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Preface

The earliest origins of large deviation theory lie in the work of Boltzmann on en-
tropy in the 1870ies and Cramér’s theorem from 1938 [Cra38]. A unifying math-
ematical formalism was only developed starting with Varadhan’s definition of a
‘large deviation principle’ (LDP) in 1966 [Var66].

Basically, large deviation theory centers around the observation that suitable func-
tions F of large numbers of i.i.d. random variables (X1, . . . , Xn) often have the
property that

P
[
F (X1, . . . , Xn) ∈ dx

]
∼ e−snI(x) as n→∞, (LDP)

where sn are real contants such that limn→∞ sn =∞ (in most cases simply sn = n).
In words, (LDP) says that the probability that F (X1, . . . , Xn) takes values near a
point x decays exponentially fast, with speed sn, and rate function I.

Large deviation theory has two different aspects. On the one hand, there is the
question of how to formalize the intuitive formula (LDP). This leads to the al-
ready mentioned definition of ‘large deviation principles’ and involves quite a bit
of measure theory and real analysis. The most important basic results of the ab-
stract theory were proved more or less between 1966 and 1991, when O’Brian en
Verwaat [OV91] and Puhalskii [Puk91] proved that exponential tightness implies
a subsequential LDP. The abstract theory of large deviation principles plays more
or less the same role as measure theory in (usual) probability theory.

On the other hand, there is a much richer and much more important side of large
deviation theory, which tries to identify rate functions I for various functions F of
independent random variables, and study their properties. This part of the theory
is as rich as the branch of probability theory that tries to prove limit theorems
for functions of large numbers of random variables, and has many relations to the
latter.

There exist a number of good books on large deviation theory. The oldest book
that I am aware of is the one by Ellis [Ell85], which is still useful for applications
of large deviation theory in statistical mechanics and gives a good intuitive feeling
for the theory, but lacks some of the standard results.

The classical books on the topic are the ones of Deuschel and Stroock [DS89]
and especially Dembo and Zeitouni [DZ98], the latter originally published in 1993.
While these are very thorough introductions to the field, they can at places be a
bit hard to read due to the technicalities involved. Also, both books came a bit
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too early to pick the full fruit of the developement of the abstract theory.

A very pleasant book to read as a first introduction to the field is the book by
Den Hollander [Hol00], which avoids many of the technicalities in favour of a clear
exposition of the intuitive ideas and a rich choice of applications. A disadvantage
of this book is that it gives little attention to the abstract theory, which means
many results are not proved in their strongest form.

Two modern books on the topic, which each try to stress certain aspects of the
theory, are the books by Dupuis and Ellis [DE97] and Puhalskii [Puh01]. These
books are very strong on the abstract theory, but, unfortunately, they indulge
rather heavily in the introduction of their own terminology and formalism (for
example, in [DE97], replacing the large deviation principle by the almost equivalent
‘Laplace principle’) which makes them somewhat inaccessible, unless read from the
beginning to the end.

A difficulty encountered by everyone who tries to teach large deviation theory
is that in order to do it properly, one first needs quite a bit of abstract theory,
which however is intuitively hard to grasp unless one has seen at least a few
examples. I have tried to remedy this by first stating, without proof, a number
of motivating examples. In the proofs, I have tried to make optimal use of some
of the more modern abstract theory, while sticking with the classical terminology
and formulations as much as possible.
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Chapter 0

Some motivating examples

0.1 Cramér’s theorem

Let (Xk)k≥1 be a sequence of i.i.d. absolutely integrable (i.e., E[|X1|] < ∞) real
random variables with mean ρ := E[X1], and let

Tn :=
1

n

n∑
k=1

Xk (n ≥ 1).

be their empirical avarages. Then the weak law of large numbers states that

P
[
|Tn − ρ| ≥ ε

]
−→
n→∞

0 (ε > 0).

In 1938, the Swedish statistician and probabilist Harald Cramér [Cra38] studied
the question how fast this probability tends to zero. For laws with sufficiently light
tails (as stated in the condition (0.1) below), he arrived at the following conclusion.

Theorem 0.1 (Cramér’s theorem) Assume that

Z(λ) := E[eλX1 ] <∞ (λ ∈ R). (0.1)

Then

(i) lim
n→∞

1

n
logP[Tn ≥ y] = −I(y) (y > ρ),

(ii) lim
n→∞

1

n
logP[Tn ≤ y] = −I(y) (y < ρ),

(0.2)

7
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where I is defined by

I(y) := sup
λ∈R

[
yλ− logZ(λ)

]
(y ∈ R). (0.3)

The function Z in (0.1) is called the moment generating function or cumulant gen-
erating function, and its logarithm is consequently called the logarithmic moment
generating function (or logarithmic cumulant generating function of the law of X1.
In the context of large deviation theory, logZ(λ) is also called the free energy
function, see [Ell85, Section II.4].

The function I defined in (0.3) is called the rate function. In order to see what
Cramér’s theorem tells us exactly, we need to know some elementary properties of
this function. Note that (0.1) implies that E[|X1|2] < ∞. To avoid trivial cases,
we assume that the Xk are not a.s. constant, i.e., Var(X1) > 0.

Below, int(A) denotes the interior of a set A, i.e., the largest open set contained in
A. We recall that for any finite measure µ on R, support(µ) is the smallest closed
set such that µ is concentrated on support(µ).

Lemma 0.2 (Properties of the rate function) Let µ be the law of X1, let
ρ := 〈µ〉 and σ2 := Var(µ) denote its mean and variance, and assume that σ > 0.
Let y− := inf(support(µ)), y+ := sup(support(µ)). Let I be the function defined
in (0.3) and set

DI := {y ∈ R : I(y) <∞} and UI := int(DI).

Then:

(i) I is convex.

(ii) I is lower semi-continuous.

(iii) 0 ≤ I(y) ≤ ∞ for all y ∈ R.

(iv) I(y) = 0 if and only if y = ρ.

(v) UI = (y−, y+).

(vi) I is infinitely differentiable on UI .

(vii) limy↓y− I
′(y) = −∞ and limy↑y+ I

′(y) =∞.

(viii) I ′′ > 0 on UI and I ′′(ρ) = 1/σ2.
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I(y)

y

∞

ρ y+

− log µ({y+})

Figure 1: A typical example of a rate function.

(ix) If −∞ < y−, then I(y−) = − log µ({y−}), and
if y+ <∞, then I(y+) = − log µ({y+}).

See Figure 1 for a picture. Here, if E is any metric space (e.g. E = R), then we
say that a function f : E → [−∞,∞] is lower semi-continuous if one (and hence
both) of the following equivalent conditions are satisfied:

(i) lim infn→∞ f(xn) ≥ f(x) whenever xn → x.

(ii) For each −∞ ≤ a ≤ ∞, the level set {x ∈ E : I(x) ≤ a} is a closed subset
of E.

In view of Lemma 0.2, Theorem 0.1 tells us that the probability that the empirical
average Tn deviates by any given constant from its mean decays exponentially fast
in n. More precisely, formula (0.2) (i) says that

P[Tn ≥ y] = e−nI(y) + o(n) as n→∞ (y > ρ),

were, as usual, o(n) denotes any function such that

o(n)/n→ 0 as n→∞.
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Note that formulas (0.2) (i) and (ii) only consider one-sided deviations of Tn from
its mean ρ. Nevertheless, the limiting behavior of two-sided deviations can easily
be derived from Theorem 0.1. Indeed, for any y− < ρ < y+,

P[Tn ≤ y− or Tn ≥ y+] = e−nI(y−) + o(n) + e−nI(y+) + o(n)

= e−nmin{I(y−), I(y+)}+ o(n) as n→∞.

In particular,

lim
n→∞

1

n
logP

[
|Tn − ρ| ≥ ε] = min{I(ρ− ε), I(ρ+ ε)} (ε > 0).

Exercise 0.3 Use Theorem 0.1 and Lemma 0.2 to deduce that, under the assump-
tions of Theorem 0.1,

lim
n→∞

1

n
logP

[
Tn > y

]
= −Iup(y) (y ≥ ρ),

where Iup is the upper semi-continuous modification of I, i.e., Iup(y) = I(y) for
y 6= y−, y+ and Iup(y−) = Iup(y+) :=∞.

0.2 Moderate deviations

As in the previous section, let (Xk)k≥1 be a sequence of i.i.d. absolutely integrable
real random variables with mean ρ := E[|X1|] and assume that (0.1) holds. Let

Sn :=
n∑
k=1

Xk (n ≥ 1).

be the partial sums of the first n random variables. Then Theorem 0.1 says that

P
[
Sn − ρn ≥ yn

]
= e−nI(ρ+ y) + o(n) as n→∞ (y > 0).

On the other hand, by the central limit theorem, we know that

P
[
Sn − ρn ≥ y

√
n
]
−→
n→∞

Φ(y/σ) (y ∈ R),

where Φ is the distribution function of the standard normal distribution and

σ2 = Var(X1),
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which we assume to be positive. One may wonder what happens at in-between
scales, i.e., how does P[Sn − ρn ≥ yn] decay to zero if

√
n � yn � n? This is

the question of moderate deviations. We will only consider the case yn = ynα with
1
2
< α < 1, even though other timescales (for example in connection with the law

of the iterated logarithm) are also interesting.

Theorem 0.4 (Moderate deviations) Let (Xk)k≥1 be a sequence of i.i.d. ab-
solutely integrable real random variables with mean ρ := E[|X1|], variance σ2 =
Var(X1) > 0, and E[eλX1 ] <∞ (λ ∈ R). Then

lim
n→∞

1

n2α−1
logP[Sn − ρn ≥ ynα] = − 1

2σ2y
2 (y > 0, 1

2
< α < 1). (0.4)

Remark Setting yn := ynα−1 and naively applying Cramér’s theorem, pretending
that yn is a constant, using Lemma 0.2 (viii), we obtain

logP[Sn − ρn ≥ ynα] = logP[Sn − ρn ≥ ynn]

≈ −nI(yn) ≈ −n 1
2σ2y

2
n = − 1

2σ2y
2n2α−1.

Dividing both sides of this equation by n2α−1 yields formula (0.4) (although this
derivation is not correct). There does not seem to be a good basic reference
for moderate deviations. Some more or less helpful references are [DB81, Led92,
Aco02, EL03].

0.3 Relative entropy

Imagine that we throw a dice n times, and keep record of how often each of the
possible outcomes 1, . . . , 6 comes up. Let Nn(x) be the number of times outcome x
has turned up in the first n throws, let Mn(x) := Nn(x)/x be the relative frequency
of x, and set

∆n := max
1≤x≤6

Mn(x)− min
1≤x≤6

Mn(x).

By the strong law of large numbers, we know that Mn(x) → 1/6 a.s. as n → ∞
for each x ∈ {1, . . . , 6}, and therefore P[∆n ≥ ε]→ 0 as n→∞ for each ε > 0. It
turns out that this convergence happens exponentially fast.

Proposition 0.5 (Deviations from uniformity) There exists a continuous,
strictly increasing function I : [0, 1]→ R with I(0) = 0 and I(1) = log 6, such that

lim
n→∞

1

n
logP

[
∆n ≥ ε

]
= −I(ε) (0 ≤ ε ≤ 1). (0.5)
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Proposition 0.5 follows from a more general result that was already discovered by
the physicist Boltzmann in 1877. A much more general version of this result for
random variables that do not need to take values in a finite space was proved by
the Russian mathematician Sanov [San61]. We will restrict ourselves to finite state
spaces for the moment. To state the theorem, we first need a few definitions.

Let S be a finite set and let M1(S) be the set of all probability measures on S.
Since S is finite, we may identify M1(S) with the set

M1(S) :=
{
π ∈ RS : π(x) ≥ 0 ∀x ∈ S,

∑
x∈S

π(1) = 1
}
,

where RS denotes the space of all functions π : S → R. Note that M1(S) is a
compact, convex subset of the (|S| − 1)-dimensional space {π ∈ RS :

∑
x∈S π(1) =

1}.

Let µ, ν ∈ M1(S) and assume that µ(x) > 0 for all x ∈ S. Then we define the
relative entropy of ν with respect to µ by

H(ν|µ) :=
∑
x∈S

ν(x) log
ν(x)

µ(x)
=
∑
x∈S

µ(x)
ν(x)

µ(x)
log

ν(x)

µ(x)
,

where we use the conventions that log(0) := −∞ and 0 · ∞ := 0. Note that since
limz↓0 z log z = 0, the second formula shows that H(ν|µ) is continuous in ν. The
function H(ν|µ) is also known as the Kullback-Leibler distance or divergence.

Lemma 0.6 (Properties of the relative entropy) Assume that µ ∈ M1(S)
and assume that µ(x) > 0 for all x ∈ S. Then the function ν 7→ H(ν|µ) has the
following properties.

(i) 0 ≤ H(ν|µ) <∞ for all ν ∈M1(S).

(ii) H(µ|µ) = 0.

(iii) H(ν|µ) > 0 for all ν 6= µ.

(iv) ν 7→ H(ν|µ) is convex and continuous on M1(S).

(v) ν 7→ H(ν|µ) is infinitely differentiable on the interior of M1(S).

Assume that µ ∈ M1(S) satisfies µ(x) > 0 for all x ∈ S and let (Xk)k≥1 be an
i.i.d. sequence with common law P[X1 = x] = µ(x). As in the example of the dice
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throws, we let

Mn(x) :=
1

n

n∑
k=1

1{Xk=x} (x ∈ S, n ≥ 1). (0.6)

Note that Mn is a M1(S)-valued random variable. We call Mn the empirical
distribution.

Theorem 0.7 (Boltzmann-Sanov) Let C be a closed subset ofM1(S) such that
C is the closure of its interior. Then

lim
n→∞

1

n
logP[Mn ∈ C] = −min

ν∈C
H(ν|µ). (0.7)

Note that (0.7) says that

P[Mn ∈ C] = e−nIC+o(n) as n→∞ where IC = min
ν∈C

H(ν|µ). (0.8)

This is similar to what we have already seen in Cramér’s theorem: if I is the
rate function from Theorem 0.1, then I(y) = miny′∈[y,∞) I(y′) for y > ρ and I(y) =
miny′∈(−∞,y] I(y′) for y < ρ. Likewise, as we have seen in (0.1), the probability that
Tn ∈ (−∞, y−] ∪ [y+,∞) decays exponentially with rate miny′∈(−∞,y−]∪[y+,∞) I(y′).

The proof of Theorem 0.7 will be delayed till later, but we will show here how
Theorem 0.7 implies Proposition 0.5.

Proof of Proposition 0.5 We set S := {1, . . . , 6}, µ(x) := 1/6 for all x ∈ S, and
apply Theorem 0.7. For each 0 ≤ ε < 1, the set

Cε :=
{
ν ∈M1(S) : max

x∈S
ν(x)−min

x∈S
ν(x) ≥ ε

}
is a closed subset of M1(S) that is the closure of its interior. (Note that the last
statement fails for ε = 1.) Therefore, Theorem 0.7 implies that

lim
n→∞

1

n
logP

[
∆n ≥ ε

]
= lim

n→∞

1

n
logP

[
Mn ∈ Cε

]
= −min

ν∈Cε
H(ν|µ) =: −I(ε). (0.9)

The fact that I is continuous and satisfies I(0) = 0 follows easily from the
properties of H(ν, µ) listed in Lemma 0.6. To see that I is strictly increasing,
fix 0 ≤ ε1 < ε2 < 1. Since H( · |µ) is continuous and the Cε2 are compact,
we can find a ν∗ (not necessarily unique) such that H( · |µ) assumes its mini-
mum over Cε2 in ν∗. Now by the fact that H( · |µ) is convex and assumes its
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unique minimum in µ, we see that ν ′ := ε1
ε2
ν∗ + (1 − ε1

ε2
)µ ∈ Cε1 and therefore

I(ε1) ≤ H(ν ′|µ) < H(ν∗|µ) = I(ε2).

Finally, by the continuity of H( · |µ), we see that

I(ε) ↑ min
ν∈C1

H(ν|µ) = H(δ1|µ) = log 6 as ε ↑ 1.

To see that (0.5) also holds for ε = 1 (which does not follow directly from
Theorem 0.7 since C1 is not the closure of its interior), it suffices to note that
P[∆n = 1] = (1

6
)n−1.

Remark 1 It is quite tricky to calculate the function I from Proposition 0.5
explicitly. For ε sufficiently small, it seems that the minimizers of the entropy
H( · |µ) on the set Cε are (up to permutations of the coordinates) of the form
ν(1) = 1

6
− 1

2
ε, ν(2) = 1

6
+ 1

2
ε, and ν(3), . . . , ν(6) = 1

6
. For ε > 1

3
, this solution is

of course no longer well-defined and the minimizer must look differently.

Remark 2 I do not know whether the function I is convex.

0.4 Non-exit probabilities

In this section we move away from the i.i.d. setting and formulate a large devi-
ation result for Markov processes. To keep the technicalities to a minimum, we
restrict ourselves to Markov processes with a finite state space. We recall that a
continuous-time, time-homogeneous Markov process X = (Xt)t≥0 taking value in
a finite set S is uniquely characterized (in law) by its initial law µ(x) := P[X0 = x]
and its transition probabilities Pt(x, y). Indeed, X has piecewise constant, right-
continuous sample paths and its finite-dimensional distributions are characterized
by

P
[
Xt1 = x1, . . . , Xtn = xn

]
=
∑
x0

µ(x0)Pt1(x0, x1)Pt2−t1(x1, x2) · · ·Ptn−tn−1(xn, xn)

(t1 < · · · < tn, x1, . . . , xn ∈ S). The transition probabilities are continuous in t,
have P0(x, y) = 1{x=y} and satisfy the Chapman-Kolmogorov equation∑

y

Ps(x, y)Pt(y, z) = Ps+t(x, z) (s, t ≥ 0, x, z ∈ S).
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As a result, they define a semigroup (Pt)t≥0 of linear operators Pt : RS → RS by

Ptf(x) :=
∑
y

Pt(x, y)f(y) = Ex[f(Xt)],

where Ex denotes expectation with respect to the law Px of the Markov process
with initial state X0 = x. One has

Pt = eGt =
∞∑
n=0

1

n!
Gntn,

where G : RS → RS, called the generator of the semigroup (Pt)t≥0, is an operator
of the form

Gf(x) =
∑
y: y 6=x

r(x, y)
(
f(y)− f(x)

)
(f ∈ RS, x ∈ S),

where r(x, y) (x, y ∈ S, x 6= y) are nonnegative contants. We call r(x, y) the rate
of jumps from x to y. Indeed, since Pt = 1 + tG+O(t2) as t→ 0, we have that

Px[Xt = y] =

{
tr(x, y) +O(t2) if x 6= y,
1− t

∑
z: z 6=x r(x, z) +O(t2) if x = y.

Let U ⊂ S be some strict subset of S and assume that X0 ∈ U a.s. We will be
interested in the probability that Xt stays in U for a long time. Let us say that
the transition rates r(x, y) are irreducible on U if for each x, z ∈ U we can find
y0, . . . , yn such that y0 = x, yn = z, and r(yk−1, yk) > 0 for each k = 1, . . . , n. Note
that this says that it is possible for the Markov process to go from any point in U
to any other point in U without leaving U .

Theorem 0.8 (Non-exit probability) Let X be a Markov process with finite
state space S, transition rates r(x, y) (x, y ∈ S, x 6= y), and generator G. Let
U ⊂ S and assume that the transition rates are irreducible on U . Then there
exists a function f , unique up to a multiplicative constant, and a constant λ ≥ 0,
such that

(i) f > 0 on U,

(ii) f = 0 on S\U,
(iii) Gf(x) = −λf(x) (x ∈ U).

Moreover, the process X started in any initial law such that X0 ∈ U a.s. satisfies

lim
t→∞

1

t
logP

[
Xs ∈ U ∀0 ≤ s ≤ t

]
= −λ. (0.10)
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0.5 Outlook

Our aim will be to prove Theorems 0.1, 0.4, 0.7 and 0.8, as well as similar and
more general results in a unified framework. Therefore, in the next chapter, we
will give a formal definition of when a sequence of probability measures satisfies a
large deviation principle with a given rate function. This will allow us to formu-
late our theorems in a unified framework that is moreover powerful enough to deal
with generalizations such as a multidimensional version of Theorem 0.1 or a gen-
eralization of Theorem 0.7 to continuous spaces. We will see that large deviation
principles satisfy a number of abstract principles such as the contraction principle
which we have already used when we derived Proposition 0.5 from Theorem 0.7.
Once we have set up the general framework in Chapter 1, in the following chapters,
we set out to prove Theorems 0.1, 0.7, and 0.8, as well as similar and more general
results,1 and show how these are related.

1Unfortunately, we will not have time to prove Theorem 0.4.



Chapter 1

Abstract theory

1.1 Weak convergence on Polish spaces

Recall that a topological space is a set E equipped with a collection O of subsets
of E that are called open sets, such that

(i) If (Oγ)γ∈Γ is any collection of (possibly uncountably many) sets Oγ ∈ O,
then

⋃
γ∈Γ Oγ ∈ O.

(ii) If O1, O2 ∈ O, then O1 ∩O2 ∈ O.

(iii) ∅, E ∈ O.

Any such collection of sets is called a topology. It is fairly standard to also assume
the Hausdorff property

(iv) For each x1, x2 ∈ E, x1 6= x2 ∃O1, O2 ∈ O s.t. O1∩O2 = ∅, x1 ∈ O1, x2 ∈ O2.

A sequence of points xn ∈ E converges to a limit x in a given topology O if for
each O ∈ O such that x ∈ O there is an n such that xm ∈ O for all m ≥ n. (If
the topology is Hausdorff, then such a limit is unique, i.e., xn → x and xn → x′

implies x = x′.) A set C ⊂ E is called closed if its complement is open.

Because of property (i) in the definition of a topology, for each A ⊂ E, the union
of all open sets contained in A is itself an open set. We call this the interior of A,
denoted as int(A) :=

⋃
{O : U ⊂ A, O open}. Then clearly int(A) is the smallest

17
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open set contained in A. Similarly, by taking complements, for each set A ⊂ E
there exists a smallest closed set containing A. We call this the closure of A,
denoted as A :=

⋂
{C : C ⊃ A, C closed}. A topological space is called separable

if there exists a countable set D ⊂ E such that D is dense in E, where we say that
a set D ⊂ E is dense if its closure is E, or equivalently, if every nonempty open
subset of E has a nonempty intersection with D.

In particular, if d is a metric on E, and Bε(x) := {y ∈ E : d(x, y) < ε}, then

O :=
{
O ⊂ E : ∀x ∈ O ∃ε > 0 s.t. Bε(x) ⊂ O

}
defines a Hausdorff topology on E such that convergence xn → x in this topology
is equivalent to d(xn, x)→ 0. We say that the metric d generates the topology O.
If for a given topology O there exists a metric d that generates O, then we say
that the topological space (E,O) is metrizable.

Recall that a sequence xn in a metric space (E, d) is a Cauchy sequence if for all
ε > 0 there is an n such that d(xk, xl) ≤ ε for all k, l ≥ n. A metric space is
complete if every Cauchy sequence converges.

A Polish space is a separable topological space (E,O) such that there exists a met-
ric d on E with the property that (E, d) is complete and d generates O. Warning:
there may be many different metrics on E that generate the same topology. It
may even happen that E is not complete in some of these metrics, and complete
in others (in which case E is still Polish). Example: R is separable and com-
plete in the usual metric d(x, y) = |x− y|, and therefore R is a Polish space. But
d′(x, y) := | arctan(x)−arctan(y)| is another metric that generates the same topol-
ogy, while (R, d′) is not complete. (Indeed, the completion of R w.r.t. the metric
d′ is [−∞,∞].)

On any Polish space (E,O) we let B(E) denote the Borel-σ-algebra, i.e., the
smallest σ-algebra containing the open sets O. We let Bb(E) and Cb(E) denote the
linear spaces of all bounded Borel-measurable and bounded continuous functions
f : E → R, respectively. Then Cb(E) is complete in the supermumnorm ‖f‖∞ :=
supx∈E |f(x)|, i.e., (Cb(E), ‖ · ‖∞) is a Banach space [Dud02, Theorem 2.4.9]. We
let M(E) denote the space of all finite measures on (E,B(E)) and write M1(E)
for the space of all probability measures. It is possible to equip M(E) with a
metric dM such that [EK86, Theorem 3.1.7]

(i) (M(E), dH) is a separable complete metric space.

(ii) dM(µn, µ)→ 0 if and only if
∫
fdµn →

∫
fdµ for all f ∈ Cb(E).
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The precise choice of dM (there are several canonical ways to define such a metric)
is not important to us. We denote convergence in dM as µn ⇒ µ and call the
associated topology (which is uniquely determined by the requirements above) the
topology of weak convergence. By property (i), the spaceM(E) equipped with the
topology of weak convergence is a Polish space.

Proposition 1.1 (Weak convergence) Let E be a Polish space and let µn, µ ∈
M(E). Then one has µn ⇒ µ if and only if the following two conditions are
satisfied.

(i) lim sup
n→∞

µn(C) ≤ µ(C) ∀C closed,

(ii) lim inf
n→∞

µn(O) ≥ µ(O) ∀O open.

If the µn, µ are probability measures, then it suffices to check either (i) or (ii).

Before we give the proof of Proposition 1.1, we need a few preliminaries. Recall
the definition of lower semi-continuity from Section 0.1. Upper semi-continuity is
defined similarly: a function f : E → [−∞,∞) is upper semi-continuous if and
only if −f is lower semi-continuous. We set R := [−∞,∞] and define

U(E) :=
{
f : E → R : f upper semi-continuous

}
,

Ub(E) :=
{
f ∈ U(E) : sup

x∈E
|f(x)| <∞

}
,

U+(E) :=
{
f ∈ U(E) : f ≥ 0

}
,

and Ub,+(E) := Ub(E) ∩ U+(E). We define L(E),Lb(E),L+(E),Lb,+(E) respec-
tively C(E), Cb(E), C+(E), Cb,+(E) similarly, with upper semi-continuity replaced
by lower semi-continuity and resp. continuity. We will also sometimes use the no-
tation B(E), Bb(E), B+(E), Bb,+(E) for the space of Borel measurable functions
f : E → R and its subspaces of bounded, nonnegative, and bounded nonnegative
functions, respectively.

Exercise 1.2 (Topologies of semi-continuity) Let Oup := {[−∞, a) : −∞ <
a ≤ ∞} ∪ {∅,R}. Show that Oup is a topology on R (albeit a non-Hausdorff
one!) and that a function f : E → R is upper semi-continuous if and only if it is
continuous with respect to the topology Oup. The topology Oup is known as the
Scott topology.
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The following lemma lists some elementary properties of upper and lower semi-
continuous functions. We set a ∨ b := max{a, b} and a ∧ b := min{a, b}.

Lemma 1.3 (Upper and lower semi-continuity)
(a) C(E) = U(E) ∩ L(E).

(b) f ∈ U(E) (resp. f ∈ L(E)) and λ ≥ 0 implies λf ∈ U(E) (resp. λf ∈ L(E)).

(c) f, g ∈ U(E) (resp. f, g ∈ L(E)) implies f + g ∈ U(E) (resp. f + g ∈ L(E)).

(d) f, g ∈ U(E) (resp. f, g ∈ L(E)) implies f ∨ g ∈ U(E) and f ∧ g ∈ U(E) (resp.
f ∨ g ∈ L(E) and f ∧ g ∈ L(E)).

(e) fn ∈ U(E) and fn ↓ f (resp. fn ∈ L(E) and fn ↑ f) implies f ∈ U(E) (resp.
f ∈ L(E)).

(f) An upper (resp. lower) semi-continuous function assumes its maximum (min-
imum) over a compact set.

Proof Part (a) is obvious from the fact that if xn → x, then f(xn)→ f(x) if and
only if lim supn f(xn) ≤ f(x) and lim infn f(xn) ≥ f(x). Since f is lower semi-
continuous iff −f is upper semi-continuous, it suffices to prove parts (b)–(f) for
upper semi-continuous functions. Parts (b) and (d) follow easily from the fact that
f is upper semi-continuous if and only if {x : f(x) ≥ a} is closed for each a ∈ R,
which is equivalent to {x : f(x) < a} being open for each a ∈ R. Indeed, f ∈ U(E)
implies that {x : λf(x) < a} = {x : f(x) < λ−1a} is open for each a ∈ R, λ > 0,
hence λf ∈ U(E) for each λ > 0, while obviously also 0 · f ∈ U(E). Likewise,
f, g ∈ U(E) implies that {x : f(x)∨g(x) < a} = {x : f(x) < a}∩{x : g(x) < a} is
open for each a ∈ R hence f ∨ g ∈ U(E) and similarly {x : f(x)∧ g(x) < a} = {x :
f(x) < a} ∪ {x : g(x) < a} is open implying that f ∧ g ∈ U(E). Part (e) is proved
in a similar way: since {x : fn(x) < a} ↑ {x : f(x) < a}, we conclude that the
latter set is open for all a ∈ R hence f ∈ U(E). Part (c) follows by observing that
lim supn→∞(f(xn)+g(xn)) ≤ lim supn→∞ f(xn)+lim supm→∞ g(xm) ≤ f(x)+g(x)
for all xn → x. To prove part (f), finally let f be upper semi-continuous, K
compact, and choose an ↑ supx∈K f(x). Then An := {x ∈ K : f(x) ≥ an} is a
decreasing sequence of nonempty compact sets, hence (by [Eng89, Corollary 3.1.5])
there exists some x ∈

⋂
nAn and f assumes its maximum in x.

We say that an upper or lower semi-continuous function is simple if it assumes
only finitely many values.

Lemma 1.4 (Approximation with simple functions) For each f ∈ U(E)
there exists simple fn ∈ U(E) such that fn ↓ f . Analogue statements hold for
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Ub(E), U+(E) and Ub,+(E). Likewise, lower semi-continuous functions can be
approximated from below with simple lower semi-continuous functions.

Proof Let r− := infx∈E f(x) and r+ := supx∈E f(x). LetD ⊂ (r−, r+) be countable
and dense and let ∆n be finite sets such that ∆n ↑ D. Let ∆n = {a0, . . . , am(n)}
with a0 < · · · < am(n) and set

fn(x) :=


a0 if f(x) < a0,
ak if ak−1 ≤ f(x) < ak (k = 1, . . . ,m(n)),
r+ if am(n) ≤ f(x).

Then the fn are upper semi-continuous, simple, and fn ↓ f . If f ∈ Ub(E), U+(E)
or Ub,+(E) then also the fn are in these spaces. The same arguments applied to
−f yield the statements for lower semi-continuous functions.

For any set A ⊂ E and x ∈ E, we let

d(x,A) := inf{d(x, y) : y ∈ A}

denote the distance from x to A. Recall that A denotes the closure of A.

Lemma 1.5 (Distance to a set) For each A ⊂ E, the function x 7→ d(x,A) is
continuous and satisfies d(x,A) = 0 if and only if x ∈ A.

Proof See [Eng89, Theorem 4.1.10 and Corollary 4.1.11].

Lemma 1.6 (Approximation of indicator functions) For each closed C ⊂ E
there exist continuous fn : E → [0, 1] such that fn ↓ 1C. Likewise, for each open
O ⊂ E there exist continuous fn : E → [0, 1] such that fn ↑ 1C.

Proof Set fn(x) := (1− nd(x,C)) ∨ 0 resp. fn(x) := nd(x,E\O) ∧ 1.

Proof of Proposition 1.1 Let µn, µ ∈M(E) and define the ‘good sets’

Gup :=
{
f ∈ Ub,+(E) : lim sup

n→∞

∫
fdµn ≤

∫
fdµ

}
,

Glow :=
{
f ∈ Lb,+(E) : lim inf

n→∞

∫
fdµn ≥

∫
fdµ

}
We claim that
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(a) f ∈ Gup (resp. f ∈ Glow), λ ≥ 0 implies λf ∈ Gup (resp. λf ∈ Glow).

(b) f, g ∈ Gup (resp. f, g ∈ Glow) implies f + g ∈ Gup (resp. f + g ∈ Glow).

(c) fn ∈ Gup and fn ↓ f (resp. fn ∈ Glow and fn ↑ f) implies f ∈ Gup (resp.
f ∈ Glow).

The statements (a) and (b) are easy. To prove (c), let fn ∈ Gup, fn ↓ f . Then, for
each k,

lim sup
n→∞

∫
fdµn ≤ lim sup

n→∞

∫
fkdµn ≤

∫
fkdµ.

Since
∫
fkdµ ↓

∫
fdµ, the claim follows. An analogue argument works for functions

in Glow.

