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The cooperative contact process

Let S := {0, 1}. For all i1, i2, i3 ∈ Λ, we define local maps by:

dthi1(x)(j) :=

{
0 if j = i1,

x(j) otherwise.

cobi1i2i3(x)(j) :=

{
x(i1) ∨

(
x(i2) ∧ x(i3)

)
if j = i1

x(j) otherwise.

The cooperative contact process with cooperative branching rate λ
on a graph (Λ,∼) evolves as follows:

I For each i1 ∈ Λ, with Poisson rate 1, we apply the map dthi1 .

I For each i1 ∈ Λ, with Poisson rate λ, we pick i1 ∼ i2 ∼ i3 with
i3 6= i1 uniformly at random and apply the map cobi1i2i3 .
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A cooperative contact process

time

space
X0

X 0

Xt = X0,t(X0)

0 1 1 0 1 1 0 1 1 0

1 0 1 0 1 1 0 0 1 0
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The backward picture

We are interested in the “backward in time” process(
R(X−t,0[i ]),X−t,0[i ]

)
t≥0

.

In the mean-field limit, the “backward in time” process converges,
in an appropriate sense, to the process(

ΓSt
)
t≥0

,

where (St)t≥0 is the family tree of a branching process and ΓSt is
the concatenation of maps attached to the nodes of this tree.

Baake, Cordero, & Hummel ’21 have studied ΓSt from a
biological point of view, motivated by the family tree of a diploid
organism carrying a recessive advantageous gene.
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A recursive tree representation

X∅ = ΓSt
(
(X i)i∈∇St

)
law µt = Tt(µ0)
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dth

cob

cob

cob dth

cob

dth

cob
cob

cob
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t

(X i)i∈∇St
i.i.d. law µ0
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Fixed points of the mean-field equation
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Density pxxx := νxxx({1}) of fixed points νxxx of (Tt)t≥0.
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The ergodic regime

The system is ergodic in all of the following cases:
One has K < 0 for λ < 1/2.
The branching process (∇St)t≥0 dies our a.s. iff λ ≤ 1/2.
The functions ΓSt are constant for t large enough iff λ < 4.

On the other hand, for λ ≥ 4, there are multiple invariant laws and
the functions ΓSt do not a.s. converge to a constant as t →∞.

Recall that we can write

Xs,u[i ](x) =
∨

∆∈Zs,u(i)

∧
j∈∆

x(j),

where Zs,u(i) is the set of “minimal configurations” ∆ which need
to be 1 in order for Xs,u[i ](x) to be 1.
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Minimal configurations

time
1

∆1 1 1

∆2 1 1 1

∆3 1 1

minimal
configurations
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Minimal configurations

In the mean-field limit, minimal configurations correspond to
subtrees V ⊂ St ∪∇St with the property that for each i ∈ V ∩ St
such that γ[ωi] = cob,

either i1 ∈ V or {i2, i3} ⊂ V (but not both).
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Minimal configurations

11 1

11 1 1
minimal configurations

Minimal configurations for the map ΓSt .
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Fixed points of the mean-field equation
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In the limit, pupp is the probability that ΓSt is not constant.

pmid is the minimal density that a product measure needs to ensure
that at least one minimal configuration is completely filled with 1’s.

Jan M. Swart Interacting Particle Systems



Spatial models

For other graphs than the complete graph, much less is known.

Let

λc := sup{λ > 0 : δ0 is the only invariant law
}
,

λ′c := sup{λ > 0 : P1{i,j} [X t = 0] −→
t→∞

1
}

(i ∼ j).

In simulations, the model on Zd seems to have λc = λ′c and the
phase transition is continuous, similar to the contact process.

On the other hand, trivially λ′c = 0 if we change the rules so that:

I For each i1 ∈ Λ, with Poisson rate λ, we pick i1 ∼ i2 and
i1 ∼ i3 with i2 6= i3 uniformly at random and apply the map
cobi1i2i3 ,
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Spatial models

A crucial question seems to be: How does the “backward in time”
process survive?

I Are all minimal configurations very large as in the mean-field
case?

I Or are there also small minimal configurations consisting of
just two neighbouring sites?

It seems that depending on the details of the model, both can
happen, and this influences the shape of the phase diagram.

Question If (Λ,∼) is a regular tree, then does there exist an
intermediate invariant law νmid?
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