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Abstract This is a short advanced course in Markov chains, i.e., Markov
processes with discrete space and time. The first chapter recalls, with-
out proof, some of the basic topics such as the (strong) Markov prop-
erty, transience, recurrence, periodicity, and invariant laws, as well as
some necessary background material on martingales. The main aim of
the lecture is to show how topics such as harmonic functions, coupling,
Perron-Frobenius theory, Doob transformations and intertwining are all
related and can be used to study the properties of concrete chains, both
qualitatively and quantitatively. In particular, the theory is applied to
the study of first exit problems and branching processes.



2

Notation

N natural numbers {0, 1, . . .}
N+ positive natural numbers {1, 2, . . .}
N N ∪ {∞}
Z integers

Z Z ∪ {−∞,∞}
Q rational numbers
R real numbers

R extended real numbers [−∞,∞]
C complex numbers
B(E) Borel-σ-algebra on a topological space E
1A indicator function of the set A
A ⊂ B A is a subset of B, which may be equal to B
Ac complement of A
A\B set difference
A closure of A
int(A) interior of A
(Ω,F ,P) underlying probability space
ω typical element of Ω
E expectation with respect to P
σ(. . .) σ-field generated by sets or random variables
∥f∥∞ supremumnorm ∥f∥∞ := supx |f(x)|
µ≪ ν µ is absolutely continuous w.r.t. ν
fk ≪ gk lim fk/gk = 0
fk ∼ gk lim fk/gk = 1
o(n) any function such that o(n)/n→ 0
O(n) any function such that supn o(n)/n ≤ ∞
δx delta measure in x
µ⊗ ν product measure of µ and ν
⇒ weak convergence of probability laws
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Chapter 0

Preliminaries

0.1 Stochastic processes

Let I be a (possibly infinite) interval in Z. By definition, a stochastic process
with discrete time is a collection of random variables X = (Xk)k∈I , defined on
some underlying probability space (Ω,F ,P) and taking values in some measurable
space (E, E). We call the random function

I ∋ k 7→ Xk(ω) ∈ E

the sample path of the process X. The sample path of a discrete-time stochastic
process is in fact itself a random variableX = (Xk)k∈I , taking values in the product
space (EI , EI), where

EI := {x = (xk)k∈I : xk ∈ E ∀k ∈ I}

is the space of all functions x : I → E and EI denotes the product-σ-field. It
is well-known that a probability law on (EI , EI) is uniquely characterized by its
finite-dimensional marginals, i.e., even if I is infinite, the law of the sample path
X is uniquely determined by the finite dimensional distributions

P
[
(Xk, . . . , Xk+n) ∈ ·

]
({k, . . . , k + n} ⊂ I).

of the process. Conversely, if (E, E) is a Polish space equipped with its Borel-σ-
field, then by the Daniell-Kolmogorov extension theorem, any consistent collection
of probability measures on the finite-dimensional product spaces (EJ , EJ), with
J ⊂ I a finite interval, uniquely defines a probability measure on (EI , EI). Polish

5
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spaces include many of the most commonly used spaces, such as countable spaces
equipped with the discrete topology, Rd, separable Banach spaces, and much more.
Moreover, open or closed subsets of Polish spaces are Polish, as are countable
carthesian products of Polish spaces, equipped with the product topology.

0.2 Filtrations and stopping times

As before, let I be an interval in Z. A discrete filtration is a collection of σ-fields
(Fk)k∈I such that Fk ⊂ Fk+1 for all k, k + 1 ∈ I. If X = (Xk)k∈I is a stochastic
process, then

FX
k := σ

(
{Xj : j ∈ I, j ≤ k}

)
(k ∈ I)

is a filtration, called the filtration generated by X. For any filtration (Fk)k∈I , we
set

F∞ := σ
(⋃
k∈I

Fk

)
.

In particular, FX
∞ = σ((Xk)k∈I).

A stochastic process X = (Xk)k∈I is adapted to a filtration (Fk)k∈I if Xk is Fk-
measurable for each k ∈ I. Then (FX

k )k∈I is the smallest filtration that X is
adapted to, and X is adapted to a filtration (Fk)k∈I if and only if FX

k ⊂ Fk for all
k ∈ I.

Let (Fk)k∈I be a filtration. An Fk- stopping time is a function τ : Ω → I ∪ {∞}
such that the {0, 1}-valued process k 7→ 1{τ≤k} is Fk-adapted. Obviously, this is
equivalent to the statement that

{τ ≤ k} ∈ Fk (k ∈ I).

If (Xk)k∈I is an E-valued stochastic process and A ⊂ E is measurable, then the
first entrance time of X into A

τA := inf{k ∈ I : Xk ∈ A}

with inf ∅ := ∞ is an FX
k -stopping time. More generally, the same is true for the

first entrance time of X into A after σ

τσ,A := inf{k ∈ I : k > σ, Xk ∈ A},

where σ is an Fk-stopping time. Deterministic times are stopping times (w.r.t.
any filtration). Moreover, if σ, τ are Fk-stopping times, then also

σ ∨ τ, σ ∧ τ
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are Fk-stopping times. If f : I ∪ {∞} → I ∪ {∞} is measurable and f(k) ≥ k for
all k ∈ I, and τ is an Fk-stopping time, then also f(τ) is an Fk-stopping time.

If X = (Xk)k∈I is an Fk-adapted stochastic process and τ is an Fk-stopping time,
then the stopped process

ω 7→ Xk∧τ(ω)(ω) (k ∈ I)

is also an Fk-adapted stochastic process. If τ < ∞ a.s., then moreover ω 7→
Xτ(ω)(ω) is a random variable. If τ is an Fk-stopping time defined on some filtered
probability space (Ω,F , (Fk)k∈I ,P) (with Fk ⊂ F for all k ∈ I), then the σ-field of
events observable before τ is defined as

Fτ :=
{
A ∈ F∞ : A ∩ {τ ≤ k} ∈ Fk ∀k ∈ I

}
.

Exercise 0.1 If (Fk)k∈I is a filtration and σ, τ are Fk-stopping times, then show
that Fσ∧τ = Fσ ∧ Fτ .

Exercise 0.2 Let (Fk)k∈I be a filtration, let X = (Xk)k∈I be an Fk-adapted
stochastic process and let τ be an FX

k -stopping time. Let Yk := Xk∧τ denote the
stopped process Show that the filtration generated by Y is given by

FY
k = FX

k∧τ
(
k ∈ I ∪ {∞}

)
.

In particular, since this formula holds also for k = ∞, one has

FX
τ = σ

(
(Xk∧τ )k∈I

)
,

i.e., FX
τ is the σ-algebra generated by the stopped process.

0.3 Martingales

By definition, a real stochastic process M = (Mk)k∈I , where I ⊂ Z is an interval,
is an Fk-submartingale with respect to some filtration (Fk)k∈I if M is Fk-adapted,
E[|Mk|] <∞ for all k ∈ I, and

E[Mk+1|Fk] ≥Mk ({k, k + 1} ⊂ I). (0.1)

We say that M is a supermartingale if the reverse inequality holds, i.e., if −M
is a submartingale, and a martingale if equality holds in (0.1), i.e., M is both a
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submartingale and a supermartingale. By induction, it is easy to show that (0.1)
holds more generally when k, k + 1 are replaced by more general times k,m ∈ I
with k ≤ m.

If M is an Fk-submartingale and (F ′
k)k≥0 is a smaller filtration (i.e., F ′

k ⊂ Fk for
all k ∈ I) that M is also adapted to, then

E[Mk+1|F ′
k] = E

[
E[Mk+1|Fk]|F ′

k] ≥ E[Mk|F ′
k] =Mk ({k, k + 1} ⊂ I),

which shows that M is also an Fk-submartingale. In particular, a stochastic pro-
cess M is a submartingale with respect to some filtration if and only if it is a
submartingale with respect to its own filtration (FM

k )k∈I . In this case, we simply
say that M is a submartingale (resp. supermartingale, martingale).

Let (Fk)k∈I be a filtration and let (Fk−1)k∈I be the filtration shifted one step to
left, where we set Fk−1 := {∅,Ω} if k − 1 ̸∈ I. Let X = (Xk)k∈I be a real Fk-
adapted stochastic process such that E[|Xk|] < ∞ for all k ∈ I. By definition,
a compensator of X w.r.t. the filtration (Fk)k∈I is an Fk−1-adapted real process
K = (Kk)k∈I such that E[|Kk|] < ∞ for all k ∈ I and (Xk − Kk)k∈I is an Fk-
martingale. It is not hard to show that K is a compensator if and only if K is
Fk−1-adapted, E[|Kk|] <∞ for all k ∈ I and

Kk+1 −Kk = E
[
Xk+1

∣∣Fk]−Xk ({k, k + 1} ⊂ I).

