Interacting Particle Systems: Almost sure uniqueness, pathwise duality, and the mean-field limit

Jan M. Swart

Lecture 5: Recursive tree process

A Recursive Distributional Equation is an equation of the form

$$X \stackrel{\mathcal{D}}{=} \gamma[\boldsymbol{\omega}](X_1, \dots, X_{\kappa(\boldsymbol{\omega})}) \qquad (\mathsf{RDE}),$$

where X_1, X_2, \ldots are i.i.d. copies of X, independent of ω . A law ν solves (RDE) iff

(i)
$$\mathbf{T}_t(\nu) = \nu$$
 $(t \ge 0)$ or (ii) $\mathbf{T}(\nu) = \nu$.

Solutions to the RDE are the equivalent of invariant laws in the mean-field setting.

For the cooperative contact process, solutions to the RDE are the Bernoulli distributions $\nu_{\rm low}$, $\nu_{\rm mid}$, $\nu_{\rm upp}$ with density $p_{\rm low}$, $p_{\rm mid}$, $p_{\rm upp}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

For any rooted subtree $\mathbb{U}\subset\mathbb{T},$ let

$$\partial \mathbb{U} := \left\{ i_1 \cdots i_n \in \mathbb{T} : i_1 \cdots i_{n-1} \in \mathbb{U}, \ i_1 \cdots i_n \notin \mathbb{U} \right\}$$

denote the boundary of \mathbb{U} relative to \mathbb{T} .

For each solution ν of (RDE), there exists a *Recursive Tree Process* (*RTP*) (ω_i, X_i)_{i $\in \mathbb{T}$}, unique in law, such that:

- (i) $(\boldsymbol{\omega}_{\mathbf{i}})_{\mathbf{i}\in\mathbb{T}}$ are i.i.d. with law $|\mathbf{r}|^{-1}\mathbf{r}$.
- (ii) For finite U ⊂ T, the r.v.'s (X_i)_{i∈∂U} are i.i.d. with ν and independent of (ω_i)_{i∈U}.

(iii) $X_{\mathbf{i}} = \gamma[\omega_{\mathbf{i}}](X_{\mathbf{i}1}, \dots, X_{\mathbf{i}\kappa(\omega_{\mathbf{i}})})$ ($\mathbf{i} \in \mathbb{T}$).

- If we add independent exponentially distributed lifetimes, then:
 - Conditional on \mathcal{F}_t , the r.v.'s $(X_i)_{i \in \nabla S_t}$ are i.i.d. with law ν .

・ 同 ト ・ ヨ ト ・ ヨ ト

n-Variate processes

For each $n \ge 1$, a measurable map $g : S^k \to S$ gives rise to *n*-variate map $g^{(n)} : (S^n)^k \to S^n$ defined as

$$g^{(n)}(x_1,...,x_k) = g^{(n)}(x^1,...,x^n) := (g(x^1),...,g(x^n)),$$

with $x = (x_i^m)_{i=1,...,k}^{m=1,...,n}$, $x_i = (x_i^1, ..., x_i^n)$, $x^m = (x_1^m, ..., x_k^m)$. We define an *n*-variate map

$$\mathsf{T}^{(n)}(\mu^{(n)}) := |\mathsf{r}|^{-1} \int_{\Omega} \mathsf{r}(\mathrm{d}\omega) \mathsf{T}_{\gamma^{(n)}[\omega]}(\mu^{(n)}),$$

which acts on probability measures $\mu^{(n)}$ on S^n . The *n*-variate mean-field equation

$$\frac{\partial}{\partial t}\mu_t^{(n)} = \int_{\Omega} \mathbf{r}(\mathrm{d}\omega) \{\mathbf{T}_{\gamma^{(n)}[\omega]}(\mu_t^{(n)}) - \mu_t^{(n)}\} \qquad (t \ge 0).$$

describes the mean-field limit of *n* coupled processes that are constructed using the same stochastic flow $(X_{s,u})_{s \leq u}$.

n-Variate processes

- $\mathcal{P}_{sym}(S^n)$ space of probability measures on S^n that are symmetric under a permutation of the coordinates. S^n_{diar} { $x \in S^n : x_1 = \cdots = x_n$ }
 - $\mathcal{P}(S^n)_{\mu}$ space of probability measures on S^n whose one-dimensional marginals are all equal to μ .
- If (µ⁽ⁿ⁾_{t≥0} solves the n-variate equation, then its m-dimensional marginals solve the m-variate equation.
- µ₀⁽ⁿ⁾ ∈ P_{sym}(Sⁿ) implies µ_t⁽ⁿ⁾ ∈ P_{sym}(Sⁿ) (t ≥ 0).
 µ₀⁽ⁿ⁾ ∈ P(Sⁿ_{diag}) implies µ_t⁽ⁿ⁾ ∈ P(Sⁿ_{diag}) (t ≥ 0).
 If T(ν) = ν, then µ₀⁽ⁿ⁾ ∈ P(Sⁿ)_ν implies µ_t⁽ⁿ⁾ ∈ P(Sⁿ)_ν.

★ 圖 ▶ ★ 温 ▶ ★ 温 ▶ … 温

If $u = \mathbb{P}[X \in \cdot]$ solves the RDE $\mathsf{T}(v) = v$, then

$$\overline{\nu}^{(n)} := \mathbb{P}\big[(\underbrace{X, \dots, X}_{n \text{ times}}) \in \cdot\big]$$

solves the *n*-variate RDE $T^{(n)}(\nu^{(n)}) = \nu^{(n)}$.

Questions:

- ▶ Is $\overline{\nu}^{(n)}$ a stable fixed point of the *n*-variate equation?
- ▶ Is $\overline{\nu}^{(n)}$ the only solution in $\mathcal{P}_{sym}(S^n)_{\nu}$ of the *n*-variate RDE?

