Interacting Particle Systems: Almost sure uniqueness, pathwise duality, and the mean-field limit

Jan M. Swart

Lecture 6: Frozen percolation

Frozen percolation

Let (V, E) be a countably infinite, connected graph with vertex set V and edge set E. For $x \in \{0, 1\}^E$ and $v \in V$, we write $v \xrightarrow{x} \infty$ if there exists $v = v_0, v_1, v_2, \ldots$, all different, such that $x(\{v_{k-1}, v_k\}) = 0$ for all $k \ge 1$. For each $\{v, w\} \in E$, we define $\chi_{\{v,w\}} : \{0,1\}^E \to \{0,1\}$ by $\chi_{\{v,w\}}(x) := \begin{cases} 1 & \text{if } v \xrightarrow{x} \infty \text{ or } w \xrightarrow{x} \infty, \\ 0 & \text{otherwise.} \end{cases}$

For each edge $e \in E$, we define $\mathtt{act}_e: \{0,1\}^E o \{0,1\}^E$ by

$$\mathtt{act}_e(x)(f) := \left\{ egin{array}{ll} \chi_e(x) & \mbox{if } f = e, \ \chi(f) & \mbox{if } f \neq e. \end{array}
ight.$$

Frozen percolation $(X_t)_{t\geq 0}$ is defined by $X_0 := \underline{1}$ and the generator

$$Gf(x) := \sum_{e \in E} \{f(\operatorname{act}_e) - f(x)\}.$$

Wait a minute! There is no way that act_e is a local map!

So it is not clear if frozen percolation *exists*, if it is *unique in law*, or even *almost surely unique*.

David Aldous (2000) has shown that frozen percolation on the infinite 3-regular tree exists, and under suitable additional assumptions, is unique in law.

Itai Benjamini & Oded Schramm (2001) have shown that, by contrast, on \mathbb{Z}^2 , frozen percolation does not exist.

The problem is wide open on \mathbb{Z}^d for $d \geq 3$.

向下 イヨト イヨト

< (T) >

→ E → < E →</p>

▲□ ▶ ▲ □ ▶ ▲ □ ▶

<回と < 回と < 回と

< (T) >

→ E → < E →</p>

▲□ ▶ ▲ □ ▶ ▲ □ ▶

▲圖▶ ▲屋▶ ▲屋▶

▲□ ▶ ▲ □ ▶ ▲ □ ▶

|| (同) || (三) || (-) ||

- 4 同 ト 4 三 ト 4 三 ト

We assign i.i.d. Unif[0, 1] activation times $(\tau_i)_{i \in \mathbb{T}}$ to the oriented edges.

We fix a set $\Xi \subset (0, 1]$ of *freezing times*.

Initially, all edges are closed.

We assign i.i.d. Unif[0, 1] activation times $(\tau_i)_{i \in \mathbb{T}}$ to the oriented edges.

We fix a set $\Xi \subset (0, 1]$ of *freezing times*.

- Initially, all edges are closed.
- > At its activation time, an edge opens, provided it is not frozen.

We assign i.i.d. Unif[0, 1] activation times $(\tau_i)_{i \in \mathbb{T}}$ to the oriented edges.

We fix a set $\Xi \subset (0, 1]$ of *freezing times*.

- Initially, all edges are closed.
- At its activation time, an edge opens, provided it is not frozen.
- At each freezing time t ∈ Ξ, all closed edges for which the tree above it percolates are frozen.

向下 イヨト イヨト

We assign i.i.d. Unif[0, 1] activation times $(\tau_i)_{i \in \mathbb{T}}$ to the oriented edges.

We fix a set $\Xi \subset (0, 1]$ of *freezing times*.

- Initially, all edges are closed.
- At its activation time, an edge opens, provided it is not frozen.
- At each freezing time t ∈ Ξ, all closed edges for which the tree above it percolates are frozen.