It follows that any two compensators must be equal up to an additive
⋂
k∈I Fk−1-

measurable random constant. In particular, if I = N, then because of the way
we have defined F−1, such a constant must be deterministic. In this case, it is
customary to put K0 := 0, i.e., we call

Kn :=
n∑
k=1

(
E
[
Xk

∣∣Fk−1]−Xk−1

)
(n ≥ 0)

the (unique) compensator of X with respect to the filtration (Fk)k∈N. We note
that X is a submartingale if and only if its compensator is a.s. nondecreasing.

The proof of the following basic fact can be found in, e.g., [Lach12, Thm 2.4].

Proposition 0.3 (Optional stopping) Let I ⊂ Z be an interval, (Fk)k∈I a
filtration, let τ be an Fk-stopping time and let (Mk)k∈I be an Fk-submartingale.
Then the stopped process (Mk∧τ )k∈I is an Fk-submartingale.

The following proposition is a special case of [Lach12, Prop. 2.1].
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Proposition 0.4 (Conditioning on events up to a stopping time) Let I ⊂ Z
be an interval, (Fk)k∈I a filtration, let τ be an Fk-stopping time and let (Mk)k∈I
be an Fk-submartingale. Then

E
[
Mk

∣∣Fk∧τ
]
≥Mk∧τ (k ∈ I).

0.4 Martingale convergence

If F ,Fk (k ≥ 0) are σ-fields, then we say that Fk ↑ F if Fk ⊂ Fk+1 (k ≥ 0) and
F = σ(

⋃
k≥0Fk). Note that this is the same as saying that (Fk)k≥0 is a filtration

and F = F∞, as we have defined it above. Similarly, if F ,Fk (k ≥ 0) are σ-fields,
then we say that Fk ↓ F if Fk ⊃ Fk+1 (k ≥ 0) and F =

⋂
k≥0Fk.

Exercise 0.5 Let (Fk)k∈N be a filtration and let τ be an Fk-stopping time. Show
that

Fk∧τ ↑ Fτ as k ↑ ∞.

The following proposition says that conditional expectations are continuous w.r.t.
convergence of σ-fields. A proof can be found in, e.g., [Lach12, Prop. 4.12], [Chu74,
Thm 9.4.8] or [Bil86, Thms 3.5.5 and 3.5.7].

Proposition 0.6 (Continuity in σ-field) Let X be a real random variable de-
fined on a probability space (Ω,F ,P) and let F∞,Fk ⊂ F (k ≥ 0) be σ-fields.
Assume that E[|X|] <∞ and Fk ↑ F∞ or Fk ↓ F∞. Then

E[X | Fk] −→
k→∞

E[X | F∞] a.s. and in L1-norm.

Note that if Fk ↑ F and E[|X|] < ∞, then Mk := E[X | Fk] defines a martin-
gale. Proposition 0.6 says that such a martingale always converges. Conversely,
we would like to know for which martingales (Mk)k≥0 there exists a final element
X such that Mk = E[X | Fk] . This leads to the problem of martingale conver-
gence. Since each submartingale is the sum of a martingale and a nondecreasing
compensator and since nondecreasing functions always converge, we may more or
less equivalently ask the same question for submartingales. For a proof of the
following fact we refer to, e.g., [Lach12, Thm 4.1].

Proposition 0.7 (Submartingale convergence) Let (Mk)k∈N be a submartin-
gale such that supk≥0 E[Mk ∨ 0] < ∞. Then there exists a random variable M∞
with E[|M∞|] <∞ such that

Mk −→
k→∞

M∞ a.s.
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In particular, this implies that nonnegative supermartingales converge almost
surely. The same is not true for nonnegative submartingales: a counterexample is
one-dimensional random walk reflected at the origin.

In general, even if M is a martingale, it need not be true that E[M∞] ≥ E[M0] (a
counterexample is random walk stopped at the origin). We recall that a collection
of random variables (Xk)k∈I is uniformly integrable if

lim
n→∞

sup
k∈I

E
[
|Xk|1{|Xk|≥n}

]
= 0.

Sufficient1 for this is that supk∈I E[ψ(|Xk|)] < ∞, where ψ : [0,∞) → [0,∞) is
nonnegative, increasing, convex, and satisfies limr→∞ ψ(r)/r = ∞. Possible choices
are for example ψ(r) = r2 or ψ(r) = (1 + r) log(1 + r) − r. It is well-known that
uniform integrability and a.s. convergence of a sequence of real random variables
imply convergence in L1-norm. For submartingales, the following result is known
[Lach12, Thm 4.8].

Proposition 0.8 (Final element) In addition to the assumptions of Proposi-
tion 0.7, assume that (Mk)k∈N is uniformly integrable. Then

E
[
|Mk −M∞|

]
−→
k→∞

0 a.s.

and E[M∞|Fk] ≥ Mk for all k ≥ 0. If M is a martingale, then Mk = E[M∞|Fk]
for all k ≥ 0.

Note that if M is a martingale, then the relation Mk = E[M∞|Fk] shows that all
information about the process M is hidden in its final element M∞.

Combining Propositions 0.8 and 0.3, we see that if τ is an Fk-stopping time such
that τ < ∞ a.s., (Mk)k∈N is an Fk-submartingale, and (Mk∧τ )k∈N is uniformly
integrable, then E[Mτ ] = limk→∞ E[Mk∧τ ] ≥M0.

There also exist convergence results for ‘backward’ martingales (Mk)k∈{−∞,...,0}.

0.5 Markov chains

Proposition 0.9 (Markov property) Let (E, E) be a measurable space, let I ⊂
Z be an interval and let (Xk)k∈I be an E-valued stochastic process. For each n ∈ I,

1By the De la Valle-Poussin theorem, this condition is in fact also necessary.
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set I−n := {k ∈ I : k ≤ n} and I+n := {k ∈ I : k ≥ n}, and let FX
n := σ((Xk)k∈I−n )

be the filtration generated by X. Then the following conditions are equivalent.

(i) P
[
(Xk)k∈I−n ∈ A, (Xk)k∈I+n ∈ B

∣∣Xn

]
= P

[
(Xk)k∈I−n ∈ A

∣∣Xn

]
P
[
(Xk)k∈I+n ∈ B

∣∣Xn

]
a.s.

for all A ∈ EI−n , B ∈ EI+n , n ∈ I.

(ii) P
[
(Xk)k∈I+n ∈ B

∣∣FX
n

]
= P

[
(Xk)k∈I+n ∈ B

∣∣Xn

]
a.s. for all B ∈ EI+n , n ∈ I.

(iii) P
[
Xn+1 ∈ C

∣∣FX
n

]
= P

[
Xn+1 ∈ C

∣∣Xn

]
a.s. for all C ∈ E, {n, n+ 1} ⊂ I.

Remarks Property (i) says that the past and future are conditionally independent
given the present. Property (ii) says that the future depends on the past only
through the present, i.e., after we condition on the present, conditioning on the
whole past does not give any extra information. Property (iii) says that it suffices
to check (ii) for single time steps.

Proof of Proposition 0.9 Set GXn := σ((Xk)k∈I+n ). If (i) holds, then, for any
A ∈ FX

n and B ∈ GXn , we have

E
[
1AP[B |Xn]

]
= E

[
E
[
1AP[B |Xn]

∣∣Xn

]]
= E

[
E[1A |Xn]P[B |Xn]

]
= E

[
P[A |Xn]P[B |Xn]

]
(i)
= E

[
P[A ∩B |Xn]

]
= P[A ∩B],

where in the second equality we have pulled the σ(Xn)-measurable random variable
P[B |Xn] out of the conditional expectation. Since this holds for arbitrary A ∈
FX
n and since P[B |Xn] is FX

n -measurable, it follows that P[B |Xn] satisfies all
properties of the definition of P[B | FX

n ] and hence

P[B |Xn] = P[B | FX
n ] a.s.,

which is just another way of writing (ii). Conversely, if (ii) holds, then for any
C ∈ σ(Xn),

E
[
P[A |Xn]P[B |Xn]1C

]
= E

[
E[P[B |Xn]1C1A |Xn]

]
= E

[
1A∩CP[B |Xn]

] (ii)
= E

[
1A∩CP[B | FX

n ]
]
= P[A ∩B ∩ C],

where in the first equality we have pulled the σ(Xn)-measurable random variable
P[B |Xn]1C into the conditional expectation E[1A |Xn] and in the final equality
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we have used the definition of P[B | FX
n ] and the fact that A∩C ∈ FX

n . Since this
holds for any C ∈ σ(Xn), it follows that P[A |Xn]P[B |Xn] satisfies all properties
of the definition of P[A ∩B |Xn] and hence

P[A |Xn]P[B |Xn] = P[A ∩B |Xn] a.s.

