Interacting Particle Systems: Almost sure uniqueness, pathwise duality, and the mean-field limit

Jan M. Swart

# Lecture 3: The mean-field limit

# A general set-up

Let  $(\Lambda, \sim)$  be a countable graph.

For each  $k \ge 1$ , let  $\mathcal{K}^k$  be the set of all words  $i_1 \cdots i_k$ , made from the alphabet  $\Lambda$ , such that:

(i)  $i_n \neq i_m \ \forall n \neq m$  (ii)  $i_1 \sim i_2 \sim \cdots \sim i_k$ .

For each  $g: S^k \to S$  and  $i_1 \cdots i_k \in \mathcal{K}^k$ , define  $g_{i_1 \cdots i_k}: S^\Lambda \to S^\Lambda$  by

$$g_{i_1\cdots i_k}(x)(j) := \left\{egin{array}{ll} gig(x(i_1),\ldots,x(i_k)ig) & ext{ if } j=i_1, \ x(j) & ext{ otherwise.} \end{array}
ight.$$

For  $g: S^0 \to S$  and  $i_1 \in \Lambda$ , define  $g_{i_1}: S^\Lambda \to S$  by

$$g_{i_1}(x)(j) := \left\{egin{array}{ll} g(arnothing) & ext{ if } j = i_1, \ x(j) & ext{ otherwise}. \end{array}
ight.$$

向下 イヨト イヨト

Let  $S:=\{0,1\}$  and define dth :  $S^0 \to S$ , bra :  $S^2 \to S$ , and cob :  $S^3 \to S$  by

$$\begin{split} \mathtt{dth}(\varnothing) &:= 0, \\ \mathtt{bra}\big(x(1), x(2)\big) &:= x(1) \lor x(2), \\ \mathtt{cob}\big(x(1), x(2), x(3)\big) &:= x(1) \lor \big(x(2) \land x(3)\big). \end{split}$$

Then  $dth_{i_1}$ ,  $bra_{i_1i_2}$ , and  $cob_{i_1i_2i_3}$  are the local maps defined in the first lecture.

(4回) (4回) (日)

臣

- (i) Polish space S local state space.
- (ii)  $(\Omega, \mathcal{B}, \mathbf{r})$  Polish space with Borel  $\sigma$ -field and finite measure: source of external randomness.
- (iii)  $\kappa: \Omega \to \mathbb{N}$  measurable function.

(iv) For each  $\omega \in \Omega$ , a measurable function  $\gamma[\omega] : S^{\kappa(\omega)} \to S$ .

We are interested in the interacting particle system that evolves as follows:

- We activate each site *i* with Poisson rate  $|\mathbf{r}| := \mathbf{r}(\omega)$ .
- We choose  $\omega$  according to the law  $|\mathbf{r}|^{-1}\mathbf{r}$ .
- We uniformly choose i = i<sub>1</sub> ~ · · · ~ i<sub>κ(ω)∨1</sub>, all different, if this is possible.
- We apply the map  $\gamma_{i_1\cdots i_{\kappa(\omega)\vee 1}}[\omega]$ .

・ロト ・四ト ・ヨト ・ヨト

Let  $S := \{0,1\}$  and  $\Omega = \{1,2\}$ . Then setting

$$\begin{split} \kappa(1) &:= 0, \qquad \gamma[1] := \mathtt{dth}, \qquad \mathbf{r}(\{1\}) := 1, \\ \kappa(2) &:= 2, \qquad \gamma[2] := \mathtt{bra}, \qquad \mathbf{r}(\{2\}) := \lambda, \end{split}$$

yields the contact process with infection rate  $\lambda$ . Similarly, setting

$$\kappa(1) := 0, \qquad \gamma[1] := dth, \qquad \mathbf{r}(\{1\}) := 1,$$
  
 $\kappa(2) := 3, \qquad \gamma[2] := cob, \qquad \mathbf{r}(\{2\}) := \lambda,$ 

yields the cooperative contact process with cooperative branching rate  $\lambda$ .

