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Probability kernels

E a compact metrizable space,
C(E ) the space of all continuous functions f : E → R,

equipped with the supremumnorm ‖ · ‖∞,
P(E ) space of probability measures on E ,

equipped with the topology of weak convergence,
and the associated Borel-σ-algebra.

Def probability kernel K on E is a measurable map

E 3 x 7→ K (x , · ) ∈ P(E ).

Def K is continuous if this map is continuous.

For any probability kernel K (x , dy) on E and measurable function
f : E → R, we define

Kf (x) :=

∫
E

K (x ,dy)f (y) (x ∈ E ).

K continuous ⇔ K maps C(E ) into itself.
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Random mapping representations

A probability kernel K on E is deterministic if it is of the form

K (x , · ) = δm(x) (x ∈ E )

for some measurable map m : E → E .

Note 1 Deterministic kernels are the extremal elements of the
convex set of all probability kernels on E .
Note 2 K is continuous if and only if m is.

A random mapping representation of a probability kernel K is a
random map M such that

K (x , · ) = P
[
M(x) ∈ ·

]
(x ∈ E ).
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Feller semigroups

By definition, a Feller semigroup is a collection of probability
kernels (Pt)t≥0 on E such that:

(i) P0 = 1 and PsPt = Ps+t (s, t ≥ 0),

(ii) E × [0,∞) 3 (x , s) 7→ Ps(x , · ) ∈ P(E ) is continuous.

The generator of a Feller semigroup is the operator G defined as

Gf := lim
t↓0

t−1(Pt f − f ) (∗),

with domain

D(G ) :=
{

f ∈ C(E ) : the limit in (∗) exists in the norm ‖ · ‖∞
}
.

G is closed and densely defined.

The Hille-Yosida theorem gives necessary and sufficient conditions
for (the closure of) an operator to generate a Feller semigroup.
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Feller processes

Let (Pt)t≥0 be a Feller semigroup and let µ ∈ P(E ).

Then there exists a process (Xt)t≥0, unique in law, such that

I The sample paths t 7→ Xt are a.s. cadlag, i.e., right-continuous
and the left limit Xt− := lims↑t Xs exists ∀t > 0.

I P[X0 ∈ · ] = µ.

I P
[
Xu ∈ ·

∣∣ (Xs)0≤s≤t
]

= Pu−t(Xt , · ) a.s. (t ≤ u).

Such a process is called a Feller process.
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Stochastic flows

Def A stochastic flow on E is a collection (Xs,u)s≤u of random
measurable maps Xs,u : E → E such that

Xs,s = 1 and Xt,u ◦ Xs,t = Xs,u (s ≤ t ≤ u).

We say that (Xs,u)s≤u has independent increments if

Xt1,t2 , . . . ,Xtn−1,tn are independent for all t1 < · · · < tn.

Let (Xs,u)s≤u have independent increments, let s ∈ R and let X0

be an E -valued random variable, independent of (Xs,u)s≤u. Then

Xt := Xs,s+t(X0) (t ≥ 0)

defines a Markov process (Xt)t≥0. Many Feller processes can be
constructed from a stochastic flow. In this case,

Pu−s(x , · ) = P
[
Xs,u(x) ∈ ·

]
(x ∈ E , s ≤ u),

so Xs,u is a random mapping representation of Pu−s .
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Product spaces

S a finite set called local state space,
Λ a countable set called lattice,

SΛ the set of all (x(i))i∈Λ with x(i) ∈ S ∀i ∈ Λ,
equipped with the product topology.

Note Tychonoff ⇒ SΛ compact.

Def A probability kernel K on SΛ is local if

(i) K is continuous,

(ii) there exists a finite ∆ ⊂ Λ such that K (x , · ) is
concentrated on

{
y ∈ SΛ : y(i) = x(i) ∀i ∈ Λ\∆

}
.
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Interacting Particle Systems

An interacting particle system is a Feller process with state space
of the form SΛ and generator of the form

Gf =
∑
K∈K

rK (Kf − f ),

where K is a countable collection of local probability kernels and
(rK )K∈K are nonnegative rates.

Liggett (1972), Sullivan (1974,1976) gave sufficient conditions
on the rates (rK )K∈K for the closure of G to generate a Feller
semigroup. This yields existence and distributional uniqueness.