To see that (iii) is sufficient for (ii), one first proves by induction that

P
[
Xn+1 ∈ C1, . . . , Xn+m ∈ Cm

∣∣FX
n

]
= P

[
Xn+1 ∈ C1, . . . , Xn+m ∈ Cm

∣∣Xn

]
,

and then uses that these sort events uniquely determine conditional probabilities
of events in GXn .

If a process X = (Xk)k∈I satisfies the equivalent conditions of Proposition 0.9,
then we say that X has the Markov property. For processes with countable state
spaces, there is an easier formulation.

Proposition 0.10 (Markov chains) Let I ⊂ Z be an interval and let X =
(Xk)k∈I be a stochastic process taking values in a countable space S. Then X has
the Markov property if and only if for each {k, k+1} ⊂ I there exists a probability
kernel Pk,k+1(x, y) on S such that

P[Xk = xk, . . . , Xk+n = xk+n]

= P[Xk = xk]Pk,k+1(xk, xk+1) · · ·Pk+n−1,k+n(xk+n−1, xk+n)
(0.2)

for all {k, . . . , k + n} ⊂ I, xk, . . . , xk+n ∈ S.

Proof See, e.g., [LP11, Thm 2.1].

If I = N, then Proposition 0.10 shows that the finite dimensional distributions,
and hence the whole law of a Markov chain X are defined by its initial law P[X0 ∈
· ] and its transition probabilities Pk,k+1(x, y). If the initial law and transition
probabilities are given, then it is easy to see that the probability laws defined
by (0.2) are consistent, hence by the Daniell-Kolmogorov extension theorem, there
exists a Markov chain X, unique in distribution, with this initial law and transition
probabilies.

We note that conversely, a Markov chain X determines its transition probabilities
Pk,k+1(x, y) only for a.e. x ∈ S w.r.t. the law of Xk. If it is possible to choose
the transition kernels Pk,k+1’s in such a way that they do not depend on k, then
we say that the Markov chain is homogeneous. We are usually not interested in
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the problem to find Pk,k+1 given X, but typically we start with a given probability
kernel P on S and are interested in all Markov chains that have P as their transition
probability in each time step, and arbitrary initial law. Often, the word Markov
chain is used in this more general sense. Thus, we often speak of ‘the Markov chain
with state space S that jumps from x to y with probability. . . ’ without specifying
the initial law. From now on, we use the convention that all Markov chains are
homogeneous, unless explicitly stated otherwise. Moreover, if we don’t mention the
initial law, then we mean the process started in an arbitrary initial law.

We note from Proposition 0.9 (i) that the Markov property is symmetric under
time reversal, i.e., if (Xk)k∈I has the Markov property and I ′ := {−k : k ∈ I}, then
the process X ′ = (X ′

k)k∈I′ defined by X ′
k := X−k (k ∈ I ′) also has the Markov

property. It is usually not true, however, that X ′ is homogeneous if X is. An
exception are stationary processes, which leads to the useful concept of reversible
laws.

Exercise 0.11 (Stopped Markov chain) Let X = (Xk)k≥0 be a Markov chain
with countable state space S and transition kernel P , let A ⊂ S and let τA :=
inf{k ≥ 0 : Xk ∈ A} be the first entrance time of A. Let Y be the stopped process
Yk := Xk∧τA (k ≥ 0). Show that Y is a Markov chain and determine its transition
kernel. If we replace τA by the second entrance time of A, is Y then still Markov?

By definition, a random mapping representation of a probability kernel P on a
countable state space S is a random variable M taking values in the space of all
functions m : S → S such that

P (x, y) = P
[
M(x) = y

]
(x, y ∈ S).

Note that if M is such a random map, then (M(x))x∈S are S-valued random
variables such that M(x) has law P (x, · ). Thus, the kernel P determines the
individual laws of the random variables (M(x))x∈S, but says nothing about their
joint law. In view of this, there are usually many different ways to make a random
mapping representation of a given probability kernel. Often, the key to a good
proof is choosing the right one.

If (Mk)k≥1 are i.i.d. random variables with the same law as M , and X0 is an
independent S-valued random variable, then setting inductively

Xk :=Mk(Xk−1) (k ≥ 1)

defines a Markov chain (Xk)k≥0 with transition kernel P and initial state X0.
Random mapping representations are essential for simulating Markov chains on a
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computer. In addition, they have plenty of theoretical applications, for example
for coupling Markov chains with different initial states. (See Section 1.3 for an
introduction to coupling.)

Example 1 Let (Zk)k≥1 be i.i.d. Z-valued random variables and set Mk(x) :=
x + Zk. Then the inductive formula Xk := Mk(Xk−1) with X0 = 0 defines the
random walk Xn =

∑n
k=1 Zk.

Example 2 Let Sn be the group of all permutations π : {1, . . . , n} → {1, . . . , n}.
For each j = 1, . . . , n, define σj ∈ Sn by

σj(1) := k and σj(i) :=

{
i− 1 if i ≤ j,

i if i > k,
(i > 1).

Let (Jk)k≥1 be i.i.d. uniformly distributed on {1, . . . , n} and set Mk(π) := σJk ◦ π.
Then the inductive formula Xk :=Mk(Xk−1) with X0 the identity function defines
a Markov chain with state space Sn that describes a deck of cards where in each
step, we take the card that is on top and place it on an arbitrary level in the deck.

We note that it is in general not true that a function f(Xk) of a Markov chain Xk

are themselves Markov chains. An exception is the case when

P
[
f(Xk+1) ∈ · |Xk]

depends only on f(Xk). In this case, we say that f(X) is an autonomous Markov
chain.

Lemma 0.12 (Autonomous Markov functional) Let X = (Xk)k∈I be a Mar-
kov chain with countable state space S and transition kernel P . Let S ′ be a count-
able set and let f : S → S ′ be a function. Assume that there exists a probability
kernel P ′ on S ′ such that

P ′(x′, y′) =
∑

y: f(y)=y′

P (x, y) ∀x′, y′ ∈ S ′, x ∈ S, s.t. f(x) = x′.

Then f(X) := (f(Xk))k∈I is a Markov chain with state space S ′ and transition
kernel P ′.

Example Let (Xk, Yk)k≥0 be a two-dimensional random walk with values in Z2

and transition kernel

P (x, y;x+ 1, y) = 1
4
, P (x, y;x− 1, y) = 1

4
,

P (x, y;x, y + 1) = 1
4
, P (x, y;x, y − 1) = 1

4
.

Then (Xk)k≥0 is an autonomous Markov chain with values in Z and transition
kernel

P ′(x, x+ 1) = 1
4
, P ′(x, x− 1) = 1

4
, and P ′(x, x) = 1

2
.
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0.6 Kernels, operators and linear algebra

Let X = (Xk)k∈I be a stochastic process taking values in a countable space S, and
let P be a probability kernel on S. Then it is not hard to see that X is a Markov
process with transition kernel P (and arbitrary initial law) if and only if

P[Xk+1 = y | FX
k ] = P (Xk, y) a.s. (y ∈ S, {k, k + 1} ⊂ I),

where (FX
k )k∈I is the filtration generated by X. More generally, one has

P[Xk+n = y | FX
k ] = P n(Xk, y) a.s. (y ∈ S, n ≥ 0, {k, k + n} ⊂ I),

where P n denotes the n-th power of the transition kernel P . Here, if K,L are
probability kernels on S, then we define their product as

KL(x, z) :=
∑
y∈S

K(x, y)L(y, z) (x, z ∈ S),

which is again a probability kernel on S. Then Kn is defined as the product of n
times K with itself, where K0(x, y) := 1{x=y}. We may associate each probability
kernel on S with a linear operator, acting on bounded real functions f : S → R,
defined as

Kf(x) :=
∑
y∈S

K(x, y)f(y) (x ∈ S).

Then KL is just the composition of the operators K and L, and for each bounded
f : S → R, one has

E[f(Xk+n) | FX
k ] = P nf(Xk) a.s. (n ≥ 0, {k, k + n} ⊂ I), (0.3)

and this formula holds more generally provided the expectations are well-defined
(e.g., if E[|f(Xk+n)|] <∞ or f ≥ 0).

If µ is a probability measure on S and K is a probability kernel on S, then we
may define a new probability measure µK on S by

µK(y) :=
∑
x∈S

µ(x)K(x, y) (y ∈ S).

In this notation, if X is a Markov process with transition kernel P and initial law
P[X0 ∈ · ] = µ, then P[Xn ∈ · ] = µP n is its law at time n.

We may view transition kernels as (possibly infinite) matrices that act on row
vectors µ or column vectors f by left and right multiplication, respectively.
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0.7 Strong Markov property

We assume that the reader is familiar with some basic facts about Markov chains,
as taught in the lecture [LP11]. In particular, this concerns the strong Markov
property, which we formulate now.

