Interacting Particle Systems: Almost sure uniqueness, pathwise duality, and the mean-field limit

Jan M. Swart

Lecture 1: Poisson Construction of Interacting Particle Systems

Probability kernels

- E a compact metrizable space,
- $\mathcal{C}(E)$ the space of all continuous functions $f: E \to \mathbb{R}$, equipped with the supremumnorm $\|\cdot\|_{\infty}$,
- $\mathcal{P}(E)$ space of probability measures on E, equipped with the topology of *weak convergence*, and the associated Borel- σ -algebra.

Def probability kernel K on E is a measurable map

$$E \ni x \mapsto K(x, \cdot) \in \mathcal{P}(E).$$

Def *K* is *continuous* if this map is continuous.

For any probability kernel K(x, dy) on E and measurable function $f: E \to \mathbb{R}$, we define

$$\mathcal{K}f(x) := \int_E \mathcal{K}(x, \mathrm{d} y) f(y) \qquad (x \in E).$$

K continuous \Leftrightarrow K maps $\mathcal{C}(E)$ into itself.

A probability kernel K on E is *deterministic* if it is of the form

$$K(x, \cdot) = \delta_{m(x)}$$
 $(x \in E)$

for some measurable map $m: E \to E$.

Note 1 Deterministic kernels are the extremal elements of the convex set of all probability kernels on E. **Note 2** K is continuous if and only if m is.

A random mapping representation of a probability kernel K is a random map M such that

$$K(x, \cdot) = \mathbb{P}[M(x) \in \cdot]$$
 $(x \in E).$

Feller semigroups

By definition, a *Feller semigroup* is a collection of probability kernels $(P_t)_{t\geq 0}$ on *E* such that:

(i)
$$P_0 = 1$$
 and $P_s P_t = P_{s+t}$ $(s, t \ge 0)$,

(ii) $E \times [0,\infty) \ni (x,s) \mapsto P_s(x, \cdot) \in \mathcal{P}(E)$ is continuous.

The generator of a Feller semigroup is the operator G defined as

$$Gf := \lim_{t \downarrow 0} t^{-1} (P_t f - f)$$
 (*),

with domain

 $\mathcal{D}(G) := \{ f \in \mathcal{C}(E) : \text{ the limit in } (*) \text{ exists in the norm } \| \cdot \|_{\infty} \}.$

G is closed and densely defined.

The *Hille-Yosida theorem* gives necessary and sufficient conditions for (the closure of) an operator to generate a Feller semigroup.

Let $(P_t)_{t\geq 0}$ be a Feller semigroup and let $\mu \in \mathcal{P}(E)$.

Then there exists a process $(X_t)_{t\geq 0}$, unique in law, such that

The sample paths t → Xt are a.s. cadlag, i.e., right-continuous and the left limit Xt- := limst Xs exists ∀t > 0.

$$\blacktriangleright \mathbb{P}[X_0 \in \cdot] = \mu.$$

$$\blacktriangleright \mathbb{P}[X_u \in \cdot | (X_s)_{0 \le s \le t}] = P_{u-t}(X_t, \cdot) \text{ a.s. } (t \le u).$$

Such a process is called a *Feller process*.

• • = • • = •

Stochastic flows

Def A stochastic flow on E is a collection $(\mathbb{X}_{s,u})_{s \leq u}$ of random measurable maps $\mathbb{X}_{s,u} : E \to E$ such that

$$\mathbb{X}_{s,s} = 1$$
 and $\mathbb{X}_{t,u} \circ \mathbb{X}_{s,t} = \mathbb{X}_{s,u}$ $(s \leq t \leq u).$

We say that $(X_{s,u})_{s \leq u}$ has independent increments if

 $\mathbb{X}_{t_1, t_2}, \dots, \mathbb{X}_{t_{n-1}, t_n}$ are independent for all $t_1 < \dots < t_n$.

Let $(X_{s,u})_{s \leq u}$ have independent increments, let $s \in \mathbb{R}$ and let X_0 be an *E*-valued random variable, independent of $(X_{s,u})_{s \leq u}$. Then

$$X_t := \mathbb{X}_{s,s+t}(X_0) \qquad (t \ge 0)$$

defines a Markov process $(X_t)_{t\geq 0}$. Many Feller processes can be constructed from a stochastic flow. In this case,

$$P_{u-s}(x, \cdot) = \mathbb{P}[\mathbb{X}_{s,u}(x) \in \cdot] \qquad (x \in E, \ s \leq u),$$

so $\mathbb{X}_{s,u}$ is a random mapping representation of $P_{u=s}$, $P_{u=s}$

- S a finite set called *local state space*,
- Λ a countable set called *lattice*,
- S^{Λ} the set of all $(x(i))_{i \in \Lambda}$ with $x(i) \in S \ \forall i \in \Lambda$, equipped with the *product topology*.