Special case $\Xi=(0,1]$ means edges are frozen as soon as the tree above them percolates.

・ロト ・四ト ・ヨト ・ヨト

< ∃⇒

伺▶ ▲ 臣▶

伺▶ ▲ 臣▶

伺▶ ▲ 臣▶

伺▶ ▲ 臣▶

∢ ≣⇒

伺▶ ▲ 臣▶

伺▶ ▲ 臣▶

伺▶ ▲ 臣▶

伺▶ ▲ 臣▶

$$\begin{split} \mathbb{A}_t &:= \big\{ \mathbf{i} \in \mathbb{T} : \tau_{\mathbf{i}} \leq t \big\}, \\ \mathbb{F} &:= \big\{ \mathbf{i} \in \mathbb{T} : \mathbf{i} \text{ frozen at the final time } 1 \big\}. \end{split}$$

Then $\mathbb{A}_t \setminus \mathbb{F}$ are the open edges at time *t*.

We write $\mathbf{i} \stackrel{\mathbb{A}_t \setminus \mathbb{F}}{\longrightarrow} \infty$ if the tree above \mathbf{i} percolates at time t.

ヘロト ヘ回ト ヘヨト ヘヨト

The Frozen Percolation Equation (FPE) reads:

$$\mathbb{F} = \big\{ \mathbf{i} \in \mathbb{T} : \mathbf{i} \stackrel{\mathbb{A}_t \setminus \mathbb{F}}{\longrightarrow} \infty \text{ for some } t \in (\mathbf{0}, \tau_{\mathbf{i}}] \cap \Xi \big\}.$$

If Ξ is finite, then (FPE) has a solution, which is a.s. unique.

Questions for infinite Ξ :

- Existence of solutions?
- Uniqueness of solutions?
- Uniqueness in which sense?

Distributional uniqueness

On the oriented binary tree, we impose *natural conditions*: The subtrees G_1 , G_2 , G_3 should be i.i.d., equally distributed with the original tree G, and independent of U. **[Ráth, S., Szőke '21]** For each closed $\Xi \subset (0,1]$, (FPE) has a solution that satisfies the natural conditions, and the joint law of $((\tau_i)_{i\in\mathbb{T}},\mathbb{F})$ is uniquely determined.

Note The case $\Xi = (0, 1]$ was essentially treated in [Aldous '00].

How about almost sure uniqueness?

Let $\left[i\right]$ denote the starting vertex of the edge i. The freezing time of the root

$$Y_{[arnothing]} := \inf \left\{ t \in \Xi : [arnothing] \stackrel{\mathbb{A}_t \setminus \mathbb{F}}{\longrightarrow} \infty
ight\}$$

solves the Recursive Distributional Equation (RDE)

For each closed $\Xi \subset (0, 1]$, there exists a unique solution ρ_{Ξ} to (RDE) that yields a solution \mathbb{F} of (FPE).

Aldous (2000) proved

$$\rho_{(0,1]}(\mathrm{d} y) = \frac{\mathrm{d} y}{2y^2} \mathbf{1}_{\left[\frac{1}{2}, 1\right]}(y) \qquad \rho(\{\infty\}) = \frac{1}{2}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

For
$$0 < \theta < 1$$
, set $\Xi_{\theta} := \{\theta^n : n \ge 0\}$ and set $\Xi_1 := (0, 1]$.

[Ráth, S., Szőke, Terpai '19 & '21] There exists a parameter $\theta^* = 0.636...$ such that the RTP corresponding to $\rho_{\Xi_{\theta}}$ is endogenous iff $\theta < \theta^*$.

Consequence Under the natural conditions, the set of frozen edges \mathbb{F} is a.s. uniquely determined by the freezing times $(\tau_i)_{i \in \mathbb{T}}$ iff $\theta < \theta^*$.

In particular, the process constructed by Aldous (2000) is not a.s. unique.

向下 イヨト イヨト