Let X = (Xk)k≥0 be a Markov chain with countable state space S and transition
kernel P . As usual, it goes without saying that X is homogeneous (i.e., we use the
same P in each time step) and when we don’t mention the initial law, we mean
the process started in an arbitrary initial law. Often, it is notationally convenient
to assume that our process X is always the same, while the dependence on the
initial law is expressed in the choice of the probability measure on our underlying
probability space.

More precisely, we assume that we have a measurable space (Ω,F) and a collection
X = (Xk)k≥0 of measurable maps Xk : Ω → S, as well as a collection (Px)x∈S of
probability measures on (Ω,F), such that under the measure Px, the process X is
a Markov chain with initial law Px[X0 = x] = 1 and transition kernel P . In this
set-up, if µ is any probability measure on S, then under the law P :=

∑
x∈S µ(x)Px,

the process X is distributed as a Markov chain with initial law µ and transition
kernel P .

If X,P,Px are as just described and (FX
k )k≥0 is the filtration generated by X, then

it follows from Proposition 0.9 (ii) and homogeneity that

P
[
(Xn+k)k≥0 ∈ ·

∣∣FX
n

]
= PXn

[
(Xk)k≥0 ∈ ·

]
a.s. (0.4)

Here, for fixed n ≥ 0, we consider (Xn+k)k≥0 as a random variable taking values
in SN (i.e., this is the process Y defined by Yk := Xn+k (k ≥ 0)). Since SN is a
nice (in particular Polish) space, we can choose a regular version of the conditional
probability on the left-hand side of (0.4), i.e., this is a random probability measure
on SN. Since Xn is random, the same is true for the right-hand side. In words,
formula (0.4) says that given the process up to time n, the process after time n is
distributed as the process started in Xn. The strong Markov property extends this
to stopping times.

Proposition 0.13 (Strong Markov property)Let X,P,Px be as defined above.
Then, for any FX

k -stopping time τ such that τ <∞ a.s., one has

P
[
(Xτ+k)k≥0 ∈ ·

∣∣FX
τ

]
= PXτ

[
(Xk)k≥0 ∈ ·

]
a.s. (0.5)
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Proof This follows from [LP11, Thm 2.3].

Remark 1 Even if P[τ = ∞] > 0, formula (0.5) still holds a.s. on the event
{τ <∞}.

Remark 2 Homogeneity is essential for the strong Markov property, at least in
the (useful) formulation of (0.5).

Since this is closely related to formula (0.4), we also mention the following useful
principle here.

Proposition 0.14 (What can happen must eventually happen) Let X =
(Xk)k≥0 be a Markov chain with countable state space S. Let B ⊂ SN be measurable
and set ρ(x) := Px[(Xk)k≥0 ∈ B]. Then the event{

(Xn+k)k≥0 ∈ B for infinitely many n ≥ 0
}
∪
{
ρ(Xn) −→

n→∞
0
}

has probability one.

Proof Let A denote the event that (Xn+k)k≥0 ∈ B for some n ≥ 0. Then by
Proposition 0.6,

ρ(Xn) = PXn
[
(Xk)k≥0 ∈ B

]
= P

[
(Xn+k)k≥0 ∈ B

∣∣FX
n

]
≤ P

[
A
∣∣FX

n

]
−→
n→∞

P
[
A
∣∣FX

∞
]
= 1A a.s.

In particular, this shows that ρ(Xn) → 0 a.s. on the complement of the event A.
Applying the same argument to Am := {(Xn+k)k≥0 ∈ B for some n ≥ m}, we see
that the event Am ∪ {ρ(Xn) → 0} has probability one for each m. Letting m ↑ ∞
and observing that Am ↓ {(Xn+k)k≥0 ∈ B for infinitely many n ≥ 0}, the claim
follows.

Example 1 Consider a Markov chain (Xk)k≥0 with state space N and transition
kernel P (0, 0) = 1, P (x, x+ 1) = 2

3
, P (x, x− 1) = 1

3
(x ≥ 1).
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Let B := {(xk)k≥0 : xk = 0 for some k ≥ 0}. Then ρ(x) = Px[(Xk)k≥0 ∈ B] is
the probability that the chain ends up in the trap (absorbing state) 0. One can
prove that ρ(x) = 2−x and hence ρ(Xk) → 0 if and only if Xk → ∞. Since 0
is a trap, {(Xn+k)k≥0 ∈ B for infinitely many n ≥ 0} is a.s. the same as {Xk =
0 for some k ≥ 0}. Now Proposition 0.14 tells us that{

Xk = 0 for some k ≥ 0
}
∪
{
Xk −→

k→∞
∞
}

has probability one.

Example 2 Consider a Markov chain (Xk)k≥0 with state space Z and transition
kernel

P (x, x+ 1) := 2
3
, P (x, x− 1) = 1

3
(x > 0),

P (x, x+ 1) := 1
3
, P (x, x− 1) = 2

3
(x ≤ 0).
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Let B := {(xk)k≥0 : limk→∞ xk = −∞}. One can check that the function
ρ(x) = Px[limk→∞Xk = −∞] is bounded away from zero on intervals on the form
{. . . , k − 1, k} and hence ρ(Xk) → 0 if and only if Xk → ∞. Moreover, the event
{(Xn+k)k≥0 ∈ B for infinitely many n ≥ 0} is the same as {limk→∞Xk = −∞}.
Now Proposition 0.14 tells us that{

Xk −→
k→∞

−∞
}
∪
{
Xk −→

k→∞
∞
}

has probability one.

0.8 Classification of states

Let X be a Markov chain with countable state space S and transition kernel P .
For each x, y ∈ S, we write x ⇝ y if P n(x, y) > 0 for some n ≥ 0. Note that
x ⇝ y ⇝ z implies x ⇝ z. We say that two states x, y communicate if x ⇝ y
and y ⇝ x. It is easy to see that this defines an equivalence relation on S. The
corresponding equivalence classes are called communicating classes. A Markov
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chain / transition kernel is called irreducible if all states communicate with each
other, i.e., there is a single communicating class.

A state x is called recurrent if

Px[Xk = x for some k ≥ 1] = 1,

otherwise it is called transient. If two states communicate and one of them is
recurrent (resp. transient), then so is the other. Fix x ∈ S, let τ0 := 0 and let

τk := inf{n > τk−1 : Xn = x} (k ≥ 1)

be the times of the k-th visit to x after time zero. Consider the process started
in X0 = x. If x is recurrent, then τ1 < ∞ a.s. It follows from the strong Markov
property that τ2 − τ1 is equally distributed with and independent of τ1. By induc-
tion, (τk − τk−1)k≥1 are i.i.d. In particular, τk < ∞ for all k ≥ 1, i.e., the process
returns to x infinitely often.

On the other hand, if x is transient, then by the same sort of argument we see
that the number Nx =

∑
k≥1 1{Xk=x} of returns to x is geometrically distributed

Px[Nx = n] = θn(1− θ) where θ := Pn[Xk = x for some k ≥ 1].

In particular, Ex[Nx] <∞ if and only if x is transient.

Lemma 0.15 (Recurrent classes are closed) Let X be a Markov chain with
countable state space S and transition kernel P . Assume that S ′ ⊂ S is an com-
municating class of recurrent states. Then P (x, y) = 0 for all x ∈ S ′, y ∈ S\S ′.

Proof Imagine that P (x, y) > 0 for some x ∈ S ′, y ∈ S\S ′. Then, since S ′ is an
communicating class, y ̸⇝ x, i.e., the process cannot return from y to x. Since
P (x, y) > 0, this shows that the process started in x has a positive probability
never to return to x, a contradiction.

A state x is called positively recurrent if

Ex[inf{n ≥ 1 : Xn = x}] <∞.

Recurrent states that are not positively recurrent are called null recurrent. If two
states are equivalent and one of them is positively recurrent (resp. null recurrent),
then so is the other. If all states in a finite communicating class C are null recur-
rent, then

Px[Xn = y] −→
n→∞

0 (x, y ∈ C).



20 CHAPTER 0. PRELIMINARIES

From this, it is easy to see that a finite communicating class of states can never
be null recurrent.

The following lemma is an easy application of the principle ‘what can happen must
happen’ (Proposition 0.14).

Lemma 0.16 (Finite state space) Let X = (Xk)k≥0 be a Markov chain with
finite state space S and transition kernel P . Let Spos denote the set of all positively
recurrent states. Then P[Xk ∈ Spos for some k ≥ 0] = 1.