> < 물 > < 물 >

Our summability condition now reduces to

$$\int_{\Omega} \mathbf{r}(\mathrm{d}\omega) \, \kappa(\omega) < \infty \qquad (\mathsf{SUM}).$$

Let:

 $(\mathbb{X}_{s,u})_{s \leq u}$  stochastic flow constructed from a Poisson set  $\pi$ ,  $X_0$   $S^{\Lambda}$ -valued random variable, independent of  $\pi$ .

Assuming (SUM), the process  $(X_t)_{t\geq 0}$  defined as

$$X_t := \mathbb{X}_{s,s+t}(X_0) \quad (t \ge 0)$$

is the interacting particle system with generator G.

# The mean-field limit

Let  $(\Lambda_N, \sim)$  be the complete graph with N vertices. Let  $(X_t^N)_{t\geq 0}$  be the particle system on  $\Lambda_N$  with generator G. We are interested in the *empirical measure* 

$$\mu_t^N := \frac{1}{N} \sum_{i=1}^N \delta_{X_t^N(i)} \qquad (t \ge 0).$$

We will prove that in the limit  $N \to \infty$ , the process  $(\mu_t^N)_{t \ge 0}$  solves the mean-field equation

$$\frac{\partial}{\partial t}\mu_t = \int_{\Omega} \mathbf{r}(\mathrm{d}\omega) \{ \mathbf{T}_{\gamma[\omega]}(\mu_t) - \mu_t \} \qquad (t \ge 0) \qquad (\mathsf{MEAN}),$$

where for any measurable  $g: S^k \to S$ , we define  $\mathsf{T}_g: \mathcal{P}(S) \to \mathcal{P}(S)$  by

$$\mathsf{T}_{g}(\mu) := ext{ the law of } g(X_1, \ldots, X_k),$$

where  $(X_i)_{i\geq 1}$  are i.i.d. with law  $\mu$ .

For the contact process, the mean-field equation takes the form

$$\frac{\partial}{\partial t}\mu_t = \lambda \big\{ \mathsf{T}_{\mathtt{bra}}(\mu_t) - \mu_t \big\} + \big\{ \mathsf{T}_{\mathtt{dth}}(\mu_t) - \mu_t \big\}.$$

Rewriting this in terms of  $p_t := \mu_t(\{1\})$  yields

$$\frac{\partial}{\partial t}\boldsymbol{p}_t = \lambda \boldsymbol{p}_t (1 - \boldsymbol{p}_t) - \boldsymbol{p}_t =: F_\lambda(\boldsymbol{p}_t) \qquad (t \ge 0).$$







For  $\lambda > 1$ , the fixed point p = 0 becomes unstable and a new stable fixed point  $p(\lambda) = 1 - 1/\lambda$  appears.



Fixed points and their domains of attraction as a function of  $\lambda$ .

< ∃⇒

For the cooperative contact process, the mean-field equation takes the form

$$\frac{\partial}{\partial t}\mu_t = \lambda \big\{ \mathsf{T}_{\mathsf{cob}}(\mu_t) - \mu_t \big\} + \big\{ \mathsf{T}_{\mathsf{dth}}(\mu_t) - \mu_t \big\}.$$

Rewriting this in terms of  $p_t := \mu_t(\{1\})$  yields

$$\frac{\partial}{\partial t} p_t = \lambda p_t^2 (1 - p_t) - p_t =: F_\lambda(p_t) \qquad (t \ge 0).$$







For  $\lambda > 4$ , there are two stable fixed points and one unstable fixed point, which separates the domains of attraction of the other two.

#### The mean-field cooperative contact process



(人間) とうぼう くぼう

# The abstract setting

Using the notation  $|\mathbf{r}| := \mathbf{r}(\omega)$  and

$$\mathsf{T}(\mu) := |\mathsf{r}|^{-1} \int_{\Omega} \mathsf{r}(\mathrm{d}\omega) \mathsf{T}_{\gamma[\omega]}(\mu),$$

we can rewrite the mean-field equation as

$$\frac{\partial}{\partial t}\mu_t = |\mathbf{r}| \{ \mathbf{T}(\mu_t) - \mu_t \} \qquad (t \ge 0) \qquad (\mathsf{MEAN}).$$

Recall

$$\int_{\Omega} \mathbf{r}(\mathrm{d}\omega) \, \kappa(\omega) < \infty \qquad (\mathsf{SUM}).$$

**Theorem [Mach, Sturm, S. '20]** Under the condition (SUM), the mean-field equation (MEAN) has a unique solution for each initial state  $\mu_0 \in \mathcal{P}(S)$ .

