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A general set-up

Let (Λ,∼) be a countable graph.

For each k ≥ 1, let Kk be the set of all words i1 · · · ik , made from
the alphabet Λ, such that:

(i) in 6= im ∀n 6= m (ii) i1 ∼ i2 ∼ · · · ∼ ik .

For each g : Sk → S and i1 · · · ik ∈ Kk , define gi1···ik : SΛ → SΛ by

gi1···ik (x)(j) :=

{
g
(
x(i1), . . . , x(ik)

)
if j = i1,

x(j) otherwise.

For g : S0 → S and i1 ∈ Λ, define gi1 : SΛ → S by

gi1(x)(j) :=

{
g(∅) if j = i1,
x(j) otherwise.
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Examples

Let S := {0, 1} and define dth : S0 → S , bra : S2 → S , and
cob : S3 → S by

dth(∅) := 0,

bra
(
x(1), x(2)

)
:= x(1) ∨ x(2),

cob
(
x(1), x(2), x(3)

)
:= x(1) ∨

(
x(2) ∧ x(3)

)
.

Then dthi1 , brai1i2 , and cobi1i2i3 are the local maps defined in the
first lecture.

Jan M. Swart Interacting Particle Systems



A general set-up

(i) Polish space S local state space.

(ii) (Ω,B, r) Polish space with Borel σ-field and finite measure:
source of external randomness.

(iii) κ : Ω→ N measurable function.

(iv) For each ω ∈ Ω, a measurable function γ[ω] : Sκ(ω) → S .

We are interested in the interacting particle system that evolves as
follows:

I We activate each site i with Poisson rate |r| := r(ω).

I We choose ω according to the law |r|−1 r.

I We uniformly choose i = i1 ∼ · · · ∼ iκ(ω)∨1, all different, if
this is possible.

I We apply the map γi1···iκ(ω)∨1
[ω].
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Examples

Let S := {0, 1} and Ω = {1, 2}. Then setting

κ(1) := 0, γ[1] := dth, r({1}) := 1,

κ(2) := 2, γ[2] := bra, r({2}) := λ,

yields the contact process with infection rate λ. Similarly, setting

κ(1) := 0, γ[1] := dth, r({1}) := 1,

κ(2) := 3, γ[2] := cob, r({2}) := λ,

yields the cooperative contact process with cooperative branching
rate λ.
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A general set-up

Our summability condition now reduces to∫
Ω
r(dω)κ(ω) <∞ (SUM).

Let:

(Xs,u)s≤u stochastic flow constructed from a Poisson set π,
X 0 SΛ-valued random variable, independent of π.

Assuming (SUM), the process (X t)t≥0 defined as

X t := Xs,s+t(X 0) (t ≥ 0)

is the interacting particle system with generator G .

Jan M. Swart Interacting Particle Systems



The mean-field limit

Let (ΛN ,∼) be the complete graph with N vertices.
Let (XN

t )t≥0 be the particle system on ΛN with generator G .
We are interested in the empirical measure

µNt :=
1

N

N∑
i=1

δXN
t (i) (t ≥ 0).

We will prove that in the limit N →∞, the process (µNt )t≥0 solves
the mean-field equation

∂
∂tµt =

∫
Ω
r(dω)

{
Tγ[ω](µt)− µt

}
(t ≥ 0) (MEAN),

where for any measurable g : Sk → S , we define
Tg : P(S)→ P(S) by

Tg (µ) := the law of g(X1, . . . ,Xk),

where (Xi )i≥1 are i.i.d. with law µ.
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The mean-field contact process

For the contact process, the mean-field equation takes the form

∂
∂tµt = λ

{
Tbra(µt)− µt

}
+
{
Tdth(µt)− µt

}
.

Rewriting this in terms of pt := µt({1}) yields

∂
∂t pt = λpt(1− pt)− pt =: Fλ(pt) (t ≥ 0).
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The mean-field contact process

Fλ(p)

p
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For λ ≤ 1, the equation ∂
∂t pt = Fλ(pt) has

a single, stable fixed point p = 0.
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The mean-field contact process

Fλ(p)

p

λ = 1

0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

For λ ≤ 1, the equation ∂
∂t pt = Fλ(pt) has

a single, stable fixed point p = 0.
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The mean-field contact process

Fλ(p)
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For λ > 1, the fixed point p = 0 becomes unstable
and a new stable fixed point p(λ) = 1− 1/λ appears.
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The mean-field contact process

λ

p

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

pupp(λ)

plow(λ)

Fixed points and their domains of attraction as a function of λ.
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The mean-field cooperative contact process

For the cooperative contact process, the mean-field equation takes
the form

∂
∂tµt = λ

{
Tcob(µt)− µt

}
+
{
Tdth(µt)− µt

}
.

