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Abstract This is a short advanced course in Markov chains, i.e., Markov
processes with discrete space and time. The first chapter recalls, with-
out proof, some of the basic topics such as the (strong) Markov prop-
erty, transience, recurrence, periodicity, and invariant laws, as well as
some necessary background material on martingales. The main aim of
the lecture is to show how topics such as harmonic functions, coupling,
Perron-Frobenius theory, Doob transformations and intertwining are all
related and can be used to study the properties of concrete chains, both
qualitatively and quantitatively. In particular, the theory is applied to
the study of first exit problems and branching processes.



Notation
N natural numbers {0, 1,...}
N4 positive natural numbers {1,2,...}
N NU {oo}
7 integers
Z Z U {—o0,00}
Q rational numbers
R real numbers
R extended real numbers [—o00, 00|
C complex numbers
B(E) Borel-o-algebra on a topological space E
14 indicator function of the set A
ACB A is a subset of B, which may be equal to B
A° complement of A
A\B set difference
A closure of A
int(A) interior of A
(Q, F,P) underlying probability space
w typical element of {2
E expectation with respect to P
o(...) o-field generated by sets or random variables
Ifle supremumnorm | ]l == sup, |f(z)]
p<Lv 1 is absolutely continuous w.r.t. v
fe <<gr  lmfi/gr =0
fe~ g lim fi/gr =1
o(n) any function such that o(n)/n — 0
O(n) any function such that sup, o(n)/n < oo
Oy delta measure in x
1RV product measure of p and v
= weak convergence of probability laws
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Chapter 0

Preliminaries

0.1 Stochastic processes

Let I be a (possibly infinite) interval in Z. By definition, a stochastic process
with discrete time is a collection of random variables X = (Xj)res, defined on
some underlying probability space (€2, F,P) and taking values in some measurable
space (E,E). We call the random function

IS5k~ X (w)eE

the sample path of the process X. The sample path of a discrete-time stochastic
process is in fact itself a random variable X = (X})xes, taking values in the product
space (E!, &), where

E' = {2 = (21)per : 21 € EVE € I}

is the space of all functions x : I — E and &' denotes the product-o-field. It
is well-known that a probability law on (B!, &) is uniquely characterized by its
finite-dimensional marginals, i.e., even if [ is infinite, the law of the sample path
X is uniquely determined by the finite dimensional distributions

P[(Xk, ..., Xksn) €-]  ({k,....k+n} CI).

of the process. Conversely, if (E, &) is a Polish space equipped with its Borel-o-
field, then by the Daniell-Kolmogorov extension theorem, any consistent collection
of probability measures on the finite-dimensional product spaces (E”,£”), with
J C I a finite interval, uniquely defines a probability measure on (EZ, ET). Polish

5
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spaces include many of the most commonly used spaces, such as countable spaces
equipped with the discrete topology, R?, separable Banach spaces, and much more.
Moreover, open or closed subsets of Polish spaces are Polish, as are countable
carthesian products of Polish spaces, equipped with the product topology.

0.2 Filtrations and stopping times

As before, let I be an interval in Z. A discrete filtration is a collection of o-fields
(Fi)rer such that Fj, C Froq for all k,k+1 € I. If X = (Xy)ges is a stochastic
process, then

f,‘j(:za({Xj:jGI,jgk}) (kel)

is a filtration, called the filtration generated by X. For any filtration (Fy)ges, we

set
Foo = a( U .Fk).

kel
In particular, FX = o((Xy)rer)-

A stochastic process X = (Xg)rer is adapted to a filtration (Fy)rer if Xy is Fp-
measurable for each k € I. Then (F{¥)ies is the smallest filtration that X is
adapted to, and X is adapted to a filtration (Fy,)xes if and only if FX C Fy, for all
kel

Let (Fy)rer be a filtration. An Fy- stopping time is a function 7 : Q@ — I U {oc}
such that the {0, 1}-valued process k +— 1.<jy is Fr-adapted. Obviously, this is
equivalent to the statement that

{Tgk}EFk (kEI)

If (Xy)ger is an E-valued stochastic process and A C E is measurable, then the
first entrance time of X into A

TAZ:inf{/{iGIZXkEA}

with inf ) := oo is an F{*-stopping time. More generally, the same is true for the
first entrance time of X into A after o

Toa:=inf{k el : k>0 X;ecA}

where o is an Fi-stopping time. Deterministic times are stopping times (w.r.t.
any filtration). Moreover, if o, 7 are Fi-stopping times, then also

oVT, ONT



0.3. MARTINGALES 7

are Fi-stopping times. If f: U {oo} — I U{oo} is measurable and f(k) > k for
all k € I, and 7 is an Fy-stopping time, then also f(7) is an Fj-stopping time.

If X = (Xy)kers is an Fp-adapted stochastic process and 7 is an Fi-stopping time,
then the stopped process

w — ka-(w) (w) (/f S ])

is also an Fi-adapted stochastic process. If 7 < oo a.s., then moreover w —
X+ (w)(w) is a random variable. If 7 is an Fj-stopping time defined on some filtered

probability space (2, F, (Fi)rer, P) (with Fr, C F for all k € I), then the o-field of
events observable before T is defined as

Fri={AeFu:An{r <k} e F,Vkel}.

Exercise 0.1 If (Fy)kes is a filtration and o, 7 are Fy-stopping times, then show
that .Fo-/\T :fg/\f:r.

Exercise 0.2 Let (Fy)rer be a filtration, let X = (Xj)rer be an Fi-adapted
stochastic process and let 7 be an F;X-stopping time. Let Y := Xy, denote the
stopped process Show that the filtration generated by Y is given by

Fo =Fine (k€ TU{oc}).
In particular, since this formula holds also for k = oo, one has
FX =0 ((Xenr)rer),

i.e., FX is the o-algebra generated by the stopped process.

0.3 Martingales

By definition, a real stochastic process M = (My)rer, where I C Z is an interval,
is an Fi-submartingale with respect to some filtration (Fy)res if M is Fr-adapted,
E[|My|] < oo for all k € I, and

EMei|F > M, ({kk+1} C ). (0.1)

We say that M is a supermartingale if the reverse inequality holds, i.e., if —M
is a submartingale, and a martingale if equality holds in (0.1)), i.e., M is both a
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submartingale and a supermartingale. By induction, it is easy to show that (0.1))
holds more generally when k,k + 1 are replaced by more general times k,m € [
with £ < m.

If M is an Fi-submartingale and (F},)k>0 is a smaller filtration (i.e., F; C Fy, for
all k € I) that M is also adapted to, then

E[My11|F;) = E[E[Myn | Fil|F) > BIMy|F) = My ({k,k+1} C ),

which shows that M is also an Fj-submartingale. In particular, a stochastic pro-
cess M is a submartingale with respect to some filtration if and only if it is a
submartingale with respect to its own filtration (F})xer. In this case, we simply
say that M is a submartingale (resp. supermartingale, martingale).

Let (Fi)rer be a filtration and let (Fi_1)ker be the filtration shifted one step to
left, where we set Fj_; := {0,Q} if k — 1 ¢ I. Let X = (Xj)resr be a real Fy-
adapted stochastic process such that E[|X|] < oo for all k& € I. By definition,
a compensator of X w.r.t. the filtration (Fy)res is an Fj_j-adapted real process
K = (Kk)ke[ such that EHK/‘?H < oo for all £k € I and (Xk — Kk)ke[ is an J-
martingale. It is not hard to show that K is a compensator if and only if K is
Fi—1-adapted, E[|K|] < oo for all k& € I and

Kiy1 — K =E[ X | Rl - X ({kk+1} C ).

It follows that any two compensators must be equal up to an additive (o, Fr—1-
measurable random constant. In particular, if I = N, then because of the way
we have defined F_;, such a constant must be deterministic. In this case, it is
customary to put Ky := 0, i.e., we call

n

Kn = Z (E [Xk | Fk—l] - Xk—l) (n Z O)

the (unique) compensator of X with respect to the filtration (Fj)gen. We note
that X is a submartingale if and only if its compensator is a.s. nondecreasing.

The proof of the following basic fact can be found in, e.g., [Lach12, Thm 2.4].
Proposition 0.3 (Optional stopping) Let I C Z be an interval, (Fi)rer @

filtration, let T be an Fy-stopping time and let (My)ger be an Fy-submartingale.
Then the stopped process (Mp:)rer is an Fr-submartingale.

The following proposition is a special case of [Lachl2l Prop. 2.1].
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Proposition 0.4 (Conditioning on events up to a stopping time) Let [ C Z
be an interval, (Fy)rer a filtration, let T be an Fi-stopping time and let (My)rer
be an Fy-submartingale. Then

E[Mk | kar} > Minr (kel).

0.4 Martingale convergence

If F,F (k> 0) are o-fields, then we say that Fy 1 F if Fr C Fryq (k> 0) and
F = 0(U>o Fr)- Note that this is the same as saying that (F)r>o is a filtration
and F = F,,, as we have defined it above. Similarly, if F, F, (k > 0) are o-fields,
then we say that F, | F if i, O Fiqq (K > 0) and F = (o0 Fr-

Exercise 0.5 Let (Fy)ren be a filtration and let 7 be an Fi-stopping time. Show
that
Fire TFr as kT oo.

The following proposition says that conditional expectations are continuous w.r.t.
convergence of o-fields. A proof can be found in, e.g., [Lach12), Prop. 4.12], [Chu74,
Thm 9.4.8] or [Bil86, Thms 3.5.5 and 3.5.7].

Proposition 0.6 (Continuity in o-field) Let X be a real random variable de-
fined on a probability space (Q, F,P) and let Foo, Fr C F (k > 0) be o-fields.
Assume that E[|X|] < oo and Fi, T Foo or Fr 4 Foo. Then

E[X | Fi = E[X | Fool a.s. and in L*-norm.
—00

Note that if F t F and E[|X|] < oo, then M;, := E[X | Fi] defines a martin-
gale. Proposition says that such a martingale always converges. Conversely,
we would like to know for which martingales (M} )x>o there exists a final element
X such that My = E[X | F;] . This leads to the problem of martingale conver-
gence. Since each submartingale is the sum of a martingale and a nondecreasing
compensator and since nondecreasing functions always converge, we may more or
less equivalently ask the same question for submartingales. For a proof of the
following fact we refer to, e.g., [Lach12, Thm 4.1].

Proposition 0.7 (Submartingale convergence) Let (My)ren be a submartin-
gale such that sup, 5o E[M}, V 0] < co. Then there exists a random variable My
with E[|My|] < oo such that

M, — M, a.s.

k—oo
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In particular, this implies that nonnegative supermartingales converge almost
surely. The same is not true for nonnegative submartingales: a counterexample is
one-dimensional random walk reflected at the origin.

In general, even if M is a martingale, it need not be true that E[M.| > E[M] (a
counterexample is random walk stopped at the origin). We recall that a collection
of random variables (X )res is uniformly integrable if

lim supE||X;|1 2 = 0.

A sup Xk g2
Sufficientl] for this is that sup,e; E[t)(]X,])] < oo, where ¢ : [0,00) — [0,00) is
nonnegative, increasing, convex, and satisfies lim, . ¥ (r)/r = co. Possible choices
are for example 1 (r) = r? or ¥(r) = (1 +7r)log(1 4+ r) — r. Tt is well-known that
uniform integrability and a.s. convergence of a sequence of real random variables

imply convergence in Li-norm. For submartingales, the following result is known
[Lach12l Thm 4.8].

Proposition 0.8 (Final element) In addition to the assumptions of Proposi-
tion assume that (My)gen is uniformly integrable. Then

E[|Mi = Ms|] — 0 as.

and E[Myo|Fy] > My, for all k > 0. If M is a martingale, then M, = E[M.|F]
for all k > 0.

Note that if M is a martingale, then the relation M) = E[My|Fy| shows that all
information about the process M is hidden in its final element M.

Combining Propositions and [0.3] we see that if 7 is an Fj-stopping time such
that 7 < 0o a.s., (My)gen is an Fp-submartingale, and (Mya,)ren is uniformly
integrable, then E[M,] = limy_,o E[Mgr,| > M.

There also exist convergence results for ‘backward’ martingales (M})re{—cc,...0}-

0.5 Markov chains

Proposition 0.9 (Markov property) Let (E, &) be a measurable space, let I C
Z be an interval and let (Xy)ger be an E-valued stochastic process. For eachn € I,

1By the De la Valle-Poussin theorem, this condition is in fact also necessary.
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set I :={kel:k<n}and I} :={kel:k>n}, andlet F; = 0((Xp)pes-)
be the filtration generated by X. Then the following conditions are equivalent.

(i) P{(X)per € A (Xi)pers € B Xa]
=P[(Xi)pes- € A| Xa]P[(Xi)perr € B| Xn] a.s
forall Ac &, B 6513, nel.
(i) P[(Xp)perr € B|FX] =P[(Xi)pers € B| X,] as. forall BE EW nel.

(ili) P[Xp1 € C|FY] =P[Xns1 € C| X, as. forallC €&, {n,n+1} C 1.

Remarks Property (i) says that the past and future are conditionally independent
given the present. Property (ii) says that the future depends on the past only
through the present, i.e., after we condition on the present, conditioning on the
whole past does not give any extra information. Property (iii) says that it suffices
to check (ii) for single time steps.

Proof of Proposition Set G := 0((Xk)per+)- If (i) holds, then, for any
Ae ]-",f( and B € fo, we have
E[14P[B|X,]] = E[E[14P[B| X,] | X,]]
=E[E[La| X,JP[B| X,]] = E[P[A| X,JP[B | X,]]

UE[P[AN B|X,]] =P[AN B,

where in the second equality we have pulled the o (X, )-measurable random variable
P[B| X,] out of the conditional expectation. Since this holds for arbitrary A €
FX and since P[B|X,] is FX-measurable, it follows that P[B|X,] satisfies all

properties of the definition of P[B | F:X] and hence
P[B|X,] = P[B|FX] as.,

which is just another way of writing (ii). Conversely, if (ii) holds, then for any
Ceo(X,),
E[P[A| X, |P[B| X,]1c] = E[E[P[B| X,]1c1a | X,]]

= E[LancP[B| X,)] € E[14ncP[B| FX]] = PIAN BN C),

where in the first equality we have pulled the o(X,,)-measurable random variable
P[B| X,|1¢ into the conditional expectation E[14|X,] and in the final equality
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we have used the definition of P[B | F-X] and the fact that ANC € FX. Since this
holds for any C' € o(X,,), it follows that P[A | X,|P[B | X,,| satisfies all properties
of the definition of P[A N B | X,] and hence

PA| X,P[B| X, =P[ANB|X,] as.
To see that (iii) is sufficient for (ii), one first proves by induction that
P[Xpi1 € Ch, .., Xnim € O | FY] =P[Xq1 € Cry oo, X € O | X,

and then uses that these sort events uniquely determine conditional probabilities
of events in g,if . [ |

If a process X = (Xj)rer satisfies the equivalent conditions of Proposition ,
then we say that X has the Markov property. For processes with countable state
spaces, there is an easier formulation.

Proposition 0.10 (Markov chains) Let I C Z be an interval and let X =
(Xk)ker be a stochastic process taking values in a countable space S. Then X has
the Markov property if and only if for each {k,k+ 1} C I there exists a probability
kernel Py pi1(z,y) on S such that

]P)[Xk = Tk, - - - 7Xk’+n = xk—i—n] (0 2)
= P[X} = | P g1 (Th, Toe1)  ++ Protn—1.dtn (Thtn—1, Thtn) '
forall{k,....,k+n} CI, xg,...,Tp4n € S.
Proof See, e.g., [LP11, Thm 2.1]. |

If I = N, then Proposition [0.10| shows that the finite dimensional distributions,
and hence the whole law of a Markov chain X are defined by its initial law P[X, €
-] and its transition probabilities Py py1(x,y). If the initial law and transition
probabilities are given, then it is easy to see that the probability laws defined
by are consistent, hence by the Daniell-Kolmogorov extension theorem, there
exists a Markov chain X, unique in distribution, with this initial law and transition
probabilies.

We note that conversely, a Markov chain X determines its transition probabilities
Py gy1(z,y) only for a.e. v € S w.r.t. the law of Xj. If it is possible to choose
the transition kernels Py ;11’s in such a way that they do not depend on &, then
we say that the Markov chain is homogeneous. We are usually not interested in
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the problem to find P ;41 given X, but typically we start with a given probability
kernel P on S and are interested in all Markov chains that have P as their transition
probability in each time step, and arbitrary initial law. Often, the word Markov
chain is used in this more general sense. Thus, we often speak of ‘the Markov chain
with state space S that jumps from x to y with probability...” without specifying
the initial law. From now on, we use the convention that all Markov chains are
homogeneous, unless explicitly stated otherwise. Moreover, if we don’t mention the
initial law, then we mean the process started in an arbitrary initial law.

We note from Proposition (i) that the Markov property is symmetric under
time reversal, i.e., if (Xj)res has the Markov property and I’ :== {—k : k € I}, then
the process X' = (X )rep defined by X} := X_j (k € I') also has the Markov
property. It is usually not true, however, that X’ is homogeneous if X is. An
exception are stationary processes, which leads to the useful concept of reversible
laws.

Exercise 0.11 (Stopped Markov chain) Let X = (Xj);>0 be a Markov chain
with countable state space S and transition kernel P, let A C S and let 74 :=
inf{k > 0: X, € A} be the first entrance time of B. Let Y be the stopped process
Yy := Xgar, (B> 0). Show that YV is a Markov chain and determine its transition
kernel. If we replace 74 by the second entrance time of A, is Y then still Markov?

By definition, a random mapping representation of a probability kernel P on a
countable state space S is a random variable M taking values in the space of all
functions m : S — S such that

P(z,y) =P[M(z) = y] (x,y €9).

Note that if M is such a random map, then (M(x)),es are S-valued random
variables such that M (x) has law P(z, -). Thus, the kernel P determines the
individual laws of the random variables (M (x)).es, but says nothing about their
joint law. In view of this, there are usually many different ways to make a random
mapping representation of a given probability kernel. Often, the key to a good
proof is choosing the right one.

If (My)g>1 are iid. random variables with the same law as M, and X, is an
independent S-valued random variable, then setting inductively

defines a Markov chain (Xj)r>0 with transition kernel P and initial state Xj.
Random mapping representations are essential for simulating Markov chains on a
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computer. In addition, they have plenty of theoretical applications, for example
for coupling Markov chains with different initial states. (See Section for an
introduction to coupling.)

Example 1 Let (Zy)r>1 be ii.d. Z-valued random variables and set Mg(z) :=
x + Zj. Then the inductive formula Xy := My(X;_1) with Xy = 0 defines the
random walk X,, =), Zj.

Example 2 Let S, be the group of all permutations 7 : {1,...,n} — {1,...,n}.
For each j =1,...,n, define o; € S, by

o;(1):=k and o;(3) ;:{

Let (Ji)g>1 be ii.d. uniformly distributed on {1,...,n} and set My(7) := 0, o.
Then the inductive formula X := M (X;_1) with X, the identity function defines
a Markov chain with state space 5, that describes a deck of cards where in each
step, we take the card that is on top and place it on an arbitrary level in the deck.

i—1 ifi<j,

i itis k0D

We note that it is in general not true that a function f(Xj) of a Markov chain X
are themselves Markov chains. An exception is the case when

P[f(Xk41) € - | Xi]

depends only on f(Xj). In this case, we say that f(X) is an autonomous Markov
chain.

Lemma 0.12 (Autonomous Markov functional) Let X = (X;)res be a Mar-
kov chain with countable state space S and transition kernel P. Let S’ be a count-

able set and let f : S — S" be a function. Assume that there exists a probability
kernel P" on S such that

P'a,y) = Zny (x eS8, flz)=2").
y: f(y)=y

Then f(X) = (f(Xk))ker is a Markov chain with state space S’ and transition
kernel P'.

