
the requirement that

Im(y) = inf
x: ψ⃗m(x)=y

I(x) (m ≥ 1, y ∈ Fm).

Moreover, the measures µn satisfy the large deviation principle with speed sn and
rate function I.

Proof Our assumptions imply that for each f ∈ Cb,+(Fm),

∥f ◦ ψ⃗m∥sn,µn = ∥f∥sn,µn◦ψ⃗−1
m

−→
n→∞

∥f∥∞,Im .

We claim that the set

D :=
{
f ◦ ψ⃗m : m ≥ 1, f ∈ Cb,+(Fm)

}
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is rate function determining. To see this, fix z ∈ E and define fi,k ∈ D by

fi,k(x) :=
(
1− kd

(
ψi(x), ψi(z)

))
∨ 0 (i, k ≥ 1, y ∈ E),

where d is any metric generating the topology on F . We claim that

D ∋
m∧
i=1

fi,m ↓ 1{z} as m ↑ ∞.

Indeed, since the (ψi)i∈N+ separate points, for each x ̸= z there is an i ≥ 1 such
that ψi(x) ̸= ψi(z) and hence fi,m(y) = 0 for m large enough. By Lemma 3.15 (a),
it follows that D is rate function determining.

Proposition 3.14 now implies that there exists a good rate function I on E such
that the µn satisfy the large deviation principle with speed sn and rate function I.
Moreover, I is uniquely characterized by the requirement that

∥f ◦ ψ⃗m∥∞,I = ∥f∥∞,Im

(
m ≥ 1, f ∈ Cb,+(Fm)

)
. (3.7)

Set
I ′m(y) := inf

x: ψ⃗m(x)=y
I(x) (y ∈ Fm),

which by the contraction principle (Proposition 1.16) is a good rate function on
Fm. Since

∥f ◦ ψ⃗m∥∞,I = sup
x∈E

e−I(x)f
(
ψ⃗m(x)

)
= sup

y∈Fm

e− infx: ψ⃗m(x)=y I(x)f(y) = ∥f∥∞,I′m ,

formula (3.7) implies that ∥f∥∞,I′m = ∥f∥∞,Im for all f ∈ Cb,+(Fm), which is in
turn implies that Im = I ′m.

The following lemma gives a more explicit expression for the rate function I from
Theorem 3.16 in terms of the rate functions ψ⃗m.

Lemma 3.17 (Formula for high-level rate function) In the set-up of Theo-
rem 3.16,

Im(ψ⃗m(x)) ↑ I(x) as m ↑ ∞.

Proof We observe that

Im(ψ⃗m(x)) = inf
x′∈E: ψ⃗m(y)=ψ⃗m(x)

I(x′).

The sets Cm := {x′ ∈ E : ψ⃗m(y) = ψ⃗m(x)} are closed and decrease to {x} as
m ↑ ∞ by the fact that the ψi separate points. Therefore, by Lemma 1.8 (c),
infx′∈Cm I(x

′) ↑ I(x) as ↑ ∞.



3.5. FURTHER APPLICATIONS OF EXPONENTIAL TIGHTNESS 87

3.5 Further applications of exponential tightness

In this section, we present some further applications of Theorem 3.7. The results
of this section, and all further sections of this chapter, will not be used in later
chapters and can therefore be skipped, if one wishes to do so.

Proposition 3.14 shows that in the presence of exponential tightness, it is possible
to prove large deviation principles by showing that the limit limn→∞ ∥f∥sn,µm exists
for sufficiently many continuous functions f . Often, it is more convenient to prove
that the large deviations upper and lower bounds from Proposition 1.7 hold for
suffiently many closed and open sets.

Let A be a collection of measurable subsets of some Polish space E. We say that A
is rate function determining if for any pair I, J of normalized good rate functions
on E, the condition

inf
x∈A

I(x) ≤ inf
x∈int(A)

J(x) ∀A ∈ A (3.8)

implies that I ≤ J . A set O′ ⊂ O is a basis for the topology if every O ∈ O can
be written as a (possibly uncountable) union of sets in O′. Equivalently, this says
that for each x ∈ E and open set O ∋ x, there exists some O′ ∈ O′ such that
x ∈ O′ ⊂ O. For example, in any metric space, the open balls form a basis for the
topology.

Lemma 3.18 (Rate function determining sets) Let A be a collection of mea-
surable subsets of a Polish space E. Assume that {int(A) : A ∈ A} is a basis for
the topology. Then A is rate function determining.

Proof Choose εk ↓ 0. Since {int(A) : A ∈ A} is a basis for the topology, for each
z ∈ E and k there exists some Ak ∈ A such that z ∈ int(Ak) ⊂ Bεk(z). Since I is
a good rate function, it assumes its minimum over Ak, so (3.8) implies that there
exist zk ∈ Ak such that I(zk) ≤ infx∈int(Ak) J(x) ≤ J(z). Since zk → z, the lower
semi-continuity of I implies that I(z) ≤ lim infk→∞ I(zk) ≤ J(z).

Theorem 3.19 (Conditions for LDP) Let E be a Polish space, let µn be prob-
ability measures on E, let sn be positive constants converging to infinity, let I be
a normalized good rate function on E, and let Aup,Alow be collections of measur-
able subsets of E that are rate function determining. Then the µn satisfy the large
deviation principle with speed sn and rate function I if and only if the following
three conditions are satisfied.
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(i) lim sup
n→∞

1

sn
log µn(A) ≤ − inf

x∈A
I(x) ∀A ∈ Aup,

(ii) lim inf
n→∞

1

sn
log µn(A) ≥ − inf

x∈int(A)
I(x) ∀A ∈ Alow,

(iii) the µn are exponentially tight.

Proof The necessity of the conditions (i)–(iii) follows from Remark 1 below Propo-
sition 1.7 and Lemma 3.6. To prove sufficiency, we use Lemma 3.12. By Theo-
rem 3.7, exponential tightness implies that each subsequence (µ′

n, s
′
n) of (µn, sn)

contains a further subsequence (µ′′
n, s

′′
n) of such that the µ′′

n satisfy a large devia-
tions principle with speed s′′n and some good rate function J . By Lemma 3.12, if
we can show that for each such subsequence, J = I, then it follows that the µn
satisfy the large deviations principle with speed sn and rate function I.

In view of this, it suffices to show that if the µn satisfy a large deviations princi-
ple with speed sn and some good rate function J and conditions (i) and (ii) are
satisfied, then J = I. Indeed, condition (i) and the large deviation principle for J
imply that for any A ∈ Aup,

− inf
x∈int(A)

J(x) ≤ lim inf
n→∞

1

sn
log µn(int(A)) ≤ lim sup

n→∞

1

sn
log µn(A) ≤ − inf

x∈A
I(x),

which by the assumption that Aup is rate function determining implies that I ≤ J .
Similarly, using (ii) instead of (i), we find that for any A ∈ Alow,

− inf
x∈int(A)

I(x) ≤ lim inf
n→∞

1

sn
log µn(A) ≤ lim sup

n→∞

1

sn
log µn(A) ≤ − inf

x∈A
J(x),

which by the assumption that Alow is rate function determining implies that J ≤ I.

Remark In Theorem 3.19, instead of assuming that Alow is rate function deter-
mining, it suffices to assume that

∀ε > 0 and z ∈ E s.t. I(z) <∞, ∃A ∈ Alow s.t. z ∈ A ⊂ Bε(z). (3.9)

Indeed, the proof of Lemma 3.18 shows that if (3.8) holds with I and J inter-
changed, and we moreover have (3.9), then J(z) ≤ I(z) for all z ∈ E such that
I(z) <∞. Trivially, this also holds if I(z) = ∞, and the proof proceeds as before.

The next lemma shows that in Theorem 3.19, instead of assuming that Aup is rate
function determining, we can also take for Aup the set of all compact subsets of E.
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If E is locally compact, then {int(K) : K compact} is a basis for the topology, so
in view of Lemma 3.18 this does not add anything new. However, if E is not locally
compact, then {int(K) : K compact} is never a basis for the topology. In fact,
there exist Polish spaces in which every compact set has empty interior. Clearly,
in such spaces, the compact sets are not rate function determining and hence the
lemma below does add something new.

Lemma 3.20 (Upper bound for compact sets) Let E be a Polish space, let
µn be finite measures on E, let sn be positive constants converging to infinity, and
let I be a good rate function on E. Assume that

(i) The sequence (µn)n≥1 is exponentially tight with speed sn.

(ii) lim sup
n→∞

1

sn
log µn(K) ≤ − inf

x∈K
I(x) ∀K compact.

Then

lim sup
n→∞

1

sn
log µn(C) ≤ − inf

x∈C
I(x) ∀C closed.

Remark If I : E → (−∞,∞] is lower semi-continuous and not identically ∞,
but not necessarily has compact level sets, and if µn are measures and sn → ∞
constants such that

(i) lim sup
n→∞

1

sn
log µn(K) ≤ − inf

x∈K
I(x) ∀K compact.

(ii) lim inf
n→∞

1

sn
log µn(O) ≤ − inf

x∈O
I(x) ∀O open,

then one says that the µn satisfy the weak large deviation principle with speed
sn and rate function I. Thus, a weak large deviation principle is basically a
large deviation principle without exponential tightness. The theory of weak large
deviation principles is much less elegant than for large deviation principles. For
example, the contraction principle (Proposition 1.16 below) may fail for measures
satisfying a weak large deviation principle.

Proof of Lemma 3.20 By exponential tightness, for each M <∞ we can find a
compact K ⊂ E such that

lim sup
n→∞

1

sn
log µn(E\K) ≤ −M.
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By (1.5), it follows that, for any closed C ⊂ E,

lim sup
n→∞

1

sn
log µn(C) = lim sup

n→∞

1

sn
log

(
µn(C ∩K) + µn(C\K)

)
=

(
lim sup
n→∞

1

sn
log µn(C ∩K)

)
∨
(
lim sup
n→∞

1

sn
log µn(C\K))

)
≤ −

(
M ∧ inf

x∈C∩K
I(x)

)
≤ −

(
M ∧ inf

x∈C
I(x)

)
−→
M→∞

− inf
x∈C

I(x).

3.6 Approximation of LDPs

In this section we prove a result that can be used to derive “difficult” large deviation
principles by approximation with simpler large deviation principles.

Lemma 3.21 (Diagonal argument) Let (µm,n)m,n≥1 be finite measures on a
Polish space E, let sn be positive constants, tending to infinity, and let Im, I be
good rate functions on E. Assume that for each fixed m ≥ 1, the µm,n satisfy the
large deviation principle with speed sn and rate function Im. Assume moreover
that

lim
m→∞

∥f∥∞,Im = ∥f∥∞,I

(
f ∈ Cb,+(E)

)
.

Then there exist n(m) → ∞ such that for all n′(m) ≥ n(m), the measures µm,n′(m)

satisfy the large deviation principle with speed sn′(m) and rate function I.

Proof Let E be a metrizable compactification of E. We view the µm,n as measures
on E such that µm,n(E\E) = 0 and we extend the rate fuctions Im, I to E by
setting Im, I := ∞ on E\E. Then

lim
m→∞

∥f∥∞,Im = ∥f∥∞,I

(
f ∈ C(E)

)
.

Let {fi : i ≥ 1} be a countable dense subset of the separable Banach space C(E)
of continuous real functions on E, equipped with the supremumnorm. Choose
n(m) → ∞ such that∣∣∥fi∥sn′ ,µm,n′ − ∥fi∥∞,Im

∣∣ ≤ 1/m
(
n′ ≥ n(m), i ≤ m

)
.

Then, for any n′(m) ≥ n(m), one has

lim sup
m→∞

∣∣∥fi∥sn′(m),µm,n′(m)
− ∥fi∥∞,I

∣∣
≤ lim sup

m→∞

∣∣∥fi∥sn′(m),µm,n′(m)
− ∥fi∥∞,Im

∣∣+ lim sup
m→∞

∣∣∥fi∥∞,Im − ∥fi∥∞,I

∣∣ = 0
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for all i ≥ 1. By Lemma 3.15 (b), the functions |fi| are rate function determin-
ing, hence by Proposition 3.14, the measures µm,n′(m) satisfy the large deviation
principle on E with speed sn′(m) and rate function I. By the restriction principle
(Lemma 1.17), they also satisfy the large deviation principle on E.

Proposition 3.22 (Approximation of LDP’s) Let E be a Polish space and let
Xn, Xm,n (m,n ≥ 1) be random variables taking values in E. Assume that for each
fixed m ≥ 1, the laws P[Xm,n ∈ · ] satisfy a large deviation principle with speed sn
and good rate function Im. Assume moreover that there exists a good rate function
I such that

lim
m→∞

∥f∥∞,Im = ∥f∥∞,I

(
f ∈ Cb,+(E)

)
, (3.10)

and that there exists a metric d generating the topology on E such that for each
n(m) → ∞,

lim
m→∞

1

sn(m)

logP[d(Xn(m), Xm,n(m)) ≥ ε] = −∞ (ε > 0), (3.11)

i.e., Xn(m) and Xm,n(m) are exponentially close in the sense of (1.9). Then the
laws P[Xn ∈ · ] satisfy the large deviation principle with speed sn and good rate
function I.

Proof By the argument used in the proof of Proposition 3.14, it suffices to show
that each subsequence n(m) → ∞ contains a further subsequence n′(m) → ∞ such
that the laws P[Xn′(m) ∈ · ] satisfy the large deviation principle with speed sn′(m)

and good rate function I. By (3.10) and Lemma 3.21, we can choose n′(m) → ∞
such that the laws P[Xm,n′(m) ∈ · ] satisfy the large deviation principle with speed
sn′(m) and good rate function I. By (3.11), the random variables Xn′(m) and
Xm,n′(m) are exponentially close in the sense of Proposition 1.20, hence the large
deviation principle for the laws of the Xm,n′(m) implies the large deviation principle
for the laws of the Xn′(m).

The following lemma gives sufficient conditions for the type of convergence in
(3.10).

Lemma 3.23 (Convergence of rate functions) Let E be a Polish space and
let I, Im be good rate functions on E such that

(i) For each a ∈ R, there exists a compact set K ⊂ E such that {x ∈ E :
Im(x) ≤ a} ⊂ K for all m ≥ 1.
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(ii) ∀xm, x ∈ E with xm → x, one has lim infm→∞ Im(xm) ≥ I(x).

(iii) ∀x ∈ E ∃xm ∈ E such that xm → x and lim supm→∞ Im(xm) ≤ I(x).

Then the Im converge to I in the sense of (3.10).

Proof Formula (3.10) is equivalent to the statement that

inf
x∈E

[Im(x)− F (x)] −→
m→∞

inf
x∈E

[I(x)− F (x)]

for any continuous F : E → [−∞,∞) that is bounded from above. If Im, I satisfy
conditions (i)–(iii), then the same is true for I ′ := I − F , I ′m := Im − F , so it
suffices to show that conditions (i)–(iii) imply that

inf
x∈E

Im(x) −→
m→∞

inf
x∈E

I(x).

Since I is a good rate function, it achieves its minimum, i.e., there exists some
x◦ ∈ E such that I(x◦) = infx∈E I(x). By condition (iii), there exist xm ∈ E such
that xm → x and

lim sup
m→∞

inf
x∈E

Im(x) ≤ lim sup
m→∞

Im(xm) ≤ I(x◦) = inf
x∈E

I(x).

To prove the other inequality, assume that

lim inf
m→∞

inf
x∈E

Im(x) < inf
x∈E

I(x).

Then, by going to a subsequence if necessary, we can find xm ∈ E such that

lim
m→∞

Im(xm) < inf
x∈E

I(x),

where the limit on the left-hand side exists and may be −∞. By condition (i),
there exists a compact set K ⊂ E such that xm ∈ K for all m, hence by going to a
further subsequence if necessary, we may assume that xm → x∗ for some x∗ ∈ E.
Condition (ii) now tells us that

lim
m→∞

Im(xm) ≥ I(x∗) ≥ inf
x∈E

I(x),

which leads to a contradiction.
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3.7 Continuous time Markov chains

In the present section we give a first application of the abstract results proved in
this chapter, by using Proposition 3.22 about approximation of LDP’s to derive a
large deviations result for continuous time Markov chains.

Recall from Section 0.4 the definition of a continuous-time Markov process X =
(Xt)t≥0 with finite state space S, initial law µ, transition probabilities Pt(x, y),
semigroup (Pt)t≥0, generator G, and transition rates r(x, y) (x ̸= y). To simplify
notation, we set r(x, x) := 0.

By definition, an invariant law is a probability measure ρ on S such that ρPt = ρ
for all t ≥ 0, or, equivalently, ρG = 0. This latter formula can be written more
explicitly in terms of the rates r(x, y) as∑

y∈S

ρ(y)r(y, x) = ρ(x)
∑
y∈S

r(x, y) (x ∈ S),

i.e., in equilibrium, the frequency of jumps to x equals the frequency of jumps
from x. Basic results about Markov processes with finite state spaces tell us
that if the transition rates r(x, y) are irreducible, then the corresponding Markov
process has a unique invariant law ρ, and µPt ⇒ ρ as t → ∞ for every initial law
µ. (For continuous-time processes, there is no such concept as (a)periodicity.)

We let

MT (x) :=
1

T

∫ T

0

1{Xt = x}dt (T > 0)

denote the empirical distribution of X up to time T . We denote the set of times
when X makes a jump up to time T by

∆T := {t ∈ (0, T ] : Xt− ̸= Xt}

and we set

WT (x, y) :=
1

T

∑
t∈∆T

1{Xt− = x, Xt = y} (T > 0),

i.e.,WT (x, y) is the empirical frequency of jumps from x to y. If the transition rates
r(x, y) are irreducible, then, for large T , we expect MT to be close to the (unique)
invariant law ρ of X and we expectWT (x, y) to be close to ρ(x)r(x, y). We observe

that (MT ,WT ) is a random variable taking values in the space M1(S)× [0,∞)S
2

.
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For any w ∈ [0,∞)S
2

, we let

w1(x1) :=
∑
x2∈S

w(x1, x2) and w2(x2) :=
∑
x1∈S

w(x1, x2)

denote the first and second marginal of w, and we set

W :=
{
(ρ, w) : ρ ∈ M1(S), w ∈ [0,∞)S

2

, w1 = w2,

w(x, y) = 0 whenever ρ(x)r(x, y) = 0
}
.

The aim of the present section is to prove the following analogue of Theorem 2.16.
Note that the function ψ below satisfies ψ′(z) = log z and ψ′′(z) = 1/z, is strictly
convex and assumes its minimum in the point z = 1 where ψ(1) = 0.

Theorem 3.24 (LDP for Markov processes) Let (Xt)t≥0 be a continuous-time
Markov process with finite state space S, irreducible transition rates r(x, y), and
arbitrary initial law. Let MT and WT (T > 0) denote its empirical distributions
and empirical frequencies of jumps, respectively, as defined above. Then the laws

P[(MT ,WT ) ∈ · ] satisfy the large deviation principle on M1(S) × [0,∞)S
2

with
speed T and good rate function I given by

I(ρ, w) :=


∑
x,y∈S

ρ(x)r(x, y)ψ
( w(x, y)

ρ(x)r(x, y)

)
if (ρ, w) ∈ W ,

∞ otherwise,

where ψ(z) := 1 − z + z log z (z > 0) and ψ(0) := 1 and we set 0ψ(a/b) := 0,
regardless of the values of a, b ≥ 0.

Remark So far, we have only considered large deviation principles for sequences
of measures µn. The theory for families of measures (µT )T>0 depending on a
continuous parameter is completely analogous. Indeed, if the µT are finite measures
on a Polish space E and I is a good rate function, then one has

lim
T→∞

∥f∥T,µT = ∥f∥∞,I

(
f ∈ Cb,+(E)

)
if and only if for each Tn → ∞,

lim
n→∞

∥f∥Tn,µTn = ∥f∥∞,I

(
f ∈ Cb,+(E)

)
.

A similar statement holds for the two conditions in Proposition 1.7. In other
words: measures µT depending on a continuous parameter T > 0 satisfy a large
deviation principle with speed T and good rate function I if and only if for each
Tn → ∞, the measures µTn satisfy the large deviation principle with speed Tn and
rate function I.
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Exercise 3.25 (Properties of the rate function) Show that the function I
from Theorem 3.24 is a good rate function and that I(ρ, w) ≥ 0 with equality if
and only if ρ is the unique invariant law of the Markov process X and w(x, y) =
ρ(x)r(x, y) (x, y ∈ S).

Proof of Theorem 3.24 Our strategy is to derive Theorem 3.24 from Theo-
rem 2.16 using approximation techniques from Section 3.6. We set

M ε
T (x) :=

1

⌊T/ε⌋

⌊T/ε⌋∑
k=1

1{(Xε(k−1), Xεk) = (x, x)} (x ∈ S),

W ε
T (x, y) :=

1

ε⌊T/ε⌋

⌊T/ε⌋∑
k=1

1{(Xε(k−1), Xεk) = (x, y)} (x, y ∈ S, x ̸= y),

and we let W ε
T (x, x) := 0 (x ∈ S). By Proposition 3.22, the statements of the

theorem will follow provided we prove the following three claims:

1. For each ε > 0, the laws P[(M ε
T ,W

ε
T ) ∈ · ] satisfy a large deviation principle

with speed T and good rate function Iε.

2. The function I from Theorem 3.24 is a good rate function and the rate
functions Iε converge to I in the sense of (3.10) as ε ↓ 0.

3. For each Tm → ∞ and εm ↓ 0, the random variables (M εm
Tm
,W εm

Tm
) and

(MTm ,WTm) are exponentially close with speed Tm.

Proof of Claim 1. For each ε > 0, let (Xε
k)k≥0 be the Markov chain given by

Xε
k := Xεk (k ≥ 0),

Let Pε denote its transition kernel, and letM
(2) ε
n be its empirical pair distributions.

Then
M ε

T (x)=M
(2) ε
⌊T/ε⌋(x, x) (x ∈ S),

W ε
T (x, y)= ε−1M

(2) ε
⌊T/ε⌋(x, y) (x, y ∈ S, x ̸= y).

For each ε > 0 and ν ∈ M1(S
2), let us define ρε ∈ [0,∞)S and wε(ν) ∈ [0,∞)S

2

by
ρε(ν)(x) := ν(x, x) (x ∈ S),

wε(ν)(x) := 1{x ̸=y}ε
−1ν(x, y) (x, y ∈ S).
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Using the formula Pε =
∑∞

n=0
1
n!
Gnεn and the fact that the transition rates are

irreducible, it is easy to see that Pε(x, y) > 0 for all x, y ∈ S. It follows that
Theorem 2.16 is applicable (using also Exercise 2.18 to allow general initial laws).
We conclude that for each ε > 0 the laws P[(M ε

T ,W
ε
T ) ∈ · ] satisfy a large deviation

principle on [0,∞)S × [0,∞)S
2

with speed T and good rate function Iε given by

Iε(ρε(ν), wε(ν)) := ε−1H(ν|ν1 ⊗ Pε) (ν ∈ V), (3.12)

while Iε(ρ, w) := ∞ if there exists no ν ∈ V such that (ρ, w) = (ρε(ν), wε(ν)). Note
the overall factor ε−1 which is due to the fact that the speed T differs a factor ε−1

from the speed n of the embedded Markov chain.

