Interacting Particle Systems: Almost sure uniqueness, pathwise duality, and the mean-field limit

Jan M. Swart

Lecture 6: Frozen percolation

Frozen percolation

Let (V, E) be a countably infinite, connected graph with vertex set V and edge set E. For $x \in\{0,1\}^{E}$ and $v \in V$, we write $v \xrightarrow{x} \infty$ if there exists $v=v_{0}, v_{1}, v_{2}, \ldots$, all different, such that $x\left(\left\{v_{k-1}, v_{k}\right\}\right)=0$ for all $k \geq 1$.
For each $\{v, w\} \in E$, we define $\chi_{\{v, w\}}:\{0,1\}^{E} \rightarrow\{0,1\}$ by

$$
\chi_{\{v, w\}}(x):= \begin{cases}1 & \text { if } v \xrightarrow{x} \infty \text { or } w \xrightarrow{x} \infty \\ 0 & \text { otherwise } .\end{cases}
$$

For each edge $e \in E$, we define act $_{e}:\{0,1\}^{E} \rightarrow\{0,1\}^{E}$ by

$$
\operatorname{act}_{e}(x)(f):= \begin{cases}\chi_{e}(x) & \text { if } f=e \\ x(f) & \text { if } f \neq e\end{cases}
$$

Frozen percolation $\left(X_{t}\right)_{t \geq 0}$ is defined by $X_{0}:=\underline{1}$ and the generator

$$
G f(x):=\sum_{e \in E}\left\{f\left(\mathrm{act}_{e}\right)-f(x)\right\}
$$

Frozen percolation

Wait a minute! There is no way that act_{e} is a local map!
So it is not clear if frozen percolation exists, if it is unique in law, or even almost surely unique.

David Aldous (2000) has shown that frozen percolation on the infinite 3-regular tree exists, and under suitable additional assumptions, is unique in law.

Itai Benjamini \& Oded Schramm (2001) have shown that, by contrast, on \mathbb{Z}^{2}, frozen percolation does not exist.
The problem is wide open on \mathbb{Z}^{d} for $d \geq 3$.

Frozen percolation on the 3-regular tree

The oriented binary tree

Frozen percolation on the (unoriented) 3-regular tree can be translated into frozen percolation on the oriented binary tree \mathbb{T} consisting of all words $\mathbf{i}=i_{1} \cdots i_{n}$ made of the alphabet $\{1,2\}$.

We assign i.i.d. Unif[0, 1] activation times $\left(\tau_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$ to the oriented edges.

We fix a set $\equiv \subset(0,1]$ of freezing times.

- Initially, all edges are closed.

The oriented binary tree

Frozen percolation on the (unoriented) 3-regular tree can be translated into frozen percolation on the oriented binary tree \mathbb{T} consisting of all words $\mathbf{i}=i_{1} \cdots i_{n}$ made of the alphabet $\{1,2\}$.

We assign i.i.d. Unif[0, 1] activation times $\left(\tau_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$ to the oriented edges.

We fix a set $\equiv \subset(0,1]$ of freezing times.

- Initially, all edges are closed.
- At its activation time, an edge opens, provided it is not frozen.

The oriented binary tree

Frozen percolation on the (unoriented) 3-regular tree can be translated into frozen percolation on the oriented binary tree \mathbb{T} consisting of all words $\mathbf{i}=i_{1} \cdots i_{n}$ made of the alphabet $\{1,2\}$.

We assign i.i.d. Unif[0, 1] activation times $\left(\tau_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$ to the oriented edges.

We fix a set $\equiv \subset(0,1]$ of freezing times.

- Initially, all edges are closed.
- At its activation time, an edge opens, provided it is not frozen.
- At each freezing time $t \in$ 三, all closed edges for which the tree above it percolates are frozen.

The oriented binary tree

Frozen percolation on the (unoriented) 3-regular tree can be translated into frozen percolation on the oriented binary tree \mathbb{T} consisting of all words $\mathbf{i}=i_{1} \cdots i_{n}$ made of the alphabet $\{1,2\}$.

We assign i.i.d. Unif[0, 1] activation times $\left(\tau_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$ to the oriented edges.

We fix a set $\equiv \subset(0,1]$ of freezing times.