We now show that µn ⇒ µ implies the conditions (i) and (ii). Indeed, by
Lemma 1.6, for each closed C ⊂ E we can find continuous fk : E → [0, 1] such
that fk ↓ 1C . Then fk ∈ Gup by the fact that µn ⇒ µ and therefore, by our
claim (c) above, it follows that 1C ∈ Gup, which proves condition (i). The proof of
condition (ii) is similar.

Conversely, if condition (i) is satisfied, then by our claims (a) and (b) above, every
simple nonnegative bounded upper semi-continuous function is in Gup, hence by
Lemma 1.4 and claim (c), Ub,+(E) ⊂ Gup. Similarly, condition (ii) implies that
Lb,+(E) ⊂ Glow. In particular, this implies that for every f ∈ Cb,+(E) = Ub,+(E) ∩
Lb,+(E), limn→∞

∫
fdµn =

∫
fdµ, which by linearity implies that µn ⇒ µ.

If the µn, µ are probability measures, then conditions (i) and (ii) are equivalent,
by taking complements.

1.2 Large deviation principles

A subset K of a topological space (E,O) is called compact if every open covering
of K has a finite subcovering, i.e., if

⋃
γ∈Γ Oγ ⊃ K implies that there exist finitely

many Oγ1 , . . . , Oγn with
⋃n
k=1Oγ1 ⊃ K. If (E,O) is metrizable, then this is equiv-

alent to the statement that every sequence xn ∈ K has a subsequence xn(m) that
converges to a limit x ∈ K [Eng89, Theorem 4.1.17]. If (E,O) is Hausdorff, then
each compact subset of E is closed.
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Let E be a Polish space. We say that a function f : E → R has compact level sets
if

{x ∈ E : f(x) ≤ a} is compact for all a ∈ R.

Note that since compact sets are closed, this is (a bit) stronger than the statement
that f is lower semi-continuous. We say that I is a good rate function if I has
compact level sets, −∞ < I(x) for all x ∈ E, and I(x) < ∞ for at least one
x ∈ E. Note that by Lemma 1.3 (f), such a function is necessarily bounded from
below.

Recall that Bb(E) denotes the space of all bounded Borel-measurable real functions
on E. If µ is a finite measure on (E,B(E)) and p ≥ 1 is a real constant, then we
define the Lp-norm associated with µ by

‖f‖p,µ :=
( ∫

dµ|f |p
)1/p

(f ∈ Bb(E)).

Likewise, if I is a good rate function, then we can define a sort of ‘weighted
supremumnorm’ by

‖f‖∞,I := sup
x∈E

e−I(x)|f(x)| (f ∈ Bb(E)). (1.1)

Note that ‖f‖∞,I < ∞ by the boundedness of f and the fact that I is bounded
from below. It is easy to check that ‖ · ‖∞,I is a seminorm , i.e.,

• ‖λf‖∞,I = |λ| ‖f‖∞,I ,
• ‖f + g‖∞,I ≤ ‖f‖∞,I + ‖g‖∞,I .

If I <∞ then ‖ · ‖∞,I is moreover a norm, i.e.,

• ‖f‖∞,I = 0 implies f = 0.

Note that what we have just called Lp-norm is in fact only a seminorm, since
‖f‖p,µ = 0 only implies that f = 0 a.e. w.r.t. µ. (This is usually resolved by
looking at equivalence classes of a.e. equal functions, but we won’t need this here.)

(Large deviation principle) Let sn be positive constants converging
to∞, let µn be finite measures on E, and let I be a good rate function
on E. We say that the µn satisfy the large deviation principle (LDP)
with speed (also called rate) sn and rate function I if

lim
n→∞

‖f‖sn,µn = ‖f‖∞,I
(
f ∈ Cb,+(E)

)
. (1.2)
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While this definition may look a bit strange at this point, the next proposition
looks already much more similar to things we have seen in Chapter 0.

Proposition 1.7 (Large Deviation Principle) A sequence of finite measures
µn satisfies the large deviation principle with speed sn and rate function I if and
only if the following two conditions are satisfied.

(i) lim sup
n→∞

1

sn
log µn(C) ≤ − inf

x∈C
I(x) ∀C closed,

(ii) lim inf
n→∞

1

sn
log µn(O) ≥ − inf

x∈O
I(x) ∀O open.

Remark 1 Recall that A and int(A) denote the closure and interior of a set
A ⊂ E, respectively. Since for any measurable set A, one has µn(A) ≤ µn(A) and
µn(A) ≥ µn(int(A)), conditions (i) and (ii) of Proposition 1.7 are equivalent to

(i)’ lim sup
n→∞

1

sn
log µn(A) ≤ − inf

x∈A
I(x),

(ii)’ lim inf
n→∞

1

sn
log µn(A) ≥ − inf

x∈int(A)
I(x),

for all A ∈ B(E). We say that a set A ∈ B(E) is I-continuous if

inf
x∈int(A)

I(x) = inf
x∈A

I(x)

It is now easy to see that if µn satisfy the large deviation principle with speed sn
and good rate function I, then

lim
n→∞

1

sn
log µn(A) = − inf

x∈A
I(x)

for each I-continuous set A. For example, if I is continuous and A = int(A),
then A is I-continuous. This is the reason, for example, why in our formulation of
the Boltzmann-Sanov Theorem 0.7 we looked at sets that are the closure of their
interior.

Remark 2 The two conditions of Proposition 1.7 are the traditional definition
of a large deviation principle. Moreover, large deviation principles are often only
defined for the special case that the speed sn equals n. However, as the example
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of moderate deviations (Theorem 0.4) showed, it is sometimes convenient to allow
more general speeds. Also parts of the abstract theory (in particular, connected
to the concept of exponential tightness) are more easy to formulate if one allows
general speeds. As we will see, allowing more general speeds will not cause any
technical complications so this generality comes basically ‘for free’.

To prepare for the proof of Proposition 1.7, we start with some preliminary lemmas.

Lemma 1.8 (Properties of the generalized supremumnorm) Let I be a
good rate function and let ‖ · ‖∞,I be defined as in (1.1). Then

(a) ‖f ∨ g‖∞,I = ‖f‖∞,I ∨ ‖g‖∞,I ∀f, g ∈ Bb,+(E).

(b) ‖fn‖∞,I ↑ ‖f‖∞,I ∀fn ∈ Bb,+(E), fn ↑ f .

(c) ‖fn‖∞,I ↓ ‖f‖∞,I ∀fn ∈ Ub,+(E), fn ↓ f .

Proof Property (a) follows by writing

‖f ∨ g‖∞,I = sup
x∈E

e−I(x)(f(x) ∨ g(x))

=
(

sup
x∈E

e−I(x)f(x)
)
∨
(

sup
y∈E

e−I(x)g(y)
)

= ‖f‖∞,I ∨ ‖g‖∞,I

To prove (b), we start by observing that the ‖fn‖∞,I form an increasing sequence
and ‖fn‖∞,I ≤ ‖f‖∞,I for each n. Moreover, for any ε > 0 we can find y ∈ E such
that e−I(y)f(y) ≥ supx∈E e

−I(x)f(x)−ε, hence lim infn ‖fn‖∞,I ≥ limn e
−I(y)fn(y) =

e−I(y)f(y) ≥ ‖f‖∞,I − ε. Since ε > 0 is arbitrary, this proves the claim.

To prove also (c), we start by observing that the ‖fn‖∞,I form a decreasing sequence
and ‖fn‖∞,I ≥ ‖f‖∞,I for each n. Since the fn are upper semi-continuous and I
is lower semi-continuous, the functions e−Ifn are upper semi-continuous. Since
the fn are bounded and I has compact level sets, the sets {x : e−I(x)fn(x) ≥ a}
are compact for each a > 0. In particular, for each a > supx∈E e

−I(x)f(x), the
sets {x : e−I(x)fn(x) ≥ a} are compact and decrease to the empty set, hence {x :
e−I(x)fn(x) ≥ a} = ∅ for n sufficiently large, which shows that lim supn ‖fn‖∞,I ≤
a.

Lemma 1.9 (Good sets) Let µn ∈ M(E), sn → ∞, and let I be a good rate
function. Define the ‘good sets’

Gup :=
{
f ∈ Ub,+(E) : lim sup

n→∞
‖f‖sn,µn ≤ ‖f‖∞,I

}
,

Glow :=
{
f ∈ Lb,+(E) : lim inf

n→∞
‖f‖sn,µn ≥ ‖f‖∞,I

}
.

Then
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(a) f ∈ Gup (resp. f ∈ Glow), λ ≥ 0 implies λf ∈ Gup (resp. λf ∈ Glow).

(b) f, g ∈ Gup (resp. f, g ∈ Glow) implies f ∨ g ∈ Gup (resp. f ∨ g ∈ Glow).

(c) fn ∈ Gup and fn ↓ f (resp. fn ∈ Glow and fn ↑ f) implies f ∈ Gup (resp.
f ∈ Glow).

The proof of Lemma 1.9 makes use of the following elementary lemma.

Lemma 1.10 (The strongest growth wins) For any 0 ≤ an, bn ≤ ∞ and
sn →∞, one has

lim sup
n→∞

(
asnn + bsnn

)1/sn
=
(

lim sup
n→∞

an
)
∨
(

lim sup
n→∞

bn
)
. (1.3)

Moreover, for any 0 ≤ cn, dn ≤ ∞ and sn →∞,

lim sup
n→∞

1

sn
log(cn + dn) =

(
lim sup
n→∞

1

sn
log cn

)
∨
(

lim sup
n→∞

1

sn
log dn

)
. (1.4)

Proof To see this, set a∞ := lim supn→∞ an and b∞ := lim supn→∞ bn. Then, for
each ε > 0, we can find an m such that an ≤ a∞+ε and bn ≤ b∞+ε for all n ≥ m.
It follows that

lim sup
n→∞

(
asnn + bsnn

)1/sn ≤ lim
n→∞

(
(a∞ + ε)sn + (b∞ + ε)sn

)1/sn
= (a∞ + ε) ∨ (b∞ + ε).

Since ε > 0 is arbitrary, this shows that lim supn→∞
(
asnn + bsnn

)1/sn ≤ a∞ ∨ b∞.

Since an, bn ≤
(
asnn + bsnn

)1/sn
, the other inequality is trivial. This completes the

proof of (1.3).

We claim that (1.4) is just (1.3) in another guise. Indeed, setting an := c
1/sn
n and

bn := d
1/sn
n we see, using (1.3), that

e lim supn→∞
1
sn

log(cn + dn)
= lim sup

n→∞
(asnn + dsnn )1/sn

=
(

lim sup
n→∞

an
)
∨
(

lim sup
n→∞

bn
)

= e
(

lim supn→∞
1
sn

log(cn)
)
∨
(

lim supn→∞
1
sn

log(dn)
)
.

Proof of Lemma 1.9 Part (a) follows from the fact that for any seminorm
‖λf‖ = λ‖f‖ (λ > 0). To prove part (b), we first make a simple obervation. Now
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assume that f, g ∈ Gup. Then, by (1.3),

lim sup
n→∞

‖f ∨ g‖sn,µn

= lim sup
n→∞

(∫
{x:f(x)≥g(x)}

f(x)snµn(dx) +

∫
{x:f(x)<g(x)}

g(x)snµn(dx)
)1/sn

≤ lim sup
n→∞

(
‖f‖snsn,µn + ‖g‖snsn,µn

)1/sn ≤ ‖f‖∞,I ∨ ‖g‖∞,I = ‖f ∨ g‖∞,I ,

(1.5)

proving that f ∨ g ∈ Gup. Similarly, but easier, if f, g ∈ Glow, then

lim inf
n→∞

‖f ∨ g‖sn,µn ≥
(

lim inf
n→∞

‖f‖sn,µn
)
∨
(

lim inf
n→∞

‖g‖sn,µn
)

≥ ‖f‖∞,I ∨ ‖g‖∞,I = ‖f ∨ g‖∞,I ,
which proves that f ∨ g ∈ Glow.

To prove part (c), finally, assume that fk ∈ Gup satisfy fk ↓ f . Then f is upper
semi-continuous and

lim sup
n→∞

‖f‖sn,µn ≤ lim sup
n→∞

‖fk‖sn,µn ≤ ‖fk‖∞,I

for each k. Since ‖fk‖∞,I ↓ ‖f‖∞,I , by Lemma 1.8 (c), we conclude that f ∈ Gup.
The proof for fk ∈ Glow is similar, using Lemma 1.8 (b).

Proof of Proposition 1.7 If the µn satisfy the large deviation principe with
speed sn and rate function I, then by Lemmas 1.6 and 1.9 (c), 1C ∈ Gup for each
closed C ⊂ E and 1O ∈ Gup for each open O ⊂ E, which shows that conditions (i)
and (ii) are satisfied. Conversely, if conditions (i) and (ii) are satisfied, then by
Lemma 1.9 (a) and (b),

Gup ⊃ {f ∈ Ub,+(E) : f simple} and Glow ⊃ {f ∈ Lb,+(E) : f simple}.

By Lemmas 1.4 and 1.9 (c), it follows that Gup = Ub,+(E) and Glow = Lb,+(E). In
particular, this proves that

lim
n→∞

‖f‖sn,µn = ‖f‖∞,I ∀f ∈ Cb,+(E),

which shows that the µn satisfy the large deviation principe with speed sn and
rate function I.

Exercise 1.11 (Robustness of LDP) Let (Xk)k≥1 be i.i.d. random variables
with P[Xk = 0] = P[Xk = 1] = 1

2
, let Z(λ) := E[eλX1 ] (λ ∈ R) and let I : R →

[0,∞] be defined as in (0.3). Let εn ↓ 0 and set

Tn :=
1

n

n∑
k=1

Xk and T ′n := (1− εn)
1

n

n∑
k=1

Xk.
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In Theorem 2.17 below, we will prove that the laws P[Tn ∈ · ] satisfy the large
deviation principle with speed n and rate function I. Using this fact, prove that
also the laws P[T ′n ∈ · ] satisfy the large deviation principle with speed n and rate
function I. Use Lemma 0.2 to conclude that

lim
n→∞

1

n
logP[T ′n ≥ y] = −I(y) (1

2
≤ y < 1),

but this formula does not hold for y = 1.

1.3 Varadhan’s lemma

The two conditions of Proposition 1.7 are the traditional definition of the large
deviation principle, which is due to Varadhan [Var66]. Our alternative, equivalent
definition in terms of convergence of Lp-norms is very similar to the road followed
in Puhalskii’s book [Puh01]. A very similar definition is also given in [DE97],
where this is called a ‘Laplace principle’ instead of a large deviation principle.

From a purely abstract point of view, our definition is frequently a bit easier to
work with. On the other hand, the two conditions of Proposition 1.7 are closer
to the usual interpretation of large deviations in terms of exponentially small
probabilities. Also, when in some practical situation one wishes to prove a large
deviation principle, the two conditions of Proposition 1.7 are often a very natural
way to do so. Here, condition (ii) is usually easier to check than condition (i).
Condition (ii) says that certain rare events occur wih at least a certain probability.
To prove this, one needs to find one strategy by which a stochastic system can
make the desired event happen, with a certain small probability. Condition (i)
says that there are no other strategies that yield a higher probability for the same
event, which requires one to prove something about all possible ways in which a
certain event can happen.

In practically all applications, we will only be interested in the case that the
measures µn are probability measures and the rate function satisfies infx∈E I(x) =
0, but being slightly more general comes at virtually no cost.

Varadhan [Var66] was not only the first one who formulated large deviation prin-
ciples in the generality that is now standard, he also first proved the lemma that
is called after him, and that reads as follows.

Lemma 1.12 (Varadhan’s lemma) Let E be a Polish space and let µn ∈M(E)
satisfy the large deviation principle with speed sn and good rate function I. Let
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F : E → R be continuous and assume that supx∈E F (x) <∞. Then

lim
n→∞

1

sn
log

∫
esnFdµn = sup

x∈E
[F (x)− I(x)].

Proof Applying the exponential function to both sides of our equation, this says
that

lim
n→∞

( ∫
esnFdµn)1/sn = sup

x∈E
eF (x)−I(x).

Setting f := eF , this is equivalent to

lim
n→∞

‖f‖sn,µn = ‖f‖∞,I ,

where our asumptions on F translate into f ∈ Cb,+(E). Thus, Varadhan’s lemma
is just a trivial reformulation of our definition of a large deviation principle. If we
take the traditional definition of a large deviation principle as our starting point,
then Varadhan’s lemma corresponds to the ‘if’ part of Proposition 1.7.

As we have just seen, Varadhan’s lemma is just the statement that the two condi-
tions of Proposition 1.7 are sufficient for (1.2). The fact that these conditions are
also necessary was only proved 24 years later, by Bryc [Bry90].

We conclude this section with a little lemma that says that a sequence of measures
satisfying a large deviation principle determines its rate function uniquely.

Lemma 1.13 (Uniqueness of the rate function) Let E be a Polish space,
µn ∈ M(E), and let sn be real constants converging to infinity. Assume that the
µn satisfy the large deviation principle with speed sn and good rate function I and
also that the µn satisfy the large deviation principle with speed sn and good rate
function I ′. Then I = I ′.

Proof It follows immediately from our definition of the large deviation principle
that ‖f‖∞,I = ‖f‖∞,I′ for all f ∈ Cb,+(E). By Lemma 1.6, for each x ∈ E, we can
find continuous fn : E → [0, 1] such that fn ↓ 1{x}. By Lemma 1.8 (c), it follows
that

e−I(x) = ‖1{x}‖∞,I = lim
n→∞

‖fn‖∞,I = lim
n→∞

‖fn‖∞,I′ = ‖1{x}‖∞,I′ = e−I
′(x)

for each x ∈ E.
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1.4 The contraction principle

As we have seen in Propositions 1.1 and 1.7, there is a lot of similarity between
weak convergence and the large deviation principle. Elaborating on this analogy,
we recall that if Xn is a sequence of random variables, taking values in some
Polish space E, whose laws converge weakly to the law of a random variable X,
and ψ : E → F is a continuous function from E into some other Polish space,
then the laws of the random variables ψ(Xn) converge weakly to the law of ψ(X).
As we will see, an analogue statement holds for sequences of measures satisfying
a large deviation principle.

Recall that if X is a random variable taking values in some measurable space
(E, E), with law P[X ∈ · ] = µ, and ψ : E → F is a measurable function from
E into some other measurable space (F,F), then the law of ψ(X) is the image
measure

µ ◦ ψ−1(A) (A ∈ F), where ψ−1(A) := {x ∈ E : ψ(x) ∈ A}

is the inverse image (or pre-image) of A under ψ.

The next result shows that if Xn are random variables whose laws satisfy a large
deviation principle, and ψ is a continuous function, then also the laws of the ψ(Xn)
satify a large deviation principle. This fact is known a the contraction principle.
Note that we have already seen this principle at work when we derived Propo-
sition 0.5 from Theorem 0.7. As is clear from this example, it is in practice not
always easy to explicitly calculate the ‘image’ of a rate function under a continuous
map, as defined formally in (1.6) below.

Proposition 1.14 (Contraction principle) Let E,F be Polish spaces and let
ψ : E → F be continuous. Let µn be finite measures on E satisfying a large devi-
ation principle with speed sn and good rate function I. Then the image measures
µ◦ψ−1 satisfying the large deviation principle with speed sn and good rate function
J given by

J(y) := inf
x∈ψ−1({y})

I(x) (y ∈ F ), (1.6)

where infx∈∅ I(x) :=∞.

Proof Recall that a function ψ from one topological space E into another topo-
logical space F is continuous if and only if the inverse image under ψ of any open
set is open, or equivalently, the inverse image of any closed set is closed (see, e.g.,
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[Eng89, Proposition 1.4.1] or [Kel75, Theorem 3.1]). As a result, condition (i) of
Proposition 1.7 implies that

lim sup
n→∞

1

sn
log µn ◦ ψ−1(C) ≤ − inf

x∈ψ−1(C)
I(x)

= − inf
y∈C

inf
x∈ψ−1({y})

I(x) = − inf
y∈C

J(y),
(1.7)

where we have used that ψ−1(C) =
⋃
y∈C ψ

−1(y}). Condition (ii) of Proposition 1.7
carries over in the same way. We are left with the task of showing that J is a good
rate function. Indeed, for each a ∈ R the level set

{y ∈ F : J(y) ≤ a} =
{
y ∈ F : inf

x∈ψ−1({y})
I(x) ≤ a

}
=
{
y ∈ F : ∃x ∈ E s.t. ψ(x) = y, I(x) ≤ a

}
= {ψ(x) : x ∈ E, I(x) ≤ a} = ψ({x : I(x) ≤ a})

is the image under ψ of the level set {x : I(x) ≤ a}. Since the continuous im-
age of a compact set is compact [Eng89, Theorem 3.1.10],1 this proves that J
has compact level sets. Finally, we observe (compare (1.7)) that infy∈F J(y) =
infx∈ψ−1(F ) I(x) = infx∈E I(x) <∞, proving that J is a good rate function.

1.5 Exponential tilts

It is not hard to see that if µn are measures satisfying a large deviation principle,
then we can transform these measures by weighting them with an exponential
density, in such a way that the new measures also satisfy a large deviation principle.
Recall that if µ is a measure and f is a nonnegative measurable function, then
setting

fµ(A) :=

∫
A

fdµ

defines a new measure fµ which is µ weighted with the density f .

Lemma 1.15 (Exponential weighting) Let E be a Polish space and let µn ∈
M(E) satisfy the large deviation principle with speed sn and good rate function I.
Let F : E → R be continuous and assume that −∞ < supx∈E F (x) < ∞. Then
the measures

µ̃n := esnFµn

1This is a well-known fact that can be found in any book on general topology. It is easy to
show by counterexample that the continuous image of a closed set needs in general not be closed!
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satisfy the large deviation principle with speed sn and good rate function Ĩ := I−F .

Proof Note that eF ∈ Cb,+(E). Therefore, for any f ∈ Cb,+(E),

‖f‖sn,µ̃n =

∫
f snesnFdµn = ‖feF‖sn,µn

−→
n→∞

‖feF‖∞,I = sup
x∈E

f(x)eF (x)e−I(x) = ‖f‖∞,Ĩ .

Since F is continuous, I − F is lower semi-continuous. Since F is bounded from
above, any level set of I − F is contained in some level set of I, and therefore
compact. Since F is not identically −∞, finally, infx∈I(I(x)−F (x)) <∞, proving
that I − F is a good rate function.

Lemma 1.15 is not so useful yet, since in practice we are usually interested in
probability measures, while exponential weighting may spoil the normalization.
Likewise, we are usually interested in rate functions that are properly ‘normalized’.
Let us say that a function I is a normalized rate function if I is a good rate
function and infx∈E I(x) = 0. Note that if µn are probability measures satisfying
a large deviation principle with speed sn and rate function I, then I must be
normalized, since E is both open and closed, and therefore by conditions (i) and
(ii) of Proposition 1.7

− inf
x∈E

I(x) = lim
n→∞

1

sn
log µn(E) = 0.

Lemma 1.16 (Exponential tilting) Let E be a Polish space and let µn be
probability measures on E satisfy the large deviation principle with speed sn and
normalized rate function I. Let F : E → R be continuous and assume that
−∞ < supx∈E F (x) <∞. Then the measures

µ̃n :=
1∫

esnFdµn
esnFµn

satisfy the large deviation principle with speed sn and normalized rate function
Ĩ(x) := I(x)− F (x)− infy∈E(I(y)− F (y)).
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Proof Since eF ∈ Cb,+(E), much in the same way as in the proof of the previous
lemma, we see that

‖f‖sn,µ̃n =
( 1∫

esnFdµn

∫
f snesnFdµn

)1/sn
=
‖feF‖sn,µn
‖eF‖sn,µn

−→
n→∞

‖feF‖∞,I
‖eF‖∞,I

=
supx∈E f(x)eF (x)e−I(x)

supx∈E e
F (x)e−I(x)

= e− infy∈E(I(y)−F (y)) sup
x∈E

f(x)e−(I(x)−F (x)) = ‖f‖∞,Ĩ .

The fact that Ĩ is a good rate function follows from the same arguments as in the
proof of the previous lemma, and Ĩ is obviously normalized.

1.6 Robustness

Often, when one wishes to prove that the laws P[Xn ∈ · ] of some random variables
Xn satisfy a large deviation principle with a given speed and rate function, it is
convenient to replace the random variables Xn by some other random variables
Yn that are ‘sufficiently close’, so that the large deviation principle for the laws
P[Yn ∈ · ] implies the LDP for P[Xn ∈ · ]. The next result (which we copy from
[DE97, Thm 1.3.3]) gives sufficient conditions for this to be allowed.

Proposition 1.17 (Superexponential approximation) Let (Xn)n≥1, (Yn)n≥1

be random variables taking values in a Polish space E and assume that the laws
P[Yn ∈ · ] satisfy a large deviation principle with speed sn and rate function I. Let
d be any metric generating the topology on E, and assume that

lim
n→∞

1

sn
logP

[
d(Xn, Yn) ≥ ε] = −∞ (ε > 0). (1.8)

Then the laws P[Xn ∈ · ] satisfy the large deviation principle with speed sn and rate
function I.

Remark If (1.8) holds, then we say that the random variables Xn and Yn are
exponentially close. Note that condition (1.8) is in particular satisfied if for each
ε > 0 there is an N such that d(Xn, Yn) < ε a.s. for all n ≥ N . We can even allow
for d(Xn, Yn) ≥ ε with a small probability, but in this case these probabilities must
tend to zero faster than any exponential.
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Proof of Proposition 1.17 Let C ⊂ E be closed and let Cε := {x ∈ E :
d(x,C) ≤ ε}. Then

lim sup
n→∞

1

sn
logP[Xn ∈ C]

≤ lim sup
n→∞

1

sn
log
(
P[Yn ∈ Cε, d(Xn, Yn) ≤ ε] + P[d(Xn, Yn) > ε]

)
≤ lim sup

n→∞

1

sn
logP[Yn ∈ Cε] = − inf

x∈Cε
I(x) −→

ε↓0
− inf

x∈C
I(x),

where we have used (1.4) and in the last step we have applied (the logarithmic
version of) Lemma 1.8 (c). Similarly, if O ⊂ E is open and Oε := {x ∈ E :
d(x,E\O) > ε}, then

lim inf
n→∞

1

sn
logP[Xn ∈ O] ≥ lim inf

n→∞

1

sn
logP[Yn ∈ Oε, d(Xn, Yn) ≤ ε].

The large deviations lower bound is trivial if infx∈O I(x) = ∞, so without loss of
generality we may assume that infx∈O I(x) <∞. Since infx∈Oε I(x) ↓ infx∈O I(x),
it follows that for ε sufficiently small, also infx∈Oε I(x) <∞. By the fact that the
Yn satisfy the large deviation lower bound and by (1.8),

P[Yn ∈ Oε, d(Xn, Yn) ≤ ε] ≥ P[Yn ∈ Oε]− P[d(Xn, Yn) > ε]

≥ e−sn infx∈Oε I(x) + o(sn) − e−sn/o(sn)

as n→∞, where o(sn) is the usual small ‘o’ notation, i.e., o(sn) denotes any term
such that o(sn)/sn → 0. It follows that

lim inf
n→∞

1

sn
logP[Yn ∈ Oε, d(Xn, Yn) ≤ ε] ≥ − inf

x∈Oε
I(x) −→

ε↓0
− inf

x∈O
I(x),

which proves the the large deviation lower bound for the Xn.

Proposition 1.17 shows that large deviation principles are ‘robust’, in a certain
sense, with repect to small perturbations. The next result is of a similar nature:
we will prove that weighting measures with densities does not affect a large de-
viation principle, as long as these densities do not grow exponentially fast. This
complements the case of exponentialy growing densities which has been treated in
Section 1.5.

Lemma 1.18 (Subexponential weighting) Let E be a Polish space and let
µn ∈M(E) satisfy the large deviation principle with speed sn and good rate func-
tion I. Let Fn : E → R be measurable and assume that limn→∞ ‖Fn‖∞ = 0, where
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‖Fn‖∞ := supx∈E |Fn(x)|. Then the measures

µ̃n := esnFnµn

satisfy the large deviation principle with speed sn and rate function I.

Proof We check the large deviations upper and lower bound from Proposition 1.7.
For any closed set C ⊂ E, by the fact that the µn satisfy the large deviation
principle, we have

lim sup
n→∞

1

sn
log µ̃n(C) = lim sup

n→∞

1

sn
log

∫
C

µn(dx)esnFn(x)

≤ lim sup
n→∞

1

sn
log
(
esn‖Fn‖µn(C)

)
= lim sup

n→∞

(
‖Fn‖+

1

sn
log µn(C)

)
,

which equals − infx∈C I(x). Similarly, for any open O ⊂ E, we have

lim inf
n→∞

1

sn
log µ̃n(O) = lim inf

n→∞

1

sn
log

∫
O

µn(dx)esnFn(x)

≥ lim inf
n→∞

1

sn
log
(
e−sn‖Fn‖µn(O)

)
= lim inf

n→∞

(
− ‖Fn‖+

1

sn
log µn(O)

)
,

which yields − infx∈O I(x), as required.

1.7 Tightness

In Sections 1.1 and 1.2, we have stressed the similarity between weak convergence
of measures and large deviation principles. In the remainder of this chapter, we will
pursue this idea further. In the present section, we recall the concept of tightness
and Prohorov’s theorem. In particular, we will see that any tight sequence of
probability measures on a Polish space has a weakly convergent subsequence. In
the next sections (to be precise, in Theorem 1.24), we will prove an analogue of this
result, which says that every exponentially tight sequence of probability measures
on a Polish space has a subsequence that satisfies a large deviation principle.

A set A is called relatively compact if its closure A is compact. The next result
is known as Prohorov’s theorem (see, e.g., [Ste87, Theorems III.3.3 and III.3.4] or
[Bil99, Theorems 5.1 and 5.2]).
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Proposition 1.19 (Prohorov) Let E be a Polish space and let M1(E) be the
space of probability measures on (E,B(E)), equipped with the topology of weak
convergence. Then a subset C ⊂ M1(E) is relatively compact if and only if C is
tight, i.e.,

∀ε > 0 ∃K ⊂ E compact, s.t. sup
µ∈C

µ(E\K) ≤ ε.

Note that since sets consisting of a single point are always compact, Proposi-
tion 1.19 implies that every probability measure (and therefore also every finite
measure) on a Polish space E has the property that for all ε > 0 there exists a
compact K such that µ(E\K) ≤ ε. This fact in itself is already nontrivial, since
Polish spaces need in general not be locally compact.

By definition, a set of functions D ⊂ Cb(E) is called distribution determining if for
any µ, ν ∈M1(E),∫

fdµ =

∫
fdν ∀f ∈ D implies µ = ν.

We say that a sequence of probability measures (µn)n≥1 is tight if the set {µn : n ≥
1} is tight, i.e., ∀ε > 0 there exists a compact K such that supn µn(E\K) ≤ ε. By
Prohorov’s theorem, each tight sequence of probability measures has a convergent
subsequence. This fact is often applied as in the following lemma.

Lemma 1.20 (Tight sequences) Let E be a Polish space and let µn, µ be prob-
ability measures on E. Assume that D ⊂ Cb(E) is distribution determining. Then
one has µn ⇒ µ if and only if the following two conditions are satisfied:

(i) The sequence (µn)n≥1 is tight.

(ii)
∫
fdµn →

∫
fdµ for all f ∈ D.

Proof In any metrizable space, if (xn)n≥1 is a convergent sequence, then {xn : n ≥
1} is relatively compact. Thus, by Prohorov’s theorem, conditions (i) and (ii) are
clearly necessary.

Now assume that (i) and (ii) are satisfied but µn 6⇒ µ. Then we can find some
f ∈ Cb(E) such that

∫
fdµn 6→

∫
fdµ. It follows that we can find some ε > 0 and

n(m)→∞ such that∣∣∣ ∫ fdµn(m) −
∫
fdµ

∣∣∣ ≥ ε ∀m ≥ 1. (1.9)
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Since the (µn(m))m≥1 are tight, we can select a further subsequence ñ(m) and
probability measure µ′ such that µñ(m) ⇒ µ′. By condition (ii), we have µ′ = µ.
It follows that ∫

fdµñ(m) −→
m→∞

∫
fdµ,

contradicting (1.9).

1.8 LDP’s on compact spaces

Our aim is to prove an analogue of Lemma 1.20 for large deviation principles. To
prepare for this, in the present section, we will study large deviation principles
on compact spaces. The results in this section will also shed some light on some
elements of the theory that have up to now not been very well motivated, such as
why rate functions are lower semi-continuous.