By definition, the period of a state x is the greatest common divisor of {n ≥ 1 :
P n(x, x) > 0}. Equivalent states have the same period. States with period one are
called aperiodic. Irreducible Markov chains are called aperiodic if one, and hence
all states have period one. If X = (Xk)k≥0 is an irreducible Markov chain with
period n, thenX ′

k := Xkn (k ≥ 0) defines an aperiodic Markov chainX ′ = (X ′
k)k≥0.

The following example is of special importance.

Lemma 0.17 (Recurrence of one-dimensional random walk) The Markov
chain X with state space Z and transition kernel P (k, k − 1) = P (k, k + 1) = 1

2
is

null recurrent.

Proof Note that this Markov chain is irreducible and has period two, as it takes
value alternatively in the even and odd integers. Using Stirling’s formula, it is not
hard to show that (see [LP11, Example 2.9])

P 2k(0, 0) ∼ 1√
πk

as k → ∞.

In particular, this shows that the expected number of returns to the origin E0[N0] =∑∞
k=1 P

2k(0, 0) is infinite, henceX is recurrent. On the other hand, it is not hard to
check that any invariant measure for X must be infinite, hence X has no invariant
law, so it cannot be positively recurrent.

We will later see that, more generally, random walks on Zd are recurrent in dimen-
sions d = 1, 2 and transient in dimensions d ≥ 3.

0.9 Invariant laws

By definition, an invariant law for a Markov process with transition kernel P and
countable state space S is a probability measure µ on S that is invariant under
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left-multiplication with P , i.e., µP = µ, or, written out per coordinate,∑
y∈S

µ(y)P (y, x) = µ(x) (x ∈ S).

More generally, a (possibly infinite) measure µ on S satisfying this equation is
called an invariant measure. A probability measure µ on S is an invariant law
if and only if the process (Xk)k≥0 started in the initial law P[X0 ∈ · ] = µ is
(strictly) stationary. If µ is an invariant law, then there also exists a stationary
process X = (Xk)k∈Z, unique in distribution, such that X is a Markov process with
transition kernel P and P[Xk ∈ · ] = µ for all k ∈ Z (including negative times).

The following lemma (the proof of which we skip) implies that an irreducible
Markov chain that is transient or null-recurrent does not have an invariant law
(even though there may exist one or more invariant measures).

Lemma 0.18 (Transient and null-recurrent states) Let X be a Markov chain
with countable state space S. Assume that x ∈ S is transient or null recurrent.
Then the Markov chain X started in an arbitrary initial law satisfies

lim
n→∞

P[Xn = x] = 0,

A detailed proof of the following theorem can be found in [LP11, Thms 2.10 and
2.26].

Theorem 0.19 (Invariant laws) Let X be a Markov chain with countable state
space S and transition kernel P . Then

(a) If µ is an invariant law and x is not positively recurrent, then µ(x) = 0.

(b) If S ′ ⊂ S is an communicating class of positively recurrent states, then there
exists a unique invariant law µ of X such that µ(x) > 0 for all x ∈ S ′ and
µ(x) = 0 for all x ∈ S\S ′.

(c) The invariant law µ from part (b) is given by

µ(x) = Ex
[
inf{k ≥ 1 : Xk = x}

]−1
. (0.6)

Sketch of proof For any x ∈ S, define µ(x) as in (0.6), with 1/∞ := 0. Part (a)
follows from Lemma 0.18. Assume that x is positively recurrent and let σx :=
inf{n ≥ 1 : Xn = x} denote the first return time to x. One can check that

µ(y) := Ex[σx]−1E
[ σx∑
k=1

1{Xk=y}
]

(y ∈ S) (0.7)
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defines an invariant law such that µ(y) > 0 for all y in the communnicating class of
x. Formula (0.6) follows from the fact that in the stationary process with invariant
law µ, consecutive return times to x are i.i.d. and the process spends a µ(x)-fraction
of its time in x. Since (0.6) holds for any invariant law µ on the communnicating
class of x, there can be only one such invariant law.

Remark Using Lemma 0.15, it is not hard to prove that a general invariant law
of the process is a convex combination of invariant laws that are concentrated on
one communicating class of positively recurrent states.

Theorem 0.20 (Convergence to invariant law) Let X be an irreducible, pos-
itively recurrent, aperiodic Markov chain with invariant law µ. Then the process
started in any initial law satisfies

P[Xk = x] −→
k→∞

µ(x) (x ∈ S).

If all states of X are transient or null recurrent, then the process started in any
initial law satisfies

P[Xk = x] −→
k→∞

0 (x ∈ S).

Proof See [LP11, Thm 2.26] or Theorem 1.30 below.

The following theorem generalizes Theorem 0.19 (b) to null recurrent Markov
chains.

Theorem 0.21 (Invariant measures) Let X be an irreducible recurrent Markov
chain with countable state space S and transition kernel P . Then X has an in-
variant measure µ that is unique up to scalar multiples. This invariant measure
satisfies µ(x) > 0 for all x ∈ S.

Sketch of proof Let S ′ ⊂ S be finite and let σS′ := inf{k ≥ 1 : Xk ∈ S ′} denote
the first return time to S ′. Since P is recurrent, setting

Q(x, y) := Px[XσS′ = y] (x, y ∈ S ′) (0.8)

defines a probability kernel on S ′. Since P is irreducible, the same is true for Q.
If µ is an invariant measure of P , then one can check that the restriction of µ to
S ′ is an invariant measure for Q. In particular, normalizing the restriction of µ
to S ′ yields the unique invariant law of the probability kernel Q, which is positive
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recurrent in view of the finiteness of S ′. Since for each x, y ∈ S we can choose some
finite S ′ ⊃ {x, y} this argument shows that µ(x)/µ(y) is uniquely determined and
hence µ is uniquely determined up to scalar multiples. To prove existence of µ, we
fix some reference point z ∈ S and finite z ∈ Sn ↑ S. Define positive recurrent Qn

on Sn as in (0.8) and let πn denote their invariant laws. Let µn := πn/πn(z) be πn
normalized so that µn(z) = 1. By our previous arguments, the µn are consistent
in the sense that the restriction of µn to Sn−1 is µn−1. In view of this, there exists
a function µ : S → (0,∞) whose restriction to Sn is µn for each n. One can check
that µ is an invariant measure for P .

If µ is an invariant law and X = (Xk)k∈Z is a stationary process such that P[Xk ∈
· ] = µ for all k ∈ Z, then by the symmetry of the Markov property w.r.t. time
reversal, the process X ′ = (X ′

k)k∈Z defined by X ′
k := X−k (k ∈ Z) is also a

Markov process. By stationarity, X ′ is moreover homogeneous, i.e., there exists
a transition kernel P ′ such that the transition probabilities P ′

k,k+1 of X ′ satisfy
P ′(x, y) = P ′

k,k+1(x, y) for a.e. x w.r.t. µ. In general, it will not be true that
P ′ = P . We say that µ is a reversible law if µ is invariant and in addition,
the stationary processes X and X ′ are equal in law. One can check that this is
equivalent to the detailed balance condition

µ(x)P (x, y) = P (x, y)µ(y) (x, y ∈ S),

which says that the process X started in P[X0 ∈ · ] = µ satisfies P[X0 = x, X1 =
y] = P[X0 = y, X1 = x]. More generally, a (possibly infinite) measure µ on S
satisfying detaied balance is called an reversible measure. If µ is reversible measure
and we define a (semi-) inner product of real functions f : S → R by

⟨f, g⟩µ :=
∑
x∈S

f(x)g(x)µ(x),

then P is self-adjoint w.r.t. this inner product:

⟨f, Pg⟩µ = ⟨Pf, g⟩µ.
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Chapter 1

Harmonic functions

1.1 (Sub-) harmonicity

Let X be a Markov chain with countable state space S and transition kernel P .
As we have seen, an invariant law of X is a vector that is invariant under left-
multiplication with P . Harmonic functions 1 are functions that are invariant
under right-multiplication with P . More precisely, we will say that a function
h : S → R is subharmonic for X if∑

y

P (x, y)|h(y)| <∞ (x ∈ S),

and
h(x) ≤

∑
y

P (x, y)h(y) (x ∈ S).

We say that h is superharmonic if −h is subharmonic, and harmonic if it is both
subharmonic and superharmonic.

Lemma 1.1 (Harmonic functions and martingales) Assume that h is sub-
harmonic for the Markov chain X = (Xk)k≥0 and that E[|h(Xk)|] < ∞ (k ≥ 0).
Then Mk := h(Xk) (k ≥ 0) defines a submartingale M = (M(Xk))k≥0 w.r.t. to the
filtration (FX

k )k≥0 generated by X.

1Historically, the term harmonic function was first used, and is still commonly used, for a
smooth function f : U → R, defined on some open domain U ⊂ Rd, that solves the Laplace

equation
∑d

i=1
∂2

∂xi
2 f(x) = 0. This is basically the same as our definition, but with our Markov

chain X replaced by Brownian motion B = (Bt)t≥0. Indeed, a smooth function f solves the
Laplace equation if and only if (f(Bt))t≥0 is a local martingale.