Proof of Claim 2. By Lemma 3.23, it suffices to prove, for any εn ↓ 0, the following
three statements.

(i) If ρn ∈ [0,∞)S and wn ∈ [0,∞)S
2

satisfy wn(x, y) → ∞ for some x, y ∈ S,
then Iεn(ρn, wn) → ∞.

(ii) If ρn ∈ [0,∞)S and wn ∈ [0,∞)S
2

satisfy (ρn, wn) → (ρ, w) for some ρ ∈
[0,∞)S and w ∈ [0,∞)S

2

, then lim infn→∞ Iεn(ρn, wn) ≥ I(ρ, w).

(iii) For each ρ ∈ [0,∞)S and w ∈ [0,∞)S
2

there exist ρn ∈ [0,∞)S and wn ∈
[0,∞)S

2

such that lim supn→∞ Iεn(ρn, wn) ≤ I(ρ, w).

Obviously, it suffices to check conditions (i), (ii) for (ρn, wn) such that Iεn(ρn, wn) <
∞ and condition (iii) for (ρ, w) such that I(ρ, w) < ∞. Therefore, taking into
account our definition of Iε, Claim 2 will follow provided we prove the following
three subclaims.

2.I. If νn ∈ V satisfy ε−1
n νn(x, y) → ∞ for some x ̸= y, then

ε−1
n H(νn|ν1n ⊗ Pεn) −→

n→∞
∞.

2.II. If νn ∈ V satisfy

νn(x, x) −→
n→∞

ρ(x) (x ∈ S),

ε−1
n 1{x ̸=y}νn(x, y) −→

n→∞
w(x, y) (x, y ∈ S2),

(3.13)

for some (ρ, w) ∈ [0,∞)S × [0,∞)S
2

, then

lim inf
n→∞

ε−1
n H(νn|ν1n ⊗ Pεn) ≥ I(ρ, w).
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2.III. For each (ρ, w) ∈ W , we can find νn ∈ V satisfying (3.13) such that

lim
n→∞

ε−1
n H(νn|ν1n ⊗ Pεn) = I(ρ, w).

We start by writing H(ν|ν1 ⊗ P ) in a suitable way. Let ψ be as defined in the
theorem. We observe that if ν, µ are probability measures on a finite set S and
µ(x) > 0 for all x ∈ S, then∑

x∈S

µ(x)ψ

(
ν(x)

µ(x)

)
=

∑
x∈S

µ(x)
[
1− ν(x)

µ(x)
+
ν(x)

µ(x)
log

(ν(x)
µ(x)

)]
=

∑
x∈S

[µ(x)− ν(x)] +
∑
x∈S

ν(x) log
(ν(x)
µ(x)

)
= H(ν|µ),

where we use the convention that 0 log 0 := 0. By Excercise 2.25, it follows that
for any probability measure ρ on S and probability kernels P,Q on S such that
ρ⊗Q≪ ρ⊗ P ,

H(ρ⊗Q|ρ⊗ P ) =
∑
x

ρ(x)H(Qx|Px)

=
∑
x

ρ(x)
∑
y

P (x, y)ψ
(Q(x, y)
P (x, y)

)
=

∑
x,y

ρ(x)P (x, y)ψ
(ρ(x)Q(x, y)
ρ(x)P (x, y)

)
,

where the sum runs over all x, y ∈ S such that ρ(x)P (x, y) > 0. In particular, if ν
is a probability measure on S2 and P is a probability kernel on S, then

H(ν|ν1 ⊗ P ) =


∑
x,y∈S

ν1(x)P (x, y)ψ
( ν(x, y)

ν1(x)P (x, y)

)
if ν ≪ ν1 ⊗ P,

∞ otherwise,

where we define 0ψ(a/b) := 0, irrespective of the values of a, b ≥ 0.

To prove Claim 2.I, now, we observe that if ε−1
n νn(x, y) → ∞ for some x ̸= y, then

ε−1
n H(νn|ν1n ⊗ Pεn) ≥ ε−1

n ν1n(x)Pεn(x, y)ψ
( νn(x, y)

ν1n(x)Pεn(x, y)

)
≥ ε−1

n νn(x, y)
(
log

( νn(x, y)

ν1n(x)Pεn(x, y)

)
− 1

)
,

where
νn(x, y)

ν1(x)Pεn(x, y)
≥ νn(x, y)

Pεn(x, y)
=

νn(x, y)

εnr(x, y) +O(ε2n)
−→
n→∞

∞.
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To prove Claim 2.II, we observe that if νn, ρ, w satisfy (3.13), then, as n→ ∞,

ν1n(x)Pεn(x, x)= ρ(x) +O(εn),

νn(x, x)= ρ(x) +O(εn),

}
(x ∈ S),

while

ν1n(x)Pεn(x, y)= εnρ(x)r(x, y) +O(ε2n),

νn(x, y)= εnw(x, y) +O(ε2n),

}
(x, y ∈ S, x ̸= y).

It follows that

ε−1
n H(νn|ν1n ⊗ Pεn) = ε−1

n

∑
x,y

ν1n(x)Pεn(x, y)ψ
( νn(x, y)

ν1n(x)Pεn(x, y)

)
= ε−1

n

∑
x

(
ρ(x) +O(εn)

)
ψ
(ρ(x) +O(εn)

ρ(x) +O(εn)

)
+
∑
x ̸=y

(
ρ(x)r(x, y) +O(εn)

)
ψ
( εnw(x, y) +O(ε2n)

εnρ(x)r(x, y) +O(ε2n)

)
≥
∑
x ̸=y

ρ(x)r(x, y)ψ
( w(x, y)

ρ(x)r(x, y)

)
+O(εn).

(3.14)

To prove Claim 2.III, finally, we observe that for each (ρ, w) ∈ W , we can find
νn ∈ V satisfying (3.13) such that moreover νn(x, x) = 0 whenever ρ(x) = 0 and
νn(x, y) = 0 whenever ρ(x)r(x, y) = 0 for some x ̸= y. It follows that ν1n(x) = 0
whenever ρ(x) = 0, so for each x, y such that ρ(x) = 0, we have

ε−1
n ν1n(x)Pεn(x, y)ψ

( νn(x, y)

ν1n(x)Pεn(x, y)

)
= 0,

while for x ̸= y such that ρ(x) > 0 but r(x, y) = 0, we have

ε−1
n ν1n(x)Pεn(x, y)ψ

( νn(x, y)

ν1n(x)Pεn(x, y)

)
= O(εn)ψ(1).

Note also that if ρ(x) > 0, then

ψ
(ρ(x) +O(εn)

ρ(x) +O(εn)

)
= ψ

(
1 +O(εn)

)
= O(ε2n).

It follows that in (3.14), only the terms where ρ(x)r(x, y) > 0 contribute, and

ε−1
n H(νn|ν1n ⊗ Pεn) =

∑
x ̸=y

ρ(x)r(x, y)ψ
( w(x, y)

ρ(x)r(x, y)

)
+O(εn).



3.7. CONTINUOUS TIME MARKOV CHAINS 99

Proof of Claim 3. Set εN := {εk : k ∈ N} and observe that ε⌊T/ε⌋ = sup{T ′ ∈
εN : T ′ ≤ T}. It is not hard to show that for any Tm → ∞ and εm ↓ 0, the random
variables

(MTm ,WTm) and (Mεm⌊Tm/εm⌋,Wεm⌊Tm/εm⌋) (3.15)

are exponentially close. Therefore, by Excercise 3.28 below and the fact that
(M εm

Tm
,W εm

Tm
) are functions of εm⌊Tm/εm⌋ only, it suffices to prove the statement

for times Tm ∈ εmN.

Recall that ∆T := {t ∈ (0, T ] : Xt− ̸= Xt} is the set of times, up to time T , when
X makes a jump. For any T ∈ εN, let

Ji(ε, T ) :=

T/ε∑
k=1

1{∣∣∆T ∩ (ε(k − 1), εk]
∣∣ ≥ i

} (i = 1, 2)

denote the number of time intervals of the form (ε(k−1), εk], up to time T , during
which X makes at least i jumps. We observe that for any T ∈ εN,∑

x∈S

∣∣M ε
T (x)−MT (x)

∣∣≤ ε

T
J1(ε, T ),∑

x,y∈S

∣∣W ε
T (x, y)−WT (x, y)

∣∣≤ 1

T
J2(ε, T ).

Thus, it suffices to show that for any δ > 0, εm ↓ 0 and Tm ∈ εmN such that
Tm → ∞

lim
m→∞

1

Tm
logP

[
εmJ1(εm, Tm)/Tm ≥ δ

]
= −∞,

lim
m→∞

1

Tm
logP

[
J2(εm, Tm)/Tm ≥ δ

]
= −∞.

We observe that J1(ε, T ) ≤ |∆T |, which can in turn be estimated from above by a
Poisson distributed random variable NRT with mean

T sup
x∈S

∑
y∈S

r(x, y) =: RT.

By Excercise 3.26 below, it follows that for any 0 < ε < δ/R,

lim sup
m→∞

1

Tm
logP

[
εmJ1(εm, Tm)/Tm ≥ δ

]
≤ lim sup

m→∞

1

Tm
logP

[
εNRTm/Tm ≥ δ

]
≤ ψ(δ/Rε) −→

ε→0
−∞,
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where ψ(z) := 1 − z + z log z. To also prove the statement for J2, we observe
that ∆T can be estimated from above by a Poisson point process with intensity R,
hence

P
[∣∣∆T ∩ (ε(k − 1), εk]

∣∣ ≥ 2
]
≤ 1− e−Rε −Rεe−Rε.

and J2(ε, T ) can be estimated from above by a binomially distributed random
variable with parameters (n, p) = (T/ε, 1 − e−Rε − Rεe−Rε). For small ε, this
binomal distribution approximates a Poisson distribution. To turn this into a
rigorous estimate, define λε by

1− e−λε := 1− e−Rε −Rεe−Rε.

In other words, if M and N are Poisson distributed random variables with mean
λε and Rε, respectively, then this says that P[N ≥ 1] = P[M ≥ 2]. Since the
right-hand side of this equation is of order 1

2
R2ε2 +O(ε3) as ε ↓ 0, we see that

λε =
1
2
R2ε2 +O(ε3) as ε ↓ 0.

Then J2(ε, T ) can be estimated from above by a Poisson disributed random variable
with mean (T/ε)λε =

1
2
R2Tε+O(ε2). By the same argument as for J1, we conclude

that

lim sup
m→∞

1

Tm
logP

[
εmJ2(εm, Tm)/Tm ≥ δ

]
= −∞.

Exercise 3.26 (Large deviations for Poisson process) Let N = (Nt)t≥0 be
a Poisson process with intensity one, i.e., N has independent increments where
Nt −Ns is Poisson distributed with mean t− s. Show that the laws P[NT/T ∈ · ]
satisfy the large deviation principle with speed T and good rate function

I(z) =

{
1− z + z log z if z ≥ 0,
∞ otherwise.

Hint: first consider the process at integer times and use that this is a sum of i.i.d.
random variables. Then generalize to nontinteger times.

Exercise 3.27 (Rounded times) Prove that the random variables in (3.15) are
exponentially close.
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Exercise 3.28 (Triangle inequality for exponential closeness) Let (Xn)n≥1,
(Yn)n≥1 and (Zn)n≥1 be random variables taking values in a Polish space E and
let d be a metric generating the topology on E. Let sn be positive constants,
converging to infinity, and assume that

limn→∞
1
sn

logP
[
d(Xn, Yn) ≥ ε

]
= −∞ (ε > 0),

limn→∞
1
sn

logP
[
d(Yn, Zn) ≥ ε

]
= −∞ (ε > 0).

Prove that

lim
n→∞

1

sn
logP

[
d(Xn, Zn) ≥ ε

]
= −∞ (ε > 0).



102 CHAPTER 3. EXPONENTIAL TIGHTNESS



Chapter 4

Convex analysis

4.1 Dual linear spaces

Large deviations theory is based on two pillars. The first pillar consists of the ab-
stract theory of large deviation principles. We have covered this pillar in Chapters
1 and 3. The second pillar consists of convex analysis, and in particular the theory
of the Legendre transform. This is what the present chapter is devoted to. At the
end of the chapter, in Section 4.9, we will prove the Gärtner-Ellis theorem, which,
as we will see in the final chapters of these lecture notes, is a very powerful tool
for proving large deviation principles.

Let V be a finite dimensional real linear space. By definition, a linear form on V
is a linear function l : V → R. The space V ∗ of all linear forms on V naturally
has the structure of a real linear space. We call V ∗ the dual of V . It is well-known
that V and V ∗ have the same dimension. Moreover, there is a natural isomorphism
between the dual (V ∗)∗ of V ∗ and the original space V . Indeed, each x ∈ V defines
a linear form Lx : V ∗ → R by the formula Lx(l) := l(x) (l ∈ V ∗), and each linear
form on V ∗ is of this form. As a result, x 7→ Lx is a natural linear bijection from
V to (V ∗)∗ and we can (and will) for most purposes identify (V ∗)∗ with V . Since
V and V ∗ have the same dimension, there are also plenty of linear bijections from
V to V ∗. In general, however, there is no natural way to choose one particular
linear bijection between these spaces, which is why we have to distinguish them.

To have notation that treats a space and its dual in a more symmetric way, we
also say that two finite dimensional real linear spaces V and W are dual to each

103
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other if there is defined a function

V ×W ∋ (x, y) 7→ ⟨x, y⟩ ∈ R

such that:

(i) V ∗ = {⟨ · , y⟩ : y ∈ W},

(ii) W ∗ = {⟨x, · ⟩ : x ∈ V },

where ⟨x, · ⟩ denotes the function V ∋ x 7→ ⟨x, y⟩ and likewise ⟨ · , y⟩ denotes
the function W ∋ y 7→ ⟨x, y⟩. To make our notation even more symmetric, we
sometimes write ⟨y, x⟩ instead of ⟨x, y⟩.

Let V be a finite dimensional real linear space, let V ∗ be its dual, and let V ∗×V ∋
(l, x) 7→ ⟨l, x⟩ ∈ R be the function

⟨l, x⟩ := l(x) (x ∈ V, l ∈ V ∗).

Then clearly V and V ∗ are dual to each other with respect to the function ⟨ · , · ⟩.
We will often denote elements of V by x, y, z, . . . and elements of V ∗ by x∗, y∗, z∗.
Here, the asterix just serves to remind us what space a vector belongs to. Thus,
in using this notation, we regard x∗ as a single symbol, and not (!) as a function
of another vector called x.

If {e(1), . . . , e(d)} is a basis for V , then setting

⟨e∗(i), e(j)⟩ :=
{

1 if i = j,
0 if i ̸= j

defines a basis {e∗(1), . . . , e∗(d)} of the dual space V ∗. We call {e∗(1), . . . , e∗(d)}
the dual basis. We can uniquely write elements x ∈ V and x∗ ∈ V ∗ in terms of the
basis and dual basis as

x =
d∑
i=1

xie(i) and x∗ =
d∑
i=1

x∗i e
∗(i),

where x1, . . . , xd and x∗1, . . . , x
∗
d are real constants that are called the coordinates

of x and x∗ with respect to the bases {e∗(1), . . . , e∗(d)} and {e∗(1), . . . , e∗(d)}. It
follows immediately from our definition of the dual basis that

⟨x∗, x⟩ =
d∑
i=1

x∗ixi (x ∈ V, x∗ ∈ V ∗).
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In other words, in terms of a basis and its dual basis, ⟨x∗, x⟩ takes the form of the
usual inner product on Rd.

For any linear subspace W ⊂ V , we define W⊥ ⊂ V ∗ by

W⊥ :=
{
x∗ ∈ V ∗ : ⟨x∗, x⟩ = 0 ∀x ∈ W

}
.

It is easy to see that (W⊥)⊥ = W , i.e.,

W :=
{
x ∈ V : ⟨x∗, x⟩ = 0 ∀x∗ ∈ W⊥}. (4.1)

4.2 Convex sets

Throughout this section, V is a finite dimensional real linear space and V ∗ is its
dual. By definition, a set C ⊂ V is convex if (1 − p)x + py ∈ C for all x, y ∈ C
and p ∈ [0, 1]. The convex hull C(A) of a set A ⊂ V is the smallest convex set
that contains it, which is given by

C(A) =
{ n∑
k=1

pkxk : x1, . . . , xn ∈ A, p1, . . . , pn ≥ 0,
n∑
k=1

pk = 1
}
.

In particular, A is convex if and only if C(A) = A. The closed convex hull C(A)
of A is the closure of C(A). A set C ⊂ V is a convex cone if p1x+ p2y ∈ C for all
x, y ∈ C and p1, p2 ≥ 0. A set A ⊂ V is affine if (1− p)x+ py ∈ A for all x, y ∈ A
and p ∈ R. The affine hull of a set A ⊂ V is the set

{ n∑
k=1

pkxk : x1, . . . , xn ∈ A, p1, . . . , pn,
n∑
k=1

pk = 1
}
,

where this time we do not require that the real constants p1, . . . , pn are nonnegative.
Each affine set A ⊂ V is of the form A = {x + y : y ∈ F} where F is a linear
subspace of V . In particular, affine sets are always closed.

Recall that the interior int(A) of a set A is the largest open set contained in A.
The relative interior of a closed convex set C ⊂ V is the interior of C when viewed
as a subset of its affine hull. Each nonempty convex set C ⊂ V has a nonempty
relative interior1 and each closed convex set C ⊂ V is the closure of its relative
interior.

1This is true even when C consists of s single point x. In this case, the relative interior of C
is {x}, which is both open and closed as a subset of the affine hull of C, which is also {x}.
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C1

H

C2

Figure 4.1: A hyperplane H separating the convex sets C1 and C2.

Recall that V ∗ is the dual space of V . Each x∗ ∈ V ∗\{0} and c∗ ∈ R define two
closed half-spaces in V by

H≤
x∗,c∗ :=

{
x ∈ V : ⟨x∗, x⟩ ≤ c∗

}
,

H≥
x∗,c∗ :=

{
x ∈ V : ⟨x∗, x⟩ ≥ c∗

}
.

We let Hx∗,c∗ := H≤
x∗,c∗ ∩ H≥

x∗,c∗ denote the (d − 1)-dimensional hyperplane that

separates the half-spaces H≤
x∗,c∗ and H≥

x∗,c∗ . One can prove that the closed convex
hull of a set A is equal to the intersection of all closed half-spaces that contain it:

C(A) =
⋂{

H≤
x∗,c∗ : x

∗ ∈ V ∗\{0}, c∗ ∈ R, A ⊂ H≤
x∗,c∗

}
. (4.2)

A formal proof may easily be deduced from [Roc70, Theorem 11.5] or [Dud02,
Thm 6.2.9]. The basic ingredient in the proof of (4.2) is the following separa-
tion theorem, which we cite from [Roc70, Theorem 11.3]. See Figure 4.1 for an
illustration.

Theorem 4.1 (Separating hyperplane Let C1, C2 ⊂ V be convex sets with
relative interiors ri(Ci) (i = 1, 2). Assume that ri(C1) ∩ ri(C2) = ∅. Then there
exists an x∗ ∈ V ∗\{0} and c∗ ∈ R such that C1 ∈ H≤

x∗,c∗ and C2 ∈ H≤
x∗,c∗.

The following lemma is a simple consequence of Theorem 4.1.

Lemma 4.2 (Supporting hyperplane) Let C ⊂ V be a closed convex set. As-
sume that the interior int(C) is nonempty and let x ∈ C\int(C) be a point on the
boundary of C. Then there exists an x∗ ∈ V ∗\{0} and c∗ ∈ R such that

C ⊂ H≤
x∗,c∗ and x ∈ H≥

x∗,c∗ . (4.3)
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Proof Apply Theorem 4.1 to the convex sets C and {x}, using the fact that the
relative interior of C is int(C) and the relative interior of {x} is {x}, and these are
disjoint.

If (4.3) holds, then we say that Hx∗ is a supporting hyperplane at x.

4.3 Convex functions

We continue to assume that V is a finite dimensional real linear space and V ∗ is
its dual. For any function f : V → (−∞,∞], we call

Df :=
{
x ∈ V : f(x) <∞} and Uf := int(Df ).

the domain of f and the interior of the domain, respectively, and we call

E(f) :=
{
(x, c) : x ∈ Df , c ∈ R, f(x) ≤ c

}
the epigraph of f .

Recall that a function f : V → (−∞,∞] is convex if f(px1+(1−p)x2) ≤ pf(x1)+
(1 − p)f(x2) for all 0 ≤ p ≤ 1 and x1, x2 ∈ V . We say that a function f is
strictly convex on a convex set U if f(px+ (1− p)y) < pf(x) + (1− p)f(y) for all
0 < p < 1 and x, y ∈ U with x ̸= y. We let Conv(V ) denote the space of functions
f : V → (−∞,∞] such that:

(i) f is convex,

(ii) f is not identically ∞,

(iii) f is lower semi-continuous.

In view of the following two exercises, a function f : V → (−∞,∞] satisfies
f ∈ Conv(V ) if and only if the epigraph E(f) is a nonempty, closed, and convex
subset of Rd+1.

Exercise 4.3 (Epigraph of a lower semi-continuous function) Show that
a function f : V → (−∞,∞] is lower semi-continuous if and only if its epigraph
E(f) is a closed subset of Rd+1.
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Exercise 4.4 (Epigraph of a convex function) Show that a function f : V →
(−∞,∞] is convex if and only if its epigraph E(f) is a convex subset of Rd+1.

We note that if f is convex, then Df is a convex subset of V . For a proof of the
following well-known fact we refer to [Roc70, Thm 10.2].

Lemma 4.5 (Continuity of convex functions) If f ∈ Conv(V ), then its re-
striction to Df is a continuous function.

A function f : V → R is affine if f and −f are both convex, i.e., if

f
(
(1− p)x+ py

)
= (1− p)f(x) + pf(y) (x, y ∈ V, p ∈ R).

Each affine function is the sum of a linear function and a constant, and can there-
fore be written in the form

f(x) = ⟨x∗, x⟩ − c∗ (x ∈ V )

for some x∗ ∈ V ∗ and c∗ ∈ R.

The convex hull f of a function f : V → (−∞,∞] is the pointwise supremum of
all affine functions that lie below f , i.e.,

f(x) := sup
{
⟨x∗, x⟩ − c∗ : x∗ ∈ V ∗, c∗ ∈ R, ⟨x∗, y⟩ − c∗ ≤ f(y) ∀y ∈ R

}
.

It can be shown that f is the largest lower semi-continuous convex function such
that f ≤ f . We cite the following lemma from [Roc70, Thm 12.1].