Example Let (Xj, Yi)r>0 be a two-dimensional random walk with values in 72
and transition kernel

Plz,y;iz+1y) =4, Plr.yiz—1y)=
P(z,yiz,y+1) =4, Playzy—1)=

Then (Xi)r>o is an autonomous Markov chain with values in Z and transition
kernel

»J>|>~ »MH

Plz,o+1)=1%, Pl(z,o+1)=1, and P'(z,z)=

1
4 2°



0.6. KERNELS, OPERATORS AND LINEAR ALGEBRA 15

0.6 Kernels, operators and linear algebra

Let X = (Xj)rer be a stochastic process taking values in a countable space S, and
let P be a probability kernel on S. Then it is not hard to see that X is a Markov
process with transition kernel P (and arbitrary initial law) if and only if

PXpp =y | Fi] = P(Xi,y) as.  (yes, {kk+1} ),
where (F{X)rer is the filtration generated by X. More generally, one has
P Xpin =y |Fi] = P"(Xp,y) as. (ye€S, n>0, {k,k+n}Cl),

where P" denotes the n-th power of the transition kernel P. Here, if K, L are
probability kernels on S, then we define their product as

KL(x,z) = ZK(as,y)L(y, 2) (x,z €09),

yeSs

which is again a probability kernel on S. Then K" is defined as the product of n
times K with itself, where K°(z,y) := 1{,—,;. We may associate each probability
kernel on S with a linear operator, acting on bounded real functions f : S — R,
defined as

Kf(@) =3 K(wpfly) (ze9).

yes

Then KL is just the composition of the operators K and L, and for each bounded
f S — R, one has

Elf(Xpsn) | Fi] = P'f(Xk) as. (020, {kk+n}CI),  (0.3)
and this formula holds more generally provided the expectations are well-defined
(e.g. if E[[f(Xusn)l] < o0 or [ > 0).

If 4 is a probability measure on S and K is a probability kernel on S, then we
may define a new probability measure uK on S by

pK(y) ==Y p@)K(z,y)  (ye9).

In this notation, if X is a Markov process with transition kernel P and initial law
P[Xy € -| = p, then P[X,, € -] = pP™ is its law at time n.

We may view transition kernels as (possibly infinite) matrices that act on row
vectors i or column vectors f by left and right multiplication, respectively.
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0.7 Strong Markov property

We assume that the reader is familiar with some basic facts about Markov chains,
as taught in the lecture [LP11]. In particular, this concerns the strong Markov
property, which we formulate now.

Let X = (Xy)r>0 be a Markov chain with countable state space S and transition
kernel P. As usual, it goes without saying that X is homogeneous (i.e., we use the
same P in each time step) and when we don’t mention the initial law, we mean
the process started in an arbitrary initial law. Often, it is notationally convenient
to assume that our process X is always the same, while the dependence on the
initial law is expressed in the choice of the probability measure on our underlying
probability space.

More precisely, we assume that we have a measurable space (€2, F) and a collection
X = (Xk)k>0 of measurable maps Xj : Q@ — S, as well as a collection (P?),cg of
probability measures on (€2, F), such that under the measure P*, the process X is
a Markov chain with initial law P*[X, = x] = 1 and transition kernel P. In this
set-up, if yu is any probability measure on S, then under the law P := Y _ o u(x)P?,
the process X is distributed as a Markov chain with initial law g and transition
kernel P.

If X,IP,P* are as just described and (F{¥ )z is the filtration generated by X, then
it follows from Proposition (ii) and homogeneity that

P[<Xn+k>k20 € - ‘.FT)L(} = PX" [(Xk>k20 S } a.s. (04)

Here, for fixed n > 0, we consider (X,,1x)r>0 as a random variable taking values
in SN (i.e., this is the process Y defined by Y} := X, 11 (k > 0)). Since SV is a
nice (in particular Polish) space, we can choose a regular version of the conditional
probability on the left-hand side of , i.e., this is a random probability measure
on SN. Since X, is random, the same is true for the right-hand side. In words,
formula ((0.4]) says that given the process up to time n, the process after time n is
distributed as the process started in X,,. The strong Markov property extends this
to stopping times.

Proposition 0.13 (Strong Markov property) Let X, P, P* be as defined above.
Then, for any FiX-stopping time T such that T < oo a.s., one has

P[(Xrpi)izo €+ | FX] =P [(Xp)iso € -] aus. (0.5)
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Proof This follows from |[LP11, Thm 2.3]. |

Remark 1 Even if P[r = oo] > 0, formula (0.5) still holds a.s. on the event
{T < o0}.

Remark 2 Homogeneity is essential for the strong Markov property, at least in
the (useful) formulation of (0.5).

Since this is closely related to formula (0.4)), we also mention the following useful
principle here.

Proposition 0.14 (What can happen must eventually happen) Let X =
(Xk)k>0 be a Markov chain with countable state space S. Let B C SN be measurable
and set p(z) := P*[(Xy)r>o € B]. Then the event

{(Xntk)k>0 € B for infinitely many n >0} U {p(X,) — 0}

n—oo

has probability one.

Proof Let A denote the event that (X, x)k>0 € B for some n > 0. Then by
Proposition

p(X,) = [(Xk)k>0 € B] = P[(Xn+k)k>o €B ‘ ]‘—f}

g]P[AU—“X] B ]P’[AU—“X] =14 as.
In particular, this shows that p(X,) — 0 a.s. on the event 4. Applying the same
argument to A, = {(X,ix)k>0 € B for some n > m}, we see that the event

A, U{p(X,) — 0} has probability one for each m. Letting m 1 co and observing
that A, L {(Xpik)k>0 € B for infinitely many n > 0}, the claim follows. |

Example 1 Consider a Markov chain (Xj),>0 with state space N and transition
kernel P(0,0) =1, P(z,z+1) =2, P(z,z —1) =3 (z > 1).

1<i@

C.OI»—I

Let B := {(ak)g>0 : xx = 0 for some k > 0}. Then p(x) = P*[(Xy)r>0 € B] is
the probability that the chain ends up in the trap (absorbing state) 0. One can



18 CHAPTER 0. PRELIMINARIES

prove that p(x) = 27% and hence p(X;) — 0 if and only if X; — oco. Since 0
is a trap, {(Xn4x)rk>0 € B for infinitely many n > 0} is a.s. the same as {X}; =
0 for some k > 0}. Now Proposition tells us that

{Xk = 0 for some k:ZO}U{X;CQOOO}

has probability one.

Example 2 Consider a Markov chain (Xj)r>o with state space Z and transition
kernel

Plz,x+1):=2, Plx,a—1)=3% (z>0),
Plz,x+1):=3, Plx,a—1)=2 (2<0).

1 1 1 1 2 2 2

3 3 3 3 3 3 3
08080808080

2 2 2 1 1 1 1

3 3 3 3 3 3 3

Let B := {(xg)k>0 : limg_0o 7 = —00}. One can check that p(x) = P*[limy_o =

—oo] is bounded away from zero on intervals on the form {...,k — 1,k} and
hence p(Xy) — 0 if and only if X — oco. Moreover, the event {(X,ix)k>0 €
B for infinitely many n > 0} is the same as {limy_,,, Xy = —oo}. Now Proposi-
tion tells us that

k—o0 k—o0

has probability one.

0.8 Classification of states

Let X be a Markov chain with countable state space S and transition kernel P.
For each z,y € S, we write z ~» y if P"(z,y) > 0 for some n > 0. Note that
x ~> y ~ z implies © ~» z. Two states x,y are called equivalent if x ~» y and
y ~» x. It is easy to see that this defines an equivalence relation on S. A Markov
chain / transition kernel is called irreducible if all states are equivalent.

A state x is called recurrent if

P*[X) =z for some k > 1] =1,
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otherwise it is called transient. If two states are equivalent and one of them is
recurrent (resp. transient), then so is the other. Fix = € S, let 75 := 0 and let

T, = 1inf{n > 7, : X,, =z} (k>1)

be the times of the k-th visit to x after time zero. Consider the process started
in Xo = z. If x is recurrent, then 7 < oo a.s. It follows from the strong Markov
property that 7, — 77 is equally distributed with and independent of 7. By induc-
tion, (T, — Tk—1)k>1 are i.i.d. In particular, 7, < oo for all k£ > 1, i.e., the process
returns to x infinitely often.

On the other hand, if x is transient, then by the same sort of argument we see
that the number N, = Zkzl l{x,—s) of returns to x is geometrically distributed

P*[N, =n] =0"(1—6) where 6:=P"[X; =z for some k > 1].
In particular, E*[N,] < oo if and only if x is transient.

Lemma 0.15 (Recurrent classes are closed) Let X be a Markov chain with
countable state space S and transition kernel P. Assume that S C S is an equiv-
alence class of recurrent states. Then P(x,y) =0 for allz € S', y € S\S5'.

Proof Imagine that P(x,y) > 0 for some z € S, y € S\S’. Then, since 5’ is
an equivalence class, y v =z, i.e., the process cannot return from y to z. Since
P(z,y) > 0, this shows that the process started in x has a positive probability
never to return to x, a contradiction. |

A state x is called positively recurrent if
E?[inf{n > 1: X, = z}] < c0.

Recurrent states that are not positively recurrent are called null recurrent. 1f two
states are equivalent and one of them is positively recurrent (resp. null recurrent),
then so is the other. From this, it is easy to see that a finite equivalence class of
states can never be null recurrent.

The following lemma is an easy application of the principle ‘what can happen must
happen’ (Proposition [0.14)).

Lemma 0.16 (Finite state space) Let X = (Xy)r>0 be a Markov chain with
finite state space S and transition kernel P. Let Sy denote the set of all positively
recurrent states. Then P[Xy € Spos for some k > 0] = 1.
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By definition, the period of a state x is the greatest common divisor of {n > 1 :
P(z,z) > 0}. Equivalent states have the same period. States with period one are
called aperiodic. Irreducible Markov chains are called aperiodic if one, and hence
all states have period one. If X = (Xj)r>o is an irreducible Markov chain with
period n, then X, := Xy, (k > 0) defines an aperiodic Markov chain X’ = (X},)x>o.

The following example is of special importance.

Lemma 0.17 (Recurrence of one-dimensional random walk) The Markov
chain X with state space Z and transition kernel P(k,k —1) = P(k,k+1) = 1 is
null recurrent.

Proof Note that this Markov chain is irreducible and has period two, as it takes
value alternatively in the even and odd integers. Using Stirling’s formula, it is not
hard to show that (see [LP11, Example 2.9])

1
P?(0,0) ~ —— as k — oo.
’ vk

In particular, this shows that the expected number of returns to the origin E°[Ny] =
S oo P?%(0,0) is infinite, hence X is recurrent. On the other hand, it is not hard to
check that any invariant measure for X must be infinite, hence X has no invariant
law, so it cannot be positively recurrent. |

We will later see that, more generally, random walks on Z¢ are recurrent in dimen-
sions d = 1,2 and transient in dimensions d > 3.

0.9 Invariant laws

By definition, an invariant law for a Markov process with transition kernel P and
countable state space S is a probability measure p on S that is invariant under
left-multiplication with P, i.e., uP = u, or, written out per coordinate,

> uy)Ply.z) =px)  (zeS).

yeSs

More generally, a (possibly infinite) measure p on S satisfying this equation is
called an invariant measure. A probability measure p on S is an invariant law
if and only if the process (Xi)r>o started in the initial law P[X, € -] = p is
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(strictly) stationary. If p is an invariant law, then there also exists a stationary
process X = (X)rez, unique in distribution, such that X is a Markov process with
transition kernel P and P[X} € -] = u for all k € Z (including negative times).

A detailed proof of the following theorem can be found in [LP11, Thms 2.10 and
2.26].

Theorem 0.18 (Invariant laws) Let X be a Markov chain with countable state
space S and transition kernel P. Then

(a) If p is an invariant law and x is not positively recurrent, then u(x) = 0.

(b) If S" C S is an equivalence class of positively recurrent states, then there
exists a unique invariant law p of X such that p(x) > 0 for all x € S" and
pu(z) =0 for all x € S\S".

(c) The invariant law p from part (b) is given by

p(z) =E*[inf{k >1: X, = x}rl. (0.6)

Sketch of proof For any z € S, define p(z) as in (0.6), with 1/00 := 0. Since
consecutive return times are i.i.d., it is not hard to prove that

o1
lim —
n—oo M

n
SO = 1] = pla), 07
k=1
i.e., the process started in = spends a p(z)-fraction of its time in x. As a result, it
is not hard to show that if x is transient or null-recurrent, then the process started
in any initial law satisfies P[.X,, = ] — 0 for n — oo, hence no invariant law can
give positive probability to such a state.

On the other hand, if S” C S is an equivalence class of positively recurrent states,
then one can check that (0.7]) holds more generally for the process started in any
initial law on S’. It follows that for any such process, the Césaro-limit

1 n
p=lim =Y P[X; € -]
k=1

n—oo N

exists and does not depend on the initial law. In particular, if we start in an
invariant law, then this limit must be p, which proves uniqueness. It is not hard
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to check that any such Césaro-limit must be an invariant law, from which we obtain
existence. |

Remark Using Lemma [0.15] it is not hard to prove that a general invariant law
of the process is a convex combination of invariant laws that are concentrated on
one equivalence class of positively recurrent states.

Theorem 0.19 (Convergence to invariant law) Let X be an irreducible, pos-
wtwely recurrent, aperiodic Markov chain with invariant law p. Then the process
started in any initial law satisfies

PX) = 2] — p(x) (x € 9).

If all states of X are transient or null recurrent, then the process started in any
nitial law satisfies
PXy=12] — 0 (x €9).

k—o0

Proof See [LP11, Thm 2.26]. |

If i is an invariant law and X = (X )rez is a stationary process such that P[X} €
-] = p for all k € Z, then by the symmetry of the Markov property w.r.t. time
reversal, the process X' = (X} )rez defined by X; = X_, (k € Z) is also a
Markov process. By stationarity, X’ is moreover homogeneous, i.e., there exists
a transition kernel P’ such that the transition probabilities P, , of X' satisfy
P(z,y) = Pl (7,y) for ae. x wrt. g In general, it will not be true that
P’ = P. We say that u is a reversible law if p is invariant and in addition,
the stationary processes X and X' are equal in law. One can check that this is
equivalent to the detailed balance condition

wx)P(z,y) = P(x,y)u(y)  (z,y€S),

which says that the process X started in P[X, € -| = u satisfies P[ Xy =z, X; =
y] = P[Xy =y, Xi = z]. More generally, a (possibly infinite) measure 1 on S
satisfying detaied balance is called an reversible measure. If y is reversible measure
and we define a (semi-) inner product of real functions f : S — R by

(Foghe = 3 F@)g(@)u(a),

then P is self-adjoint w.r.t. this inner product:

<f7Pg>M: <Pfag>ﬂ



Chapter 1

Harmonic functions

1.1 (Sub-) harmonicity

Let X be a Markov chain with countable state space S and transition kernel P.
As we have seen, an invariant law of X is a vector that is invariant under left-
multiplication with P. Harmonic functions[[| are functions that are invariant
under right-multiplication with P. More precisely, we will say that a function
h:S — R is subharmonic for X if

Y Playlhy) <o (zeS),

and

ha) <3 Playhly) (@€ S).

We say that h is superharmonic if —h is subharmonic, and harmonic if it is both
subharmonic and superharmonic.

Lemma 1.1 (Harmonic functions and martingales) Assume that h is sub-
harmonic for the Markov chain X = (Xg)k>0 and that E[|h(Xy)|] < oo (k > 0).
Then My, := h(Xy) (k > 0) defines a submartingale M = (M (Xg))k>o w.r.t. to the
filtration (Fi¥)i>o0 generated by X.

Historically, the term harmonic function was first used, and is still commonly used, for a
smooth function f : U — R, defined on some open domain U C R?, that solves the Laplace
equation Z?:l 8%2 f(z) = 0. This is basically the same as our definition, but with our Markov
chain X replaced by Brownian motion B = (By):>0. Indeed, a smooth function f solves the
Laplace equation if and only if (f(B;)):>0 is a local martingale.

23
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Proof This follows by writing (using (0.3))),

E[h(Xei1) | F¥] =D P(Xe,p)h(y) > h(Xi) (k> 0).

We will say that a state x is an absorbing state or trap for a Markov chain X if
P(x,z) =1.

Lemma 1.2 (Trapping probability) Let X be a Markov chain with countable
state space S and transition kernel P, and let z € S be a trap. Then the trapping
probability

h(z) :=P*[ X = z for some k > 0]

18 a harmonic function for X.

Proof Since 0 < h < 1, integrability is not an issue. Now
h(z) = P*[ X}, = z for some k > 0]
= P"[X; = z for some k > 0| X; = y|P*[X; =y

= ZP(x,y)]P’y [ X}, = = for some k > 0] = ZP(x,y)h(y)-

)

Lemma 1.3 (Trapping estimates) Let X be a Markov chain with countable
state space S and transition kernel P, and let T := {z € S : z is a trap}. Assume
that the chain gets trapped a.s., i.e., P[3n > 0 s.t. X,, € T] =1 (regardless of the
initial law). Let z € T and let h : S — [0, 1] be a subharmonic function such that
hz)=1and h =0 on T\{z}. Then

h(z) < P* [Xk =z for some k > 0}

If h is superharmonic, then the same holds with the inequality sign reversed.

Proof Since h is subharmonic, My := h(Xj) is a submartingale. Since h is
bounded, M is uniformly integrable. Therefore, by Propositions [0.7 and [0.8]
M, — My a.s. and in Li;-norm, where M., is some random variable such that
E*[M] > My = h(x). Since the chain gets trapped a.s., we have M, = h(X,),
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where 7 := inf{k > 0 : X}, € T'} is the trapping time. Since h(z) =1 and h =0
on T\{z}, we have M, = 1(x, -, and therefore P*[X, = 2] = E*[M] > h(z). If
h is superharmonic, the same holds with the inequality sign reversed. n

Remark 1 If S C S is a ‘closed’ set in the sense that P(x,y) = 0 for all x € 5,
y € S\, then define ¢ : S — (S\S") U {x} by ¢(z) :=* if z € S" and ¢(x) .=z
if x € S\S'. Now (¢(Xk))k>0 is @ Markov chain that gets trapped in * if and only
if the original chain enters the closed set S’. In this way, Lemma |l1.3| can easily be
generalized to Markov chains that eventually get ‘trapped’ in one of finitely many
equivalence classes of recurrent states. In particular, this applies when S is finite.

Remark 2 Lemma tells us in particular that, provided that the chain gets
trapped a.s., the function h from Lemma [1.2| is the unique harmonic function
satisfying h(z) = 1 and h = 0 on T\{z}. For a more general statement of this
type, see Exercise below.

Remark 3 Even in situations where it is not feasable to calculate trapping prob-
abilities exactly, Lemma can sometimes be used to derive lower and upper
bounds for these trapping probabilities.

The following transformation is usually called an h-transform or Doob’s h-trans-
form.  Following [LPW09], we will simply call it a Doob transformf]

Lemma 1.4 (Doob transform) Let X be a Markov chain with countable state
space S and transition kernel P, and let h : S — [0,00) be a nonnegative harmonic
function. Then setting S’ :== {x € S : h(x) > 0} and

P"(z,y) = W (x,y € 9)

defines a transition kernel P" on S'.