向下 イヨト イヨト

We define a (nonlinear) semigroup  $(T_t)_{t\geq 0}$  of operators acting on probability measures by

 $\mathsf{T}_t(\mu) := \mu_t$  where  $(\mu_t)_{t \ge 0}$  solves (MEAN) with  $\mu_0 = \mu$ .

This is a sort of continuous-time version of the discrete evolution  $\mu \mapsto T(\mu) \mapsto T^2(\mu) \mapsto \cdots$ .

Assuming that, for all  $k \ge 0$  and  $x \in S^k$ ,

 $\mathbf{r}(\{\omega:\kappa(\omega)=k,\ \gamma[\omega] \text{ is discontinuous at } \mathbf{x}\})=0$  (CONT),

one can show that the operators  $T^n$  and  $T_t$  are continuous w.r.t. weak convergence.

イロト イヨト イヨト イヨト 三日

Let *d* be any metric that generates the topology of weak convergence and let  $\|\cdot\|$  denote the total variation norm.

**Theorem [Mach, Sturm, S. '20]** Assume (SUM) and at least one of the following conditions:

(i) 
$$\mathbb{P}[d(\mu_0^N, \mu_0) \ge \varepsilon] \xrightarrow[N \to \infty]{} 0$$
 for all  $\varepsilon > 0$ , and (CONT) holds.  
(ii)  $\|\mathbb{E}[(\mu_0^N)^{\otimes n}] - \mu_0^{\otimes n}\| \xrightarrow[N \to \infty]{} 0$  for all  $n \ge 1$ .  
Then

$$\mathbb{P}\big[\sup_{0\leq t\leq T}d\big(\mu_t^N,\mathsf{T}_t(\mu_0)\big)\geq \varepsilon\big]\underset{N\to\infty}{\longrightarrow}0\qquad (\varepsilon>0,\ T<\infty).$$

**Proof** By a probabilistic representation of the semigroup  $(T_t)_{t\geq 0}$ .

# The backward in time process



# The backward in time process



In the mean-field limit, the "backward in time" process becomes a random tree with maps attached to its nodes.

Aim Develop a stochastic representation for the nonlinear semigroup  $(T_t)_{t\geq 0}$ , and also for the discrete-time evolution maps  $T^n$ , in terms of a random tree with maps attached to its nodes.

#### Aldous & Banyopadyay (2005) (discrete time), Mach, Sturm & S. (2020) (continuous time).

Fix  $d \in \mathbb{N}_+ \cup \{\infty\}$  such that  $\kappa(\omega) \leq d$  for all  $\omega \in \Omega$ . Let  $\mathbb{T} = \mathbb{T}^d$  denote the space of all words  $\mathbf{i} = i_1 \cdots i_n$  made from the alphabet  $\{1, \ldots, d\}$  (if  $d < \infty$ ) resp.  $\mathbb{N}_+$  (if  $d = \infty$ ).

回 とうほとう キャン



We view  $\mathbb{T} = \mathbb{T}^d$  as a tree with root  $\varnothing$ , the word of length zero.

A (10) > (10)



We attach i.i.d.  $(\omega_i)_{i \in \mathbb{T}}$  with law  $|\mathbf{r}|^{-1}\mathbf{r}$  to each node, which translate into maps  $(\gamma[\omega_i])_{i \in \mathbb{T}}$ .

Image: A match the second s



Let  ${\mathbb S}$  be the random subtree of  ${\mathbb T}$  defined as

$$\mathbb{S} := \{i_1 \cdots i_n \in \mathbb{T} : i_m \le \kappa(\boldsymbol{\omega}_{i_1 \cdots i_{m-1}}) \ \forall 1 \le m \le n\}.$$



For any rooted subtree  $\mathbb{U} \subset \mathbb{S}$ , let

$$\nabla \mathbb{U} := \left\{ i_1 \cdots i_n \in \mathbb{S} : i_1 \cdots i_{n-1} \in \mathbb{U}, \ i_1 \cdots i_n \notin \mathbb{U} \right\}$$

denote the boundary of  $\mathbb{U}$  relative to  $\mathbb{S}$ .