Lemma 4.6 (Convex hull of a function) Assume that f : V → (−∞,∞] is
not identically ∞. Then f ∈ Conv(V ) and f ≤ f . Moreover, if g ∈ Conv(V )
satisfies g ≤ f , then g ≤ f . In particular, f ∈ Conv(V ) if and only if f = f .

Sometimes, to know a function, it suffices to know only its convex hull.

Lemma 4.7 (Function determined by its convex hull) Assume that f : V →
(−∞,∞] is lower semi-continuous and assume that its convex hull f is strictly
convex on Uf and that Uf ̸= ∅. Then f = f .

Proof Let us say that x ∈ Df is an exposed point of a function h ∈ Conv(V ) if
there exists a supporting affine function y 7→ h(x) + ⟨x∗, y − x⟩ at x such that

h(x) + ⟨x∗, y − x⟩ < h(y) ∀y ∈ V \{x}. (4.4)
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We claim that f(x) = f(x) for each exposed point x of f . To see this, let x∗

be as in (4.4) with f in place of h and let εn be positive constants converging to
zero. For each n, there must be an yn such that f(x) + εn + x∗(yn − x) > f(yn)
since otherwise, the affine function y 7→ f(x) + εn + ⟨x∗, y − x⟩ would lie below f
contradicting the maximality of f . Since f ≤ f it follows that

f(yn) ≤ f(yn) < f(x) + εn + x∗(yn − x).

It is not hard to see that the closed convex sets

Cn :=
{
y ∈ V : f(y) < f(x) + εn + ⟨x∗, y − x⟩

}
are in fact compact. Since the sets Cn decrease to {x}, we see that yn → x and
hence, by the lower semi-continuity of f , it follows that

f(x) ≤ lim inf
n→∞

f(yn) ≤ lim inf
n→∞

[
f(x) + εn + x∗(yn − x)

]
= f(x).

Since f ≤ f , the other inequality is trivial and we conclude that f(x) = f(x) as
claimed.

If f is strictly convex on Uf , then each point in Uf is exposed. By what we have

just proved, it follows that f = f on Uf . Since each convex set is the closure of its
relative interior and since Uf ̸= ∅, for each x ∈ Df\Uf , we can choose Uf ∋ xn → x.

Since f is lower semi-continuous and f is continuous on Df , it follows that

f(x) ≤ lim inf
n→∞

f(xn) ≤ lim
n→∞

f(xn) = f(x).

This proves that f(x) ≤ f(x) for all x ∈ Df . Trivially also f(x) ≤ ∞ = f(x)

for x ̸∈ Df and f ≤ f on V since f is the convex hull of f , so we conclude that

f = f .

4.4 The Legendre transform

We continue to assume that V is a finite dimensional real linear space and V ∗ is
its dual. The Legendre transform2 of a function f : V → (−∞,∞] is defined as

f ∗(x∗) := sup
x∈V

[
⟨x∗, x⟩ − f(x)

]
(x∗ ∈ V ∗).

This definition is demonstrated in Figure 4.2.
2Sometimes also called Legendre-Fenchel transform or Fenchel-Legendre transform, to honor

Fenchel who first studied the transformation for non-smooth functions.



110 CHAPTER 4. CONVEX ANALYSIS

f(y)

y

slope x∗

f ∗(x∗)

f(x)

x

x∗x

f ∗(y∗)

y∗

slope x

f(x)

f ∗(x∗)

x∗

xx∗

Figure 4.2: The Legendre transform.

Exercise 4.8 For a∗ ∈ V ∗, let la∗ denote the linear function la∗(x) := ⟨a∗, x⟩. For
any function f : V → [−∞,∞] and a ∈ V , define Taf(x) := f(x − a) (x ∈ V ).
Let la : V

∗ → R and Ta∗ : V
∗ → V ∗ be defined similarly. Show that:

(a) f ≤ g ⇒ f ∗ ≥ g∗.

(b) (f + c)∗ = f ∗ − c.

(c) (f + la∗)
∗ = Ta∗f

∗

(d) (Taf)
∗ = f ∗ + la.

Exercise 4.9 Let a > 0. Show that the Legendre transform of the function
f(x) = 1

2
ax2 (x ∈ R) is given by f ∗(y) = 1

2a
y2 (y ∈ R).

The following lemma implies that the Legendre transform maps Conv(V ) into
Conv(V ∗) and that (f ∗)∗ = f for each f ∈ Conv(V ). Below, f denotes the convex
hull of f .

Lemma 4.10 (Legendre transform) Assume that f : V → (−∞,∞] is not
identically ∞. Then f ∗ ∈ Conv(V ∗). One has

(i) f ∗(x∗) = sup
(x,c)∈E(f)

[
⟨x∗, x⟩ − c

]
, (ii) f(x) = sup

(x∗,c∗)∈E(f∗)

[
⟨x, x∗⟩ − c∗

]
, (4.5)

and
(i) E(f)=

{
(x, c) : ⟨x∗, x⟩ − c ≤ f ∗(x∗) ∀x∗ ∈ V ∗},

(ii) E(f ∗)=
{
(x∗, c∗) : ⟨x, x∗⟩ − c∗ ≤ f(x) ∀x ∈ V

}
.

(4.6)

Moreover, f ∗ = (f)∗ and f ∗ ∗ = f .
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Proof Since f is not identically ∞, the function f ∗ takes values in (−∞,∞]. Since
the supremum of a collection of convex functions is convex and the supremum of a
collection of lower semi-continuous functions is lower semi-continuous, we see that
f ∗, being the supremum of a collection of affine functions, is convex and lower
semi-continuous. This proves that f ∗ ∈ Conv(V ∗).

Since ⟨x∗, x⟩ − f(x) ≥ ⟨x∗, x⟩ − c for each (x, c) ∈ E(f), it is clear that

f ∗(x∗) := sup
x∈V

[
⟨x∗, x⟩ − f(x)

]
= sup

(x,c)∈E(f)

[
⟨x∗, x⟩ − c

]
,

which proves (4.5) (i). We next observe that

E(f ∗)=
{
(x∗, c∗) : c∗ ≥ sup

x∈V

[
⟨x∗, x⟩ − f(x)

]}
=
{
(x∗, c∗) : ⟨x∗, x⟩ − c∗ ≤ f(x) ∀x ∈ V

}
,

which proves (4.6) (ii). This in turn implies

f(x) = sup
(x∗,c∗)∈E(f∗)

[
⟨x∗, x⟩ − c∗

]
,

which proves (4.5) (ii). We postpone the proof of (4.6) (i) and first prove the
remaining statements.

Since ⟨x∗, x⟩− c∗ ≤ f(x) ∀x ∈ V if and only if ⟨x∗, x⟩− c∗ ≤ f(x) ∀x ∈ V , formula
(4.6) (ii) shows that E(f ∗) = E((f)∗) and hence f ∗ = (f)∗.

If f ∈ Conv(V ) or equivalently f = f , then (4.5) shows that f is defined in terms
of f ∗ by exactly the same formula that defines f ∗ in terms of f , which proves that
f ∗ ∗ = f . More generally, if f : V → (−∞,∞] is not identically ∞, then we can
apply what we have just proved to f to conclude that f ∗ ∗ = ((f)∗)∗ = f . Formula
(4.6) (i) now follows by applying (4.6) (ii) to f ∗.

4.5 The essential part of a convex function

We continue to assume that V is a finite dimensional real linear space and V ∗

is its dual. It often happens that a function f ∈ Conv(V ) is infinite everywhere
except on a lower dimensional affine subspace of V . Also, it often happens that f
behaves as an affine function in certain directions. In the present section, we will
show how in such cases we can separate the subspaces of V in which f behaves
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trivially and reduce f to its essential part, which is a convex function on a lower
dimensional space.

We say that a function f ∈ Conv(V ) is flat in the direction y ∈ V if there exists
a constant r ∈ R such that

f(x+ λy) = f(x) + rλ (x ∈ V, λ ∈ R),

and we define the space of flat directions of f as

Ff :=
{
y ∈ V : f is flat in the direction y

}
.

We call the linear form Lf of the following lemma the affine slope of f .

Lemma 4.11 (Subspace of flat directions) For each f ∈ Conv(V ), the set Ff

is a linear subspace of V . Moreover, there exists a linear form Lf : Ff → R such
that

f(x+ y) = f(x) + Lf (y) (x ∈ V, y ∈ Ff ).

Proof For each y ∈ Ff , let Lf (y) ∈ R denote the constant such that

f(x+ λy) = f(x) + λLf (y) (x ∈ V, λ ∈ R).

Then for each y1, y2 ∈ Ff and a1, a2 ∈ R, one has

f
(
x+ λ(a1y1 + a2y2)

)
= f(x+ λa1y1 + λa2y2)

= f(x+ λa1y1) + λa2Lf (y2) = f(x) + λ(a1Lf (y1) + a2Lf (y2))

for each x ∈ V and λ ∈ R. This proves that a1y1 + a2y2 ∈ Ff and

Lf (a1y1 + a2y2) = a1Lf (y1) + a2Lf (y2).

Let f ∗ denote the Legendre transform of a convex function f ∈ Conv(V ). The
following lemma relates the space of flat directions Ff∗ and the affine slope Lf∗ of
f ∗ to the affine hull of the domain of f .

Lemma 4.12 (Affine hull of the domain) For each f ∈ Conv(V ), the affine
hull Af of Df is given by

Af =
{
x ∈ V : ⟨x∗, x⟩ = Lf∗(x

∗) ∀x∗ ∈ Ff∗
}
.
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Proof Assume that ⟨y∗, x⟩ ̸= Lf∗(y
∗) for some x ∈ V and y∗ ∈ Ff∗ . By

Lemma 4.10, f is the Legendre transform of f ∗, so

f(x) = sup
x∗∈V ∗

[
⟨x∗, x⟩ − f ∗(x∗)

]
.

It follows that for each x∗ ∈ V ∗ and λ ∈ R
f(x)≥⟨x∗ + λy∗, x⟩ − f ∗(x∗ + λy∗)

= ⟨x∗, x⟩ − f ∗(x∗) + λ
[
⟨y∗, x⟩ − Lf∗(y

∗)
]
.

By assumption, the term in square brackets is nonzero, so since λ is arbitrary we
conclude that f(x) = ∞. This implies that

Df ⊂
{
x ∈ V : ⟨x∗, x⟩ = Lf∗(x

∗) ∀x∗ ∈ Ff∗
}
,

and hence also Af must be contained in the right-hand side of this equation.

To prove the opposite inclusion, let F̃ be the set of all x∗ ∈ V ∗ for which there
exists a real constant L(x∗) such that

⟨x∗, x⟩ = L(x∗) for all x ∈ Af .

Since Af is an affine subspace of V ,

Af =
{
x ∈ V : ⟨x∗, x⟩ = L(x∗) ∀x∗ ∈ F̃

}
,

so to complete the proof, it suffices to show that F̃ ⊂ Ff∗ and L(x∗) = Lf∗(x
∗)

for all x∗ ∈ F̃ . Assume that y∗ ∈ F̃ . Then for each x∗ ∈ V ∗ and λ ∈ R, one has

f ∗(x∗ + λy∗) = sup
x∈V

[
⟨x∗ + λy∗, x⟩ − f(x)

]
= sup

x∈Af

[
⟨x∗, x⟩+ λ⟨y∗, x⟩ − f(x)

]
= sup

x∈Af

[
⟨x∗, x⟩ − f(x)

]
+ λL(y∗) = f ∗(x∗) + λL(y∗),

which proves that y∗ ∈ Ff∗ and L(y∗) = Lf∗(y
∗).

For any f ∈ Conv(V ), we set

Lf :=
{
x ∈ V : ⟨x∗, x⟩ = 0 ∀x∗ ∈ Ff∗

}
. (4.7)

We call Lf the space of nontrivial directions of f . In view of (4.1), (4.7) implies
that

Ff∗ =
{
x∗ ∈ V ∗ : ⟨x∗, x⟩ = 0 ∀x ∈ Lf

}
. (4.8)

Note that as a result of Lemma 4.12, for any fixed x◦ ∈ Af , one has Af = {x◦+x :
x ∈ Lf}. Equivalently, Lf is the linear span of all vectors of the form y − x with
x, y ∈ Df .
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Lemma 4.13 (Nonempty interior) For a function f ∈ Conv(V ), the following
statements are equivalent: (i) Uf ̸= ∅, (ii) Lf = V , (iii) Ff∗ = {0}.

Proof The interior Uf of the domain Df is nonempty if and only if the affine hull
Af of Df is the whole space V . As a result of Lemma 4.12, for any fixed x◦ ∈ Af ,
one has Af = {x◦ + x : x ∈ Lf}, so Af = V if and only if Lf = V . This proves
the equivalence of (i) and (ii). The implication (ii)⇒(iii) follows from (4.8) and
the converse (iii)⇒(ii) follows from (4.7).

We define
Conv+(V ) :=

{
f ∈ Conv(V ) : Uf ̸= ∅ and Uf∗ ̸= ∅

}
=

{
f ∈ Conv(V ) : Lf = V, Ff = {0}

}
,

where the equivalence of both definitions follows from Lemma 4.13. Note that the
first definition shows that f ∈ Conv+(V ) implies f ∗ ∈ Conv+(V ∗). Our aim will
be to show that each f ∈ Conv(V ) can be decomposed in a nonessential part and
an essential part, which is a convex function g on a lower dimensional space W
that satisfies g ∈ Conv+(W ).

Lemma 4.14 (Nontrivial and flat directions) For any f ∈ Conv(V ) one has
Ff ⊂ Lf .

Proof Let z ∈ Ff . Since f ∈ Conv(V ), there exists an x ∈ V such that f(x) <∞.
Now f(x + z) = f(x) + Lf (z) < ∞, showing that x ∈ Df and x + z ∈ Df . Since
Lf is the linear span of all vectors of the form y − x with x, y ∈ Df , this proves
that z = (x+ z)− x ∈ Lf .

Lemma 4.15 (A natural choice of bases) For any f ∈ Conv(V ), it is possi-
ble to choose a basis {e(1), . . . , e(d)} of V such that e(1), . . . , e(d1) span Ff and
e(1), . . . , e(d2) span Lf , for some 0 ≤ d1 ≤ d2 ≤ d. For any such basis, let
{e∗(1), . . . , e∗(d)} be the corresponding dual basis of V ∗. Then e∗(d1+1), . . . , e∗(d)
span Lf∗ and e∗(d2 + 1), . . . , e∗(d) span Ff∗.

Proof The first statement is immediate from Lemma 4.14. To prove the statement
about the dual basis, for each x ∈ V and x∗ ∈ V ∗, we let x1, . . . , xd and x

∗
1, . . . , x

∗
d

denote the coordinates of x and x∗ with respect to the basis {e(1), . . . , e(d)} and the
dual basis {e∗(1), . . . , e∗(d)}, respectively, i.e., these are the real numbers uniquely
defined by the relations

x =
d∑
i=1

xie(i) and x∗ =
d∑
i=1

x∗i e
∗(i).
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Then ⟨x∗, x⟩ =
∑d

i=1 x
∗
ixi (x ∈ V, x∗ ∈ V ∗). By (4.7) applied to Lf∗ ,

x∗ ∈ Lf∗ ⇔ ⟨x∗, x⟩ = 0 ∀x ∈ Ff ⇔ x∗i = 0 ∀i ∈ {1, . . . , d1},

which shows that e∗(d1 + 1), . . . , e∗(d) span Lf∗ . Similarly, by (4.8)

x∗ ∈ Ff∗ ⇔ ⟨x∗, x⟩ = 0 ∀x ∈ Lf ⇔ x∗i = 0 ∀i ∈ {1, . . . , d2},

which shows that e∗(d2 + 1), . . . , e∗(d) span Ff∗ .

We recall that if V is a linear space and W ⊂ V is a linear subspace, then setting
x ∼ y if and only if x−y ∈ W defines an equivalence relation on V . Let x := {y ∈
V : y ∼ x} denote the equivalence class containing x. Then the quotient space
V/W := {x : x ∈ V } naturally has the structure of a linear space, with λx := λx
and x+ y := x+ y (x, y ∈ V, λ ∈ R).

Let f ∈ Conv(V ) and let f ∗ ∈ Conv(V ∗) denote its Legendre transform. By
Lemma 4.14, we have Ff ⊂ Lf and Ff∗ ⊂ Lf∗ . Our aim will be to define func-
tions g ∈ Conv(Lf/Ff ) and g∗ ∈ Conv(Lf∗/Ff∗) that are each other’s Legendre
transforms and that represent the “essential” parts of the functions f and f ∗, after
we neglect the nontrivial and flat directions. We first show that the spaces Lf/Ff

and Lf∗/Ff∗ are naturally dual to each other.

Lemma 4.16 (Duality of quotient spaces) For any f ∈ Conv1(V ), setting

⟨x∗, x⟩ := ⟨x∗, x⟩ (x ∈ Lf , x∗ ∈ Lf∗) (4.9)

unambiguously defines a function ⟨ · , · ⟩ such that Lf/Ff and Lf∗/Ff∗ are dual to
each other with respect to this function.

Proof We need to show that ⟨x∗ + y∗, x+ x⟩ = ⟨x∗, x⟩ for all x∗ ∈ Lf∗ , y∗ ∈ Ff∗ ,
x ∈ Lf , and y ∈ Ff . Since Ff ⊂ Lf and Ff∗ ⊂ Lf∗ , it suffices to observe that by
(4.7), ⟨x∗, y⟩ = 0 for all x∗ ∈ Lf∗ and y ∈ Ff , and ⟨y∗, x⟩ = 0 for all y∗ ∈ Ff∗ and
x ∈ Lf .

The following lemma gives the anticipated decomposition of a convex function in
is essential and inessential parts.

Lemma 4.17 (Reduction to the essential part) Let f ∈ Conv(V ) and let
x◦ ∈ Af and x∗◦ ∈ Af∗ satisfy ⟨x∗◦, x◦⟩ = 0. Then setting

g(x) := f(x◦ + x)− ⟨x∗◦, x⟩ (x ∈ Lf ),
g∗(x∗) := f ∗(x∗◦ + x∗)− ⟨x∗, x◦⟩ (x∗ ∈ Lf∗),
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unambiguously defines functions g ∈ Conv+(Lf/Ff ) and g∗ ∈ Conv+(Lf∗/Ff∗).
Moreover, g∗ is the Legendre transform of g when we view Lf∗/Ff∗ as the dual of
Lf/Ff in the sense of Lemma 4.16.

Proof We claim that

f(x+ y) = f(x) + ⟨x∗◦, y⟩ (x ∈ V, y ∈ Ff ).

Indeed, we have

f(x+ y) = f(x) + Lf (y) (x ∈ V, y ∈ Ff ),

where Lf (y) = ⟨x∗, y⟩ for all x∗ ∈ Af and y ∈ Ff by Lemma 4.12. Applying this
to x∗◦ ∈ Af , the claim follows. It follows that g(x+ y) = g(x) for all x ∈ V and
y ∈ Ff , so the definition of g(x) does not depend on the choice of the representative
x of the equivalence class x. By the same argument, g∗ is also well-defined.

Let h denote the Legendre transform of g. Then for each x∗ ∈ Lf∗ ,

h(x∗) = sup
x∈Lf/Ff

[
⟨x∗, x⟩ − g(x)

]
= sup

x∈Lf

[
⟨x∗, x⟩ − f(x◦ + x) + ⟨x∗◦, x⟩

]
= sup

x∈Lf

[
⟨x∗◦ + x∗, x⟩ − f(x◦ + x)

]
!=sup
x∈V

[
⟨x∗◦ + x∗, x⟩ − f(x◦ + x)

]
= sup

y∈V

[
⟨x∗◦ + x∗, y − x◦⟩ − f(y)

]
= f ∗(x∗◦ + x∗)− ⟨x∗◦ + x∗, x◦⟩,

where in the equality marked with ! we have used that Af = {x◦ + x : x ∈ Lf}
and hence f(x◦ + x) = ∞ for all x ∈ V \Lf . Using moreover the assumption that
⟨x∗◦, x∗◦⟩ = 0, we see that h(x) = g∗(x).

We claim that Fg = {0}. Indeed, if y ∈ Fg, then there exists a constant r ∈ R
such that g(x+λy) = g(x)+rλ for all λ ∈ R. It follows that for any representative
y of y, we must have y ∈ Ff and hence y = 0. By symmetry also Fg∗ = {0} and

hence g ∈ Conv+(Lf/Ff ).

The following lemma shows that it is always possible to choose x◦ and x∗◦ as in
Lemma 4.17.

Lemma 4.18 (Orthogonal reference points) For each f ∈ Conv(V ), it is
possible to choose x◦ ∈ Af and x∗◦ ∈ Af∗ such that ⟨x∗◦, x◦⟩ = 0.

Proof If 0 ∈ Af , then we can choose x◦ := 0 and x∗◦ arbitrary. If the opposite
case we choose x◦ ∈ Af arbitrary. Since 0 ̸∈ Af , we have Af ∩ Lf = ∅. By
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Lemma 4.14, it follows that x◦ ̸∈ Ff and hence by (4.8) we can choose z∗ ∈ Lf∗
such that ⟨x◦, z∗⟩ ≠ 0. It follows that we can set x∗◦ := y∗ + λz∗ where y∗ ∈ Af∗ is
arbitrary and λ ∈ R is chosen such that λ⟨x◦, z∗⟩ = −⟨x◦, y∗⟩.

The following lemma is a a reformulation of Lemma 4.17 in terms of the bases
{e(1), . . . , e(d)} and {e∗(1), . . . , e∗(d)} from Lemma 4.15. Below, we equip Rd2−d1

with the standard inner product, making it dual to itself.

Lemma 4.19 (Essential part of a convex function) Let f ∈ Conv(V ) and
let {e(1), . . . , e(d)} and {e∗(1), . . . , e∗(d)} be bases of V and V ∗ as in Lemma 4.15.
Then there exist real constants a∗1, . . . , a

∗
d1

and ad2+1, . . . , ad and a function g ∈
Conv+(Rd2−d1) such that

f(x1, . . . , xd)

=


d1∑
i=1

a∗ixi + g(xd1+1, . . . , xd2) if (xd2+1, . . . , xd) = (ad2+1, . . . , ad)

∞ otherwise.

Moreover, the Legendre transform of f is given by

f ∗(x∗1, . . . , x
∗
d)

=

 g∗(x∗d1+1, . . . , x
∗
d2
) +

d∑
i=d2+1

x∗i ai if (x∗1, . . . , x
∗
d1
) = (a∗1, . . . , a

∗
d1
)

∞ otherwise,

where g∗ is the Legendre transform of g.