25
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Proof This follows by writing (using (0.3)),

E
[
h(Xk+1)

∣∣FX
k

]
=

∑
y

P (Xk, y)h(y) ≥ h(Xk) (k ≥ 0).

Note The proof of the lemma shows that the condition that h is subharmonic is
also necessary for Mk := h(Xk) being a submartingale, at least when one wants
the statement to hold for arbitrary initial states of the Markov chain.

We will say that a state x is an absorbing state or trap for a Markov chain X if
P (x, x) = 1.

Lemma 1.2 (Trapping probability) Let X be a Markov chain with countable
state space S and transition kernel P , and let z ∈ S be a trap. Then the trapping
probability

h(x) := Px
[
Xk = z for some k ≥ 0

]
is a harmonic function for X.

Proof Since 0 ≤ h ≤ 1, integrability is not an issue. Now

h(x) = Px
[
Xk = z for some k ≥ 0

]
= Px

[
Xk = z for some k ≥ 1

]
=

∑
y

Px
[
Xk = z for some k ≥ 1

∣∣X1 = y
]
Px[X1 = y]

=
∑
y

P (x, y)Py
[
Xk = z for some k ≥ 0

]
=

∑
y

P (x, y)h(y).

Lemma 1.3 (Trapping estimates) Let X be a Markov chain with countable
state space S and transition kernel P , and let T := {z ∈ S : z is a trap}. Assume
that the chain gets trapped a.s., i.e., P[∃n ≥ 0 s.t. Xn ∈ T ] = 1 (regardless of the
initial law). Let z ∈ T and let h : S → [0, 1] be a subharmonic function such that
h(z) = 1 and h ≡ 0 on T\{z}. Then

h(x) ≤ Px
[
Xk = z for some k ≥ 0

]
If h is superharmonic, then the same holds with the inequality sign reversed.
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Proof Since h is subharmonic, Mk := h(Xk) is a submartingale. Since h is
bounded, M is uniformly integrable. Therefore, by Propositions 0.7 and 0.8,
Mk → M∞ a.s. and in L1-norm, where M∞ is some random variable such that
Ex[M∞] ≥ M0 = h(x). Since the chain gets trapped a.s., we have M∞ = h(Xτ ),
where τ := inf{k ≥ 0 : Xk ∈ T} is the trapping time. Since h(z) = 1 and h ≡ 0
on T\{z}, we have M∞ = 1{Xτ=z} and therefore Px[Xτ = z] = Ex[M∞] ≥ h(x). If
h is superharmonic, the same holds with the inequality sign reversed.

Remark 1 If S ′ ⊂ S is a ‘closed’ set in the sense that P(x, y) = 0 for all x ∈ S ′,
y ∈ S\S ′, then define ϕ : S → (S\S ′)∪{∗} by ϕ(x) := ∗ if x ∈ S ′ and ϕ(x) := x if
x ∈ S\S ′. Now (ϕ(Xk))k≥0 is an autonomous (in the sense of Lemma 0.12) Markov
chain that gets trapped in ∗ if and only if the original chain enters the closed set S ′.
In this way, Lemma 1.3 can easily be generalized to Markov chains that eventually
get ‘trapped’ in one of finitely many equivalence classes of recurrent states.

Remark 2 Lemma 0.16 tells us that a Markov chain with finite state space eventu-
ally ends up in the set Spos of positively recurrent states. In particular, if all states
in Spos are traps, then the chain gets trapped a.s. In general, we can partition Spos

into classes of equivalent states and use Remark 1 to calculate the probability of
ending up in a given equivalence class.

Remark 3 Lemma 1.3 tells us in particular that, provided that the chain gets
trapped a.s., the function h from Lemma 1.2 is the unique harmonic function
satisfying h(z) = 1 and h ≡ 0 on T\{z}. For a more general statement of this
type, see Exercise 1.8 below.

Remark 4 Even in situations where it is not feasable to calculate trapping prob-
abilities exactly, Lemma 1.3 can sometimes be used to derive lower and upper
bounds for these trapping probabilities.

The following excercise shows that in the superharmonic case, the assumptions of
Lemma 1.3 can be weakened considerably.

Exercise 1.4 (Weaker conditions in the superharmonic case) Let X be
a Markov chain with countable state space S and transition kernel P , and let
T := {z ∈ S : z is a trap}. Let z ∈ T and let h : S → [0,∞) be a superharmonic
function such that h(z) = 1. Show that

h(x) ≥ Px
[
Xk = z for some k ≥ 0

]
.

The following transformation is usually called an h-transform or Doob’s h-trans-
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form. Following [LPW09], we will simply call it a Doob transform.2

Lemma 1.5 (Doob transform) Let X be a Markov chain with countable state
space S and transition kernel P , and let h : S → [0,∞) be a nonnegative harmonic
function. Then setting S ′ := {x ∈ S : h(x) > 0} and

P (h)(x, y) :=
P (x, y)h(y)

h(x)
(x, y ∈ S ′)

defines a transition kernel P (h) on S ′.

Proof Obviously P (h)(x, y) ≥ 0 for all x, y ∈ S ′. Since∑
y∈S′

P (h)(x, y) = h(x)−1
∑
y∈S′

P (x, y)h(y) = h(x)−1Ph(x) = 1 (x ∈ S ′),

P (h) is a transition kernel.

Proposition 1.6 (Conditioning on the future) Let X = (Xk)k≥0 be a Markov
chain with countable state space S and transition kernel P , and let z ∈ S be a
trap. Set S ′ := {y ∈ S : y ⇝ z} and assume that P[X0 ∈ S ′] > 0. Then, under the
conditional law

P[(Xk)k≥0 ∈ ·
∣∣Xm = z for some m ≥ 0

]
,

the process X is a Markov process in S ′ with Doob-transformed transition kernel
P (h), where

h(x) := Px
[
Xm = z for some m ≥ 0

]
satisfies h(x) > 0 if and only if x ∈ S ′.

Proof Using the Markov property (in its strong form (0.4)), we observe that

P
[
Xn+1 = y

∣∣ (Xk)0≤k≤n = (xk)0≤k≤n, Xm = z for some m ≥ 0
]

= P
[
Xn+1 = y

∣∣ (Xk)0≤k≤n = (xk)0≤k≤n, Xm = z for some m ≥ n+ 1
]

=
P
[
Xn+1 = y, Xm = z for some m ≥ n+ 1

∣∣ (Xk)0≤k≤n = (xk)0≤k≤n
]

P
[
Xm = z for some m ≥ n+ 1

∣∣ (Xk)0≤k≤n = (xk)0≤k≤n
]

=
P (xn, y)Py[Xm = z for some m ≥ 0]

Pxn [Xm = z for some m ≥ 1]
= P (h)(xn, y)

2The term h-transform is somewhat inconvenient for several reasons. First of all, having
mathematical symbols in names of chapters or articles causes all kinds of problems for referencing.
Secondly, if one performs an h-transform with a function g, then should one speak of a g-transform
or an h-transform? The situation becomes even more confusing when there are several functions
around, one of which may be called h.
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for each (xk)0≤k≤n and y such that P[(Xk)0≤k≤n = (xk)0≤k≤n] > 0 and xn, y ∈ S ′.

Remark At first sight, it is surprising that conditioning on the future may preserve
the Markov property. What is essential here is that being trapped in x is a tail
event, i.e., an event measurable w.r.t. the tail-σ-algebra

T :=
⋂
k≥0

σ(Xk, Xk+1, . . .).

Similarly, if we condition a Markov chain (Xk)0≤k≤n that is defined on finite time
interval on its final state Xn, then under the conditional law, (Xk)0≤k≤n is still
Markov, although no longer homogeneous.

Exercise 1.7 (Sufficient conditions for integrability) Let h : S → R be any
function. Assume that E[|h(X0)|] < ∞ and there exists a constant K < ∞ such
that

∑
y P (x, y)|h(y)| ≤ K|h(x)|. Show that E[|h(Xk)|] <∞ (k ≥ 0).

Exercise 1.8 (Boundary conditions) Let X be a Markov chain with countable
state space S and transition kernel P , and let T := {z ∈ S : z is a trap}. Assume
that the chain gets trapped a.s., i.e., P[∃n ≥ 0 s.t. Xn ∈ T ] = 1 (regardless of the
initial law). Show that for each bounded real function ϕ : T → R there exists a
unique bounded harmonic function h : S → R such that h = ϕ on T . Hint: take
h(x) := Ex[ϕ(Xτ )], where τ := inf{k ≥ 0 : Xk ∈ T} is the trapping time.

