# Interacting Particle Systems: Almost sure uniqueness, pathwise duality, and the mean-field limit 

Jan M. Swart

## Lecture 3: The mean-field limit

## A general set-up

Let $(\Lambda, \sim)$ be a countable graph.
For each $k \geq 1$, let $\mathcal{K}^{k}$ be the set of all words $i_{1} \cdots i_{k}$, made from the alphabet $\Lambda$, such that:

$$
\text { (i) } i_{n} \neq i_{m} \forall n \neq m \quad \text { (ii) } i_{1} \sim i_{2} \sim \cdots \sim i_{k}
$$

For each $g: S^{k} \rightarrow S$ and $i_{1} \cdots i_{k} \in \mathcal{K}^{k}$, define $g_{i_{1} \cdots i_{k}}: S^{\wedge} \rightarrow S^{\wedge}$ by

$$
g_{i_{1} \cdots i_{k}}(x)(j):= \begin{cases}g\left(x\left(i_{1}\right), \ldots, x\left(i_{k}\right)\right) & \text { if } j=i_{1} \\ x(j) & \text { otherwise }\end{cases}
$$

For $g: S^{0} \rightarrow S$ and $i_{1} \in \Lambda$, define $g_{i_{1}}: S^{\wedge} \rightarrow S$ by

$$
g_{i_{1}}(x)(j):= \begin{cases}g(\varnothing) & \text { if } j=i_{1} \\ x(j) & \text { otherwise }\end{cases}
$$

## Examples

Let $S:=\{0,1\}$ and define dth : $S^{0} \rightarrow S$, bra : $S^{2} \rightarrow S$, and cob : $S^{3} \rightarrow S$ by

$$
\begin{aligned}
\operatorname{dth}(\varnothing) & :=0, \\
\operatorname{bra}(x(1), x(2)) & :=x(1) \vee x(2), \\
\operatorname{cob}(x(1), x(2), x(3)) & :=x(1) \vee(x(2) \wedge x(3)) .
\end{aligned}
$$

Then $\operatorname{dth}_{i_{1}}$, bra $_{i_{1} i_{2}}$, and $\operatorname{cob}_{i_{12} i_{2}}$ are the local maps defined in the first lecture.

## A general set-up

(i) Polish space $S$ local state space.
(ii) $(\Omega, \mathcal{B}, \mathbf{r})$ Polish space with Borel $\sigma$-field and finite measure: source of external randomness.
(iii) $\kappa: \Omega \rightarrow \mathbb{N}$ measurable function.
(iv) For each $\omega \in \Omega$, a measurable function $\gamma[\omega]: S^{\kappa(\omega)} \rightarrow S$.

We are interested in the interacting particle system that evolves as follows:

- We activate each site $i$ with Poisson rate $|\mathbf{r}|:=\mathbf{r}(\omega)$.
- We choose $\omega$ according to the law $|\mathbf{r}|^{-1} \mathbf{r}$.
- We uniformly choose $i=i_{1} \sim \cdots \sim i_{\kappa(\omega) \mathrm{V} 1}$, all different, if this is possible.
- We apply the map $\gamma_{i_{1} \cdots i_{\kappa(\omega) \vee 1}}[\omega]$.


## Examples

Let $S:=\{0,1\}$ and $\Omega=\{1,2\}$. Then setting

$$
\begin{array}{lll}
\kappa(1):=0, & \gamma[1]:=\mathrm{dth}, & \mathbf{r}(\{1\}):=1 \\
\kappa(2):=2, & \gamma[2]:=\mathrm{bra}, & \mathbf{r}(\{2\}):=\lambda
\end{array}
$$

yields the contact process with infection rate $\lambda$. Similarly, setting

$$
\begin{array}{lll}
\kappa(1):=0, & \gamma[1]:=\operatorname{dth}, & \mathbf{r}(\{1\}):=1 \\
\kappa(2):=3, & \gamma[2]:=\operatorname{cob}, & \mathbf{r}(\{2\}):=\lambda
\end{array}
$$

yields the cooperative contact process with cooperative branching rate $\lambda$.