- Initially, all edges are closed.
- At its activation time, an edge opens, provided it is not frozen.
- At each freezing time $t \in$ 三, all closed edges for which the tree above it percolates are frozen.
Special case $\bar{\equiv}=(0,1]$ means edges are frozen as soon as the tree above them percolates.

Frozen percolation on the oriented binary tree

First time $t \in \Xi$.

Frozen percolation on the oriented binary tree

Frozen percolation on the oriented binary tree

Frozen percolation on the oriented binary tree

Second time $t \in$.

Frozen percolation on the oriented binary tree

Third time $t \in \equiv$.

Frozen percolation on the oriented binary tree

Frozen percolation on the oriented binary tree

Frozen percolation on the oriented binary tree

Notation

$$
\begin{aligned}
\mathbb{A}_{t} & :=\left\{\mathbf{i} \in \mathbb{T}: \tau_{\mathbf{i}} \leq t\right\}, \\
\mathbb{F} & :=\{\mathbf{i} \in \mathbb{T}: \mathbf{i} \text { frozen at the final time } 1\} .
\end{aligned}
$$

Then $\mathbb{A}_{t} \backslash \mathbb{F}$ are the open edges at time t.
We write $\mathbf{i} \xrightarrow{A_{t} \backslash \mathbb{P}} \infty$ if the tree above \mathbf{i} percolates at time t.

The Frozen Percolation Equation

The Frozen Percolation Equation (FPE) reads:

$$
\mathbb{F}=\left\{\mathbf{i} \in \mathbb{T}: \mathbf{i} \xrightarrow{\mathbb{A}_{t} \backslash \mathbb{F}} \infty \text { for some } t \in\left(0, \tau_{\mathbf{i}}\right] \cap \equiv\right\} .
$$

If \equiv is finite, then (FPE) has a solution, which is a.s. unique.
Questions for infinite $\overline{\text { E: }}$

- Existence of solutions?
- Uniqueness of solutions?
- Uniqueness in which sense?

Distributional uniqueness

On the oriented binary tree, we impose natural conditions: The subtrees G_{1}, G_{2}, G_{3} should be i.i.d., equally distributed with the original tree G, and independent of U.

Distributional uniqueness

[Ráth, S., Szöke '21] For each closed $\equiv \subset(0,1]$, (FPE) has a solution that satisfies the natural conditions, and the joint law of $\left(\left(\tau_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}, \mathbb{F}\right)$ is uniquely determined.

Note The case $\equiv=(0,1]$ was essentially treated in [Aldous '00].
How about almost sure uniqueness?

Freezing times

Let [i] denote the starting vertex of the edge \mathbf{i}. The freezing time of the root

$$
Y_{[\varnothing]}:=\inf \left\{t \in \equiv:[\varnothing] \xrightarrow{\mathbb{A}_{t} \backslash \mathbb{F}} \infty\right\}
$$

solves the Recursive Distributional Equation (RDE)

$$
Y_{[\varnothing]} \stackrel{\mathcal{D}}{=} \gamma\left(\tau_{\varnothing}, Y_{[1]}, Y_{[2]}\right):= \begin{cases}Y_{[1]} \wedge Y_{[2]} & \text { if } \tau_{\varnothing}<Y_{[1]} \wedge Y_{[2]} \\ \infty & \text { otherwise } .\end{cases}
$$

For each closed $\equiv \subset(0,1]$, there exists a unique solution $\rho \equiv$ to (RDE) that yields a solution \mathbb{F} of (FPE).
Aldous (2000) proved

$$
\rho_{(0,1]}(\mathrm{d} y)=\frac{\mathrm{d} y}{2 y^{2}} 1_{\left[\frac{1}{2}, 1\right]}(y) \quad \rho(\{\infty\})=\frac{1}{2} .
$$

Almost sure uniqueness

For $0<\theta<1$, set $\Xi_{\theta}:=\left\{\theta^{n}: n \geq 0\right\}$ and set $\Xi_{1}:=(0,1]$.
[Ráth, S., Szöke, Terpai '19 \& '21] There exists a parameter $\theta^{*}=0.636 \ldots$ such that the RTP corresponding to $\rho_{\Xi_{\theta}}$ is endogenous iff $\theta<\theta^{*}$.

Consequence Under the natural conditions, the set of frozen edges \mathbb{F} is a.s. uniquely determined by the freezing times $\left(\tau_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$ iff $\theta<\theta^{*}$.

In particular, the process constructed by Aldous (2000) is not a.s. unique.