It is well-known that a compact metrizable space is separable, and complete in any
metric that generates the topology. In particular, all compact metrizabe spaces
are Polish. Note that if E is a compact metrizable space, then C(E) = Cb(E),
i.e., continuous functions are automatically bounded. We equip C(E) with the
supremumnorm ‖ · ‖∞, under which it is a separable Banach space.2 Below, |f |
denotes the absolute value of a function, i.e., the function x 7→ |f(x)|.

Proposition 1.21 (Generalized supremumnorms) Let E be a compact met-
rizable space and let Λ : C(E)→ [0,∞) be a function such that

(i) Λ is a seminorm.

(ii) Λ(f) = Λ(|f |) for all f ∈ C(E).

(iii) Λ(f) ≤ Λ(g) for all f, g ∈ C+(E), f ≤ g.

(iv) Λ(f ∨ g) = Λ(f) ∨ Λ(g) for all f, g ∈ C+(E).

2The separability of C(E) is an easy consequence of the Stone-Weierstrass theorem [Dud02,
Thm 2.4.11]. Let D ⊂ E be dense and let A := {φn,x : x ∈ D, n ≥ 1}, where φδ,x(y) :=
0∨ (1−nd(x, y)). Let B be the set containing the function that is identically 1 and all functions
of the form f1 · · · fm with m ≥ 1 and f1, . . . , fm ∈ A. Let C be the linear span of B and let C′ be
the set of functions of the form a1f1+· · ·+amfm withm ≥ 1, a1, . . . , am ∈ Q and f1, . . . , fm ∈ B.
Then C is an algebra that separates points, hence by the Stone-Weierstrass theorem, C is dense
in C(E). Since C′ is dense in C′ and C′ is countable, it follows that C(E) is separable.
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Then

(a) Λ : C(E)→ [0,∞) is continuous w.r.t. the supremumnorm.

Moreover, there exits a function I : E → (−∞,∞] such that

(b) Λ(fn) ↓ e−I(x) for any fn ∈ C+(E) s.t. fn ↓ 1{x}.

(c) I is lower semi-continuous.

(d) Λ(f) = supx∈E e
−I(x)|f(x)|

(
f ∈ C(E)

)
.

Proof To prove part (a), we observe that by (ii), (iii) and (i)

Λ(f) = Λ(|f |) ≤ Λ(‖f‖∞ · 1) = ‖f‖∞Λ(1),

where 1 ∈ C(E) denotes the function that is identically one. Using again that Λ
is a seminorm, we see that∣∣Λ(f)− Λ(g)

∣∣ ≤ Λ(f − g) ≤ Λ(1)‖f − g‖∞.

This shows that Λ is continuous w.r.t. the supremumnorm.

Next, define I : E → (−∞,∞] (or equivalently e−I : E → [0,∞)) by

e−I(x) := inf{Λ(f) : f ∈ C+(E), f(x) = 1} (x ∈ E).

We claim that this function satisfies the properties (b)–(d). Indeed, if fn ∈ C+(E)
satisfy fn ↓ 1{x} for some x ∈ E, then the Λ(fn) decrease to a limit by the
monotonicity of Λ. Since

Λ(fn) ≥ Λ(fn/fn(x)) ≥ inf{Λ(f) : f ∈ C+(E), f(x) = 1} = e−I(x)

we see that this limit is larger or equal than e−I(x). To prove the other inequality,
we note that by the definition of I, for each ε > 0 we can choose f ∈ C+(E)
with f(x) = 1 and Λ(f) ≤ e−I(x) + ε. We claim that there exists an n such
that fn < (1 + ε)f . Indeed, this follows from the fact that the the sets Cn :=
{y ∈ E : fn(y) ≥ (1 + ε)f(y)} are compact sets decreasing to the empty set,
hence Cn = ∅ for some n [Eng89, Corollary 3.1.5]. As a result, we obtain that
Λ(fn) ≤ (1 + ε)Λ(f) ≤ (1 + ε)(e−I(x) + ε). Since ε > 0 is arbitrary, this completes
the proof of property (b).
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To prove part (c), consider the functions

φδ,y(x) := 0 ∨ (1− d(y, x)/δ) (x, y ∈ E, δ > 0).

Observe that φδ,y(y) = 1 and φδ,y = 0 on Bδ(y)c, and recall from Lemma 1.5 that
φδ,y : E → [0, 1] is continuous. Since

‖φδ,y − φδ,z‖∞ ≤ δ−1 sup
x∈E
|d(x, y)− d(x, z)| ≤ δ−1d(y, z),

we see that the map x 7→ φδ,x is continuous w.r.t. the supremumnorm. By part (a),
it follows that for each δ > 0, the functions

x 7→ Λ(φδ,x)

are continuous. Since by part (b) these functions decrease to e−I as δ ↓ 0, we con-
clude that e−I is upper semi-continuous or equivalently I is lower semi-continuous.

To prove part (d), by assumption (ii), it suffices to consider the case that f ∈
C+(E). We start by observing that

e−I(x) ≤ Λ(f) ∀x ∈ E, f ∈ C+(E), f(x) = 1,

hence, more generally, for any x ∈ E and f ∈ C+(E) such that f(x) > 0,

e−I(x) ≤ Λ(f/f(x)) = Λ(f)/f(x),

which implies that

e−I(x)f(x) ≤ Λ(f) ∀x ∈ E, f ∈ C+(E),

and therefore
Λ(f) ≥ sup

x∈E
e−I(x)f(x)

(
f ∈ C+(E)

)
.

To prove the other inequality, we claim that for each f ∈ C+(E) and δ > 0 we
can find some x ∈ E and g ∈ C+(E) supported on B2δ(x) such that f ≥ g and
Λ(f) = Λ(g). To see this, consider the functions

ψδ,y(x) := 0 ∨ (1− d(Bδ(y), x)/δ) (x, y ∈ E, δ > 0).

Note that ψδ,y : E → [0, 1] is continuous and equals one on Bδ(y) and zero on
B2δ(y)c. Since E is compact, for each δ > 0 we can find a finite set ∆ ⊂ E such
that

⋃
x∈∆ Bδ(x) = E. By property (iv), it follows that

Λ(f) = Λ
( ∨
x∈∆

ψδ,xf
)

=
∨
x∈∆

Λ(ψδ,xf).
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In particular, we may choose some x such that Λ(f) = Λ(ψδ,xf). Continuing this
process, we can find xk ∈ E and fk ∈ C+(E) supported on B1/k(xk) such that
f ≥ f1 ≥ f2 and Λ(f) = Λ(f1) = Λ(f2) = · · · . It is not hard to see that the fn
decrease to zero except possibly in one point x, i.e.,

fn ↓ c1{x}

for some 0 ≤ c ≤ f(x) and x ∈ E. By part (b), it follows that Λ(f) = Λ(fn) ↓
ce−I(x) ≤ f(x)e−I(x). This completes the proof of part (d).

Recall the definition of a normalized rate function from page 32. The following
proposition prepares for Theorem 1.24 below.

Proposition 1.22 (LDP along a subsequence) Let E be a compact metrizable
space, let µn be probability measures on E and let sn be positive constants converg-
ing to infinity. Then there exists n(m) → ∞ and a normalized rate function I
such that the µn(m) satisfy the large deviation principle with speed sn(m) and rate
function I.

Proof Since C(E), the space of continuous real functions on E, equipped with
the supremumnorm, is a separable Banach space, we can choose a countable dense
subset D = {fk : k ≥ 1} ⊂ C(E). Using the fact that the µn are probability
measures, we see that

‖f‖sn,µn =
(∫
|f |sndµn

)1/sn
≤
(
‖f‖sn∞

)1/sn
= ‖f‖∞

(
f ∈ C(E)

)
.

By Tychonoff’s theorem, the product space

X :=
∞×
k=1

[
0, ‖fk‖∞

]
,

equipped with the product topology is compact. Therefore, we can find n(m)→∞
such that (

‖f‖sn(m),µn(m)

)
k≥1

converges as m → ∞ to some limit in X. In other words, this says that we can
find a subsequence such that

lim
m→∞

‖f‖sn(m),µn(m)
=: Λ(f)
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exists for each f ∈ D. We claim that this implies that for the same subsequence,
this limit exists in fact for all f ∈ C(E). To prove this, we observe that for each
f, g ∈ C(E), ∣∣‖f‖sn,µn − ‖g‖sn,µn∣∣ ≤ ‖f − g‖sn,µn ≤ ‖f − g‖∞.
Letting n(m)→∞ we see that also

|Λ(f)− Λ(g)| ≤ ‖f − g‖∞ (1.10)

for all f, g ∈ D. Since a uniformly continuous function from one metric space into
another can uniquely be extended to a continuous function from the completion
of one space to the completion of the other, we see from (1.10) that Λ can be
uniquely extended to a function Λ : C(E) → [0,∞) such that (1.10) holds for all
f, g ∈ C(E). Moreover, if f ∈ C(E) is arbitrary and fi ∈ D satisfy ‖f − fi‖∞ → 0,
then∣∣‖f‖sn(m),µn(m)

− Λ(f)
∣∣

≤
∣∣‖f‖sn(m),µn(m)

− ‖fi‖sn(m),µn(m)

∣∣+
∣∣‖fi‖sn(m),µn(m)

− Λ(fi)
∣∣+
∣∣Λ(fi)− Λ(f)

∣∣
≤
∣∣‖fi‖sn(m),µn(m)

− Λ(fi)
∣∣+ 2‖f − fi‖∞,

hence
lim sup
m→∞

∣∣‖f‖sn(m),µn(m)
− Λ(f)

∣∣ ≤ 2‖f − fi‖∞

for each i, which proves that ‖f‖sn(m),µn(m)
→ Λ(f).

Our next aim is to show that the function Λ : C(E) → [0,∞) satisfies proper-
ties (i)–(iv) of Proposition 1.21. Properties (i)–(iii) are satisfied by the norms
‖ · ‖sn(m),µn(m)

for each m, so by taking the limit m → ∞ we see that also Λ has
these properties. To prove also property (iv), we use an argument similar to the
one used in the proof of Lemma 1.9 (b). Arguing as in (1.5), we obtain

Λ(f ∨ g)= lim
m→∞

‖f ∨ g‖sn(m),µn(m)
≤ lim sup

m→∞

(
‖f‖sn(m)

sn(m),µn(m) + ‖g‖sn(m)
sn(m),µn(m)

)1/sn(m)

=
(

lim sup
m→∞

‖f‖sn(m),µn(m)

)
∨
(

lim sup
m→∞

‖g‖sn(m),µn(m)

)
= Λ(f) ∨ Λ(g),

where we have used (1.3). Since f, g ≤ f ∨ g, it follows from property (iii) that
moreover Λ(f) ∨ Λ(g) ≤ Λ(f ∨ g), completing the proof of property (iv).

By Proposition 1.21, it follows that there exists a lower semi-continuous function
I : E → (−∞,∞] such that

Λ(f) = sup
x∈E

e−I(x)|f(x)|
(
f ∈ C(E)

)
.
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Since E is compact, I has compact level sets, i.e., I is a good rate function, hence
the µn(m) satisfy the large deviation principle with speed sn(m) and rate function
I. Since the µn(m) are probability measures, it follows that I is normalized.

1.9 Exponential tightness

We wish to generalize Proposition 1.22 to spaces that are not compact. To do this,
we need a condition whose role is similar to that of tightness in the theory of weak
convergence.

Let µn be a sequence of finite measures on a Polish space E and let sn be positive
contants, converging to infinity. We say that the µn are exponentially tight with
speed sn if

∀M ∈ R ∃K ⊂ E compact, s.t. lim sup
n→∞

1

sn
log µn(E\K) ≤ −M.

Letting Ac := E\A denote the complement of a set A ⊂ E, it is easy to check that
exponential tightness is equivalent to the statement that

∀ε > 0 ∃K ⊂ E compact, s.t. lim sup
n→∞

‖1Kc‖sn,µn ≤ ε.

The next lemma says that exponential tightness is a necessary condition for a large
deviation principle.

Lemma 1.23 (LDP implies exponential tightness) Let E be a Polish space
and let µn be finite measures on E satisfying a large deviation principle with speed
sn and good rate function I. Then the µn are exponentially tight with speed sn.

Proof This proof of this statement is more tricky than might be expected at first
sight. We follow [DZ93, Excercise 4.1.10]. If the space E is locally compact, then
an easier proof is possible, see [DZ93, 1.2.19].

Let d be a metric generating the topology on E such that (E, d) is complete, and
let Br(x) denote the open ball (w.r.t. this metric) of radius r around x. Since E is
separable, we can choose a dense sequence (xk)k≥1 in E. Then, for every δ > 0, the
open sets Oδ,m :=

⋃m
k=1Bδ(xk) increase to E. By Lemma 1.8 (c), ‖1Oc

δ,m
‖∞,I ↓ 0.

Thus, for each ε, δ > 0 we can choose an m ≥ 1 such that

lim sup
n→∞

‖1Oc
δ,m
‖sn,µn ≤ ‖1Oc

δ,m
‖∞,I ≤ ε.
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In particular, for any ε > 0, we can choose (mk)k≥1 such that

lim sup
n→∞

‖1Oc
1/k,mk

‖sn,µn ≤ 2−kε (k ≥ 1).

It follows that

lim sup
n→∞

‖1⋃∞
k=1O

c
1/k,mk

‖sn,µn ≤ lim sup
n→∞

∞∑
k=1

‖1Oc
1/k,mk

‖sn,µn

≤
∞∑
k=1

lim sup
n→∞

‖1Oc
1/k,mk

‖sn,µn ≤
∞∑
k=1

2−kε = ε.

Here
∞⋃
k=1

Oc
1/k,mk

=
( ∞⋂
k=1

O1/k,mk

)c

=
( ∞⋂
k=1

mk⋃
l=1

B1/k(xl)
)c

.

Let K be the closure of
⋂∞
k=1O1/k,mk . We claim that K is compact. Recall that a

subset A of a metric space (E, d) is totally bounded if for every δ > 0 there exist a
finite set ∆ ⊂ A such that A ⊂

⋃
x∈∆ Bδ(x). It is well-known [Dud02, Thm 2.3.1]

that a subset A of a metric space (E, d) is compact if and only if it is complete
and totally bounded. In particular, if (E, d) is complete, then A is compact if and
only if A is closed and totally bounded. In light of this, it suffices to show that K
is totally bounded. But this is obvious from the fact that K ⊂

⋃mk
l=1 B2/k(xl) for

each k ≥ 1. Since

lim sup
n→∞

‖1Kc‖sn,µn ≤ lim sup
n→∞

‖1(
⋂∞
k=1O1/k,mk

)c‖sn,µn ≤ ε

and ε > 0 is arbitrary, this proves the exponential tightness of the µn.

The following theorem generalizes Proposition 1.22 to non-compact spaces. This
result is due to O’Brian and Verwaat [OV91] and Puhalskii [Puk91]; see also the
treatment in Dupuis and Ellis [DE97, Theorem 1.3.7].

Theorem 1.24 (Exponential tightness implies LDP along a subsequence)
Let E be a Polish space, let µn be probability measures on E and let sn be positive
constants converging to infinity. Assume that the µn are exponentially tight with
speed sn. Then there exists n(m) → ∞ and a normalized rate function I such
that the µn(m) satisfy the large deviation principle with speed sn(m) and good rate
function I.
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We will derive Theorem 1.24 from Proposition 1.22 using compactification tech-
niques. For this, we need to recall some general facts about compactifications of
metrizable spaces.

If (E,O) is a topological space (with O the collection of open subsets of E) and
E ′ ⊂ E is any subset of E, then E ′ is also naturally equipped with a topology
given by the collection of open subsets O′ := {O ∩ E ′ : O ∈ O}. This topology
is called the induced topology from E. If xn, x ∈ E ′, then xn → x in the induced
topology on E ′ if and only if xn → x in E.

If (E,O) is a topological space, then a compactification of E is a compact topo-
logical space E such that E is a dense subset of E and the topology on E is the
induced topology from E. If E is metrizable, then we say that E is a metrizable
compactification of E. It turns out that each separable metrizable space E has a
metrizable compactification [Cho69, Theorem 6.3].

A topological space E is called locally compact if for every x ∈ E there exists
an open set O and compact set C such that x ∈ O ⊂ C. We cite the following
proposition from [Eng89, Thms 3.3.8 and 3.3.9].

Proposition 1.25 (Compactification of locally compact spaces) Let E be
a metrizable topological space. Then the following statements are equivalent.

(i) E is locally compact and separable.

(ii) There exists a metrizable compactification E of E such that E is an open
subset of E.

(iii) For each metrizable compactification E of E, E is an open subset of E.

A subset A ⊂ E of a topological space E is called a Gδ-set if A is a countable
intersection of open sets (i.e., there exist Oi ∈ O such that A =

⋂∞
i=1Oi. The

following result can be found in [Bou58, §6 No. 1, Theorem. 1]. See also [Oxt80,
Thms 12.1 and 12.3].

Proposition 1.26 (Compactification of Polish spaces) Let E be a metrizable
topological space. Then the following statements are equivalent.

(i) E is Polish.

(ii) There exists a metrizable compactification E of E such that E is a Gδ-subset
of E.
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(iii) For each metrizable compactification E of E, E is a Gδ-subset of E.

Moreover, a subset F ⊂ E of a Polish space E is Polish in the induced topology if
and only if F is a Gδ-subset of E.

Lemma 1.27 (Restriction principle) Let E be a Polish space and let F ⊂ E
be a Gδ-subset of E, equipped with the induced topology. Let (µn)n≥1 be finite
measures on E such that µn(E\F ) = 0 for all n ≥ 1, let sn be positive constants
converging to infinity and let I be a good rate function on E such that I(x) =∞ for
all x ∈ E\F . Let µn|F and I|F denote the restrictions of µn and I, respectively,
to F . Then I|F is a good rate function on F and the following statements are
equivalent.

(i) The µn satisfy the large deviation principle with speed sn and rate function I.

(ii) The µn|F satisfy the large deviation principle with speed sn and rate func-
tion I|F .

Proof Since the level sets of I are compact in E and contained in F , they are
also compact in F , hence I|F is a good rate function. To complete the proof,
by Proposition 1.7, it suffices to show that the large deviations upper and lower
bounds for the µn and µn|F are equivalent. A subset of F is open (resp. closed) in
the induced topology if and only if it is of the form O ∩ F (resp. C ∩ F ) with O
an open subset of E (resp. C a closed subset of E). The equivalence of the upper
bounds now follows from the observation that for each closed C ⊂ E,

lim sup
n→∞

1

sn
log µn

∣∣
F

(C ∩ F ) = lim sup
n→∞

1

sn
log µn(C)

and

inf
x∈C

I(x) = inf
x∈C∩F

I
∣∣
F

(x).

In the same way, we see that the large deviations lower bounds for the µn and µn|F
are equivalent.

Exercise 1.28 (Weak convergence and the induced topology) Let E be a
Polish space and let E be a metrizable compactification of E. Let d be a metric
generating the topology on E, and denote the restriction of this metric to E also
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by d. Let Cu(E) denote the class of functions f : E → R that are uniformly
continuous w.r.t. the metric d, i.e.,

∀ε > 0 ∃δ > 0 s.t. d(x, y) ≤ δ implies |f(x)− f(y)| ≤ ε.

Let (µn)n≥1 and µ be probability measures on E. Show that the following state-
ments are equivalent:

(i)
∫
fdµn →

∫
fdµ for all f ∈ Cb(E),

(ii)
∫
fdµn →

∫
fdµ for all f ∈ Cu(E),

(iii) µn ⇒ µ where ⇒ denotes weak convergence of probability measures on E,

(iv) µn ⇒ µ where ⇒ denotes weak convergence of probability measures on E.

Hint: Identify Cu(E) ∼= C(E) and apply Proposition 1.1.

We note that compactifications are usually not unique, i.e., it is possible to con-
struct many different compactifications of one and the same space E. If E is locally
compact (but not compact), however, then we may take E such that E\E con-
sists one a single point (usually denoted by∞). This one-point compactification is
(up to homeomorphisms) unique. For example, the one-point compactification of
[0,∞) is [0,∞] and the one-point compactification of R looks like a circle. Another
useful compactification of R is of course R := [−∞,∞]. To see an example of a
compactification of a Polish space that is not locally compact, consider the space
E := M1(R) of probability measures on R, equipped with the topology of weak
convergence. A natural compactification of this space is the space E :=M1(R) of
probability measures on R. Note that M1(R) is not an open subset3 of M1(R),
which by Proposition 1.25 proves thatM1(R) is not locally compact. On the other
hand, since by Excercise 1.28, M1(R) is Polish in the induced topology, we can
conclude by Proposition 1.26 that M1(R) must be a Gδ-subset M1(R). (Note
that in particular, this is a very quick way of proving thatM1(R) is a measurable
subset of M1(R).)

Note that in all these examples, though the topology on E coincides with the
(induced) topology from E, the metrics on E and E may be different. Indeed, if
d is a metric generating the topology on E, then E will never be complete in this
metric (unless E is compact).

3Indeed (1−n−1)δ0+n−1δ∞ ∈M1(R)\M1(R) converge to δ0 ∈M1(R) which show that the
complement ofM1(R) is not closed.



1.10. APPLICATIONS OF EXPONENTIAL TIGHTNESS 47

Proof of Theorem 1.24 Let E be a metrizable compactification of E. By Propo-
sition 1.22, there exists n(m)→∞ and a normalized rate function I : E → [0,∞]
such that the µn(m) (viewed as probability measures on E) satisfy the large devi-
ation principle with speed sn(m) and rate function I.

We claim that for each a < ∞, the level set La := {x ∈ E : I(x) ≤ a} is a
compact subset of E (in the induced topology). To see this, choose a < b < ∞.
By exponential tightness, there exists a compact K ⊂ E such that

lim sup
m→∞

1

sn(m)

log µn(m)(K
c) ≤ −b. (1.11)

Note that since the identity map from E into E is continuous, and the continuous
image of a compact set is compact, K is also a compact subset of E. We claim
that La ⊂ K. Assume the converse. Then we can find some x ∈ La\K and open
subset O of E such that x ∈ O and O ∩K = ∅. Since the µn(m) satisfy the LDP
on E, by Proposition 1.7 (ii),

lim inf
m→∞

1

sn(m)

log µn(m)(O) ≥ − inf
x∈O

I(x) ≥ −a,

contradicting (1.11). This shows that La ⊂ K. Since La is a closed subset of E, it
follows that La is a compact subset of E (in the induced topology). In particular,
our arguments show that I(x) = ∞ for all x ∈ E\E. The statement now follows
from the restriction principle (Lemma 1.27) and the fact that the µn(m) viewed as
probability measures on E satisfy the large deviation principle with speed sn(m)

and rate function I.

1.10 Applications of exponential tightness

By definition, we say that a set of functions D ⊂ Cb,+(E) is rate function deter-
mining if for any two normalized good rate functions I, J ,

‖f‖∞,I = ‖f‖∞,J ∀f ∈ D implies I = J.

By combining Lemma 1.23 and Theorem 1.24, we obtain the following analogue
of Lemma 1.20. Note that by Lemma 1.23, the conditions (i) and (ii) below are
clearly necessary for the measures µn to satisfy a large deviation principle.
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Proposition 1.29 (Conditions for LDP) Let E be a Polish space, let µn be
probability measures on E, and let sn be positive constants converging to infinity.
Assume that D ⊂ Cb,+(E) is rate function determining and that:

(i) The sequence (µn)n≥1 is exponentially tight with speed sn.

(ii) The limit Λ(f) = limn→∞ ‖f‖sn,µn exists for all f ∈ D.

Then there exists a good rate function I on E which is uniquely characterized by
the requirement that Λ(f) = ‖f‖∞,I for all f ∈ D, and the µn satisfy the large
deviation principle with speed sn and rate function I.

Proof By exponential tightness and Theorem 1.24, there exist n(m) → ∞ and a
normalized rate function I such that the µn(m) satisfy the large deviation principle
with speed sn(m) and good rate function I. It follows that

Λ(f) = lim
m→∞

‖f‖sn(m),µn(m)
= ‖f‖∞,I (f ∈ D),

which characterizes I uniquely by the fact that D is rate function determining.
Now imagine that the µn do not satisfy the large deviation principle with speed
sn and good rate function I. Then we can find some n′(m)→∞ and g ∈ Cb,+(E)
such that ∣∣‖g‖sn′(m),µn′(m)

− ‖g‖∞,I
∣∣ ≥ ε (m ≥ 1). (1.12)

By exponential tightness, there exists a further subsequence n′′(m) and good rate
function J such that the µn′′(m) satisfy the large deviation principle with speed
sn′′(m) and good rate function J . It follows that ‖f‖∞,J = Λ(f) = ‖f‖∞,I for all
f ∈ D and therefore, by the fact that D is rate function determining, J = I.
Since this contradicts (1.12), we conclude that the µn satisfy the large deviation
principle with speed sn and good rate function I.

A somewhat weaker version of Proposition 1.29 where D is replaced by Cb,+
is known as Bryc’s theorem [Bry90], which can also be found in [DZ93, Theo-
rem 4.4.2].

In view of Proposition 1.29, we are interested in finding sufficient conditions for a
set D ⊂ Cb,+ to be rate function determining. The following simple observation is
useful.

Lemma 1.30 (Sufficient conditions to be rate function determining) Let
E be a Polish space, D ⊂ Cb,+(E), and assume that for each x ∈ E there exist
fk ∈ D such that fk ↓ 1{x}. Then D is rate function determining.
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Proof If fk ↓ 1{x}, then, by Lemma 1.8, ‖fk‖∞,I ↓ ‖1{x}‖∞,I = e−I(x).

Proposition 1.29 shows that in the presence of exponential tightness, it is possible
to prove large deviation principles by showing that the limit limn→∞ ‖f‖sn,µm exists
for sufficiently many continuous functions f . Often, it is more convenient to prove
that the large deviations upper and lower bounds from Proposition 1.7 hold for
suffiently many closed and open sets.

Let A be a collection of measurable subsets of some Polish space E. We say that A
is rate function determining if for any pair I, J of normalized good rate functions
on E, the condition

inf
x∈A

I(x) ≤ inf
x∈int(A)

J(x) ∀A ∈ A (1.13)

implies that I ≤ J . A set O′ ⊂ O is a basis for the topology if every O ∈ O can
be written as a (possibly uncountable) union of sets in O′. Equivalently, this says
that for each x ∈ E and open set O 3 x, there exists some O′ ∈ O′ such that
x ∈ O′ ⊂ O. For example, in any metric space, the open balls form a basis for the
topology.

Lemma 1.31 (Rate function determining sets) Let A be a collection of mea-
surable subsets of a Polish space E. Assume that {int(A) : A ∈ A} is a basis for
the topology. Then A is rate function determining.

Proof Choose εk ↓ 0. Since {int(A) : A ∈ A} is a basis for the topology, for each
z ∈ E and k there exists some Ak ∈ A such that z ∈ int(Ak) ⊂ Bεk(z). Since I is
a good rate function, it assumes its minimum over Ak, so (1.13) implies that there
exist zk ∈ Ak such that I(zk) ≤ infx∈int(Ak) J(x) ≤ J(z). Since zk → z, the lower
semi-continuity of I implies that I(z) ≤ lim infk→∞ I(zk) ≤ J(z).

Theorem 1.32 (Conditions for LDP) Let E be a Polish space, let µn be prob-
ability measures on E, let sn be positive constants converging to infinity, let I be
a normalized good rate function on E, and let Aup,Alow be collections of measur-
able subsets of E that are rate function determining. Then the µn satisfy the large
deviation principle with speed sn and rate function I if and only if the following
three conditions are satisfied.

(i) lim sup
n→∞

1

sn
log µn(A) ≤ − inf

x∈A
I(x) ∀A ∈ Aup,

(ii) lim inf
n→∞

1

sn
log µn(A) ≥ − inf

x∈int(A)
I(x) ∀A ∈ Alow,
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(iii) the µn are exponentially tight.

Proof The necessity of the conditions (i)–(iii) follows from Remark 1 below Propo-
sition 1.7 and Lemma 1.23. To prove sufficiency, we observe that by Theorem 1.24,
exponential tightness implies that going to a subsequence if necessary, we can as-
sume that the µn satisfy a large deviations principle with speed sn and some good
rate function J . By the argument used in the proof of Proposition 1.29, if we can
show that for each such subsequence, J = I, then it follows that the µn satisfy the
large deviations principle with speed sn and rate function I.

In view of this, it suffices to show that if the µn satisfy a large deviations princi-
ple with speed sn and some good rate function J and conditions (i) and (ii) are
satisfied, then J = I. Indeed, condition (i) and the large deviation principle for J
imply that for any A ∈ Aup,

− inf
x∈int(A)

J(x) ≤ lim inf
n→∞

1

sn
log µn(int(A)) ≤ lim sup

n→∞

1

sn
log µn(A) ≤ − inf

x∈A
I(x),

which by the assumption that Aup is rate function determining implies that I ≤ J .
Similarly, using (ii) instead of (i), we find that for any A ∈ Alow,

− inf
x∈int(A)

I(x) ≤ lim inf
n→∞

1

sn
log µn(A) ≤ lim sup

n→∞

1

sn
log µn(A) ≤ − inf

x∈A
J(x),

which by the assumption that Aup is rate function determining implies that J ≤ I.

Remark In Theorem 1.32, instead of assuming that Alow is rate function deter-
mining, it suffices to assume that

∀ε > 0 and z ∈ E s.t. I(z) <∞, ∃A ∈ Alow s.t. z ∈ A ⊂ Bε(z). (1.14)

Indeed, the proof of Lemma 1.31 shows that if (1.13) holds with I and J inter-
changed, and we moreover have (1.14), then J(z) ≤ I(z) for all z ∈ E such that
I(z) <∞. Trivially, this also holds if I(z) =∞, and the proof proceeds as before.

The next lemma shows that in Theorem 1.32, instead of assuming that Aup is rate
function determining, we can also take for Aup the set of all compact subsets of E.
If E is locally compact, then {int(K) : K compact} is a basis for the topology, so
in view of Lemma 1.31 this does not add anything new. However, if E is not locally
compact, then {int(K) : K compact} is never a basis for the topology. In fact,
there exist Polish spaces in which every compact set has empty interior. Clearly,
in such spaces, the compact sets are not rate function determining and hence the
lemma below does add something new.
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Lemma 1.33 (Upper bound for compact sets) Let E be a Polish space, let
µn be finite measures on E, let sn be positive constants converging to infinity, and
let I be a good rate function on E. Assume that

(i) The sequence (µn)n≥1 is exponentially tight with speed sn.

(ii) lim sup
n→∞

1

sn
log µn(K) ≤ − inf

x∈K
I(x) ∀K compact.

Then

lim sup
n→∞

1

sn
log µn(C) ≤ − inf

x∈C
I(x) ∀C closed.

Remark If I : E → (−∞,∞] is lower semi-continuous and not identically ∞,
but not necessarily has compact level sets, and if µn are measures and sn → ∞
constants such that

(i) lim sup
n→∞

1

sn
log µn(K) ≤ − inf

x∈K
I(x) ∀K compact.

(ii) lim inf
n→∞

1

sn
log µn(O) ≤ − inf

x∈O
I(x) ∀O open,

then one says that the µn satisfy the weak large deviation principle with speed
sn and rate function I. Thus, a weak large deviation principle is basically a
large deviation principle without exponential tightness. The theory of weak large
deviation principles is much less elegant than for large deviation principles. For
example, the contraction principle (Proposition 1.14 below) may fail for measures
satisfying a weak large deviation principle.

Proof of Lemma 1.33 By exponential tightness, for each M <∞ we can find a
compact K ⊂ E such that

lim sup
n→∞

1

sn
log µn(E\K) ≤ −M.

By (1.4), it follows that, for any closed C ⊂ E,

lim sup
n→∞

1

sn
log µn(C) = lim sup

n→∞

1

sn
log
(
µn(C ∩K) + µn(C\K)

)
=
(

lim sup
n→∞

1

sn
log µn(C ∩K)

)
∨
(

lim sup
n→∞

1

sn
log µn(C\K))

)
≤ −

(
M ∧ inf

x∈C∩K
I(x)

)
≤ −

(
M ∧ inf

x∈C
I(x)

)
−→
M→∞

− inf
x∈C

I(x).
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Let E and F be sets and let (fγ)γ∈Γ be a collection of functions f : E → F . By
definition, we say that (fγ)γ∈Γ separates points if for each x, y ∈ E with x 6= y,
there exists a γ ∈ Γ such that fγ(x) 6= fγ(y). The following theorem is a sort of
‘inverse’ of the contraction principle, in the sense that a large deviation principle for
sufficiently many image measures implies a large deviation principle for the original
measures. For weak convergence, the analogous statement is that if we have a
sequence X(n) of discrete-time processes (X

(n)
i )i∈N, then weak convergence of the

finite dimensional distributions implies weak convergence in law of the processes.