Note Tychonoff $\Rightarrow S^{\Lambda}$ compact.

Def A probability kernel K on S^{Λ} is *local* if

- (i) K is continuous,
- (ii) there exists a finite $\Delta \subset \Lambda$ such that $K(x, \cdot)$ is concentrated on $\{y \in S^{\Lambda} : y(i) = x(i) \ \forall i \in \Lambda \setminus \Delta\}$.

An *interacting particle system* is a Feller process with state space of the form S^{Λ} and generator of the form

$$Gf = \sum_{K \in \mathcal{K}} r_K (Kf - f),$$

where \mathcal{K} is a countable collection of local probability kernels and $(r_{\mathcal{K}})_{\mathcal{K}\in\mathcal{K}}$ are nonnegative rates.

Liggett (1972), Sullivan (1974,1976) gave sufficient conditions on the rates $(r_K)_{K \in \mathcal{K}}$ for the closure of *G* to generate a Feller semigroup. This yields *existence* and *distributional uniqueness*.

Starting with the work of **Harris (1972,1974)**, various authors have given constructions based on Poisson point sets called *graphical representations*. Such constructions yield a stochastic flow and *almost sure uniqueness*.

Let $f : S^{\Lambda} \to S$. We say that a point $j \in \Lambda$ is *f*-relevant if

$$\exists x, y \in S^{\Lambda} \text{ s.t. } f(x) \neq f(y) \text{ and } x(k) = y(k) \; \forall k \neq j.$$

We write

$$\mathcal{R}(f) := \{j \in \Lambda : j \text{ is } f \text{-relevant}\}.$$

Lemma A function $f : S^{\Lambda} \to S$ is continuous iff

(i)
$$\mathcal{R}(f)$$
 is finite,
(ii) If $x, y \in S^{\Lambda}$ satisfy $x(j) = y(j)$ for all $j \in \mathcal{R}(f)$,
then $f(x) = f(y)$.

白 ト イヨト イヨト

Let
$$S = \{0, 1\}$$
, $\Lambda = \mathbb{Z}$.

Example 1

$$f(x) = \begin{cases} 0 & \text{if } \inf\{j > 0 : x(j) = 1\} \in 2\mathbb{Z} \cup \{\infty\}, \\ 1 & \text{if } \inf\{j > 0 : x(j) = 1\} \in 2\mathbb{Z} + 1. \end{cases}$$

Now $\mathcal{R}(f) = \{1, 2, ...\}$ so condition (i) fails and f is discontinuous. Example 2

$$f(x) = \begin{cases} 0 & \text{if } \{j > 0 : x(j) = 1\} \text{ is finite,} \\ 1 & \text{if } \{j > 0 : x(j) = 1\} \text{ is infinite.} \end{cases}$$

Now $\mathcal{R}(f) = \emptyset$ but condition (ii) fails so f is again discontinuous.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Local maps

For
$$m: S^{\Lambda} \to S^{\Lambda}$$
, we write $m(x) = (m[i](x))_{i \in \Lambda}$ and
 $\mathcal{D}(m) := \{i \in \Lambda : m[i] \neq 1\}.$

Def A map $m: S^{\Lambda} \to S^{\Lambda}$ is *local* if

(i) *m* is continuous,

(ii) $\mathcal{D}(m)$ is finite.

We will be interested in interacting particle systems with generator of the form

$$Gf(x) = \sum_{m \in \mathcal{G}} r_m \{ f(m(x)) - f(x) \}$$
 (GEN)

where G is a countable collection of local maps and $(r_m)_{m \in G}$ are nonnegative rates.