## A general set-up

Our summability condition now reduces to

$$
\int_{\Omega} \mathbf{r}(\mathrm{d} \omega) \kappa(\omega)<\infty \quad(\mathrm{SUM})
$$

Let:
$\left(\mathbb{X}_{s, u}\right)_{s \leq u}$ stochastic flow constructed from a Poisson set $\pi$, $X_{0} \quad S^{\wedge}$-valued random variable, independent of $\pi$.

Assuming (SUM), the process $\left(X_{t}\right)_{t \geq 0}$ defined as

$$
X_{t}:=\mathbb{X}_{s, s+t}\left(X_{0}\right) \quad(t \geq 0)
$$

is the interacting particle system with generator $G$.

## The mean-field limit

Let $\left(\Lambda_{N}, \sim\right)$ be the complete graph with $N$ vertices.
Let $\left(X_{t}^{N}\right)_{t \geq 0}$ be the particle system on $\Lambda_{N}$ with generator $G$.
We are interested in the empirical measure

$$
\mu_{t}^{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{N}(i)} \quad(t \geq 0)
$$

We will prove that in the limit $N \rightarrow \infty$, the process $\left(\mu_{t}^{N}\right)_{t \geq 0}$ solves the mean-field equation

$$
\frac{\partial}{\partial t} \mu_{t}=\int_{\Omega} \mathbf{r}(\mathrm{d} \omega)\left\{\mathrm{T}_{\gamma[\omega]}\left(\mu_{t}\right)-\mu_{t}\right\} \quad(t \geq 0) \quad(\mathrm{MEAN})
$$

where for any measurable $g: S^{k} \rightarrow S$, we define $\mathrm{T}_{\mathrm{g}}: \mathcal{P}(S) \rightarrow \mathcal{P}(S)$ by

$$
\mathrm{T}_{g}(\mu):=\text { the law of } g\left(X_{1}, \ldots, X_{k}\right)
$$

where $\left(X_{i}\right)_{i \geq 1}$ are i.i.d. with law $\mu$.

## The mean-field contact process

For the contact process, the mean-field equation takes the form

$$
\frac{\partial}{\partial t} \mu_{t}=\lambda\left\{\mathbf{T}_{\mathrm{bra}}\left(\mu_{t}\right)-\mu_{t}\right\}+\left\{\mathrm{T}_{\mathrm{dth}}\left(\mu_{t}\right)-\mu_{t}\right\} .
$$

Rewriting this in terms of $p_{t}:=\mu_{t}(\{1\})$ yields

$$
\frac{\partial}{\partial t} p_{t}=\lambda p_{t}\left(1-p_{t}\right)-p_{t}=: F_{\lambda}\left(p_{t}\right) \quad(t \geq 0)
$$

## The mean-field contact process



For $\lambda \leq 1$, the equation $\frac{\partial}{\partial t} p_{t}=F_{\lambda}\left(p_{t}\right)$ has a single, stable fixed point $p=0$.

## The mean-field contact process



For $\lambda \leq 1$, the equation $\frac{\partial}{\partial t} p_{t}=F_{\lambda}\left(p_{t}\right)$ has
a single, stable fixed point $p=0$.

## The mean-field contact process



For $\lambda>1$, the fixed point $p=0$ becomes unstable and a new stable fixed point $p(\lambda)=1-1 / \lambda$ appears.

## The mean-field contact process



Fixed points and their domains of attraction as a function of $\lambda$.