Proof Obviously P"(z,y) > 0 for all z,y € S’. Since

S Ph(a,y) = h(2) 'Y Pla,y)h(y) = h(z) ' Phiz) =1 (v € ),

yes’ yes’

P" is a transition kernel. [ |

2The term h-transform is somewhat inconvenient for several reasons. First of all, having
mathematical symbols in names of chapters or articles causes all kinds of problems for referencing.
Secondly, if one performs an h-transform with a function g, then should one speak of a g-transform
or an h-transform? The situation becomes even more confusing when there are several functions
around, one of which may be called h.
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Proposition 1.5 (Conditioning on the future) Let X = (Xj)i>o be a Markov
chain with countable state space S and transition kernel P, and let z € S be a
trap. Set S":={y € S :y~> z} and assume that P[Xy € S'] > 0. Then, under the
conditional law

P[(X%)k>0 € - } X,, = z for some m > 0],

the process X is a Markov process in S" with Doob-transformed transition kernel
P where
h(z) :=P*[X,, = z for some m > 0]

satisfies h(x) > 0 if and only if x € S'.
Proof Using the Markov property (in its strong form ((0.4))), we observe that

P[Xn+1 =¥ | (Xi)osk<n = (T1)o<ken, Xm = z for some m > 0]

= P[Xn+1 =y ‘ (Xk)o<k<n = (Tk)o<k<n, Xm = z for some m >n + 1}

B IP’[XnH =y, X, =z forsomem >n+1 ‘ (Xk)o<k<n = (37k)0§k§n]
P|X,, =z forsome m >n+1 ’ (Xk)o<k<n = (xk)ogkgn}
P(z,,y)PY[X,, = z for some m > 0] Pi( )
Pon[X,, = z for some m > 1] y

for each (xy)o<k<n and y such that P[(Xy)o<k<n = (Tk)o<k<n] > 0 and z,,,y € S’.N

Remark At first sight, it is surprising that conditioning on the future may preserve
the Markov property. What is essential here is that being trapped in z is a tail
event, i.e., an event measurable w.r.t. the tail-o-algebra

T = m O’(Xk,Xk+1, .. )

k>0

Similarly, if we condition a Markov chain (X} )o<g<n that is defined on finite time
interval on its final state X,,, then under the conditional law, (Xj)o<k<n is still
Markov, although no longer homogeneous.

Exercise 1.6 (Sufficient conditions for integrability) Let h : S — R be any
function. Assume that E[|h(X()|] < oo and there exists a constant K < oo such
that >, P(z,y)|h(y)| < K[h(z)|. Show that E[|h(X4)]] < oo (k> 0).

Exercise 1.7 (Boundary conditions) Let X be a Markov chain with countable
state space S and transition kernel P, and let T := {z € S : z is a trap}. Assume
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that the chain gets trapped a.s., i.e., P[In > 0s.t. X,, € T] = 1 (regardless
of the initial law). Show that for each real function ¢ : T — R there exists a
unique bounded harmonic function h : S — R such that h = ¢ on T'. Hint: take
h(z) := E[¢p(X,)], where 7 := inf{k > 0 : X} € T'} is the trapping time.

Exercise 1.8 (Conditions for getting trapped) If we do not know a priori that
a Markov chain eventually gets trapped, then the following fact is often useful. Let
X be a Markov chain with countable state space S and transition kernel P, and
let h: S — [0,1] be a sub- or superharmonic function. Assume that for all ¢ > 0
there exists a § > 0 such that

P[|h(X1) — h(z)| > 6] > 6 whenever ¢ < h(z) <1 —e.

Show that limy_, h(X%) € {0,1} a.s. Hint: use martingale convergence to prove
that limy_, h(X}) exists and use the principle ‘what can happen must happen’
(Proposition [0.14)) to show that the limit cannot take values in (0, 1).

Exercise 1.9 (Trapping estimate) Let X, S,, P and h be as in Excercise [1.§]
Assume that h is a submartingale and there is a point z € S such that h(z) = 1
and sup,eg (3 M(z) < 1. Show that

h(z) < P*[X} = z for some k > 0].

Exercise 1.10 (Compensator) Let X = (X})>0 be a Markov chain with count-
able state space S and transition kernel P, and let f : S — R be a function such
that > P(z,y)|f(y)] < oo for all z € S. Assume that, for some given initial law,
the process X satisfies E[|f(X)|] < oo for all £ > 0. Show that the compensator
of (f(Xk))r>0 is given by

i
L

Ko=) (Pf(Xy) = f(Xe))  (n20).

i

Exercise 1.11 (Expected time till absorption: part 1) Let X be a Markov
chain with countable state space S and transition kernel P, and let T := {2z € S :
zis a trap}. Let 7 := inf{k > 0 : X} € T} and assume that E*[r] < oo for all
x € S. Show that the function

f(x) = E*[7]
satisfies Pf(x) — f(x) = =1 (x € S\T) and f =0 on T.



28 CHAPTER 1. HARMONIC FUNCTIONS

Exercise 1.12 (Expected time till absorption: part 2) Let X be a Markov
chain with countable state space S and transition kernel P, let T' := {z € S :
z is a trap}, and set 7 := inf{k > 0 : X, € T}. Assume that f : S — [0,00)
satisfies Pf(x) — f(z) < —1 (x € S\T') and f =0 on 7. Show that

E®[7] < f(x) (x €9).
Hint: show that the compensator K of (f(X}))r>o satisfies K,, < —(n A 7).
Exercise 1.13 (Absorption of random walk) Consider a random walk W =
(Wk)k>0 on Z that jumps from z to = + 1 with probability p and to z — 1 with
the remaining probability ¢ := 1 — p, where 0 < p < 1. Fix n > 1 and set

T = inf{k‘ >0:W, € {O,n}}. Calculate, for each 0 < x < n, the probability
PW, = n].

Exercise 1.14 (First ocurrence of a pattern: part 1)

Let (X%)k>o be ii.d. Bernoulli random variables

with P[X, = 0] = P[X; = 1] = 1 (k> 0). Set 1000 |
110 = inf {k > 0: (Xp, Xpp1, Xps2) = (1,1,0) },

100 001
and define 7919 similarly. Calculate P[1919 < T110]- A
Hint: Set X; := (Xi, Xpr1, Xigo) (K > 0). Then
()?k)kzo is a Markov chain with transition prob- 010
abilities as in the picture on the right. Now the A

problem amounts to calculating the trapping prob-
abilities for the chain stopped at 7919 A T110.

Exercise 1.15 (First ocurrence of a pattern: part 2) In the set-up of the
previous exercise, calculate E[r19] and E[r11]. Hints: you need to solve a system
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of linear equations. To find the solution, it helps to use Theorem (c) and the
fact that the uniform distribution is an invariant law. In the case of 711, it also
helps to observe that E*[ry1;] depends only on the number of ones at the end of z.

1.2 Random walk on a tree

In this section, we study random walk on an infinite tree in which every vertex has
three neighbors. Such random walks have many interesting properties. At present
they are of interest to us because they have many different bounded harmonic
functions. As we will see in the next section, the situation for random walks on
Z¢ is quite different.

Let Ty be an infinite tree, (i.e., a connected graph without cycles) in which each
vertex has degree 3 (i.e., there are three edges incident to each vertex). We will be
interested in the Markov chain whose state space are the vertices of Ty and that
jumps in each step with equal probabilities to one of the three neighboring sites.

We first need a convenient way to label vertices in such a tree. Consider a finitely
generated group with generators a,b, ¢ satisfying a = a™*, b = b=! and ¢ = ¢7L.
More formally, we can construct such a group as follows. Let GG be the set of all
finite sequences x = x(1) - - - x(n) where n > 0 (we allow for the empty sequence
0), z(i) € {a,b,c} for all 1 <i<n,and z(i) Zx(i+ 1) forall 1 <i<i4+ 1< n.
We define a product on V' by concatenation, where we apply the rule that any two
a’s, b’s or ¢’s next to each other cancel each other, inductively, till we obtain an

element of GG. So, for example,

(abacb)(cab) = abacbcab,  (abacb)(bab) = abacbbab = abacab,
and (abacb)(beb) = abacbbeh = abacchb = abab.

With these rules, G is a group with unit element ), the empty sequence, and
inverse (z(1)---x(n))™" = z(n)---x(1). Note that G is not abelian, i.e., the
group product is not commutative.

We can make G into a graph by drawing an edge between two elements z,y € G
if v = ya, v = yb, or x = yc. It is not hard to see that the resulting graph
is an infinite tree in which each vertex has degree 3; see Figure E| We let

3This is a special case of a much more general construction. Let G be a finitely generated
group and let A C G be a finite, symmetric (in the sense that a € A implies a=! € A) set of
elements that generates G. Draw a vertex between two elements a,b € G if a = ¢b for some
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|x| = |z(1)---x(n)| := |n| denote the length of an element z € G. It is not hard
to see that this is the same as the graph distance of x to the ‘origin’ (), i.e., the
length of the shortest path connecting x to (.

Figure 1.1: The regular tree T,

Let X = (Xy)r>o0 be the Markov chain with state space G and transition proba-
bilities
1
P(z,za) = P(x,2b) = P(x,xc) = 3 (x € G),

i.e., X jumps in each step to a uniformly chosen neighboring vertex in the graph.
We call X the nearest neighbor random walk on G.

We observe that if X is such a random walk on G, then |X| = (| Xi|)r>0 is a

¢ € A (or equivalently, by the symmetry of A, if b = ¢’a for some ¢’ € A). The resulting graph is
called the left Cayley graph associated with G and A. This is a very general method of making
graphs with some sort of translation-invariant structure.
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Markov chain with state space N and transition probabilities given by
1 2
Q(n,n—1):= : and Q(n,n+1):= 3 (n>1),

and Q(0,1) := 1.

For each = z(1)---xz(n) € G, let us write x(i) := 0 if ¢ > n. The following
lemma shows that the random walk X is transient and walks away to infinity in a
well-defined ‘direction’.

Lemma 1.16 (Transience) Let X be the random walk on G described above,
started in any initial law. Then there exists a random variable X, € {a,b,c}+
such that

lim X,(i) = Xo(i) a.s. (i e Ny).

Proof We may compare | X| to a random walk Z = (Zj)g>¢ on Z that jumps from
n ton — 1 or n+ 1 with probabilities 1/3 and 2/3, respectively. Such a random
walk has independent increments, i.e., (Zy — Zr_1)k>1 are i.i.d. random variables
that take the values —1 and +1 with probabilities 1/3 and 2/3. Therefore, by the
strong law of large numbers, (Z, — Zy)/n — 1/3 a.s. and therefore Z,, — oo a.s.
In particular Z visits each state only finitely often, which shows that all states are
transient. It follows that the process Z started in Z; = 0 has a positive probability
of not returning to 0. Since Z,, — oo a.s. and since | X| has the same dynamics as
Z as long as it is in N, this shows that the process started in Xy = a satisfies

P[| Xy > 1VEk>1] =P'[Z, > 1Vk>1] > 0.

This shows that a is a transient state for X. By irreducibility, all states are
transient and |X;| — oo a.s., which is easily seen to imply the lemma. n

We are now ready to prove the existence of a many bounded harmonic functions
for the Markov chain X. Let

G = {z € {a,b,c}"* 1 2(i) #x(i+ 1) Vi > 1}.

Elements in 0G correspond to different ways of walking to infinity. Note that 0G
is an uncountable set. In fact, if we identify elements of G with points in [0, 1]
written in base 3, then 0G corresponds to a sort of Cantor set. We equip G with
the product-o-field, which we denote by B(0G). (Indeed, one can check that this
is the Borel-o-field associated with the product topology.)
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Proposition 1.17 (Bounded harmonic functions) Let ¢ : 0G — R be bounded
and measurable, let X be the random walk on the tree G described above, and let
Xoo be as in Lemmal|l.16, Then

h(z) == E*[¢(Xo0)] (r € G)

defines a bounded harmonic function for X. Moreover, the process started in an
arbitrary initial law satisfies

MX,) — ¢(Xs) as.

n—oo
Proof It follows from the Markov property (in the form (0.4))) that

h(z) = E°[9(Xeo)] = Y P2, y)B[0(Xo)] = ) Pla,y)hly) (€ @),
Yy Yy
which shows that h is harmonic. Since |||l < ||¢||oo, the function h is bounded.
Moreover, by and Proposition 7
h(Xn) = E*[6(Xao)] = E[6(Xoo) | F] — E[o(Xoo) | Fig] = 6(Xoo) a5,

For example, in Figure [1.2] we have drawn a few values of the harmonic function
h(z) :=P"[ X (1) = a] (x € G).

Although Proposition proves that each bounded measurable function ¢ on
O0G yields a bounded harmonic function for the process X, we have not actually
shown that different ¢’s yield different h’s.

Lemma 1.18 (Many bounded harmonics) Let p be the probability measure
on 0G defined by p = PY[ X, € -]. Let ¢,7) : G — R be bounded and measurable
and let

h(z) :==E"[¢(Xs)] and g(z) :=E"[¢(X0)] (x € G).
Then h = g if and only if =1 a.s. w.r.t. p.

Proof Let us define more generally p, = P*[X, € -]. Since

HalA) = 3 PP, 2P [ X € -] < PPy (A)
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Figure 1.2: A bounded harmonic function

(x,y € G, n >0, A€ B(0G)) and P is irreducible, we see that p, < p, for all
z,y € G, hence the measures (p,).cq are all equivalent. Thus, if ¢ = ¢ a.s. w.r.t.
(t, then they are a.s. equal w.r.t. to u, for each x € GG, and therefore

) = [ ot = [vdi =) @G

On the other hand, if the set {¢ # 1} has positive probability under p, then by
Proposition [1.1

PP[ lim h(X,) # lim g(X,)] >0,

n—o0

which shows that there must exist z € G with h(x) # g(x). |

Exercise 1.19 (Escape probability) Let Z = (Zx)i>0 be the Markov chain
with state space Z that jumps in each step from n to n — 1 with probability 1/3
and to n + 1 with probability 2/3. Calculate P'[Z; > 1 Vk > 0]. Hint: find a
suitable harmonic function for the process stopped at zero.
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Exercise 1.20 (Independent increments) Let (Y})r>1 be i.i.d. and uniformly
distributed on {a, b, c}. Define (X,,)n>0 by the random group product (in the group
G)

X, =YY, (n>1),

with X, := (0. Show that X is the Markov chain with transition kernel P as defined
above.

1.3 Coupling

For any z = (z(1),...,2z(d)) € Z%, let |z|, := S°%, |#(i)| denote the ‘L;-norm’ of
z. Set A= {x € Z%: |z|; = 1}. Let (Yi)x>1 be i.i.d. and uniformly distributed
on A and let

X, ::ZYk (n>1),
k=1

with Xy := 0. (Here we also use the symbol 0 to denote the origin 0 = (0,...,0) €
Z%.) Then, just as in Excercise m, X is a Markov chain, that jumps in each time
step from its present position x to a uniformly chosen position in x + A = {x+y :
y € A}. We call X the symmetric nearest neighbor random walk on the integer
lattice 7. Sometimes X is also called simple random walk.

Let P denote its transition kernel. We will be interested in bounded harmonic
functions for P. We will show that in contrast to the random walk on the tree,
the random walk on the integer lattice has very few bounded harmonic functions.
Indeed, all such functions are constant. We will prove this using coupling, which
is a technique of much more general interest, with many applications.

Usually, when we talk about a random variable X (which may be the path of a
process X = (Xg)k>0), we are not so much interested in the concrete probability
space (€2, F,P) that X is defined on. Rather, all that we usually care about is
the law P[X € -] of X. Likewise, when we have in mind two random variables X
and Y (for example, one binomially and the other normally distributed, or X and
Y may be two Markov chains with possibly different initial states or transition
kernels), then we usually do not a priori know what their joint distribution is,
even if we know there individual distributions. A coupling of two random variables
X and Y, in the most general sense of the word, is a way to construct X and
Y together on one underlying probability space (2, F,P). More precisely, if X
and Y are random variables defined on different underlying probability spaces,
then a coupling of X and Y is a pair of random variables (X', Y”) defined on one
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underlying probability space (€2, F,P), such that X’ is equally distributed with X
and Y’ is equally distributed with Y. Equivalently, since the laws of X and Y
are all we really care about, we may say that a coupling of two probability laws
, v defined on measurable spaces (E, &) and (F, F), respectively, is a probability
measure p on the product space (E x F,€ ® F) such that the first marginal of p
is u and its second marginal is v.

Obviously, a trivial way to couple any two random variables is to make them
independent, but this is usually not what we are after. A typical coupling is
designed to compare two random variables, for example by showing that they are
close, or one is larger than the other. The next excercise gives a simple example.

Exercise 1.21 (Monotone coupling) Let X be uniformly distributed on [0, A]
and let Y be exponentially distributed with mean A > 0. Show that X and
Y can be coupled such that X < Y a.s. (Hint: note that this says that you
have to construct a probability measure on [0, A] X [0, 00) that is concentrated on
{(z,y) : * < y} and has the ‘right’ marginals.) Use your coupling to prove that
E[X*] <E[Y?] for all « > 0.

Now let A C Z? be as defined at the beginning of this section and let P be the
transition kernel on Z? defined by

1
P(x,y) = Z{l{y—xEA} (SB,yEZd).

We are interested in bounded harmonic functions for P, i.e., bounded functions
h : Z? — R such that Ph = h. It is somewhat inconvenient that P is periodic ]
In light of this, we define a ‘lazy’ modification of our transition kernel by

PlaZY(xv y) = %P(ZE, y) + %1{x:y}

Obviously, Py f = %P f+ % f, so a function A is harmonic for P if and only if it
is harmonic for Byy.

Proposition 1.22 (Coupling of lazy walks) Let X* and XY be two lazy random
walks, i.e., Markov chains on Z¢ with transition kernel Py, and initial states
X =2 and XY =y, v,y € Z%. Then X® and XY can be coupled such that

In>0st Xp=X] Vk>n as.

“4Indeed, the Markov chain with transition kernel P takes values alternatively in Z, ,, := {z €

AR 2?21 x(i) is even} and Z4,, = {z € Z*: Zle x(7) is odd}.
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Proof We start by choosing a suitable random mapping representation. Let
(Ug)k>1, (Ix)k>1, and (Wy)k>1 be collections of i.i.d. random variables, each collec-
tion independent of the others, such that for each k > 1, Uy is uniformly distributed
on {0, 1}, I is uniformly distributed on {1, ..., d}, and W}, is uniformly distributed
on {—1,+1}. Let ¢; € Z% be defined as €;(j) := 1—;3. Then we may construct
X" inductively by setting X7 := z and

X,f = le—l + Ukaejk (k} > 1).

Note that this says that U, decides if we jump at all, I decides which coordinate
jumps, and W}, decides whether up or down.

To construct also X¥ on the same probability space, we define inductively X :=y
and

XV 4+ (1 =U,)W, if XV ([ X7P (),
XY= 1;71 ( k) Wier, 1 1;1( k) 7 X1 (Ix) (k> 1).
Xk—l + UkaGIk lf kal([k‘) = X;f,l(lk),

Note that this says that X* and XY always select the same coordinate [, €
{1,...,d} that is allowed to move. As long as X* and XV differ in this coor-
dinate, they jump at different times, but after the first time they agree in this
cordinate, they always increase or decrease this coordinate by the same amount at
the same time. In particular, these rules ensure that

X)) =XZ(i) forall k> 7 :=inf{n >0:X7(i) = XJ(i)}.

Since (X}, X{)k>o is defined in terms of i.i.d. random variables (Ug, Iy, Wi)k>1
by a random mapping representation, the joint process (X7, XVY) is clearly a
Markov chain. We have already seen that X7, on its own, is also a Markov
chain, with the right transition kernel P,,,. It is straightforward to check that
PIX} = 2| (X}, X})] = Pasy(X},2) as. In particular, this transition probability
depends only on X/, hence by Lemma , XY is an autonomous Markov chain
with transition kernel F,,y.

In view of this, our claim will follow provided we show that 7; < co a.s. for each
t=1,...,d. Fix i and define inductively oq := 0 and

o = 1inf{k > o)1 : Iy = i}.
Consider the difference process

D= X2 — XY (k>0).
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Then D = (Dy)r>0 is a Markov process on Z that in each step jumps from z to
z+ 1 or z — 1 with equal probabilities, except when it is in zero, which is a trap.
In other words, this says that D is a simple random walk stopped at the first time
it hits zero. By Lemma [0.17] there a.s. exists some (random) k > 0 such that
D, = 0 and hence 7; = 0, < 00 a.s. |

As a corollary of Proposition [1.22] we obtain that all bounded harmonic functions
for nearest-neighbor random walk on the d-dimensional integer lattice are constant.

Corollary 1.23 (Bounded harmonic functions are constant) Let P(x,y) =
(2d) '1gjp—yp =1} be the transition kernel of nearest-neighbor random walk on the
d-dimensional integer lattice Z¢. If h : Z¢ — R is bounded and satisfies Ph = h,
then h is constant.