Starting with the work of Harris (1972,1974), various authors
have given constructions based on Poisson point sets called
graphical representations. Such constructions yield a stochastic
flow and almost sure uniqueness.
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Continuous maps

Let f : SΛ → S . We say that a point j ∈ Λ is f -relevant if

∃x , y ∈ SΛ s.t. f (x) 6= f (y) and x(k) = y(k) ∀k 6= j .

We write
R(f ) :=

{
j ∈ Λ : j is f -relevant

}
.

Lemma A function f : SΛ → S is continuous iff

(i) R(f ) is finite,

(ii) If x , y ∈ SΛ satisfy x(j) = y(j) for all j ∈ R(f ),
then f (x) = f (y).
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Two discontinuous maps

Let S = {0, 1}, Λ = Z.

Example 1

f (x) =

{
0 if inf{j > 0 : x(j) = 1} ∈ 2Z ∪ {∞},
1 if inf{j > 0 : x(j) = 1} ∈ 2Z + 1.

Now R(f ) = {1, 2, . . .} so condition (i) fails and f is discontinuous.

Example 2

f (x) =

{
0 if {j > 0 : x(j) = 1} is finite,

1 if {j > 0 : x(j) = 1} is infinite.

Now R(f ) = ∅ but condition (ii) fails so f is again discontinuous.
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Local maps

For m : SΛ → SΛ, we write m(x) =
(
m[i ](x)

)
i∈Λ

and

D(m) :=
{

i ∈ Λ : m[i ] 6= 1
}
.

Def A map m : SΛ → SΛ is local if

(i) m is continuous,

(ii) D(m) is finite.

We will be interested in interacting particle systems with generator
of the form

Gf (x) =
∑
m∈G

rm
{

f
(
m(x)

)
− f
(
x
)}

(GEN)

where G is a countable collection of local maps and (rm)m∈G are
nonnegative rates.
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Graphical representations

ρ measure on G defined by ρ({m}) := rm,
` Lebesgue measure on R,
π Poisson point subset of G × R with intensity ρ⊗ `.

mt :=

{
m if (m, t) ∈ π,
1 otherwise.

Theorem (Pathwise uniqueness) Assume

sup
i∈Λ

∑
m∈G
D(m)3i

rm
(
|R(m[i ])|+ 1

)
<∞. (SUM)

Then, almost surely, for all s ∈ R and x ∈ SΛ, there exists a
unique cadlag function (Xt)t≥s that solves

Xs = x and Xt = mt(Xt−) (t > s). (EVOL)
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Graphical representations

Theorem (Poisson construction) Assume (SUM). Then

Xs,u(x) := Xu where (Xt)t≥s solves (EVOL)

defines a stochastic flow (Xs,u)s≤u with independent increments.
Moreover, if s ∈ R and X0 is an SΛ-valued random variable,
independent of π, then setting

Xt := Xs,s+t(X0) (t ≥ 0)

defines a Feller process (Xt)t≥0 with generator as in (GEN).
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Three local maps

Let S = {0, 1}. For all i1, i2, i3 ∈ Λ, we define local maps by:

dthi1(x)(j) :=

{
0 if j = i1,

x(j) otherwise.

brai1i2(x)(k) :=

{
x(i1) ∨ x(i2) if j = i1,

x(j) otherwise.

cobi1i2i3(x)(j) :=

{
x(i1) ∨

(
x(i2) ∧ x(i3)

)
if j = i1

x(j) otherwise.
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Three local maps

D(dthi1) = {i1}, R(dthi1 [i1]) = ∅,
D(brai1i2) = {i1}, R(dthi1i2 [i1]) = {i1, i2},
D(cobi1i2i3) = {i1}, R(cobi1i2i3 [i1]) = {i1, i2, i3}.

And in general R(m[j ]) = {j} for j 6∈ D(m).
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The contact process

The contact process with infection rate λ on a graph (Λ,∼) is
defined as follows:

I For each i ∈ Λ, with Poisson rate 1, we apply the map dthi .