Proof By Lemma 4.12, x ∈ Af if and only if ⟨y∗, x⟩ = Lf∗(y
∗) for all y∗ ∈ Ff∗ . It

follows that there exist real constants ad2+1, . . . , ad such that x ∈ Af if and only
if xi = ai for all i ∈ {d2 + 1, . . . , d}. Similarly, there exist a∗1, . . . , a

∗
d1

such that
x∗ ∈ Af∗ if and only if x∗i = a∗i for all i ∈ {1, . . . , d1}. Setting

x◦ := (0, . . . , 0, ad2+1, . . . , ad) and x∗◦ := (a∗1, . . . , a
∗
d1
, 0, . . . , 0),

now defines x◦ ∈ Af and x∗◦ ∈ Af∗ such that ⟨x∗◦, x◦⟩ = 0. The claim now follows
from Lemma 4.17.

In the following sections, we will often need the assumption that a function f ∈
Conv(V ) satisfies Uf ̸= ∅. Often, such an assumption can be made more or less
without loss of generality, if we replace f by its essential part. The following
exercise demonstrates this.
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Exercise 4.20 (Function determined by its convex hull) Let f : V →
(−∞,∞] be lower semi-continuous, let f be its convex hull, and let g be the
essential part of f as in Lemma 4.19. Assume that Ff = {0} and g is strictly

convex on Ug. Show that f = f . Hint: combine Lemmas 4.7 and 4.19.

4.6 The generalized gradient

In this and the following sections, we will be interested in the derivatives of convex
functions. We continue to assume that V is a finite dimensional real linear space
and V ∗ is its dual.

Recall from Section 4.2 the definition of a supporting hyperplane. Assume that
f ∈ Conv(V ) and that Uf ̸= ∅. We will be interested in the supporting hyperplanes
of the epigraph Ef . For each x ∈ Df , we let Hf(x) denote the set of all (x∗, a∗) ∈
V ∗ × R such that

⟨x∗, y − x⟩+ a∗
(
z − f(x)

)
≤ 0 ∀y ∈ Df and z ≥ f(y). (4.10)

Note that this implies a∗ ≤ 0, since otherwise (4.10) is violated for z large enough.
As we will see shortly, Hf(x) roughly corresponds to the set of all supporting
hyperplanes for E(f) at

(
x, f(x)

)
. We also let

Hf :=
{
(x, x∗, a∗) : x ∈ Df , (x

∗, a∗) ∈ Hf(x)
}

(4.11)

denote the space of all triples (x, x∗, a∗) such that x ∈ Df and (x∗, a∗) ∈ Hf(x).
For x ∈ Df , we moreover set

H ′f(x) :=
{
(x∗, a∗) ∈ Hf(x) : (x∗, a∗) ̸= 0

}
,

H ′′f(x) :=
{
(x∗, a∗) ∈ Hf(x) : a∗ < 0

}
,

and we define H ′f and H ′′f as in (4.11) but with Hf(x) replaced by H ′f(x) or
H ′′f(x), respectively. Hyperplanes H(x∗,a∗),c∗ with a∗ = 0 are called vertical, for
obvious reasons.

Proposition 4.21 (Supporting hyperplanes) Assume that f ∈ Conv(V ) and
that Uf ̸= ∅. Then,

(a) Hf(x) is a closed convex cone in V ∗ × R for each x ∈ Df ,
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(b) H ′f(x) ̸= ∅ for each x ∈ Df ,

(c) H ′′f(x) = H ′f(x) for each x ∈ Uf ,

(d) H ′′f is a closed subset of V × V ∗ × (R\{0}).

(e) H ′′f is a connected subset of V × V ∗ × (R\{0}).

Proof Part (a) is immediate from (4.10). Since Uf ̸= ∅, the interior of E(f) is
nonempty and for each x ∈ Df , the point

(
x, f(x)

)
lies on the boundary of E(f).

We can therefore apply Lemma 4.2 to conclude that for each x ∈ Df , there exist
(x∗, a∗) ∈ (V ∗ × R)\{(0, 0)} and c∗ ∈ R such that

E(f) ⊂ H≤
(x∗,a∗),c∗ and x ∈ H≥

(x∗,a∗),c∗ .

In other words, this says that

⟨x∗, y⟩+ a∗z ≤ c∗
(
y ∈ Df , z ≥ f(y)

)
and ⟨x∗, x⟩+ a∗f(x) ≥ c∗.

Since this implies that ⟨x∗, x⟩ + a∗f(x) = c∗, we can simplify this to (4.10). This
proves part (b).

To prove part (c), we use part (b) and observe that by (4.10), (x∗, 0) ∈ H ′f(x)
implies

⟨x∗, y − x⟩ ≤ 0 ∀y ∈ Df ,

so setting c∗ := ⟨x∗, x⟩, we see that Df ⊂ H≤
x∗,c∗ and x ∈ H≥

x∗,c∗ , which is only
possible if x lies on the boundary of Df .

To prove part (d), assume that (xn, x
∗
n, a

∗
n) ∈ H ′′f converge to a limit (x, x∗, a∗) in

V ×V ∗× (R\{0}). Then, taking the limit in (4.10), we see that (xn, x
∗
n, a

∗
n) ∈ Hf .

Since a∗n < 0, formula (4.10) moreover implies that f(x) < ∞ and hence x ∈ Df ,
so we see that (xn, x

∗
n, a

∗
n) ∈ H ′′f .

It remains to prove part (e). We recall that a closed set A is connected if it
cannot be written as the union A = A1 ∪ A2 of two disjoint nonempty closed sets
A1, A2. Since Hf(x) is convex by part (a), we see that H ′′f(x) is convex too and
therefore connected. IfH ′′f is not connected, thenH ′′f = A1∪A2 where A1, A2 are
disjoint nonempty closed subsets of Df ×V ∗× (R\{0}). Since the sets H ′′f(x) are
connected, for each x ∈ Df , the set {x}×H ′′f(x) must be either entirely contained
in A1, or in A2. It follows that setting Bi := {x ∈ Df : {x} × H ′′f(x) ⊂ Ai}
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(i = 1, 2) defines disjoint nonempty closed subsets B1, B2 of Df whose union is Df .
But Df is convex and hence connected, so we arrive at a contradiction.

We say that an affine function y 7→ x∗y − c∗ is supporting at a point x ∈ Df if

⟨x∗, x⟩ − c∗ = f(x) and ⟨x∗, y⟩ − c∗ ≤ f(y) (y ∈ V ).

We call x∗ the slope of the supporting affine function y 7→ x∗y − c∗. For any
f ∈ Conv(V ) and x ∈ Df , we write

Df(x) :=
{
x∗ ∈ V ∗ : f(x) + ⟨x∗, y − x⟩ ≤ f(y) ∀y ∈ V

}
,

Df :=
{
(x, x∗) : x ∈ Df , x

∗ ∈ Df(x)
}
.

(4.12)

Df is the collection of all slopes of supporting affine functions at x. We say that
a function f : V → R is differentiable at x ∈ V if there exists a ∂f(x) ∈ V ∗ such
that

⟨∂f(x), y⟩ = lim
ε→0

ε−1
[
f(x+ εy)− f(x)

]
(y ∈ V ). (4.13)

Note that the right-hand side of this equation is the directional derivative of f at
x in the direction y. We call ∂f(x) the gradient of f at x. If f ∈ Conv(V ) is
differentiable at x ∈ Df , then there is a unique supporting affine function at x,
whose slope is given by the gradient of f , so in this case Df(x) =

{
∂f(x)

}
. Thus,

we can view Df(x) as a possibly multi-valued generalization of the gradient of f .

As the reader may already have guessed, there is a one-to-one correpondence be-
tween the set of all supporting affine functions of f and the set of all supporting
hyperplanes that are not vertical. We will use this to derive the following propo-
sition from Proposition 4.21.

Proposition 4.22 (Generalized gradient) Assume that f ∈ Conv(V ) and that
Uf ̸= ∅. Then:

(a) Df(x) ̸= ∅ for all x ∈ Uf ,

(b) Df(x) is a closed convex set for all x ∈ Df ,

(c) Df is a closed subset of V × V ∗,

(d) Df is a connected subset of V × V ∗.

(e) {(x, x∗) ∈ Df : x ∈ K} is a compact subset of V × V ∗ for each compact
K ⊂ Uf .
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Proof Let x ∈ Df . If (x∗, a∗) ∈ H ′′f(x) and r > 0, then (rx∗, ra∗) ∈ H ′′f(x).
Therefore, Proposition 4.21 (b) and (c) imply that for each x ∈ Uf , there exists
an x∗ ∈ V such that (x∗,−1) ∈ H ′′f(x). Then (4.10) tels us that

⟨x∗, y − x⟩ −
(
f(y)− f(x)

)
≤ 0 ∀y ∈ Df ,

which shows that x∗ ∈ Df(x). In view of this, part (a) follows from Propo-
sition 4.21 (b) and (c). Part (b) is immediate from the definition of Df(x) in
(4.12). Parts (c) and (d) follow from Proposition 4.21 (d) and (e) and our earlier
observation that each (x∗, a∗) ∈ H ′′f(x) can be normalized so that a∗ = −1.

To prove part (e), let K ⊂ Uf be compact. Then {(x, x∗) ∈ Df : x ∈ K} is
closed by part (c), so it suffices to show that it is moreover bounded. Assume, to
the contrary, that there exist (xn, x

∗
n) ∈ Df with xn ∈ K and |x∗n| → ∞. Since

K is compact, by going to a subsequence, we may assume that xn → x ∈ Uf .
Let c∗n := f(xn) − ⟨x∗n, xn⟩. Then ⟨x∗n, xn⟩ − c∗n = f(xn) and ⟨x∗n, y⟩ − c∗n ≤ f(y)
for all y ∈ V . Equivalently, this says that H(x∗n,−1),c∗n is a supporting hyperplane
for E(f) at the point (xn, f(xn)). Let εn := |x∗n|−1. Then H(εnx∗n,−εn),εnc∗n is the
same supporting hyperplane. By going to a subsequence, we can assume that
εnx

∗
n → x∗ where |x∗| = 1. Then εnc

∗
n → −⟨z∗, x⟩ =: x∗ and H(x∗,0),c∗ is a vertical

supporting hyperplane for E(f) at the point (x, f(x)). By Proposition 4.21 (c),
this contradicts the fact that x ∈ Uf .

We have already argued that we can viewDf(x) as a generalization of the gradient.
The following lemma makes this observation more precise.

Lemma 4.23 (Uniqueness of the slope) Let f ∈ Conv(V ). Then the following
conditions are equivalent:

(i) f is continuously differentiable on Uf ,

(ii) for each x ∈ Uf , the set Df(x) consists of a single element.

Moreover, under these conditions, Df(x) = {∂f(x)} (x ∈ Uf ), where ∂f is the
gradient of f , defined in (4.13)

Proof If f is differentiable at x, then there is a unique supporting affine function
at x, so the implication (i)⇒(ii) is trivial. For the converse, we refer to [Roc70,
Thm 25.1]. To make this implication at least a bit plausible, we observe that (ii)
implies that there exists a function g : Uf → V such that

Df(x) = {g(x)} (x ∈ Uf ),
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f(x)

x

x∗

Df

x

f ∗(x∗)

x∗

x

Df ∗

x∗

Figure 4.3: Legendre transform of a non-smooth function.

Now Proposition 4.22 (c) says that the graph of g is a closed subset of Uf × V .
Using moreover Proposition 4.22 (e) and the closed graph theorem, we can deduce
that g is continuous. The technical part of the proof is showing that g is indeed
the gradient of f .

The following lemma says that the generalized gradient of f ∗ is the inverse of the
gradient of f . The relation ⟨x∗, x⟩ = f(x) + f ∗(x∗) is demonstrated in Figure 4.2.
See also Figure 4.3 for an illustration of the Legendre transform of a non-smooth
function.

Lemma 4.24 (Slope of the Legendre transform) For any f ∈ Conv(V ) and
x, x∗ ∈ V ∗, one has

⟨x∗, x⟩ ≤ f(x) + f ∗(x∗) (4.14)

Moreover,

(x, x∗) ∈ Df ⇔ ⟨x∗, x⟩ = f(x) + f ∗(x∗) ⇔ (x∗, x) ∈ Df ∗.

Proof The inequality (4.14) follows immediately from the definition f ∗(x∗) =
supx∈V

[
⟨x∗, x⟩ − f(x)

]
. Assume that (x, x∗) ∈ Df . Then there exists a c∗ ∈ R
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such that ⟨x∗, x⟩ − c∗ = f(x) and ⟨x∗, y⟩ − c∗ ≤ f(y) for all y ∈ V . By (4.6) (ii),
this implies that (x∗, c∗) ∈ E(f ∗). On the other hand, since ⟨x∗, x⟩ − c∗ = f(x),
for each ε > 0 it is not true that ⟨x∗, y⟩ − c∗ + ε ≤ f(y) for all y ∈ V , which again
by (4.6) (ii) implies that (x∗, c∗ − ε) ̸∈ E(f ∗) for all ε > 0 and hence c∗ = f ∗(x∗)
and ⟨x∗, x⟩ = f(x) + f ∗(x∗).

Assume, conversely, that ⟨x∗, x⟩ = f(x) + f ∗(x∗). Trivially
(
x∗, f ∗(x∗)

)
∈ E(f ∗)

so (4.6) (ii) implies that x∗y − f ∗(x∗) ≤ f(y) for all y ∈ V . Since moreover
⟨x∗, x⟩ − f ∗(x∗) = f(x), this proves that the affine function x 7→ ⟨x∗, x⟩ − f ∗(x∗)
is supporting at x and hence (x, x∗) ∈ Df .

This proves that (x, x∗) ∈ Df if and only if ⟨x∗, x⟩ = f(x)+f ∗(x∗). By symmetry,
reversing the roles of x and x∗ and of f and f ∗, this is in turn equivalent to
(x∗, x) ∈ Df ∗.

Exercise 4.25 (Nonempty generalized gradient) Show that Df ̸= ∅ for all
f ∈ Conv(V ). Hint: combine Lemma 4.19 and Proposition 4.22.

4.7 Extensions of convex functions

We continue to assume that V is a finite dimensional real linear space and V ∗ is its
dual. For any g ∈ Conv(V ) and closed convex set D ⊂ V , setting f(x) := g(x) for
x ∈ D and := ∞ otherwise defines a function f ∈ Conv(V ). In such a situation,
we that f is the restriction of g to D and that g extends f . We say that f is a
restriction of g if there exists a closed convex D such that f is the restriction of g
to D.

Lemma 4.26 (Restriction of a convex function) Let f, g ∈ Conv(V ) and
assume that Uf is nonempty. Then f is a restriction of g if and only if f(x) = g(x)
for all x ∈ Uf .

Proof The condition is clearly necessary. To prove sufficiency, we observe that
since Uf is nonempty, Df ⊂ Uf . Let x ∈ Uf\Uf and Uf ∋ xn → x. If f(x) < ∞,
then the lower semi-continuity of g and the fact that f is continuous on Df imply
that

g(x) ≤ lim
n→∞

f(xn) = f(x),

and this inequality also trivially holds if f(x) = ∞. The inequality g(x) ≤ f(x)
cannot be strict since this would contradict the fact that g is continuous on Dg,
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so we conclude that f(x) = g(x) for all x ∈ Uf . Setting D := Uf , it follows that
f(x) = g(x) for all x ∈ D and = ∞ otherwise, i.e., f is a restriction of g.

Let f ∈ Conv(V ) and assume that Uf ̸= ∅. By definition, we say that a f is on
natural domain if it satisfies the equivalent conditions (i) and (ii) of the following
lemma. If f satisfies condition (iii), then we say that f is on maximal domain.3

Lemma 4.27 (Convex functions on natural domain) Let f ∈ Conv(V ) and
assume that Uf ̸= ∅. Let D◦f :=

{
(x, x∗) ∈ Df : x ∈ Uf

}
. Then of the following

conditions, (i) and (ii) are equivalent and imply (iii).

(i) D◦f is a closed subset of V × V ∗,

(ii) D◦f = Df ,

(iii) f = g for all g ∈ Conv(V ) that extend f .

Proof The implication (ii)⇒(i) follows from the fact that by Proposition 4.22 (c),
Df is a closed subset of V × V ∗. Assume, conversely, that D◦f is a closed subset
of V × V ∗. Then D◦f is a closed subset of Df . On the other hand, since D◦f =
Df ∩ (Uf × V ), it is also open as a subset of Df . By Proposition 4.22 (d), Df
is connected so, also using the fact that D◦f ̸= ∅, by Proposition 4.22 (a) we see
that D◦f = Df . This proves the implication (i)⇒(ii).

To complete the proof, we need to show that (ii)⇒(iii). Assume that f satisfies
(ii) and that there exists a g ∈ Conv(V ) with g ̸= f that extends f . Then Ug\D
is nonempty and hence there exists an x ∈ Ug that lies on the boundary of D. By
Proposition 4.22 (a), there exists a supporting affine function for g at x. Since
this is also a supporting affine function for f at x, we conclude that there exists
an (x, x∗) ∈ Df for which x ̸∈ Uf , contradicting (ii).

Remark In dimension d = 1, it is easy to check that the conditions (i)–(iii) of
Lemma 4.27 are in fact all equivalent. It is tempting to conjecture that the same
is true in higher dimensions, but this seems to be false. Here is a sketch of a
counterexample. We define an open square by W := {x ∈ R2 : 0 < xi < 1 ∀i =
1, 2} and let W denote its closure and ∂W := W\W its boundary. We also write

I1 := {x ∈ R2 : x1 ∈ {0, 1}, 0 < x2 < 1}, I2 := {x ∈ R2 : 0 < x1 < 1, x2 ∈ {0, 1}}.
3These definitions are not standard, and there does not seem to exist established terminology

for this.
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It should be possible to construct a function h ∈ Conv(R2) with the following
properties:

(i) Dh = W ,

(ii) h(x) = 1 for all x ∈ ∂W ,

(iii) h is continuously differentiable on W ,

(iv) | ∂
∂xi
h(x(n))| → ∞ if W ∋ x(n) → x ∈ Ii (i = 1, 2).

Now let l be the linear function l(x) := (x1 + x2)/2. Note that l(x) = 1 = h(x) in
the point x = (1, 1) but l(x) < 1 = h(x) for x ∈ I1 ∪ I2. Then the convex function
f := h ∨ l does not satisfy condition (ii) of Lemma 4.27, since there exists some
(x, x∗) ∈ Df with x = (1, 1) ̸∈ Uf , but it satisfies condition (iii) of Lemma 4.27
since the condition on the derivatives of h makes it impossible to extend f outside
the square W .

4.8 Well-behaved convex functions

We continue to assume that V is a finite dimensional real linear space and V ∗ is
its dual. We say that a function f ∈ Conv(V ) is well-behaved4 if there exists a
homeomorphism f ′ : Uf → Uf∗ such that Df =

{
(x, f ′(x)) : x ∈ Uf}.

Lemma 4.28 (Well-behaved functions) If f ∈ Conv(V ) is well-behaved, then
Uf ̸= ∅ and f ∗ is also well-behaved. Moreover, f is continuously differentiable on
Uf , the gradient ∂f : Uf → Uf∗ is a homeomorphism, and (∂f)−1 = ∂f ∗.

Proof By Exercise 4.20, Df ̸= ∅ so the assumption that Df =
{
(x, f ′(x)) :

x ∈ Uf} implies that Uf ̸= ∅. Let f ′−1 denote the inverse of f ′. Then f ′−1 is a
homeomorohism from Uf∗ → Uf and by Lemma 4.24, Df ∗ =

{
(x∗, x) : (x, x∗) ∈

Df
}
=

{
(x∗, f ′−1(x∗)) : x∗ ∈ Uf∗

}
, which shows that f ∗ is well-behaved. Since

Df =
{
(x, f ′(x)) : x ∈ Uf}, Lemma 4.23 implies that f is continuously differen-

tiable on Uf and Df(x) = {∂f(x)} for all x ∈ Uf . This shows that ∂f = f ′, the

4This definition is not standard, and there does not seem to exist established terminology for
this.
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homeomorphism in the definition of a well-behaved convex function. Lemma 4.24
now implies that (∂f)−1 = ∂f ∗.

Lemma 4.28 shows that if f ∈ Conv(V ) is well-behaved, then f ∈ Conv+(V ). For
each 1 ≤ n ≤ ∞, we set

Conv+n (V ) :=
{
f ∈ Conv(V ) : f is well-behaved and n times

continuously differentiable on Uf
}
.

In view of Lemma 4.24, Conv+n (V ) ⊂ Conv+(V ), and Conv+1 (V ) is simply the
space of well-behaved convex functions on V . We also set

Convn(V ) :=
{
f ∈ Conv(V ) : the essential part g of f

satisfies g ∈ Conv+n (Lf/Ff )
}
.

We recall that the essential part of a convex function is defined in Lemma 4.17. It
is easy to see that the definition of Convn(V ) does not depend on the choice of the
reference points x◦ and x∗◦. We call elements of Conv1(V ) essentially well-behaved
convex functions.

Lemma 4.29 (Well-behaved Legendre transform) If f ∈ Conv+n (V ), then
f ∗ ∈ Conv+n (V

∗), and if f ∈ Convn(V ), then f ∗ ∈ Convn(V
∗).

Proof In Lemma 4.28 we have already seen that f ∈ Conv+1 (V ) implies f ∗ ∈
Conv+1 (V

∗). If f is n times continuously differentiable on Uf , then the homeomor-
phism ∂f is n−1 times continuously differentiable, hence its inverse (∂f)−1 = ∂f ∗

has the same properties and as a result f ∗ is n times continuously differentiable
on Uf∗ . This proves that f ∈ Conv+n (V ) implies f ∗ ∈ Conv+n (V

∗). The final claim
follows from the fact that by Lemma 4.17, if g is the essential part of f , then its
Legendre transform g∗ is the essential part of f ∗.

For a function f : Rd → R that is twice continuously differentiable in an open
neighborhood of a point x, we let ∂2f(x), defined as

∂2ijf(x) :=
∂2

∂xi∂xj
f(x),

denote the matrix of its second derivatives. In the abstract setting, we note that
each linear map L : V → V ∗ has a unique adjoint map L† : V → V ∗ such that
⟨Lx, y⟩ = ⟨L†y, x⟩ (x, y ∈ V ). We say that L is self-adjoint if L = L†. Now if
f : Rd → R is twice continuously differentiable in an open neighborhood of a point
x, then ∂2f(x) is the unique self-adjoint linear map from V to V ∗ such that

f(x+ y) = f(x) + ⟨∂f(x), y⟩+ 1
2
⟨∂2f(x)y, y⟩+ o(|y|2) as y → 0.
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Proposition 4.30 (Conditions for well-behavedness) Let f ∈ Conv(V ).
Then f is well-behaved if and only if it satisfies the following conditions.

(i) Uf ̸= ∅,

(ii) f is continuously differentiable on Uf ,

(iii) f is strictly convex on Uf ,

(iv) f is on natural domain.

Condition (iv) is equivalent to

(iv)’
∣∣∂f(xn)∣∣ −→

n→∞
∞ whenever Uf ∋ xn −→

n→∞
x ∈ V \Uf .

