Interacting Particle Systems:

Almost sure uniqueness, pathwise duality,
and the mean-field limit

Jan M. Swart

Lecture 3: The mean-field limit
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A general set-up

Let (A, ~) be a countable graph.

For each k > 1, let KX be the set of all words i - - - i, made from
the alphabet A, such that:

() inFimVn#Em (i) i~ i~

For each g : SK — S and iy - - - iy, € KK, define 8-y - SN — SN by

( )() g(X(il),...,X(ik)) |fj: i,
i (X =

Bl / x(j) otherwise.
For g : S0 5 Sand i; € A, define 8i SN S by

if j =11,
otherwise.

590 = { &)
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Let S :={0,1} and define dth: S° — S, bra: S — S, and
cob: 53— S by

dth(2):=0,
bra(x(1),x(2)) :=x(1) V x(2),
cob(x(1), x(2), x(3)) :==x(1) V (x(2) A x(3)).

Then dth;, braj;,, and cobj ;,;, are the local maps defined in the
first lecture.
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A general set-up

(i) Polish space S local state space.

(i) (€2, B,r) Polish space with Borel o-field and finite measure:
source of external randomness.

(iii) x:Q — N measurable function.
(iv) For each w € Q, a measurable function y[w] : $#*) — S.

We are interested in the interacting particle system that evolves as
follows:

» We activate each site i with Poisson rate |r| := r(w).
» We choose w according to the law |r|~Lr.

» We uniformly choose i =iy ~ - -+ ~ i(,)v1, all different, if
this is possible.

» We apply the map ’Yi1---in(w)v1[w]-
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Let S:={0,1} and Q = {1,2}. Then setting
(1)==0, ,[l=dth, r({1})=1,
(2)=2. l2==bra, r({2}):=X
yields the contact process with infection rate A. Similarly, setting
k(1) :=0, ~[1] := dth, r({1}):
R(2) =3, Af2]i=cob, r({2}):

yields the cooperative contact process with cooperative branching
rate \.

K
K

L,
A,
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A general set-up

Our summability condition now reduces to

/r(dw) K(w) < o0 (SUM).
Q

Let:

(Xs,u)s<u stochastic flow constructed from a Poisson set ,
Xo SM-valued random variable, independent of .

Assuming (SUM), the process (X¢)¢>o defined as
Xt = X575+t(X0) (t Z 0)

is the interacting particle system with generator G.
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The mean-field limit

Let (An,~) be the complete graph with N vertices.
Let (XN)¢>0 be the particle system on Ay with generator G.
We are interested in the empirical measure

N
1
N . _
fe = '§1 oxwipy — (£=0).

We will prove that in the limit N — oo, the process ()):>0 solves
the mean-field equation

g?tut—/ﬂr(dw){ww](uf)—m} (t>0)  (MEAN),

where for any measurable g : Sk — S, we define
Tg:P(S) = P(S) by
Tg(p) = the law of g(Xq,..., Xx),

where (Xj)i>1 are i.i.d. with law p.
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The mean-field contact process

For the contact process, the mean-field equation takes the form

2pie = M Toealpte) — pie} + { Tawn(pte) — pe}-

Rewriting this in terms of p; := p:({1}) yields

Zpe=Ape(1—pe) — pe =: Fa(pe)  (t>0).
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The mean-field contact process

For A < 1, the equation %pt = Fx(p¢) has
a single, stable fixed point p = 0.
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The mean-field contact process

For A < 1, the equation %pt = Fx(p¢) has
a single, stable fixed point p = 0.
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The mean-field contact process

For A > 1, the fixed point p = 0 becomes unstable
and a new stable fixed point p(A) =1 — 1/X appears.
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The mean-field contact process




The mean-field cooperative contact process

For the cooperative contact process, the mean-field equation takes
the form

2pie = MTeon(pe) — pie} + { Tawn(pte) — pe}-

Rewriting this in terms of p; := u({1}) yields

Fepe = Ape(1—pe) — pr = Fa(ps)  (£2>0).
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The mean-field cooperative contact process

For A < 4, the equation %pt = Fx(p¢) has
a single, stable fixed point p = 0.
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The mean-field cooperative contact process

For A\ = 4, a second fixed point appears at p = 0.5.
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The mean-field cooperative contact process

For A > 4, there are two stable fixed points and one unstable fixed
point, which separates the domains of attraction of the other two.
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The mean-field cooperative contact process
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Fixed points of %pt = F\(p¢) for different values of A.




The abstract setting

Using the notation |r| := r(w) and

Tl = I [ @) g0
we can rewrite the mean-field equation as

Dy = f[{T(ue) — ey (¢20)  (MEAN).