## The mean-field cooperative contact process

For the cooperative contact process, the mean-field equation takes the form

$$
\frac{\partial}{\partial t} \mu_{t}=\lambda\left\{\boldsymbol{T}_{\operatorname{cob}}\left(\mu_{t}\right)-\mu_{t}\right\}+\left\{\boldsymbol{T}_{\mathrm{dth}}\left(\mu_{t}\right)-\mu_{t}\right\} .
$$

Rewriting this in terms of $p_{t}:=\mu_{t}(\{1\})$ yields

$$
\frac{\partial}{\partial t} p_{t}=\lambda p_{t}^{2}\left(1-p_{t}\right)-p_{t}=: F_{\lambda}\left(p_{t}\right) \quad(t \geq 0)
$$

## The mean-field cooperative contact process



For $\lambda<4$, the equation $\frac{\partial}{\partial t} p_{t}=F_{\lambda}\left(p_{t}\right)$ has a single, stable fixed point $p=0$.

## The mean-field cooperative contact process



For $\lambda=4$, a second fixed point appears at $p=0.5$.

## The mean-field cooperative contact process



For $\lambda>4$, there are two stable fixed points and one unstable fixed point, which separates the domains of attraction of the other two.

## The mean-field cooperative contact process



Fixed points of $\frac{\partial}{\partial t} p_{t}=F_{\lambda}\left(p_{t}\right)$ for different values of $\lambda$.

## The abstract setting

Using the notation $|\mathbf{r}|:=\mathbf{r}(\omega)$ and

$$
\mathrm{T}(\mu):=|\mathbf{r}|^{-1} \int_{\Omega} \mathbf{r}(\mathrm{d} \omega) \mathrm{T}_{\gamma[\omega]}(\mu),
$$

we can rewrite the mean-field equation as

$$
\frac{\partial}{\partial t} \mu_{t}=|\mathbf{r}|\left\{\mathrm{T}\left(\mu_{t}\right)-\mu_{t}\right\} \quad(t \geq 0) \quad(\mathrm{MEAN})
$$

Recall

$$
\int_{\Omega} \mathbf{r}(\mathrm{d} \omega) \kappa(\omega)<\infty \quad(\mathrm{SUM})
$$

Theorem [Mach, Sturm, S. '20] Under the condition (SUM), the mean-field equation (MEAN) has a unique solution for each initial state $\mu_{0} \in \mathcal{P}(S)$.

## The abstract setting

We define a (nonlinear) semigroup $\left(T_{t}\right)_{t \geq 0}$ of operators acting on probability measures by

$$
\mathrm{T}_{t}(\mu):=\mu_{t} \quad \text { where }\left(\mu_{t}\right)_{t \geq 0} \text { solves (MEAN) with } \mu_{0}=\mu
$$

This is a sort of continuous-time version of the discrete evolution $\mu \mapsto \mathrm{T}(\mu) \mapsto \mathrm{T}^{2}(\mu) \mapsto \cdots$.
Assuming that, for all $k \geq 0$ and $x \in S^{k}$,

$$
\mathbf{r}(\{\omega: \kappa(\omega)=k, \gamma[\omega] \text { is discontinuous at } x\})=0 \quad \text { (CONT) }
$$

one can show that the operators $T^{n}$ and $T_{t}$ are continuous w.r.t. weak convergence.

## The abstract setting

Let $d$ be any metric that generates the topology of weak convergence and let $\|\cdot\|$ denote the total variation norm.

Theorem [Mach, Sturm, S. '20] Assume (SUM) and at least one of the following conditions:
(i) $\mathbb{P}\left[d\left(\mu_{0}^{N}, \mu_{0}\right) \geq \varepsilon\right] \underset{N \rightarrow \infty}{\longrightarrow} 0$ for all $\varepsilon>0$, and (CONT) holds.
(ii) $\left\|\mathbb{E}\left[\left(\mu_{0}^{N}\right)^{\otimes n}\right]-\mu_{0}^{\otimes n}\right\| \underset{N \rightarrow \infty}{\longrightarrow} 0$ for all $n \geq 1$.