If f is twice continuously differentiable on Uf , then condition (iii) is equivalent to

(iii)’ ⟨∂2f(x)y, y⟩ > 0 for all x ∈ Uf and y ∈ V \{0}.

Proof We first prove the necessity of conditions (i)–(iv). The necessity of (i) and
(ii) has already been proved in Lemma 4.28. To prove the necessity of (iii), we
observe that if f would not be stricly convex on Uf , then there would be x, y ∈ Uf
with x ̸= y such that ∂f(x) = ∂f(y), contradicting the fact proved in Lemma 4.28
that ∂f is a bijection implies that f is strictly convex. Finally, the definition of
a well-behaved convex function immediately implies condition (ii) of Lemma 4.27,
showing that f is on maxial domain and hence (iv) is necessary.

We next show the sufficiency of conditions (i)–(iv). Using Lemma 4.27 and the
assumptions that f is on natural domain and continuously differentiable, we see
that

Df =
{
(x, x∗) ∈ Df : x ∈ Uf

}
=

{(
x, ∂f(x)

)
∈ Df : x ∈ Uf

}
.

Since f is strictly convex on Uf , no two points in Uf can have the same slope, so
∂f is a bijection from Uf to its image

V :=
{
∂f(x) : x ∈ Uf

}
It now follows from Lemma 4.24 that

V = {x∗ ∈ V ∗ : Df ∗(x∗) ̸= ∅} and Df ∗(x∗) = {(∂f)−1(x∗)} (x∗ ∈ V).
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In particular, by Proposition 4.22 (a), it follows that Uf∗ ⊂ V . We claim that this
is in fact an equality. Indeed, if Df ∗(x∗) ̸= ∅ for some x∗ ∈ Df∗\Uf∗ , then there
is a supporting hyperplane for E(f ∗) at the point (x∗, f(x∗)) that is not vertical.
But using the convexity of Uf∗ , it is easy to see that for each x∗ ∈ Df∗\Uf∗ , there
must also be a vertical supporting hyperplane for E(f ∗) at the point (x∗, f(x∗)).
But then, by Proposition 4.21 (a), all convex combinations of the vertical and
non-vertical supporting hyperplanes are also supporting hyperplanes. This shows
that if Df ∗(x∗) ̸= ∅ for some x∗ ∈ Df∗\Uf∗ , then Df ∗(x∗) is never a singleton.
This contradicts what we have just proved, allowing us to conclude that Uf∗ = V .
We can now invoke Lemma 4.23 to conclude that f ∗ is continuously differentiable
on Uf∗ and (∂f)−1 = ∂f ∗ on Uf∗ . In particular, ∂f is a continuous function
having a continuous inverse, i.e., a homeomorphism This concludes the proof of
the sufficiency of conditions (i)–(iv).

To see that (iv) and (iv)’ are equivalent, we observe that if (iv)’ holds, then
{(x, x∗) ∈ Df : x ∈ Uf} is a closed subset of Df and hence, by Proposi-
tion 4.22 (c), also of V × V ∗, so f is on natural domain by condition (i) of
Lemma 4.27. On the other hand, if (iv)’ fails, then by going to a subsequence
we can find Uf ∋ xn → x ∈ V \Uf such that ∂f(xn) converges to a finite limit
x∗ ∈ V ∗. Since Df is closed by Proposition 4.22 (c), it follows that (x, x∗) ∈ Df
which contradicts condition (ii) of Lemma 4.27.

If f is twice continuously differentiable in an open neighborhood of x, then

∂2

∂ε2
f(x+ εy)

∣∣
ε=0

=
d∑
i=1

yi
∂
∂xi

( d∑
j=1

yj
∂
∂xj
f(x)

)
=

d∑
i,j=1

yi∂
2
ijf(x)yj.

It is easy to see that f is strictly convex on Uf if and only if the left-hand side of
this equation is strictly positive for all x ∈ Uf and y ∈ V \{0}.

The following lemma says that for well-behaved convex functions, the supremum
occurring in the definition of the Legendre transform is assumed in a unique point.

Lemma 4.31 (Unique maximizer) Assume that f ∈ Conv+1 (V ). Then for
each x∗ ∈ Uf∗, the function y 7→ ⟨x∗, y⟩ − f(y) assumes its maximum in the
unique point x = ∂f ∗(x∗).

Proof We note that f is strictly convex on Uf by Proposition 4.30 (iii). By
Lemma 4.28, ∂f : Uf → Uf∗ is a bijection and (∂f)−1 = ∂f ∗, so for each x∗ ∈
Uf∗ there exists a unique x ∈ Uf such that ∂f(x) = x∗, which is given by x =
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∂f ∗(x∗). It follows that the strictly concave function y 7→ ⟨x∗, y⟩ − f(y) assumes
its maximum in the unique point x.

In Proposition 4.30, we have seen that well-behaved convex functions are on natural
domain. The following lemma generalizes this to some functions that are only
essentially well-behaved.

Lemma 4.32 (Natural domain) Assume that f ∈ Conv1(V ) and Uf ̸= ∅. Then
f is on natural domain.

Proof We use coordinates with respect to bases of V and V ∗ as in Lemma 4.15.
Then d2 = d by the assumption that Uf ̸= ∅, so by Lemma 4.19 f is of the form

f(x1, . . . , xd) =

d1∑
i=1

a∗ixi + g(xd1+1, . . . , xd)

for some constants a∗1, . . . , a
∗
d1

and function g ∈ Conv+1 (Rd−d1), and hence, setting
x := (x1, . . . , xd) and x

′ := (xd1+1, . . . , xd), we have

∂f(x) =
(
a∗1, . . . , a

∗
d1
, ∂d1+1g(x

′), . . . , ∂dg(x
′)
)

(x ∈ Uf ).

By Lemma 4.27 (i), to check that f is on natural domain, it suffices to show
that |∂f(x(n))| → ∞ whenever Uf ∋ x(n) → x ∈ V \Uf . Here Uf = Rd1 × Ug
and hence Uf ∋ x(n) → x ∈ V \Uf implies Ug ∋ x′(n) → x′ ∈ Rd1\Ug. Since
g ∈ Conv+1 (Rd−d1), by Proposition 4.30 (iv)’, this implies that |∂g(x′(n))| → ∞
and hence |∂f(x(n))| → ∞.

4.9 The Gärtner-Ellis theorem

We can finally start reaping the benefits of our study of convex functions. Below is
a version of the Gärtner-Ellis theorem. If S is a finite set, then we equip the space
RS of real functions on S with the standard inner product ⟨x, y⟩ :=

∑
i∈S xiyi.

Recall that Conv1(RS) is the class of essentially well-behaved convex functions
defined in the previous section.

Theorem 4.33 (Gärtner-Ellis) Let S be a finite set, let µn be finite measures
on RS and let sn be positive constants such that sn → ∞. Assume that for each
λ ∈ RS, the limit

Γ(λ) := lim
n→∞

1

sn
log

∫
RS

esn⟨λ, x⟩µn(dx) (4.15)
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exists in [0,∞] and that Γ ∈ Conv1(RS) and 0 ∈ UΓ. Then the measures µn satisfy
the large deviation principle with speed sn and good rate function I given by

I(x) := sup
λ∈RS

[
⟨λ, x⟩ − Γ(λ)

]
(x ∈ RS).

Remark The theorem above is a bit weaker than the usual Gärtner-Ellis theorem
as stated, e.g., in [Hol00, Thm V.6] and [RS15, Section 12.2]. Let Γ′ denote the
essential part of Γ and let UΓ and UΓ′ denote the interiors of the domains of Γ
and Γ′, respectively. Then our assumptions on Γ are equivalent to saying that (i)
0 ∈ UΓ, (ii) Γ

′ is continuously differentiable on UΓ′ , (iii) Γ′ is strictly convex on UΓ′ ,
and (iv) Γ′ is on natural domain. It turns out that condition (iii) can in fact be
dropped, see [RS15, Section 12.2]. Nevertheless, the version of the Gärtner-Ellis
theorem stated above will be more than enough for our purposes, since in all our
applications it will actually be true that UΓ = RS and Γ ∈ Conv∞(RS). Our proof
of Theorem 4.33 differs quite significantly from the more traditional proofs which
check the large deviations lower and upper bounds of Proposition 1.7.

Remark In the context of the Gärtner-Ellis theorem. we will call the function Γ
from (4.15) the free energy. In Theorem 5.4 below, where we apply the Gärtner-
Ellis theorem to prove a multi-dimensional version of Cramér’s theorem, we will
see that in the context of i.i.d. random variables, Γ = logZ, so our present use of
the term “free energy” is a generalization of our use of this term in Section 0.1.

Proof of Theorem 4.33 We start by proving exponential tightness. For each
0 ̸= λ ∈ RS and c > 0, let Hλ,c denote the half-space

Hλ,c :=
{
x ∈ RS : ⟨λ, x⟩ > c

}
.

Then we can estimate

1

sn
log µn(Hλ,c) ≤

1

sn
log

∫
esn(⟨λ, x⟩ − c)µn(dx)

=
1

sn
log

∫
esn⟨λ, x⟩µn(dx)− c −→

n→∞
Γ(λ)− c.

Since 0 ∈ UΓ, we can choose vectors λ1, . . . , λn ∈ UΓ such that

Kλ1,...,λn,c := RS\
n⋃
k=1

Hλk,c

is compact for each c > 0. The minimum number of vectors we need is n = d+ 1
but it is simpler to choose two vectors, one positive and one negative, in each
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basis direction, so that Kλ1,...,λn,c has the shape of a hyperrectangle and n = 2d.
Applying our previous estimate with c large enough, using also (1.4), then yields
exponential tightness.

We claim that in fact, for each λ ∈ UΓ, the measures

µλn(dx) := esn⟨λ, x⟩µn(dx)

are exponentially tight. Indeed, for these measures, the limit

Γλ(λ
′) := lim

n→∞

1

sn
log

∫
esn⟨λ

′, x⟩µλn(dx) = Γ(λ+ λ′)

exists in [0,∞] for all λ′ ∈ RS and Γλ satisfies the same properties as Γ, so the
claim follows from our previous argument.

We now prove the large deviation principle. We aim to apply Lemma 3.12. By The-
orem 3.7, exponential tightness implies that each subsequence (µ′

n, s
′
n) of (µn, sn)

contains a further subsequence (µ′′
n, s

′′
n) of such that the µ′′

n satisfy a large devia-
tion principle with speed s′′n and some good rate function J . By Lemma 3.12, to
complete the proof, it suffices to prove that J = I.

Using the exponential tightness of the µλn and Varadhan’s lemma for unbounded
functions (Lemma 3.13), we see that for each λ ∈ UΓ

Γ(λ) = lim
n→∞

1

s′′n
log

∫
es

′′
n⟨λ, x⟩µ′′

n(dx) = sup
x∈RS

[
⟨λ, x⟩ − J(x)

]
. (4.16)

Let g(λ) be defined by the right-hand side of (4.16). Then g ∈ Conv(RS) by
Lemma 4.10. Lemma 4.26 tells us that Γ is a restriction of g. By assumption
Γ ∈ Conv1(RS). Moreover UΓ ̸= ∅ so LΓ = RS by Lemma 4.13. This means
that we can apply Lemma 4.32 to conclude that Γ is on natural domain. Using
Lemma 4.27, we conclude that Γ = g, so (4.16) holds for all λ ∈ RS.

Taking the Legendre transform on both sides of (4.16), applying Lemma 4.10, we
see that I = J , where J denotes the convex hull of J . Since Γ ∈ Conv1(RS),
Lemma 4.29 tells us that I ∈ Conv1(RS). Since LΓ = RS, Lemma 4.13 tells us
that FI = {0}, so we can apply Exercise 4.20 to conclude that I = J .



132 CHAPTER 4. CONVEX ANALYSIS



Chapter 5

Large deviations of i.i.d. random
variables

5.1 The multi-dimensional Cramér’s theorem

In this chapter we will use the Gärtner-Ellis theorem to prove a number of large
deviations results for i.i.d. random variables. Our first aim is to prove a multi-
dimensional version of Cramér’s theorem. We start by studying the rate function.
In the present section, we will also give the proof of Lemma 0.2, which was still
outstanding. We first need a multidimensional version of Lemma 2.19.

For any probability measure µ on Rd which has at least finite first, respectively
second moments, we let

⟨µ⟩(i) :=
∫
µ(dx)x(i),

Covij(µ) :=

∫
µ(dx)x(i)x(j)−

(∫
µ(dx)x(i)

)(∫
µ(dx)x(j)

)
(i, j = 1, . . . , d) denote the mean and covariance matrix of µ.

Lemma 5.1 (Smoothness of the free energy) Let µ be a probability measure
on Rd. Assume that the function

Z(λ) :=

∫
e ⟨λ, x⟩µ(dx) (λ ∈ Rd). (5.1)

133
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satisfies Z(λ) <∞ for all λ ∈ Rd. For λ ∈ R, let µλ denote the tilted law

µλ(dx) :=
1

Z(λ)
e ⟨λ, x⟩µ(dx) (λ ∈ Rd). (5.2)

Then λ 7→ logZ(λ) is infinitely differentiable and

(i) ∂
∂λ(i)

logZ(λ) = ⟨µλ⟩(i),

(ii) ∂2

∂λ(i)∂λ(j)
logZ(λ) = Covij(µλ)

}
(λ ∈ Rd, i, j = 1, . . . , d). (5.3)

Proof The proof is basically the same as in the one-dimensional case (see Lemma
2.19).

Recall that Conv∞(Rd) is the class of infinitely differentiable, essentially well-
behaved convex functions on Rd, defined in Section 4.8.

Lemma 5.2 (The free energy is essentially well-behaved) Let µ be a prob-
ability measure on Rd and assume that Z, given by (5.1), satisfies Z(λ) < ∞ for
all λ ∈ Rd. Then logZ ∈ Conv∞(Rd). If ⟨y,Cov(µ)y⟩ > 0 for all y ∈ Rd\{0},
then logZ ∈ Conv+∞(Rd).

Proof We first consider the case that ⟨y,Cov(µ)y⟩ > 0 for all y ∈ Rd\{0}. We
will check that Γ := logZ satisfies conditions (i), (ii), (iii)’, and (iv)’ of Propo-
sition 4.30. By assumption logZ(λ) < ∞ for all λ ∈ Rd, so UΓ = Rd which
implies that Γ satisfies conditions (i) and (iv)’. By Lemma 5.1, Γ is infinitely
differentiable, so condition (ii) is also satisfied. Lemma 5.1 moreover tells us that
∂2Γ(λ) = Cov(µλ), the covariance matrix of µλ defined in (5.2). Therefore, to
check condition (iii)’, it suffices to show that ⟨y,Cov(µλ)y⟩ > 0 for all y ∈ Rd\{0}
and λ ∈ Rd. Imagine that ⟨y,Cov(µλ)y⟩ = 0 for some y ∈ Rd\{0} and λ ∈ Rd. Let
Xλ denote a random variable with law µλ and let X0 denote a random variable
with law µ0 = µ. Then

Var(⟨Xλ, y⟩) =
∑
i,j

yiCov(X
λ
i , X

λ
j )yj = ⟨y,Cov(µλ), y⟩ = 0.

Since µλ has a density with respect to µ, this implies that 0 = Var(⟨X0, y⟩) =
⟨y,Cov(µ), y⟩, which contradicts our assumption. This completes the proof that
logZ ∈ Conv+∞(Rd) if ⟨y,Cov(µ)y⟩ > 0 for all y ∈ Rd\{0}.

In general, since Cov(µ) is a symmetric real matrix, we can choose an orthonormal
basis with respect to which it is diagonal. In view of this, we can without loss
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of generality assume that Cov(µ) is a diagonal matrix and that there exists a
0 ≤ d′ ≤ d such that Covii(µ) > 0 for 1 ≤ i ≤ d′ and Covii(µ) = 0 for d′ < i ≤ d.
There then exist real constants ad′+1, . . . , ad such that a random variable X with
law µ satisfies Xi = ai a.s. for d

′ < i ≤ d. Let X ′ := (X1, . . . , Xd′) and let

Z ′(λ1, . . . , λd′) := E
[
e
∑d′

i=1 λiX
′
i
]

(λ ∈ Rd′)

denote its moment generating function. Then, for any λ ∈ Rd,

logZ(λ1, . . . , λd) = logE
[
e ⟨λ,X⟩] = logE

[
e
∑d′

i=1 λiXi
]
+

d∑
i=d′+1

λiai

= logZ ′(λ1, . . . , λd′) +
d∑

i=d′+1

λiai.

By what we have already proved, logZ ′ ∈ Conv+∞(Rd′), so by Lemma 4.19, we
conclude that logZ ∈ Conv∞(Rd).

We next turn our attention to the Legendre transform I of logZ, which plays the
role of the rate function in Cramér’s theorem. The following lemma lists some
properties of the function I. See Figure 5.1 for an illustration.

Lemma 5.3 (Properties of the rate function) Let µ be a probability measure
on Rd. Assume that the moment generating function Z defined in (5.1) is finite
for all λ ∈ Rd and that

⟨y,Cov(µ)y⟩ > 0 (0 ̸= y ∈ Rd).

For λ ∈ Rd, define µλ as in (5.2) and let ⟨µ⟩ resp. ⟨µλ⟩ be the mean of µ and µλ.
Let I : Rd → (−∞,∞] be the Legendre transform of logZ. Then:

(i) I ∈ Conv+∞(Rd).

(ii) I
(
⟨µ⟩

)
= 0 and I(y) > 0 for all y ̸= ⟨µ⟩.

(iii) I is a good rate function.

(iv) UI = {⟨µλ⟩ : λ ∈ Rd}.

(v) U I is the closed convex hull of support(µ).
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logZ(λ)

λ

yλ

I(y)

∂
∂λ

logZ(λ)

λ

y+

⟨µ⟩

I(y)

yy+

∞

⟨µ⟩

∂
∂y
I(y)

yy+⟨µ⟩

Figure 5.1: Definition of the rate function in Cramér’s theorem. The functions
below are derivatives of the functions above, and inverses of each other.

(vi) For each y◦ ∈ UI , the function Rd ∋ λ 7→ ⟨y◦, λ⟩ − logZ(λ) assumes its
maximum in a unique point λ◦ ∈ Rd, which is uniquely characterized by the
requirement that ⟨µλ◦⟩ = y◦.

Proof In Lemma 5.2 it has been shown that logZ ∈ Conv+∞(Rd), so Lemma 4.29
implies that I ∈ Conv+∞(Rd), proving (i).

It is immediate from the definition of Z(λ) that Z(0) = 1 and hence logZ(0) = 0.
Since I is the Legendre transform of logZ, Lemma 4.10 tells us that logZ is the
Legendre transform of I. In particular, this shows that

0 = logZ(0) = sup
y∈R

[
⟨0, y⟩ − I(y)

]
= − inf

y∈R
I(y),

proving that I ≥ 0. By Lemma 5.1, ∂ logZ(0) = ⟨µ⟩ =: ρ, which means that
λ 7→ ⟨ρ, λ⟩ is a supporting affine function to logZ at the point λ = 0 and hence

I(ρ) = sup
λ∈R

[
⟨ρ, λ⟩ − logZ(λ)

]
= 0.
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Since I ∈ Conv+∞(R), by Proposition 4.30 (iii), I is strictly convex on UI , so
I(y) > 0 for all y ̸= ρ, proving part (ii).

Since I ∈ Conv+∞(Rd), it is lower semi-continuous, while part (ii) and the convexity
of I imply that the level sets of I are bounded, hence I is a good rate function,
proving (iii).

Since logZ ∈ Conv+∞(Rd), the map ∂ logZ is a homeomorphism from UlogZ = Rd to
UI , so property (iv) follows from Lemma 5.1 which tells us that ∂ logZ(λ) = ⟨µλ⟩.

We next prove (v). Since support(µλ) = support(µ) for all λ ∈ Rd, it is easy to see
that if H is an open half-space such that H∩support(µ) = ∅, then ⟨µλ⟩ ̸∈ H. Since
by (4.2), the complement of C(support(µ)) is the union of all open half-spaces that
do not intersect support(µ), this proves the inclusion UI ⊂ C(support(µ)).

On the other hand, if H = {y ∈ Rd : ⟨λ, y⟩ > c} is an open half-space such that
H ∩ support(µ) ̸= ∅, then, in the same way as in Exercise 2.20, one can check
that there exists some r > 0 large enough such that ⟨µrλ⟩ ∈ H. This proves
that C(UI) ⊃ C(support(µ)). Since I is convex, so is UI , and therefore the closed
convex hull of UI is just the closure of UI . Thus, we have U I ⊃ C(support(µ)),
completing our proof.

Since logZ ∈ Conv+∞(Rd), Lemma 4.31 tells us that the function Rd ∋ λ 7→
⟨y◦, λ⟩ − logZ(λ) assumes its maximum in a unique point λ◦ ∈ Rd, which is given
by λ◦ = ∂I(y◦). By Lemma 4.28, the function λ 7→ ∂ logZ(λ) is the inverse of
y 7→ ∂I(y), so the condition λ◦ = ∂I(y◦) is equivalent to ∂ logZ(λ◦) = y◦. By
Lemma 5.1, this says that ⟨µλ◦⟩ = y◦, proving (vi).

We also provide the proof of Lemma 0.2 from the introduction, which in the one-
dimensional case gives a bit more detail than Lemma 5.3.

Proof of Lemma 0.2 Properties (i), (ii), (vi) follow from Lemma 5.3 (i), prop-
erties (iii) and (iv) follow from Lemma 5.3 (ii), and property (v) follows from
Lemma 5.3 (vi).

By Lemma 5.3 (i), I ∈ Conv+∞(R), so ∂I : UI → UlogZ is a bijection. Since
UI = (y−, y+) by property (v), and UlogZ = R, this implies property (viii). The
fact that I ′′ > 0 on UI follows from Proposition 4.30 (iii)’.

We recall that if f is smooth and strictly increasing and f(x) = y, then ∂
∂x
f(x) =

1/( ∂
∂y
f−1(y)). Applying this to ∂I and ∂ logZ, which are each other’s inverses

by Lemma 4.28, using the fact that ∂ logZ(0) = ρ, and Lemma 2.19, we see that
∂2I(ρ) = 1/(∂2 logZ(0)) = 1/σ2, proving part (viii).
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To prove part (ix), finally, by symmetry it suffices to prove the statement for y+.
If y+ <∞, then

e−I(y+) = inf
λ∈R

[
e logZ(λ)− y+λ

]
= inf

λ∈R
e−y+λZ(λ)

= inf
λ∈R

e−y+λ
∫
eλyµ(dy) = inf

λ∈R

∫
eλ(y − y+)µ(dy)

= lim
λ→∞

∫
eλ(y − y+)µ(dy) = µ({y+}),

which completes our proof.

As an application of the Gärtner-Ellis theorem, we can give a quick proof of a
multi-dimensional version of Cramér’s theorem.