Theorem 1.34 (Projective limit) Let E and F be Polish spaces, let µn be prob-
ability measures on E, and let sn be positive constants converging to infinity. Let
(ψi)i∈N+ be continuous functions ψi : E → F . For each m ≥ 1, let ~ψm : E → Fm be

defined as ~ψm(x) =
(
ψ1(x), . . . , ψm(x)

)
(x ∈ E). Assume that (ψi)i∈N+ separates

points and that:

(i) The sequence (µn)n≥1 is exponentially tight with speed sn.

(ii) For each finite m ≥ 1, there exists a good rate function Im on Fm, equipped

with the product topology, such that the measures µn ◦ ~ψ−1
m satisfy the large

deviation principle with speed sn and rate function Im.

Then there exists a good rate function I on E which is uniquely characterized by
the requirement that

Im(y) = inf
x: ~ψm(x)=y

I(x) (m ≥ 1, y ∈ Fm).

Moreover, the measures µn satisfy the large deviation principle with speed sn and
rate function I.

Proof Our assumptions imply that for each f ∈ Cb,+(Fm),

‖f ◦ ~ψm‖sn,µn = ‖f‖sn,µn◦~ψ−1
m
−→
n→∞

‖f‖∞,Im .

We claim that the set

D :=
{
f ◦ ~ψm : m ≥ 1, f ∈ Cb,+(Fm)

}
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is rate function determining. To see this, fix z ∈ E and define fi,k ∈ D by

fi,k(x) :=
(
1− kd

(
ψi(x), ψi(z)

))
∨ 0 (i, k ≥ 1, y ∈ E),

where d is any metric generating the topology on F . We claim that

D 3
m∧
i=1

fi,m ↓ 1{z} as m ↑ ∞.

Indeed, since the (ψi)i∈N+ separate points, for each x 6= z there is an i ≥ 1 such
that ψi(x) 6= ψi(z) and hence fi,m(y) = 0 for m large enough. By Lemma 1.30, it
follows that D is rate function determining.

Proposition 1.29 now implies that there exists a good rate function I on E such
that the µn satisfy the large deviation principle with speed sn and rate function I.
Moreover, I is uniquely characterized by the requirement that

‖f ◦ ~ψm‖∞,I = ‖f‖∞,Im
(
m ≥ 1, f ∈ Cb,+(Fm)

)
. (1.15)

Set
I ′m(y) := inf

x: ~ψm(x)=y
I(x) (y ∈ Fm),

which by the contraction principle (Proposition 1.14) is a good rate function on
Fm. Since

‖f ◦ ~ψm‖∞,I = sup
x∈E

e−I(x)f
(
~ψm(x)

)
= sup

y∈Fm
e− infx: ~ψm(x)=y I(x)

f(y) = ‖f‖∞,I′m ,

formula (1.15) implies that ‖f‖∞,I′m = ‖f‖∞,Im for all f ∈ Cb,+(Fm), which is in
turn implies that Im = I ′m.

The following lemma gives a more explicit expression for the rate function I from
Theorem 1.34 in terms of the rate functions ~ψm.

Lemma 1.35 (Formula for high-level rate function) In the set-up of Theo-
rem 1.34,

Im(~ψm(x)) ↑ I(x) as m ↑ ∞.

Proof We observe that

Im(~ψm(x)) = inf
x′∈E: ~ψm(y)=~ψm(x)

I(x′).

The sets Cm := {x′ ∈ E : ~ψm(y) = ~ψm(x)} are closed and decrease to {x} as
m ↑ ∞ by the fact that the ψi separate points. Therefore, by Lemma 1.8 (c),
infx′∈Cm I(x′) ↑ I(x) as ↑ ∞.
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Chapter 2

Sums of i.i.d. random variables

2.1 The Legendre transform

In order to prepare for the proof of Cramér’s theorem (Theorem 0.1), and especially
Lemma 0.2, we start by studying the way the rate function I in (0.3) is defined.
It turns out that I is the Legendre transform of logZ, which we now define more
generally.

For any function f : R→ [−∞,∞], we define the Legendre transform (sometimes
also called Legendre-Fenchel transform or Fenchel-Legendre transform, to honour
Fenchel who first studied the transformation for non-smooth functions) of f as

f ∗(y) := sup
x∈R

[
yx− f(x)

]
(y ∈ R).

f(x)

x

slope y◦

f ∗(y◦)

f(x◦)

x◦

x◦y◦

f ∗(y)

y

slope x◦

f(x◦)

f ∗(y◦)
y◦

x◦y◦

Figure 2.1: The Legendre transform.
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Exercise 2.1 For a ∈ R, let la denote the linear function la(x) := ax, and for any
function f : R→ [−∞,∞], define Taf(x) := f(x− a) (x ∈ R). Show that:

(a) f ≤ g ⇒ f ∗ ≥ g∗.

(b) (f + c)∗ = f ∗ − c.

(c) (f + la)
∗ = Taf

∗

(d) (Taf)∗ = f ∗ + la.

Recall that a function f : R→ (−∞,∞] is convex if f(px1 +(1−p)x2) ≤ pf(x1)+
(1 − p)f(x2) for all 0 ≤ p ≤ 1 and x1, x2 ∈ R. A convex function is always
continuous on the interior of the interval {x ∈ R : f(x) < ∞}; in particular,
convex functions taking values in R are continuous everywhere. In general, for
convex functions that may take the value +∞, it will be convenient to assume
that such functions are also lower semi-continuous.

Exercise 2.2 Show that for any function f : R→ (−∞,∞] that is not identically
∞, the Legendre transform f ∗ is a convex, lower semi-continuous function f ∗ : R→
(−∞,∞], regardless of whether f is convex or lower semi-continuous or not. Hint:
show that the epigraph of f ∗ is given by{

(y, z) ∈ R2 : z ≥ f ∗(y)
}

=
⋂

x: f(x)<∞

Hx,

where Hx denotes the closed half-space Hx := {(y, z) : z ≥ yx− f(x)}.

For any convex function f : R→ (−∞,∞], let us write

Df := {x ∈ R : f(x) <∞} and Uf := int(Df ),

where int(A) denotes the interior of a set A. We adopt the notation

∂f(x) := ∂
∂x
f(x) and ∂2f(x) := ∂2

∂x2
f(x).

We let Conv∞ denote the class of convex, lower semi-continuous functions f : R→
(−∞,∞] such that

(i) Uf 6= ∅,
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(ii) f is C∞ on Uf ,

(iii) ∂2f(x) > 0 for all x ∈ Uf ,

(iv) If x+ := supUf <∞, then limx↑x+ ∂f(x) =∞, and
if x− := inf Uf > −∞, then limx↓x− ∂f(x) = −∞.

Proposition 2.3 (Legendre transform) Let f ∈ Conv∞. Then:

(a) f ∗ ∈ Conv∞.

(b) f ∗ ∗ = f .

(c) ∂f : Uf → Uf∗ is a bijection, and (∂f)−1 = ∂f ∗.

(d) For each y ∈ Uf∗, the function x 7→ yx− f(x) assumes its unique maximum
in x◦ = ∂f ∗(y).

Proof Set Uf =: (x−, x+) and

y− := lim
x→x−

∂f(x),

y+ := lim
x→x+

∂f(x).
(2.1)

Since ∂2f > 0, the function ∂f : (x−, x+) → (y−, y+) is strictly increasing, hence
a bijection. It follows from assumption (iv) in the definition of Conv∞ that

f ∗(y) =∞
(
y ∈ R\[y−, y+]

)
,

which proves that Uf∗ = (y−, y+). For each y ∈ (y−, y+), the function x 7→
yx− f(x) assumes its maximum in a unique point x◦ = x◦(y) ∈ (x−, x+), which is
characterized by the requirement

∂
∂x

(
yx− f(x)

)∣∣
x=x◦

= 0

⇔ ∂f(x◦) = y.

In other words, this says that

x◦(y) = (∂f)−1(y)
(
y ∈ (y−, y+)

)
. (2.2)
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It follows that x◦ depends smoothly on y ∈ (y−, y+) and hence the same is true
for f ∗(y) = yx◦(y)− f(x◦(y)). Moreover,

∂f ∗(y) = ∂
∂y

(
yx◦(y)− f(x◦(y)

)
= x◦(y) + y ∂

∂y
x◦(y)− ∂f(x◦(y)) ∂

∂y
x◦(y)

=x◦(y) + y ∂
∂y
x◦(y)− y ∂

∂y
x◦(y) = x◦(y),

where we have used (2.2). See Figure 2.2 for a more geometric proof of this fact.
It follows that

∂f ∗(y) = x◦(y) = (∂f)−1(y)
(
y ∈ (y−, y+)

)
,

which completes the proof of parts (c) and (d).

We next wish to show that the double Legendre transform f ∗ ∗ = (f ∗)∗ equals f
on Uf . Let x◦ ∈ (x−, x+) and y◦ ∈ (y−, y+) be related by x◦ = ∂f ∗(y◦), and hence
y◦ = ∂f(x◦). Then the function y 7→ x◦y − f ∗(y) assumes its maximum in y = y◦,
hence

f ∗ ∗(x◦) = x◦y◦ − f ∗(y◦) = f(x◦),

(see Figure 2.1). This proves that f ∗ ∗ = f on Uf . We have already seen that f ∗ ∗ =
∞ = f on R\[x−, x+], so by symmetry, it remains to show that f ∗ ∗(x+) = f(x+)
if x+ < ∞. But this follows from the fact that limx↑x+ f(x) = x+ by the lower
semicontinuity of f , and the same holds for f ∗ ∗ by Excercise 2.2. This completes
the proof of part (b).

It remains to prove part (a). We have already shown that f ∗ is infinitely differen-
tiable on Uf∗ 6= ∅. Since ∂f : (x−, x+) → (y−, y+) is strictly increasing, the same
is true for its inverse, which proves that ∂2f ∗ > 0 on Uf∗ . Finally, by assump-
tion (iv) in the definition of Conv∞, we can have y+ < ∞ only if x+ = ∞, hence
limy↑y+ ∂f

∗(y) = x+ =∞ in this case. By symmetry, an analogue statement holds
for y−.

Remark Proposition 2.3 can be generalized to general convex, lower semi-contin-
uous functions f : R→ (−∞,∞]. In particular, the statement that f ∗ ∗ = f holds
in this generality, but the other statements of Proposition 2.3 need modifications.
Let us say that a function f : R → (−∞,∞] admits a supporting line with slope
a ∈ R at x if there exists some c ∈ R such that

la(x) + c = f(x) and la(x
′) + c ≤ f(x′) ∀x′ ∈ R.

Obviously, if f is convex and continuously differentiable in x, then there is a unique
supporting line at x, with slope ∂f(x). For general convex, lower semi-continuous
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f(x)

x

slope y

f ∗(y)

slope y + ε

x◦

εx◦

Figure 2.2: Proof of the fact that x◦(y) = ∂f ∗(y). Note that since x◦(y + ε) =
x◦(y) +O(ε), one has f

(
x◦(y + ε)

)
= f

(
x◦(y)

)
+O(ε2).

logZ(λ)

λ

yλ

I(y)

∂
∂λ

logZ(λ)

λ

y+

ρ

I(y)

yy+

∞

ρ

∂
∂y
I(y)

yy+
ρ

Figure 2.3: Definition of the rate function in Cramér’s theorem. The functions
below are derivatives of the functions above, and inverses of each other.
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f(x)

x

∂f(x)

x

f ∗(y)

y

∂f ∗(y)

y

Figure 2.4: Legendre transform of a non-smooth function.

functions f : R → (−∞,∞], we may define ∂f(x) as a ‘multi-valued’ function,
whose values in x are the slopes of all supporting lines at x. See Figure 2.4 for an
example. For any function f (not necessarily convex), let us define the convex hull
h of f as the largest convex, lower semi-continuous function such that h ≤ f . It
can be shown that in general, f ∗ = h∗ and therefore f ∗ ∗ = h. We refer to [Roc70]
for details.

Lemma 2.4 (Smoothness of logarithmic moment generating function)
Let Z(λ) be the function defined in (0.1), let µ be the law of X1, and for λ ∈ R,
let µλ denote the tilted law

µλ(dx) :=
1

Z(λ)
eλxµ(dx) (λ ∈ R).

Then λ 7→ logZ(λ) is infinitely differentiable and

(i) ∂
∂λ

logZ(λ) = 〈µλ〉,

(ii) ∂2

∂λ2
logZ(λ) = Var(µλ)

}
(λ ∈ R)

where 〈µλ〉 and Var(µλ) denote the mean and variance of µλ.
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Proof Let µ be the common law of the i.i.d. random variables (Xk)k≥1. We claim
that λ 7→ Z(λ) is infinitely differentiable and

(
∂
∂λ

)n
Z(λ) =

∫
xneλxµ(dx).

To justify this, we must show that the interchanging of differentiation and integral
is allowed. By symmetry, it suffices to prove this for λ ≥ 0. We observe that

∂
∂λ

∫
xneλxµ(dx) = lim

ε→0

∫
xnε−1(e(λ+ε)x − eλx)µ(dx),

where

|x|nε−1
∣∣e(λ+ε)x − eλx

∣∣ = |x|n
∣∣∣ε−1

∫ λ+ε

λ

xeκxdκ
∣∣∣ ≤ |x|n+1e(λ+1)x (x ∈ R, ε ≤ 1).

It follows from the existence of all exponential moments (assumption (0.1)) that
this function is integrable, hence we may use dominated convergence to interchange
the limit and integral.

It follows that

(i) ∂
∂λ

logZ(λ) = ∂
∂λ

log

∫
eλxµ(dx) =

∫
xeλxµ(dx)∫
eλxµ(dx)

= 〈µλ〉,

(ii) ∂2

∂λ2
logZ(λ) =

Z(λ)
∫
x2eλxµ(dx)− (

∫
xeλxµ(dx))2

Z(λ)2

=

∫
x2µλ(dx)−

(∫
xµλ(dx)

)2

= Var(µλ).

(2.3)

We next turn our attention to the proof of Lemma 0.2. See Figure 2.3 for an
illustration.

Proof of Lemma 0.2 By Lemma 2.4, λ 7→ logZ(λ) is an element of the function
class Conv∞, so by Proposition 2.3 (a) we see that I ∈ Conv∞. This immediately
proves parts (i) and (ii). It is immediate from the definition of Z(λ) that Z(0) = 1
and hence logZ(0) = 0. By Proposition 2.3 (b), logZ is the Legendre transform
of I. In particular, this shows that

0 = logZ(0) = sup
y∈R

[0y − I(y)] = − inf
y∈R

I(y),
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proving part (iii). By Lemma 2.4, ∂ logZ(0) = 〈µ〉 =: ρ, which means that
λ 7→ ρλ is a tangent to the function logZ in the point λ = 0. By the concavity
of logZ, it follows that I(ρ) = supλ∈R[ρλ − logZ(λ)] = 0. By the fact that
I ∈ Conv this implies that I assumes its unique minimum in ρ, proving part (iv).
By Lemma 2.4, Excercise 2.5 below, and (2.1), it follows that UI = (y−, y+),
proving part (v). Since I ∈ Conv∞, this also proves part (vi). Part (vii) follows
from the fact that, by Proposition 2.3 (c), ∂I : (y−, y+) → R is a bijection. The
fact that I ′′ > 0 on UI follows from the fact that I ∈ Conv∞. We recall that if
f is smooth and strictly increasing and f(x) = y, then ∂

∂x
f(x) = 1/( ∂

∂y
f−1(y)).

Therefore, Proposition 2.3 (c), the fact that ∂ logZ(0) = ρ, and Lemma 2.4 imply
that ∂2I(ρ) = 1/(∂2 logZ(0)) = 1/σ2, proving part (viii). To prove part (ix),
finally, by symmetry it suffices to prove the statement for y+. If y+ <∞, then

e−I(y+) = inf
λ∈R

[
e logZ(λ)− y+λ

]
= inf

λ∈R
e−y+λZ(λ)

= inf
λ∈R

e−y+λ
∫

eλyµ(dy) = inf
λ∈R

∫
eλ(y − y+)µ(dy)

= lim
λ→∞

∫
eλ(y − y+)µ(dy) = µ({y+}),

which completes our proof.

Exercise 2.5 (Maximal and minimal mean of tilted law) Let µλ be defined
as in Lemma 2.4. Show that

lim
λ→−∞

〈µλ〉 = y− and lim
λ→+∞

〈µλ〉 = y+,

where y−, y+ are defined as in Lemma 0.2.

2.2 Cramér’s theorem

Proof of Theorem 0.1 By symmetry, it suffices to prove (0.2) (i). In view of the
fact that 1[0,∞)(z) ≤ ez, we have, for each y ∈ R and λ ≥ 0,

P
[ 1

n

n∑
k=1

Xk ≥ y
]

= P
[ 1

n

n∑
k=1

(Xk − y) ≥ 0
]

= P
[
λ

n∑
k=1

(Xk − y) ≥ 0
]

≤ E
[
eλ
∑n

k=1(Xk − y)] =
n∏
k=1

E
[
eλ(Xk − y)] = e−nλyE

[
eλX1

]n
= e (logZ(λ)− λy)n.
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If y > ρ, then, by Lemma 2.4, ∂
∂λ

[logZ(λ) − λy]|λ=0 = ρ − y < 0, so, by the
convexity of the function λ 7→ [logZ(λ)− λy],

inf
λ≥0

[logZ(λ)− λy] = inf
λ∈R

[logZ(λ)− λy] =: −I(y).

Together with our previous formula, this shows that

P
[ 1

n

n∑
k=1

Xk ≥ y
]
≤ e−nI(y) (y > ρ),

and hence, in particular,

lim sup
n→∞

1

n
logP

[
Tn ≥ y

]
≤ −I(y) (y > ρ).

To estimate the limit inferior from below, we distinguish three cases. If y > y+,
then P[Tn ≥ y] = 0 for all n ≥ 1 while I(y) = ∞ by Lemma 0.2 (v), so (0.2) (i)
is trivially fulfilled. If y = y+, then P[Tn ≥ y] = P[X1 = y+]n while I(y+) =
− logP[X1 = y+] by Lemma 0.2 (ix), hence again (0.2) (i) holds.

If y < y+, finally, then by Proposition 2.3 (c) and (d), I(y) = supλ∈R[yλ −
logZ(λ)] = yλ◦ − logZ(λ◦), where λ◦ = (∂ logZ)−1(y). In other words, recall-
ing Lemma 2.4, this says that λ◦ is uniquely characterized by the requirement
that

〈µλ◦〉 = ∂ logZ(λ◦) = y.

We observe that if (X̂k)k≥1 are i.i.d. random variables with common law µλ◦ , and

T̂n := 1
n

∑n
k=1 X̂k, then limn→∞ P[T̂n ≥ y] = 1

2
by the central limit theorem and

therefore limn→∞
1
n

logP[T̂n ≥ y] = 0. The idea of the proof is to replace the law
µ of the (Xk)k≥1 by µλ◦ at an exponential cost of size I(y). More precisely, we
estimate

P
[
Tn ≥ y

]
= P

[ n∑
k=1

(Xk − y) ≥ 0
]

=

∫
µ(dx1) · · ·

∫
µ(dxn)1{

∑n
k=1(xk − y) ≥ 0}

= Z(λ◦)
n

∫
e−λ◦x1µλ◦(dx1) · · ·

∫
e−λ◦xnµλ◦(dxn)1{

∑n
k=1(xk − y) ≥ 0}

= Z(λ◦)
ne−nλ◦y

∫
µλ◦(dx1) · · ·

∫
µλ◦(dxn)

×e−λ◦
∑n

k=1(xk − y)1{
∑n

k=1(xk − y) ≥ 0}

= e−nI(y)E
[
e−nλ◦(T̂n − y)1{T̂n − y ≥ 0}

]
.

(2.4)
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By the central limit theorem,

P
[
y ≤ T̂n ≤ y + σn−1/2

]
−→
n→∞

1√
2π

∫ 1

0

e−z
2/2dz =: θ > 0.

Since

E
[
e−nλ◦(T̂n − y)1{T̂n − y ≥ 0}

]
≥ P

[
y ≤ T̂n ≤ y + σn−1/2

]
e−
√
nσλ◦ ,

this implies that

lim inf
n→∞

1

n
logE

[
e−nλ◦(T̂n − y)1{T̂n − y ≥ 0}

]
≥ lim inf

n→∞

1

n
log
(
θe−
√
nσλ◦

)
= − lim inf

n→∞

1

n

(
log θ +

√
nσλ◦

)
= 0.

Inserting this into (2.4) we find that

lim inf
n→∞

1

n
logP

[
Tn ≥ y

]
≥ −I(y) (y > ρ).

Remark Our proof of Cramér’s theorem actually shows that for any ρ < y < y+,

e−nI(y)−O(
√
n) ≤ P[Tn ≥ y] ≤ e−nI(y) as n→∞.

Here the term of order
√
n in the lower bound comes from the central limit theorem.

A simpler method to obtain a more crude lower bound is to use the weak law of
large numbers instead. For each λ∗ > λ◦, the calculation in (2.4) shows that

P[Tn ≥ y] = e−n[λ∗y − logZ(λ∗)]E
[
e−nλ∗(T̂n − y)1{T̂n − y ≥ 0}

]
,

where T̂n now denotes the mean of n i.i.d. random variables with common law
µλ∗ , instead of µλ◦ . Let ε := 〈µλ∗〉 − 〈µλ◦〉 = 〈µλ∗〉 − y. By the weak law of large
numbers

P
[
y ≤ T̂n ≤ y + 2ε

]
−→
n→∞

1.

Inserting this into our previous formula yields

P[Tn ≥ y] ≥ e−n[λ∗y − logZ(λ∗)]e−n2ελ∗ ,
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and hence

lim inf
n→∞

P[Tn ≥ y] ≥ λ∗y − logZ(λ∗)− 2ελ∗.

Since ε ↓ 0 as λ∗ ↓ λ◦, taking the limit, we obtain that

lim inf
n→∞

P[Tn ≥ y] ≥ λ◦y − logZ(λ◦) = I(y).

Remark Using Theorem 0.1, it is not hard to show that indeed, the laws P[Tn ∈ · ]
satisfy a large deviation principle with speed n and good rate function I. We will
postpone this until we treat the multidimensional case in Theorem 2.17. The-
orem 0.1 is in fact a bit stronger than the large deviation principle. Indeed, if
y+ <∞ and µ({y+}) > 0, then the large deviation principle tells us that

lim sup
n→∞

µn([y+,∞)) ≤ − inf
y∈[y+,∞)

I(y) = −I(y+),

but, as we have seen in Excercise 1.11, the complementary statement for the limit
inferior does not follow from the large deviation principle since [y+,∞) is not an
open set.

Remark Theorem 0.1 remains true if the assumption that Z(λ) <∞ for all λ ∈ R
is replaced by the weaker condition that Z(λ) < ∞ for λ in some open interval
containing the origin. See [DZ98, Section 2.2.1].

Remark For ρ < y < y+, it can be shown that for fixed m ≥ 1,

P
[
X1 ∈ dx1, . . . , Xm ∈ dxm

∣∣ 1
n

n∑
k=1

Xk ≥ y
]

=⇒
n→∞

µλ◦(dx1) · · ·µλ◦(dxm),

where µλ denotes a tilted law as in Lemma 2.4 and λ◦ is defined by the requirement
that 〈µλ◦〉 = y. This means that conditioned on the rare event 1

n

∑n
k=1 Xk ≥ y, in

the limit n→∞, the random variables X1, . . . , Xn are approximately distributed
as if they are i.i.d. with common law µλ◦ .

2.3 The multi-dimensional Legendre transform

At first sight, one might have the impression that the theory of the Legendre
transform, as described in Section 2.1, is very much restricted to one dimension.
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We will see shortly that this impression is incorrect. Indeed, Proposition 2.3 has
an almost straightforward generalization to convex functions on Rd.

We denote a vector in Rd as x =
(
x(1), . . . , x(d)

)
and let

〈x, y〉 :=
∑
i=1

x(i)y(j) (x, y ∈ Rd)

denote the usual inner product. For any function f : Rd → [−∞,∞], we defined
the Legendre transform as

f ∗(y) := sup
x∈Rd

[
〈y, x〉 − f(x)

]
(y ∈ Rd).

Recall that a function f : Rd → (−∞,∞] is convex if f(px1 + (1 − p)x2) ≤
pf(x1) + (1− p)f(x2) for all 0 ≤ p ≤ 1 and x1, x2 ∈ Rd. By induction, this implies
that

f
( n∑
k=1

pkxk
)
≤

n∑
k=1

pkf(xk)

for all x1, . . . , xn ∈ Rd and p1, . . . , pn ≥ 0 such that
∑n

k=1 pk = 1.

Exercise 2.6 For a ∈ Rd, let la denote the linear function la(x) := 〈a, x〉, and for
any function f : Rd → [−∞,∞], define Taf(x) := f(x− a) (x ∈ Rd). Show that:

(a) f ≤ g ⇒ f ∗ ≥ g∗.

(b) (f + c)∗ = f ∗ − c.

(c) (f + la)
∗ = Taf

∗

(d) (Taf)∗ = f ∗ + la.

Exercise 2.7 Show that for any function f : Rd → (−∞,∞] that is not identically
∞, the Legendre transform f ∗ is a convex, lower semi-continuous function f ∗ :
Rd → (−∞,∞], regardless of whether f is convex or lower semi-continuous or not.

For any function f : Rd → (−∞,∞], we write

Df := {x ∈ R : f(x) <∞} and Uf := int(Df ).
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For any open set O ⊂ Rd, we let

∂O := O\O

denote the boundary of O. For smooth functions, we adopt the notation

∂if(x) := ∂
∂x(i)

f(x) and ∇f(x) :=
(

∂
∂x(d)

f(x), . . . , ∂
∂x(d)

f(x)
)
.

We call the function Rd 3 x 7→ ∇f(x) ∈ Rd the gradient of f . We note that for
any y ∈ Rd,

〈y,∇f(x)〉 = lim
ε→0

ε−1
(
f(x+ εy)− f(x)

)
is the directional derivative of f at x in the direction y. Likewise,

∂2

∂ε2
f(x+ εy)

∣∣
ε=0

=
d∑
i=1

y(i) ∂
∂x(i)

( d∑
j=1

y(j) ∂
∂x(j)

f(x)
)

=
d∑

i,j=1

y(i)∂i∂jf(x)y(j) = 〈y,D2f(x)y〉,

where D2f(x) denotes the d× d matrix

D2
ijf(x) := ∂i∂jf(x).

We let Conv∞(Rd) denote the class of convex, lower semi-continuous functions
f : Rd → (−∞,∞] such that

(i) Uf 6= ∅,

(ii) f is C∞ on Uf ,

(iii) 〈y,D2f(x)y〉 > 0 for all x ∈ Uf , 0 6= y ∈ Rd,

(iv) |∇f(xn)| → ∞ for any Uf 3 xn → x ∈ ∂Uf .

Proposition 2.8 (Legendre transform in more dimensions) Assume that
f ∈ Conv∞(Rd). Then:

(a) f ∗ ∈ Conv∞(Rd).

(b) f ∗ ∗ = f .
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(c) ∇f : Uf → Uf∗ is a bijection, and (∇f)−1 = ∇f ∗.

(d) For each y ∈ Uf∗, the function x 7→ 〈y, x〉−f(x) assumes its unique maximum
in x◦ = ∇f ∗(y).

Proof Let O be the image of Uf under the gradient mapping x 7→ ∇f(x). It
follows from assumption (iv) in the definition of Conv∞(Rd) that

f ∗(y) =∞ (y ∈ Rd\O).

On the other hand, by the strict concavity of f (assumption (iii)), for each y ∈ O,
the function x 7→ 〈y, x〉 − f(x) assumes its maximum in a unique point x◦ =
x◦(y) ∈ Uf , which is characterized by the requirement that

∇f(x◦) = y.

This proves that f ∗(y) < ∞ for y ∈ O and therefore O = Uf∗ . Moreover, we see
from this that the gradient map Uf 3 x 7→ ∇f(x) ∈ Uf∗ is a bijection and

x◦(y) = (∇f)−1(y) (y ∈ Uf∗).

The proof of parts (c) and (d) now proceeds completely analogous to the one-
dimensional case. The proof that f ∗ ∗ = f is also the same, where we observe that
the values of a function f ∈ Conv∞(Rd) on ∂Uf are uniquely determined by the
restriction of f to Uf and lower semi-continity.

It remains to show that f ∗ ∈ Conv∞(Rd). The fact that f ∗ is infinitely differen-
tiable on Uf∗ follows as in the one-dimensional case. To prove that f ∗ satisfies
condition (iii) in the definition of Conv∞(Rd), we observe that by the fact that ∇f
and ∇f ∗ are each other’s inverses, we have y(i) = ∂if(∇f ∗(y)) and therefore, by
the chain rule

1{i=j} = ∂
∂y(j)

∂if(∇f ∗(y)) =
d∑

k=1

∂k∂if(∇f ∗(y))∂j∂kf
∗(y).

In matrix notation, this says that

1 = D2f
(
∇f ∗(y)

)
D2f ∗(y),

i.e., the (symmetric) matrix D2f ∗(y) is the inverse of the strictly positive, sym-
metric matrix D2f(∇f ∗(y)). Recall that any symmetric real matrix can be diag-
onalized with respect to an orthonormal basis and that such a matrix is strictly
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positive if and only if all its eigenvalues are. Then D2f ∗(y) can be diagonalized
with respect to the same orthonormal basis as D2f(∇f ∗(y)) and its eigenvalues
are the inverses of those of the latter. In particular, D2f ∗(y) is strictly positive.

To complete the proof, we must show that f ∗ satisfies condition (iv) from the
definition of Conv∞(Rd). Choose Uf∗ 3 yn → y ∈ ∂Uf∗ and let xn := ∇f ∗(yn) and
hence yn = ∇f(xn). By going to a subsequence if necessary, we may assume that
the xn converge, either to a finite limit or |xn| → ∞. (I.e., the xn converge in the
one-point compactification of Rd.) If the xn converge to a finite limit x ∈ ∂Uf ,
then by assumption (iv) in the definition of Conv∞(Rd), we must have |yn| =
|∇f(xn)| → ∞, contradicting our assumption that yn → y ∈ ∂Uf∗ . It follows that
|∇f ∗(yn)| = |xn| → ∞, which shows that f ∗ satisfies condition (iv).

Lemma 2.4 also generalizes in a straightforward way to the multi-dimensional
setting. For any probability measure µ on Rd which has at least finite first, re-
spectively second moments, we let

〈µ〉(i) :=

∫
µ(dx)x(i),

Covij(µ) :=

∫
µ(dx)x(i)x(j)−

(∫
µ(dx)x(i)

)(∫
µ(dx)x(j)

)
(i, j = 1, . . . , d) denote the mean and covariance matrix of µ.

Lemma 2.9 (Smoothness of logarithmic moment generating function)
Let µ be a probability measure on Rd and let Z be given by

Z(λ) :=

∫
e 〈λ, x〉µ(dx) (λ ∈ Rd). (2.5)

Assume that Z(λ) <∞ for all λ ∈ Rd and for λ ∈ R, let µλ denote the tilted law

µλ(dx) :=
1

Z(λ)
e 〈λ, x〉µ(dx) (λ ∈ Rd). (2.6)

Then λ 7→ logZ(λ) is infinitely differentiable and

(i) ∂
∂λ(i)

logZ(λ) = 〈µλ〉(i),

(ii) ∂2

∂λ(i)∂λ(j)
logZ(λ) = Covij(µλ)

}
(λ ∈ Rd, i, j = 1, . . . , d).

Proof Analogue to the proof of Lemma 2.4.

We also need a multi-dimensional analogue of Lemma 0.2. We will be satified with
a less detailed statement than in the one-dimensional case. Also, we will not list
those properties that are immediate consequences of Proposition 2.8.
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We need a bit of convex analysis. For any set A ⊂ Rd, the convex hull of A is
defined as

C(A) :=
{ n∑
k=1

pkxk : n ≥ 1, x1, . . . , xn ∈ A, p1, . . . , pk ≥ 0,
n∑
k=1

pk = 1
}
.

The closed convex hull C(A) of A is the closure of C(A). There is another charac-
terization of the closed convex hull of a set that will be of use to us. By definition,
we will call any set of the form

H = {x ∈ Rd : 〈y, x〉 > c} resp. H = {x ∈ Rd : 〈y, x〉 ≥ c} (2.7)

with 0 6= y ∈ Rd and c ∈ R an open, resp. closed half-space, and we let Hopen resp.
Hclosed denote the collection of all open, resp. closed half-spaces of Rd. We claim
that, for any set A ⊂ Rd,

C(A) =
⋂
{H ∈ Hclosed : A ⊂ H}. (2.8)

We will skip the proof of this rather inuitive but not entirely trivial fact. A formal
proof may easily be deduced from [Roc70, Theorem 11.5] or [Dud02, Thm 6.2.9].