I For each i ∈ Λ, with Poisson rate λ, we pick j ∼ i uniformly
at random and apply the map braij .
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The contact process

time

space

0 1 2 3 4 5 6 7 8 9

bra1,0

bra1,0

bra4,3
bra8,7

bra2,3

bra4,5

bra4,3
bra2,1

bra5,6

bra6,7

bra8,9

dth2

dth5

dth7
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The contact process

time

space

X 0

X t = X0,t(X 0)

0 0 0 1 0 0 1 0 0 0

0 0 1 1 1 0 1 0 0 0
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A cooperative contact process

We define a cooperative contact process with cooperative
branching rate λ on a graph (Λ,∼) as follows:

I For each i ∈ Λ, with Poisson rate 1, we apply the map dthi .

I For each i ∈ Λ, with Poisson rate λ, we pick i ∼ j ∼ k with
k 6= i uniformly at random and apply the map cobijk .
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A cooperative contact process

time

space
X0

X 0

Xt = X0,t(X0)

0 1 1 0 1 1 0 1 1 0

1 0 1 0 1 1 0 0 1 0
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A cooperative contact process

time

space
X 0

Xt = X0,t(X0)

0 1 1 0 1 1 0 1 1 0

1 0 1 0 1 1 0 0 1 0
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A cooperative contact process

time

space
X 0

Xt = X0,t(X0)

X t = X0,t(X 0)

0 1 1 0 1 1 0 1 1 0

1 0 1 0 1 1 0 0 1 0
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Proof of the theorems

The condition (SUM) implies that the following constants are
finite:

K0 := sup
i∈Λ

∑
m∈G
D(m)3i

rm,

K := sup
i∈Λ

∑
m∈G
D(m)3i

rm
(
|R(m[i ])| − 1

)
.

The finiteness of K0 implies that in finite time intervals, only
finitely many maps are applied that can change the state of a given
site.

But K0 <∞ is not enough to conclude that the Poisson
construction is well-defined.
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Proof of the theorems

? ?
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u

s

A

ζus (A)
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Proof of the theorems

For each u ∈ R and finite A ⊂ Λ, we define a set-valued process(
ζus (A)

)
s≤u

with ζus (A) := A and

ζut−(A) :=
(
ζut (A)\D(m)

)
∪

⋃
i∈D(m)∩ζut (A)

R(m[i ]).

Under the condition (SUM), it can be shown that

E
[∣∣ζus (A)

∣∣] ≤ |A|eK (u − s) (s ≤ u).

It follows that Xs,u is a well-defined continuous map with

R
(
Xs,u[i ]

)
⊂ ζus

(
{i}
)

(i ∈ Λ, s ≤ u).
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Proof of the theorems

It can now be shown that

Pu−s(x , · ) := P
[
Xs,u(x) ∈ ·

]
(x ∈ SΛ, s ≤ u)

defines a Feller semigroup (Pt)t≥0 with generator G .

To prove the continuity of (x , t) 7→ Pt(x , · ), we use coupling from
the past. More precisely, we show that

X−tn,0(xn) −→
n→∞

X−t,0 a.s. as tn → t and xn → x .

For the details, see my lecture notes.
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Ergodicity

Theorem (Ergodicity) Assume that K < 0. Then

lim
s→−∞

ζus
(
{i}
)

= ∅ a.s. (i ∈ Λ, u ∈ R).

Moreover, the interacting particle system X has a unique invariant
law ν, and the process started in any X0 = x satisfies

Px
[
Xt ∈ ·

]
=⇒
t→∞

ν (x ∈ SΛ).

Proof Since R(Xs,u[i ]) ⊂ ζus
(
{i}
)
, the map Xs,u converges to a

constant as s → −∞. As a consequence,

lim
t→∞

Px
[
Xt ∈ ·

]
= lim

t→∞
P
[
X−t,0(x) ∈ ·

]
does not depend on x and there exists a unique solution to

Xt = mt(Xt−) (t ∈ R).
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The cooperative contact process

Application For λ < 1/2, the only invariant law of the cooperative
contact process on Z, which has the generator

Gf (x) := 1
2λ
∑
i∈Z

{
f
(
cobi ,i−1,i−2(x)

)
− f
(
x
)}

+ 1
2λ
∑
i∈Z

{
f
(
cobi ,i+1,i+2(x)

)
− f
(
x
)}

+
∑
i∈Z

{
f
(
dthi (x)

)
− f
(
x
)}
,

is the delta measure δ0 on the all-zero state, and

Px
[
Xt(i) = 0

]
−→
t→∞

1

for arbitrary initial states x .
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