Proof Couple XY and XV as in Proposition Since h is harmonic and bounded,
(M XE))k=0 and (h(X}))k>0 are martingales. It follows that

h(x) — hy) = EI(XP)] — E[A(X))
= E[(XE) — h(X])] < 2|h]lP[XT # X}] — 0

~—

for each z,y € Z¢, proving that h is constant. |

Remark Actually, a much stronger statement than Corollary is true: for
nearest-neighbor random walk on Z¢, all nonnegative harmonic functions are con-
stant. This is called the strong Liouville property, see [Woe00, Corollary 25.5]. In
general, the problem of finding all positive harmonic functions for a Markov chain
leads to the (rather difficult) problem of determining the Martin boundary of a
Markov chain.

1.4 Convergence in total variation norm

In this section we turn our attention away from harmonic functions and instead
show another application of coupling. We will use coupling to give a proof of the
statement in Theorem [0.19| (stated without proof in the Introduction) that any
aperiodic, irreducible, positively recurrent Markov chain is ergodic, in the sense
that regardless of the initial state, its law at time n converges to the invariant law
as n — oo.
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Recall that the total variation distance between two probability measures u, v on
a countable set S is defined as

I = vllry = max [i(A) — v(A)]
The following lemma gives another formula for || - |pv.

Lemma 1.24 (Total variation distance) For any probability measures pi,v on
a countable set S, one has

lu—viev="> (u@)-v@)= Y  (v@)—p@) =) |u)-r)].

z: p(z)>v(z) x: p(z)<v(z) x€S

Proof Set S = {z € S : u(z) > v(z)}, Sy := {z € S: p(r) = v(x)}, and
iil ={x €S :u(x) <v(z)}. Define a finite measure p by p(x) := |u(z) — v(z)|.
n(A) —v(A) = p(ANSy) = p(ANS-).

It follows that
—p(5-) < u(A) —v(4) < p(S4)

where either inequality may be an equality for a suitable choice of A (A = S_ or
A = S, respectively). Here

p(S2) = p(S-) = 3 () — vlw)) = 1— 1 =0,

€S

SO

@ () 2w () @ () <v(x)

Theorem 1.25 (Convergence to invariant law) Let X be an irreducible, ape-
riodic, positively recurrent Markov chain with transition kernel P, state space S,
and invariant law p. Then the process started in any initial law satisfies

[PXn € ] = pillpy — 0.

n—oo
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Proof We take the existence of an invariant law p as proven. Uniqueness will follow
from our proof. Let X and X be two independent Markov chains with transition
kernel P, where X is started in an arbitrary initial law and P[X, € -] = p. It is
easy to see that the joint process (X, X) = (X, Xi)r>0 is a Markov process with
state space S x S. Let is denote its transition kernel by P, i.e., by independence,

Py((2,7),(y,79)) = P(x,y)P(T,7)  (2,7,y,5 €59).

We claim that P, is irreducible. Fix x,7,y,y € S. Since P is irreducible and
aperiodic, it is not hard to see that there exists an m; > 1 such that P"(z,y) > 0
for all n > my. Likewise, there exists an my > 1 such that P™(Z,7) > 0 for all
n > mey. Choosing n > my V my, we see that

Py ((x, ), (y, 7)) = P"(z,y)P"(z,7) > 0,

proving that P is irreducible.

By Theorem [0.18| (a) and (b), an irreducible Markov chain is positively recurrent
if and only if it has an invariant law. Obviously, the product measure yu ® p is an
invariant law for P, so P; is positively recurrent. In particular, this proves that
the stopping time

7i:=inf{k > 0: X, = X}}

is a.s. finite and has, in fact, finite expectation. Let X’ = (X} )g>o be the process

defined by
X} if k< T,
X =< _
It is not hard to see that X' is a Markov chain with transition kernel P and initial
law P[X{ € -] =P[Xj € -], hence X' is equal in law with X. Now
|PXn €] —pf 0y = sup IPLX;, € A] — p(A)| = sup IPLX], € A] — P[X, € A
__AC o C
= supIE”[X,fC ceA X dAor X, € A, X, € A}

ACS
< P[X}, # X)) =Pk < 7] — 0.
— 00

Exercise 1.26 (Periodic kernels) Show that the probability kernel P, in the
proof of Theorem [1.25]is not irreducible if P is periodic.
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Chapter 2

Eigenvalues

2.1 The Perron-Frobenius theorem

In this section, we recall the classical Perron-Frobenius theorem about the leading
eigenvalue and eigenvector of a nonnegative matrix. This theorem is usually viewed
as a part of linear algebra and proved in that context. We will see that the theorem
has close connections with Markov chains and some of its statements can even be
proved by probabilistic methods.

Let S be a finite set (S = {1,...,n} in the traditional formulation of the Perron-
Frobenius theorem) and let A : S x S — C be a function. We view such functions
as matrices, equipped with the usual matrix product, or, equivalently, we identify
A with the linear operator A : C¥ — C* given by Af(z) := > yes Al y) f(y),
where, C° denotes the linear space consisting of all functions f : S — C. We
say that A is real if A(z,y) € R, and nonnegative if A(z,y) > 0, for all z,y € S.
Note that probability kernels are nonnegative matrices. A nonnegative matrix A is
called irreducible if for each x,y € S there exists an n > 1 such that A"(x,y) > 0.
For probability kernels, this coincides with our earlier definition of irreducibility.
We let spec(A) denote the spectrum of A, i.e., the collection of (possibly complex)
eigenvalues of A, and we let p(A) denote its spectral radius

p(A) :=sup{|\| : X € spec(A)}.

If || - || is any norm on C*, then we define the associated operator norm || Al| of A
as

1AIl := sup{||Af] : f € C%, |If]l = 1}.

41
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It is well-known that for any such operator norm
p(A) = Tim [|A"]|/". (2.1)
n—oo

The following version of the Perron-Frobenius theorem can be found in [Gan00,
Section 8.3] (see also, e.g., [Sen73, Chapter 1]). In this section, we will give our
own proof, with a distinctly probabilistic flavor, of this theorem and the remark
below it.

Theorem 2.1 (Perron-Frobenius) Let S be a finite set and let A : C5 — C
be a linear operator whose matriz is nonnegative and irreducible. Then

(i) There exist an f : S — [0,00), unique up to multiplication by a positive
constant, and a unique o € R such that Af = af and f is not identically
zero.

(ii) f(z) >0 forallxz € S.
(iii) a = p(A) > 0.

(iv) The algebraic multiplicity of « is one. In particular, if A is written in its
Jordan normal form, then a corresponds to a block of size 1 x 1.

Remark We define periodicity for nonnegative matrices in the same way as for
probability kernels. If A is moreover aperiodic, then there exists some n > 1
such that A"(z,y) > 0 for all z,y € S (i.e., the same n works for all z,y). Now
Perron’s theorem [Gan00, Section 8.2] implies that all other eigenvalues A of A
satisfy |A| < a.. If A is not aperiodic, then it is easy to see that this statement fails
in general. (This is stated incorrectly in [DZ98, Thm 3.1.1 (b)].)

We call the constant o and function f from Theorem the Perron-Frobenius
eigenvalue and eigenfunction of A, respectively. We note that if Af(x,y) := A(y, )
denotes the transpose of A, then AT is also nonnegative and irreducible. It is well-
known that the spectra of a matrix and its transpose agree: spec(A) = spec(AT),
and therefore also p(A) = p(A"), which implies that the Perron-Frobenius eigenval-
ues of A and A' are the same. The same is usually not true for the corresponding
Perron-Frobenius eigenvectors. We call eigenvectors of A and A' also right and left
eigenvectors, respectively, and write ¢A := A'¢, consistent with earlier notation
for probability kernels.
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2.2 Subadditivity

By definition, a function f : N, — R is subadditive if
f(n+m) < f(n)+ f(m) (n,m >1).

The following simple lemma has many applications. Proofs can be found in many
places, e.g. [Lig99, Thm B.22].

Lemma 2.2 (Fekete’s lemma) If f: N, — R is subadditive, then the limit

lim lf(n) = inf lf(n)

n—oo N, n>1ln

exists in [—o0, 00).

Proof Note that we can always extend f to a subadditive function f : N — R by
setting f(0) = 0. Fix m > 1 and for each n > 0 write n = k,,(n)m + r,,(n) where
km(n) > 0and 0 < r,(n) < m, ie., ky(n)is n/m rounded off to below and 7,,(n)
is the remainder. Setting s, := sup;<,.,, f(r), we see that

f(n) _ f(km()m+rm(n) _ b (n)f(m) + sm _, fm)

n kpm)mArnn) T kp (n)m n—oo  m

which proves that

limsupm < % (m>1).

n—00 n

Taking the infimum over m we conclude that

lirnsupM < inf M
n—00 n m21 M

This shows in particular that the limit superior is less or equal than the limit infe-
rior, hence the limit exists. Moreover, the limit (which equals the limit superior)
is given by the infimum. Since f takes values in R, the infimum is clearly less than
+00. |
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2.3 Spectral radius

Let S be a finite set and let £(C®, C®) denote the space of all linear operators
A:C% — C% Let || - || be any norm on C° and let | A denote the associated
operator norm of an operator A € £(C®,C®). Then obviously

IASI = NAC/ILFIDIILAL < TAILAL - (f € ©F),

where the inequality between the left- and right-hand sides holds also for f = 0
even though in this case the intermediate steps are not defined. It follows that
IABF| < |A] 1Bl ]|, which in turn shows that

IAB| < JAI[IBI (A B € £(C*,C)). (2:2)

Exercise 2.3 (Operator norm induced by supremumnorm) If || - ||, de-
notes the supremumnorm on C?, then show that the associated operator norm on

L(C3,C%) is given by
| Alleo = Slellsbz |A(z, y)|.

yes
Lemma 2.4 (Spectral radius) For each operator A € L(C°,C%), the limit
p(A) = lim [|A"||'/"
n—oo
exists in [0,00). For each € > 0 there exists a C. < oo such that
p(A)" <A™ < Ce(p(A) +€)"  (n>0). (2.3)
Proof It follows from (2.2)) that [[A™*™|| < ||A™|| ||[A™||]. In other words, this says
that the function n — log ||A"|| is subadditive. By Lemma [2.2] it follows that the
limit
it~ log | 4" = inf -~ log | 47|
e L - P

exists in [—oo,00). Applying the exponential function to both sides of this equa-
tion, we see that the limit

— T; n l/n: . n||l/n
p(A) = lim [|A™][V" = inf |47



2.4. EXISTENCE OF THE LEADING EIGENVECTOR 45

exists in [0,00). In particular, this shows that p(A4) < [|A"||*/™ (n > 1) and for
each € > 0 there exists an N > 0 such that

A"V < p(A) +e (n=N).
Raising both sides of our inequalities to the n-th power and choosing

Ce=1V sup [|A"][(p(A) +¢)™"
0<n<N
yields the desired statement (where we observe that p(A)? =1 = |[1|| = ||4%|). ®

Exercise 2.5 (Choice of the norm) Show that the limit p(A) from Lemma [2.4]
does not depend on the choice of the norm on C°. Hint: you can use the fact that
on a finite-dimensional space, all norms are equivalent. In particular, if || - || and

| - |I' are two different norms on the space £(C?, C?), then there exist constants
0 < ¢ < C < oo such that ¢||A]| < || 4] < C||A]| for all A € £L(C®,C5).

2.4 Existence of the leading eigenvector

Let A be a nonnegative real matrix with coordinates indexed by a finite set S.
The Perron-Frobenius theorem tells us that if A is irreducible, then A has a unique
nonnegative eigenvector with eigenvalue p(A). In this section, we will prove the
existence of such an eigenvector.

Lemma 2.6 (Existence of eigenvector) Let S be a finite set, let A: C¥ — C5
be a linear operator whose matriz is nonnegative, and let p(A) be its spectral radius
as defined in Lemma . Then there exists a function h : S — [0,00) that is not
identically zero such that Ah = p(A)h.

Proof We will treat the cases p(A) = 0 and p(A) > 0 separately. We start with the
latter. In this case, for each z € [0,1/p(A)), let us define a function f, : S — [0, 00)
by

f. = Z 2"A",
n=0
where 1 denotes the function on S that is identically one. Note that for each
z < 1/p(A), this sequence is absolutely summable in any norm on C¥ by ({2.3)). It
follows that

Af =) 2" A =21 -1 (0<z<p(A)7). (2.4)
n=0



46 CHAPTER 2. EIGENVALUES

By Excercise and the nonnegativity of A (and hence of A" for any n > 0),
A" loe = sup > | A"(2,y) = A" |

yeSs
Let || f]l1 := >_,cq|f(x)| denote the £1-norm of a function f : S — C. Then, by
nonnegativity and ([2.3))

o0l =214 = Y 2" A™ e = D 2" [A e = ) 2"p(A)". (2.5
n=0 n=0 n=0 n=0

Let h, := f./||f.|l:. Since h, takes values in the compact set [0, 1], we can choose
2, 1 p(A)~! such that h,, — h where h is a nonnegative function h with ||hlj; = 1.

Now ({2.4) tells us that
Ahzn = Zglhzn - HonHI1

By (2.5), || f|li = oo as z 1 p(A)~!, so letting n — oo we obtain a nonnegative
function h such that Ah = p(A)h and ||kl = 1.

We are left with the case p(A) = 0. We will show that this implies A" = 0
for some n > 1. Indeed, by the finiteness of the state space, if Al % 0, then by
nonnegativity there must exist zo, ..., z, € S with g = z, and A(xy_1,x) > 0 for
each k = 1,...,n. But then A" (x¢,z0) > n™ where n := [[}_; A(xk_1,2%) > 0,
which is easily seen to imply that p(A) > n'/" > 0. Thus, we see that p(A4) = 0
implies A" = 0 for some n. Let m :=inf{n >1: A"1 =0}. Then h:= A" 11 #£0
while Ah =0 = p(A)h. n

2.5 Uniqueness of the leading eigenvector

In the previous section, we have shown that each nonnegative matrix A has a
nonnegative eigenvector with eigenvalue p(A). In this section, we will show that
if A is irreducible, then such an eigenvector is unique. We will use probabilistic
methods. Our proof will be based on the following observation.

Lemma 2.7 (Generalized Doob transform) Let S be a finite set and let A :
C% — C® be a linear operator whose matriz is nonnegative. Assume that h : S —
[0,00) is not identically zero, « > 0, and Ah = ah. Then setting S' := {x € S :

h(z) > 0} and
Az, y)h(y)

Ala,y) = ah(z)

(z,ye S

defines a transition kernel A" on S'.
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Proof Obviously A"(x,y) > 0 for all 2,y € S'. Since

Y AMa,y) = (ah(@) ™ Y Alz,y)hly) = (ah(z) ' Ah(z) =1 (v € 5),

yes’ yes’

AP is a transition kernel. [ |

We need one more preparatory lemma.

Lemma 2.8 (Eigenfunctions of positively recurrent chains) Let P be a
probability kernel on a finite or countably infinite space S. Assume that the Markov
chain X with transition kernel P is irreducible and positively recurrent. Let f :
S — (0,00) be a bounded function and let o > 0 be a constant. Assume that
Pf=af. Then a =1 and f is constant.

Proof Since P is irreducible and positively recurrent, by Theorem [0.1§] (b), it has
a unique invariant law p, which satisfies p(z) > 0 for all x € S. Now puf = pPf =
paf which by the fact that f > 0 proves that a = 1 and hence f is harmonic.
Let X denote the Markov chain with transition kernel P, let P denote the law
of the chain started in X, = z, and let E* denote expectation w.r.t. P*. Let
0, denotes the delta measure in z, i.e., the probability measure on S such that

0:({y}) := 1{z=yy. Then
f@) = L P @) = (6P = DS B sl (e S)

where in the last step we have used Theorem [0.19, In particular, since the limit
does not depend on z, the function f is constant. |

We can now prove parts (i)—(iii) of the Perron-Frobenius theorem.

Proposition 2.9 (Perron-Frobenius) Let S be a finite set and let A : C5 — C°
be a linear operator whose matriz is nonnegative and irreducible. Then

(i) There exist an f : S — [0,00), unique up to multiplication by a positive
constant, and a unique o € R such that Af = af and f is not identically
zero.

(ii) f(z) >0 forallxz € S.
(iii) o= p(A) > 0.
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Proof Assume that f : S — [0,00) is not identically zero and satisfies Af = af
for some a € R. Since f is nonnegative and not identically zero, we can choose
x € S such that f(x) > 0. Since A is nonnegative, Af(z) > 0 and therefore a > 0.
In fact, since A is irreducible, we can choose some n > 1 such that A"(z,z) > 0
and hence A" f(x) > 0, so we must have a > 0. Moreover, by irreducibility, for
each y € S there is an m such that A™(y,z) > 0 and hence A™f(y) > 0, which
shows that f(y) > 0 for all y € S.

Now let h : S — [0,00) and § € R be another function and real constant such
that h is not identically zero and Ah = fh. We will show that this implies f = ch
for some ¢ > 0 and o = . In particular, choosing h as in Lemma [2.6] this then
implies the statements of the proposition.

By what we have already proved, 3 > 0 and h(y) > 0 for all y € S. Let A" be
the probability kernel on S’ = S (since h > 0 everywhere) defined in Lemma [2.7]
Note that A" is irreducible since A is and since h > 0 everywhere. Set g := f/h.
We observe that

by = S A@DRY) fly) _ Af(2) _a
Algla) =2 Bhia)  hly) ~ Bia) 30

yeSs

Since A" is positively recurrent by the finiteness of the state space, Lemma
implies that a/ =1 and g(z) = ¢ (x € S) for some ¢ > 0. |

2.6 The Jordan normal form

In this section, we recall some facts from linear algebra. Let V be a finite-
dimensional linear vector space over the complex numbers and let £(V, V') denote
the space of linear operators A : V — V. If {e1,...,e4} is a basis for V', then each
vector @ € V can in a unique way be written as

d
6=> oie,
=1

where the ¢(i) are complex numbers, the coordinates of ¢ with respect to the basis
{e1,...,eq}. There exist complex numbers A(7, j) such that for any ¢ € V| the
coordinates of A¢ are given by

M@=mewﬁ (i=1,....d).
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We call (A(7,7))1<ij<a the matriz of A w.r.t. basis {e1,...,eq}. We warn the
reader that whether a matrix is nonnegative (i.e., wether its entries A(z,y) are all
nonnegative) very much depends on the choice of the basis.ﬂ

The spectrum of A is the set of eigenvalues of A, i.e.,
spec(A) = {/\ eEC:40#£peV st Ap = )\qﬁ}.
The function C 3 z — pa(z) defined by
pa(z) = det(A — 2)

is the characteristic polynomial of A. We may write

pa(z) = H()‘z — z)™),
i=1

where spec(A) = {A1,..., A}, with Ay, ..., A, all different, and m,(\) is the al-
gebraic multiplicity of the eigenvalue A\. We need to distinguish the algebraic
multiplicity of an eigenvalue A from its geometric multiplicity mg(X), which is
the dimension of the corresponding eigenspace {¢p € V : Ap = A\¢}. By defini-
tion, ¢ € V is a generalized eigenvector of A with eigenvalue X if (A — \)*¢ = 0
for some k£ > 1. Then the algebraic multiplicity m,(A) of A is the dimension of
the generalized eigenspace {¢p € V : (A — X\)k¢ = 0 for some k > 1}. Note that
mg(A) < ma(A).

