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Recursive Tree Processes

A Recursive Distributional Equation is an equation of the form

X
D
= γ[ω](X1, . . . ,Xκ(ω)) (RDE),

where X1,X2, . . . are i.i.d. copies of X , independent of ω.

A law ν solves (RDE) iff

(i) Tt(ν) = ν (t ≥ 0) or (ii) T(ν) = ν.

Solutions to the RDE are the equivalent of invariant laws in the
mean-field setting.
For the cooperative contact process, solutions to the RDE are the
Bernoulli distributions νlow, νmid, νupp with density plow, pmid,
pupp.
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Recursive Tree Processes

For any rooted subtree U ⊂ T, let

∂U :=
{

i1 · · · in ∈ T : i1 · · · in−1 ∈ U, i1 · · · in 6∈ U
}

denote the boundary of U relative to T.

For each solution ν of (RDE), there exists a Recursive Tree
Process (RTP) (ωi,X i)i∈T, unique in law, such that:

(i) (ωi)i∈T are i.i.d. with law |r|−1r.

(ii) For finite U ⊂ T, the r.v.’s (X i)i∈∂U are i.i.d. with ν and
independent of (ωi)i∈U.

(iii) X i = γ[ωi]
(
X i1, . . . ,X iκ(ωi)

)
(i ∈ T).

If we add independent exponentially distributed lifetimes, then:

I Conditional on Ft , the r.v.’s (X i)i∈∇St are i.i.d. with law ν.
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n-Variate processes

For each n ≥ 1, a measurable map g : Sk → S gives rise to
n-variate map g (n) : (Sn)k → Sn defined as

g (n)
(
x1, . . . , xk) = g (n)

(
x1, . . . , xn) :=

(
g(x1), . . . , g(xn)

)
,

with x = (xm
i )m=1,...,n

i=1,...,k , xi = (x1
i , . . . , x

n
i ), xm = (xm

1 , . . . , x
m
k ).

We define an n-variate map

T(n)(µ(n)) := |r|−1

∫
Ω
r(dω)Tγ(n)[ω](µ

(n)),

which acts on probability measures µ(n) on Sn.
The n-variate mean-field equation

∂
∂tµ

(n)
t =

∫
Ω
r(dω)

{
Tγ(n)[ω](µ

(n)
t )− µ(n)

t

}
(t ≥ 0).

describes the mean-field limit of n coupled processes that are
constructed using the same stochastic flow (Xs,u)s≤u.
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n-Variate processes

Psym(Sn) space of probability measures on Sn that are symmetric
under a permutation of the coordinates.

Sn
diag {x ∈ Sn : x1 = · · · = xn}

P(Sn)µ space of probability measures on Sn whose
one-dimensional marginals are all equal to µ.

I If (µ
(n)
t )t≥0 solves the n-variate equation, then its

m-dimensional marginals solve the m-variate equation.

I µ
(n)
0 ∈ Psym(Sn) implies µ

(n)
t ∈ Psym(Sn) (t ≥ 0).

I µ
(n)
0 ∈ P(Sn

diag) implies µ
(n)
t ∈ P(Sn

diag) (t ≥ 0).

I If T(ν) = ν, then µ
(n)
0 ∈ P(Sn)ν implies µ

(n)
t ∈ P(Sn)ν .
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n-Variate processes

If ν = P[X ∈ · ] solves the RDE T(ν) = ν, then

ν(n) := P
[
(X , . . . ,X︸ ︷︷ ︸

n times

) ∈ ·
]

solves the n-variate RDE T(n)(ν(n)) = ν(n).

Questions:

I Is ν(n) a stable fixed point of the n-variate equation?

I Is ν(n) the only solution in Psym(Sn)ν of the n-variate RDE?
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Endogeny

Aldous and Bandyopadyay (2005) say that an RTP is endogenous if

X∅ is measurable w.r.t. the σ-field generated by (ωi)i∈T.

Theorem [AB ’05 & MSS ’20] The following statements are
equivalent:

(i) The RTP corresponding to ν is endogenous.

(ii) T
(n)
t (µ) =⇒

t→∞
ν(n) for all µ ∈ P(Sn)ν and n ≥ 1.

(iii) ν(2) is the only solution in Psym(S2)ν of the bivariate RDE.

In our example, the RTPs for νlow, νupp are endogenous,
but the RTP corresponding to νmid is not.
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Endogeny

Proof (main idea) Conditional on (ωi)i∈T, let (X ′i)i∈T be an
independent copy of (X i)i∈T. Then

ν(2) := P
[
(X∅,X

′
∅) ∈ ·

]
solves the bivariate RDE and endogeny is equivalent to
ν(2) = ν(2).
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Endogeny

Let (ωi,X i)i∈T be the RTP corresponding to γ and ν.

Define random measures ηi and ηi (i ∈ T) by

ηi := P
[
X i ∈ ·

∣∣(ωij)j∈T
]

and ηi := δX i
.

Let ν := P[η∅ ∈ · ] and ν := P[η∅ ∈ · ].

(ωi, ηi)i∈T is the RTP corresponding to γ̌ and ν.
(ωi, ηi)i∈T is the RTP corresponding to γ̌ and ν.

Here, for any measurable map g : Sk → S , we define
ǧ : P(S)k → P(S) by

ǧ := the law of g(X1, . . . ,Xk),
where X1, . . . ,Xk are independent with laws µ1, . . . , µk .
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Endogeny

Define n-th moment measures

ρ(n) := E
[
η ⊗ · · · ⊗ η︸ ︷︷ ︸

n times

]
where η has law ρ.

Now
(ωi,X i)i∈T is endogenous ⇔ η∅ = η∅

⇔ ν = ν ⇔ ν(2) = ν(2).

Proposition [MSS ’20] (ρt)t≥0 solves the higher-level mean-field
equation

∂
∂t ρt =

∫
Ω
r(dω)

{
Tγ̌[ω](ρt)− ρt

}
(t ≥ 0).

if and only if its n-th moment measures (ρ
(n)
t )t≥0 solve the

n-variate mean-field equation.
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Pivotals

Define j is pivotal if

ΓU
(
X j, (X i)i∈∇U\{j}

)
6= ΓU

(
x , (X i)i∈∇U\{j}

)
.

For some x 6= X j and U such that j ∈ ∇U.

Johnson, Podder & Skerman (2020) observe that

Jn :=
{
j ∈ ∇S(n) : j is pivotal

}
(n ≥ 0)

is a branching process. In a special setting, they prove (Jn)n≥0

subcritical ⇒ endogeny. For a more restrictive class, endogeny is
equivalent to extinction of (Jn)n≥0.
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