Rewriting this in terms of pt := µt({1}) yields

∂
∂t pt = λp2

t (1− pt)− pt =: Fλ(pt) (t ≥ 0).
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The mean-field cooperative contact process
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For λ < 4, the equation ∂
∂t pt = Fλ(pt) has

a single, stable fixed point p = 0.
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The mean-field cooperative contact process
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For λ = 4, a second fixed point appears at p = 0.5.
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The mean-field cooperative contact process
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For λ > 4, there are two stable fixed points and one unstable fixed
point, which separates the domains of attraction of the other two.

Jan M. Swart Interacting Particle Systems



The mean-field cooperative contact process
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Fixed points of ∂
∂t pt = Fλ(pt) for different values of λ.
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The abstract setting

Using the notation |r| := r(ω) and

T(µ) := |r|−1

∫
Ω
r(dω)Tγ[ω](µ),

we can rewrite the mean-field equation as

∂
∂tµt = |r|

{
T(µt)− µt

}
(t ≥ 0) (MEAN).

Recall ∫
Ω
r(dω)κ(ω) <∞ (SUM).

Theorem [Mach, Sturm, S. ’20] Under the condition (SUM),
the mean-field equation (MEAN) has a unique solution for each
initial state µ0 ∈ P(S).
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The abstract setting

We define a (nonlinear) semigroup (Tt)t≥0 of operators acting on
probability measures by

Tt(µ) := µt where (µt)t≥0 solves (MEAN) with µ0 = µ.

This is a sort of continuous-time version of the discrete evolution
µ 7→ T(µ) 7→ T2(µ) 7→ · · · .

Assuming that, for all k ≥ 0 and x ∈ Sk ,

r
(
{ω : κ(ω) = k , γ[ω] is discontinuous at x}

)
= 0 (CONT),

one can show that the operators Tn and Tt are continuous w.r.t.
weak convergence.
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The abstract setting

Let d be any metric that generates the topology of weak
convergence and let ‖ · ‖ denote the total variation norm.

Theorem [Mach, Sturm, S. ’20] Assume (SUM) and at least
one of the following conditions:

(i) P
[
d(µN0 , µ0) ≥ ε] −→

N→∞
0 for all ε > 0, and (CONT) holds.

(ii)
∥∥E[(µN0 )⊗n]− µ⊗n0

∥∥ −→
N→∞

0 for all n ≥ 1.

Then

P
[

sup
0≤t≤T

d
(
µNt ,Tt(µ0)

)
≥ ε
]
−→
N→∞

0 (ε > 0, T <∞).

Proof By a probabilistic representation of the semigroup (Tt)t≥0.
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The backward in time process

time

u

u − t

Xu−t,u[i ](x)

x

Recall the “backward in time” Markov process(
R(Xu−t,u[i ]),Xu−t,u[i ]

)
t≥0

.
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The backward in time process

bra

bra

bra

bra

dth

u

u − t

Xu−t,u[i ](x)

x

In the mean-field limit, the “backward in time” process becomes a
random tree with maps attached to its nodes.
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Recursive tree processes

Aim Develop a stochastic representation for the nonlinear
semigroup (Tt)t≥0, and also for the discrete-time evolution maps
Tn, in terms of a random tree with maps attached to its nodes.

Aldous & Banyopadyay (2005) (discrete time),
Mach, Sturm & S. (2020) (continuous time).