$$X_{\mathbf{i}} = \gamma[\omega_{\mathbf{i}}](X_{\mathbf{i}1}, \dots, X_{\mathbf{i}\kappa(\omega)})$$
  $(\mathbf{i} \in \mathbb{U}).$ 



$$X_{\mathbf{i}} = \gamma[\omega_{\mathbf{i}}](X_{\mathbf{i}1}, \dots, X_{\mathbf{i}\kappa(\omega)})$$
  $(\mathbf{i} \in \mathbb{U}).$ 



$$X_{\mathbf{i}} = \gamma[\omega_{\mathbf{i}}](X_{\mathbf{i}1}, \dots, X_{\mathbf{i}\kappa(\omega)})$$
  $(\mathbf{i} \in \mathbb{U}).$ 



$$X_{\mathbf{i}} = \gamma[\omega_{\mathbf{i}}](X_{\mathbf{i}1}, \dots, X_{\mathbf{i}\kappa(\omega)})$$
  $(\mathbf{i} \in \mathbb{U}).$ 

Define  $\Gamma_{\mathbb{U}}: S^{\nabla \mathbb{U}} \to S$  by  $\Gamma_{\mathbb{U}}((X_i)_{i \in \nabla \mathbb{U}}) := X_{\varnothing}$ .

 $\Gamma_{\mathbb{U}}$  is the concatenation of the maps  $(\gamma[\omega_i])_{i\in\mathbb{U}}$  according to the tree structure of  $\mathbb{U}$ .

Let  $|i_1 \cdots i_n| := n$  denote the length of a word **i** and set

$$\mathbb{S}_{(n)} := \{\mathbf{i} \in \mathbb{S} : |\mathbf{i}| < n\}$$
 and  $\nabla \mathbb{S}_{(n)} = \{\mathbf{i} \in \mathbb{S} : |\mathbf{i}| = n\}.$ 

Aldous and Bandyopadyay (2005) proved that

$$\mathsf{T}^n(\mu) := \text{ the law of } \Gamma_{\mathbb{S}_{(n)}}\big((X_{\mathsf{i}})_{\mathsf{i} \in \nabla \mathbb{S}_{(n)}}\big),$$

with  $(X_i)_{i \in \nabla S_{(n)}}$  i.i.d. with law  $\mu$  and independent of  $(\omega_i)_{i \in S_{(n)}}$ .

(本間) (本語) (本語) (二語



Let  $(\sigma_i)_{i \in \mathbb{T}}$  be i.i.d. exponentially distributed with mean  $|\mathbf{r}|^{-1}$ , independent of  $(\omega_i)_{i \in \mathbb{T}}$ , and set

$$\begin{split} \tau_{\mathbf{i}}^* &:= \sum_{m=1}^{n-1} \sigma_{i_1 \cdots i_m} \quad \text{and} \quad \tau_{\mathbf{i}}^{\dagger} &:= \tau_{\mathbf{i}}^* + \sigma_{\mathbf{i}} \qquad (\mathbf{i} = i_1 \cdots i_n), \\ \mathbb{S}_t &:= \left\{ \mathbf{i} \in \mathbb{S} : \tau_{\mathbf{i}}^{\dagger} \le t \right\} \quad \text{and} \quad \nabla \mathbb{S}_t = \left\{ \mathbf{i} \in \mathbb{S} : \tau_{\mathbf{i}}^* \le t < \tau_{\mathbf{i}}^{\dagger} \right\}. \end{split}$$

Let  $\mathcal{F}_t$  be the filtration

$$\mathcal{F}_t := \sigma \left( \nabla \mathbb{S}_t, (\boldsymbol{\omega}_i, \sigma_i)_{i \in \mathbb{S}_t} \right) \qquad (t \ge 0).$$

Theorem [Mach, Sturm, S. '20]

$$\mathbf{T}_{t}(\mu) := \text{ the law of } \Gamma_{\mathbb{S}_{t}}((X_{\mathbf{i}})_{\mathbf{i} \in \nabla \mathbb{S}_{t}}),$$

where  $(X_i)_{i \in \nabla S_t}$  are i.i.d. with law  $\mu$  and independent of  $\mathcal{F}_t$ .

A B K A B K