Lemma 2.10 (Properties of the rate function) Let µ be a probability measure
on Rd. Assume that the moment generating function Z defined in (2.5) is finite
for all λ ∈ Rd and that

〈y,Cov(µ)y〉 > 0 (0 6= y ∈ Rd).

For λ ∈ Rd, define µλ as in (2.6) and let 〈µ〉 resp. 〈µλ〉 be the mean of µ and µλ.
Let I : Rd → (−∞,∞] be the Legendre transform of logZ. Then:

(i) I ∈ Conv∞(Rd).

(ii) I
(
〈µ〉
)

= 0 and I(y) > 0 for all y 6= 〈µ〉.

(iii) I is a good rate function.

(iv) UI = {〈µλ〉 : λ ∈ Rd}.

(v) U I is the closed convex hull of support(µ).

(vi) For each y◦ ∈ UI , the function Rd 3 λ 7→ 〈y◦, λ〉 − logZ(λ) assumes its
maximum in a unique point λ◦ ∈ Rd, which is uniquely characterized by the
requirement that 〈µλ◦〉 = y◦.
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Proof The fact that I ∈ Conv∞(Rd) follows from Proposition 2.8 and the fact
that logZ ∈ Conv∞(Rd), which follows from Lemma 2.4 and the assumption that
the matrix Cov(µ) is strictly positive. The fact that I(〈µ〉) = 0 and I(y) > 0
for all y 6= 〈µ〉 can be proved exactly as in the finite-dimensional case. Since
I ∈ Conv∞(Rd), the function I is lower semi-continuous, while part (ii) and the
convexity of I imply that the level sets of I are bounded, hence I is a good rate
function.

Property (iv) is immediate from Proposition 2.8 (c) and Lemma 2.9. Proposi-
tion 2.8 (d) moreover tells us that for each y◦ ∈ UI , the function Rd 3 λ 7→
〈y◦, λ〉 − logZ(λ) assumes its maximum in a unique point λ◦ ∈ Rd, which is given
by λ◦ = ∇I(y◦). By Proposition 2.8 (c), the function λ 7→ ∇ logZ(λ) is the inverse
of y 7→ ∇I(y), so the condition λ◦ = ∇I(y◦) is equivalent to ∇ logZ(λ◦) = y◦. By
Lemma 2.9, this says that 〈µλ◦〉 = y◦, proving (vi).

It remains to prove (v). Since support(µλ) = support(µ) for all λ ∈ Rd, it is easy
to see that if H is an open half-space such that H∩support(µ) = ∅, then 〈µλ〉 6∈ H.
Since by (2.8), the complement of C(support(µ)) is the union of all open half-spaces
that do not intersect support(µ), this proves the inclusion UI ⊂ C(support(µ)).

On the other hand, if H = {y ∈ Rd : 〈λ, y〉 > c} is an open half-space such that
H ∩ support(µ) 6= ∅, then, in the same way as in Exercise 2.5, one can check
that there exists some r > 0 large enough such that 〈µrλ〉 ∈ H. This proves
that C(UI) ⊃ C(support(µ)). Since I is convex, so is UI , and therefore the closed
convex hull of UI is just the closure of UI . Thus, we have U I ⊃ C(support(µ)),
completing our proof.

In Theorem 2.17 below, we see that Cramér’s theorem generalizes to the multi-
dimensional case in a more or less straightforward manner. In particular, in the
multi-dimensional case, the rate function is the function I of Lemma 2.10. Before
we prove this, it will be convenient to broaden our horizon a bit and already start
preparing for the proof of Boltzmann-Sanov Theorem (Theorem 0.7 from the intro-
duction) and its generalization to infinite spaces, Sanov’s Theorem (Theorem 2.18
below). We will see that Cramér’s rate function I can be derived from Sanov’s
rate function H by the contraction principle (see Figure 2.5). This leads to new
way of looking at I that will also be useful for proving Cramér’s theorem.
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Xi ∈ E (i ≥ 1)
i.i.d. with law µ

1

n

n∑
i=1

δXi ∈M1(E)

empirical measure

H(ν |µ)
relative entropy

Yi ∈ Rd (i ≥ 1)
i.i.d. with law µ ◦ f−1

1

n

n∑
i=1

Yi ∈ Rd

mean

I(y)
Cramér’s rate

function

f(Xi) = Yi
∫
f dν = y inf

ν:
∫
fdν=y

H(ν |µ) = I(y)

Figure 2.5: Two levels of large deviation principles: relation between Sanov’s and
Cramér’s theorem.

2.4 Relative entropy

Let E be a Polish space and let M1(E) be the space of probability measures
on E, equipped with the topology of weak convergence, under which M1(E) is
Polish. Recall that by the Radon-Nikodym theorem, if ν, µ ∈ M1(E), then ν has
a density w.r.t. µ if and only if ν is absolutely continuous w.r.t. µ, i.e., ν(A) = 0
for all A ∈ B(E) such that µ(A) = 0. We denote this as ν � µ and let dν

dµ
denote

the density of ν w.r.t. µ, which is uniquely defined up to a.s. equality w.r.t. µ. For
any ν, µ ∈M1(E), we define the relative entropy H(ν|µ) of ν w.r.t. µ as

H(ν|µ) :=


∫

log
(dν

dµ

)
dν =

∫
dν

dµ
log
(dν

dµ

)
dµ if ν � µ,

∞ otherwise.

Note that if ν � µ, then a.s. equality w.r.t. µ implies a.s. equality w.r.t. ν, which
shows that the first formula for H(ν|µ) is unambiguous.

The following lemma gives some more properties of the relative entropy.

Lemma 2.11 (Properties of the relative entropy) For each µ ∈M1(E), the
function H( · |µ) has the following properties.

(i) H(µ|µ) = 0 and H(ν|µ) > 0 for all ν 6= µ.
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(ii) The map M1(E) 3 ν 7→ H(ν|µ) is convex.

(iii) H( · |µ) is a good rate function.

Proof Define φ : [0,∞)→ R by

φ(r) :=

{
r log r (r > 0),
0 (r = 0).

Then φ is continuous at 0 and

φ′(r) = log r + 1 and φ′′(r) = r−1 (r > 0).

In particular, φ is strictly convex, so by Jensen’s inequality

H(ν|µ) =

∫
φ

(
dν

dµ

)
dµ ≥ φ

( ∫ dν

dµ
dµ
)

= 1 log 1 = 0,

with equality if and only if dν/dµ is equal to a constant a.s. w.r.t. µ. This proves
part (i).

To prove part (ii), fix ν1, ν2 ∈M1(E) and 0 ≤ p ≤ 1. We wish to show that

H(pν1 + (1− p)ν2|µ) ≥ pH(ν1|µ) + (1− p)H(ν2|µ).

If either ν1 6� µ or ν2 6� µ (or both), then the statement is obvious. Otherwise,
setting fi = dνi/dµ, we have

H(pν1 + (1− p)ν2|µ) =

∫
φ(pf1 + (1− p)f2)dµ

≥
∫ (

pφ(f1) + (1− p)φ(f2)
)
dµ = pH(ν1|µ) + (1− p)H(ν2|µ)

by the convexity of φ(r) = r log r.

To prove part (iii), finally, we must show that for each r <∞, the level set

Lr :=
{
ν ∈M1(E) : H(ν|µ) ≤ r

}
is a compact subset of M1(E). Let L1(µ) be the Banach space consisting of all
equivalence classes of w.r.t. µ a.e. equal, absolutely integrable functions, equipped
with the norm ‖f‖1 :=

∫
|f |dµ. Then, identifying a measure with its density, we

have
{ν ∈M(E) : ν � µ} ∼= {f ∈ L1(µ) : f ≥ 0},
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and we we may identify Lr with the set

Lr ∼=
{
f ∈ L1

+(µ) :

∫
fdµ = 1,

∫
f log fdµ ≤ r

}
.

We note that Lr is convex by the convexity of H( · |µ). We start by showing that
Lr is closed with respect to the norm ‖ · ‖1. Let fn ∈ Lr, f ∈ L1(µ) be such
that ‖fn − f‖1 → 0. By going to a subsequence if necessary, we may assume that
fn → f a.s. Since the function φ is bounded from below, it follows from Fatou’s
lemma that ∫

φ(f)dµ ≤ lim inf
n→∞

∫
φ(fn)dµ ≤ r,

which shows that f ∈ Lr.

We recall that for any real Banach space (V, ‖ · ‖), the dual V ∗ is the space
of all continuous linear forms on V , i.e., the space of all continuous linear maps
l : V → R. The weak topology on V is the weakest topology on V that makes all the
maps {l : l ∈ V ∗} continuous, i.e., it is the topology on V generated by the open
sets {l−1(O) : O ⊂ R open, l ∈ V ∗}. The weak topology is usually weaker than
the norm topology on V . Some care is needed when dealing with weak topologies
since they are often not metrizable.

In particular, it is known that the dual of L1(µ) is isomorphic to the space L∞(µ) of
equivalence classes of w.r.t. µ a.e. equal, bounded measurable functions, equipped
with the essential supremumnorm ‖f‖∞ := inf{R < ∞ : |f | ≤ R a.s.}. In
particular, this means that the weak topology on L1(µ) is the weakest topology
that makes the linear forms

f 7→ lg(f) :=

∫
fg dµ (g ∈ Bb(E)

)
continuous. We now need two facts from functional analysis.

1. Let V be a Banach space and let C ⊂ V be convex and norm-closed. Then
C is also closed with respect to the weak topology on V .

2. (Dunford-Pettis) A subset C ⊂ L1(µ) is relatively compact in the weak
topology if and only if C is uniformly integrable.

Here, a set C is called relatively compact if its closure C is compact, and we recall
that a set C ⊂ L1(µ) is uniformly integrable if for each ε > 0 there exists a K <∞
such that

sup
f∈C

∫
1{|f |≥K}|f |dµ ≤ ε.
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A sufficient condition for uniform integrability is the existence of a nonnegative,
increasing, convex function ψ : [0,∞)→ [0,∞) such that limr→∞ ψ(r)/r =∞ and

sup
f∈C

∫
ψ(|f |)dµ <∞.

(In fact, by the De la Valle-Poussin theorem, this condition is also necessary, but
we will not need this deeper converse.) Applying this to ψ = φ+1, we see that the
set Lr is relatively compact in the weak topology by the Dunford-Pettis theorem.
Since, by 1., Lr is also closed with respect to the weak topology, we conclude that
Lr is compact with respect to the weak topology.

If E is any topological space with collection of open sets O, and F ⊂ E is a subset
of E, then the induced topology on F is the topology defined by the collection of
open sets O′ := {O∩F : O ∈ O}. We have just seen that Lr is a compact space in
the induced topology obtained by viewing Lr as a subset of L1(µ), equipped with
the weak topology.

Viewing Lr as a subset of M1(E), we observe that the topology of weak conver-
gence of probability measures on E induces on Lr the weakest topology that makes
the linear forms

Recall that identifying a probability measure with its density with respect to µ,
we can view Lr both as a subset of M1(E) and as a subset of L1(µ). On M1(E),
we have the topology of weak convergence of probability measures, which on Lr
induces a topology that is the weakest topology that makes the linear forms

f 7→ lg(f) :=

∫
fg dµ (g ∈ Cb(E)

)
.

continuous. We already know that Lr is compact in the weak topology on L1(µ),
which is the weakest topology to make the linear forms lg with g ∈ Bb(E) mea-
surable. Since it is defined by a smaller collection of linear forms, the topology of
weak convergence of probability measures is even weaker than the weak topology.
We claim that as a result, every set that is compact in the weak topology is also
compact in the topology of weak convergence of probability measures. Applying
this to Lr then shows that it is a compact subset of M1(E).

Indeed, if T1, T2 are topologies defined by their collections of open sets O1,O2,
then T1 is weaker than T2 if O1 ⊂ O2. We claim that this implies that the set
of all T2-compact sets is a subset of the set of all T1-compact sets. Indeed, if a
set K is T2-compact and a collection of T1-open sets covers K, then these sets
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are also T2-open and hence there exists a finite subcover, proving that K is also
T1-compact.

Remark The proof of Lemma 2.11, part (iii) is quite complicated. A seemingly
much shorter proof can be found in [DE97, Lemma 1.4.3 (b) and (c)], but this
proof depends on a variational formula which has a rather long and complicated
proof that is deferred to an appendix. The proof in [DS89, Lemma 3.2.13] also
depends on a variational formula. The proof of [DZ93, Lemma 6.2.16], on the
other hand, is very similar to our proof above.

The following lemma prepares for the proof that Cramér’s rate function I is the
contraction of Sanov’s rate function H( · |µ) (see Figure 2.5). Note that if E = Rd

and f is the identity function, then the measures µλ defined in (2.9) are the same
as those defined in (2.6). The next lemma says that among all measures ν such
that

∫
f dν =

∫
f dµλ, the measure µλ stands out since it has the lowest relative

entropy with respect to µ.

Lemma 2.12 (Minimizers of the entropy) Let E be a Polish space, let µ be a
probability measure on E, and let f : E → Rd be a measurable function. Assume
that

Z(λ) :=

∫
e 〈λ, f(x)〉µ(dx) <∞ (λ ∈ Rd),

and that the covariance matrix of µ ◦ f−1 is strictly positive. Let

I(y) := sup
λ∈Rd

[
〈y, λ〉 − logZ(λ)

]
(y ∈ Rd)

be the Legendre transform of logZ. For each λ ∈ Rd, let µλ be the probability
measure on E defined by

µλ(dx) =
1

Z(λ)
e 〈λ, f(x)〉µ(dx). (2.9)

Let

Mf
1(E) := {ν ∈M1(E) :

∫
|f | dν <∞}.

Then, for all y◦ ∈ UI , the function H( · |µ) assumes its minimum over the set
{ν ∈Mf

1(E) :
∫
ν(dx)f(x) = y◦} in the unique point µλ◦ given by the requirement

that ∫
µλ◦(dx)f(x) = y◦.

Moreover, one has H(µλ◦ |µ) = I(y◦).
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Proof We wish to find the minimum of H( · |µ) over the set of all ν ∈ Mf
1(E)

subject to the constraint
∫
f dν = y◦, which are really d constraints since y◦ ∈ Rd.

We use the method of Lagrange multipliers: we first try to find the minimum of
the function H(ν |µ)− 〈λ,

∫
f dν〉 for general λ ∈ Rd, and then try to choose λ in

such a way that the minimizer satisfies the constraints.

We start by proving that for any λ ∈ Rd and ν ∈Mf
1(E),

H(ν|µ) ≥
∫
ν(dx)〈λ, f(x)〉 − logZ(λ)

(
ν ∈Mf

1(E)
)
, (2.10)

where equality holds for a given value of λ if and only if ν = µλ. The inequal-
ity is trivial if H(ν|µ) = ∞ so we may assume that ν � µ and H(ν|µ) =∫

log(dν/dµ)dν < ∞. We can split the measure µ in an absolutely continuous
and singular part w.r.t. ν, i.e., we can find a measurable set A and nonnegative
measurable function h such that ν(A) = 0 and

µ(dx) = 1A(x)µ(dx) + h(x)ν(dx).

Weighting the measures on both sides of this equation with the density dν/dµ,
which is zero on A a.s. w.r.t. µ, we see that

ν(dx) =
dν

dµ
(x)h(x)ν(dx),

which shows that h(x) = (dν/dµ)−1 a.s. with respect to ν. Since r 7→ log(r) is a
strictly concave function, Jensen’s inequality gives∫

ν(dx)〈λ, f(x)〉 −H(ν|µ) =

∫
ν(dx)

(
log
(
e 〈λ, f(x)〉)− log

(dν

dµ
(x)
))

=

∫
ν(dx) log

(
e 〈λ, f(x)〉(dν

dµ
)−1(x)

)
≤ log

(∫
ν(dx)e 〈λ, f(x)〉h(x)

)
≤ log

(∫
µ(dx)e 〈λ, f(x)〉

)
= logZ(λ).

This proves (2.10). Since the logarithm is a strictly concave function, the first
inequality here (which is an application of Jensen’s inequality) is an equality if

and only if the function e 〈λ, f〉(dν
dµ

)−1 is a.s. constant w.r.t. ν. Since the logarithm

is a strictly increasing function and e〈λ,f〉 is strictly positive, the second inequality
is an equality if and only if µ = hν, i.e., if µ� ν. Thus, we have equality in (2.10)
if and only if µ� ν and

ν(dx) =
1

Z
e 〈λ, f(x)〉µ(dx),
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where Z is some constant. Since ν is a probability measure, we must have Z =
Z(λ).

Our arguments so far imply that for each y◦ ∈ Rd, one has

H(ν|µ) ≥ 〈λ, y◦〉 − logZ(λ) ∀λ ∈ Rd, ν ∈Mf
1(E) s.t.

∫
f dν = y◦, (2.11)

with equality if and only if λ has the property that
∫
f dµλ = y◦ and ν = µλ. To

complete the proof, we must show that if y◦ ∈ UI , then there exists a unique λ◦
such that

∫
f dµλ◦ = y◦, and H(µλ◦ |µ) = I(y◦).

Note that Z(λ) is the moment generating function of µ ◦ f−1, i.e.,

Z(λ) =

∫
(µ ◦ f−1)(dx)e〈λ,x〉.

Moreover, the image under f of the measure µλ defined in (2.9) is the measure

µλ ◦ f−1(dy) =
1

Z(λ)
e 〈λ, y〉(µ ◦ f−1)(dy),

i.e., this is (µ ◦ f−1)λ in the notation of formula (2.6). Note that we are assuming
that the the covariance matrix of µ ◦ f−1 is strictly positive, so Lemma 2.10 is
applicable. Now, if y◦ ∈ UI , then by Lemma 2.10 (vi), the supremum

I(y◦) = sup
λ∈Rd

[
〈y◦, λ〉 − logZ(λ)

]
is attained in a unique point λ◦ ∈ Rd which is uniquely characterized by the
requirement that

∫
f dµλ◦ = 〈(µ ◦ f−1)λ◦〉 = y◦. Comparing with (2.11), we see

that I(y◦) = H(µλ◦ |µ).

We now prove that Cramér’s rate function I is the contraction of Sanov’s rate
function H( · |µ) (see Figure 2.5).

Proposition 2.13 (Contracted rate function) Let E be a Polish space, let µ
be a probability measure on E, and let f : E → Rd be a measurable function.
Assume that

Z(λ) :=

∫
e 〈λ, f(x)〉µ(dx) <∞ (λ ∈ Rd),

and let
I(y) := sup

λ∈Rd

[
〈y, λ〉 − logZ(λ)

]
(y ∈ Rd)
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be the Legendre transform of logZ. Then

I(y) = inf
ν∈Mf

1 (E)∫
f dν=y

H(ν |µ). (2.12)

Remark Using Lemma 2.12, it is easy to prove (2.12) when the covariance matrix
of µ ◦ f−1 is positive and y ∈ UI or y 6∈ U I . By going to a suitable subspace, it is
easy to get rid of the condition on the covariance matrix. Thus, it only remains
to prove (2.12) when y lies on the boundary of UI . This seems to be surprisingly
hard. One can try to use a continuity argument,1 using that both sides of (2.12)
are convex and lower-semicontinuous in y. Convexity is easy, but proving lower-
semicontinuity for the right-hand side seems to be hard. If f is bounded, then
this follows from the (nontrivial) fact that the level sets of H( · |µ) are compact in
the (non-Polish) topology of strong convergence of measures, but the general case
seems hard. A different approach is to approximate µ with other, nicer measures,
for which UI = Rd. Again, one runs into the problem that convergence of the
right-hand side of (2.12) seems to be difficult to prove. The proof below is by
brute force, explicitly identifying the unique minimizer of the right-hand side of
(2.12) for each value of y where the infimum is not∞. This proof is probably best
skipped at a first reading.

Proof of Proposition 2.13 Let us write Zµ(λ) and Iµ(y) to make the dependence
of these quantities on µ explicit. We observe that the formulas for Zµ(λ), Iµ(y), and
H(ν |µ) still make sense if µ is a finite measure but not necessarily a probability
measure. Moreover, for any nonnegative constant r, one has Zrµ(λ) = rZµ(λ) and
hence

Irµ(y) = Iµ(y)− log r and H(ν | rµ) = H(ν |µ)− log r. (2.13)

In view of this, if (2.12) holds for probability measures µ, then it holds more
generally when µ is a finite measure, and vice versa. We will prove the statement
immediately for finite measures.

Using the scaling relations (2.13), we see that (2.11) holds more generally if µ is a
finite measure. Taking the supremum over λ ∈ Rd, this implies that

I(y) ≤ inf
ν∈Mf

1 (E)∫
f dν=y

H(ν |µ).

1I made such a claim in the previous version of the lecture notes, but the argument I used is
not correct.
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To prove the opposite inequality, by the definition of I(y), we must show that there
exists λn ∈ Rd and ν ∈Mf

1(E) with
∫
f dν = y such that

〈y, λn〉 − logZ(λn) −→
n→∞

H(ν |µ). (2.14)

For any finite nonzero measure µ ∈ M(E) and λ ∈ Rd, we define µλ by (2.9),
which is a probability measure even if µ is not. We have seen in (2.10) that

H(µλ |µ) =

∫
µλ(dx)〈λ, f(x)〉 − logZ(λ). (2.15)

In the proof of Lemma 2.12, we have seen that if y lies in the interior of the support
of µ ◦ f−1, then there exists a unique λ◦ ∈ Rd such that

∫
f dµλ◦ = y. By (2.15),

we then see that (2.14) is satisfied for λn := λ◦ and ν := µλ◦ .

For general y, we have to proceed more carefully. Consider the set

C := {
∫
f dν : ν ∈Mf

1(E), ν � µ}.

It is not hard to see that C is a convex set. For y ∈ C, let

Fy :=
{
z ∈ Rd : ∃ε > 0 s.t. y − εz ∈ C and y + εz ∈ C

}
.

It follows from the convexity of C that Fy is a linear subspace of Rd (possibly of
dimension zero). For example, if C is a closed cube, then for a point y that lies in
the interior of C, in the interior of a face of C, in the interior of an edge of C, or
on a corner of C, the dimension of Fy is 3, 2, 1, or 0, respectively. Since C may
in general be neither open nor closed, its structure can be quite complicated. For
example, it is possible that the closure of C is a cube, but for a given face of this
cube, only a part of the face lies inside C.

It is clear that the right-hand side of (2.12) is ∞ if y 6∈ C. We will show that
also I(y) = ∞ for y 6∈ C. On the other hand, we will show that for each y ∈ C,
the infimum on the right-hand side of (2.12) is attained in a unique probability
measure ν, and we will show that there exists λn such that (2.14) holds for this ν.

Let Ly denote the affine space Ly := {y+ z : z ∈ Fy}, let E ′ := f−1(Ly) and let µ′

denote the restriction of µ to E ′. Then µ′◦f−1 is the restriction of µ◦f−1 to Ly. If
y ∈ C, then µ′ ◦f−1 must be nonzero and y lies in the interior of support(µ′ ◦f−1),
viewed as a subset of Ly. Since ν � µ and

∫
f dν = y imply that ν � µ′, the

right-hand side of (2.12) can be rewritten as

inf
ν∈Mf

1 (E′)∫
f dν=y

H(ν |µ′). (2.16)
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Note that µ′ may fail to be a probability measure even if µ is one. Defining
f ′ : E ′ → Fy by f ′(x) := f(x)− y, we can rewrite (2.16) as

inf
ν∈Mf

1 (E′)∫
f ′ dν=0

H(ν |µ′). (2.17)

For each λ′ ∈ Fy, we define Z ′(λ′) :=
∫
e〈λ
′,f ′(x)〉µ′(dx) and we define tilted mea-

sures µ′λ′ as in (2.9). Since 0 lies in the interior of support(µ′ ◦ f ′−1), viewed as a
subset of Fy, the proof of Lemma 2.12 tells us that there exists a unique λ′◦ ∈ Fy
such that

∫
f ′ dµ′λ′◦ = 0, and the infimum in (2.17) is attained in the unique point

ν = µ′λ′◦ . By (2.15),

H(µ′λ′◦ |µ) = 0− logZ ′(λ′◦).

We will show that (2.14) is satisfied for ν = µ′λ′◦ . By a change of basis, we can

without loss of generality assume that Fy = {λ ∈ Rd : λ(i) = 0 ∀i = d′ + 1, . . . , d}
and that

C ⊂
{
y + z : z ∈ Rd : z(i) ≤ 0 ∀i = d′ + 1, . . . , d

}
. (2.18)

In (2.14), we choose λn in such a way that

λn(i) = λ′◦(i) (i = 1, . . . , d′), λn(i)→∞ (i = d′ + 1, . . . , d).

Then

H(µ′λ′◦ |µ) = − logZ ′(λ′◦) = − log

∫
{x: f(x)∈Ly}

e 〈λ
′
◦, f(x)− y〉µ(dx).

On the other hand, the left-hand side of (2.14) can be written as

− log

∫
E

e 〈λn, f(x)− y〉µ(dx).

To prove (2.14), we need to show that∫
Rd

e 〈λn, z〉µ ◦ f ′−1
(dz) −→

n→∞

∫
Fy

e 〈λ
′
◦, z〉µ ◦ f ′−1

(dz).

By (2.18), the measure µ ◦ f ′−1 is concentrated on {z ∈ Rd : z(i) ≤ 0 ∀i =

d′ + 1, . . . , d
}

. Since e 〈λn, z〉 ↓ 0 if z(i) > 0 for some i ∈ {d′ + 1, . . . , d}, in the
limit, only the integral over Fy remains and we see that (2.14) is satisfied.

To complete the proof, we must show that I(y) = ∞ for y 6∈ C. In this case,
by a change of basis, we can without loss of generality assume that µ ◦ f−1 is
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concentrated on {y + z : z(i) < 0 ∀i = 1, . . . , d}. Choosing λn(i) → ∞ for all
i = 1, . . . , d, setting f ′(x) := f(x)− y as before, one finds that

〈y, λn〉 − logZ(λn) = − log

∫
Rd

e 〈λn, z〉µ ◦ f ′−1
(dz) −→

n→∞
∞,

proving that I(y) =∞

2.5 Cramér’s theorem in more dimensions

In the present section, we will prove the multi-dimensional version of Cramér’s
theorem. We first prove an abstract result for convex good rate functions on Rd.

As in (2.7), we let Hopen(Rd) resp. Hclosed(Rd) denote the collection of all open,
resp. closed half-spaces of Rd. The following theorem says that if a good rate
function is convex, then it suffices to check the large deviations upper bound for
half-spaces.

Theorem 2.14 (LDP with convex rate function Let d ≥ 1, let µn be a se-
quence of probability measures on Rd, let sn be positive constants, converging to∞,
and let I be a convex, normalized, good rate function on Rd. Then the µn satisfy
the large deviations principle with speed sn and rate function I if and only if the
following two conditions are satisfied.

(i) lim sup
n→∞

1

sn
log µn(H) ≤ inf

x∈H
I(x) for every closed half space H ⊂ Rd,

(ii) lim inf
n→∞

1

sn
log µn(B) ≥ inf

x∈B
I(x) for every open ball B ⊂ Rd.

Proof We will apply Theorem 1.32. We start by proving exponential tightness.
Consider the open half-spaces

H−i,R := {x ∈ Rd : x(i) < −R} and H+
i,R := {x ∈ Rd : x(i) > R}

(i = 1, . . . , d). Then KR := {x ∈ Rd : |x(i)| ≤ R ∀i = 1, . . . , d} is compact and, by
Lemma 1.10,

lim sup
n→∞

1

sn
log µn(Rd\KR) ≤ sup

i=1,...,d
sup

σ∈{−,+}
− inf
x∈Hσ

i,R

I(x).
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y(2)

y(1)

C

H

Dr

〈µ〉

Figure 2.6: Open half-plane H separating the convex sets B and Dr.

Since I has compact level sets, for each M ∈ R we can choose R sufficiently large
such that

inf
x∈Hσ

i,R

I(x) ≥M ∀i = 1, . . . , d, σ ∈ {−,+},

which proves exponential tightness.

We next show that

lim sup
n→∞

1

sn
log µn(C) ≤ − inf

x∈C
I(x) (2.19)

for every closed convex set C ⊂ Rd. Set r := infx∈C I(x). If r = 0, then (2.19)
follows from the assumption that the µn are probability measures. If 0 < r ≤ ∞,
then the convex sets Dr = {x ∈ Rd : I(x) < r} and C are disjoint. By a well-
known separation theorem [Roc70, Theorem 11.3], there exists a closed half-space
H such that Lr ∩H = ∅ and C ⊂ H (see Figure 2.6). It follows that I(x) ≥ r for
all x ∈ H and therefore

lim sup
n→∞

1

sn
log µn(C) ≤ lim sup

n→∞

1

sn
log µn(H) ≤ − inf

x∈H
I(x) = − inf

x∈C
I(x),

proving (2.19). In particular, (2.19) holds for closed balls. Since the open balls
form a basis for the topology, by Lemma 1.31, this shows that conditions (i) and
(ii) of Theorem 1.32 are satisfied.

Remark If the rate function I is strictly convex, then it seems that we can replace
condition (ii) of Theorem 2.14 by the condition that the large deviations lower
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bound holds for all open half spaces H ⊂ Rd. The basic idea is that by looking
at differences of open and closed half spaces, using the strict convexity of I and
Lemma 2.15 below, it should be possible to derive the large deviations lower bound
for a collection of open sets satisfying (1.14). Filling in the details is quite technical,
however, which is why we do not pursue this idea further here.

Lemma 2.15 (Difference of sets) Let E be a measurable space, let A,B ⊂ E
be measurable, let I : E → (−∞,∞] be a function, let sn be positive constants such
that sn →∞, and let µn be finite measures on E. Assume that

(i) lim sup
n→∞

1

sn
log µn(B) ≤ − inf

x∈B
I(x),

(ii) lim inf
n→∞

1

sn
log µn(A) ≥ − inf

x∈A
I(x).

(iii) inf
x∈A

I(x) < inf
x∈B

I(x),

Then

lim inf
n→∞

1

sn
log µn(A\B) ≥ − inf

x∈A\B
I(x).

Proof Since

lim sup
n→∞

1

sn
log
(µn(B)

µn(A)

)
= lim sup

n→∞

1

sn

(
log µn(B)− log µn(A)

)
≤ inf

x∈A
I(x)− inf

x∈B
I(x) < 0,

we see that µn(B)/µn(A)→ 0 exponentially fast. It follows that

lim inf
n→∞

1

sn
log µn(A\B) = lim inf

n→∞

1

sn
log
(
µn(A)− µn(A ∩B)

)
≥ lim inf

n→∞

1

sn
log
(
µn(A)− µn(B)

)
= lim inf

n→∞

1

sn
log
[
µn(A)

(
1− µn(B)

µn(A)

)]
= lim inf

n→∞

1

sn

[
log µn(A) + log

(
1− µn(B)

µn(A)

)]
= lim inf

n→∞

1

sn
log µn(A) = − inf

x∈A
I(x) = − inf

x∈A\B
I(x),

where in the last step we have again used that infx∈A I(x) < infx∈B I(x).

To prepare for the multidimensional version of Cramér’s theorem, we need one
more lemma, which says that the rate functions of Cramér’s theorem in different
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dimensions are consistent in a way that one would expect from the contraction
principle. (Note that since we have not proved Cramér’s theorem in more dimen-
sions yet, we cannot use the contraction principle to prove this.)

Lemma 2.16 (Contracted rate function) Let X be an Rd-valued random vari-
able, let l : Rd → Rd′ be a linear function, and set X ′ := l(X). Let

Z(λ) :=E
[
e 〈λ,X〉

]
(λ ∈ Rd),

Z ′(λ′) :=E
[
e 〈λ

′, X ′〉] (λ ∈ Rd′)

be the moment generating functions of X and X ′, and assume that Z(λ) <∞ for
all λ ∈ Rd. Let

I(y) := sup
λ∈Rd

[
〈y, λ〉 − logZ(λ)

]
(y ∈ Rd),

I ′(y′) := sup
λ′∈Rd′

[
〈y, λ′〉 − logZ ′(λ′)

]
(y′ ∈ Rd′),

be the Legendre transforms of logZ and logZ ′, respectively. Then

I ′(y′) := inf
y: l(y)=y′

I(y) (y′ ∈ Rd′).

Proof It is possible to prove this directly from the definitions of I and I ′, but the
proof is surprisingly tricky. We give here a much faster proof based on Proposi-
tion 2.13. Applying that proposition to E = Rd and f : Rd → Rd the identity
function, we can express the rate function I as

I(y) = inf
{
H(ν |µ) : ν ∈Mf

1(Rd),

∫
x ν(dx) = y

}
(y ∈ Rd).