Theorem 5.4 (Multi-dimensional Cramér’s theorem) Let (Xk)k≥1 be i.i.d.
Rd-valued random variables with common law µ. Assume that the moment gener-
ating function Z(λ) defined in (5.1) is finite for all λ ∈ Rd. Then the probability
measures

µn := P
[ 1
n

n∑
k=1

Xk ∈ ·
]

(n ≥ 1)

satisfy the large deviation principle with speed n and good rate function I given by

I(y) := sup
λ∈Rd

[
⟨λ, y⟩ − logZ(λ)

]
.

Proof We apply the Gärtner-Ellis theorem with sn = n and Γ(λ) = logZ(λ).
Indeed, by the independence of the random variables (Xk)k≥1, we have

1

n
logE

[
e
∑n

k=1⟨λ,Xk⟩] = logZ(λ)

for each n, so the right-hand side of (4.15) is constant as a function of n. It has
been proved in Lemma 5.2 that logZ ∈ Conv1(Rd), so Theorem 4.33 is applicable
and the claim follows.

Remark We recall that elementary properties of the rate function I are listed in
Lemma 5.3.

Remark Our proof of Theorem 5.4 shows that the condition that Z(λ) is finite
for all λ ∈ Rd can be replaced by the weaker assumption that logZ ∈ Conv1(Rd).
In fact, it suffices if Z(λ) < ∞ for λ in some open environment of the origin, see
[DZ98, Section 2.2.1], but this strongest version of Cramér’s theorem cannot be
derived from the Gärtner-Ellis theorem.
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5.2 Moderate deviations

We next turn our attention to moderate deviations. The following theorem im-
plies Theorem 0.4. For notational simplicity, we only state and prove the one-
dimensional case. The multi-dimensional case is similar, with I(y) = 1

2
⟨y,Cov−1y⟩,

where Cov is the covariance matrix of X1 and Cov−1 is its inverse.

Theorem 5.5 (Moderate deviations) Let (Xk)k≥1 be a sequence of i.i.d. ab-
solutely integrable real random variables with mean E[|X1|] = 0 and variance
σ2 = Var(X1) > 0. Assume that there exists an ε > 0 such that E[eλX1 ] < ∞
for all |λ| ≤ ε. Then, for each 1

2
< α < 1, the probability measures

µn := P
[ 1

nα

n∑
k=1

Xk ∈ ·
]

(n ≥ 1)

satisfy the large deviation principle with speed n2α−1 and good rate function I given
by

I(y) :=
1

2σ2
y2 (y ∈ R).

Proof We apply the Gärtner-Ellis theorem with sn = n2α−1. Let Z(λ) := E[eλX1 ]

(λ ∈ R). Then, as in the proof of Theorem 5.4, log
∫
e ⟨λ, x⟩µn(dx) = n logZ(λ).

It follows that

n1−2α log

∫
en

2α−1λxµn(dx) = n1−2α logE
[
en

α−1λ
∑n

k=1Xk
]

= n2−2α logE
[
en

α−1λX1
]
= n2−2α logZ(nα−1λ).

It follows from Lemma 2.19 that logZ is infinitely differentiable with logZ(0) =
0, (logZ)′(0) = 0, and (logZ)′′(0) = 1

2
σ2, so approximately logZ(nα−1λ) ≈

1
2
σ2n2α−2λ2 when n is large and in this way we see that (4.15) is satisfied with

Γ(λ) = 1
2
σ2λ2 (λ ∈ R).

Then clearly Γ ∈ Conv+∞(R), so to complete the proof, it suffices to notice that by
Exercise 4.9, the Legendre transform of Γ is the function I defined above.
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5.3 Relative entropy

In the final section of this chapter, we will prove Sanov’s theorem, which generalizes
the Boltzmann-Sanov theorem to Polish spaces. To prepare for this, in the present
section, we study the rate function, which is the relative entropy.

Let E be a Polish space and let M1(E) be the space of probability measures
on E, equipped with the topology of weak convergence, under which M1(E) is
Polish. Recall that by the Radon-Nikodym theorem, if ν, µ ∈ M1(E), then ν has
a density w.r.t. µ if and only if ν is absolutely continuous w.r.t. µ, i.e., ν(A) = 0
for all A ∈ B(E) such that µ(A) = 0. We denote this as ν ≪ µ and let dν

dµ
denote

the density of ν w.r.t. µ, which is uniquely defined up to a.s. equality w.r.t. µ. For
any ν, µ ∈ M1(E), we define the relative entropy H(ν|µ) of ν w.r.t. µ as

H(ν|µ) :=


∫

log
(dν
dµ

)
dν =

∫
dν

dµ
log

(dν
dµ

)
dµ if ν ≪ µ,

∞ otherwise.

Note that if ν ≪ µ, then a.s. equality w.r.t. µ implies a.s. equality w.r.t. ν, which
shows that the first formula for H(ν|µ) is unambiguous.

The following property of the relative entropy is well-known, and easy to prove.

Lemma 5.6 (Unique minimizer) For µ, ν ∈ M1(E), one has H(ν|µ) ≥ 0 with
equality if and only if ν = µ.

Proof Define Φ : [0,∞) → R by

Φ(z) :=

∫ z

1

dy

∫ y

1

dx
1

x
=

{
z log z − z + 1 (z > 0),
1 (z = 0).

(5.4)

Then Φ is continuous at 0 and

Φ′(z) = log z and Φ′′(z) =
1

z
(z > 0).

We observe that∫
dµΦ

(
dν

dµ

)
=

∫
dν log

(
dν

dµ

)
−
∫

dν + 1 = H(ν|µ).

Since Φ(1) = 0 and Φ(z) > 0 for all z ̸= 1, we see that

H(ν|µ) =
∫

dµΦ

(
dν

dµ

)
≥ 0,
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with equality if and only if dν/dµ = 1 a.s. w.r.t. µ.

Our next aim is to prove a variational formula for the relative entropy that can
be interpreted as a sort of infinite dimensional Legendre transform. In particular,
when E is finite, it shows that the functions H( · |µ) and Γµ are each other’s
Legendre transforms. As before, we let Bb(E) and Cb(E) denote the linear spaces
of all bounded Borel-measurable and bounded continuous functions f : E → R,
respectively. For each µ ∈ M1(E), we define Γµ : Bb(E) → R by

Γµ(ϕ) := logZµ(ϕ) with Zµ(ϕ) :=

∫
E

eϕ(x)µ(dx). (5.5)

Proposition 5.7 (Variational formula) Let E be a Polish space and let µ, ν ∈
M1(E). Then

H(ν|µ) = sup
ϕ∈Bb(E)

[
⟨ν, ϕ⟩ − Γµ(ϕ)

]
= sup

ϕ∈Cb(E)

[
⟨ν, ϕ⟩ − Γµ(ϕ)

]
. (5.6)

The proof of Proposition 5.7 will be split into a number of steps. For each ϕ ∈
Bb(E), we let µϕ denote the probability measure

µϕ(dx) :=
1

Zµ(ϕ)
eϕ(x)µ(dx).

The following lemma says that the functions H( · |µ) and Γµ are dual in a sense
that is reminiscent of Lemma 4.24.

Lemma 5.8 (Duality relation) One has

⟨ν, ϕ⟩ ≤ H(ν|µ) + Γµ(ϕ)
(
ν ∈ M1(E), ϕ ∈ Bb(E)

)
, (5.7)

with equality if and only if ν = µϕ.

Proof We trivially have a strict inequality if H(ν|µ) = ∞ so we may assume that
ν ≪ µ and H(ν|µ) =

∫
log(dν/dµ)dν < ∞. We can split the measure µ in an

absolutely continuous and singular part w.r.t. ν, i.e., we can find a measurable set
A and nonnegative measurable function h such that ν(A) = 0 and

µ(dx) = 1A(x)µ(dx) + h(x)ν(dx).
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Weighting the measures on both sides of this equation with the density dν/dµ,
which is zero on A a.s. w.r.t. µ, we see that

ν(dx) =
dν

dµ
(x)h(x)ν(dx),

which shows that h(x) = (dν/dµ)−1 a.s. with respect to ν. Since r 7→ log(r) is a
strictly concave function, Jensen’s inequality gives∫

ν(dx)ϕ(x)−H(ν|µ) =
∫
ν(dx)

(
log

(
eϕ(x)

)
− log

(dν
dµ

(x)
))

=

∫
ν(dx) log

(
eϕ(x)(

dν

dµ
)−1(x)

)
≤ log

(∫
ν(dx)eϕ(x)h(x)

)
≤ log

(∫
µ(dx)eϕ(x)

)
= Γµ(ϕ).

This proves (5.7). Since the logarithm is a strictly concave function, the first
inequality here (which is an application of Jensen’s inequality) is an equality if

and only if the function eϕ(x)(dν
dµ
)−1 is a.s. constant w.r.t. ν. Since the logarithm

is a strictly increasing function and eϕ is strictly positive, the second inequality is
an equality if and only if µ = hν, i.e., if µ≪ ν. Thus, we have equality in (5.7) if
and only if µ≪ ν and

ν(dx) =
1

Z
eϕ(x)µ(dx),

where Z is some constant. Since ν is a probability measure, we must have Z =
Z(ϕ).

Lemma 5.9 (First variational formula) One has

H(ν|µ) = sup
ϕ∈Bb(E)

[
⟨ν, ϕ⟩ − Γµ(ϕ)

]
(5.8)

Proof Lemma 5.8 implies that

H(ν|µ) ≥ sup
ϕ∈Bb(E)

[
⟨ν, ϕ⟩ − Γµ(ϕ)

] (
ν ∈ M1(E)

)
.

We need to show that this is in fact an equality. We first treat the case that ν ≪ µ.
Let ψ := log(dν/dµ), so that

H(ν|µ) =
∫

dµeψψ.
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Note that the function z 7→ ezz is bounded from below. We set ψm := m ∧ ψ and
ψn,m := −n ∨ ψm, and consider the expression

⟨ν, ψn,m⟩ − Γµ(ψn,m) =

∫
dµ eψψn,m − log

∫
dµ eψn,m .

Letting first n→ ∞ and thenm→ ∞, using first dominated convergence and then
monotone convergence, we see that our expression converges to H(µψ|µ). Since
ψn,m ∈ Bb(E), this shows that

H(ν|µ) ≤ sup
ϕ∈Bb(E)

[
⟨ν, ϕ⟩ − Γµ(ϕ)

] (
ν ∈ M1(E), ν ≪ µ

)
.

If ν is not absolutely continuous w.r.t. µ, then we can find a measurable set A such
that ν(A) > 0 but µ(A) = 0. Then

⟨ν, c1A⟩ − Γµ(c1A) = cν(A).

Since c is arbitrary, it follows that H(ν|µ) = ∞ = sup
ϕ∈Bb(E)

[
⟨ν, ϕ⟩ − Γµ(ϕ)

]
.

To also prove the second variational formula in Proposition 5.7, we will need an
abstract result from measure theory. Let E be a metrizable space and let ϕn, ϕ

be bounded real functions on E. We write ϕn
bp−→ ϕ if the ϕn converge in a

bounded pointwise way to ϕ, i.e., ϕn(x) → ϕ(x) for each x ∈ E and moreover
supn supx∈E |ϕn(x)| < ∞. We say that a set A of bounded real functions on E is

closed under bounded pointwise convergence if A ∋ ϕn
bp−→ ϕ implies ϕ ∈ A. The

bounded pointwise closure of a set B ⊂ Bb(E) is defined as

bpclos(B) :=
⋂{

A : A ⊃ B, A is closed under bounded pointwise convergence
}
.

It is easy to see that bpclos(B) is closed under bounded pointwise convergence and
that it is in fact the smallest set containing B with this property. We note that in
general, bpclos(B) is not the same as

bp(B) :=
{
ϕ ∈ Bb(E) : ∃ ϕn ∈ B s.t. ϕn

bp−→ ϕ
}
,

nor is bpclos(B) equal to bp2(B) := bp(bp(B)), or even to
⋃∞
n=1 bp

n(B). This
is similar to the σ-field generated by a given collection of sets, which can also
not be defined in a constructive way. We cite the following lemma from [EK86,
Prop. 3.4.2].
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Lemma 5.10 (Bounded pointwise closure) Let E be a metrizable space. Then
bpclos(Cb(E)) = Bb(E).

Remark It is well-known, and not hard to prove, that Bb(E) is closed under
bounded pointwise convergence. Since Cb(E) ⊂ Bb(E), this immediately implies
that bpclos(Cb(E)) ⊂ Bb(E). To prove the other inequality, one first proves that
indicator functions of open sets are bounded pointwise limits of continuous func-
tions and then uses the Dynkin class theorem. For details we refer to [EK86,
Prop. 3.4.2].

Proof of Proposition 5.7 The first equality in (5.6) has already been proved in
Lemma 5.9, so it remains to prove the second equality. We define

I(ν) := sup
ϕ∈Bb(E)

[
⟨ν, ϕ⟩ − Γµ(ϕ)

]
,

I ′(ν) := sup
ϕ∈Cb(E)

[
⟨ν, ϕ⟩ − Γµ(ϕ)

]
,

 (
ν ∈ M1(E)

)
.

Since the supremum over a smaller set is smaller, we see immediately that I ′ ≤ I.
Let us define

G :=
{
ϕ ∈ Bb(E) : ⟨ν, ϕ⟩ − Γµ(ϕ) ≤ I ′(ν) ∀ν ∈ M1(E)

}
.

Trivially Cb(E) ⊂ G. Our aim is to show that G = Bb(E), which implies I ≤ I ′ and
hence I = I ′. It follows from (5.5) and the dominated convergence theorem that

ϕn
bp−→ ϕ implies Γµ(ϕn) → Γµ(ϕ). Also, for each ν ∈ M1(E), ϕn

bp−→ ϕ implies
⟨ν, ϕn⟩ → ⟨ν, ϕ⟩. It follows that the set G is closed under bounded pointwise
convergence, so G = Bb(E) by Lemma 5.10.

Lemma 5.11 (Good rate function) For each µ ∈ M1(E), the function H( · |µ)
is a good rate function.

The proof of Lemma 5.11 makes use of the following exercise.

Exercise 5.12 (Conditions for uniform integrability) Let (Ω,F , µ) be a fi-
nite measure space. A set C of real measurable functions on Ω is called uniformly
integrable if for each ε > 0 there exists a K <∞ such that

sup
f∈C

∫
1{|f |≥K}|f |dµ ≤ ε.
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Show by counterexample that the condition

sup
f∈C

∫
|f |dµ <∞

does not imply uniform integrability of C. Show on the other hand that if there
exists a nonnegative function ψ : [0,∞) → [0,∞) such that limr→∞ ψ(r)/r = ∞
and

sup
f∈C

∫
ψ(|f |)dµ <∞,

then C is uniformly integrable. (In fact, by the De la Vallée-Poussin theorem, this
latter condition is also necessary and ϕ can be chosen such that it is moreover
increasing and convex, but we will not need this deeper converse.)

Proof of Lemma 5.11 We must show that for each r <∞, the level set

Lr :=
{
ν ∈ M1(E) : H(ν|µ) ≤ r

}
is a compact subset of M1(E). We observe that for each ϕ ∈ Cb(E), the function
ν 7→ ⟨ν, ϕ⟩−Γµ(ϕ) is continuous with respect to the topology onM1(E). Therefore,
since the supremum of a collection of continuous functions is lower semi-continuous,
Proposition 5.7 implies that H( · |µ) is lower semi-continuous and hence Lr is
closed. It therefore suffices to show that Lr is relatively compact.

Let L1(µ) be the Banach space consisting of all equivalence classes of w.r.t. µ a.e.
equal, absolutely integrable functions, equipped with the norm ∥f∥1 :=

∫
|f |dµ.

Then, identifying a measure with its density, we have

{ν ∈ M(E) : ν ≪ µ} ∼= {f ∈ L1(µ) : f ≥ 0},

and we may identify Lr with the set

L′
r :=

{
f ∈ L1(µ) : f ≥ 0,

∫
fdµ = 1,

∫
f log fdµ ≤ r

}
.

Applying Exercise 5.12 to the function Φ defined in (5.4), we see that the set L′
r

is uniformly integrable.

By Prohorov’s theorem (Proposition 3.1), to show that Lr is relatively compact,
it suffices to show that for each ε > 0 there exists a compact set D ⊂ E such
that supν∈Lr

ν(E\D) ≤ ε. Since L′
r is uniformly integrable, we can find a K <∞

such that supf∈L′
r

∫
1{f≥K}fdµ ≤ 1

2
ε. Moreover, since E is Polish, for each δ > 0,
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we can find a compact set D ⊂ E such that µ(E\D) ≤ δ. Applying this with
δ = ε/(2K), we see that

sup
ν∈Lr

ν(E\D) = sup
f∈L′

r

{∫
1{f<K}\Dfdµ+ 1{f≥K}\Dfdµ

}
≤ Kµ(E\D) + 1

2
ε ≤ ε,

proving the relative compactness of Lr.

Remark We have used the variational formula for H(ν |µ) (Proposition 5.7) to
prove that ν 7→ H(ν |µ) is lower semi-continuous with respect to the topology on
M1(E). It is possible to give a direct proof of this fact, see [DZ93, Lemma 6.2.16],
but this is quite involved.

5.4 Sanov’s theorem

The aim of this section is to prove the following result, which (at least in the case
E = R) goes back to Sanov [San61].

Theorem 5.13 (Sanov’s theorem) Let (Xk)k≥0 be i.i.d. random variables tak-
ing values in a Polish space E, with common law µ, and let

Mn :=
1

n

n∑
k=1

δXk
(n ≥ 1)

be the empirical laws of the (Xk)k≥0. Then the laws ρn := P[Mn ∈ · ], viewed as
probability laws on the Polish space M1(E) of probability measures on E, equipped
with the topology of weak convergence, satisfy the large deviation principle with
speed n and rate function H( · |µ).

Proof We first consider the case that E is compact. In this case, every continuous
real function on E is automatically bounded, so we simply write C(E) instead of
Cb(E). Since C(E) is separable, we may choose a countable dense set {ϕi : i ∈
N+} ⊂ C(E). For each i ∈ N+, we define Ψi : M1(E) → R by Ψi(ν) :=

∫
ϕidν.

The (Ψi)i∈N+ are continuous by the definition of weak convergence of measures.
We claim that they also separate points. To see this, imagine that ν, ν ′ ∈ M1(E)
and Ψi(ν) = Ψi(ν

′) for all i ≥ 1. Then
∫
ϕdν =

∫
ϕdν ′ for all ϕ ∈ C(E) by the

fact that {ϕi : i ∈ N+} is dense, and therefore ν = ν ′.
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We want to apply Theorem 3.16 about projective limits. Since E is compact, the
same is true for M1(E), so exponential tightness of the measures ρn comes for free.

For eachm ≥ 1, let Ψ⃗m : M1(E) → Rm be defined as Ψ⃗m(x) =
(
Ψ1(ν), . . . ,Ψm(ν)

)
(ν ∈ M1(E)). We want to check condition (ii) of Theorem 3.16, i.e., we want to
show that for each m ≥ 1, there exists a good rate function Im on Rm such
that the measures ρn ◦ Ψ⃗−1

m satfisfy the large deviation principle with speed n
and rate function Im. For this aim, we want to apply the Gärtner-Ellis theorem
(Theorem 4.33). Letting ⟨ · , · ⟩ denote the standard inner product on Rm, we
observe that for each λ ∈ Rm, one has

1

n
log

∫
Rm

en⟨λ, x⟩ρn ◦ Ψ⃗−1
m (dx) =

1

n
log

∫
Rm

en
∑m

i=1 λiΨi(ν)ρn(dν)

=
1

n
logE

[
e
∑n

k=1

∑m
i=1 λiΨi(δXk

)] = 1

n
logE

[
e
∑n

k=1

∑m
i=1 λiϕi(Xk)

]
=

1

n
log

n∏
k=1

E
[
e
∑m

i=1 λiϕi(Xk)
]
= logE

[
e
∑m

i=1 λiϕi(X1)
]
= Γµ

( m∑
i=1

λiϕi
)
,

where Γµ is defined in (5.5). Applying Lemma 5.2 to the image measure µ ◦ Ψ⃗−1
m ,

we see that the function

Rm ∋ λ 7→ Γµ
( m∑
i=1

λiϕi
)
∈ [0,∞)

is an element of Conv∞(Rm), so the Gärtner-Ellis theorem (Theorem 4.33) is

applicable and tells us that the the measures ρn ◦ Ψ⃗−1
m satisfy the large deviation

principle with speed n and rate function Im given by

Im(x) = sup
λ∈Rm

[
⟨λ, x⟩ − Γµ

( m∑
i=1

λiϕi
)]

(x ∈ Rm).

We have now also checked condition (ii) of Theorem 3.16 about projective limits,
so we can use that theorem to conclude that the measures ρn satfisfy the large
deviation principle with speed n and some good rate function I. Lemma 3.17
moreover tells us that

Im(Ψ⃗m(ν)) ↑ I(ν) as m ↑ ∞
(
ν ∈ M1(E)

)
.

Let Φm denote the linear span of the functions ϕ1, . . . , ϕm and let Φ∞ denote the
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linear span of the functions {ϕi : i ∈ N+}. Then

Im(Ψ⃗m(ν)) = sup
λ∈Rm

[ m∑
i=1

λiΨi(ν)− Γµ
( m∑
i=1

λiϕi
)]

= sup
λ∈Rm

[ m∑
i=1

λi

∫
ϕi dν − Γµ

( m∑
i=1

λiϕi
)]

= sup
ϕ∈Φm

[ ∫
ϕ dν − Γµ(ϕ)

]
,

so our previous formula implies that

I(ν) = sup
ϕ∈Φ∞

[
⟨ν, ϕ⟩ − Γµ(ϕ)

] (
ν ∈ M1(E)

)
,

where as in the previous subsection we adopt the notation ⟨ν, ϕ⟩ :=
∫
ϕ dν. Since

Φ∞ is dense in C(E) and the functions ϕ 7→ ⟨ν, ϕ⟩ and ϕ 7→ Γµ(ϕ) are continuous,
we can with the help of Proposition 5.7 conclude that

I(ν) = sup
ϕ∈C(E)

[
⟨ν, ϕ⟩ − Γµ(ϕ)

]
= H(ν|µ)

(
ν ∈ M1(E)

)
.

This concludes the proof in the special case that E is compact.

To prove the general statement, let E be a metrizable compactification of E.
By Proposition 3.9, such a compactification exists and E is a Gδ-subset of E. By
what we have already proved, the laws ρn, viewed as probability laws on the Polish
space M1(E) of probability measures on E, equipped with the topology of weak
convergence, satisfy the large deviation principle with speed n and rate function
H( · |µ).