・ 回 ト ・ ヨ ト ・ ヨ ト

크

Graphical representations

- ho measure on $\mathcal G$ defined by $ho(\{m\}) := r_m$,
- ℓ Lebesgue measure on \mathbb{R} ,
- π Poisson point subset of $\mathcal{G} \times \mathbb{R}$ with intensity $\rho \otimes \ell$.

$$\mathfrak{m}_t := \left\{egin{array}{cc} m & ext{ if } (m,t) \in \pi, \ 1 & ext{ otherwise.} \end{array}
ight.$$

Theorem (Pathwise uniqueness) Assume

$$\sup_{i \in \Lambda} \sum_{\substack{m \in \mathcal{G} \\ \mathcal{D}(m) \ni i}} r_m (|\mathcal{R}(m[i])| + 1) < \infty.$$
 (SUM)

Then, almost surely, for all $s \in \mathbb{R}$ and $x \in S^{\Lambda}$, there exists a unique cadlag function $(X_t)_{t \geq s}$ that solves

$$X_s = x$$
 and $X_t = \mathfrak{m}_t(X_{t-})$ $(t > s)$. (EVOL)

Theorem (Poisson construction) Assume (SUM). Then

$$\mathbb{X}_{s,u}(x) := X_u$$
 where $(X_t)_{t \geq s}$ solves (EVOL)

defines a stochastic flow $(X_{s,u})_{s \le u}$ with independent increments. Moreover, if $s \in \mathbb{R}$ and X_0 is an S^{Λ} -valued random variable, independent of π , then setting

$$X_t := \mathbb{X}_{s,s+t}(X_0) \qquad (t \ge 0)$$

defines a Feller process $(X_t)_{t\geq 0}$ with generator as in (GEN).

Let $S = \{0, 1\}$. For all $i_1, i_2, i_3 \in \Lambda$, we define local maps by:

$$dth_{i_1}(x)(j) := \begin{cases} 0 & \text{if } j = i_1, \\ x(j) & \text{otherwise.} \end{cases}$$
$$bra_{i_1i_2}(x)(k) := \begin{cases} x(i_1) \lor x(i_2) & \text{if } j = i_1, \\ x(j) & \text{otherwise.} \end{cases}$$
$$cob_{i_1i_2i_3}(x)(j) := \begin{cases} x(i_1) \lor (x(i_2) \land x(i_3)) & \text{if } j = i_1 \\ x(j) & \text{otherwise.} \end{cases}$$

周▶★国▶★国▶

$$\begin{split} \mathcal{D}(\mathtt{dth}_{i_1}) &= \{i_1\}, & \mathcal{R}(\mathtt{dth}_{i_1}[i_1]) = \emptyset, \\ \mathcal{D}(\mathtt{bra}_{i_1i_2}) &= \{i_1\}, & \mathcal{R}(\mathtt{dth}_{i_1i_2}[i_1]) = \{i_1, i_2\}, \\ \mathcal{D}(\mathtt{cob}_{i_1i_2i_3}) &= \{i_1\}, & \mathcal{R}(\mathtt{cob}_{i_1i_2i_3}[i_1]) = \{i_1, i_2, i_3\}. \\ \text{And in general } \mathcal{R}(m[j]) &= \{j\} \text{ for } j \notin \mathcal{D}(m). \end{split}$$

(日)

The *contact process* with *infection rate* λ on a graph (Λ, \sim) is defined as follows:

- ▶ For each $i \in \Lambda$, with Poisson rate 1, we apply the map dth_i .
- For each $i \in \Lambda$, with Poisson rate λ , we pick $j \sim i$ uniformly at random and apply the map bra_{ii} .

.

ヘロア 人間 アメヨア 人間 アー

Ð,

ヘロン 人間 とくほどう ほどう

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

ヘロン 人間 とくほど くほどう

We define a *cooperative contact process* with *cooperative branching rate* λ on a graph (Λ , \sim) as follows:

- For each $i \in \Lambda$, with Poisson rate 1, we apply the map dth_i .
- For each $i \in \Lambda$, with Poisson rate λ , we pick $i \sim j \sim k$ with $k \neq i$ uniformly at random and apply the map cob_{ijk} .

A cooperative contact process

ヘロト 人間 とくほど 人間とう

A cooperative contact process

ヘロト 人間 とくほど 人間とう

A cooperative contact process

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

The condition (SUM) implies that the following constants are finite:

$$\begin{split} \mathcal{K}_0 &:= \sup_{i \in \Lambda} \sum_{\substack{m \in \mathcal{G} \\ \mathcal{D}(m) \ni i}} r_m, \\ \mathcal{K} &:= \sup_{i \in \Lambda} \sum_{\substack{m \in \mathcal{G} \\ \mathcal{D}(m) \ni i}} r_m \big(|\mathcal{R}(m[i])| - 1 \big). \end{split}$$

The finiteness of K_0 implies that in finite time intervals, only finitely many maps are applied that can change the state of a given site.

