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The weak law of large numbers

Let (Xk)k≥1 be i.i.d. real random variables.
Assume E[|X1|] <∞ and set ρ := E[X1].

The weak law of large numbers states that the empirical averages

Tn :=
1

n

n∑
k=1

Xk (n ≥ 1).

satisfy
P
[
|Tn − ρ| ≥ ε

]
−→
n→∞

0 (ε > 0).

Question How fast is this convergence?
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Cramér’s theorem

Theorem (Harald Cramér, 1938) Assume that

Z (λ) := E[eλX1 ] <∞ (λ ∈ R).

Then

(i) lim
n→∞

1

n
logP[Tn ≥ y ] = −I (y) (y > ρ),

(ii) lim
n→∞

1

n
logP[Tn ≤ y ] = −I (y) (y < ρ),

where I is defined by

I (y) := sup
λ∈R

[
λy − log Z (λ)

]
(y ∈ R).
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Cramér’s theorem

Z (λ) moment generating function,
log Z (λ) logarithmic moment generating function,
I (y) rate function.

µ := the law of X1,
ρ := mean of µ,
σ := variance of µ,
y−:= inf(support(µ)),
y+:= sup(support(µ)),
DI := {y ∈ R : I (y) <∞},
UI := int(DI ).
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The rate function

I (y)

y

∞

ρ y+

− logµ({y+})
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The rate function

Assume σ > 0. Then:

(i) I is convex.

(ii) I is lower semi-continuous.

(iii) 0 ≤ I (y) ≤ ∞ for all y ∈ R.

(iv) I (y) = 0 if and only if y = ρ.

(v) UI = (y−, y+).

(vi) I is infinitely differentiable on UI .
(vii) limy↓y− I ′(y) = −∞ and limy↑y+ I ′(y) =∞.

(viii) I ′′ > 0 on UI and I ′′(ρ) = 1/σ2.

(ix) If −∞ < y−, then I (y−) = − logµ({y−}), and
if y+ <∞, then I (y+) = − logµ({y+}).
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Cramér’s theorem

Recall Tn :=
1

n

n∑
k=1

Xk (n ≥ 1).

P[Tn ≥ y ] = e−nI (y) + o(n) as n→∞ (y > ρ),

Also

P[Tn ≤ y− or Tn ≥ y+] = e−nI (y−) + o(n) + e−nI (y+) + o(n)

= e−n
(
I (y−) ∧ I (y+)

)
+ o(n) as n→∞.

The slowest exponential decay wins.
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Moderate deviations

Let Sn :=
n∑

k=1

Xk (n ≥ 1). Then Cramér says:

P
[
Sn − ρn ≥ yn

]
= e−nI (ρ+ y) + o(n) as n→∞ (y > 0).

The central limit theorem says

P
[
Sn − ρn ≥ y

√
n
]
−→
n→∞

Φ(y/σ) (y ∈ R).

Moderate Deviations Theorem For 1
2 < α < 1 and y > 0

P[Sn − ρn ≥ ynα] = e−n2α−1 1
2σ2 y2 + o(n2α−1) as n→∞.
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Relative entropy

Nn(x) := number of times x thrown in n dice rolls (x = 1, . . . , 6).
Mn(x) := Nn(x)/n relative frequency of x .
∆n := max

1≤x≤6
Mn(x)− min

1≤x≤6
Mn(x).

The strong law of large numbers gives Mn(x) −→
n→∞

1/6 ∀x .

As a consequence ∆n −→
n→∞

0.

Proposition There exists a continuous, strictly increasing function
I : [0, 1]→ R with I (0) = 0 and I (1) = log 6, such that

lim
n→∞

1

n
logP

[
∆n ≥ ε

]
= −I (ε) (0 ≤ ε ≤ 1).
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Relative entropy

Let M1(S) := the space of probability measures on a finite set S .

For µ, ν ∈M1(S), the relative entropy of ν with respect to µ is
defined as

H(ν|µ) :=
∑
x∈S

ν(x) log
ν(x)

µ(x)
=
∑
x∈S

µ(x)
ν(x)

µ(x)
log

ν(x)

µ(x)
,

with log(0) := −∞ and 0 · ∞ := 0.

H(ν|µ) is also known as the Kullback-Leibler distance or
divergence.
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Relative entropy

Assume that µ(x) > 0 for all x ∈ S . Then

(i) 0 ≤ H(ν|µ) <∞ for all ν ∈M1(S).