Applying Lemma 2.12 to E = Rd and f = l, we can express the rate function I ′

as

I ′(y′) = inf
{
H(ν |µ) : ν ∈Mf

1(Rd),

∫
l(x) ν(dx) = y′

}
(y′ ∈ Rd′).

It follows that

I ′(y′) = inf
y: l(y)=y′

inf
ν∈Mf

1 (E)∫
xdν=y

H(ν |µ) = inf
y: l(y)=y′

I(y),

as required.
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Theorem 2.17 (Multidimensional Cramér’s theorem) Let (Xk)k≥1 be i.i.d.
Rd-valued random variables with common law µ. Assume that the moment gener-
ating function Z(λ) defined in (2.5) is finite for all λ ∈ Rd. Then the probability
measures

µn := P
[ 1

n

n∑
k=1

Xk ∈ ·
]

(n ≥ 1)

satisfy the large deviation principle with speed n and rate function I given by

I(y) := sup
λ∈Rd

[
〈λ, y〉 − logZ(λ)

]
.

Proof We apply Theorem 2.14, using Cramér’s original one-dimensional theorem
to get the upper bound for close half-spaces.

A general closed half-space H is of the form H = {y ∈ Rd : lz(y) ≥ c} where
c ∈ R, 0 6= z ∈ Rd, and lz is the linear form lz(y) := 〈z, y〉 (y ∈ Rd). Then

µn(H) = P
[ 1

n

n∑
k=1

l(Xk) ≥ c
]
.

If E[X1] ∈ H, then infy∈H I(y) = 0 and the large deviations upper bound is trivial

since the µn are probability measures. If E[X1] 6∈ H or equivalently E[l(X1)] < c,
then Cramér’s theorem (Theorem 0.1) tells us that

lim
n→∞

µn(H) = −I ′(c),

where I ′ is Cramér’s rate function for the i.i.d. random variables (l(Xk))k≥1. By
Lemma 2.16,

I ′(c) = inf
y: l(y)=c

I(y) = inf
y∈H

I(y),

where in the last step we have used that I is convex and assumes its minimum in
the point E[X1] 6∈ H. This proves the large deviations upper bound for closed half
spaces.

In a similar way, we could get the large deviations lower bound for open half spaces,
which by the remark below Theorem 2.14 and the strict convexity of I is probably
sufficient to prove the large deviations principle for the µn. Since this approach
is a bit technical, we proceed differently, adapting the corresponding part of the
proof of Theorem 0.1 to the multi-dimensional setting. In order not to repeat too
much, we will use a slight modification of the argument.



2.5. CRAMÉR’S THEOREM IN MORE DIMENSIONS 87

Let B be an open ball. We first consider the case that B ∩ UI 6= ∅. Then, for
each ε > 0, we can choose y◦ ∈ B ∩ UI such that I(y◦) ≤ infy∈B I(y) + ε. By
Lemma 2.10 (vi),

I(y◦) = sup
λ∈Rd

[
〈y◦, λ〉 − logZ(λ)

]
= 〈y◦, λ◦〉 − logZ(λ◦),

where λ◦ is uniquely characterized by the requirement that y◦ = 〈µλ◦〉. Let (X̂k)k≥1

are i.i.d. random variables with common law µλ◦ . Choose δ > 0 such that Bδ(y◦) ⊂
B and 〈λ◦, y〉 ≤ 〈λ◦, y◦〉 + ε for all y ∈ Bδ(y◦). Then, in analogy with (2.4), we
estimate

P
[ 1

n

n∑
k=1

Xk ∈ B
]

=

∫
µ(dx1) · · ·

∫
µ(dxn)1{ 1

n

∑n
k=1 xk ∈ B}

= Z(λ◦)
n

∫
µλ◦(dx1) · · ·

∫
µλ◦(dxn)e−n〈λ◦,

1
n

∑n
k=1 xk〉 1{ 1

n

∑n
k=1 xk ∈ B}

≥ Z(λ◦)
ne−n(〈λ◦, y◦〉+ ε)

∫
µλ◦(dx1) · · ·

∫
µλ◦(dxn) 1{ 1

n

∑n
k=1 xk ∈ Bδ(y◦)}

= e−n(I(y◦) + ε)P
[ 1

n

n∑
k=1

X̂k ∈ Bδ(y◦)
]
.

By the weak law of large numbers, the probability on the right-hand side here
tends to one, so taking logarithms and dividing by n we see that

lim inf
n→∞

1

n
logP

[ 1

n

n∑
k=1

Xk ∈ B
]
≥ −ε− I(y◦)− ε ≥ −2ε− inf

y∈B
I(y).

Since ε > 0 is arbitrary, this completes the proof of the large deviations lower
bound in the case that B ∩ UI 6= ∅. By Lemma 1.9 (c), we also obtain the large
deviations lower bound in case B ∩ UI = ∅ but B ∩ U I 6= ∅. If B ∩ U I = ∅, finally,
then infy∈B I(y) =∞ while P[ 1

n

∑n
k=1 Xk ∈ B] = 0 for each n by Lemma 2.10 (iv),

so the bound is trivially fulfilled.

Remark In the proof of Theorem 0.1 in Section 2.2, we used the central limit
theorem for the titled random variables (X̂k)k≥1 to obtain the large deviations
lower bound. In the proof above, we have instead used the weak law of large
numbers for the (X̂k)k≥1. This proof is in a sense more robust, but on the other
hand, if one is interested in exact estimates on the error term in formulas such as

P
[ 1

n

n∑
k=1

Xk ≥ y] = e−nI(y) + o(n),

then the proof based on the central limit theorem gives the sharpest estimates for
o(n).
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2.6 Sanov’s theorem

The aim of this section is to prove the following result, which (at least in the case
E = R) goes back to Sanov [San61]. As a simple application, we will also prove
Theorem 0.7.

Theorem 2.18 (Sanov’s theorem) Let (Xk)k≥0 be i.i.d. random variables tak-
ing values in a Polish space E, with common law µ, and let

Mn :=
1

n

n∑
k=1

δXk (n ≥ 1)

be the empirical laws of the (Xk)k≥0. Then the laws µn := P[Mn ∈ · ], viewed as
probability laws on the Polish space M1(E) of probability measures on E, equipped
with the topology of weak convergence, satisfy the large deviation principle with
speed n and rate function H( · |µ).

Proof We apply Theorem 1.34 about projective limits. We first consider the case
that E is compact. In this case, M1(E) is also compact so exponential tightness
comes for free.

Since C(E) is separable, we may choose a countable dense set {fi : i ∈ N+} ⊂ C(E).
For each i ∈ N+, we define ψi :M1(E)→ R by ψi(ν) :=

∫
fidν. The (ψi)i∈N+ are

continuous by the definition of weak convergence of measures. We claim that they
also separate points. To see this, imagine that ν, ν ′ ∈ M1(E) and ψi(ν) = ψi(ν

′)
for all i ≥ 1. Then

∫
fdν =

∫
fdν ′ for all f ∈ C(E) by the fact that {fi : i ∈ N+}

is dense, and therefore ν = ν ′.

Let
~fd(x) :=

(
f1(x), . . . , fd(x)

)
(x ∈ E, d ≥ 1),

and

~ψd(ν) :=
(
ψ1(ν), . . . , ψd(ν)

)
=

∫
~fd dν

(
ν ∈M1(E)

)
.

By Theorem 2.17, for each d ≥ 1, the laws µn ◦ ~ψ−1
d satisfy the large deviation

principle with a good rate function Id. By Proposition 2.13, this rate function is
given by

Id(y) = inf
ν∈M1(E)∫
~fd dν=y

H(ν |µ) (y ∈ Rd).



2.6. SANOV’S THEOREM 89

Theorem 1.34 now implies that the measures µn satisfy the large deviation principle
with rate function H( · |µ). This completes the proof for compact E.

To prove the general statement, let E be a metrizable compactification of E. By
Proposition 1.26, such a compactification exists and E is a Gδ-subset of E. By
what we have already proved, the laws µn, viewed as probability laws on the Polish
space M1(E) of probability measures on E, equipped with the topology of weak
convergence, satisfy the large deviation principle with speed n and rate function
H( · |µ).

We viewM1(E) as a subset ofM1(E). By Exercise 1.28, the topology onM1(E)
is the induced topology from M1(E). Since M1(E) is Polish in this topology,
it must be a Gδ-subset of M1(E). By the restriction principle (Lemma 1.27),
using the fact that H( · |µ) is a good rate function (which has been proved in
Lemma 2.11) and the fact that H( · |µ) = ∞ on M1(E)\M1(E), we conclude
that the laws µn, viewed as probability laws onM1(E), satisfy the large deviation
principle with speed n and rate function H( · |µ).

Remark For some purposes, the topology of weak convergence on M1(E) is too
weak. With some extra work, it is possible to improve Theorem 2.18 by show-
ing that the emperical measures satisfy the large deviation principle with respect
to the (much stronger) topology of strong convergence of measures; see [DS89,
Section 3.2].

Proof of Lemma 0.6 and Theorem 0.7 If in Theorem 2.18, E = S is a finite set
and µ({x}) > 0 for all x ∈ S, then the theorem and its proof simplify considerably.
In this case, without loss of generality, we may assume that S = {0, . . . , d} for some
d ≥ 1. We may identify M1(S) with the convex subset of Rd given by

M1(S) =
{
x ∈ Rd : x(i) ≥ 0 ∀i = 1, . . . , d,

d∑
i=1

x(i) ≤ 1
}
,

where x(0) is determined by the condition
∑d

i=0 x(i) = 1. Thus, we may apply
Cramér’s theorem (Theorem 2.17) to the Rd-valued random variables Mn. The
fact that the rate function from Cramér’s theorem is in fact H(ν|µ) follows from
Lemma 2.12. Since µ({x}) > 0 for all x ∈ S, it is easy to see that the covariance
condition of Lemma 2.10 is fulfilled, so Lemma 0.6 follows from Lemma 2.10 and
the observation that H(ν|µ) <∞ for all ν ∈M1(S).

Remark There exists a nice combinatorical proof of Sanov’s theorem for finite
spaces (Theorem 0.7), in the spirit of our Section 3.2 below. See [Hol00, Sec-
tion II.1].
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Exercise 2.19 (Joint continuity of relative entropy) Let S be a finite set

and let
◦
M1(S) := {µ ∈ M1(S) : µ(x) > 0 ∀x ∈ S}. Prove the continuity of the

map

M1(S)×
◦
M1(S) 3 (ν, µ) 7→ H(ν|µ).

Exercise 2.20 (Convexity of relative entropy) Let S be a finite set and let
µ ∈M1(S). Give a direct proof of the fact that

M1(S) 3 ν 7→ H(ν|µ)

is a lower semi-continuous, convex function.



Chapter 3

Markov chains

3.1 Basic notions

Let S be a finite set and let P be a probability kernel on S, i.e., P : S × S → R is
a function such that

(i) P (x, y) ≥ 0 (x, y ∈ S),

(ii)
∑

y∈S P (x, y) = 1 (x ∈ S).

For any function f : S → R, we put

Pf(x) :=
∑
y∈S

P (x, y)f(y),

which defines a linear operator P : RS → RS. For any measure µ on S we write
µ(x) := µ({x}) and for f : S → R, we let

µf(y) :=
∑
x∈S

µ(x)f(x)

denote the expectation of f w.r.t. µ. Viewing a measure µ as a linear operator
µ : RS → R, we see that the composition of a probability kernel P : RS → RS and
a probability measure µ : RS → R is an operator µP : RS → R that corresponds
to the probability measure µP (y) =

∑
x∈S µ(x)P (x, y).

A Markov chain with state space S, transition kernel P and initial law µ is a collec-
tion of S-valued random variables (Xk)k≥0 whose finite-dimensional distributions

91
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are characterized by

P[X0 = x0, . . . , Xn = xn] = µ(x0)P (x0, x1) · · ·P (xn−1, xn)

(n ≥ 1, x0, . . . , xn ∈ S). Note that in particular, the law of Xn is given by
µP n, where P n is the n-th power of the linear operator P . We also introduce the
notation

µ⊗ P (x0, x1) := µ(x0)⊗ P (x0, x1)

to denote the probability measure on S2 that is the law of (X0, X1).

Write x P y if there exist n ≥ 0 such that P n(x, y) > 0 or equivalently, there exist
x = x0, . . . , xn = y such that P (xk−1, xk) > 0 for each k = 1, . . . , n. Then P is
called irreducible if x P y for all x, y ∈ S. An invariant law of P is a probability
measure µ on S such that µP = µ. Equivalently, µ is invariant if the Markov
chain (Xk)k≥0 with transition kernel P and initial law µ is stationary, i.e. (Xk)k≥0

is equal in law to (Yk)k≥0 defined as Yk := Xk+1 (k ≥ 0). The period of a state
x ∈ S is the greatest common divisor of the set {n ≥ 1 : P n(x, x) > 0}. If P
is irreducible, then all states have the same period. If all states have period one,
then we say that P is aperiodic. Basic results of Markov chain theory tell us that
an irreducible Markov chain with a finite state space S has a unique invariant law
µ, which has the property that µ(x) > 0 for all x ∈ S. If P is moreover aperiodic,
then νP n converges to µ as n→∞, for each initial law ν.

For any Markov chain X = (Xk)k≥0, we let

M (2)
n :=

1

n
N (2)
n , where N (2)

n (x) :=
n∑
k=1

1{(Xk−1, Xk) = (x1, x2)} (3.1)

(x ∈ S2, n ≥ 1) be the pair empirical distribution of the first n + 1 random

variables. The M
(2)
n are random variables taking values in the space M1(S2) of

probability measures on S2 := {x = (x1, x2) : xi ∈ S ∀i = 1, 2}. If X is irreducible,

then the M
(2)
n satisfy a strong law of large numbers.

Proposition 3.1 (SLLN for Markov chains) Let X = (Xk)k≥0 be an irre-
ducible Markov chain with finite state space S, transition kernel P , and arbitrary
initial law. Let (M

(2)
n )n≥1 be the pair empirical distributions of X and let µ be its

invariant law. Then

M (2)
n −→

n→∞
µ⊗ P a.s. (3.2)
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Proof (sketch) It suffices to prove the statement for deterministic starting points
X0 = z. Let τ0 := 0 and τN := inf{k > τN−1 : Xk = z} (N ≥ 1) be the return
times of X to z and define random variables (YN)N≥1 by

YN(x) :=

τN∑
k=τN−1+1

1{(Xk−1, Xk) = (x1, x2)} (x ∈ S2).

It is not hard to check that the (YN)N≥1 are i.i.d. with finite mean E[Yi(x1, x2)] =
E[τ1] ν ⊗ P (x1, x2) ((x1, x2) ∈ S2), and the (τN − τN−1)N≥1 are i.i.d. with mean
E[τ1]. Therefore, by the ordinary strong law of large numbers

M (2)
τN

=
N

τN

1

N

N∑
M=1

YM −→
N→∞

ν ⊗ P a.s.

The final part of the proof is a bit technical. For each n ≥ 0, let N(n) := inf{N ≥
1 : τN ≥ n}. Using Borel-Cantelli, one can check that for each ε > 0, the event

{|M (2)
n −M (2)

τN(n)
| ≥ ε}

occurs only for finitely many n. Using this and the a.s. convergence of the M
(2)
τN(n)

one obtains the a.s. convergence of the M
(2)
n .

We will be interested in large deviations away from (3.2).

3.2 A LDP for Markov chains

In this section, we prove a basic large deviation result for the empirical pair distri-
bution of irreducible Markov chains. For concreteness, for any finite set S, we equip
the space M1(S) of probability measures on S with the total variation distance

d(µ, ν) := sup
A⊂S
|µ(A)− ν(A)| = 1

2

∑
x∈S

|µ(x)− ν(x)|,

where for simplicity we write µ(x) := µ({x}). Note that since S is finite, con-
vergence in total variation norm is equivalent to weak convergence or pointwise
convergence (and in fact any reasonable form of convergence one can think of).

For any ν ∈M1(S2), we let

ν1(x1) :=
∑
x2∈S

ν(x1, x2) and ν2(x2) :=
∑
x1∈S

ν(x1, x2)
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denote the first and second marginals of ν, respectively, and we let

V :=
{
ν ∈M1(S2) : ν1 = ν2

}
denote the space of all probability measures on S2 whose first and second marginals
agree. The main result of this section is the following theorem.

Theorem 3.2 (LDP for Markov chains) Let X = (Xk)k≥0 be a Markov chain
with finite state space S, irreducible transition kernel P , and arbitrary initial law.
Let (M

(2)
n )n≥1 be the pair empirical distributions of X. Then the laws P[M

(2)
n ∈ · ]

satisfy the large deviation principle with speed n and rate function I(2) given by

I(2)(ν) :=

{
H(ν|ν1 ⊗ P ) if ν ∈ V ,
∞ otherwise,

where H( · | · ) denotes the relative entropy of one measure w.r.t. another.

Remark By the contraction principle, Theorem 3.2 also gives us a large deviation
principle for the ‘usual’ empirical distributions

Mn(x) :=
1

n

n−1∑
k=0

1{Xk = x} (x ∈ S, n ≥ 1).

In this case, however, it is in general1 not possible to write down a nice, explicit
formula for the rate function. This is because pairs are the ‘natural’ object to look
at for Markov processes.

The proof of Theorem 3.2 needs some preparations.

Lemma 3.3 (Characterization as invariant measures) One has

V =
{
ν1 ⊗ P : ν1 ∈M1(S), P a probability kernel on S, ν1P = ν1

}
.

Proof If P is a probability kernel on S, and ν1 ∈M1(S) satisfies ν1P = ν1 (i.e., ν1

is an invariant law for the Markov chain with kernel P ), then (ν1⊗P )2 = ν1P = ν1,
which shows that ν1⊗P ∈ V . On the other hand, for any ν ∈ V , we may define a
kernel P by setting

P (x1, x2) :=
ν(x1, x2)

ν1(x1)
,

1An exception are continuous-time reversible Markov chains. See [Hol00, Thm. IV.14(b)].
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whenever the denominator is nonzero, and choosing P (x1, · ) in some arbitrary
way if ν1(x1) = 0. Then ν1⊗P (x1, x2) = ν(x1, x2) and ν1P = (ν1⊗P )2 = ν2 = ν1

by the fact that ν ∈ V .

For any z ∈ S, let us define

Rn,z :=
{
r ∈ NS2

: ∃(x0, . . . , xn) ∈ Sn+1, x0 = z,

s.t. r(y1, y2) =
n∑
k=1

1{(xk−1, xk) = (y1, y2)} ∀y ∈ S
2
}

and Rn :=
⋃
z∈SRn,z. Then the random variables N

(2)
n from (3.1) take values in

Rn. For the pair empirical distributions M
(2)
n , the relevant spaces are

Vn := {n−1r : r ∈ Rn} and Vn,z := {n−1r : r ∈ Rn,z}.

For any U ⊂ S2, we identify the space M1(U) of probability laws on U with the
space {

ν ∈M1(S2) : ν(x1, x2) = 0 ∀x 6∈ U
}
,

and we define

V(U) := V ∩M1(U), Vn(U) := Vn ∩M1(U), and Vn,z(U) := Vn,z ∩M1(U).

We will need a lemma that says that for suitable U ⊂ S2, the spaces Vn(U)
approximate V(U) as n → ∞. The typical example we have in mind is U =
{(x1, x2) ∈ S2 : P (x1, x2) > 0} where P is an irreducible probability kernel on S
or some subset of S. For any U ⊂ S2, let us write

U := {x1 ∈ S : (x1, x2) ∈ U for some x2 ∈ S}
∪{x2 ∈ S : (x1, x2) ∈ U for some x1 ∈ S}.

(3.3)

We will say that U is irreducible if for every x, y ∈ U there exist n ≥ 0 and
x = x0, . . . , xn = y such that (xk−1, xk) ∈ U for all k = 1, . . . , n.

Lemma 3.4 (Limiting space of pair empirical distribution) One has

lim
n→∞

sup
ν∈Vn

d(ν,V) = 0. (3.4)

Moreover, for each z ∈ S and ν ∈ V there exist νn ∈ Vn,z such that d(νn, ν) → 0
as n→∞. If U ⊂ S2 is irreducible, then moreover, for each z ∈ U and ν ∈ V(U)
there exist νn ∈ Vn,z(U) such that d(νn, ν)→ 0 as n→∞.
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Proof We leave formula (3.4) as an excercise to the reader (Excercise 3.5 below).
To prove that for any z ∈ S we can approximate arbitrary ν ∈ V with νn ∈ Vn,z, by
a simple diagonal argument (Exercise 3.6 below), we can without loss of generality
assume that ν(x) > 0 for all x ∈ S2. By Lemma 3.3, there must exist some
probability kernel P on S such that ν = ν1 ⊗ P and ν1P = ν1. Since ν(x) > 0 for
all x ∈ S2, we must have P (x1, x2) > 0 for all x ∈ S2. In particular, this implies
that P is irreducible and ν1 is the unique invariant law of P . Let X = (Xk)k≥0

be a Markov chain with transition kernel P and initial state X0 = z, and let
(M

(2)
n )n≥1 be its pair empirical measures. Then M

(2)
n ∈ Vn,z for all n ≥ 1 while

M
(2)
n → ν1 ⊗ P = ν a.s. by Proposition 3.1. Since the empty set cannot have

probability one, it follows that there must exist νn ∈ Vn,z such that d(νn, ν) → 0
as n→∞.

The same argument shows that if U is irreducible, then for any z ∈ U , an arbitrary
ν ∈ V(U) can be approximated with νn ∈ Vn,z(U). In this case, by a diagonal
argument, we may assume without loss of generality that ν(x) > 0 for all x ∈ U .
By Lemma 3.3, there exists some probability kernel P on U such that ν = ν1 ⊗ P
and ν1P = ν1. Since ν(x) > 0 for all x ∈ U , we must have P (x1, x2) > 0 for
all x ∈ U , hence P is irreducible. Using the strong law of large numbers for the
Markov chain with transition kernel P , the argument then proceeds as before.

Exercise 3.5 (Marginals almost agree) Prove formula (3.4).

Exercise 3.6 (Diagonal argument) Let (E, d) be a metric space, let xn, x ∈ E
satisfy xn → x and for each n, let xn,m ∈ E satisfy xn,m → xn as m → ∞. Then
there exist m(n)→∞ such that xn,m′(n) → x for all m′(n) ≥ m(n).

Exercise 3.7 (Continuity of rate function) Let P be a probability kernel on
S and let U := {(y1, y2) ∈ S2 : P (y1, y2) > 0}. Prove the continuity of the map

M1(U) 3 ν 7→ H(ν|ν1 ⊗ P ).

Show that if U 6= S2, then the mapM1(S2) 3 ν 7→ H(ν|ν1⊗P ) is not continuous.

Proof of Theorem 3.2 If µn, µ
′
n both satisfy a large deviation principle with the

same speed and rate function, then any convex combination of µn, µ
′
n also satisfies

this large deviation principle. In view of this, it suffices to prove the claim for
Markov chains started in a deterministic initial state X0 = z.
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We observe that for any r : S2 → N, the pair counting process defined in (3.1)
satisfies

P[N (2)
n = r] = Cn,z(r)

∏
(x1,x2)∈S2

P (x1, x2)r(x1, x2), (3.5)

where

Cn,z(r) :=
∣∣{x ∈ Sn+1 : x0 = z,

n∑
k=1

1{(xk−1, xk) = (y1, y2)} = r(y1, y2) ∀y ∈ S2}
∣∣

is the number of different sequences X0, . . . , Xn that give rise to the same pair
frequencies N

(2)
n = r. In order to estimate Cn,z(r), for a given r ∈ Rn,z, we draw a

directed graph whose vertex set is S and that has r(x1, x2) arrows pointing from
x1 to x2. Let Wn,z(r) be the number of distinct walks in this graph that start at
z and that use each arrow exactly once, where we distinguish between different
arrows, i.e., if there are more arrows pointing from x1 to x2, then we do care about
which arrow is used first, which arrow next, and so on. Then

Cn,z(r) =
Wn,z(r)∏

(x1,x2)∈S2 r(x1, x2)!
. (3.6)

A simple combinatorical argument (see Lemma 3.8 below) shows that∏
x1: r1(x1)>0

(r1(x1)− 1)! ≤ Wn,z(r) ≤
∏
x1∈S

r1(x1)! (r ∈ Rn). (3.7)

Combining (3.6), (3.7) and (3.5), we obtain the bounds∏
x1: r(x1)>0(r1(x1)− 1)!∏

(x1,x2)∈S2 r(x1, x2)!

∏
(x1,x2)∈S2

P (x1, x2)r(x1, x2)

≤ P[N (2)
n = r] ≤

∏
x1∈S r

1(x1)!∏
(x1,x2)∈S2 r(x1, x2)!

∏
(x1,x2)∈S2

P (x1, x2)r(x1, x2)
(3.8)

(r ∈ Rn,z). We recall that Stirling’s formula2 implies that

log(n!) = n log n− n+H(n) as n→∞,

where we use the convention that 0 log 0 = 0, and the error term H(n) is of order
log n and can in fact uniformly be estimated as

|H(n)| ≤ C log n (n ≥ 0),

2Recall that Stirling’s formula says that n! ∼
√
2πn(n/e)n.
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with C < ∞ some constant. It follows that the logarithm of the right-hand side
of (3.8) is given by∑

x1∈S

(
r1(x1) log r1(x1)− r1(x1) +H(r1(x1))

)
−

∑
(x1,x2)∈S2

(
r(x1, x2) log r(x1, x2)− r(x1, x2) +H(r(x1, x2))

)
+

∑
(x1,x2)∈S2

r(x1, x2) logP (x1, x2)

=
∑

(x1,x2)∈S2

r(x1, x2)
(

log r1(x1) + logP (x1, x2)− log r(x1, x2)
)

+H ′(r, n),

where we have used that
∑

x1
r1(x1) = n =

∑
(x1,x2)∈S2 r(x1, x2) and H ′(r, n) is an

error term that can be estimated uniformly in r as

|H ′(r, n)| ≤
∑
x1∈S

C log(r1(x1)) +
∑

(x1,x2)∈S2

C log r(x1, x2)

≤C(|S|+ |S|2) log n (n ≥ 1, r ∈ Rn,z),

with the same constant C as before. Dividing by n, we find that

1

n
logP[N (2)

n = r]≤−
∑

(x1,x2)∈S2

r(x1, x2)

n
log

r(x1, x2)

r1(x1)P (x1, x2)
+

1

n
H ′(r, n)

=−H(ν|ν1
r ⊗ P ) +

1

n
H ′(r, n),

where ν(x1, x2) := n−1r(x1, x2). Treating the left-hand side of (3.8) in much the
same way, we find that

1

n
logP[M (2)

n = ν] = −H(ν|ν1 ⊗ P ) +O(n−1 log n) (3.9)

for all ν ∈ Vn,z, where the error term is of order n−1 log n uniformly for all ν ∈ Vn,z.

We are now almost done. Let U := {(x1, x2) ∈ S2 : P (x1, x2) > 0}. Then obviously

M
(2)
n ∈M1(U) for all n ≥ 1, hence by the restriction principle (Lemma 1.27) and

the fact that H(ν|ν1 ⊗ P ) = ∞ for all ν 6∈ M1(U), instead of proving the large
deviation principle on M1(S2), we may equivalently prove the large deviation
principle on M1(U). By Excercise 3.7, the map

M1(U) 3 ν 7→ H(ν|ν1 ⊗ P )
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is continuous. (Note that we need the spaceM1(U) since the same is not true for
M1(S2) 3 ν 7→ H(ν|ν1 ⊗ P ).) Using the continuity of this map and Lemmas 1.15
and 1.18, we see that it suffices to show that the counting measures on Vn,z(U)

ρn :=
∑

ν∈Vn,z(U)

δν

satisfy the large deviation principle onM1(U) with speed n and trivial rate func-
tion

J(ν) :=

{
0 if ν ∈ V(U),

∞ otherwise.

We will prove the large deviations upper and lower bounds from Proposition 1.7.
For the upper bound, we observe that if C ⊂M1(U) is closed and C ∩ V(U) = ∅,
then, since V(U) is a compact subset of M1(U), the distance d(C,V(U)) must be
strictly positive. By Lemma 3.4, it follows that C ∩ Vn(U) = ∅ for n sufficiently

large and hence lim supn→∞
1
n

logP[M
(2)
n ∈ C] = ∞. If C ∩ V(U) 6= ∅, then we

may use the fact that |Vn| ≤ n|S|
2
, to obtain the crude estimate

lim sup
n→∞

1

n
log ρn(C) ≤ lim sup

n→∞

1

n
log ρn(V) ≤ lim

n→∞

1

n
log
(
n|S|

2)
= 0,

which completes our proof of the large deviations upper bound. To prove also
the large deviations lower bound, let O ⊂ M1(U) be open and let O ∩ V(U) 6= ∅
(otherwise the statement is trivial). Pick any ν ∈ O ∩ V(U). By Lemma 3.4, we
can choose νn ∈ Vn,z(U) such that νn → ν. It follows that νn ∈ O for n sufficiently
large, and hence

lim inf
n→∞

1

n
log ρn(O) ≥ lim

n→∞

1

n
log ρn({νn}) = 0,

as required.

We still need to prove the estimates (3.7). Let G = (V,E) be a finite directed
graph with vertex set V and set of directed edges E. For each edge e ∈ E there
is defined a starting vertex e− ∈ V and endvertex e+ ∈ V . We allow for the case
that e− = e+ (in this case, e is called a loop). We write

Ex,• := {e ∈ E : e− = x}, E•,y := {e ∈ E : e+ = y}, and Ex,y := Ex,• ∩ E•,y

for the sets of all edges with a specified starting vertex, or endvertex, or both. We
allow for the case that r(x, y) := |Ex,y| is larger than one.
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By definition, a walk is an ordered collection of edges (e1, . . . , en) such that e+
k =

e−k+1 for k = 1, . . . , n − 1. We call e−1 and e+
n the starting vertex and endvertex

of the walk. For any subset of edges F ⊂ E, we write x  F y if x = y or there
exists a walk using only edges from F with starting vertex x and endvertex y.
By definition, a (directed) spanning tree rooted at z ∈ V is a collection of edges
T ⊂ E such that |T ∩ Ex,•| = 1 and x  T z for all x ∈ V , i.e., from each vertex
there is a unique directed path to the root.

Lemma 3.8 (Walks that use all edges) Let G = (V,E) be a finite directed
graph and let y, z ∈ V . Write r(x1, x2) := |Ex1,x2|, r1(x1) := |Ex1,•|, and r2(x2) :=
|E•,x2| (x1, x2 ∈ S). Assume that r1(x) > 0 for each x ∈ V and that

r1(x)− r2(x) = 1{x=y} − 1{x=z} (x ∈ V ). (3.10)

Let W denote the number of walks in G that end in z and use each edge exactly
once. Let T denote the number of spanning trees rooted at z. Then

W = T r1(z)
∏
x∈V

(
r1(x)− 1

)
! (3.11)

In particular, one has the estimates (3.7).

Proof Let W denote the set of all walks w in G that end in z and use each edge
exactly once. It follows from (3.10) that each w ∈ W must start in y. We can
encode such a walk by numbering, for each x ∈ V , the set of outgoing edges Ex,•
at x according to which edges is used first, second etc. Let Π be the collection of
all functions π : E → N+ such that π : Ex,• → {1, . . . , r1(x)} is a bijection for each
x ∈ V . We say that such a function π encodes a walk w ∈ W if for each x ∈ V
and e ∈ Ex,•, one has π(e) = k iff w leaves x for the k-th time using the edge e.
Clearly,W = |W | ≤ |Π| which yields the upper bound in (3.7). For any π ∈ Π, let
Tπ :=

⋃
x∈V \{z}{e ∈ Ex : π(e) = r1(x)}. In particular, if π encodes a walk w ∈ W ,

then these are the arrows used when the walk leaves a vertex 6= z for the last time.
We claim that:

• A function π ∈ Π encodes a walk w ∈ W if and only if Tπ is a spanning tree
rooted at z.