Recall

/r(dw) K(w) < oo (SUM).
Q

Theorem [Mach, Sturm, S. "20] Under the condition (SUM),
the mean-field equation (MEAN) has a unique solution for each
initial state ug € P(S).
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The abstract setting

We define a (nonlinear) semigroup (T+)s>0 of operators acting on
probability measures by

Te(p) := pe  where (11¢) >0 solves (MEAN) with pi0 = p.

This is a sort of continuous-time version of the discrete evolution
2
o= T(p) = T ) = -

Assuming that, for all k > 0 and x € Sk,
r({w: x(w) = k, v[w] is discontinuous at x}) =0  (CONT),

one can show that the operators T" and T; are continuous w.r.t.
weak convergence.
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The abstract setting

Let d be any metric that generates the topology of weak
convergence and let || - || denote the total variation norm.

Theorem [Mach, Sturm, S. '20] Assume (SUM) and at least
one of the following conditions:

(i) Pld(ug, 10) > €] > 0foralle >0, and (CONT) holds.
—00
(i) [|E[(5)®™ — p§"|| — 0 forall n>1.
N—oo

Then

P[ sup d(u, Te(po)) > e] — 0 (e >0, T <o0).
0<t<T N—oo

Proof By a probabilistic representation of the semigroup (T+¢):>0.
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The backward in time process

time

Xu—t,uli](x)

u ——
-

-

T T

u—t-

X

Recall the “backward in time" Markov process
(R(Xu—t,u[i])7Xu—t,u[i])tzo-
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The backward in time process

In the mean-field limit, the “backward in time" process becomes a
random tree with maps attached to its nodes.
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Recursive tree processes

Aim Develop a stochastic representation for the nonlinear
semigroup (T¢)r>0, and also for the discrete-time evolution maps
T", in terms of a random tree with maps attached to its nodes.

Aldous & Banyopadyay (2005) (discrete time),
Mach, Sturm & S. (2020) (continuous time).

Fix d € N4 U {oo} such that k(w) < d for all w € Q. Let T = T¢
denote the space of all words i = i; - - - i, made from the alphabet
{1,...,d} (if d < o0) resp. Ny (if d = c0).
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A recursive tree representation

We view T = T9 as a tree with root &, the word of length zero.

Jan M. Swart Interacting Particle Systems



A recursive tree representation

dthi|cobl[cobl[cobl[dth|[cobl[cobl[cobl[dth|[cobl[cobl[dth|dth|[cobl[dth|[cob][cobl[cobl[cobl|dth|[cob[dth|[cobl[cob|[cob|[dth|dth

We attach i.i.d. (wj)ier with law |r|~r to each node,
which translate into maps (y[wi])ier.
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A recursive tree representation

|

Let S be the random subtree of T defined as

S:i={i-in €T :in<K(Wjip_,) V1 < m< n}.
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A recursive tree representation

For any rooted subtree U C S, let
= {il---i,,GS:il---i,,_l e, i1---i,,§ZIU}
denote the boundary of U relative to S.
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A recursive tree representation

Given (X;)icv 1, we inductively define (X;)icu by

X = 'y[wi](Xil, R 7Xin(w)) (l S [U)
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A recursive tree representation

Given (X;)icv 1, we inductively define (X;)icu by

X = 'y[wi](Xil, R 7Xin(w)) (l S [U)
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A recursive tree representation

Given (X;)icv 1, we inductively define (X;)icu by

X = 'y[wi](Xil, R 7Xin(w)) (l S [U)
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A recursive tree representation

Given (X;)icv 1, we inductively define (X;)icu by

X = 'y[wi](Xil, R 7Xin(w)) (l S [U)
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A recursive tree representation

Define [y : S° = S by ['y((Xi)iev ) = Xo.

[y is the concatenation of the maps (7[<.di])iGIU according to the
tree structure of U.

Let |/ - - - in| :== n denote the length of a word i and set
Sny :={i€S:lif<n} and (ny = {i €S:|i[ = n}.
Aldous and Bandyopadyay (2005) proved that
T"(p) := the law of rg(n)((Xi)ie (n)),

with (Xj)ic , i.i.d. with law y and independent of (Wi)ies(,,)-

(n
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A recursive tree representation

dth

cob We add independent
exponentially distributed
lifetimes to the nodes
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A recursive tree representation

Let (oi)ier be i.i.d. exponentially distributed with mean |r|~%,
independent of (wj)ier, and set

= i Oipiny and 7 =m tor (=),
St::?i:éS:TiTgt} and t:{iGSZTi*St<TiT}.
Let F; be the filtration
Fii=0 (Vi (wi,oi)ies,)  (£>0).
Theorem [Mach, Sturm, S. ’20]
T¢(p) := the law of th((Xi)ie t),

where (Xj)ieve, are i.i.d. with law p and independent of F;.
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A recursive tree representation

(Xiie

t

i.i.d. law pg \/ \/

dth prn

Law pie = Te(p)
/

Xg
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