Then

$$
\mathbb{P}\left[\sup _{0 \leq t \leq T} d\left(\mu_{t}^{N}, \top_{t}\left(\mu_{0}\right)\right) \geq \varepsilon\right] \underset{N \rightarrow \infty}{\longrightarrow} 0 \quad(\varepsilon>0, T<\infty) .
$$

Proof By a probabilistic representation of the semigroup $\left(T_{t}\right)_{t \geq 0}$.

## The backward in time process



Recall the "backward in time" Markov process

$$
\left(\mathcal{R}\left(\mathbb{X}_{u-t, u}[i]\right), \mathbb{X}_{u-t, u}[i]\right)_{t \geq 0}
$$

## The backward in time process



In the mean-field limit, the "backward in time" process becomes a random tree with maps attached to its nodes.

## Recursive tree processes

Aim Develop a stochastic representation for the nonlinear semigroup $\left(T_{t}\right)_{t \geq 0}$, and also for the discrete-time evolution maps $\mathrm{T}^{n}$, in terms of a random tree with maps attached to its nodes.

Aldous \& Banyopadyay (2005) (discrete time), Mach, Sturm \& S. (2020) (continuous time).
Fix $d \in \mathbb{N}_{+} \cup\{\infty\}$ such that $\kappa(\omega) \leq d$ for all $\omega \in \Omega$. Let $\mathbb{T}=\mathbb{T}^{d}$ denote the space of all words $\mathbf{i}=i_{1} \cdots i_{n}$ made from the alphabet $\{1, \ldots, d\}$ (if $d<\infty$ ) resp. $\mathbb{N}_{+}$(if $d=\infty$ ).

## A recursive tree representation



We view $\mathbb{T}=\mathbb{T}^{d}$ as a tree with root $\varnothing$, the word of length zero.

## A recursive tree representation



We attach i.i.d. $\left(\omega_{\mathbf{i}}\right)_{i \in \mathbb{T}}$ with law $|\mathbf{r}|^{-1} \mathbf{r}$ to each node, which translate into maps $\left(\gamma\left[\omega_{\mathbf{i}}\right]\right)_{\mathbf{i} \in \mathbb{T}}$.

## A recursive tree representation



Let $\mathbb{S}$ be the random subtree of $\mathbb{T}$ defined as

$$
\mathbb{S}:=\left\{i_{1} \cdots i_{n} \in \mathbb{T}: i_{m} \leq \kappa\left(\omega_{i_{1} \cdots i_{m-1}}\right) \forall 1 \leq m \leq n\right\} .
$$

## A recursive tree representation



For any rooted subtree $\mathbb{U} \subset \mathbb{S}$, let

$$
\nabla \mathbb{U}:=\left\{i_{1} \cdots i_{n} \in \mathbb{S}: i_{1} \cdots i_{n-1} \in \mathbb{U}, i_{1} \cdots i_{n} \notin \mathbb{U}\right\}
$$

denote the boundary of $\mathbb{U}$ relative to $\mathbb{S}$.

## A recursive tree representation



Given $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U}}$, we inductively define $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{U}}$ by

$$
X_{\mathbf{i}}=\gamma\left[\omega_{\mathbf{i}}\right]\left(X_{\mathbf{i} 1}, \ldots, X_{\mathbf{i} \kappa(\omega)}\right) \quad(\mathbf{i} \in \mathbb{U})
$$

## A recursive tree representation



Given $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U}}$, we inductively define $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{U}}$ by

$$
X_{\mathbf{i}}=\gamma\left[\omega_{\mathbf{i}}\right]\left(X_{\mathbf{i} 1}, \ldots, X_{\mathbf{i} \kappa(\omega)}\right) \quad(\mathbf{i} \in \mathbb{U})
$$