Indeed, given a walk w ∈ W , if for a vertex 6= z, we follow the arrow used when w
last leaves this vertex, and so on for the next vertex, then we end up in z, proving
that Tπ is a spanning tree rooted at z. Conversely, if a function π ∈ Π has the
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property that Tπ is a spanning tree rooted at z, then, starting at y, we can walk
around through the graph in such a way that if at a given moment we are in a
vertex x, then we leave x using the outgoing edge e ∈ Ex,• with the lowest number
π(e) that has not yet been used. This process stops when we arrive at a vertex
such that all outgoing edges at this vertex have been used. By (3.10), it follows
that all incoming arrows have also been used, which is possible only if we are in
z. We observe that if e ∈ Tπ has been used, then all arrows in Ee−,• have been
used and hence by (3.10) also all arrows in E•,e− have been used. Since all arrows
in E•,z have been used and Tπ is a spanning tree rooted at z, it follows that all
arrows in Tπ have been used, which implies that all arrows in E have been used,
i.e., w ∈ W .

This completes the proof of (3.11). In particular, fixing one spanning tree rooted
at z, in each vertex x 6= z we have (r1(x) − 1)! ways to choose the order of the
outgoing edges except for the one that is used last, which yields the lower bound
in (3.7). (Note that in (3.7), we apply Lemma 3.8 to the subgraph consisting of
all vertices of G that have been visited at least once.)

The proof of Theorem 3.2 yields a useful corollary. Below, we use the notation

H(ν|µ) :=
∑
x∈S

ν(x) log
ν(x)

µ(x)
=
∑
x∈S

µ(x)
ν(x)

µ(x)
log

ν(x)

µ(x)
,

even if µ is not a probability measure. Note that below, the transition kernel P
need not be irreducible!

Corollary 3.9 (Restricted Markov process) Let X = (Xk)k≥0 be a Markov
chain with finite state space S, transition kernel P , and arbitrary initial law. Let

U ⊂ {(x1, x2) ∈ S2 : P (x1, x2) > 0}

be irreducible and let X0 ∈ U a.s. Let (M
(2)
n )n≥1 be the pair empirical distributions

of X and let P̃ denote the restriction of P to U . Then the restricted measures

P[M (2)
n ∈ · ]

∣∣
M1(U)

satisfy the large deviation principle with speed n and rate function I(2) given by

Ĩ(2)(ν) :=

{
H(ν|ν1 ⊗ P̃ ) if ν ∈ V(U),

∞ otherwise.
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Proof The restricted measures P[M
(2)
n ∈ · ]

∣∣
M1(U)

are no longer probability mea-

sures, but we have never used this in the proof of Theorem 3.2. In fact, a careful
inspection reveals that the proof carries over without a change, where we only need
the irreducibility of U (but not of P ). In particular, formula (3.9) also holds for
the restricted measures and the arguments below there work for any irreducible
U ⊂ {(x1, x2) ∈ S2 : P (x1, x2) > 0}.

Exercise 3.10 (Relative entropy and conditional laws) Let S be a finite
space, let ν, µ be probability measures on S and let Q,P be probability kernels on
S. Show that

H(ν ⊗Q|µ⊗ P ) = H(ν|µ) +
∑
x1∈S

ν(x1)H(Qx1|Px1),

where Qx1(x2) := Q(x1, x2) and Px1(x2) := P (x1, x2) ((x1, x2) ∈ S2). In particular,
if Q is a probability kernel such that ν = ν1 ⊗Q, then

H(ν|ν1 ⊗ P ) =
∑
x1∈S

ν1(x1)H(Qx1|Px1).

Exercise 3.11 (Minimizer of the rate function) Let P be irreducible. Show
that the unique minimizer of the function V 3 ν 7→ H(ν|ν1 ⊗ P ) is given by
ν = µ⊗ P , where µ is the invariant law of P .

By definition, a cycle in S is an ordered collection C = (x1, . . . , xn) of points in S
such that x1, . . . , xn are all different. We call two cycles equal if they differ only
by a cyclic permutation of their points and we call |C| = n ≥ 1 the length of a
cycle C = (x1, . . . , xn). We write (y1, y2) ∈ C if (y1, y2) = (xk−1, xk) for some
k = 1, . . . , n, where x0 := xn.

Recall that an element x of a convex set K is an extremal element if x cannot be
written as a nontrivial convex combination of other elements of K, i.e., there do
not exist y, z ∈ K, y 6= z and 0 < p < 1 such that x = py + (1− p)z. If K ⊂ Rd is
convex and compact, then it is known that for each element x ∈ K there exists a
unique probability measure ρ on the set Ke of extremal elements of K such that
x =

∫
yρ(dy).

Exercise 3.12 (Cycle decomposition) Prove that the extremal elements of the
space V are the probability measures of the form

νC(y1, y2) :=
1

|C|
1{(y1, y2) ∈ C},
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where C = (x1, . . . , xn) is a cycle in S. Hint: show that for each ν ∈ V and
(y1, y2) ∈ S2 such that ν(y1, y2) > 0, one can find a cycle C ∈ C(S2) and a
constant c > 0 such that (y1, y2) ∈ C and cνC ≤ ν. Use this to show that for each
ν ∈ Ve there exists a cycle C such that ν(y1, y2) = 0 for all (y1, y2) 6∈ C.

Note Since V is a finite dimensional, compact, convex set, Excercise 3.12 shows
that for each ν ∈ V , there exists a unique probability law ρ on the set of all cycles
in S such that

ν(y1, y2) =
∑
C

ρ(C)νC(y1, y2),

where the sum rums over al cycles in S. Note that in Excercise 3.12, you are not
asked to give an explicit formula for ρ.

Exercise 3.13 (Convexity of rate function (!)) Let P be a probability kernel
on S. Prove that

M1(S2) 3 ν 7→ H(ν|ν1 ⊗ P )

is a convex, lower semi-continuous function.

Important note I do not know an elegant solution to this exercise. I originally
copied this from [Hol00], who first gives the special case that P (x, y) = µ(y) does
not depend on x as Exercise II.12, and then in his Lemma IV.5 shows that the
general case can easily be derived from this special case. Den Hollander probably
based himself on Problems IX 6.1 and 6.2 from [Ell85]. These problems, however,
are meant to be solved using deep theory from Chapter IX of [Ell85] that is not
available here or in [Hol00].

Recall that if (Xk)k≥0 is a Markov chain with initial law µ and transition kernel
P , then µ⊗ P is the joint law of (X0, X1). More generally, let µ⊗n P denote the
joint law of (X0, . . . , Xn−1). Let µ, ν be invariant laws of probability kernels P,Q,
respectively. I conjecture that if P is irreducible, then

H(ν ⊗Q|ν1 ⊗ P ) = lim
n→∞

1

n
H(ν ⊗n Q|µ⊗n P ).

Results in this spirit are proved in Chapter IX of [Ell85]. In particular, it is
shown there that if one wishes to minimize the relative entropy density of a sta-
tionary measure with respect to a product measure, under the condition that the
two-dimensional marginals are given by some ν ∈ M1(S2), then the minimum
is attained by the Markov chain that has these two-dimensional marginals. The
convexity of ν 7→ H(ν|ν1⊗P ) then follows from this and the contraction principle.
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Exercise 3.14 (Not strictly convex) Let P be any probability kernel on S =
{1, 2}. Define µ, ν ∈M1(S2) by(

µ(1, 1) µ(1, 2)
µ(2, 1) µ(2, 2)

)
:=

(
1 0
0 0

)
and

(
ν(1, 1) ν(1, 2)
ν(2, 1) ν(2, 2)

)
:=

(
0 0
0 1

)
.

Define νp := pµ+ (1− p)ν. Show that

[0, 1] 3 p 7→ H(νp|ν1
p ⊗ P )

is an affine function. Prove the same statement for

µ :=


0 0 1

2
0

0 0 0 0
1
2

0 0 0
0 0 0 0

 and ν :=


0 0 0 0
0 0 0 1

2

0 0 0 0
0 1

2
0 0

 .

These examples show thatM1(S2) 3 ν 7→ H(ν|ν1 ⊗ P ) is not strictly convex. Do
you see a general pattern how to create such examples? Hint: Excercise 3.10.

Exercise 3.15 (Probability to stay inside a set) Let P be a probability kernel
on {0, 1, . . . , n} (n ≥ 1) such that P (x, y) > 0 for all 1 ≤ x ≤ n and 0 ≤ y ≤ n
but P (0, y) = 0 for all 1 ≤ y ≤ n. (In particular, 0 is a trap of the Markov chain
with transition kernel P .) Show that there exists a constant 0 < λ <∞ such that
the Markov chain (Xk)k≥0 with transition kernel P and initial state X0 = z ≥ 1
satisfies

lim
n→∞

1

n
logP[Xn ≥ 1] = −λ.

Give a (formal) expression for λ and show that λ does not depend on z. Hint:
Corollary 3.9.

3.3 The empirical process

In this section, we return to the i.i.d. setting, but rather than looking at the
(standard) empirical distributions as we did in Section 2.4, we will look at pair
empirical distributions and more general at empirical distributions of k-tuples.
Since i.i.d. sequences are a special case of Markov processes, our results from the
previous section immediately give us the following theorem.
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Theorem 3.16 (Sanov for pair empirical distributions)
(a) Let S be a finite set and let µ be a probability measure on S such that µ(x) > 0

for all x ∈ S. Let (Xk)k≥0 be i.i.d. with common law µ and let M
(2)
n be their pair

empirical distributions as defined in (3.1). Then the laws P[M
(2)
n ∈ · ] satisfy the

large deviation principle with speed n and rate function I(2) given by

I(2)(ν) :=

{
H(ν|ν1 ⊗ µ) if ν1 = ν2,

∞ otherwise,

where ν1 and ν2 denote the first and second marginal of ν, respectively, and H( · | · )
denotes the relative entropy of one measure w.r.t. another.

(b) More generally, if U ⊂ S2 is irreducible, then the restricted measures

P[M (2)
n ∈ · ]

∣∣
M1(U)

satisfy the large deviation principle with speed n and rate function I(2) given by

I(2)(ν) :=

{
H
(
ν
∣∣ [ν1 ⊗ µ]U

)
if ν1 = ν2,

∞ otherwise,

where [ν1 ⊗ µ]U denotes the restriction of the product measure ν1 ⊗ µ to U .

Proof Immediate from Theorem 3.2 and Corollary 3.9.

Exercise 3.17 (Sanov’s theorem) Show that through the contraction principle,
Theorem 3.16 (a) implies Sanov’s theorem (Theorem 2.18) for finite state spaces.

Although Theorem 3.16, which is a statement about i.i.d. sequences only, looks
more special that Theorem 3.2 and Corollary 3.9 which apply to general Markov
chains, the two results are in fact more or less equivalent.

Derivation of Theorem 3.2 from Theorem 3.16 We first consider the special
case that P (x1, x2) > 0 for all (x1, x2) ∈ S2. Let ρ be the initial law of X, let
µ be any probability measure on S satisfying µ(x) > 0 for all x ∈ S, and let
X̂ = (X̂k)k≥0 be independent random variables such that X̂0 has law ρ and X̂k

has law µ for all k ≥ 1. For any x = (xk)k≥0 with xk ∈ S (k ≥ 0), let us define

M
(2)
n (x) ∈M1(S2) by

M (2)
n (x)(y1, y2) :=

1

n

n∑
k=1

1{(xk−1, xk) = (y1, y2)}.
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We observe that

P[X0 = x0, . . . , Xn = xn] = ρ(x0)e
∑n

k=1 logP (xk−1, xk)

= ρ(x0)en
∑

(y1,y2)∈S2 logP (y1, y2)M
(2)
n (x)(y1, y2)

,

while

P[X̂0 = x0, . . . , X̂n = xn] = ρ(x0)e
∑n

k=1 log µ(xk)

= ρ(x0)en
∑

(y1,y2)∈S2 log µ(y2)M
(2)
n (x)(y1, y2)

.

It follows that the Radon-Nikodym derivative of P[M
(2)
n (X) ∈ · ] with respect to

P[M
(2)
n (X̂) ∈ · ] is given by

P[M
(2)
n (X) = ν]

P[M
(2)
n (X̂) = ν]

= en
∑

(y1,y2)∈S2

(
logP (y1, y2)− log µ(y2)

)
ν(y1, y2)

.

By Theorem 3.16 (a), the laws P[M
(2)
n (X̂) ∈ · ] satisfy the large deviation principle

with speed n and rate function Î(2) given by

Î(2)(ν) =

{
H(ν|ν1 ⊗ µ) if ν1 = ν2,

∞ if ν1 6= ν2.

Applying Lemma 1.15 to the function

F (ν) :=
∑

(y1,y2)∈S2

(
logP (y1, y2)− log µ(y2)

)
ν(y1, y2),

which is continuous by our assumption that P (y1, y2) > 0 for all y1, y2 ∈ S, we

find that the laws P[M
(2)
n (X̂) ∈ · ] satisfy the large deviation principle with speed

sn and rate function I(2) = Î(2) − F . Since

H(ν|ν1 ⊗ µ)− F (ν)

=
∑

(y1,y2)∈S2

ν(y1, y2)
(

log
ν(y1, y2)

ν1(y1)µ(y2)
+ log µ(y2)− logP (y1, y2)

)
=

∑
(y1,y2)∈S2

ν(y1, y2) log
ν(y1, y2)

ν1(y1)P (y1, y2)
= H(ν|ν1 ⊗ P ),

this proves the theorem.
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In the general case, when P is irreducible but not everywhere positive, the argu-
ment is the same but we need to apply Theorem 3.16 (b) to U := {(x1, x2) ∈ S2 :
P (x1, x2) > 0}, and we use that the function F restricted toM1(U) is continuous,
hence Lemma 1.15 is applicable.

Exercise 3.18 (Periodic boundary conditions) Let (Xk)k≥0 be i.i.d. with

common law µ ∈ M1(S). Let M
(2)
n be the pair empirical distributions defined

in (3.1) and set

M̃ (2)
n :=

1

n
Ñ (2)
n , where

Ñ (2)
n (x) := 1{(Xn, X1) = (x1, x2)} +

n∑
k=2

1{(Xk−1, Xk) = (x1, x2)}
(3.12)

Show that the random variables M
(2)
n and M̃

(2)
n are exponentially close in the sense

of (1.8), hence by Proposition 1.17, proving a large deviation principle for the M
(2)
n

is equivalent to proving one for the M̃
(2)
n .

Remark Den Hollander [Hol00, Thm II.8] who again follows [Ell85, Sect. I.5], gives
a very nice and short proof of Sanov’s theorem for the pair empirical distributions
using periodic boundary conditions. The advantage of this approach is that the
pair empirical distributions M̃

(2)
n defined in (3.12) automatically have the property

that their first and second marginals agree, which means that one does not need
to prove formula (3.4).

Based on this, along the lines of the proof above, Den Hollander [Hol00, Thm IV.3]
then derives Theorem 3.2 in the special case that the transition kernel P is ev-
erywhere positive. In [Hol00, Comment (4) from Section IV.3], it is then claimed
that the theorem still applies when P is not everywhere positive but irreducible
and S2 is replaced by U := {(x1, x2) ∈ S2 : P (x1, x2) > 0}, and ‘the proof is easily
adapted’. This last comment seems to be quite far from the truth. At least, I do
not see any easy way to adapt his proof. The reason is that periodic boundary
conditions do not work well anymore if S2 is replaced by a more general subset
U ⊂ S2. As a result, the technicalities needed to prove the analogue of Lemma 3.4
in a set-up with periodic boundary conditions become very unpleasant. Although
a proof along these lines is possible, this seems to be more complicated than the
approach used in these lecture notes.

The fact that Theorem 3.2 can rather easily be derived from Theorem 3.16 shows
that the point of view that Chapter 2 is about large deviations of independent
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random variables while the present chapter is about large deviations of Markov
chains is naive. With equal right, we might say that both chapters are concerned
with large deviations of functions of i.i.d. random variables. The essential difference
is in what kind of functions we consider. In Chapter 2, we considered the empirical
distributions and functions thereof (such as the mean), while in the present chapter
we consider the pair empirical distributions. By looking at yet different functions
of i.i.d. random variables one can obtain a lot of very different, often difficult, but
interesting large deviation principles.

There is no need to restrict ourselves to pairs. In fact, once we have a theorem for
pairs, the step to general m-tuples is easy. (In contrast, there seems to be no easy
way to derive the result for pairs from the large deviation principle for singletons.)

Theorem 3.19 (Sanov for empirical distributions of m-tuples) Let S be a
finite set and let µ be a probability measure on S such that µ(x) > 0 for all x ∈ S.
Let (Xk)k≥1 be i.i.d. with common law µ and for fixed m ≥ 1, define

M (m)
n (x) :=

1

n

n−1∑
k=0

1{(Xk+1, . . . , Xk+m) = x} (x ∈ Sm, n ≥ 1).

Then the laws P[M
(m)
n ∈ · ] satisfy the large deviation principle with speed n and

rate function I(m) given by

I(m)(ν) :=

{
H(ν|ν{1,...,m−1} ⊗ µ) if ν{1,...,m−1} = ν{2,...,m},

∞ otherwise,

where ν{1,...,m−1} and ν{2,...,m} denote the projections of ν on its first m−1 and last
m− 1 coordinates, respectively.

Proof The statement for m = 1, 2 has already been proved in Theorems 2.18
and 3.2, respectively, so we may assume that m ≥ 3. Define a probability kernel
P : Sm−1 → Sm−1 by

P (x, y) := 1{(x2, . . . , xm−1) = (y1, . . . , ym−2)}µ(ym−1) (x, y ∈ Sm−1),

and set
~Xk :=

(
Xk+1, . . . , Xk+m−1

)
(k ≥ 0).

Then ~X = ( ~Xk)k≥0 is a Markov chain with irreducible transition kernel P . By

Theorem 3.2, the pair empirical distributions ~M
(2)
n of ~X satisfy a large deviation
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principle. Here the ~M
(2)
n take values in the space M1(Sm−1 × Sm−1) and the rate

function is given by

~I(2)(ρ) :=

{
H(ρ|ρ1 ⊗ P ) if ρ1 = ρ2,

∞ otherwise,

where ρ1 and ρ2 denote the first and second marginals of ρ, respectively. (Note
that ρ is a probability measure on Sm−1 × Sm−1, hence ρ1 and ρ2 are probability
measures on Sm−1.)

Define a map ψ : Sm → Sm−1 × Sm−1 by

ψ(x1, . . . , xm) :=
(
(x1, . . . , xm−1), (x2, . . . , xm)

)
.

The image of Sm under ψ is the set

U :=
{

(x, y) ∈ Sm−1 × Sm−1 : (x2, . . . , xm−1) = (y1, . . . , ym−2)
}

=
{

(x, y) ∈ Sm−1 × Sm−1 : P (x, y) > 0
}
.

It follows that ~I(2)(ρ) = ∞ unless ρ ∈ M1(U). Since ψ : Sm → U is a bijection,
each ρ ∈ M1(U) is the image under ψ of a unique ν ∈ M1(Sm). Moreover,
ρ1 = ρ2 if and only if ν{1,...,m−1} = ν{2,...,m}. Thus, by the contraction principle
(Proposition 1.14), our claim will follow provided we show that if ν ∈ M1(Sm)
satisfies ν{1,...,m−1} = ν{2,...,m} and ρ = ν ◦ ψ−1 is the image of ν under ρ, then

H(ν|ν{1,...,m−1} ⊗ µ) = H(ρ|ρ1 ⊗ P ).

Here

H(ρ|ρ1 ⊗ P ) =
∑

x1,...,xm−1

y1,...,ym−1

ρ(x1, . . . , xm−1, y1, . . . , ym−1)

×
(

log ρ(x1, . . . , xm−1, y1, . . . , ym−1)− log ρ1(x1, . . . , xm−1)

− logP (x1, . . . , xm−1, y1, . . . , ym−1)
)
,

where

ρ(x1, . . . , xm−1, y1, . . . , ym−1) = 1{(x2,...,xm−1)=(y1,...,ym−2)}ν(x1, . . . , xm−1, ym−1),

ρ1(x1, . . . , xm−1) = ν{1,...,m−1}(x1, . . . , xm−1),
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and
P (x1, . . . , xm−1, y1, . . . , ym−1) = 1{(x2,...,xm−1)=(y1,...,ym−2)}µ(ym−1).

It follows that

H(ρ|ρ1 ⊗ P ) =
∑

x1,...,xm−1,ym−1

ν(x1, . . . , xm−1, ym−1)

×
(

log ν(x1, . . . , xm−1, ym−1)− log ν{1,...,m−1}(x1, . . . , xm−1)− log µ(ym−1)
)

= H(ν|ν{1,...,m−1} ⊗ µ).

It is even possible to go one step further than Theorem 3.19 and prove a large
deviations result for ‘m-tuples’ with m = ∞. Let SN be the space of all infinite
sequence x = (xk)k≥0 with x ∈ S. Note that SN, equipped with the product
topology, is a compact metrizable space. Define a shift operator θ : SN → SN by

(θx)k := xk+1 (k ≥ 0).

Let X = (Xk)k≥0 be i.i.d. random variables with values in S and common law µ
satisfying µ(x) > 0 for all x ∈ S. For each n ≥ 1, we define a random measure

M
(∞)
n on SN by

M (∞)
n :=

1

n

n−1∑
k=0

δθkX,

where δx denotes the delta measure at a point x. We call M
(∞)
n the empirical

process.

Exercise 3.20 (Empirical process) Sketch a proof of the fact that the laws

P[M
(∞)
n ∈ · ] satisfy a large deviation principle. Hint: projective limit.

Exercise 3.21 (First occurrence of a pattern) Let (Xk)k≥0 be i.i.d. random
variables with P[Xk = 0] = P[Xk = 1] = 1

2
. Give a formal expression for the limits

λ001 := lim
n→∞

1

n
logP

[
(Xk, Xk+1, Xk+2) 6= (0, 0, 1) ∀k = 1, . . . , n

]
and

λ000 := lim
n→∞

1

n
logP

[
(Xk, Xk+1, Xk+2) 6= (0, 0, 0) ∀k = 1, . . . , n

]
.



3.4. PERRON-FROBENIUS EIGENVALUES 111

3.4 Perron-Frobenius eigenvalues

In excercises such as Excercise 3.21, we need an explicit way to determine the
exponential rates associated with certain events or expectations of exponential
functions in the spirit of Varadhan’s lemma. In this section, we will see that such
rates are given by the Perron-Frobenius eigenvalue of a suitably chosen irreducible,
nonnegative matrix.

We start by recalling the classical Perron-Frobenius theorem. Let S be a finite set
(S = {1, . . . , n} in the traditional formulation of the Perron-Frobenius theorem)
and let A : S × S → R be a function. We view such functions a matrices,
equipped with the usual matrix product, or equivalently we identify A with the
linear operator A : RS → RS given by Af(x) :=

∑
y∈S A(x, y)f(y). We say that

A is nonnegative if A(x, y) ≥ 0 for all x, y ∈ S. A nonnegative matrix A is
called irreducible if for each x, y ∈ S there exists an n ≥ 1 such that An(x, y) >
0. Note that for probability kernels, this coincides with our earlier definition of
irreducibility. We let σ(A) denote the spectrum of A, i.e., the collection of (possibly
complex) eigenvalues of A, and we let ρ(A) denote its spectral radius

ρ(A) := sup{|λ| : λ ∈ σ(A)}.

If ‖ · ‖ is any norm on RS, then we define the associated operator norm ‖A‖ of A
as

‖A‖ := sup{‖Af‖ : f ∈ RS, ‖f‖ = 1}.

It is well-known that for any such operator norm

ρ(A) = lim
n→∞

‖An‖1/n. (3.13)

We cite the following version of the Perron-Frobenius theorem from [Gan00, Sec-
tion 8.3] (see also, e.g., [Sen73, Chapter 1]).

Theorem 3.22 (Perron-Frobenius) Let S be a finite set and let A : RS → RS

be a linear operator whose matrix is nonnegative and irreducible. Then

(i) There exist an f : S → R, unique up to multiplication by positive constants,
and a unique α ∈ R such that Af = αf and f(x) ≥ 0.

(ii) f(x) > 0 for all x ∈ S.

(iii) α = ρ(A) > 0.
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(iv) The algebraic multiplicity of α is one. In particular, if A is written in its
Jordan normal form, then α corresponds to a block of size 1× 1.

Remark If A is moreover aperiodic, then there exists some n ≥ 1 such that
An(x, y) > 0 for all x, y ∈ S. Now Perron’s theorem [Gan00, Section 8.2] implies
that all other eigenvalues λ of A satisfy |λ| < α. If A is not aperiodic, then it
is easy to see that this statement fails in general. (This is stated incorrectly in
[DZ98, Thm 3.1.1 (b)].)

We call the constant α and function f from Theorem 3.22 the Perron-Frobenius
eigenvalue and eigenfunction of A, respectively. We note that if A†(x, y) := A(y, x)
denotes the transpose of A, then A† is also nonnegative and irreducible. It is well-
known that the spectra of a matrix and its transpose agree: σ(A) = σ(A†), and
therefore also ρ(A) = ρ(A†), which implies that the Perron-Frobenius eigenvalues
of A and A† are the same. The same is usually not true for the corresponding
Perron-Frobenius eigenvectors. We call eigenvectors of A and A† also right and
left eigenvectors, respectively.

The main aim of the present section is to prove the following result.

Theorem 3.23 (Exponential rate as eigenvalue) Let X = (Xk)k≥0 be a
Markov chain with finite state space S, irreducible transition kernel P , and ar-
bitrary initial law. Let φ : S2 → [−∞,∞) be a function such that

U := {(x, y) ∈ S2 : φ(x, y) > −∞} ⊂ {(x, y) ∈ S2 : P (x, y) > 0}

is irreducible, and let U be as in (3.3). Then, provided that X0 ∈ U a.s., one has

lim
n→∞

1

n
logE

[
e
∑n

k=1 φ(Xk−1, Xk)
]

= r,

where er is the Perron-Frobenius eigenvalue of the nonnegative, irreducible matrix
A defined by

A(x, y) := P (x, y)eφ(x, y) (x, y ∈ U). (3.14)

We start with some preparatory lemmas. The next lemma shows that there is a
close connection between Perron-Frobenius theory and Markov chains.

Lemma 3.24 (Perron-Frobenius Markov chain) Let S be a finite set and let
A : RS → RS be a linear operator whose matrix is nonnegative and irreducible. Let
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α, η and h be its associated Perron-Frobenius eigenvalue and left and right eigen-
vectors, respectively, i.e., ηA = αη, Ah = αh, η, h > 0. Choose any normalization
such that

∑
x h(x)η(x) = 1. Then the matrix

Ah(x, y) :=
A(x, y)h(y)

αh(x)
(x, y ∈ S) (3.15)

is an irreducible probability kernel on S and hη is its unique invariant law.

Proof Recall from Theorem 3.22 that h is strictly positive, hence Ah is well-
defined. Since∑

y∈S

Ah(x, y) =
∑
y∈S

A(x, y)h(y)

αh(x)
=
αh(x)

αh(x)
= 1 (x ∈ S),

we see that Ah is a probability kernel. Since Ah(x, y) > 0 if and only if A(x, y) > 0,
the kernel Ah is irreducible. Since∑

x∈S

h(x)η(x)Ah(x, y) =
∑
x∈S

h(x)η(x)
A(x, y)h(y)

αh(x)

= α−1
∑
x∈S

η(x)A(x, y)h(y) = η(y)h(y),

we see that hη is an invariant law for Ah, and the only such invariant law by the
irreducibility of the latter.

The following lemma is not only the key to proving Theorem 3.23, it also provides
a link between Perron-Frobenius eigenvectors and entropy. In particular, in some
special cases (such as Excercise 3.27), the following lemma can actually be used
to obtain Perron-Frobenius eigenvectors by minimizing a suitable functional.

Lemma 3.25 (Minimizer of weighted entropy) Let S be a finite set, let P be
a probability kernel on S and let φ : S2 → [−∞,∞) be a function such that

U := {(x, y) ∈ S2 : φ(x, y) > −∞} ⊂ {(x, y) ∈ S2 : P (x, y) > 0}

is irreducible. Let U be as in (3.3), define A as in (3.14), let α = er be its Perron-
Frobenius eigenvalue and let η, h > 0 be the associated left and right eigenvectors,
normalized such that

∑
x∈U h(x)η(x) = 1. Let Ah be the probability kernel defined

in (3.15) and let π := hη be its unique invariant law. Let V := {ν ∈ M1(S2) :
ν1 = ν2}. Then the function

Gφ(ν) := νφ−H(ν|ν1 ⊗ P )

satisfies Gφ(ν) ≤ r (ν ∈ V), with equality if and only if ν = π ⊗ Ah.
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Proof We have Gφ(ν) = −∞ if ν(x1, x2) > 0 for some (x1, x2) 6∈ U . On the other
hand, for ν ∈ V(U), we observe that

νφ−H(ν|ν1 ⊗ P )

=
∑

(x1,x2)∈U

ν(x1, x2)φ(x1, x2)−
∑

(x1,x2)∈U

ν(x1, x2) log
ν(x1, x2)

ν1(x1)P (x1, x2)

=
∑

(x1,x2)∈U

ν(x1, x2)
(
φ(x1, x2)− log ν(x1, x2) + log ν1(x1) + logP (x1, x2)

)
=

∑
(x1,x2)∈U

ν(x1, x2)
(
− log ν(x1, x2) + log ν1(x1) + logA(x1, x2)

)
=

∑
(x1,x2)∈U

ν(x1, x2)
(
− log ν(x1, x2) + log ν1(x1) + logAh(x1, x2)

+ logα + log h(x1)− log h(x2)
)

= logα−H(ν|ν1 ⊗ Ah),

where in the last step we have used that ν1 = ν2. Now the statement follows from
Excercise 3.11.

Proof of Theorem 3.23 We will deduce the claim from our basic large deviations
results for Markov chains (Theorem 3.2 and Corollary 3.9). A direct proof (using
a bit of matrix theory) is also possible, but our aim is to exhibit the links with our
earlier results. In fact, the calculations below can be reversed, i.e., a direct proof
of Theorem 3.23 can be used as the basis for an alternative proof of Theorem 3.2;
see [Hol00, Section V.4].

Let M
(2)
n be the pair empirical distributions associated with X, defined in (3.1).

Let
M1(U) 3 ν 7→ F (ν) ∈ [−∞,∞)

be the continuous and bounded from above. Then, by Varadhan’s lemma (Lemma
1.12) and Corollary 3.9,

lim
n→∞

1

n
log

∫
P[M (2)

n ∈ dν]
∣∣
M1(U)

enF (ν) = sup
ν∈M1(U)

[
F (ν)− Ĩ(2)(ν)

]
,

where Ĩ(2) is the rate function from Corollary 3.9. A simpler way of writing this
formula is

lim
n→∞

1

n
log

∫
E
[
enF (M

(2)
n )] = sup

ν∈M1(S2)

[
F (ν)− I(2)(ν)

]
, (3.16)
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where I(2) is the rate function from Theorem 3.2 and we have extended F to a
function on M1(S2) by setting F (ν) := −∞ if ν ∈M1(S2)\M1(U).

Applying this to the ‘linear’ function F defined by

F (ν) := νφ =
∑
x∈S

ν(x)φ(x)
(
ν ∈M1(S2)

)
,

formula (3.16) tells us that

lim
n→∞

1

n
logE

[
e
∑n

k=1 φ(Xk−1, Xk)
]

= sup
ν∈M1(S2)

[
νφ− I(2)

n (ν)
]

= sup
ν∈V

[
νφ− I(2)

n (ν)
]

= r,

where we have used that I(2)(ν) = H(ν|ν1 ⊗ P ) for ν ∈ V and I(2)(ν) = ∞
otherwise, and the final equality follows from Lemma 3.25.

Exercise 3.26 (First occurrence of a pattern: part 2) Let (Xk)k≥0 be i.i.d.
random variables with P[Xk = 0] = P[Xk = 1] = 1

2
. Let λ001 be defined as in

Excercise 3.21 and let

λ00 := lim
n→∞

1

n
logP

[
(Xk, Xk+1) 6= (0, 0) ∀k = 1, . . . , n

]
Prove that λ001 = λ00.

Exercise 3.27 (First occurrence of a pattern: part 3) Consider a Markov
chain Z = (Zk)k≥0 taking values in the space

S := {1, 10, 10, 100, 100, 100, †},

that evolves according to the following rules:

10 7→ 10
100 7→ 100 7→ 100

}
with probability one,

and

1
10

100

 7→


1 with probability 2−1,
10 with probability 2−2,
100 with probability 2−3,
† with probability 2−3,
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i.e., from each of the states 1, 10, 100, we jump with probability 1
2

to 1, with
probability 1

4
to 10, with probability 1

8
to 100, and with probability 1

8
to †. The

state †, finally, is a trap:

† 7→ † with probability one.

Define φ : S × S → [−∞,∞) by

φ(x, y) :=

{
0 if P (x, y) > 0 and y 6= †,
−∞ otherwise.