Remark 1 Exercise 1.8 asks for an arbitrary function on T to be extended to a
harmonic function on the whole space. If we replace the Markov chain by Brownian
motion that is stopped as soon as it leaves a bounded open domain in Rd, then
the boundary of this domain takes the role of T and the analogue of Exercise 1.8
is known as the Dirichlet problem.

Remark 2 One can check that in general h(x) := Px[∃n ≥ 0 s.t. Xn ∈ T ] is a
harmonic function and hence so is 1 − h(x) := Px[ ̸ ∃n ≥ 0 s.t. Xn ∈ T ]. Using
this, it is easy to see that the uniqueness statement of Exercise 1.8 fails without
the assumption that the chain gets trapped a.s. (regardless of the initial state).

Exercise 1.9 (Conditions for getting trapped) If we do not know a priori that
a Markov chain eventually gets trapped, then the following fact is often useful. Let
X be a Markov chain with countable state space S and transition kernel P , and
let h : S → [0, 1] be a sub- or superharmonic function. Assume that for all ε > 0
there exists a δ > 0 such that

Px
[
|h(X1)− h(x)| ≥ δ

]
≥ δ whenever ε ≤ h(x) ≤ 1− ε.
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Show that limk→∞ h(Xk) ∈ {0, 1} a.s. Hint: use martingale convergence to prove
that limk→∞ h(Xk) exists. Now you can use the principle ‘what can happen must
happen’ (Proposition 0.14) to show that the limit cannot take values in (0, 1).

Exercise 1.10 (Trapping estimate) Let X,S, , P and h be as in Excercise 1.9.
Assume that h is subharmonic and there is a point z ∈ S such that h(z) = 1 and
supx∈S\{z} h(x) < 1. Show that

h(x) ≤ Px[Xk = z for some k ≥ 0].

Exercise 1.11 (Compensator) LetX = (Xk)k≥0 be a Markov chain with count-
able state space S and transition kernel P , and let f : S → R be a function such
that

∑
y P (x, y)|f(y)| <∞ for all x ∈ S. Assume that, for some given initial law,

the process X satisfies E[|f(Xk)|] < ∞ for all k ≥ 0. Show that the compensator
of (f(Xk))k≥0 is given by

Kn =
n−1∑
k=0

(
Pf(Xk)− f(Xk)

)
(n ≥ 0).

Exercise 1.12 (Expected time till absorption: part 1) Let X be a Markov
chain with countable state space S and transition kernel P , and let T := {z ∈ S :
z is a trap}. Let τ := inf{k ≥ 0 : Xk ∈ T} and assume that Ex[τ ] < ∞ for all
x ∈ S. Show that the function

f(x) := Ex[τ ]

satisfies Pf(x)− f(x) = −1 (x ∈ S\T ) and f ≡ 0 on T .

Exercise 1.13 (Expected time till absorption: part 2) Let X be a Markov
chain with countable state space S and transition kernel P , let T := {z ∈ S :
z is a trap}, and set τ := inf{k ≥ 0 : Xk ∈ T}. Assume that f : S → [0,∞)
satisfies Pf(x)− f(x) ≤ −1 (x ∈ S\T ) and f ≡ 0 on T . Show that

Ex[τ ] ≤ f(x) (x ∈ S).

Hint: show that the compensator K of (f(Xk))k≥0 satisfies Kn ≤ −(n ∧ τ). Now
apply Exercise 1.11. To check the conditions of Exercise 1.11, you can use Exer-
cise 1.7.
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Exercise 1.14 (Foster’s theorem: part 1) Let X be an irreducible Markov
chain X with countable state space S and transition kernel P . Show that of the
following conditions, (i) implies (ii).

(i) There exists a finite set S ′ ⊂ S, a function f : S → [0,∞), and an ε > 0
such that

Pf(x)

{
<∞ (x ∈ S ′),

≤ f(x)− ε (x ∈ S\S ′).

(ii) X is positively recurrent.

Hint: Use Lemma 0.18 and Exercise 1.11.

Exercise 1.15 (Foster’s theorem: part 2) Prove the reverse implication
(ii)⇒(i) in Exercise 1.14. Hint: Exercise 1.12.

Exercise 1.16 (Absorption of random walk) Consider a random walk W =
(Wk)k≥0 on Z that jumps from x to x + 1 with probability p and to x − 1 with
the remaining probability q := 1 − p, where 0 < p < 1. Fix n ≥ 1 and set
τ := inf

{
k ≥ 0 : Wk ∈ {0, n}

}
. Calculate, for each 0 ≤ x ≤ n, the probability

P[Wτ = n].

Exercise 1.17 (First ocurrence of a pattern: part 1)
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Let (Xk)k≥0 be i.i.d. Bernoulli random variables
with P[Xk = 0] = P[Xk = 1] = 1

2
(k ≥ 0). Set

τ110 := inf
{
k ≥ 0 : (Xk, Xk+1, Xk+2) = (1, 1, 0)

}
,

and define τ010 similarly. Calculate P[τ010 < τ110].

Hint: Set X⃗k := (Xk, Xk+1, Xk+2) (k ≥ 0). Then

(X⃗k)k≥0 is a Markov chain with transition prob-
abilities as in the picture on the right. Now the
problem amounts to calculating the trapping prob-
abilities for the chain stopped at τ010 ∧ τ110.
Note Penney’s game is a game where two players
chose patterns and then the player whose pattern
comes up first wins.

111

110 011

101

010

100 001

000

Exercise 1.18 (First ocurrence of a pattern: part 2) In the set-up of the
previous exercise, calculate E[τ110] and E[τ111]. Hints: you need to solve a system
of linear equations. To find the solution, it helps to use Theorem 0.19 (c) and the
fact that the uniform distribution is an invariant law. In the case of τ111, it also
helps to observe that Ex[τ111] depends only on the number of ones at the end of x.

Exercise 1.19 Let X be a Markov chain on N with transition kernel

P (0, 1) = 1, P (x, x+ 1) = px, P (x, x− 1) = 1− px (x ≥ 1).

Show that the function f defined by f(0) = 0, f(1) = 1, and

f(x+ 1) := 1 +
x∑
y=1

y∏
z=1

1− pz
pz

(x ≥ 1)

is harmonic for X. Prove that X is recurrent if and only if

lim
x→∞

x∑
y=1

y∏
z=1

1− pz
pz

= ∞. (1.1)
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1.2 Random walk on a tree

In this section, we study random walk on an infinite tree in which every vertex has
three neighbors. Such random walks have many interesting properties. At present
they are of interest to us because they have many different bounded harmonic
functions. As we will see in the next section, the situation for random walks on
Zd is quite different.

Let T2 be an infinite tree, (i.e., a connected graph without cycles) in which each
vertex has degree 3 (i.e., there are three edges incident to each vertex). We will be
interested in the Markov chain whose state space are the vertices of T2 and that
jumps in each step with equal probabilities to one of the three neighboring sites.

We first need a convenient way to label vertices in such a tree. Consider a finitely
generated group with generators a, b, c satisfying a = a−1, b = b−1 and c = c−1.
More formally, we can construct such a group as follows. Let G be the set of all
finite sequences x = x(1) · · ·x(n) where n ≥ 0 (we allow for the empty sequence
∅), x(i) ∈ {a, b, c} for all 1 ≤ i ≤ n, and x(i) ̸= x(i+ 1) for all 1 ≤ i ≤ i+ 1 ≤ n.
We define a product on V by concatenation, where we apply the rule that any two
a’s, b’s or c’s next to each other cancel each other, inductively, till we obtain an
element of G. So, for example,

(abacb)(cab) = abacbcab, (abacb)(bab) = abacbbab = abacab,

and (abacb)(bcb) = abacbbcb = abaccb = abab.

With these rules, G is a group with unit element ∅, the empty sequence, and
inverse (x(1) · · ·x(n))−1 = x(n) · · ·x(1). Note that G is not abelian, i.e., the
group product is not commutative.

We can make G into a graph by drawing an edge between two elements x, y ∈ G
if x = ya, x = yb, or x = yc. It is not hard to see that the resulting graph
is an infinite tree in which each vertex has degree 3; see Figure 1.1.3 We let
|x| = |x(1) · · ·x(n)| := |n| denote the length of an element x ∈ G. It is not hard
to see that this is the same as the graph distance of x to the ‘origin’ ∅, i.e., the
length of the shortest path connecting x to ∅.