## A recursive tree representation



Given $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U}}$, we inductively define $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{U}}$ by

$$
X_{\mathbf{i}}=\gamma\left[\omega_{\mathbf{i}}\right]\left(X_{\mathbf{i} 1}, \ldots, X_{\mathbf{i} \kappa(\omega)}\right) \quad(\mathbf{i} \in \mathbb{U})
$$

## A recursive tree representation



Given $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U}}$, we inductively define $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{U}}$ by

$$
X_{\mathbf{i}}=\gamma\left[\omega_{\mathbf{i}}\right]\left(X_{\mathbf{i} 1}, \ldots, X_{\mathbf{i} \kappa(\omega)}\right) \quad(\mathbf{i} \in \mathbb{U})
$$

## A recursive tree representation

Define $\Gamma_{\mathbb{U}}: S^{\nabla \mathbb{U}} \rightarrow S$ by $\Gamma_{\mathbb{U}}\left(\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U}}\right):=X_{\varnothing}$.
$\Gamma_{\mathbb{U}}$ is the concatenation of the maps $\left(\gamma\left[\omega_{\mathbf{i}}\right]\right)_{\mathbf{i} \in \mathbb{U}}$ according to the tree structure of $\mathbb{U}$.

Let $\left|i_{1} \cdots i_{n}\right|:=n$ denote the length of a word $\mathbf{i}$ and set

$$
\mathbb{S}_{(n)}:=\{\mathbf{i} \in \mathbb{S}:|\mathbf{i}|<n\} \quad \text { and } \quad \nabla \mathbb{S}_{(n)}=\{\mathbf{i} \in \mathbb{S}:|\mathbf{i}|=n\} .
$$

Aldous and Bandyopadyay (2005) proved that

$$
\mathbf{T}^{n}(\mu):=\text { the law of } \Gamma_{\mathbb{S}_{(n)}}\left(\left(X_{\mathbf{i}}\right)_{\left.\mathbf{i} \in \nabla \mathbb{S}_{(n)}\right)}\right)
$$

with $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{S}_{(n)}}$ i.i.d. with law $\mu$ and independent of $\left(\omega_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{S}_{(n)}}$.

## A recursive tree representation



## A recursive tree representation

Let $\left(\sigma_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$ be i.i.d. exponentially distributed with mean $|\mathbf{r}|^{-1}$, independent of $\left(\omega_{\mathbf{i}}\right)_{i \in \mathbb{T}}$, and set

$$
\begin{aligned}
\tau_{\mathbf{i}}^{*} & :=\sum_{m=1}^{n-1} \sigma_{i_{1} \cdots i_{m}} \quad \text { and } \quad \tau_{\mathbf{i}}^{\dagger}:=\tau_{\mathbf{i}}^{*}+\sigma_{\mathbf{i}} \quad\left(\mathbf{i}=i_{1} \cdots i_{n}\right), \\
\mathbb{S}_{t} & :=\left\{\mathbf{i} \in \mathbb{S}: \tau_{\mathbf{i}}^{\dagger} \leq t\right\} \quad \text { and } \quad \nabla \mathbb{S}_{t}=\left\{\mathbf{i} \in \mathbb{S}: \tau_{\mathbf{i}}^{*} \leq t<\tau_{\mathbf{i}}^{\dagger}\right\} .
\end{aligned}
$$

Let $\mathcal{F}_{t}$ be the filtration

$$
\mathcal{F}_{t}:=\sigma\left(\nabla \mathbb{S}_{t},\left(\omega_{\mathbf{i}}, \sigma_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{S}_{t}}\right) \quad(t \geq 0)
$$

Theorem [Mach, Sturm, S. '20]

$$
\mathrm{T}_{t}(\mu):=\text { the law of } \Gamma_{\mathbb{S}_{t}}\left(\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{S}_{t}}\right)
$$

where $\left(X_{\mathbf{i}}\right)_{i \in \nabla \mathbb{S}_{t}}$ are i.i.d. with law $\mu$ and independent of $\mathcal{F}_{t}$.

## A recursive tree representation



