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Frozen percolation

Let (V ,E ) be a countably infinite, connected graph with vertex set
V and edge set E . For x ∈ {0, 1}E and v ∈ V , we write v

x−→∞
if there exists v = v0, v1, v2, . . ., all different, such that
x({vk−1, vk}) = 0 for all k ≥ 1.
For each {v ,w} ∈ E , we define χ{v ,w} : {0, 1}E → {0, 1} by

χ{v ,w}(x) :=

{
1 if v

x−→∞ or w
x−→∞,

0 otherwise.

For each edge e ∈ E , we define acte : {0, 1}E → {0, 1}E by

acte(x)(f ) :=

{
χe(x) if f = e,

x(f ) if f 6= e.

Frozen percolation (Xt)t≥0 is defined by X0 := 1 and the generator

Gf (x) :=
∑
e∈E

{
f
(
acte

)
− f
(
x
)}
.
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Frozen percolation

Wait a minute! There is no way that acte is a local map!

So it is not clear if frozen percolation exists, if it is unique in law,
or even almost surely unique.

David Aldous (2000) has shown that frozen percolation on the
infinite 3-regular tree exists, and under suitable additional
assumptions, is unique in law.

Itai Benjamini & Oded Schramm (2001) have shown that, by
contrast, on Z2, frozen percolation does not exist.

The problem is wide open on Zd for d ≥ 3.
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Frozen percolation on the 3-regular tree
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The oriented binary tree

Frozen percolation on the (unoriented) 3-regular tree can be
translated into frozen percolation on the oriented binary tree T
consisting of all words i = i1 · · · in made of the alphabet {1, 2}.

We assign i.i.d. Unif[0, 1] activation times (τi)i∈T to the oriented
edges.

We fix a set Ξ ⊂ (0, 1] of freezing times.

I Initially, all edges are closed.

I At its activation time, an edge opens, provided it is not frozen.

I At each freezing time t ∈ Ξ, all closed edges for which the
tree above it percolates are frozen.

Special case Ξ = (0, 1] means edges are frozen as soon as the tree
above them percolates.
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Notation

At :=
{

i ∈ T : τi ≤ t
}
,

F :=
{

i ∈ T : i frozen at the final time 1
}
.

Then At\F are the open edges at time t.

We write i
At\F−→ ∞ if the tree above i percolates at time t.
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The Frozen Percolation Equation

The Frozen Percolation Equation (FPE) reads:

F =
{

i ∈ T : i
At\F−→ ∞ for some t ∈ (0, τi] ∩ Ξ

}
.

If Ξ is finite, then (FPE) has a solution, which is a.s. unique.

Questions for infinite Ξ:

I Existence of solutions?

I Uniqueness of solutions?

I Uniqueness in which sense?
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Distributional uniqueness

G1 G2

G3

U

On the oriented binary tree, we impose natural conditions:
The subtrees G1,G2,G3 should be i.i.d., equally distributed with
the original tree G , and independent of U.
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Distributional uniqueness

[Ráth, S., Szőke ’21] For each closed Ξ ⊂ (0, 1], (FPE) has a
solution that satisfies the natural conditions, and the joint law of(
(τi)i∈T,F

)
is uniquely determined.

Note The case Ξ = (0, 1] was essentially treated in [Aldous ’00].

How about almost sure uniqueness?
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Freezing times

Let [i] denote the starting vertex of the edge i. The freezing time
of the root

Y[∅] := inf
{
t ∈ Ξ : [∅]

At\F−→ ∞
}

solves the Recursive Distributional Equation (RDE)

Y[∅]
D
= γ(τ∅,Y[1],Y[2]) :=

{
Y[1] ∧ Y[2] if τ∅ < Y[1] ∧ Y[2],

∞ otherwise.

For each closed Ξ ⊂ (0, 1], there exists a unique solution ρΞ to
(RDE) that yields a solution F of (FPE).

Aldous (2000) proved

ρ(0,1](dy) =
dy

2y2
1

[ 1
2 , 1]

(y) ρ
(
{∞}

)
= 1

2 .
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Almost sure uniqueness

For 0 < θ < 1, set Ξθ := {θn : n ≥ 0} and set Ξ1 := (0, 1].

[Ráth, S., Szőke, Terpai ’19 & ’21] There exists a parameter
θ∗ = 0.636 . . . such that the RTP corresponding to ρΞθ

is
endogenous iff θ < θ∗.

Consequence Under the natural conditions, the set of frozen
edges F is a.s. uniquely determined by the freezing times (τi)i∈T iff
θ < θ∗.

In particular, the process constructed by Aldous (2000) is not a.s.
unique.
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