(ii) H(µ|µ) = 0.

(iii) H(ν|µ) > 0 for all ν 6= µ.

(iv) ν 7→ H(ν|µ) is convex and continuous on M1(S).

(v) ν 7→ H(ν|µ) is infinitely differentiable on the interior of
M1(S).
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Relative entropy

Boltzmann-Sanov Theorem Let C be a closed subset of M1(S)
such that C is the closure of its interior. Then

lim
n→∞

1

n
logP[Mn ∈ C ] = −min

ν∈C
H(ν|µ).

Application For each 0 ≤ ε < 1, the set

Cε :=
{
ν ∈M1(S) : max

x∈S
ν(x)−min

x∈S
ν(x) ≥ ε

}
is the closure of its interior and hence

lim
n→∞

1

n
logP

[
∆n ≥ ε

]
= lim

n→∞

1

n
logP

[
Mn ∈ Cε

]
= − min

ν∈Cε

H(ν|µ) =: −I (ε).
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Relative entropy

Remark It is quite tricky to calculate the function I explicitly.

For ε sufficiently small, it seems that the minimizers of the entropy
H( · |µ) on the set Cε are (up to permutations of the coordinates)
of the form

ν(1) = 1
6 −

1
2ε, ν(2) = 1

6 + 1
2ε, ν(3), . . . , ν(6) = 1

6 .

For ε > 1
3 , this solution is of course no longer well-defined and the

minimizer must look differently.
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Markov chains

(Xt)t≥0 continuous-time Markov chain with finite state space S ,
initial law µ, and transition probabilities Pt(x , y).
For 0 = t0 < · · · < tn,

P
[
Xt0 = x0, . . . ,Xtn = xn

]
= µ(x0)Pt1−t0(x0, x1)Pt2−t1(x1, x2) · · ·Ptn−tn−1(xn, xn).

Semigroup (Pt)t≥0 defined by generator G through

Pt = eGt =
∞∑
n=0

1

n!
Gntn.

Here
G (x , y) ≥ 0 (x 6= y) rate of jumps x 7→ y ,

G (x , x) = −
∑

y : y 6=x

G (x , y).
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Non-exit probability

Let U ⊂ S and assume that the transition rates are irreducible on
U. Then by the Perron-Frobenius theorem, there exists a function
f , unique up to a multiplicative constant, and a constant λ ≥ 0,
such that

(i) f > 0 on U,

(ii) f = 0 on S\U,
(iii) Gf (x) = −λf (x) (x ∈ U).

Theorem The process X started in any initial law such that
P[X0 ∈ U] > 0 satisfies

lim
t→∞

1

t
logP

[
Xs ∈ U ∀0 ≤ s ≤ t

]
= −λ.
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Large deviation theory

Large deviation theory provides a unified framework for proving the
results we have seen:

I Rare events happen in the least unlikely way.

I Cramér’s theorem is closely linked to relative entropy.

I Even the Perron-Frobenius theorem is closely linked to a
certain rate function, which can be expressed in terms of
relative entropy.
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Large deviation theory

Chapter 1 Abstract theory. Similarity between a Large Deviation
Principle and weak convergence of probability measures.

Chapter 2 Large deviations of i.i.d. random variables. Cramér’s
theorem, moderate deviations, Sanov’s theorem. Use of convex
analysis and the Legendre transform.

Chapter 3 Large deviations for Markov chains.

No time for: Large deviations of random fields, connection to
Gibbs measures and phase transitions. Large deviations of random
graphs. And more. . .
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History of the subject

I 1870ies: the physicist Boltzmann works on the probabilistic
interpretation of entropy.

I 1938: the Swedish mathematician Cramér proves his theorem.

I 1966 Varadhan defines a large deviation principle and shows
that it implies Varadhan’s lemma.

I 1977 and 1984 Gärtner and Ellis establish the Gärtner-Ellis
theorem.

I 1985 Ellis’ influential book on large deviation theory and
statistical mechanics.

I 1989 The book by Deuschel and Stroock.

I 1990 Bryc proves that Varadhan’s lemma conversely implies a
large deviation principle.

I 1991 O’Brian en Verwaat, and Puhalskii prove that
exponential tightness implies a subsequential LDP.

I 1993 The book by Dembo and Zeitouni.
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