Let θ be the unique solution in the interval [0, 1] of the equation

θ + θ2 + θ3 = 1,

and let Z̃ = (Z̃k)k≥0 be a Markov chain with state space S\{†} that evolves in the
same way as Z, except that

1
10

100

 7→


1 with probability θ,
10 with probability θ2,
100 with probability θ3.

Let P and Q be the transition kernels of Z and Z̃, respectively. Set U := {(x, y) ∈
S2 : φ(x, y) > −∞}. Prove that for any ν ∈ V(U)

νφ−H(ν|ν1 ⊗ P ) = log(1
2
)− log θ −H(ν|ν1 ⊗Q). (3.17)

Hint: Do a calculation as in the proof of Lemma 3.25, and observe that for any
ν ∈ V(U)

ν1(11) = ν1(11) and ν1(111) = ν1(111) = ν1(111),

hence ν1(1) + 2ν1(11) + 3ν1(111) = 1.

Exercise 3.28 (First occurrence of a pattern: part 4) Let (Xk)k≥0 be i.i.d.
random variables with P[Xk = 0] = P[Xk = 1] = 1

2
and let λ000 be defined as in

Excercise 3.21. Prove that λ000 = log(1
2
) − log(θ), where θ is the unique root of

the equation θ + θ2 + θ3 = 1 in the interval [0, 1]. Hint: use formula (3.17).

Exercise 3.29 (Percolation on a ladder) Let 0 < p < 1 and let (Yi,k)i=1,2,3, k≥1

be i.i.d. Bernoulli random variables with P[Yi,k = 1] = p and P[Yi,k = 0] = 1 − p.
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Let S := {0, 1}2 and let x ∈ S\{(0, 0)} be fixed. Define inductively a Markov
chain (Xk)k≥0 with state space S by first setting

X̃k(1) := Yk,1Xk−1(1) and X̃k(2) := Yk,2Xk−1(2),

and then

Xk(1) := X̃k(1) ∨ Y3,kX̃k(2) and Xk(2) := X̃k(2) ∨ Y3,kX̃k(1).

Calculate the limit

r := lim
n→∞

1

n
logP

[
Xn 6= (0, 0)

]
.

Hint: find the transition kernel of X and calculate the relevant Perron-Frobenius
eigenvalue. You can reduce the dimensionality of the problem by exploiting the
symmetry between (1, 0) and (0, 1). Don’t worry if the formula for r looks some-
what complicated.

3.5 Continuous time

Recall from Section 0.4 the definition of a continuous-time Markov process X =
(Xt)t≥0 with finite state space S, initial law µ, transition probabilities Pt(x, y),
semigroup (Pt)t≥0, generator G, and transition rates r(x, y) (x 6= y). To simplify
notation, we set r(x, x) := 0.

By definition, an invariant law is a probability measure ρ on S such that ρPt = ρ
for all t ≥ 0, or, equivalently, ρG = 0. This latter formula can be written more
explicitly in terms of the rates r(x, y) as∑

y∈S

ρ(y)r(y, x) = ρ(x)
∑
y∈S

r(x, y) (x ∈ S),

i.e., in equilibrium, the frequency of jumps to x equals the frequency of jumps
from x. Basic results about Markov processes with finite state spaces tell us
that if the transition rates r(x, y) are irreducible, then the corresponding Markov
process has a unique invariant law ρ, and µPt ⇒ ρ as t→∞ for every initial law
µ. (For continuous-time processes, there is no such concept a (a)periodicity.)

We let

MT (x) :=
1

T

∫ T

0

1{Xt = x}dt (T > 0)
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denote the empirical distribution of X up to time T . We denote the set of times
when X makes a jump up to time T by

∆T := {t ∈ (0, T ] : Xt− 6= Xt}

and we set

WT (x, y) :=
1

T

∑
t∈∆T

1{Xt− = x, Xt = y} (T > 0),

i.e., WT (x, y) is the empirical frequency of jumps from x to y. If the transition rates
r(x, y) are irreducible, then, for large T , we expect MT to be close to the (unique)
invariant law ρ of X and we expect WT (x, y) to be close to ρ(x)r(x, y). We observe

that (MT ,WT ) is a random variable taking values in the spaceM1(S)× [0,∞)S
2

.

For any w ∈ [0,∞)S
2

, we let

w1(x1) :=
∑
x2∈S

w(x1, x2) and w2(x2) :=
∑
x1∈S

w(x1, x2)

denote the first and second marginal of w, and we set

W :=
{

(ρ, w) : ρ ∈M1(S), w ∈ [0,∞)S
2

, w1 = w2,

w(x, y) = 0 whenever ρ(x)r(x, y) = 0
}
.

The aim of the present section is to prove the following analogue of Theorem 3.2.

Theorem 3.30 (LDP for Markov processes) Let (Xt)t≥0 be a continuous-time
Markov process with finite state space S, irreducible transition rates r(x, y), and
arbitrary initial law. Let MT and WT (T > 0) denote its empirical distributions
and empirical frequencies of jumps, respectively, as defined above. Then the laws

P[(MT ,WT ) ∈ · ] satisfy the large deviation principle on M1(S) × [0,∞)S
2

with
speed T and good rate function I given by

I(ρ, w) :=


∑
x,y∈S

ρ(x)r(x, y)ψ
( w(x, y)

ρ(x)r(x, y)

)
if (ρ, w) ∈ W ,

∞ otherwise,

where ψ(z) := 1 − z + z log z (z > 0) and ψ(0) := 1 and we set 0ψ(a/b) := 0,
regardless of the values of a, b ≥ 0.
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Remark So far, we have only considered large deviation principles for sequences
of measures µn. The theory for families of measures (µT )T>0 depending on a
continuous parameter is completely analogous. Indeed, if the µT are finite measures
on a Polish space E and I is a good rate function, then one has

lim
T→∞

‖f‖T,µT = ‖f‖∞,I
(
f ∈ Cb,+(E)

)
if and only if for each Tn →∞,

lim
n→∞

‖f‖Tn,µTn = ‖f‖∞,I
(
f ∈ Cb,+(E)

)
.

A similar statement holds for the two conditions in Proposition 1.7. In other
words: measures µT depending on a continuous parameter T > 0 satisfy a large
deviation principle with speed T and good rate function I if and only if for each
Tn →∞, the measures µTn satisfy the large deviation principle with speed Tn and
rate function I.

Exercise 3.31 (Properties of the rate function) Show that the function I
from Theorem 3.30 is a good rate function and that I(ρ, w) ≥ 0 with equality if
and only if ρ is the unique invariant law of the Markov process X and w(x, y) =
ρ(x)r(x, y) (x, y ∈ S).

Our strategy is to derive Theorem 3.30 from Theorem 3.2 using approximation.
We start with an abstract lemma.

Lemma 3.32 (Diagonal argument) Let (µm,n)m,n≥1 be finite measures on a
Polish space E, let sn be positive constants, tending to infinity, and let Im, I be
good rate functions on E. Assume that for each fixed m ≥ 1, the µm,n satisfy the
large deviation principle with speed sn and rate function Im. Assume moreover
that

lim
m→∞

‖f‖∞,Im = ‖f‖∞,I
(
f ∈ Cb,+(E)

)
.

Then there exist n(m)→∞ such that for all n′(m) ≥ n(m), the measures µm,n′(m)

satisfy the large deviation principle with speed sn′(m) and rate function I.

Proof Let E be a metrizable compactification of E. We view the µm,n as measures
on E such that µm,n(E\E) = 0 and we extend the rate fuctions Im, I to E by
setting Im, I :=∞ on E\E. Then

lim
m→∞

‖f‖∞,Im = ‖f‖∞,I
(
f ∈ C(E)

)
.
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Let {fi : i ≥ 1} be a countable dense subset of the separable Banach space C(E)
of continuous real functions on E, equipped with the supremumnorm. Choose
n(m)→∞ such that∣∣‖fi‖sn′ ,µm,n′ − ‖fi‖∞,Im∣∣ ≤ 1/m

(
n′ ≥ n(m), i ≤ m

)
.

Then, for any n′(m) ≥ n(m), one has

lim sup
m→∞

∣∣‖fi‖sn′(m),µm,n′(m)
− ‖fi‖∞,I

∣∣
≤ lim sup

m→∞

∣∣‖fi‖sn′(m),µm,n′(m)
− ‖fi‖∞,Im

∣∣+ lim sup
m→∞

∣∣‖fi‖∞,Im − ‖fi‖∞,I∣∣ = 0

for all i ≥ 1. It is easy to see that the function Λ(f) := ‖f‖∞,I satisfies Λ(f) =
Λ(|f |) and f 7→ Λ(f) is continuous w.r.t. the supremumnorm (compare Proposi-
tion 1.21), and the same is true for the functions f 7→ ‖f‖∞,Im . Using this, it is
easy to see that the functions |fi| are rate function determining, hence by Propo-
sition 1.29, the measures µm,n′(m) satisfy the large deviation principle on E with
speed sn′(m) and rate function I. By the restriction principle (Lemma 1.27), they
also satisfy the large deviation principle on E.

Proposition 3.33 (Approximation of LDP’s) Let E be a Polish space and let
Xn, Xm,n (m,n ≥ 1) be random variables taking values in E. Assume that for each
fixed m ≥ 1, the laws P[Xm,n ∈ · ] satisfy a large deviation principle with speed sn
and good rate function Im. Assume moreover that there exists a good rate function
I such that

lim
m→∞

‖f‖∞,Im = ‖f‖∞,I
(
f ∈ Cb,+(E)

)
, (3.18)

and that there exists a metric d generating the topology on E such that for each
n(m)→∞,

lim
m→∞

1

sn(m)

logP[d(Xn(m), Xm,n(m)) ≥ ε] = −∞ (ε > 0), (3.19)

i.e., Xn(m) and Xm,n(m) are exponentially close in the sense of (1.8). Then the
laws P[Xn ∈ · ] satisfy the large deviation principle with speed sn and good rate
function I.

Proof By the argument used in the proof of Proposition 1.29, it suffices to show
that each subsequence n(m)→∞ contains a further subsequence n′(m)→∞ such
that the laws P[Xn′(m) ∈ · ] satisfy the large deviation principle with speed sn′(m)

and good rate function I. By (3.18) and Lemma 3.32, we can choose n′(m)→∞
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such that the laws P[Xm,n′(m) ∈ · ] satisfy the large deviation principle with speed
sn′(m) and good rate function I. By (3.19), the random variables Xn′(m) and
Xm,n′(m) are exponentially close in the sense of Proposition 1.17, hence the large
deviation principle for the laws of the Xm,n′(m) implies the large deviation principle
for the laws of the Xn′(m).

The following lemma gives sufficient conditions for the type of convergence in
(3.18).

Lemma 3.34 (Convergence of rate functions) Let E be a Polish space and
let I, Im be good rate functions on E such that

(i) For each a ∈ R, there exists a compact set K ⊂ E such that {x ∈ E :
Im(x) ≤ a} ⊂ K for all m ≥ 1.

(ii) ∀xm, x ∈ E with xm → x, one has lim infm→∞ Im(xm) ≥ I(x).

(iii) ∀x ∈ E ∃xm ∈ E such that xm → x and lim supm→∞ Im(xm) ≤ I(x).

Then the Im converge to I in the sense of (3.18).

Proof Formula (3.18) is equivalent to the statement that

inf
x∈E

[Im(x)− F (x)] −→
m→∞

inf
x∈E

[I(x)− F (x)]

for any continuous F : E → [−∞,∞) that is bounded from below. If Im, I satisfy
conditions (i)–(iii), then the same is true for I ′ := I − F , I ′m := Im − F , so it
suffices to show that conditions (i)–(iii) imply that

inf
x∈E

Im(x) −→
m→∞

inf
x∈E

I(x).

Since I is a good rate function, it achieves its minimum, i.e., there exists some
x◦ ∈ E such that I(x◦) = infx∈E I(x). By condition (iii), there exist xm ∈ E such
that xm → x and

lim sup
m→∞

inf
x∈E

Im(x) ≤ lim sup
m→∞

Im(xm) ≤ I(x◦) = inf
x∈E

I(x).

To prove the other inequality, assume that

lim inf
m→∞

inf
x∈E

Im(x) < inf
x∈E

I(x).
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Then, by going to a subsequence if necessary, we can find xm ∈ E such that

lim
m→∞

Im(xm) < inf
x∈E

I(x),

where the limit on the left-hand side exists and may be −∞. By condition (i),
there exists a compact set K ⊂ E such that xm ∈ K for all m, hence by going to a
further subsequence if necessary, we may assume that xm → x∗ for some x∗ ∈ E.
Condition (ii) now tells us that

lim
m→∞

Im(xm) ≥ I(x∗) ≥ inf
x∈E

I(x),

which leads to a contradiction.

Proof of Theorem 3.30 We set

M ε
T (x) :=

1

bT/εc

bT/εc∑
k=1

1{(Xε(k−1), Xεk) = (x, x)} (x ∈ S),

W ε
T (x, y) :=

1

εbT/εc

bT/εc∑
k=1

1{(Xε(k−1), Xεk) = (x, y)} (x, y ∈ S, x 6= y),

and we let W ε
T (x, x) := 0 (x ∈ S). By Proposition 3.33, the statements of the

theorem will follow provided we prove the following three claims:

1. For each ε > 0, the laws P[(M ε
T ,W

ε
T ) ∈ · ] satisfy a large deviation principle

with speed T and good rate function Iε.

2. The function I from Theorem 3.30 is a good rate function and the rate
functions Iε converge to I in the sense of (3.18) as ε ↓ 0.

3. For each Tm → ∞ and εm ↓ 0, the random variables (M εm
Tm
,W εm

Tm
) and

(MTm ,WTm) are exponentially close with speed Tm.

Proof of Claim 1. For each ε > 0, let (Xε
k)k≥0 be the Markov chain given by

Xε
k := Xεk (k ≥ 0),

and let M
(2) ε
n be its empirical pair distributions. Then

M ε
T (x) =M

(2) ε
bT/εc(x, x) (x ∈ S),

W ε
T (x, y) = ε−1M

(2) ε
bT/εc(x, y) (x, y ∈ S, x 6= y).



3.5. CONTINUOUS TIME 123

For each ε > 0 and ν ∈ M1(S2), let us define ρε ∈ [0,∞)S and wε(ν) ∈ [0,∞)S
2

by
ρε(ν)(x) := ν(x, x) (x ∈ S),

wε(ν)(x) := 1{x 6=y}ε
−1ν(x, y) (x, y ∈ S).

Then, by Theorem 3.2, for each ε > 0 the laws P[(M ε
T ,W

ε
T ) ∈ · ] satisfy a large

deviation principle on [0,∞)S × [0,∞)S
2

with speed T and good rate function Iε
given by

Iε(ρε(ν), wε(ν)) := ε−1H(ν|ν1 ⊗ Pε) (ν ∈ V), (3.20)

while Iε(ρ, w) :=∞ if there exists no ν ∈ V such that (ρ, w) = (ρε(ν), wε(ν)). Note
the overall factor ε−1 which is due to the fact that the speed T differs a factor ε−1

from the speed n of the embedded Markov chain.

Proof of Claim 2. By Lemma 3.34, it suffices to prove, for any εn ↓ 0, the following
three statements.

(i) If ρn ∈ [0,∞)S and wn ∈ [0,∞)S
2

satisfy wn(x, y) → ∞ for some x, y ∈ S,
then Iεn(ρn, wn)→∞.

(ii) If ρn ∈ [0,∞)S and wn ∈ [0,∞)S
2

satisfy (ρn, wn) → (ρ, w) for some ρ ∈
[0,∞)S and w ∈ [0,∞)S

2

, then lim infn→∞ Iεn(ρn, wn) ≥ I(ρ, w).

(iii) For each ρ ∈ [0,∞)S and w ∈ [0,∞)S
2

there exist ρn ∈ [0,∞)S and wn ∈
[0,∞)S

2

such that lim supn→∞ Iεn(ρn, wn) ≤ I(ρ, w).

Obviously, it suffices to check conditions (i), (ii) for (ρn, wn) such that Iεn(ρn, wn) <
∞ and condition (iii) for (ρ, w) such that I(ρ, w) < ∞. Therefore, taking into
account our definition of Iε, Claim 2 will follow provided we prove the following
three subclaims.

2.I. If νn ∈ V satisfy ε−1
n νn(x, y)→∞ for some x 6= y, then

ε−1
n H(νn|ν1

n ⊗ Pεn) −→
n→∞

∞.

2.II. If νn ∈ V satisfy

νn(x, x) −→
n→∞

ρ(x) (x ∈ S),

ε−1
n 1{x 6=y}νn(x, y) −→

n→∞
w(x, y) (x, y ∈ S2),

(3.21)
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for some (ρ, w) ∈ [0,∞)S × [0,∞)S
2

, then

lim inf
n→∞

ε−1
n H(νn|ν1

n ⊗ Pεn) ≥ I(ρ, w).

2.III. For each (ρ, w) ∈ W , we can find νn ∈ V satisfying (3.21) such that

lim
n→∞

ε−1
n H(νn|ν1

n ⊗ Pεn) = I(ρ, w).

We start by writing H(ν|ν1 ⊗ P ) in a suitable way. Let ψ be as defined in the
theorem. We observe that if ν, µ are probability measures on a finite set S and
µ(x) > 0 for all x ∈ S, then∑

x∈S

µ(x)ψ

(
ν(x)

µ(x)

)
=
∑
x∈S

µ(x)
[
1− ν(x)

µ(x)
+
ν(x)

µ(x)
log
(ν(x)

µ(x)

)]
=
∑
x∈S

[µ(x)− ν(x)] +
∑
x∈S

ν(x) log
(ν(x)

µ(x)

)
= H(ν|µ),

where we use the convention that 0 log 0 := 0. By Excercise 3.10, it follows that
for any probability measure ρ on S and probability kernels P,Q on S such that
ρ⊗Q� ρ⊗ P ,

H(ρ⊗Q|ρ⊗ P ) =
∑
x

ρ(x)H(Qx|Px)

=
∑
x

ρ(x)
∑
y

P (x, y)ψ
(Q(x, y)

P (x, y)

)
=
∑
x,y

ρ(x)P (x, y)ψ
(ρ(x)Q(x, y)

ρ(x)P (x, y)

)
,

where the sum runs over all x, y ∈ S such that ρ(x)P (x, y) > 0. In particular, if ν
is a probability measure on S2 and P is a probability kernel on S, then

H(ν|ν1 ⊗ P ) =


∑
x,y∈S

ν1(x)P (x, y)ψ
( ν(x, y)

ν1(x)P (x, y)

)
if ν � ν1 ⊗ P,

∞ otherwise,

where we define 0ψ(a/b) := 0, irrespective of the values of a, b ≥ 0.

To prove Claim 2.I, now, we observe that if ε−1
n νn(x, y)→∞ for some x 6= y, then

ε−1
n H(νn|ν1

n ⊗ Pεn) ≥ ε−1
n ν1

n(x)Pεn(x, y)ψ
( νn(x, y)

ν1
n(x)Pεn(x, y)

)
≥ ε−1

n νn(x, y)
(

log
( νn(x, y)

ν1
n(x)Pεn(x, y)

)
− 1
)
,
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where
νn(x, y)

ν1(x)Pεn(x, y)
≥ νn(x, y)

Pεn(x, y)
=

νn(x, y)

εnr(x, y) +O(ε2
n)
−→
n→∞

∞.

To prove Claim 2.II, we observe that if νn, ρ, w satisfy (3.21), then, as n→∞,

ν1
n(x)Pεn(x, x) = ρ(x) +O(εn),

νn(x, x) = ρ(x) +O(εn),

}
(x ∈ S),

while

ν1
n(x)Pεn(x, y) = εnρ(x)r(x, y) +O(ε2

n),

νn(x, y) = εnw(x, y) +O(ε2
n),

}
(x, y ∈ S, x 6= y).

It follows that

ε−1
n H(νn|ν1

n ⊗ Pεn) = ε−1
n

∑
x,y

ν1
n(x)Pεn(x, y)ψ

( νn(x, y)

ν1
n(x)Pεn(x, y)

)
= ε−1

n

∑
x

(
ρ(x) +O(εn)

)
ψ
(ρ(x) +O(εn)

ρ(x) +O(εn)

)
+
∑
x 6=y

(
ρ(x)r(x, y) +O(εn)

)
ψ
( εnw(x, y) +O(ε2

n)

εnρ(x)r(x, y) +O(ε2
n)

)
≥
∑
x 6=y

ρ(x)r(x, y)ψ
( w(x, y)

ρ(x)r(x, y)

)
+O(εn).

(3.22)

To prove Claim 2.III, finally, we observe that for each (ρ, w) ∈ W , we can find
νn ∈ V satisfying (3.21) such that moreover νn(x, x) = 0 whenever ρ(x) = 0 and
νn(x, y) = 0 whenever ρ(x)r(x, y) = 0 for some x 6= y. It follows that ν1

n(x) = 0
whenever ρ(x) = 0, so for each x, y such that ρ(x) = 0, we have

ε−1
n ν1

n(x)Pεn(x, y)ψ
( νn(x, y)

ν1
n(x)Pεn(x, y)

)
= 0,

while for x 6= y such that ρ(x) > 0 but r(x, y) = 0, we have

ε−1
n ν1

n(x)Pεn(x, y)ψ
( νn(x, y)

ν1
n(x)Pεn(x, y)

)
= O(εn)ψ(1).

It follows that in (3.22), only the terms where ρ(x)r(x, y) > 0 contribute, and

ε−1
n H(νn|ν1

n ⊗ Pεn) =
∑
x 6=y

ρ(x)r(x, y)ψ
( w(x, y)

ρ(x)r(x, y)

)
+O(εn).
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Proof of Claim 3. Set εN := {εk : k ∈ N} and observe that εbT/εc = sup{T ′ ∈
εN : T ′ ≤ T}. It is not hard to show that for any Tm →∞ and εm ↓ 0, the random
variables

(MTm ,WTm) and (MεmbTm/εmc,WεmbTm/εmc) (3.23)

are exponentially close. Therefore, by Excercise 3.37 below and the fact that
(M εm

Tm
,W εm

Tm
) are functions of εmbTm/εmc only, it suffices to prove the statement

for times Tm ∈ εmN.

Recall that ∆T := {t ∈ (0, T ] : Xt− 6= Xt} is the set of times, up to time T , when
X makes a jump. For any T ∈ εN, let

Ji(ε, T ) :=

T/ε∑
k=1

1{∣∣∆T ∩ (ε(k − 1), εk]
∣∣ ≥ i

} (i = 1, 2)

denote the number of time intervals of the form (ε(k−1), εk], up to time T , during
which X makes at least i jumps. We observe that for any T ∈ εN,∑

x∈S

∣∣M ε
T (x)−MT (x)

∣∣≤ ε

T
J1(ε, T ),∑

x,y∈S

∣∣W ε
T (x, y)−WT (x, y)

∣∣≤ 1

T
J2(ε, T ).

Thus, it suffices to show that for any δ > 0, εm ↓ 0 and Tm ∈ εmN such that
Tm →∞

lim
m→∞

1

Tm
logP

[
εmJ1(εm, Tm)/Tm ≥ δ

]
= −∞,

lim
m→∞

1

Tm
logP

[
J2(εm, Tm)/Tm ≥ δ

]
= −∞.

We observe that J1(ε, T ) ≤ |∆T |, which can in turn be estimated from above by a
Poisson distributed random variable NRT with mean

T sup
x∈S

∑
y∈S

r(x, y) =: RT.

By Excercise 3.35 below, it follows that for any 0 < ε < δ/R,

lim sup
m→∞

1

Tm
logP

[
εmJ1(εm, Tm)/Tm ≥ δ

]
≤ lim sup

m→∞

1

Tm
logP

[
εNRTm/Tm ≥ δ

]
≤ ψ(δ/Rε) −→

ε→0
−∞,
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where ψ(z) := 1 − z + z log z. To also prove the statement for J2, we observe
that ∆T can be estimated from above by a Poisson point process with intensity R,
hence

P
[∣∣∆T ∩ (ε(k − 1), εk]

∣∣ ≥ 2
]
≤ 1− e−Rε −Rεe−Rε.

and J2(ε, T ) can be estimated from above by a binomially distributed random
variable with parameters (n, p) = (T/ε, 1 − e−Rε − Rεe−Rε). For small ε, this
binomal distribution approximates a Poisson distribution. To turn this into a
rigorous estimate, define λε by

1− e−λε := 1− e−Rε −Rεe−Rε.

In other words, if M and N are Poisson distributed random variable with mean
λε and Rε, respectively, then this says that P[N ≥ 1] = P[M ≥ 2]. Since the
right-hand side of this equation is of order 1

2
R2ε2 +O(ε3) as ε ↓ 0, we see that

λε = 1
2
R2ε2 +O(ε3) as ε ↓ 0.

Then J2(ε, T ) can be estimated from above by a Poisson disributed random variable
with mean (T/ε)λε = 1

2
R2Tε+O(ε2). By the same argument as for J1, we conclude

that

lim sup
m→∞

1

Tm
logP

[
εmJ2(εm, Tm)/Tm ≥ δ

]
= −∞.

Exercise 3.35 (Large deviations for Poisson process) Let N = (Nt)t≥0 be
a Poisson process with intensity one, i.e., N has independent increments where
Nt −Nt is Poisson distributed with mean t− s. Show that the laws P[NT/T ∈ · ]
satisfy the large deviation principle with speed T and good rate function

I(z) =

{
1− z + z log z if z ≥ 0,
∞ otherwise.

Hint: first consider the process at integer times and use that this is a sum of i.i.d.
random variables. Then generalize to nontinteger times.

Exercise 3.36 (Rounded times) Prove that the random variables in (3.23) are
exponentially close.
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Exercise 3.37 (Triangle inequality for exponential closeness) Let (Xn)n≥1,
(Yn)n≥1 and (Zn)n≥1 be random variables taking values in a Polish space E and
let d be a metric generating the topology on E. Let sn be positive constants,
converging to infinity, and assume that

limn→∞
1
sn

logP
[
d(Xn, Yn) ≥ ε

]
= −∞ (ε > 0),

limn→∞
1
sn

logP
[
d(Yn, Zn) ≥ ε

]
= −∞ (ε > 0).

Prove that

lim
n→∞

1

sn
logP

[
d(Xn, Zn) ≥ ε

]
= −∞ (ε > 0).

3.6 Excercises

Exercise 3.38 (Testing the fairness of a dice) Imagine that we want to test
if a dice is fair, i.e., if all sides come up with equal probabilities. To test this
hypothesis, we throw the dice n times. General statistical theory tells us that
any test on the distribution with which each side comes up can be based on the
relative freqencies Mn(x) of the sides x = 1, . . . , 6 in these n throws. Let µ0 be
the uniform distribution on S := {1, . . . , 6} and imagine that sides the dice come
up according to some other, unknown distribution µ1. We are looking for a test
function T : M1(S) → {0, 1} such that if T (Mn) = 1, we reject the hypothesis
that the dice is fair. Let Pµ denote the distribution of Mn when in a single throw,
the sides of the dice come up with law µ. Then

αn := Pµ0 [T (Mn) = 1] and βn := Pµ1 [T (Mn) = 0]

are the probability that we incorrectly reject the hypothesis that the dice is fair and
the probability that we do not reckognize the non-fairness of the dice, respectively.
A good test minimalizes βn when αn is subject to a bound of the form αn ≤ ε,
with ε > 0 small and fixed. Consider a test of the form

T (Mn) := 1{H(Mn|µ0) ≥ λ},

where λ > 0 is fixed and small enough such that {µ ∈M1(S) : H(µ|µ0) ≥ λ} 6= ∅.
Prove that

lim
n→∞

1

n
logαn = −λ,

and, for any µ1 6= µ0,

lim
n→∞

1

n
log βn = − inf

µ: H(µ|µ0)<λ
H(µ|µ1).
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Let T̃ : M1(S) → {0, 1} be any other test such that {µ ∈ M1(S) : T̃ (µ) = 1} is
the closure of its interior and let α̃n, β̃n be the corresponding error probabilities.
Assume that

lim sup
n→∞

1

n
log α̃n ≤ −λ.

Show that for any µ1 6= µ0,

lim inf
n→∞

1

n
log β̃n ≥ − inf

µ: H(µ|µ0)<λ
H(µ|µ0).

This shows that the test T is, in a sense, optimal.

Exercise 3.39 (Reducible Markov chains) Let X = (Xk)k≥0 be a Markov
chain with finite state space S and transition kernel P . Assume that S = A∪B∪{c}
where

(i) ∀a, a′ ∈ A ∃n ≥ 0 s.t. P n(a, a′) > 0,

(ii) ∀b, b′ ∈ B ∃n ≥ 0 s.t. P n(b, b′) > 0,

(iii) ∃a ∈ A, b ∈ B s.t. P (a, b) > 0,

(iv) ∃b ∈ B s.t. P (b, c) > 0,

(v) P (a, c) = 0 ∀a ∈ A,

(vi) P (b, a) = 0 ∀a ∈ A, b ∈ B.

Assume that X0 ∈ A a.s. Give an expression for

lim
n→∞

1

n
logP[Xn 6= c].

Hint: set τB := inf{k ≥ 0 : Xk ∈ B} and consider the process before and after τB.

Exercise 3.40 (Sampling without replacement) For each n ≥ 1, consider
an urn with n balls that have colors taken from some finite set S. Let cn(x) be
the number of balls of color x ∈ S. Imagine that we draw mn balls from the urn
without replacement. We assume that the numbers cn(x) and mn are deterministic
(i.e., non-random), and that

1

n
cn(x) −→

n→∞
µ(x) (x ∈ S) and

mn

n
−→
n→∞

κ,
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where µ is a probability measure on S and 0 < κ < 1. Let Mn(x) be the (random)
number of balls of color x that we have drawn. Let kn(x) satisfy

kn(x)

mn

−→
n→∞

ν1(x) and
cn(x)− kn(x)

n−mn

−→
n→∞

ν2(x) (x ∈ S),

where ν1, ν2 are probability measures on S such that νi(x) > 0 for all x ∈ S,
i = 1, 2. Prove that

lim
n→∞

1

n
logP[Mn = kn] = −κH(ν1|µ)− (1− κ)H(ν2|µ). (3.24)

Sketch a proof, similar to the arguments following (3.9), that the laws P[Mn ∈ · ]
satisfy a large deviation principle with speed n and rate function given by the
right-hand side of (3.24). Hint: use Stirling’s formula to show that

1

n
log

(
n

m

)
≈ H

(m
n

)
,

where

H(z) := −z log z − (1− z) log(1− z).

Exercise 3.41 (Conditioned Markov chain) Let S be a finite set and let P
be a probability kernel on S. Let

U ⊂ {(x, y) ∈ S2 : P (x, y) > 0}

be irreducible, let U be as in (3.3), and let A be the restriction of P to U , i.e., A is

the linear operator on RU whose matrix is given by A(x, y) := P (x, y) (x, y ∈ U).
Let α, η and h denote its Perron-Frobenius eigenvalue and associated left and right
eigenvectors, respectively, normalized such that

∑
x∈U h(x)η(x) = 1, and let Ah be

the irreducible probability kernel on U defined as in (3.15).

Fix x0 ∈ U , let X = (Xk)k≥0 be the Markov chain in S with transition kernel
P started in X0 = x0, and let Xh = (Xh

k )k≥0 be the Markov chain in U with
transition kernel Ah started in Xh

0 = x0. Show that

P
[
X1 = x1, . . . , Xn = xn

∣∣ (Xk−1, Xk) ∈ U ∀k = 1, . . . , n
]

E
[
h−1(Xh

n)
]−1E

[
1{Xh

1 = x1, . . . , X
h
n = xn}h

−1(Xh
n)
]
,
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where h−1 denotes the function h−1(x) = 1/h(x). Assuming moreover that Ah is
aperiodic, prove that

P
[
X1 = x1, . . . , Xm = xm

∣∣ (Xk−1, Xk) ∈ U ∀k = 1, . . . , n
]

−→
n→∞

P
[
Xh

1 = x1, . . . , X
h
m = xm

]
for each fixed m ≥ 1 and x1, . . . , xm ∈ U . Hint:

P
[
X1 = x1, . . . , Xm = xm

∣∣ (Xk−1, Xk) ∈ U ∀k = 1, . . . , n
]

(Anhh
−1)(x0)−1E

[
1{Xh

1 = x1, . . . , X
h
m = xm}(A

n−m
h h−1)(Xh

m)
]
.
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image measure, 30
induced topology, 44, 75
initial law, 91
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large deviation principle, 23
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Cramér’s theorem, 8
good, 23
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relative entropy, 72

finite space, 12
restriction principle, 45

Scott topology, 19
seminorm, 23
separable, 18
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simple function, 20
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speed, 23
stationary process, 92
Stirling’s formula, 97
supporting line, 58
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total variation, 93
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