It is possible to find a basis {ey, ..., €4} such that the matrix of A w.r.t. this basis
has the Jordan normal form , i.e., the matrix of A has the block diagonal form
A 1
B *
A= ,  with By =
S

B

d A
We can read off both the algebraic and geometric multiplicity of an eigenvalue A
from the Jordan normal form of A. Indeed, m,(A) is simply the number of times

IThe statement that the matrix of a linear operator A is nonnegative should not be confused
with the statement that A is nonnegative definite. The latter concept, which is defined only
for linear spaces that are equipped with an inner product (¢,), means that (¢, Ag) is real
and nonnegative for all ¢. One can show that A is nonnegative definite if and only if there
exists an orthonormal basis of eigenvectors of A and all eigenvalues are nonnegative. Operators
whose matrix is nonnegative w.r.t. some basis, by contrast, need not be diagonalizable and their
eigenvalues can be negative or even complex.
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A occurs on the diagonal, while mg4(A) is the number of blocks having A on the
diagonal. Note that

A1 1 A
0 0

1 : :

A 0 0

Each block in the Jordan normal form of A corresponds to an invariant subspace of
generalized eigenvectors that contains exactly one eigenvector of A. The subspaces
corresponding to all blocks with a given eigenvalue span the generalized eigenspace
corresponding to this eigenvalue. To give a concrete example: if A has the Jordan
normal form

then the eigenspace and generalized eigenspace corresponding to the eigenvalue )\,
consist of all vectors of the forms

o(1) o(1)
0 4(2)
0 4(3)

o || e
0 4(5)
0 0
0 0
0 0

repectively.

Recall that in Lemma [2.4) we defined p(A) as p(A4) = lim, o [|A"||*/". The
next lemma relates p(A) to the spectrum of A. This fact is well-known, but for
completeness we include a proof in Appendix [A.T]

Lemma 2.10 (Gelfand’s formula) Fiz any norm on V and let |A|| denote the
associated operator norm of an operator A € L(V,V'). Let p(A) be defined as in
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Lemmal2.4. Then

p(A) = sup{|A| : X € spec(A)} (Ae LV, V)).

2.7 The spectrum of a nonnegative matrix

We note that in the proof of Proposition [2.9] which contains the main conclusions
of the Perron Frobenius theorem, we have used very little linear algebra. In fact,
we have not even very often used the fact that our state space S is finite. We used
the finiteness of S several times in the proof of Lemma (existence of the leading
eigenvalue), for example when we used that ||1||; < oo or when we used that any
sequence of functions that is bounded in ¢;-norm has a convergent subsequence.
Later, in the proof of Proposition 2.9, we needed the finiteness of S when we
used that any irreducible transition kernel is positively recurrent. In both of these
places, our arguments can sometimes be replaced by more ad hoc calculations to
show that certain infinite dimensional nonnegative matrices also have a Perron-
Frobenius eigenvector that is unique up to a multiplicative constant, in a suitable
space of functions.

In the present section, we will use the finiteness of S in a more essential way to
prove the missing part (iv) of Theorem as well as the remark below it. In
particular, we will use that each finite-dimensional square matrix can be brought
in its Jordan normal form.

Lemma 2.11 (Spectrum and Doob transform) Let S be a finite set and let
A 1 C% — C° be a linear operator whose matriz is nonnegative. Assume that
h:S — (0,00) and o > 0 satisfy Ah = ah, and let A" be the probability kernel
defined in Lemma . Then A" is irreducible, resp. apriodic if and only if A
has these properties. Moreover, a function f : S — C is an eigenvector, resp.
generalized eigenvector of A corresponding to some eigenvalue N € C if and only
if f/h is an eigenvector, resp. generalized eigenvector of A" corresponding to the
eigenvalue \/ .

Proof Let us use the symbol A to denote the linear operator on C¥ that maps
a function f into hf. Similarly, let A~ denote pointwise multiplication with the
function 1/h(x). Then Lemma says that A" = a~'h 'Ah. Recall that f is
an eigenvector, resp. generalized eigenvector of A corresponding to the eigenvalue
A if and only if (A — X)f = 0, resp. (A — N)*f = 0 for some k > 1. Now
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A —Na=a'h'Ah —a'h ' Ah = a'h ' (A — M)k and therefore

(A" = Na)r =a 'R A= Nh---ath (A= Nh=a " (A - \'h

k times

It follows that (A"—\/a)(f/h) = a~'h~ (A=) f is zero if and only if (A—X)f =0
and more generally (A" — X\/a)*(f/h) = a *h~'(A — X\)*f is zero if and only if
(A= NFf=0. n

Exercise 2.12 (Non-diagonalizable kernel) Give an example of a probability
kernel P that is not diagonalizable. Hint: It is easy to give an example of a
nonnegative matrix that is not diagonalizable. Now apply Lemma [2.11}]

Remark Regarding the excercise above: I do not know how to give an example
such that P is irreducible.

Proposition 2.13 (Spectrum of a nonnegative matrix) Let S be a finite set,
let A: C% — C® be a linear operator whose matriz is nonnegative and irreducible,
and let o = p(A) be its Perron-Frobenius eigenvalue. Then the algebraic multi-
plicity of a is one. If A is moreover aperiodic, then all other eigenvalues A of A
satisfy |A| < a.

Proof By Lemma it suffices to prove the proposition for the case that A is
a probability kernel. Writing P instead of A to remind us of this fact, we first
observe that since the constant function 1 is nonnegative and satisfies P1 = 1, by
Proposition [2.9] this is the Perron-Frobenius eigenfunction of P and its eigenvalue
is 1. In particular, o = p(P) = 1.

Let o be the unique invariant law of P, which satisfies pu(x) > 0 for all z € S|
Set V :={f € C: uf =0}. Since f € V implies uPf = puf = 0, we see that P
maps the space V into itself, i.e., V is an invariant subpace of P. Note that for any
f € C% we have f — (uf)1 € V. We observe that for any f € C°, f — (uf)1 € V.
In fact, since f —cl € V for all ¢ # uf, each function in C¥ can in a unique way
be written as a linear combination of a function in V' and the constant function 1,
i.e., the space V has codimension one.

Let P}V denote the restriction of the linear operator P to the space V. We claim
that 1 is not an eigenvalue of P| . To prove this, imagine that f € V satisfies

2Note that, actually, u is the left Perron-Frobenius eigenvector of P.
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Pf = f. Then, by the reasoning in Lemma [2.8

n—1
fe) =2 S PH@) s uf =0 (ze8)
k=0

If P is aperiodic, a stronger conclusion can be drawn. In this case, if 0 £ f € V
satisfies Pf = Af for some A € C, then by Theorem [0.19]

N'f(x) = P f(x) = 8, P"f = EF[f(X,)] —> uf =0 (z€5),
which is possible only if || < 1.

Now imagine that f € C* (not necessarily f € V) is a generalized eigenvector of
P corresponding to some eigenvalue ), i.e., (P — \)*f = 0. Then we may write f
in a unique way as f = g +cl where g € V and c € C. Now 0 = (P — \)ff =
(P — XN¥g + c(1 — N1, where (P — \)*g € V by the fact that V is an invariant
subspace. Since each function in C° can in a unique way be written as a linear
combination of a function in V' and the constant function 1, this implies that both
(P —X)kg =0 and ¢(1 — \)*1 = 0. We now distinguish two cases.

If A = 1, then since we have just proved that 1 & spec(P|V), the operator P‘V has
no generalized eigenvectors corresponding to the eigenvalue A, and hence g = 0.
This shows that the constant function 1 is (up to constant multiples) the only
generalized eigenvector of P corresponding to the eigenvalue 1, i.e., the algebraic
multiplicity of the eigenvalue 1 is 1.

If A # 1, then we must have ¢ = 0 and hence f € V. In this case, if P is aperiodic,
then by what we have just proved we must have || < 1. |

Exercise 2.14 (Periodic kernel) Let P be the probability kernel on {0, ...,n—
1} defined by

P(x’w:l{y:xmod(n)} (0 <z,y <n).

Show that P is irreducible but not aperiodic. Determine the spectrum of P.

2.8 Convergence to equilibrium

Now that the Perron Frobenius theorem is proved, we can start to reap some of
its useful consequences. The next proposition says that for irreducible, apriodic
Markov chains with finite state space, convergence to the invariant law always
happens exponentially fast.
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Proposition 2.15 (Exponential convergence to equilibrium) Let S be a
finite set and let P be an irreducible, aperiodic probability kernel on S. Then the
Perron-Frobenius eigenvalue of P is p(P) = 1 and its associated eigenvector is the
constant function 1. Set

v :=sup {|A] : X € spec(P), A # 1},

and let i denote the unique invariant law of P. Then ~v < 1 and for any norm on
C% and € > 0, there exists a constant C. < oo such that

1P"f = ()Ll < Coly +o)"[If = (whHL (n=0, feC).

Proof Obviously P1 =1 and 1 is a positive function, so by Proposition [2.9] this
is the Perron-Frobenius eigenfunction of P and its eigenvalue is 1. As in the proof
of Proposition , we set V = {f € C° : uf = 0}. We observe that V is an
invariant subspace of P and f — (uf)1 € V for all f € C°. Let P|v denote the
restriction of the linear operator P to V.

By Lemma for any norm on C* and its associated operator norm, and for any
e > 0, there exists a C. < oo such that for any f € C?,

12" f = (/) = 1P (f = (D]
< PP L = (H)] < Ca(p(P]y) +2)" L = (-

As we have seen near the end of the proof of Proposition if f is an eigenvector
of P corresponding to an eigenvalue A # 1, then we must have f € V. By
Proposition , the algebraic multiplicity of 1 is 1, hence 1 & spec(P‘V). It
follows that

spec(P)\{1} = spec(P|,),

and therefore v = p(P‘V). By Proposition , all eigenvalues \ # 1 of P satisfy
|A] <1, hence v < 1. u

Remark If ~ is as in Proposition [2.15] then the positive quantity 1—- is called the
absolute spectral gap of the operator P. If X = (Xj)i>0 denotes the Markov chain
with transition kernel P, then Proposition[2.15[says that the expectation E*[f(X,,)]
of any function f at time n converges to its equilibrium value pf exponentially
fast:

[B[£(X)] — ] < Coe ™= where 5= log(1— 7).

Here C. can even be chosen uniformly in x (if we take || - || to be the supremum-
norm).
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2.9 Conditioning to stay inside a set

Let X be a Markov chain with countable state space S and transition kernel P,
and let S’ C S be a finite set of states such that

e P(z,y) >0 for some z € S, y ¢ 5, i.e., it is possible to leave 5.

e The restriction of P to S’ is irreducible, i.e., it is possible to go from any
state z in S’ to any other state y € S" without leaving S’.

We will be interested in the process X started in any initial state in S” and con-
ditioned not to leave S’ till time n, in the limit that n — oo. Obviously, our
assumptions imply that starting from anywhere in S’, there is a positive proba-
bility to leave S” at some time in the future. Since S’ is finite, this probability is

uniformly bounded from below, so by the principle ‘what can happen must happen’
(Proposition |0.14]), we have that

P[X, € 8" Vk > 0] =0.

Let P’ := P|S/ denote the restriction of P to S, i.e., the matrix (P(x,v))syes
and its associated linear operator acing on C%'. Since P’ is nonnegative and ir-
reducible, it has a unique Perron-Frobenius eigenvalue o and associated left and
right eigenfunctions n and h, unique up to multiplicative constants, i.e., n and h
are strictly positive functions on S’ such that

nP'=an and P'h= ah.
We choose our normalization of 77 and h such that
m(z) :==n(@)h(x)  (zeS)

is a probability measure on S’. It turns out that 7 is the invariant law of the Doob
transformed probability kernel (P')" defined as in Lemma [2.7]

Lemma 2.16 (Invariant law of Doob transformed kernel) Let S’ be a finite
set and let A : C% — C% be linear operator whose matriz is irreducible and
nonnegative. Let o, 1 and h be its Perron-Frobenius eigenvalue and left and right
eigenvectors, respectively, normalized such that 7(x) := n(z)h(z) (x € 5') is a
probability law on S’. Then m is the invariant law of the probability kernel A"
defined in Lemma (2.7
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Proof Note that since A" is irreducible, its invariant law is unique. Now

A z) = 3 nly)hiy) 2L DRE)

= ah(y)
= o h(z) Y n(y)Aly,«) = a~ (nA)(@)h(x) = (2),
yes’

which proves that 7 is an invariant law. |

For simplicity, we assume below that P’ is not only irreducible but also aperiodic.

Theorem 2.17 (Process conditioned not to leave a set) Let X be a Markov
chain with countable state space S and transition kernel P, and let S" C S be
finite. Assume that P' := P|S, 15 irreducible and aperiodic. Let o and n,h de-
note its Perron-Frobenius eigenvalue and left and right eigenvectors, respectively,
normalized such that ) o n(x) =1 and ) o n(x)h(x) = 1. Set

:inf{kZO:ngS'}.
Then, for any x € 5,
lim o "P"[n < 7] = h(z) (x e s"). (2.6)

n—oo

Moreover, for each m > 1 and x € S,

P*[(Xk)o<kem € - |n < 7] = P*[(X})o<k<m € -],

n—oo

where X" denotes the Markov chain with state space S’ and Doob transformed
transition kernel
P'(z,y)h(y)

0 (x,y € 5.

P(z,y) =

Proof We observe that, setting xy := =,

“In < 7] Z Z HP T—1, Tk) Z P"(zg,z,) = P"1(x).

€S’ T, €S’ k=1 Tn €S’

As in the proof of Lemma [2.11] we let A and A" also denote the operators that
correspond to multiplication with these functions. Then P" = o 'h~'P’h and
therefore .

o "P'n < 7] =a "P"l(z) = a " (ahP"h )" 1(z)

= h(z)((P")"h~")(x) — h(z)mh™ = h(),
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where
ch™t =Y w(@)h TN z) = Y n@)h(@)h @) =) nlz) =1
a'es’ a'es’ zes’
is the average of the function A~! with respect to the invariant law 7 of P".
To prove the remaining statement of the theorem, we observe that for any 0 <
m < n, Tmy €5, and (xg, ..., 2,) € S such that
P[(Xo, ..., Xm) = (zo,...,Tm)] >0,
we have
po |:Xm+1 = Tl | (X0, Xm) = (20, ..., Tm), n < T}
— sz+265’ e anesl HZ:l P(I’k_l, I’k)
Zx;n+le5/ T Zx;IGS/(HZ; Plae—1,2) ([ Taersr Py, 7))

P(xmaxm—l—l)Pln_m_l]-(xm—&—l)
P (2y,)

This shows that conditional on the event n < 7, the process (Xo,...,X,) is a
time-inhomogeneous Markov chain with transition kernel in the (m + 1)-th step
given by

P(a,y) P" ™M (y)  P(x,y)a~m-m=h promtly(y)

P(n) =
P (x) aa~(n=m) prTm ()

m,m-+1 ((L’, y) -

Since we have already shown that a " P"™"1 — h as n — oo, the result follows. R

Exercise 2.18 (Behavior at typical times) Let 0 < m, < n be such that
m, — oo and n —m, — oo as n — oco. Show that for any x € 5,

]P’[ane-’n<7}:7r,

where m = nh is the invariant law of the Doob transformed probability kernel P".

Excercise shows that conditional on the unlikely event that n < 7 where n
is large, most of the time up to n, the process X is approximately distributed
according to the invariant law 7 of the Doob transformed probability kernel P".
We will see below that at the time n, the situation is different.
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Let X be a Markov chain with countable state space S and transition kernel P,
and let S” C S be finite. By definition, we say that a probability measure p on S’
is a quasi-stationary lauf] of P on S’ if

P[Xyo€-]=p implies PX;€-|X, €8 =p.

It seems that quasi-stationary laws were first introduced by Darroch and Seneta
in [DS6T].

Proposition 2.19 (Quasi stationary law) Let X be a Markov chain with count-
able state space S and transition kernel P, and let S C S be finite. Assume
that P := P!S, is irreducible and aperiodic. Let o and n, h denote its Perron-
Frobenius eigenvalue and left and right eigenvectors, respectively, normalized such
that > con(x) = 1 and Y o n(x)h(x) = 1. Then n is the unique quasi-
stationary law of P on S’ and the process started in any initial law satisfies

lim P[X, € -|n<7]=n,

n—oo

where 7 :=1inf{k > 0: X} & 5'}.

Proof Define finite measures p,, on S’ by
pn(z) =PX, =2, n<71] (€85, n>0).
Then

pni1(z) =P X1 =2, n+1<7] = Z PX, =y, n<7|P(y,x) = u, P ()

y'es’

(x € 9, ie., pny1 = pnP’. As before, we let h and h~" denote the operators
that correspond to multiplication with these functions. Then P" = a~'h™'P'h
and therefore

pn = poP"™ = po(ahP"h™")" = o poh(P")"h~". (2.7)
Let us define a probability measure v on S’ by

v(x) = (uoh) " p(@)h(z)  (x € ).

3Usually, the terms ‘stationary law’ and ‘invariant law’ can be used exchangeably. In this case,
this may lead to confusion, however, since the term ‘quasi-invariant measure’ is normally used in
ergodic theory for a measure that is mapped into an equivalent measure by some transformation.
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We observe that
" poh(P")" = o™ (poh)v(P")",

where v(P")" is just the law at time n of a Markov chain with transition kernel
P" and initial law v. Since P" is irreducible and aperiodic, v(P")" converges as
n — 0o to the invariant law 7 given by 7(z) = n(x)h(z). Inserting this into ([2.7),
we see that

" pin = poh(P")"h™" — (uoh)nhh™" = (oh)n.
It follows that

P "y (oh)n
PX,e-ln<T|= = — =,
[ | | pnl a7, 1 nooo (poh)nl

where we have used that n1 = 1 by the choice of our normalization. |
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Chapter 3

Intertwining

3.1 Intertwining of Markov chains

In linear algebra, an intertwining relation is a relation between linear operators of
the form

AB = BA.

In particular, if B is invertible, then this says that A = BAB™!, or, in other words,
that the matrices A and A are similar. In this case, we may associate B with a
change of basis, and A corresponds to the matrix A written in terms of a different
basis. In general, however, B need not be invertible. It is especially in this case
that the word intertwining is used.

We will be especially interested in the case that A, A and B are (linear operators
corresponding to) probability kernels. So let us assume that we have probability
kernels P, P on countable spaces S, S, respectively, and a probability kernel K
from S to S (i.e., S x S 3 (z,y) = K(z,y)), such that

PK = KP. (3.1)

Note that P, P and K correspond to linear operators P : C5 — C*, P: C° — C¥,
and K : C° — C°, so both sides of the equation correspond to a linear
operator from C° into C°. We need some examples to see this sort of relations
between probability kernels can really happen.

FEzclusion process. Fix n > 2 and let C, = Z/n, ie., C, = {0,...,n — 1}
with addition modulo n. (Le., C, is the cyclic group with n elements.) Let
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S = {0,1}% ie., S consists of all finite sequences x = (z(0),...,z(n — 1))
indexed by C,,. Let (Ix)r>1 be i.i.d. and uniformly distributed on C,,. For each
xr € S, we may define a Markov chain X = (Xj)k>0, started in Xy = x and with
values in S, by setting

X (I+1) ifi=1I,
Xi1(1) := ¢ Xi(1) ifi=1+1, (3.2)
Xy (1) otherwise.

In words, this says that in each time step, we choose a uniformly distributed
position I € C,, and exchange the values of X in I and I + 1 (where we calculate
modulo n). Note that we have described our Markov chain in terms of a random
mapping representation. In particular, it is clear from this construction that X is
a Markov chain.

Thinning Let C' be any countable set and let S := {0,1}¢ be the set of all z =
(())iec with x(i) € {0,1} for all ¢ € C| i.e., S is the set of all sequences of zeros
and ones indexed by C. Fix 0 < p < 1, and let (x;)iec be i.i.d. Bernoulli (i.e.,
{0, 1}-valued) random variables with P[x; = 1] = p. We define a probability kernel
K, from S to S by

K, (z, )= P[(Xix(i))iec €] (x € 9). (3.3)

Note that (Xi:p(z’))iec is obtained from x by setting some coordinates of z to
zero, independently for each i € C, where each coordinate x(i) that is one has
probability p to remain one and probability 1 — p to become a zero. We describe
this procedure as thinning the ones with parameter p.

Exercise 3.1 (Thinning of exclusion processes) Let P be the transition ker-
nel of the exclusion process on C,, described above, with state space S = {0, 1}",
and for 0 < p <1, let K, be the kernel from S to S corresponding to thinning
with parameter p. Show that

PK,=K,P (0<p<1).