Fix d ∈ N+ ∪ {∞} such that κ(ω) ≤ d for all ω ∈ Ω. Let T = Td

denote the space of all words i = i1 · · · in made from the alphabet
{1, . . . , d} (if d <∞) resp. N+ (if d =∞).
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A recursive tree representation

∅

1 2 3

11 12 13 21 22 23 31 32 33

111 112 113 121 122 123 131 132 133 211 212 213 221 222 223 231 232 233 311 312 313 321 322 323 331 332 333

We view T = Td as a tree with root ∅, the word of length zero.
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A recursive tree representation

cob

dth cob cob

cob dth dth cob dth cob dth cob cob

dth cob cob cob dth cob cob cob dth cob cob dth dth cob dth cob cob cob cob dth cob dth cob cob cob dth dth

We attach i.i.d. (ωi)i∈T with law |r|−1r to each node,
which translate into maps (γ[ωi])i∈T.
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A recursive tree representation

cob

dth cob cob

cob dth dth cob dth cob dth cob cob

dth cob cob cob dth cob cob cob dth cob cob dth dth cob dth cob cob cob cob dth cob dth cob cob cob dth dth

Let S be the random subtree of T defined as

S :=
{

i1 · · · in ∈ T : im ≤ κ(ωi1···im−1) ∀1 ≤ m ≤ n
}
.
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A recursive tree representation

cob

dth cob cob

cob dth cob dth cob cob

dth cob cob dth cob cob cob dth cob cob cob dth dth

For any rooted subtree U ⊂ S, let

∇U :=
{

i1 · · · in ∈ S : i1 · · · in−1 ∈ U, i1 · · · in 6∈ U
}

denote the boundary of U relative to S.

Jan M. Swart Interacting Particle Systems



A recursive tree representation

cob

1

dth cob cob

0 1 1

1 0 1 dth cob cob

0 1 1

dth 0 1 1 1 0 0

Given (X i)i∈∇U, we inductively define (X i)i∈U by

X i = γ[ωi]
(
X i1, . . . ,X iκ(ω)

)
(i ∈ U).
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A recursive tree representation

cob

1

dth cob cob0 1

1

1 0 1 dth cob cob0 1 1

dth 0 1 1 1 0 0

Given (X i)i∈∇U, we inductively define (X i)i∈U by

X i = γ[ωi]
(
X i1, . . . ,X iκ(ω)

)
(i ∈ U).
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A recursive tree representation

cob

1

dth cob cob0 1 1

1 0 1 dth cob cob0 1 1

dth 0 1 1 1 0 0

Given (X i)i∈∇U, we inductively define (X i)i∈U by

X i = γ[ωi]
(
X i1, . . . ,X iκ(ω)

)
(i ∈ U).
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A recursive tree representation

cob1

dth cob cob0 1 1

1 0 1 dth cob cob0 1 1

dth 0 1 1 1 0 0

Given (X i)i∈∇U, we inductively define (X i)i∈U by

X i = γ[ωi]
(
X i1, . . . ,X iκ(ω)

)
(i ∈ U).
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A recursive tree representation

Define ΓU : S∇U → S by ΓU
(
(X i)i∈∇U

)
:= X∅.

ΓU is the concatenation of the maps
(
γ[ωi]

)
i∈U according to the

tree structure of U.

Let |i1 · · · in| := n denote the length of a word i and set

S(n) := {i ∈ S : |i| < n} and ∇S(n) = {i ∈ S : |i| = n}.

Aldous and Bandyopadyay (2005) proved that

Tn(µ) := the law of ΓS(n)

(
(X i)i∈∇S(n)

)
,

with (X i)i∈∇S(n)
i.i.d. with law µ and independent of (ωi)i∈S(n)

.
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A recursive tree representation

cob

dth

cob

cob

cob dth

cob

dth

cob
cob

cob

cob

dth

cob

cob

cob

dth

cob

cob

cob

dth

dth

We add independent
exponentially distributed
lifetimes to the nodes
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A recursive tree representation

Let (σi)i∈T be i.i.d. exponentially distributed with mean |r|−1,
independent of (ωi)i∈T, and set

τ∗i :=
n−1∑
m=1

σi1···im and τ †i := τ∗i + σi (i = i1 · · · in),

St :=
{
i ∈ S : τ †i ≤ t

}
and ∇St =

{
i ∈ S : τ∗i ≤ t < τ †i

}
.

Let Ft be the filtration

Ft := σ
(
∇St , (ωi, σi)i∈St

)
(t ≥ 0).

Theorem [Mach, Sturm, S. ’20]

Tt(µ) := the law of ΓSt
(
(X i)i∈∇St

)
,

where (X i)i∈∇St are i.i.d. with law µ and independent of Ft .
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A recursive tree representation

X∅

cob

dth

cob

cob

cob dth

cob

dth

cob
cob

cob

cob

dth

cob

cob

cob

dth

cob

cob

cob

dth

dth

t

Law µt = Tt(µ)

(X i)i∈∇St
i.i.d. law µ0
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