We view M1(E) as a subset of M1(E). By Exercise 3.10, the topology on M1(E)
is the induced topology from M1(E). Since M1(E) is Polish in this topology,
it must be a Gδ-subset of M1(E). By the restriction principle (Lemma 1.17),
using the fact that H( · |µ) is a good rate function (which has been proved in
Lemma 5.11) and the fact that H( · |µ) = ∞ on M1(E)\M1(E), we conclude
that the laws ρn, viewed as probability laws on M1(E), satisfy the large deviation
principle with speed n and rate function H( · |µ).

Remark For some purposes, the topology of weak convergence on M1(E) is too
weak. With some extra work, it is possible to improve Theorem 5.13 by showing
that the emperical measures satisfy the large deviation principle with respect to
the (much stronger) topology of strong convergence of measures; see [DS89, Sec-
tion 3.2]. Another very elegant proof of Sanov’s theorem can be found in [Csi06].



Chapter 6

Markov chains

6.1 The Perron-Frobenius theorem

In Theorem 2.16, we proved a LDP for Markov chains whose transition kernel P
is strictly positive everywhere. In the present chapter, we will relax this condition
and assume only that P is irreducible. In fact, we will generalize even more and
also drop the assumption that P is a probability kernel. For example, this allows us
to consider the case that the row sums of P are less than one, which is appropriate
when we want to find the asymptotics of the probability that a Markov chain stays
for a long time in a finite subset of the state space (compare Theorem 0.8). For
some problems, it is also natural to allow row sums larger than one. Our proofs will
make use of the Gärtner-Ellis theorem and give new insight in the rate function
from Theorem 2.16.

We will need the Perron-Frobenius theorem. In this section, we just state the
facts we need. Proofs can be found in Appendix A. For any complex or real
square matrix A, we let σ(A) denote its spectrum, i.e., σ(A) is the set of complex
eigenvalues of A. Equivalently,

σ(A) =
{
λ ∈ C : det(A− λ1) = 0

}
,

where 1 denotes the identity matrix and det the determinant. The quantity

ρ(A) := sup
{
|λ| : λ ∈ σ(A)

}
is called the spectral radius of A. We note that if A†(x, y) := A(y, x) (x, y ∈ S)
denotes the transpose of A, then one has

det(A) = det(A†), σ(A) = σ(A†), and ρ(A) = ρ(A†). (6.1)

149
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If S is a finite set, ∥ · ∥ is a norm on RS, and A is a real matrix indexed by S,
then the operator norm of A is defined as

∥A∥ := sup
{
∥Af∥ : ∥f∥ ≤ 1

}
.

In other words, ∥A∥ is the optimal constant such that the inequality ∥Af∥ ≤
∥A∥ · ∥f∥ holds for all f ∈ RS. In particular, for the supremumnorm ∥f∥∞ :=
supx∈S |f(x)| and the ℓ1-norm ∥f∥1 :=

∑
x∈S |f(x)| one can check that the associ-

ated operator norms are given by

∥A∥∞ = sup
x∈S

∑
y∈S

∣∣A(x, y)∣∣ and ∥A∥1 = sup
y∈S

∑
x∈S

∣∣A(x, y)∣∣. (6.2)

Gelfand’s formula says that for any operator norm, one has

ρ(A) = lim
n→∞

∥An∥1/n = inf
n≥1

∥An∥1/n. (6.3)

We have already introduced basic terminology and notation for nonnegative ma-
trices in Section 2.4. If A is an aperiodic irreducible nonnegative matrix, then one
has

ρ(A) = lim
n→∞

(
An(x, x)

)1/n
= sup

n≥1

(
An(x, x)

)1/n
(x ∈ S), (6.4)

and more generally

ρ(A) = lim
n→∞

(
An(x, y)

)1/n
(x, y ∈ S). (6.5)

These formulas hold more generally even when A is periodic, but in this case we
must take the limit only along such values of n for which An(x, y) > 0. Even more
generally, for any nonnegative matrix A that is not required to be aperiodic or
irreducible, one has

ρ(A) = sup
x∈S

sup
n≥1

(
An(x, x)

)1/n
. (6.6)

Let A and B be nonnegative matrices, indexed by the same finite set S, let r be a
positive constant, and let f ∈ RS be a positive function. Then we write A ∼r,f B
if

B(x, y) = r−1f(x)−1A(x, y)f(y) (x, y ∈ S). (6.7)

We write A ∼r B if A ∼r,f B for some positive function f and A ∼ B if A ∼r B
for some r > 0. By induction, (6.7) is easily seen to imply that

Bn(x, y) = r−nf(x)−1An(x, y)f(y) (n ≥ 0, x, y ∈ S),
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which using (6.6) shows that

A ∼r B implies ρ(A) = rρ(B). (6.8)

It is easy to check that ∼ is an equivalence relation. Two nonnegative matrices A
and B such that A ∼ B are called equivalent.

We will need the following version of the well-known Perron-Frobenius theorem.

Theorem 6.1 (Perron-Frobenius) Let A be an irreducible nonnegative matrix
indexed by a finite set S. Then there exist a positive constant r and a nonnegative
function f that is not identically zero such that

Af = rf (6.9)

The positive constant r is uniquely determined by (6.9) and f is unique up to scalar
multiples. Moreover, one has r = ρ(A) and f(x) > 0 for all x ∈ S.

We call the constant f from Theorem 6.1 the right Perron-Frobenius eigenfunction
and r the associated eigenvalue. Applying Theorem 6.1 to A†, we see that there also
exists a positive constant q and a positive function g such that gA = qg. We call g
the left Perron-Frobenius eigenfunction. By (6.1) we have r = ρ(A) = ρ(A†) = q,
so the left and right Perron-Frobenius eigenfunctions have the same eigenvalue.
If P is an irreducible probability kernel, then its invariant law is the left Perron-
Frobenius eigenfunction and the constant function f(x) = 1 for all x ∈ S is the
right Perron-Frobenius eigenfunction. Both eigenfunctions have the eigenvalue 1.
Indeed, it follows from (6.3) applied to the norm ∥ · ∥∞ that

ρ(P ) = 1 for each probability kernel P. (6.10)

The following lemma is a simple consequence of the Perron-Frobenius theorem.
Note that below, in view of formula (6.8) and the fact that ρ(P ) = 1, the fact that
A ∼ P implies that A ∼r P with r = ρ(A).

Lemma 6.2 (Equivalent probability kernel) Let A be an irreducible nonneg-
ative matrix indexed by a finite set S. Then there exists a unique probability kernel
P such that A ∼ P .

Proof For given r and f , setting

P (x, y) := r−1f(x)−1A(x, y)f(y) (x, y ∈ S) (6.11)
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defines a probability kernel if and only if∑
y∈S

r−1f(x)−1A(x, y)f(y) = 1 (x ∈ S),

which is equivalent to Af = rf . Therefore, the Perron-Frobenius theorem says
that there exist r and f such that (6.11) defines a probability kernel. Here, r
is uniquely determined and f is unique up to scalar multiples. We observe that
multiplying f by a scalar in (6.11) does not change P , so we conclude that P is
uniquely determined.

6.2 The rate function

Our aim is to give an alternative proof of Theorem 2.16 using the Gärtner-Ellis
theorem and at the same time relax its assumptions. As a preparation, we study
the rate function of Theorem 2.16. Generalizing our earlier definitions, if ν is a
probability measure on a finite set S and µ is a finite measure on S then we define
the relative entropy of ν with respect to µ by

H(ν|µ) :=


∑
x∈S

ν(x) log
ν(x)

µ(x)
if ν ≪ µ,

∞ otherwise,

where the notation ν ≪ µ means that ν is absolutely continuous with respect to
µ, i.e., ν(x) = 0 whenever µ(x) = 0. We note that in this more general setting,
the formula for H(ν|µ) given in Section 2.2 involving the function ψ is defined in
(2.1) no longer holds. Moreover, it may happen that H(ν|µ) < 0. It is sometimes
convenient to view H( · |µ) as a function on RS, rather than M1(S). To that aim,
we define H(ν|µ) := ∞ if ν is not a probability measure. Note that even though
we allow for the case that µ is not a probability measure, we never “allow” for
the case that ν is not a probability measure, in the sense that the domain of the
convex function H( · |µ) only contains probability measures!

Generalizing notation first introduced in Section 2.4, for any probability law π on
S and nonnegative matrix A we let π ∗ A denote the nonnegative matrix defined
as

π ∗ A(x, y) := π(x)A(x, y) (x, y ∈ S).
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Recall from Section 2.3 that for any ν ∈ M1(S
2), we let

ν−(x) :=
∑
y∈S

ν(x, y) and ν+(y) :=
∑
x∈S

ν(x, y)

denote the left and right marginals of ν, and we let

V(S) :=
{
ν ∈ M1(S

2) : ν− = ν+
}

denote the space of probability laws ν on S2 whose left and right marginals agree.
For any nonnegative matrix A indexed by S, we define I

(2)
A : M1(S

2) → R by

I
(2)
A (ν) :=

{
H(ν|ν− ∗ A) if ν ∈ V(S),
∞ otherwise,

which generalizes the definition given for probability kernels in Theorem 2.16. In
line with notation introduced for the relative entropy, we define I

(2)
A (ν) := ∞ if ν

is not a probability measure.

We will show that I
(2)
A is an essentially well-behaved convex function and determine

its Legendre transform. For each ϕ ∈ RS2
, we let Aϕ denote the nonnegative matrix

defined as
Aϕ(x, y) := A(x, y)eϕ(x, y) (x, y ∈ S), (6.12)

and we define ΓA : RS2 → R by

ΓA(ϕ) := log ρ(Aϕ)
(
ϕ ∈ RS2)

.

The function ΓA will play the role of the free energy in our application of the
Gärtner-Ellis theorem. The following proposition says that ΓA is the Legendre
transform of the rate function I

(2)
A .

Proposition 6.3 (Legendre transform of the rate function) Let A be an ir-

reducible nonnegative matrix indexed by a finite set S. Then I
(2)
A ∈ Conv∞(RS2

),
and ΓA is its Legendre transform.

Remark In the case of the Boltzmann-Sanov theorem, we have an explicit formula
both for the free energy and for the rate function. In the case of Cramér’s theorem,
we have an explicit formula for the free energy, but not for the rate function. In
the case of Markov processes, we are in the converse situation: we have an explicit
formula for the rate function, but not for the free energy (since it is not possible
to calculate the spectral radii of the matrices Aϕ explicitly).
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The proof of Proposition 6.3 is quite long and will need some preparations. For
any E ⊂ S2, we set

V(E) :=
{
ν ∈ V(S2) : ν(x, y) = 0 ∀(x, y) ∈ S2\E

}
,

U(E) :=
{
ν ∈ V(E) : ν(x, y) > 0 ∀(x, y) ∈ E

}
.

(6.13)

Recall the definition of equivalent nonnegative matrices from (6.7). The following
two lemmas and Lemma 6.2 will allow us to reduce the proof of Proposition 6.3 to
the case that A is a probability kernel.

Lemma 6.4 (Rate function for equivalent matrices) If A and B are non-

negative matrices such that A ∼r B, then I
(2)
A (ν) = I

(2)
B (ν)− log r (ν ∈ RS2

).

Proof Let E := {(x, y) ∈ S2 : A(x, y) > 0} = {(x, y) ∈ S2 : B(x, y) > 0}. Since

I
(2)
B (ν) = ∞ = I

(2)
A (ν) for ν ̸∈ V(E), it suffices to prove the claim for ν ∈ V(E). If

A and B are related as in (6.7), then

I
(2)
B (ν) =

∑
(x,y)∈E

ν(x, y) log
ν(x, y)

ν−(x)r−1f(x)−1A(x, y)f(y)
=

∑
(x,y)∈E

ν(x, y)
[
log r + log f(x)− log f(y) + log

ν(x, y)

ν−(x)A(x, y)

]
= log r + I

(2)
A (ν),

where in the last step we have used that ν is a probability measure such that
ν− = ν+.

Lemma 6.5 (Free energy for equivalent matrices) If A and B are nonneg-
ative matrices such that A ∼r B, then ΓA(ν) = ΓB(ν) + log r (ν ∈ RS2

).

Proof Immediate from (6.8) and the observation that A ∼r B implies Aϕ ∼r Bϕ.

From now on, we fix an irreducible nonnegative matrix A indexed by a finite set
S, we set E := {(x, y) ∈ S2 : A(x, y) > 0}, and we define V(E) and U(E) as in
(6.13). By Lemma 6.2, for each ϕ ∈ RS2

, there exists a unique probability kernel
Pϕ such that Aϕ ∼ Pϕ. Since A is irreducible, so are Aϕ and Pϕ, so Pϕ has a unique
invariant law πϕ. We use this to define a map χ : RS2 → U(E) by

χϕ := πϕ ∗ Pϕ (ϕ ∈ RS2

).

We will later see that χ is the gradient of ΓA.
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Lemma 6.6 (Gradient map) The function χ maps RS2
into U(E) and is sur-

jective.

Proof Since πϕ is the invariant law of Pϕ, the first and second marginals of χϕ
agree. Moreover χϕ(x, y) = πϕ(x)Pϕ(x, y) > 0 for all (x, y) such that A(x, y) > 0,
and χϕ(x, y) = 0 when A(x, y) = 0. This shows that χϕ ∈ U(E) for all ϕ ∈ RS2

.

To see that χ is surjective, fix ν ∈ U(E). By Exercise 2.15, there exists a prob-
ability kernel P on S with invariant law π such that ν = π ∗ P . The definition
of U(E) implies that P (x, y) > 0 if and only if A(x, y) > 0, so we can find a
function ϕ ∈ RS2

such that P = Aϕ. Then clearly P ∼ Aϕ, so ν = χϕ, proving the
surjectivity of χ : RS2 → U(E).

Comparing the following lemma with Lemma 4.24 explains why we call χ the
gradient of ΓA.

Lemma 6.7 (Duality relation) Let A be an irreducible nonnegative matrix in-
dexed by a finite set S. Then one has

⟨ν, ϕ⟩ ≤ I
(2)
A (ν) + ΓA(ϕ)

(
ν ∈ V(E), ϕ ∈ RS2)

, (6.14)

with equality if and only if ν = χϕ.

Proof It follows from Lemma 2.17 that

I
(2)
Pϕ

(ν) ≥ 0
(
ν ∈ V(E)

)
, (6.15)

with equality if and only if ν = χπ. Since Pϕ is a probability kernel, we have
ρ(Pϕ) = 1 by (6.10) and hence (6.8) shows that Aϕ ∼r Pϕ with r := ρ(Aπ). By
Lemma 6.4, it follows that

I
(2)
Pϕ

(ν) = I
(2)
Aϕ

(ν) + log ρ(Aϕ).

Here log ρ(Aϕ) = ΓA(ϕ) and

I
(2)
Aϕ

(ν) =
∑

(x,y)∈E

ν(x, y) log
ν(x, y)

ν−(x)A(x, y)eϕ(x,y)

=
∑

(x,y)∈E

ν(x, y)
[
log

ν(x, y)

ν−(x)A(x, y)
− ϕ(x, y)

]
= I

(2)
A (ν)− ⟨ν, ϕ⟩.
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Inserting these formulas into (6.15), we arrive at (6.14).

Before we can prove Proposition 6.3 we need further knowledge of the gradient.
Recall that E := {(x, y) : A(x, y) > 0}. For any ν ∈ RS2

, we define ν− and ν+ as
in (2.4). We set

A :=
{
ν ∈ RS2

: ν− = ν+, ν(x, y) = 0 ∀(x, y) ∈ E,
∑

(x,y)∈E

ν(x, y) = 1
}
,

i.e., A is the affine hull of V(E). For any γ : S → R, we define ψγ : S
2 → R by

ψγ(x, y) := γ(y)− γ(x) (x, y ∈ S).

The following lemma is just a trivial observation.

Lemma 6.8 (Marginals agree) A function ν ∈ RS2
satisfies ν− = ν+ if and

only if ⟨ν, ψγ⟩ = 0 for all γ ∈ RS.

We define orthogonal subspaces E and E⊥ of RS2
by

E :=
{
ϕ ∈ RS2

: ϕ(x, y) = 0 ∀(x, y) ∈ S2\E
}
,

E⊥ :=
{
ϕ ∈ RS2

: ϕ(x, y) = 0 ∀(x, y) ∈ E
}
.

We let 1(x, y) := 1 (x, y ∈ S) denote the function that is constantly one and define
a subspace F of RS2

by

F :=
{
ϕ+ ψγ + c1 : ϕ ∈ E⊥, γ ∈ RS, c ∈ R

}
. (6.16)

The space F will turn out to be the space of flat directions of ΓA.

Lemma 6.9 (Space of flat directions) If ϕ+ψγ + c1 = ϕ′+ψγ′ + c
′1 for some

ϕ, ϕ′ ∈ E⊥, γ, γ′ ∈ RS, and c, c′ ∈ R, then one has ϕ = ϕ′, ψγ = ψγ′, and c = c′.
Let L : F → R be the linear form defined by

L(ϕ+ ψγ + c1) := c
(
ϕ ∈ E⊥, γ ∈ RS, c ∈ R

)
. (6.17)

Then one has

A =
{
ν ∈ RS2

: ⟨ν, f⟩ = L(f) ∀f ∈ F
}
.
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Proof Using Lemma 6.8, we see that ν ∈ RS2
satisfies ν ∈ A if and only if

⟨ν, ψγ⟩ = 0 for all γ ∈ RS, ⟨ν, ϕ⟩ = 0 for all ϕ ∈ E⊥, and ⟨ν, 1⟩ = 1. Picking
any ν ∈ A, we can then define a linear form L with the property described in the
lemma by setting L(f) := ⟨ν, f⟩ (f ∈ F). These arguments also immediately show
that

A ⊂
{
ν ∈ RS2

: ⟨ν, f⟩ = L(f) ∀f ∈ F
}
.

The opposite inclusion will follow from our previous observations once we show
that each function f of the form f = ϕ+ ψγ + c1 with ϕ ∈ E⊥, γ ∈ RS, and c ∈ R
determines the functions ϕ and ψγ and the constant c uniquely.

Since L(f) = c, it is clear that the constant c is uniquely determined by f . Since
ϕ(x, y) = 0 for each (x, y) ∈ E, it follows that the function values (ψγ(x, y))(x,y)∈E
are uniquely determined by f . To complete the proof, it suffices to show that these
values uniquely determine ψγ. Indeed, since E is irreducible, it is easy to see that
the function values (ψγ(x, y))(x,y)∈E determine γ up to an additive constant, and
hence ψγ is uniquely determined.

The following lemma confirms what we have already announced, namely, that F
is the space of flat directions of ΓA.

Lemma 6.10 (Flat directions) One has

ΓA(ϕ+ f) = ΓA(ϕ) + L(f)
(
ϕ ∈ RS2

, f ∈ F),

where L : F → R is the linear form defined in (6.17).

Proof Let ϕ ∈ RS2
be arbitrary, let ϕ′ ∈ E⊥, γ ∈ RS, and c ∈ R. We observe that

Aϕ+ϕ′+ψγ+c1(x, y) = e−γ(x) + cAϕ(x, y)eγ(y) (x, y ∈ S). (6.18)

This says that Aϕ ∼r,f Aϕ+ϕ′+ψγ−c1 with r := e−c and f(x) := eγ(x) (x ∈ S). By
(6.8), it follows that ρ(Aϕ) = e−cρ(Aϕ+ϕ′+ψγ−c1) and hence

ΓA(ϕ) = log ρ(Aϕ) = log ρ(Aϕ+ϕ′+ψγ+c1)− c = ΓA(ϕ+ ϕ′ + ψγ + c1)− c.

In view of (6.17), this proves the claim.

Our final lemma relates the gradient map to the space of flat directions.

Lemma 6.11 (Multiplicity of the gradient map) For ϕ, ψ ∈ RS2
, one has

χϕ = χψ if and only if ϕ− ψ ∈ F .
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Proof In (6.18), we have already seen that Aϕ ∼ Aϕ+f for all ϕ ∈ RS2
and f ∈ F .

Recall that χϕ was defined in terms of Pϕ, the unique probability kernel such that
Aϕ ∼ Pϕ. Since Aϕ ∼ Aϕ+f we have Aϕ+f ∼ Pϕ and hence Pϕ+f = Pϕ and as a
consequence also χϕ+f = χϕ.

Conversely, if χϕ = χϕ+f for some ϕ, f ∈ RS2
, then Pϕ = Pϕ+f and hence Aϕ ∼

Pϕ = Pϕ+f ∼ Aϕ+f , which is easily seen to imply that f ∈ F (compare (6.18)).

We have now collected all necessary ingredients to prove Proposition 6.3. We will
first formulate a general result and then apply it in our concrete setting. The
general result is a bit abstract and technical but the preceding lemmas already
suggest how it will be applied.

Proposition 6.12 (Dual convex functions) Let S be a finite set, let F ⊂ RS

be a linear subspace, let L : F → R be a linear form, and let

A :=
{
x ∈ RS : ⟨ψ, x⟩ = L(ψ) ∀ψ ∈ F

}
.

Let Γ : RS → R and I : A → (−∞,∞] be functions, let DI := {x ∈ A : I(x) <∞},
and let UI denote the interior of DI , viewed as a subset of A. Assume that

(i) Γ(ϕ+ ψ) = Γ(ϕ) + L(ψ) (ϕ ∈ RS, ψ ∈ F).

Assume moreover that there exists a function χ : RS → UI such that

(ii) χ is surjective,

(iii) χ(ϕ) = χ(ψ) if and only if ϕ− ψ ∈ F ,

(iv) ⟨ϕ, x⟩ ≤ Γ(ϕ) + I(x) for all ϕ ∈ RS and x ∈ A,
with equality if and only if x = χ(ϕ).

Then Γ ∈ Conv1(RS) and its Legendre transform is the function I : RS → (−∞,∞]
defined as I(x) := I(x) if x ∈ A and := ∞ otherwise.

Proof We set
V :=

{
x ∈ RS : ⟨ψ, x⟩ = 0 ∀ψ ∈ F

}
,

V ∗ :=RS/F .
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Let ϕ := {ϕ′ ∈ RS : ϕ′−ϕ ∈ F} denote the equivalence class ϕ ∈ RS/F containing

ϕ ∈ RS. The spaces V and V ∗ are dual with respect to the function ⟨ · , · ⟩ defined
as

⟨ϕ, x⟩ := ⟨ϕ, x⟩ (ϕ ∈ RS, x ∈ V ),

where by the definition of V , the right-hand side does not depend on the choice
of the representative ϕ ∈ RS. We fix an arbitrary x◦ ∈ A and define J : V →
(−∞,∞] and Λ : V ∗ → R by

J(x) := I(x◦ + x) (x ∈ V ),

Λ(ϕ) :=Γ(ϕ)− ⟨ϕ, x◦⟩ (ϕ ∈ RS),

where in the second formula, by our assumption (i), the right-hand side does not
depend on the choice of the representative ϕ. We set DJ := {x ∈ V : J(x) < ∞}
and let UJ denote the interior of DJ . By our assumption (iii), we can unambigu-
ously define a function η : V ∗ → UJ by

η(ϕ) := χ(ϕ)− x◦ (ϕ ∈ RS).