Sum of two processes Let P be a transition kernel on a countable space S and let
X(1) = (Xk(1))g>0 and X (2) = (Xk(2))k>0 be two independent Markov chains
with transition kernel P and possibly different deterministic initial states Xo(i) =
z(i) (i = 1,2). Then (X(1),X(2)) = (Xk(1), Xk(2))r>0 is a Markov chain with
values in the product space S x S. We may view (X (1), X(2)) as two particles,
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walking around in the space S. Now maybe we are not interested in which particle
is where, but only in how many particles are on which place. In that case, we may
look at the process

Yi(i) = Lixyy=iy + Lixp@=p (€S, k=0),

which takes values in the space S consisting of all functions y : S — {0,1,2} such
that ) ..o y(i) = 2. Note that ¥ just counts how many particles are present on
each site ¢ € S. It is not hard to see that Y = (Y)x>o is an autonomous Markov
chain.

Exercise 3.2 (Counting process) Let (X (1), X(2)) and Y be the Markov chains
with state spaces S x S and S described above. Let P, be the transition kernel of
(X(1),X(2)) and let P be the transition kernel of Y. For each y € S, let K(y, -)
be the uniform distribution on the set

U, = {(2(1),2(2)) € S x S 1y = Lty + Lu)

where 1,(i) := 1{,—;. Note that K is a probability kernel from S to S x S. From
y, we can see that there are two particles and where these are, but not which is
the first and which is the second particle. All K does is arbitrarily ordering the
particles in y. Show that

PK = KP,.

This example can easily be generalized to any number of independent Markov
chains (all with the same transition kernel).

Conditioning on the future As a third example, we look at a Markov chain X with
finite state space S and transition kernel P. We assume that P is such that all
states in S are transient, except for two states zp and z;, which are traps. We set

hi(x) .= P* [Xk = z; for some k > O} (1=0,1).

By Lemma [1.2] we know that hg and h; are harmonic functions. Since all states
except zg and z; are transient and our state space is finite, we have hg + hy = 1.
By Proposition [I.5] the process X conditioned to be eventually trapped in z; is
itself a Markov chain, with state space {x € S : h;(z) > 0} and Doob transformed
transition kernel P". Set

S:={(x,i):x €8, i€{0,1}, hi(x) > 0}.
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We define a probability kernel P on S by
p((x,i), (y,j)) = 1{i:j}Ph"(x,y) (x,y €S, i,5 €{0,1}).

Note that if (X, I) = (X, Ix)x>0 is a Markov chain with transition kernel P, then
I never changes its value, and depending on whether I, =0 forall k > 0or [, =1
for all k& > 0, the process X is our original Markov chain X conditioned to be
trapped in either zy or 2.

Exercise 3.3 (Conditioning on the future) In the example above, define a
probability kernel K from S to S by

K(z,(y,1) == lgepphi(z)  (z,y €8, i €{0,1}).

Show that R
PK = KP.

Returning to our general set-up, we observe that the intertwining relation (3.1
implies that for any probability measure p on S

pP"K = uKP"  (n>0).

This function has the following interpretation. If we start the Markov chain with
transition kernel P in the initial law g, run it till time n, and then apply the kernel
K to its law, then the result is the same as if we start the the Markov chain with
transition kernel P in the initial law pIC, run it till time n, and look at its law.

More concretely, in our three examples, this says:

e If we start an exclusion process in some initial law, run it till time n, and
then thin it with the parameter p, then the result is the same as when we
thin the initial state with p, and then run the process till time n.

e If we start the counting process Y in any initial law, run it to time n, and
then arbitrarily order the particles, then the result is the same as when we
first arbitrarily order the particles, and then run the process (X (1), X(2))
till time n.

e If we run the two-trap Markov chain X till time n, and then assign it a value
0 or 1 according to the probability, given its present state X,, that it will
eventually get trapped in zy or 21, respectively, then the result is the same
as when we assign such values at time zero, and then run the appropriate
Doob transformed Markov chain till time n.
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None of these statement comes as a big surprise, but we will later see less trivial
examples of this phenomenon.

3.2 Markov functionals

We already know that functions of Markov chains usually do not have the Markov
property. An exception, as we have seen in Lemmal0.12] is the case when a function
of a Markov chain is autonomous. Let us quickly recall what this means. Let X
be a Markov chain with countable state space S and transition kernel P, and let
¥ : S — S be a function from S into some other countable set S. Then we say
that (Yi)k>o0 := (¥(Xk))k>0 is an autonomous Markov chain if

Pl (Xps1) =y | Xi = 2]

depends on z only through ¥ (x). Equivalently, this says that there exists a tran-
sition kernel P on S such that

Py, y) = Z P(x,2')  VzeSst x)=y. (3.4)
2 )=y

If (3.4) holds, then, regardless of the initial law of X, one has that the process
(X)) = (Y(Xk))r>o0 is a Markov chain with transition kernel P.

The next theorem shows that sometimes, a function ¢(X) of a Markov chain X can
be a Markov chain itself, even when it is not autonomous. In this case, however,
this is usually only true for certain special initial laws of X. It seems this result
is due to Rogers and Pitman [RP8I1]. For better comparison with other results, in
the theorem below, it will be convenient to interchange the roles of X and Y, i.e.,
X will be a function of Y and not the other way around. Note that if X and Y
are random variables such that P[Y € -|X] = K(X, ), then formula below
says that ¥(Y) = X a.s. Thus, the probability kernel K from S to S is in a sense
the ‘inverse’ of the function ¢ : S — S.

Theorem 3.4 (Markov functionals) Let Y be a Markov chain with countable
state space S and transition kernel P, and let: S — S be a Junction from S into
some other countable set S. Let K be a probability kernel from S to S such that

{yGS K(z,y) >0} C {yES U(y) =z} (x €9), (3.5)
and let P be a transition kernel on S such that

PK = KP. (3.6)
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Then
P[Yo =y |v(Y0)] = K(¥(Yo),y) as.  (y€S) (3.7)

implies that
P[Y,=y| (¢(Y),.. ., v(Ya)] = K(W(Ya),y) as.  (y€S, n>0). (38)
Moreover, implies that the process (V) = (Y(Yi))k>0, on its own, is a

Markov chain with transition kernel P.

Proof Formula (3.8)) says that

PIY, =y| (v(Yo),...,0(Ya)) = (2o,...,xn)] = K(zn,y) as.

n >0, (zg,...,x,) € S™ such that
PI(0(Y),- o 0(Ya) = (0, )] >0,

and y € S such that ¥(y) = x,. We will prove this by induction. Assume that the
statement holds for some n > 0. We wish to prove the statement for n + 1. Let
(2o, ..., Tpy1) be such that

P[(Q/}(Yb), . ,¢(Yn+1>) = (Io, .. 7xn+1)} > 0,
and let y € S be such that ¢ (y) = 1. Then

P[YnJrl =Y ‘ (TP(YO)a e ,w(YnH)) = (2o, . .- 717n+1>]
_ P[Yn+1 =y, Y(Ynt1) = Tpn ’ (ID(Yo% e 7¢(Yn)) = (20, . .- 71:71)]
P[d’(YnJrl) = Tnt1 ‘ (w(YO)u EE W(Yn)) = (wo, - .- >xn)} (3.9)
_ PV =y | (¥(%). - 0 (¥0) = (20, -, 70)]
P[w(YnH) = Tnt1 ! (w(YO)a EE 7¢(Yn)) = (wo, - - axn)} .

We will treat the nominator and denominator separately. To shorten notation, let
us denote the conditional law given (¢(Yp),...,%(Y,)) = (2o, ..., 2,) by

Plogown [ ] =P - | (0(Y0),...,0(Ya)) = (2o, ..., 2,)].

Then
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Here, by our induction assumption,

IP)(aco ,,,,, Tn) [Yn = y/] - K<mn7 y/) \V/y/ € S’ s.t. ¢(y,) = Tn,

= P[Yn+1 =y | Yn = y/} = P(yluy)

Thus, we see that

]P)(xo ..... Zn) [Yn-‘rl = y} = Z K(xna y/)P(y/> y)
Y (Y )=en

- Z K(xmyl>P(y/7y) = Kp(xmy/) = pK(‘T”’y)’

where we have used that K(z,, - ) is concentrated on {y’ : ¢¥(y') = z,,} and in the
last step we have applied our intertwining assumption.

We observe that by (3.5)) and the fact that ¥ (y) = z41,

PK(z,,y) = Z P(x,, x)K(z,y)
z€S
= Z P(l’n, x)K(xay)l{w(y)zx} = P(xmxn-&-l)K(xn—l—lay)’

zes

and therefore

]P)(aco ----- Tn) [w(Yn-l—l) = xn—&-l} = Z ]p(xo ..... Tn) [Yn+1 = y]
y:w(y):$n+1 ~ (310)
= Z P(.Z'n, $n+1>K(xn+la y) = P(il?n, xn-l—l)-
Y p(y)=2ni1

Inserting our last two formulas into (3.9)), we obtain that

P[Vorr = y| (0(Y0), - (Vo)) = (20, 1))

_ P(xn,iEnJrl)K(xn“’y) = K(2p41,9)
P(xn7x7’l+1) |




68 CHAPTER 3. INTERTWINING

This completes our proof of (3.8). Moreover, formula (3.10) shows that ¢(Y) is a
Markov chain with transition kernel P. |

Let us see how Theorem relates to the examples developed in the previous
section.

Counting process Let (X (1), X(2)) be two independent Markov processes, where
each process takes values in S and has transition kernel P, as in Excercise[3.2] Let
Y and S be as defined there and let ¢ : § x S — S be the function

D(a(1),2(2) = L) + La),
so that Y = (X (1), X(2)). Then the kernel K defined in Excercise [3.2] satisfies

{(2(1),2(2)) : K(y, (=(1),2(2))) > 0}  {(2(1),2(2)) : ¥(x(1), 2(2) = y}.

Since moreover PK = K P,, all assumptions of Theorem are fulfilled, so we
find that

P[(Xo(1), Xo(2)) = (2(1), 2(2))| Yo] = K (Yo, (e(1),2(2))) as.  (3.11)
for all (z(1),2(2)) € S x S implies that

P[(Xa(1), Xu(2)) = (2(1),2(2)) | (Y. Ya)] = K (Yo (2(1),2(2))) as. (3.12)

(
for all (z(1),2(2)) € S x S and n > 0, and under the same assumption, ¥ =
(X (1),X(2)) is a Markov chain with transition kernel P. Note that this lat-
ter conclusion holds in fact even without the assumption , since Y is au-
tonomous. Formula tells us that if initially we do not know the order of the
particles, then by observing the process Y up to time n, we obtain no information
about the order of the particles.

Conditioning on the future Let X and (X ,I) be Markov chains with state spaces
S and S and transition kernels P and P as in Excercise . Thus, X is a Markov
chain that eventually gets trapped in one of two traps zp and z;, and (X' ,I) is the
same process where the second coordinate [ tells us from the beginning in which
of the two traps we will end up.

Define ¢ : S — S by .

P(x,i) = ((z,7) € 9),
i.e., ¥ is just projection on the first coordinate. Then the kernel K from Excer-
cise B.3] satisfies

{(#,9) € S: K(x,(%,9)) >0} C {(#,1) € S : ¢(,1) = x}
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and PK = KP, so all assumptions of Theorem are fulfilled. We therefore
conclude that

P[(Xo, Io) = (%,1) | Xo] = K (Xo, (#,1)) as.  ((#,i) € S)
implies that
P((Xn, L) = (2,9) [(Xo, ..., X0)] = K(X,,, (£,7))  as.
for all n > 0 and (Z,1) € S. More simply formulated, this says that
PlIy=1i|Xo] = hi(Xo) as.  (i=0,1)
implies that
PlI, =i|(Xo,..., X,)] =h(X,) as. (>0, i=12). (3.13)
Moreover, under the same assumption, the process X, on its own, is a Markov
chain with transition kernel P. Note that this is more surprising than in the
previous example, since in the present set-up, X is not autonomous as part of the

joint Markov chain (X, 7). Indeed, X evolves according to the transition kernel
P resp. P depending on whether I =0 or = 1.

To understand how it is possible that X has the Markov property even though it
is not autonomous, we observe that by , if we observe the whole path of the
process X up to time n, then we do not gain more information about the present
state of I than we would get from knowing X,,. As a result,

P[Xnﬂ = Tpyi1 ‘ (Xo, . ,Xn) = (o, ... ,xn)}
= IP’[X”H = Tyt | (X, I,) = (y, 0)] ho(»)
+ ]P)[Xnﬂ = Tpyi1 | (Xn, I) = (z,, 1)}h1(azn),
which depends only on z,, and not on (zo, ..., 2, 1).

Thinning of exclusion processes This example does not satisfy condition (3.5]),
hence Theorem is not applicable. In view of this and other examples, we will
prove a more general theorem in the next section.

3.3 Intertwining and coupling

In Theorem [3.4] we have seen how intertwining is related to the problem of Markov
functionals, i.e., the question whether certain functions of a Markov chain them-
selves have the Markov property. The intertwinings in Theorem are of a special
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kind, because of the condition . In this section, we will see that intertwining
relations between two Markov chains X and Y in general give rise to couplings be-
tween X and Y such that holds. The following result is due to Diaconis and
Fill [DF90, Thm 2.17]; the continuous-time analogue has been proved in [Fil92]
Thm. 2].

Theorem 3.5 (Intertwining coupling) Let P and P be probability kernels on
countable state spaces S and S, respectively. Assume that K is a probability kernel
from S to S such that

PK = KP.

Let

P / K / / -
Py(z,2') == (a;.;:{)(x (y:v/),y) (z,2' €S, ¥y €8, PK(z,y)>0), (3.14)

and choose for Py(x, -) any probability law on S if PK(x,y’) = 0. Then P, is a
probability kernel on S for each y' € S and

P(z,y; 2 y) .= P(y,y)Py(x,z) ((z,9), («',y) € 5) (3.15)

defines a probability kernel on S := {(z,y) € S x S : K(x,y) > 0}, where P does
not depend on the freedom in the choice of the Py. If (X,Y) is the Markov chain

with transition kernel P started in an initial law such that
P[Yo=y|Xo] = K(Xo,-)  (y€S9),

then i
P[Y, = y‘ (Xk)o<ken] = K(Xn, +) (ye S, n>0),

and X, on its own, is a Markov chain with transition kernel P.

Remark It is clear from (3.15)) that in the joint Markov chain (X,Y’), the second
component Y is autonomous with transition kernel P, but X is in general not
autonomous, unless P,y can be chosen so that it does not depend on y'.

Proof of Theorem [3.5] We observe that

3 PK(z,y) 5

no__ ) . / /
Py/(x7x)_PK(x,y’)_P(y’y) (PK(:C,y)>0)7

z’'eS

which shows that P, is a probability kernel. To show that the definition of P
does not depend on how we define Py (x, -) when PK(x,y’) = 0, we observe that
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(z,y) € S and P(y,y') > 0 imply that K (z,y)P(y,y') > 0 and hence PK (z,y') =
KP(z,y') > 0.

To prove the remaining statements, let K be the probability kernel from S to S
defined by

~

K(x, (x’,y’)) = lgeo K(2,9) (m €S, (o)) € g),
and define ¢ : § — S by Y(x,y) := z. If we show that
PR - iP,
then the remaining claims follow from Theorem [3.4, We observe that
Pk(x;x’,y’) = Z Pz, 2")gr—oy K (2", y') = Pz, 2" )K(2',y)
€S

and

KP(IL‘, CL’/, y/) _ Z 1{1}::{:”}K(xa y//)ﬁ)(‘r//’ y//; ZE,, y/)
(m”,Ay”)ES
= K(x,y")P(z,y";2',y),
y//egv
so that PK = K P can be written coordinatewise as

Pz, 2\ K(2',y) = Z K(z,y"\P(z,y"; 2", y) (xe S, (@,y)€8).

y//eg
To check this, we write

» ~ P NK(x'
> K(x,y")Pla,y"a'y) = Y K(z,y" )Py y) (@, 2)K(@,y)

PK !
y//eg ~ y”ES’ (:E’ y )
KP(x,y)
— WP(Q?, VK (2',y') = P(x,2")K(2',y'),
where we have used our assumption that K P = PK. |

Thinning of exclusion processes In this example,

S={(z,y) 2,y €{0,1}", y <z},

and the joint evolution of (X, Y") can be described in the same way as in ([3.2]), using
the same random pair [ for both X and Y. While this example is rather trivial (we
could have invented this coupling without knowing anything about intertwining!),
we will see in the next section that there exist less trivial examples of intertwinings
where the coupling of Theorem is much more surprising.
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3.4 First exit problems revisited

In this section we return to the set-up of Section We will be interested at the
behavior of a Markov chain X until it leaves some finite set S’. For simplicity, we
will assume that the whole state space of X just consists of S’ plus one additional
point z, which is a trap. More generally, the results we derive can be used to study
Markov chains stopped at the first time they leave a finite set.

Thus, we let X be a Markov chain with finite state space S = S’ U{z}, where z is
a trap. We let P denote the transition kernel of X, we write P’ for the restriction
of P to S' and assume that P’ is irreducible. It follows that P’ has a unique
Perron-Frobenius eigenvalue o and associated positive right eigenvector h, which
is unique up to a multiplicative constant. If we extend h to S by putting h(z) := 0,
then h is an eigenvector of P. Indeed, since h(z) = 0, we have

Ph(z) = P(z,y)h(y) = > P'(x,9)h(y) = P'h(z) = ah(z)  (z€ ),

yes yes’
while Ph(z) = 3 s P(2,y)h(y) = h(z) = 0 by the fact that z is a trap.

Proposition 3.6 (Intertwining for chain with one trap) Let X be a Markov
chain with finite state space S = S’ U{z} and transition kernel P. Assume that z
18 a trap and the restriction of P to S’ is irreducible. Let h be the, up to multiple
constants unique, right eigenvector of P such that h(z) =0 and h > 0 on S’, and
assume that h is normalized such that sup,c g h(x) < 1. Let a be the eigenvalue of
h and let Y be a Markov process with state space S := {1,2} and transition kernel

P P(1,1) P(1,2)\ [ a l-«
~\P(2,1) P(2,2)) \0 1 '
Let K be the probability kernel from S to S defined by

_ [ h=) ify=1,
K(w.y) ‘_{ 1—h(z) ify=2.

Then 3
PK = KP.
Proof This follows by writing
B ) , y_ | Ph(z) = ah(z) if y =1,
PE(w,y) = ) Pla,2)K(ay) = { P —h)(x)=1—ah(z) ify=1,

z'es
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while
KP(x,y) = Y K,y )P/, y)
y’GS’
| K(z,1)a = ah(x) if y =1,
| K(2,2)+ K(z,1)(1—a)=1—h(z)+ (1 —a)h(z) ify=2,
which shows that PK = K P. |

By Theorem and the remark following the latter, we see that the processes X
and Y from Proposition |3.6|can be coupled in such a way that their joint transition
probabilities are given by

~

P(a,y;a'sy) = Py, y)Py(x.a')  ((x,y),(@y) € 5),
where S := {(z,y) € S x S : K(x,y) >0} and P, is given by

Pz, 2)K(2', y)
PK(z,y)

Py(x,2') = (PK(z,y") > 0).

Filling in the definition of K and using our formulas for PK, we see that

n_ Plz,2)K(@',1)  P(z,a')h(z) : -
P (z,2") = PR (e 1) = () = P'(x,2) (x,2' € S")

is the generalized Doob transform of P’ as defined in Lemma [2.7] and more specif-
ically in Theorem [2.17, Thus, as long as the autonomous process Y stays in 1, the
process X jumps according to the generalized Doob transformed transition kernel
P". Recall that P, is concentrated on S’, hence X cannot get trapped as long
as Y = 1. Starting with the time step when Y jumps to the state 2, and from
thereon, the process X jumps according to the transition kernel

P(:L',:L‘,)K(I'/,Q) P(ajax/)(Q — h(.’L’l))

Ble ) = =Ry~ 2—ahl)

which is well-defined for all x € S since &« < 1 and h < 1. Since 1 — h is not an
eigenvector of P, this is not a kind of transform we have seen so far.