向下 イヨト イヨト

Aldous and Bandyopadyay (2005) say that an RTP is endogenous if

 X_{\varnothing} is measurable w.r.t. the σ -field generated by $(\omega_i)_{i \in \mathbb{T}}$.

Theorem [AB '05 & MSS '20] The following statements are equivalent:

(i) The RTP corresponding to ν is endogenous. (ii) $\mathsf{T}_{t}^{(n)}(\mu) \underset{t \to \infty}{\Longrightarrow} \overline{\nu}^{(n)}$ for all $\mu \in \mathcal{P}(S^{n})_{\nu}$ and $n \geq 1$. (iii) $\overline{\nu}^{(2)}$ is the only solution in $\mathcal{P}_{\mathrm{sym}}(S^{2})_{\nu}$ of the bivariate RDE. In our example, the RTPs for $\nu_{\mathrm{low}}, \nu_{\mathrm{upp}}$ are endogenous, but the RTP corresponding to ν_{mid} is not.

・ロア ・四マ ・日マー

Proof (main idea) Conditional on $(\omega_i)_{i \in \mathbb{T}}$, let $(X'_i)_{i \in \mathbb{T}}$ be an independent copy of $(X_i)_{i \in \mathbb{T}}$. Then

$$\underline{\nu}^{(2)} := \mathbb{P}\big[(X_{\varnothing}, X_{\varnothing}') \in \,\cdot\,\big]$$

solves the bivariate RDE and endogeny is equivalent to $\underline{\nu}^{(2)} = \overline{\nu}^{(2)}$.

▲祠 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

Let $(\omega_i, X_i)_{i \in \mathbb{T}}$ be the RTP corresponding to γ and ν . Define random measures η_i and $\overline{\eta}_i$ $(i \in \mathbb{T})$ by

$$\underline{\eta}_{\mathbf{i}} := \mathbb{P}\big[\boldsymbol{X}_{\mathbf{i}} \in \cdot \left| (\boldsymbol{\omega}_{\mathbf{ij}})_{\mathbf{j} \in \mathbb{T}} \right] \quad \text{and} \quad \overline{\eta}_{\mathbf{i}} := \delta_{\boldsymbol{X}_{\mathbf{i}}}.$$

Let $\underline{\nu} := \mathbb{P}[\underline{\eta}_{\varnothing} \in \cdot]$ and $\overline{\nu} := \mathbb{P}[\overline{\eta}_{\varnothing} \in \cdot].$

 $(\omega_{\mathbf{i}}, \underline{\eta}_{\mathbf{i}})_{\mathbf{i} \in \mathbb{T}}$ is the RTP corresponding to $\check{\gamma}$ and $\underline{\nu}$. $(\omega_{\mathbf{i}}, \overline{\eta}_{\mathbf{i}})_{\mathbf{i} \in \mathbb{T}}$ is the RTP corresponding to $\check{\gamma}$ and $\overline{\nu}$.

Here, for any measurable map $g: S^k \to S$, we define $\check{g}: \mathcal{P}(S)^k \to \mathcal{P}(S)$ by

$$\check{g} :=$$
 the law of $g(X_1, \ldots, X_k)$,
where X_1, \ldots, X_k are independent with laws μ_1, \ldots, μ_k .

・ 同 ト ・ ヨ ト ・ ヨ ト

Endogeny

Define *n*-th moment measures

$$\rho^{(n)} := \mathbb{E}\big[\underbrace{\eta \otimes \cdots \otimes \eta}_{n \text{ times}}\big] \quad \text{where } \eta \text{ has law } \rho.$$

Now

$$(\omega_{\mathbf{i}}, X_{\mathbf{i}})_{\mathbf{i} \in \mathbb{T}} \text{ is endogenous } \Leftrightarrow \underline{\eta}_{\varnothing} = \overline{\eta}_{\varnothing}$$
$$\Leftrightarrow \underline{\nu} = \overline{\nu} \quad \Leftrightarrow \quad \underline{\nu}^{(2)} = \overline{\nu}^{(2)}.$$

Proposition [MSS '20] $(\rho_t)_{t\geq 0}$ solves the higher-level mean-field equation

$$\frac{\partial}{\partial t}\rho_t = \int_{\Omega} \mathbf{r}(\mathrm{d}\omega) \big\{ \mathbf{T}_{\check{\gamma}[\omega]}(\rho_t) - \rho_t \big\} \qquad (t \ge 0).$$

if and only if its *n*-th moment measures $(\rho_t^{(n)})_{t\geq 0}$ solve the *n*-variate mean-field equation.

Define **j** is *pivotal* if

$$\Gamma_{\mathbb{U}}(X_{\mathbf{j}}, (X_{\mathbf{i}})_{\mathbf{i}\in \nabla\mathbb{U}\setminus\{\mathbf{j}\}}) \neq \Gamma_{\mathbb{U}}(x, (X_{\mathbf{i}})_{\mathbf{i}\in \nabla\mathbb{U}\setminus\{\mathbf{j}\}}).$$

For some $x \neq X_j$ and \mathbb{U} such that $j \in \nabla \mathbb{U}$.

Johnson, Podder & Skerman (2020) observe that

$$J_n := \left\{ \mathbf{j} \in \nabla \mathbb{S}_{(n)} : \mathbf{j} \text{ is pivotal} \right\} \qquad (n \ge 0)$$

is a branching process. In a special setting, they prove $(J_n)_{n\geq 0}$ subcritical \Rightarrow endogeny. For a more restrictive class, endogeny is equivalent to extinction of $(J_n)_{n\geq 0}$.