Combining assumptions (ii) and (iii), we see that η is a bijection. Our assump-
tion (iv) says that for any ϕ ∈ RS and x ∈ V , one has

⟨ϕ, x◦ + x⟩ ≤ Γ(ϕ) + I(x◦ + x) = Λ(ϕ) + ⟨ϕ, x◦⟩+ J(x)

with equality if and only if x◦ + x = χ(ϕ). Equivalently, this says that

(iv)’ ⟨ϕ, x⟩ ≤ Λ(ϕ) + J(x) for all ϕ ∈ V ∗ and x ∈ V ,
with equality if and only if x = η(ϕ).

Since η : V ∗ → UJ is a bijection, we have

J(x) ≤ Λ(ϕ)− ⟨ϕ, x⟩ (x ∈ V, ϕ ∈ V ∗),

with equality if and only if x ∈ UJ and ϕ = η−1(x). It follows that

J(x) = sup
ϕ∈V ∗

[
Λ(ϕ)− ⟨ϕ, x⟩

]
,

which shows that J ∈ Conv(V ) and J is the Legendre transform of Λ. In the
same way, we see that Λ ∈ Conv(V ) and Λ is the Legendre transform of J . The
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condition (iv)’ moreover shows that the generalized gradients of J and Λ are given
by

DJ =
{(
x, η−1(x)

)
: x ∈ UJ

}
,

DΛ=
{(
ϕ, η(ϕ)

)
: ϕ ∈ V ∗}.

Applying Lemma 4.23, we see that J is continuously differentiable on UJ and Λ is
continuously differentiable on V ∗. Moreover, ∂J(x) = η−1(x) and ∂Λ(ϕ) = η(ϕ).
In particular, this shows that η and η−1 are continuous, so ∂Λ : V ∗ → UJ is a
homeomorphism. This proves that Λ ∈ Conv+1 (V

∗).

It now follows easily that Γ ∈ Conv1(RS). Moreover, F = FΓ, the space of flat
directions of Γ, and L : F → R is the affine slope of Γ. Letting I denote the
Legendre transform of Γ, we see from Lemma 4.12 that A = AI , the affine hull of
the domain of I. Using this, it is easy to see that I(x) = I(x) if x ∈ A and = ∞
otherwise.

Proof of Proposition 6.3 We apply Proposition 6.12 with S2 in the role of
the finite space S from Proposition 6.12, F as defined in (6.16), L as defined in

(6.17), and Γ = ΓA and I = I
(2)
A . Then UI = U(E) and conditions (i)–(iv) of

Proposition 6.3 are satisfied by Lemmas 6.10, 6.6, 6.11, and 6.7, respectively, so
we can use Proposition 6.12 to conclude that ΓA ∈ Conv1(RS2

) and I
(2)
A is its

Legendre transform. By Lemma 4.29, it follows that I
(2)
A ∈ Conv1(RS2

). It is

clear from its definition that I
(2)
A is infinitely differentiable on U(E), so in fact

I
(2)
A ∈ Conv∞(RS2

).

6.3 A LDP for one-dimensional Gibbs measures

We are now ready to prove the promised generalization of Theorem 2.16. We will
apply the Gärtner-Ellis theorem, using Proposition 6.3. The proof will be quite
quick, since all the hard work has already been done in the proof of Proposition 6.3.

For m,n ∈ Z with m ≤ n, we write [m : n] := {m,m+ 1, . . . , n}. We define finite
measures µA,nx,y on the space S[0:n] of all sequences (x0, . . . , xn) by

µA,nx,y (x0, . . . , xn) := 1{x0=x, xn=y}

n∏
k=1

A(xk−1, xk). (6.19)
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Similarly, we define

µA,nx,• :=
∑
y∈S

µA,nx,y , µA,n•,y :=
∑
x∈S

µA,nx,y , and µA,n•,• :=
∑

(x,y)∈S2

µA,nx,y .

Note that if A is a probability kernel and (Xk)k≥0 is the Markov chain with initial
state x and transition kernel A, then µA,nx,• is the law of (X0, . . . , Xn).

We observe that∑
(x0,...,xn)∈S[0:n]

µA,nx,y (x0, . . . , xn) =
∑
x0∈S

· · ·
∑
xn∈S

1{x0=x, xn=y}

n∏
k=1

A(xk−1, xk) = An(x, y).

For each x, y, and n such that An(x, y) > 0, we define a probability measure µA,nx,y

on S[0:n] by

µA,nx,y :=
µA,nx,y

An(x, y)
.

We call µA,nx,y the Gibbs measure with transfer matrix A and boundary conditions
x, y. Note that if A is a probability kernel and (Xk)k≥0 is the Markov chain with
initial state x and transition kernel A, then µA,nx,y is the law of (X0, . . . , Xn) con-
ditioned on Xn = y. The following exercise says that equivalent transfer matrices
define the same Gibbs measures with fixed boundary conditions.1

Exercise 6.13 (Equivalent transfer matrices) Let A and B be a irreducible
nonnegative matrices indexed by the same finite set S. Then A ∼ B implies that
µA,nx,y = µB,nx,y for all x, y, and n such that An(x, y) > 0 (and hence also Bn(x, y) > 0).

Remark Let A be a fixed irreducible nonnegative matrix indexed by S and for

ϕ ∈ RS2
, let Aϕ be defined as in (6.12). The µ

Aϕ,n
x,y is called the Gibbs measure

defined by the potential ϕ. We have seen in (6.18) that if we modify ϕ by adding
a constant, or by adding a function of the form ψγ(x, y) = γ(y) − γ(x), then the
new transfer matrix is equivalent to the old one and hence by Exercise 6.13 defines
the same Gibbs measures. In this context, a function of the form ψγ is called a
coboundary.

We will, in fact, be more interested in the unnormalized measures µA,nx,y than in the
Gibbs measures µA,nx,y . We call µA,nx,y the unnormalized Gibbs measure with transfer

1In fact, a deeper converse also holds: if two irreducible transfer matrices define the same
Gibbs measures with fixed boundary conditions, then they must be equivalent in the way we
have defined.
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matrix A and boundary conditions x, y. We call µA,nx,• the unnormalized Gibbs
measure with left boundary condition x and free boundary conditions on the right.
Similar terminology applies to µA,n•,y and µA,n•,• .

We define M
(2)
n : S[0:n] → M1(S

2) by

M (2)
n (x0, . . . , xn) :=

1

n

n∑
k=1

δ(xk−1,xk).

For any nonnegative matrix A indexed by S, we let

ρA,nx,y := µA,nx,y ◦ (M (2)
n )−1

denote the image of the finite measure µA,nx,y defined in (6.19) under the map M
(2)
n :

S[0:n] → RS2
. We define ρA,nx,• , ρ

A,n
•,y , and ρ

A,n
•,• similarly. Note that these are finite

measures on the space M1(S
2) of probability measures on S2. In particular, if A

is a probability kernel and (Xk)k≥0 is the Markov chain with initial state x and
transition kernel A, then ρA,nx,• (n ≥ 1) are the laws of the pair empirical measures
of (Xk)k≥0.

The following theorem generalizes Theorem 2.16 in the sense that A does not need
to be a probability kernel and only needs to be irreducible, instead of being strictly
positive everywhere.

Theorem 6.14 (LDP for pair empirical measure) Let A be an irreducible,
aperiodic nonnegative matrix indexed by a finite set S and let x, y ∈ S. Then
the measures ρA,nx,y satisfy the large deviation principle with speed n and good rate

function I
(2)
A . The same is true for the measures ρA,nx,• , ρ

A,n
•,y , and ρ

A,n
•,• .

Proof Proposition 6.3 tells us that I
(2)
A ∈ Conv∞(RS2

), and ΓA is its Legendre
transform. By Lemma 4.29, it follows that ΓA ∈ Conv∞(RS2

). Since ΓA(ϕ) < ∞
for all ϕ ∈ RS2

, clearly 0 ∈ UΓA
. Therefore, the LDP for the measures ρA,nx,y will

follow from the Gärtner-Ellis theorem (Theorem 4.33) provided we show that

lim
n→∞

1

n
log

∫
RS2

en⟨ν, ϕ⟩ρA,nx,y (dν) = ΓA(ϕ) (ϕ ∈ RS2

).

To see that this holds, we start by observing that

n⟨M (2)
n (x0, . . . , xn), ϕ⟩ =

n∑
k=1

⟨δ(xk−1,xk), ϕ⟩ =
n∑
k=1

ϕ(xk−1, xk)
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and hence∫
RS2

en⟨ν, ϕ⟩ρA,nx,y (dν) =
∑

(x0,...,xn)

en⟨M
(2)
n (x0, . . . , xn), ϕ⟩µA,nx,y (x0, . . . , xn)

=
∑
x0

· · ·
∑
xn

e
∑n

k=1 ϕ(xk−1, xk)1{x0=x, xn=y}

n∏
k=1

A(xk−1, xk) = Anϕ(x, y).

Taking the logarithm, dividing by n, and taking the limit using formula (6.5), the
claim follows. This completes the proof that the measures ρA,nx,y satisfy the LDP

with good rate function I
(2)
A . Since ρA,nx,• =

∑
y∈S ρ

A,n
x,y , we can use Exercise 1.13

to conclude that the same is true for the measures ρA,nx,• , and the same argument
applies to the measures ρA,n•,y and ρA,n•,• .
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Appendix A

The Perron-Frobenius theorem

A.1 Periodicity

By definition, the greatest common divisor of a nonempty setN ⊂ N+ := {1, 2, . . .}
is the number

sup{k ≥ 1 : N ⊂ kN+}, where kN+ := {kn : n ∈ N+}. (A.1)

We say that N is closed under addition if n,m ∈ N imply n+m ∈ N .

Lemma A.1 (Sets closed under addition) Assume that N ⊂ N+ is nonempty
and closed under addition, and let k be its greatest common divisor. Then kN+\N
is finite.

Proof The set N ′ := {n/k : n ∈ N} ⊂ N+ is closed under addition and has
greatest common divisor one, so it suffices to prove that if some nonempty N ⊂ N+

has greatest common divisor one, then N+\N is finite.

Fix any k ∈ N and set An := {m : 0 ≤ m < k, kn + m ∈ N} (n ≥ 0). We
will prove our claim by showing that An = {0, . . . , k − 1} for all but finitely
many n. Since N is closed under addition, An ⊂ An+1 and An ↑ A∞ where A∞
is closed under addition modulo k. Let m be the smallest positive element of
A∞. Since A∞ is closed under addition modulo k, we have by induction that
nm mod(k) ∈ A∞ for all n ≥ 0. In particular nm mod(k) ̸∈ {1, . . . ,m − 1} for
each n ≥ 0, which implies that k is a multiple of m, say k = lm with l ≥ 1, and
A∞ = {0,m, 2m, . . . , (l − 1)m}. Since An ⊂ A∞ for all n ≥ 0, this implies that
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N ⊂ mN, so by our assumption that the greatest common divisor of N is one, we
have that m = 1 and A∞ = {0, . . . , k − 1}.

A.2 Subadditivity

Let N ⊂ N+ be closed under addition. We say that a sequence (an)n∈N of numbers
an ∈ [−∞,∞) is subadditive if an+m ≤ an + am for all n,m ∈ N . Similarly, a
sequence (an)n∈N of numbers an ∈ (−∞,∞] is superadditive if an+m ≥ an+am for
all n,m ∈ N . The following result is known as Fekete’s lemma.

Lemma A.2 (Fekete’s lemma) Let N ⊂ N+ be nonempty and closed under
addition and let (an)n∈N with an ∈ [−∞,∞) be subadditive. Then

lim
N∋n→∞

1

n
an = inf

n∈N

1

n
an ∈ [−∞,∞). (A.2)

Similarly, if (an)n∈N with an ∈ (−∞,∞] is superadditive, then

lim
N∋n→∞

1

n
an = sup

n∈N

1

n
an ∈ (−∞,∞]. (A.3)

Proof If (an)n∈N is superadditive, then (−an)n∈N is subadditive, so it suffices
to prove the claim for subadditive sequences. We can without loss of generality
assume that the greatest common divisor of N is one; then Lemma A.1 tells us
that N+\N is finite. Fix m ∈ N . Since N+\N is finite, we can find l ≥ 1 such
that [lm : ∞) ⊂ N . For each n ≥ lm, define kn ≥ 0 and rn ∈ [lm : lm+ k − 1] by
n =: knm+ rn. By subadditivity,

lim sup
n→∞

1

n
an ≤ lim sup

n→∞

1

n
(knam + arn) =

1

m
am, (A.4)

where we have used that supr∈[lm:lm+k−1] ar < ∞. Taking the infimum over all
m ∈ N , we obtain that

lim sup
n→∞

1

n
an ≤ inf

m∈N

1

m
am. (A.5)

In particuar, this shows that the limit superior and limit inferior agree, so the limit
exists and is given by infm∈N

1
m
am.

Remark More generally, if (an)n∈N is subadditive and an = ∞ for some n ∈ N ,
then by subadditivity, the set N ′ := {n ∈ N : an < ∞} is closed under addition,
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so we may apply Fekete’s lemma to the restricted sequence (an)n∈N ′ . From this
it is easy to see that if an = ∞ for finitely many n ∈ N , then the statement of
the lemma remains true. However, the sequence (a1, a2, . . .) := (0,∞, 0,∞, . . .)
satisfies an+m = 0 = an+am if n and m are both odd and an+m ≤ an+am = ∞ in
all other cases, while limn→∞ an/n does not exist. This shows that the assumption
that the an’s are <∞ cannot be dropped altogether.

A.3 The spectral radius

Lemma A.3 (Matrix powers) Let A be a real or complex matrix indexed by a
finite set S and assume that ρ(A) < 1. Then limn→∞An(x, y) = 0 for all x, y ∈ S.

Proof (sketch) Without loss of generality, we may assume that A is a matrix in
Jordan normal form. Then the diagonal elements of An are of the form λn where λ
is an eigenvalue of A. The upper diagonal elements are a bit more complicated but
it is not hard to see that they are of the form Cλn for some constant C that does
not depend on n. Therefore, if |λ| < 1 for all eigenvalues λ, then An converges to
the zero matrix as n→ ∞.

Proof of Gelfand’s formula (6.3) Since ∥ABf∥ ≤ ∥A∥·∥Bf∥ ≤ ∥A∥·∥B∥·∥f∥
for each f ∈ RS, and ∥AB∥ is the optimal constant for which such an inequality
holds, we have that ∥AB∥ ≤ ∥A∥·∥B∥. It follows that the sequence an := log ∥An∥
is subadditive, so Fekete’s lemma (Lemma A.2) implies that

lim
n→∞

1

n
log ∥An∥ = inf

n≥1

1

n
log ∥An∥.

Applying the exponential function to this equation, we see that

lim
n→∞

∥An∥1/n = inf
n≥1

∥An∥1/n.

If λ is an eigenvalue of A and f is an associated eigenvector, then

∥Anf∥ = |λ|n · ∥f∥ and hence ∥An∥ ≥ |λ|n,

which implies that infn≥1 ∥An∥1/n ≥ |λ|. Since this holds for all λ ∈ σ(A), we
conclude that

inf
n≥1

∥An∥1/n ≥ ρ(A).
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On the other hand, applying Lemma A.3 to B := (ρ(A) − ε)−1A, we see that for
each ε > 0, there exists an N such that ∥Bn∥ ≤ 1 and hence ∥An∥ ≤ (ρ(A) + ε)n

for all n ≥ N . It follows that

lim sup
n→∞

∥An∥1/n ≤ ρ(A) + ε.

Since ε > 0 is arbitrary, this completes the proof.

Proof of formulas (6.4), (6.5), and (6.6) For any two nonnegative matrices
A and B indexed by a finite set S, we observe that

AB(x, z) ≥ A(x, y)B(y, z) (x, y, z ∈ S). (A.6)

Applying this with x = y = z we see that the function n 7→ logAn(x, x) us
superadditive, so Fekete’s lemma (Lemma A.2) implies that

lim
N∋n→∞

1

n
logA(x, x) = inf

n∈N

1

n
logA(x, x),

where N := {n ∈ N+ : A(x, x) > 0}. In particular, if A is aperiodic, then we have

lim
n→∞

(
An(x, x)

)1/n
= sup

n≥1

(
An(x, x)

)1/n
(x ∈ S). (A.7)

By irreducibility, for each y, z ∈ S, we can find an m ≥ 1 such that Am(y, z) > 0.
Then the inequality

An(x, y)Am(y, z) ≤ An+m(x, z)

implies

lim sup
n→∞

1

n
logAn(x, y)≤ lim sup

n→∞

1

n

(
logAn+m(x, z)− logAm(y, z)

)
= lim sup

n→∞

1

n+m
logAn+m(x, z)

and

lim inf
n→∞

1

n+m
logAn+m(x, z)≥ lim inf

n→∞

1

n+m

(
logAn(x, y) + logAm(y, z)

)
= lim inf

n→∞

1

n
logAn(x, y).

Combining this with (A.7) we see that the limit in (6.5) exists and does not depend
on the choice of y ∈ S. A symmetric argument shows that the limit also does not
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depend on x. Gelfand’s formula (6.3) then allows us to conclude that the limit is
ρ(A).

If A is irreducible but has period m ≥ 2, then we can partition S into disjoint sets
S0, . . . , Sm−1 such that A(x, y) > 0 only if x ∈ Sk and y ∈ Sk+1 mod(m). Applying
our previous arguments to Am restricted to any of the sets S0, . . . , Sm−1 shows that
the formula

ρ(A) = sup
n≥1

(
An(x, x)

)1/n
(x ∈ S)

remains true without the aperiodicity assumption. If we also remove the irre-
ducibility assumption, then we can partition S into sets on which A is irreducible
plus a set of “transient states” S ′ := {x : An(x, x) = 0 ∀n ≥ 1}. Using Gelfand’s
formula (6.3), one then sees that formula (6.6) holds.

A.4 Proof of the Perron-Frobenius theorem

In this section, we prove the Perron-Frobenius theorem (Theorem 6.1). We start
with the existence part. For this part, irreducibility is not needed.

Lemma A.4 (Existence of eigenvector) Let A be a nonnegative matrix indexed
by a finite set S. Then there exists a function h : S → [0,∞) that is not identically
zero such that Ah = ρ(A)h.

ProofWe will treat the cases ρ(A) = 0 and ρ(A) > 0 separately. We start with the
latter. In this case, for each z ∈ [0, 1/ρ(A)), let us define a function fz : S → [0,∞)
by

fz :=
∞∑
n=0

znAn1,

where 1 denotes the function on S that is identically one. It follows from Gelfand’s
formula (6.3) that for each z < 1/ρ(A), this sequence is absolutely summable in
any norm on RS. As a result,

Afz =
∞∑
n=0

znAn+11 = z−1fz − 1 (0 < z < ρ(A)−1). (A.8)

By (6.2) and the nonnegativity of A (and hence of An for any n ≥ 0),

∥An1∥∞ = sup
x∈S

∑
y∈S

An(x, y) = ∥An∥∞.
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Let ∥f∥1 :=
∑

x∈S |f(x)| denote the ℓ1-norm of a function f : S → C. Gelfand’s
formula (6.3) tells us that ∥An∥∞ ≥ ρ(A)n for each n ≥ 1, so using nonnegativity,
we see that

∥fz∥1 =
∞∑
n=0

zn∥An1∥1 ≥
∞∑
n=0

zn∥An1∥∞ =
∞∑
n=0

zn∥An∥∞ ≥
∞∑
n=0

znρ(A)n. (A.9)

Let hz := fz/∥fz∥1. Since hz takes values in the compact set [0, 1]S, we can choose
zn ↑ ρ(A)−1 such that hzn → h where h is a nonnegative function h with ∥h∥1 = 1.
Now (A.8) tells us that

Ahzn = z−1
n hzn − ∥fzn∥−1

1 .

By (A.9), ∥fz∥1 → ∞ as z ↑ ρ(A)−1, so letting n → ∞ we obtain a nonnegative
function h such that Ah = ρ(A)h and ∥h∥1 = 1.

We are left with the case ρ(A) = 0. We will show that this implies An = 0
for some n ≥ 1. Indeed, by the finiteness of the state space, if A|S| ̸= 0, then by
nonnegativity there must exist x0, . . . , xn ∈ S with x0 = xn and A(xk−1, xk) > 0 for
each k = 1, . . . , n. But then Anm(x0, x0) ≥ ηm where η :=

∏n
k=1A(xk−1, xk) > 0,

which is easily seen to imply that ρ(A) ≥ η1/n > 0. Thus, we see that ρ(A) = 0
implies An = 0 for some n. Let m := inf{n ≥ 1 : An1 = 0}. Then h := Am−11 ̸= 0
while Ah = 0 = ρ(A)h.

Lemma A.5 (Constant harmonic functions) Let P be an irreducible proba-
bility kernel on a finite set S. Assume that f : S → [0,∞) is not constantly zero
and that Pf = rf for some r ≥ 0. Then r = 1 and f is constant.

Proof We first prove the statement under the additional assumption that P is
aperiodic. In that case

lim
n→∞

P n(x, y) = π(y) (x, y ∈ S),

were π is the unique invariant law of P . It follows that

rnf(x) = P nf(x) −→
n→∞

∑
y∈S

π(y)f(y) =: c (x ∈ S).

Since f is not constantly zero, c > 0 and rnf can only converge to a constant
nonzero function if r = 1 and f is already constant.
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If P is not aperiodic then we replace P by Q := (P + 1)/2, where 1 denotes the
identity matrix. Then Q is aperiodic and irreducible and Qf = 1

2
(r + 1)f , so our

previous argument gives 1
2
(r + 1) = 1 and f is constant.

Proof of the Perron-Frobenius theorem (Theorem 6.1) Let A be an irre-
ducible nonnegative matrix indexed by a finite set S. By Lemma A.4, there exists
a function h : S → [0,∞) that is not identically zero such that Ah = ρ(A)h. Since
A is irreducible, formula (6.4) shows that ρ(A) > 0. Now A(x, y) > 0 and h(y) > 0
imply h(x) ≥ ρ(A)−1A(x, y)h(y) > 0, so the fact that h is not identically zero and
irreducibility imply that h(x) > 0 for all x ∈ S.

To complete the proof, we must show that if Af = rf for some nonnegative
constant r and function f : S → [0,∞), then r = ρ(A) and f/h is constant. By
the argument given in the proof of Lemma 6.2, setting

P (x, y) := ρ(A)−1h(x)−1A(x, y)h(y) (x, y ∈ S)

defines a probability kernel P such that A ∼ P . It is straightforward to check that

P
(f
h

)
=

r

ρ(A)

f

h
,

so the claim follows from Lemma A.5.
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totally bounded, 77
transfer matrix, 161
transition kernel, 51
transition rate, 15
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