But ${\cal K}_0 < \infty$ is not enough to conclude that the Poisson construction is well-defined.

向下 イヨト イヨト

ヘロト 人間 とくほど 人間とう

ヘロト 人間 とくほど 人間とう

ヘロト 人間 とくほど 人間とう

ヘロト 人間 とくほど 人間とう

<ロ> <同> <同> < 同> < 同>

For each $u \in \mathbb{R}$ and finite $A \subset \Lambda$, we define a set-valued process $(\zeta_s^u(A))_{s \le u}$

with $\zeta_s^u(A) := A$ and

$$\zeta_{t-}^u(A) := \left(\zeta_t^u(A) \setminus \mathcal{D}(m)\right) \cup \bigcup_{i \in \mathcal{D}(m) \cap \zeta_t^u(A)} \mathcal{R}(m[i]).$$

Under the condition (SUM), it can be shown that

$$\mathbb{E}\big[\big|\zeta_s^u(A)\big|\big] \le |A|e^{K(u-s)} \qquad (s \le u).$$

It follows that $\mathbb{X}_{s,u}$ is a well-defined continuous map with

$$\mathcal{R}ig(\mathbb{X}_{s,u}[i]ig)\subset \zeta^u_sig(\{i\}ig) \qquad (i\in\Lambda,\ s\leq uig).$$

• • = • • = •

It can now be shown that

$$P_{u-s}(x, \cdot) := \mathbb{P}\big[\mathbb{X}_{s,u}(x) \in \cdot\big] \qquad (x \in S^{\Lambda}, \ s \leq u)$$

defines a Feller semigroup $(P_t)_{t\geq 0}$ with generator G.

To prove the continuity of $(x, t) \mapsto P_t(x, \cdot)$, we use *coupling from the past*. More precisely, we show that

$$\mathbb{X}_{-t_n,0}(x_n) \xrightarrow[n \to \infty]{} \mathbb{X}_{-t,0}$$
 a.s. as $t_n \to t$ and $x_n \to x$.

For the details, see my lecture notes.

Ergodicity

Theorem (Ergodicity) Assume that K < 0. Then

$$\lim_{s\to -\infty} \zeta_s^u(\{i\}) = \emptyset \quad \text{a.s.} \qquad (i \in \Lambda, \ u \in \mathbb{R}).$$

Moreover, the interacting particle system X has a unique invariant law ν , and the process started in any $X_0 = x$ satisfies

$$\mathbb{P}^{x}[X_{t} \in \cdot] \underset{t \to \infty}{\Longrightarrow} \nu \qquad (x \in S^{\Lambda}).$$

Proof Since $\mathcal{R}(\mathbb{X}_{s,u}[i]) \subset \zeta_s^u(\{i\})$, the map $\mathbb{X}_{s,u}$ converges to a constant as $s \to -\infty$. As a consequence,

$$\lim_{t\to\infty}\mathbb{P}^{x}[X_t\in\,\cdot\,]=\lim_{t\to\infty}\mathbb{P}[\mathbb{X}_{-t,0}(x)\in\,\cdot\,]$$

does not depend on x and there exists a unique solution to

$$X_t = \mathfrak{m}_t(X_{t-}) \qquad (t \in \mathbb{R}).$$

A D > A D > A E > A E >

Application For $\lambda < 1/2$, the only invariant law of the cooperative contact process on \mathbb{Z} , which has the generator

$$egin{aligned} & {\it Gf}(x) := rac{1}{2}\lambda\sum_{i\in\mathbb{Z}}ig\{fig({\tt cob}_{i,i-1,i-2}(x)ig) - fig(x)ig\} \ &+rac{1}{2}\lambda\sum_{i\in\mathbb{Z}}ig\{fig({\tt cob}_{i,i+1,i+2}(x)ig) - fig(x)ig\} \ &+\sum_{i\in\mathbb{Z}}ig\{fig({\tt dth}_i(x)ig) - fig(x)ig\}, \end{aligned}$$

is the delta measure $\delta_{\underline{0}}$ on the all-zero state, and

$$\mathbb{P}^{\mathsf{X}}\big[X_t(i)=0\big] \underset{t\to\infty}{\longrightarrow} 1$$

for arbitrary initial states x.