Remark The coupling of X and Y immediately gives us the estimate
P*[X, € '] > K(x,1)P']Y, = 1] = a"h(z). (3.16)

In view of ({2.6]), this estimate quite good, but it is not completely sharp since
the function h in Section [2.9]is normalized in a different way than in the present
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section. Indeed, in Section [2.9) we chose h such that ) _q n(x)h(x) = 1, where n
is a probability measure, while at present we need sup,. g h(x) < 1. Thus (unless
h is constant on S’), the h in our present section is always smaller than the one in

Section [2.9]

Interesting examples of intertwining relations for birth-and-death processes can be
found in [DMO09, [Swall]. Lower estimates in the spirit of but in the more
complicated set-up of hierarchical contact processes have been derived in [AST0].
The ‘evolving set process’ in [LPW09, Thm 17.23] (which can be defined for quite
general Markov chains) provides another nontrivial example of an intertwining
relation.



Chapter 4

Branching processes

4.1 The branching property

Let S be a countable set and let N'(S) be the set of all functions z : S — N such
that )", ¢ (i) < co. It is easy to check that N(S) is a countable set (even though
the set of all functions x : S — N is uncountable). We interpret x € N(S) as
a collection of finitely many particles or individuals, where x(i) is the number of
individuals of type i, where S is the type space, or sometimes also the number of
particles at the position i, where S represents physical space. Each x € N(S) can

be written as
|]

r=Y b, (4.1)
A=1
where |z| := 3", 2(i), i1,...,%, € 5, and 6; € N(S) is defined as

This way of writing x is of course not unique but depends on the way we order
the individuals. We will be interested in Markov processes with state space N (.S),
where in each time step, each individual, independently of the others, is replaced
by a finite number of new individuals (its offspring). Let ) be a probability kernel
from S to N(S). For a given z € N(S) of the form (4.I), we can construct
independent A/(S)-valued random variables V!, ..., V¥l such that

VO c-]=Qlis ) (B=1L...lal).

75
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Then

||

P(z, ) ::P[ZVB €]
B=1

defines a probability law on N (S). Doing this for each z € N(S) defines a prob-
ability kernel P on N(S). By definition, the Markov chain X with state space
N(S) and transition kernel P is called the multitype branching process with off-
spring distribution Q).

Lemma 4.1 (Branching property) Let X = (Xy)r>0 and Y = (Yi)g>o0 be in-
dependent branching processes with the same type space N'(S) and offspring dis-
tribution Q. Then Z = (Zy)k>0, defined by

Z4(i) = Xu(i) + Yi(i)  (k>0, i€S) (4.2)

is distributed as a branching processes with type space N'(S) and offspring distri-
bution Q.

Proof We need to check that
P(Zky1 = 2| Fl] = P(Zy,z) as.  (k>0, z€ N(9)),
where (F7)i>o is the filtration generated by Z. We will show that actually
P[Zjp1 = 2| FY] = P(Zy,2) as. (k>0, z€ N(S)),

where (F,EX’Y))kZO is the filtration generated by (X,Y) = (X, yx)r>0. Since FZ C
F,EX’Y) and P(Zy, z) is FZ-measurable, this then implies that

P[Zjp1 = 2| FZ] = E[P[Zisr = 2 | V) | FE) = E[P(Zy, 2) | FE] = P(Z, 2).
Thus, by the Markov property of (X,Y), it suffices to show that
P(Zisi=2|Xi=1, Vi=y|=Plxz+y,2) (k>0, z,y,2 € N(9)).
Here
P[Zky1 = 2| Xy =2, Vi, =y]
=Y PXp =2/, imm=2-2|Xp=2 Yi=y] =) P(z,2)Ply,z—2),

' <z ' <z
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where we have used that by the independence of X and Y, the process (X,Y) is
a Markov process with transition kernel Py(x,y;2',vy') := P(z,2")P(y,y').

Thus, we are left with the task of showing that

Plx+y,z Zme (y,z — ') (z,y,2 € N(9)). (4.3)
' <z
Let us write " "
T Yy
szézB and y—Zéh,
p=1

and let V1, ... VI#land W', ..., W be all independent of each other such that

PV? e ]=Q(is, -) (B=1,....[z]),
P[WVE]ZQ(.]W) (7:177‘y|)

Then

[ El
P(x +y,z2) :IP’[X:Vﬁ—i—X:T/V7 =z]
ps=1 y=1
|z ||
—ZP ZV’B—I ZW7_2—1‘ :ZP(x,x')P(y,z—x'),
<z <z
as required. |

Remark We may define the convolution of two probability laws u, v on N (S) b

pxv(z Zu (z —a)

' <z

Then says that
Plx+y, )= Pz, -)* Py, -) (z,y € N(9)). (4.4)

In general, any probability kernel on N(S) with this property is said to have the
branching property. It is not hard to see that a Markov process with state space
N (S) has the branching property (4.2)) if and only if its transition kernel has the

branching property (4.4)). In particular (4.4)) implies that if

d

r = Z 51'57
s=1
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then
P(LC, ):P<5117 )**P((Szlzl, ‘),

where P(d;, -) = Q(i, -). Thus, each Markov process that has the branching
property is a branching process, and its transition probabilities are uniquely char-
acterized by the offspring distribution.

4.2 Generating functions

For each function ¢ : S — R and z € N(S), let us write

|| ||

o = [[ ()@ = [ élis) where z=3 4,

i€S B=1 p=1
where ¢° := 1. It is easy to see that
o =g (v,y €N(S), ¢: 5 = R).

Because of all the independence coming from the branching property, the linear
operator P associated with the transition kernel of a branching process maps
such ‘multiplicative functions’ into multiplicative functions. We will especially be
interested in the case that ¢ takes values in [0, 1]. We let [0, 1]° denote the space
of all functions ¢ : S — [0, 1].

Lemma 4.2 (Generating operator) Let P denote the transition kernel of a
multitype branching process with type space S and offspring distribution Q. Let U
be the nonlinear operator defined by

1-Ug(i) == > QUx)(1-¢)" (i€S, ¢<[0,1]°).

zeN(S)

Then
Pfs=fus  (¢€10,1]%),

where for any ¢ € [0,1]%, we define fs : N(S) — [0,1] by fs(z) := (1 — §)*.

Proof If X is started in Xg = z with x = Z‘xl di4, then X is equal in distribution

to Z';lzl V# where the V#’s are independent with distribution Q(ig, - ). It follows
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that

d

Pfy(e) =E[(1 - ¢)= "] =E[JJ(1 - ¢)""]
B=1

o] i
_ HE[Q _ ¢)Vﬁ] — H(l —Uo)(ig) = fus(z).
B=1 p=1
N

Remark 1 It would seem that the formulation of the lemma is simpler if we
replace ¢ by 1 — ¢ everywhere, but as we will see later there are good reasons to
formulate things in terms of 1 — ¢.

Remark 2 Our assumption that 0 < ¢ < 1 guarantees that the sum ) Q(i, z)¢"
in the definition of U¢(7) is finite. Under more restrictive assumptions on @, we
can define U¢ also for more general real-valued ¢.

We call the nonlinear operator U from Lemma the generating operator of the
branching process with offspring distribution ). By induction, Lemma {4.2| shows
that P" f4 = fung, or, in other words

E°[(1-9¢)*]=1-U")" (n>0, ¢€[0,1)°). (4.5)

The advantage of the operator U is that it acts on functions ‘living’ on the space
S, while P acts on functions on the much larger space N'(S). The price we pay
for this is that U, unlike P, is not linear.

The next lemma shows that U contains, in a sense ‘all information we need’.

Lemma 4.3 (Generating functions are distribution determining) Let yu, v
be probability measures on N'(S) such that

Yoou@A=9) =Y v@)(1-9)"  (¢€[0,1).

zEN(S) zeN(S)

Then = v.

Proof We will prove the statement first under the assumtion that S is finite. Let
N(S) U {oo} be the one-point compactification of N(S). For each ¥ € [0,1)%,
define g, (x) := 9" and gy, (00) := 0. Then the g,’s are continuous functions on the
compact space N (S)U{oo}. It is not hard to see that they separate points, i.e., for
each x # 2’ there exists a 1 € [0,1)% such that g, (x) # gy (a'). Since gpgy = Gyyr,
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the class {gy : ¢ € [0,1)°} is closed under multiplication. Let H be the space
of all linear combinations of functions from this class and the identity function.
Then H is an algebra that separates points, hence by the Stone-Weierstras theorem
H is dense in the space of continuous functions on N(S) U {oco}, equipped with
the supremumnorm. By linearity and because p and v are probability measures,

Yoo(x)f(x) =" v(x)f(x) for all f € H. Since H is dense, it follows that = v.

If S is not finite, then by applying our argument to functions ¢ that are zero
outside a finite set, we see that the finite-dimensional marginals of  and v agree,
which shows that © = v in general. |

There is a nice suggestive way of writing the relation (4.5)). Generalizing (3.3)), for
any ¢ € [0,1]°, we define a probability kernel K, from N'(S) to N(S) by

||

Ky(x,-) = P[ ) xpbi, €], (4.6)
p=1
where z = Z';‘:l d;, and the x1,...,X|¢ are independent Bernoulli random vari-

ables with P[xs = 1] = ¢(ig). Thus, if Z is distributed according to the law
Kg(x, -), then Z is obtained from x by independent thinning, where a particle of
type i is kept with probability ¢(i) and thrown away with the remaining probabil-
ity. Note that K, has the branching property and corresponds in fact to the
offspring distribution

Qu(i,y) = Ky(0i,y) = p(i)Lgy=sy + (1 = p(i)) 1=y (i €S, y € N(S)).
Let Thing(x) denote a random variable with law Ky(z, - ). Then
P[Thiny(x) = 0] = (1-¢)"  (z € N(5), ¢ €[0,1)°),
where 0 denotes the configuration in AV (S) with no particles. In view of this,
L-Ug(i)= Y  QU,z)(1—¢)" =8PKy0)
zeN(S)

and hence
Ug(i) = 6:QKs(N(S)\{0}). (4.7)
Note that this says that if we start with one particle of type ¢, let it produce

offspring, and then thin with ¢, then U¢(7) is the probability that we are left with
at least one individual. Likewise, we may rewrite (4.5 in the form

5, PP K 5(0) = 6, K1(0), (4.8)
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where uP" Ky is the law obtained by starting the branching process in z, running
it till time ¢, and then applying the kernel K, while 6, Kyny is the law obtained
by thinning z with U"¢.

Exercise 4.4 (Repeated thinning) Show that K4K,, = Ky, (¢,v € [0,1]%).

Exercise 4.5 (Thinning characterization) Let u,v be probability laws on
N (S) such that uK,(0) = vK4(0) for all ¢ € [0,1]°. Show that yu = v.

4.3 The survival probability

Let X be a branching process with type space S and generating operator U. We
observe that

P%[X, # 0] = 1 — P*[Thin (X,,) = 0]
=1 —P%[Thinga(6;) = 0] = 1 — (1 — U"1(i)) = U"1(d),

where we use the symbol 1 also to denote the function that is constantly one. Since
0 is a trap for any branching process,

P [ X, # 0] =P%[X), 0 V0 < k <n] — P%[X}, # 0 Vk > 0],

where we have used the continuity of our probability measure with respect to
decreasing sequences of events. In view of this, let us write

p(i) == lim U"1(i) = P [ X} # 0 Vk > 0] (4.9)

n—oo

for the probability to survive starting from a single particle of type 1.

Lemma 4.6 (Survival probability) The function p in 18 the largest solu-
tion (in [0,1]%) of the equation

Up=p,
i.e., p solves this equation and any other solutions p’ of this equation, if they exist,
satisfy p' < p.

Proof Since

Up(i) =Y Qi z)(1— (1—¢)"),
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and since ¢ — 1 — (1 — ¢)* is a nondecreasing function, we see that
¢ <1 implies Ugp < Ur. (4.10)
By monotone convergence, we see moreover that

On 4 ¢ implies Ugp, | Uo. (4.11)

Since 1 > U1l we see by and induction that U1 > U1 and U"1 | p,
which was in fact also clear from our probabilistic interpretation. By , it
follows that

Up=U lim U"1 = lim U™ = p.

n—oo n—oo

Now if p' € [0,1]% is any other fixed point of U, then by (4.10)) and (4.11)

P <1 implies p' =U"p <U"l —,
pP—00
which shows that p’ < p. |

Exercise 4.7 (Galton-Watson process) Let X be a branching process whose
type space S = {1} consists of a single point, and let @) be its offspring distribution.
We identify M ({1}) = N. Since there is only one type of individual, we only need
to now with which probability a single individual produces n offspring (n > 0).
Thus, we simply write

Q(n) = Q(1,ndy)

which is a probability law on N. Assume that () has a finite second moment and
let

denote its mean. We identify [0,1]% = [0,1] and let U : [0,1] — [0,1] be the
generating operator of X, which is now just a (nonlinear) function from [0, 1] to
[0, 1].

(a) Show that U is a concave function and that U’(0) = a.
(b) Assume that Q(1) < 1. Show that

PUXy #0VEk>0]>0

if and only if a > 1.
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Remark Single-type branching processes as in Excercise 4.7 are called Galton-
Watson processes after the seminal paper (from 1875) [WGT5], where they proved
that the survival probability p solves Up = p but incorrectly concluded from this
that the process survives for all a > 0, since ‘obviously the solution of this equation
isp=0".

Exercise 4.8 (Spatial branching) Let (Ix)r>0 be i.i.d. with P[I, = —1] =1/2 =
P[I;, = 1], and let N be a Poisson distributed random variable with mean a,
independent of (Ix)r>0. Let X be the branching process with type space Z and
offspring distribution @) given by

Q(i, ) :=P[> i €] (i€2),

which says that a particle at ¢ produces Pois(a) offspring which are independently
placed on either ¢ — 1 or ¢ 4+ 1, with equal probabilities. Show that

P [X}), # 0 Vk > 0] >0

if and only if @ > 1.

Exercise 4.9 (Two-type process) Let X be a branching process with type
space S = {1,2} and the following offspring distribution. Individuals of both
types produce a Poisson number of offspring, with mean a. If the parent is of
type 1, then its offspring are, independently of each other, of type 1 or 2 with
probability 1/2 each. All offspring of individuals of type 2 are again of type 2.
Starting with a single individual of type 1, for what values of a is there a positive
probability that there will be individuals of type 1 at all times?

Exercise 4.10 (Poisson offspring) Let X be a Galton-Watson process where
each individual produces a Poisson number of offspring with mean a, and let

pn=PHX,=0] (n>0)

be the probability that the process started with a single individual is extinct after
n steps. Prove that p,,; = e®Pn=1.
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4.4 First moment formula

Proposition 4.11 (First moment formula) Let X be a branching process with
type space S and offspring distribution Q. Assume that the matriz

= ) Qix) (i,j € 8S) (4.12)
zeN(S)
satisfies
supZA(z’,j) < 0. (4.13)
i€s 425
Then

= #()A"i4)  (2EN(S), je€ S5 n>0).

Proof We first prove the statement forn = 1. If x = Zm Oigs

distribution to Z|ﬁ:1 V5 where the V#’s are independent with distribution Q(ig, - ).
Therefore,

then X; is equal in

|| ||

E° X ()] =E[ Y VA7) = Y E[VA())]
B=1 B=1
| ||
=D QUi yy(j) = D Alig,4) = Y =(i)A(i, 5).
=1y B=1 i

By induction, it follows that

w1 ()] = STPIX, = B X ()| X, = @

z’

=zﬂw B s
= ZA ij ZEw ZA ij Z )A”(k i) = A" k),
where all expressions are finite by (4.13). n

Lemma 4.12 (Subcritical processes) Let X be a branching process with finite
type space S and offspring distribution Q. Assume that its first moment matrix

A defined in is 1rreducible and satisfies , and let « be its Perron-

Frobenius eigenvalue. If a < 1, then

P*[X, #0VE>0] =0  (zeN(9)).
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Proof For any f: S — R, let I; : N(S) — R denote the ‘linear’ function
(z) = z(i)f(i) (zeN(S), f:S—R).

Then by Lemma 4.11},
Prly(z) = B [lf(Xa)] = Y FOE[Xa(0)]
=Y F6)>_wx(A"G 1) =Y w(G)AF(G) = Lang(2).
( J J
In particular, if h is the (strictly positive) right eigenvector of A with eigenvalue
a, then
Pl = lanpy = lann,

which says that
E*[h(X,)] = a"h(z),

which tends to zero by our assumption that o < 1. Since h is strictly positive, it
follows that P*[X,, # 0] — 0. |

Proposition 4.13 (Critical processes) Let X be a branching process with finite
type space S and offspring distribution Q. Assume that its first moment matrix

A defined in is irreducible and satisfies , and let o be its Perron-

Frobenius eigenvalue. If o =1 and there exists some i € S such that Q(i,0) > 0,
then

P*[X, #0VE>0] =0  (zeN(9)).

Proof Let A:={X, # 0 Vn > 0} and let

By the branching property,
P?(A°) = (1 — p)* (z € N(9)).
By the principle ‘what can happen must happen’ (Proposition |0.14]), we have

(1—p)* — a.s. on the event A.
0—o0
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By irreducibility and the fact that Q(j,0) > 0 for some 7, it is not hard to see that
p(i) < 1 for all ¢ € S. By the finiteness of S, it follows that sup;.q p(i) < 1 and

hence

inf 1—p)* >0 N >0).

It follows that
|X,| — oo a.s. on the event A, (4.14)

n—o0

i.e., the only way for the process to survive is to let the number of particles tend
to infinity.

Let h be the (strictly positive) right eigenvector of A with eigenvalue . Then
E[lh(Xn—H) |qu] = (Plh)(Xn) = lah(Xn) = alh(Xn)y

which shows that (provided that E[h(X)] < oo, which is satisfied for processes
started in deterministic initial states) the process
M, :=a"> h(i)X,(i))  (n>0) (4.15)
ieS

is a nonnegative martingale. By martingale convergence, it follows that there exists
a random variable M., such that

M, — My a.s. (4.16)

n—oo

In particular, if o = 1, this proves that

| X,| - o0 as.,
n—oo

which by (4.14]) implies that P(A) = 0. u

4.5 Second moment formula

We start with some general Markov chain theory. For any probability law p on a
countable set S and functions f,g: S — R, let us write

Covu(f, 9) = n(fg) — (1f)(ng)

for the covariace of f and g, whenever this is well-defined. Note that if X is a
random variable with law p, then Cov,(f,g) = E[f(X)g(X)] — E[f(X)|E[g(X)],
in accordance with the usual formula for the covariance of two functions.
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Lemma 4.14 (Covariance formula) Let X be a Markov chain with countable
state space S and transition kernel P. Let u be a probability law on S and let C be
a class of functions f : S — R such that

(i) f €C implies Pf € C.

(ii) Zu(w)P(w,y)|f(y)g(y)| < oo forallz € S and f,g € C.

Then, for any f,g € C,

Covypn(f.g) = Cov(P"f,P"g) + Y _ pP " *T(P*'f, P¥g), (4.17)
k=1

where

I(f,g9):=P(fg) = (P)(Pg)  (fg€C).

Remark 1 If X = (Xj)r>0 is the Markov chain with initial law x and transition
kernel P, then

COVMP” (f: g) = E[f(Xn)g(X")] - E[f(XH}E[g(Xn)},
= COV(f(Xn)>g(Xn))7

and similarly

Cov, (P"f, P"g) = Cov((P"f)(Xo), (P"g)(Xo))-

Remark 2 The assumptions of the lemma are trivially fulfilled if we take for C
the class of all bounded real functions on S. Often, we also need the lemma for
certain unbounded functions, but in this case we need to find a class C satisfying
the assumptions of the lemma to ensure that all second moments are finite.

Proof of Lemma The statement is trivial for n = 0. Fix n > 1 and define
a function H : {0,...,n} - R by

H(k) == PH((P"*f)(P"*g))  (0<k <n).
Then
p(H(n) — H(0)) = pP"(fg) — n((P"f)(P"g))

= [uP"(fg) — (uP"f)(uP"g)] = [n((P"f)(P"g)) — (uP" f)(1P"g)]
= Cov,pn(f,g) — Cov,(P"f, P"g).
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It follows that
Cov,pn(f,g) — Cov,(P"f, P"g) Z,u - - 1)]

— Z ! [Pk ((P”—kf)(Pn—kg)) . Pk—l ((Pn—k—i-lf) (Pn_k—’_lg))}

k=1
=Y uPMIT (PR f P ).

k=1

Changing the summation order (setting k' :=n — k + 1), we arrive at (4.17). 1

We now apply this general formula to branching processes. To simplify matters,
we will only look at finite type spaces.

Proposition 4.15 (Second moment formula) Let X be a branching process
with finite type space S and offspring distribution Q). Let V' denote a random
variable with law Q(i, -) and assume that

A(i, 5) =E[V'(j)],

- S (4.18)
C(i;4, k) =E[V'())V' (k)]

are finite for all i,j,k € S. Let A be the linear operator with matriz A(i,j) and
for functions f,g: S — R, let C(f,g): S — R be defined by

= 3 ClEA R G)g).

J,kesS

For x € N(S) and f : S — R, let of = > ,x(i)f(i). Then, for functions
f,g: S — R, one has
E*[X,f] =zA",

n 4.1
Cov® (an, Xng) =Z$An_k0(z4k_1f, Ak_lg), (4.19)

k=1

where Cov® denotes covariance w.r.t. to the law P*.

Proof The first formula in (4.19)) has already been proved in Lemma As in
the proof of Lemma [4.12] for any real function f on S, let I; : N(S) — R denote
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the ‘linear’ function lf(x) := ). f(¢)x(i). Then the first formula in (4.19) says
that
PnlfIlAnf (fGRS),

which motivates us to take for the class C in Lemma 414l the class of ‘linear’
functions [y with f : S — R any function. Using the fact that C(¢; j, k) < oo for
all i, j, k € S, it is not hard to prove that C satisfies the assumptions of Lemma[£.14]
Let x = Z‘ﬁil 0;, and let V1, ...,V be independent such that V# is distributed
according to Q(ig, - ). We calculate

LIy, 1y)(x) = (P(sly) = (PLy)(Ply)) ()
= Cov( D FGHVPG), D gk)VI(k) =D f(i)glk) ) Cov(VP(), VP (k)
7,8 k,y jk B
= 2_eWfG)aR)Cisi k) = e g, ) (@)

where we have used that Cov(Vﬁ(z'), V(y )) = 0 for § # v by independence. Then
Lemma [4.14] tells us that

Covs, pr(ly,lg) = Y 0 PP FD(P* 1y PEMG) =Y 0 6, PP T Ly, Lyiony)
k=1

k=1
— n—k .
= ;&;P lC(Ak_lf, Ak—lg) - ;lAn_kC(Ak_lﬁ Ak_lg) (;(:),

which proves the second formula in (4.19)). |

4.6 Supercritical processes

The aim of this section is to prove that supercritical branching processes survive.

Proposition 4.16 (Supercritical process) Let X be a branching process with
finite type space S and offspring distribution Q). Assume that the first and second
moments A(i, j) and C(i; j, k) of Q, defined in ({4.18), are all finite and that A is
irreducible. Assume that the Perron-Frobenius eigenvalue o of A satisfies a > 1.
Then

PP Xy #0VE>0] >0  (zeN(S), z#£0).

Proof Let h be the (strictly positive) right eigenvector of A with eigenvalue a. We
have already seen in formulas (4.15)—(4.16) in the proof of Proposition that
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M, = o "X, h is a nonnegative martingale that converges to an a.s. limit M.
By Proposition [0.8] if we can show that M is uniformly integrable, then

E*[My] = zh > 0

for all x # 0, which shows that the process survives with positive probability.
Thus, it suffices to show that

sup B [M}}] < oco.
n>0

We write

E*[M}] = (IE""[OF"X,JL])2 + Var’(a " X,,h),
where by the first formula in (4.19))

(E* [0 " X,h))* = (a "z A"h)? = (xh)?

is clearly bounded uniformly in n. We observe that since h is strictly positive and
S is finite, we can find a constant K < oo such that

C(h,h) < Kh.

Therefore, applying the second formula in (4.19)), we see that

Var®(a " X,h) = a~ " Z Tz A"TFC(ARh, AR R)

k=1

— a2 Z :L,AAnkaYQ(kfl)Cv(h/7 h) < a2 K Z a:Anfk:aQ(k’fl)h
k=1

k=1

n n [o@)
=a K Z A" *a2tNah = Kah Z aF "2 < Keha™? Z a k< 0,
k=1 k=1 k=0

uniformly in n > 1, where we have used that o > 1. |

4.7 Trimmed processes

Let X be a multitype branching process with countable type space S and offspring
distribution Q). Recall from Lemma [4.6] that

p(i) =P [X}, # 0 Vk > 0] (i€S)



4.7. TRIMMED PROCESSES 91

is the largest solution of the equation Up = p, where U is the generating operator
of X. Let p € [0,1]° be any solution of Up = p. The aim of the present section
is to prove a result similar to conditioning on the future (as in Proposition
or intertwining of processes with one trap (Proposition , but now on the level
of the individuals in a branching process. More precisely, we will divide the pop-
ulation into two ‘sorts’ of individuals, with probabilities (depending on the type)
p(i) and 1 — p(7). In particular, if p is the survival probability, then we divide
the population at each time k& into those individuals which we know are going to
survive (or, more precisely, that have living descendants at all times), and those
whose descendants are going to die out completely.

To this aim, let x = Z‘gil 0y € N(S) and let x1,. .., x|z be independent Bernoulli
random variables with P[xs = 1] = p(ig). Doing this for any x € N(S), we define
a probability kernel L, from N(S) to N (S x {0,1}) by

|z|

Ly(w, ) = P[Y 8y €]
8=1

Another way to describe L, is to note that L, has the branching property (4.4
and

Lo(0i,y) = p(D)Lgy=sny + (1= p())lyy=si0y (1 €S, y € N(I)).

Note that this is very similar to the thinning kernel K, defined in (4.6)).

We set
S = {(Z,O') 11 € S, o< {07 ]-}7 K((Si?(;(iva)) > 0}7

ie.,

S:=S,US;, where

So:={(,0): 1 —p(i) >0} and S;:={(:,0):1— p(z) > 0}.
Then L, is in effect a probability kernel from A(S) to N(5S).
For any z € N(S) and S’ C S, let us write

T = ([E(i))igsl e N(S")
for the restriction of x to S’ (and similarly for subsets of S ). With this notation,
if Y is a random variable with law L,(z, - ), then Y|g, (resp. Yg,) is a thinning

of x with the function p (resp. 1 — p).
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Recall that the offspring distribution ) of X is a probability kernel from S to
N(S). Let )
&= {y e N(5) :y’s1 =0}.

Observe that QL, is a probability kernel from S to A/ (5' ). For given i € S, the
probability of £ under QL,(i, -) is given by

QL(1.€)= 3 Q)1 —p) =1-Upli) =1-p(i),  (4.20)

zeN(S)

where we have used that Up = p. We define a probability kernel Q from S to

A

N(S) by
- QLG &) ifo=0,
Q(Z,U,-).—{ QLP(Z,lgc) ifazl,

where we are conditioning the probability law Q L, (i, - ) on the event £ and its com-
plement, respectively. By (4.20)), these conditional probabilities are well-defined,
ie., QL,(1,&) > 0 for all (7,0) € Sy and QL,(7,E°) > 0 for all (i,1) € 5.

In words, our definition of Q says that an individual of type (7,0) € Sy produces
offspring in the following manner. First, we produce offspring according to the
law Q(i, -) of our original branching process. Next, we assign to these individuals
independent ‘signs’ 0, 1 with probabilities depending on the type of the individual
through the function p. Finally, we condition on producing only offspring with sign
0. Individuals of type (i,1) € S; reproduce similarly, but in this case we condition
on producing at least one offspring with sign 1. Note that individuals of a type in
51 always produce at least one offspring in 57, and possibly also offspring in Sj.
Individuals in Sy produce only offspring in Sy, and possibly no offspring at all.

Theorem 4.17 (Distinguishing surviving particles) Let X = (Xy)i>o be a
branching process with finite type space S and irreducible offspring distribution Q).
Assume that X survives (with positive probability). Let p, L,, S, and Q be as
defined above. Then X can be coupled to a branching process Y with type space S
and offspring distribution Q, i such a way that

P[Y, =y | (Xioskn] = Lp(Xn, ©)  (y €S, n>0). (4.21)

Proof We apply Theorem [3.5 In fact, for our present purpose Theorem is
sufficient, where the function ¢ occurring there is given by

b(y)(@) == y(5,0) +y(i,1)  (ye N(S), i €S).
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Let P and P denote the transition kernels of X and Y, respectively. We need to
check that X
PL,=L,P.

Since P, L,, and P have the branching property ‘) it suffices to check that
&PL,=06L,P (i€S).
Indeed, by our definition of Q,
0:LyP = (1= p(i)Q(i, 05 ) + p(D)Q(i, 1; -)
— (1= p()QL (i, -|€) + p(QL (G, -|€) = QLG -) = 8,PL,,
where we have used (4.20)). n
Proposition 4.18 (Trimmed process) Let X andY be the branching processes

with type spaces S and S in Theorem let p be as in that theorem and let U
be the generating operator of X. Then

(Yk ‘sl ) k>0

s a branching process with type space S1 and generating operator U? given by

Ure(i) = p~ (1)U (pp) (i) (i € 81, ¢ €[0,1]),

where pp denotes the pointwise product of p and ¢, which is extended to a function
on S by setting po(j) = 0 for all j € S\S;.

Proof Since individuals in Sy never produce offpring in 57, it is clear that the
restriction of Y to S; is a branching process. Let @' be the offspring distribution
of the restricted process. Then Q'(3, -) is just QK ,(i, - ) conditioned on producing
at least one offspring, where K, is the thinning kernel defined in (4.€). Then,

setting G := N (S1)\{0}, we have by

o GQKKNG) _ 6QKe(G) _ Ulps)l)
Uro(i) = 6QKo(G) = =5 o ey = S 0RG) — U

where we have used that Up = p. |

= p(i) "' U(p9)(4),

Remark In particular, if p is the survival probability, then the branching process
Y from Proposition has been called the trimmed tree of X in [FS04], which
deals with continuous type spaces and continuous time. Similar constructions have
been used in branching theory long before this paper but it is hard to find a good
reference.
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Exercise 4.19 (Nonbranching process) Let S be a countable set, let P’ be a
probability kernel on S, and let () be the offspring distribution defined by

Qi ;) == P'(i,j)  (i,j €9),

and Q(i,z) := 0 if |x| # 1. In other words: a particle at the position ¢ produces
exactly one offspring on a position that is distributed according to P'(i, -). Let
X be the branching process with type space S and ofspring distribution () and let
U be its generating operator. Show that U = P’. In particular, this says that a
function p € [0, 1]° solves Up = p if and only if p is harmonic for P’ and U? = (P')*
is just the classical Doob transform of P’.

If X is a multitype branching process with type space S and offspring distribution
@), then let us write i — j if Q(i,{z : z(j) > 0}) > 0 and i ~» j if there
exist ¢ = i9g — -+ — i, = j. We say that @Q is wrreducible if © ~» j for all
1,7 € S. In particular, if () has finite first moments, then this is equivalent to
irreducibility of the matrix A(7, j) in (4.18). We also define aperiodicity of @ in
the obvious way, i.e., an irreducible () is aperiodic if the greatest common divisior
of {n>1:P"(6;,{x:2>d}) > 0} is one for some, and hence for all i € S. If @
is irreducible and

p(i) =P"[X, #0Vk>0] (i€ 9), (4.22)

then it is not hard to see that either p(i) > 0 for alli € S, or p(i) = 0 for all i € S.
In the first case, we say that X survives, while in the second case we say that X
dies out.

Exercise 4.20 (Immortal process) Let X be a branching process with finite
type space S, offspring distribution (), and generating operator U. Assume that @)
is irreducible and aperiodic and that Q(7,0) = 0 for each i € S, i.e., each individual
always produces at least one offspring. Assume also that Q(i, {x : || > 2}) > 0
for at least one ¢ € S. Then it is not hard to show that

PP[X,(j)>N] — 1 (i€ S, N<oo).

n—oo

Use this to show that for any ¢ € [0,1]° that is not identically zero,

Uneli) — 1 (i€S).

n—o0

In particular, this shows that the equation Up = p has only two solutions: p =0
and p = 1.
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Exercise 4.21 (Fixed points of generating operator) Let X be a branching
process with finite type space S, offspring distribution (), and generating operator
U. Assume that @ is irreducible and aperiodic and that Q(i,{z : |z| > 2}) > 0 for
at least one ¢ € S. Assume that the survival probability p in (4.22)) is positive for
some, and hence for all i € S. Show that for any ¢ € [0, 1]° that is not identically
7Z€ro,

U"o(i) — p(i) (i €5).

In particular, this shows that p is the only nonzero solution of the equation Up = p.
Hint: use Proposition to reduce the problem to the set-up of Excercise [4.20]

Exercise 4.22 (Exponential growth) In the set-up of Excercise [4.21] assume
that @ has finite first moments. Let o be the Perron-Frobenis eigenvalue of the
first moment matrix A defined in and let h > 0 be the associated right
eigenvector. Assume that o > 0, let M = (M,,),>0 be the martingale defined in
(4.15), and let My, := lim,, o, M,. Set

p'(i) :==P% [ My > 0].

Prove that p’ = p, where p is the survival probability defined in (4.22). Hint: show
that Up' = p'.
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Appendix A

Supplementary material

A.1 The spectral radius

Proof of Lemma Suppose that A\ € spec(A) and let f be an associated
eigenvector. Then ||A”f|| = |A|*||f|| which shows that ||A"||*/® > |\| and hence
o(4) 2 A

To complete the proof, it suffices to show that p(A) < A;, where A, := sup{|}| :
A € spec(A)}. We start with the case that A can be diagonalized, i.e., there
exists a basis {ej,...,eq} of eigenvectors with associated eigenvalues Aq, ..., \g.
By Excercise [2.9| the choice of our norm on V' is irrelevant. We choose the ¢;-norm
with respect to the basis {ej,...,eq}, ie.,

loll == >_ 1),

where ¢(1),...,¢(d) are the coordinates of ¢ w.r.t. this basis. Then

d d
1Al = [ Y e@ATeill = Dl IN]" < X7 [¢ll,
i=1 =1

which proves that ||A"|| < A% for each n > 1 and hence p(A) < Ay.

In general, A need not be diagonalizable, but we can choose a basis such that
the matrix of A w.r.t. this basis has a Jordan normal form. Then we may write
A = D+ E where D is the diagonal part of A and E has ones only on some places
just above the diagonal and zeroes elsewhere. One can check that E is nilpotent,

97
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ie., E™ = 0 for some m > 1. Moreover £ commutes with D and [|F| < 1 if we

choose the ¢;-norm with respect to the basis {ey,...,eq}. Now
m—1
A"=(D+E)" =) ( )D”’“E’“
k=0

and therefore

) < Z( =

3
3

n n— n
0

g(n) =1+nA"+ in(n— 1A +- -

is a polynomial in n of degree m. In particular, this shows that ||A"|| < (A; +¢)"
as n — oo for all € > 0, which again yields that p(A) < A;. n

3

()% = ato,

£
Il
e
Il

0

where
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English-Czech glossary

stochastic process

state space

Borel sigma-field
trajectory

distribution function
mean

standard deviation
continuous in probability

complement

white noise

random walk on the real line
Galton-Watson branching process
Poisson process

(Wiener process) Brownian motion
homogenoeus Markov process
continuous-time Markov chain
Markov chain with discrete time
transition probabilities

(n-step)

probability kernel

stochastic matrix

square matrix

initial distribution

(conditional) probability

integer valued random variable
event

stopping time

strong markov property

first hitting time

recurrent / transient state

null /positive recurrent state
(a)periodic state

reachable (from state 1)
closed set

closure

irreducible

proper subset

APPENDIX A. SUPPLEMENTARY MATERIAL

nahodny /stochasticky proces

stavovy prostor

borelovska sigma-algebra

trajektorie

distribué¢ni funkce

sttedni hodnota

rozptyl

stochasticky spojity

/ spojity podle pravdépodobnosti
doplnék

bil Sum

nahodna prochazka na primce
Galton-Watsonuv proces vétveni
Poisonuv proces

Wieneruv proces/Brownuv pohyb
homogenni Markovovy proces
Markovovy Tetézec se spojitym ¢asem
Markovovy Tetézec s diskrétnim casem
pravdépodobnosti prechodu

(n-tého radu)

pravdépodobnostni jadro
stochastickd matice

¢tverecova matice

pocatecni rozdéleni
podminénd/absolutni pravdépodobnost
¢eloc¢iselna nahodna velic¢ina

jev

Markovsky cas, zastavovaci cas

silnd markovska vlastnost

¢as prvniho nastupu, vstupu do stavu j
tvrvaly/prechodny stav
rekurentni/transientn{
nulovy/nenulovy trvaly stav
(ne)periodicky stav

dosazitelny stav (ze stavu i)

uzaviena mnozina

uzaver

(ne)rozlozitelnd /irreducibiln{

vlastni podmnozina
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trap

singleton

first exit time

assume values

invariant law

invariant measure

transition rates

Q-matrix, generator

process with independent increments
birth-and-death process

binary branching process

step function

explosion time

nonexplosive chain

embedded Markov chain
Kolmogorov differential equation
backwards/forwards
differenticiable

queueing systems

101

absorpéni stav

jednoprvkova mnozina

¢as vystupu

nabyvat hodnot

stacionarni rozdéleni

invariantni mira

intenzity prechodu

matice intenzit (prechodu)
proces s nezavislymi prirustky
proces mnozeni a zaniku
linedrni proces mnozeni a zaniku
schodovita funkce

cas exploze

regularni fetézec

vnoreny diskrétni fetézec skoku
Kolmogorovovy diferencialni rovnice
retrospektivni a prospektivni
diferencovatelny

systémy hromadné obsluhy
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adaptedness, [6] generalized eigenvector, [49)

algebraic multiplicity, [49] generating operator, [79]

autonomous Markov chain, [T4] geometric multiplicity, [49]

Bernoulli random variable, h-transform,

branching process, harmonic function,

branching property, [77] homogeneous Markov chain,

characteristic polynomial, increments

codimension, independent,

compensator, [§ integer lattice,

convergence of o-fields, [9] intertwining, [61]

convolution, [77] invariant

coupling, law,

detailed balance, ) measure];@

Doob transform, ?nvarlm‘lt‘s‘u Space,
generalized, [I0] irreducibility, [18] [T,

eigenspace, [49] Jordan normal form,

eigenvector
left or right, ‘
equivalence of states, chain,

1 /
escape probability, functlotnal,
extinction, [04] property, [0} [T6]

strong property, [16]

Markov

Fekete’s lemma, martingale,
filtered probability space, convergence, [J]
filtration, [6] multiplicity

first entrance time, [6] algebraic, {9

geometric, [A9]
Galton-Watson process,

Gelfand’s formula, nonnegative definite,

105



106 INDEX

nonnegative matrix, [A1] convergence, [J]
null recurrence, superharmonic function,

, o supermartingale, [7]
offspring distribution, convergence, [

operator norm, [4]] survival, [04]

optional stopping,
thinning,

period of a state, total variation distance,

periodicity, transience, [T9)
Perron-Frobenius theorem, transition
positive recurrence, @, @ kernel

)
probabilities,

uasi-stationary law
4 Y B8 transposed matrix,

random mapping representation, trap, [24]
random walk type space, [79]
on integer lattice, [34
on treeg@ uniformly integrable,

real matrix,
recurrence, [I§]

null,

positive, [19] 2]]
reversibility,

sample path,
self-adjoint transition kernel,
similar matrices,
spectral gap
absolute,
spectral radius,
spectrum, (7]
stochastic process,
stopped
Markov chain,
stochastic process, |z|
submartingale,
stopping time, [0]
strong Markov property,
subadditivity,
subharmonic function,
submartingale, [7]
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