3This is a special case of a much more general construction. Let G be a finitely generated
group and let ∆ ⊂ G be a finite, symmetric (in the sense that a ∈ ∆ implies a−1 ∈ ∆) set of
elements that generates G. Draw a vertex between two elements a, b ∈ G if a = cb for some
c ∈ ∆ (or equivalently, by the symmetry of ∆, if b = c′a for some c′ ∈ ∆). The resulting graph is
called the left Cayley graph associated with G and ∆. This is a very general method of making
graphs with some sort of translation-invariant structure.
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∅

a

b c

abac

ba

bc

ca

cb

aba

abc

aca

acb

babbac

bca

bcb

cab cac

cba

cbc

Figure 1.1: The regular tree T2

Let X = (Xk)k≥0 be the Markov chain with state space G and transition proba-
bilities

P (x, xa) = P (x, xb) = P (x, xc) =
1

3
(x ∈ G),

i.e., X jumps in each step to a uniformly chosen neighboring vertex in the graph.
We call X the nearest neighbor random walk on G.

We observe that if X is such a random walk on G, then |X| = (|Xk|)k≥0 is an
autonomous (in the sense of Lemma 0.12) Markov chain with state space N and
transition probabilities given by

Q(n, n− 1) :=
1

3
and Q(n, n+ 1) :=

2

3
(n ≥ 1),

and Q(0, 1) := 1.

For each x = x(1) · · · x(n) ∈ G, let us write x(i) := ∅ if i > n. The following
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lemma shows that the random walk X is transient and walks away to infinity in a
well-defined ‘direction’.

Lemma 1.20 (Transience) Let X be the random walk on G described above,
started in any initial law. Then there exists a random variable X∞ ∈ {a, b, c}N+

such that
lim
n→∞

Xn(i) = X∞(i) a.s. (i ∈ N+).

Proof We may compare |X| to a random walk Z = (Zk)k≥0 on Z that jumps from
n to n − 1 or n + 1 with probabilities 1/3 and 2/3, respectively. Such a random
walk has independent increments, i.e., (Zk − Zk−1)k≥1 are i.i.d. random variables
that take the values −1 and +1 with probabilities 1/3 and 2/3. Therefore, by the
strong law of large numbers, (Zn − Z0)/n → 1/3 a.s. and therefore Zn → ∞ a.s.
In particular Z visits each state only finitely often, which shows that all states are
transient. It follows that the process Z started in Z0 = 0 has a positive probability
of not returning to 0. Since Zn → ∞ a.s. and since |X| has the same dynamics as
Z as long as it is in N+, this shows that the process started in X0 = a satisfies

Pa
[
|Xk| ≥ 1 ∀k ≥ 1

]
= P1

[
Zk ≥ 1 ∀k ≥ 1

]
> 0.

This shows that a is a transient state for X. By irreducibility, all states are
transient and |Xk| → ∞ a.s., which is easily seen to imply the lemma.

We are now ready to prove the existence of a many bounded harmonic functions
for the Markov chain X. Let

∂G :=
{
x ∈ {a, b, c}N+ : x(i) ̸= x(i+ 1) ∀i ≥ 1

}
.

Elements in ∂G correspond to different ways of walking to infinity. Note that ∂G
is an uncountable set. In fact, if we identify elements of ∂G with points in [0, 1]
written in base 3, then ∂G corresponds to a sort of Cantor set. We equip ∂G with
the product-σ-field, which we denote by B(∂G). (Indeed, one can check that this
is the Borel-σ-field associated with the product topology.)

Proposition 1.21 (Bounded harmonic functions) Let ϕ : ∂G→ R be bounded
and measurable, let X be the random walk on the tree G described above, and let
X∞ be as in Lemma 1.20. Then

h(x) := Ex
[
ϕ(X∞)

]
(x ∈ G)

defines a bounded harmonic function for X. Moreover, the process started in an
arbitrary initial law satisfies

h(Xn) −→
n→∞

ϕ(X∞) a.s..
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Proof It follows from the Markov property (in the form (0.4)) that

h(x) = Ex[ϕ(X∞)] =
∑
y

P (x, y)Ey[ϕ(X∞)] =
∑
y

P (x, y)h(y) (x ∈ G),

which shows that h is harmonic. Since ∥h∥∞ ≤ ∥ϕ∥∞, the function h is bounded.
Moreover, by (0.4) and Proposition 0.6,

h(Xn) = EXn [ϕ(X∞)] = E[ϕ(X∞) | FX
n ] −→

n→∞
E[ϕ(X∞) | FX

∞] = ϕ(X∞) a.s.
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Figure 1.2: A bounded harmonic function

For example, in Figure 1.2, we have drawn a few values of the harmonic function

h(x) := Px[X∞(1) = a] (x ∈ G).

Although Proposition 1.21 proves that each bounded measurable function ϕ on
∂G yields a bounded harmonic function for the process X, we have not actually
shown that different ϕ’s yield different h’s.
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Lemma 1.22 (Many bounded harmonics) Let µ be the probability measure
on ∂G defined by µ := P∅[X∞ ∈ · ]. Let ϕ, ψ : ∂G→ R be bounded and measurable
and let

h(x) := Ex
[
ϕ(X∞)

]
and g(x) := Ex

[
ψ(X∞)

]
(x ∈ G).

Then h = g if and only if ϕ = ψ a.s. w.r.t. µ.

Proof Let us define more generally µx = Px[X∞ ∈ · ]. Since

µx(A) =
∑
z

P n(x, z)Pz[X∞ ∈ A] ≥ P n(x, y)µy(A)

(x, y ∈ G, n ≥ 0, A ∈ B(∂G)) and P is irreducible, we see that µy ≪ µx for all
x, y ∈ G, hence the measures (µx)x∈G are all equivalent. Thus, if ϕ = ψ a.s. w.r.t.
µ, then they are a.s. equal w.r.t. to µx for each x ∈ G, and therefore

h(x) =

∫
ϕ dµx =

∫
ψ dµx = g(x) (x ∈ G).

On the other hand, if the set {ϕ ̸= ψ} has positive probability under µ, then by
Proposition 1.21

P∅[ lim
n→∞

h(Xn) ̸= lim
n→∞

g(Xn)
]
> 0,

which shows that there must exist x ∈ G with h(x) ̸= g(x).

Exercise 1.23 (Escape probability) Let Z = (Zk)k≥0 be the Markov chain
with state space Z that jumps in each step from n to n − 1 with probability 1/3
and to n + 1 with probability 2/3. Calculate P1[Zk ≥ 1 ∀k ≥ 0]. Hint: find a
suitable harmonic function for the process stopped at zero.

Exercise 1.24 (Independent increments) Let (Yk)k≥1 be i.i.d. and uniformly
distributed on {a, b, c}. Define (Xn)n≥0 by the random group product (in the group
G)

Xn := Y1 · · ·Yn (n ≥ 1),

with X0 := ∅. Show that X is the Markov chain with transition kernel P as defined
above.
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1.3 Coupling

For any x = (x(1), . . . , x(d)) ∈ Zd, let |x|1 :=
∑d

i=1 |x(i)| denote the ‘L1-norm’ of
x. Set ∆ := {x ∈ Zd : |x|1 = 1}. Let (Yk)k≥1 be i.i.d. and uniformly distributed
on ∆ and let

Xn :=
n∑
k=1

Yk (n ≥ 1),

with X0 := 0. (Here we also use the symbol 0 to denote the origin 0 = (0, . . . , 0) ∈
Zd.) Then, just as in Excercise 1.24, X is a Markov chain, that jumps in each time
step from its present position x to a uniformly chosen position in x+∆ = {x+ y :
y ∈ ∆}. We call X the symmetric nearest neighbor random walk on the integer
lattice Zd. Sometimes X is also called simple random walk.

Let P denote its transition kernel. We will be interested in bounded harmonic
functions for P . We will show that in contrast to the random walk on the tree,
the random walk on the integer lattice has very few bounded harmonic functions.
Indeed, all such functions are constant. We will prove this using coupling, which
is a technique of much more general interest, with many applications.

Usually, when we talk about a random variable X (which may be the path of a
process X = (Xk)k≥0), we are not so much interested in the concrete probability
space (Ω,F ,P) that X is defined on. Rather, all that we usually care about is
the law P[X ∈ · ] of X. Likewise, when we have in mind two random variables X
and Y (for example, one binomially and the other normally distributed, or X and
Y may be two Markov chains with possibly different initial states or transition
kernels), then we usually do not a priori know what their joint distribution is,
even if we know there individual distributions. A coupling of two random variables
X and Y , in the most general sense of the word, is a way to construct X and
Y together on one underlying probability space (Ω,F ,P). More precisely, if X
and Y are random variables defined on different underlying probability spaces,
then a coupling of X and Y is a pair of random variables (X ′, Y ′) defined on one
underlying probability space (Ω,F ,P), such that X ′ is equally distributed with X
and Y ′ is equally distributed with Y . Equivalently, since the laws of X and Y
are all we really care about, we may say that a coupling of two probability laws
µ, ν defined on measurable spaces (E, E) and (F,F), respectively, is a probability
measure ρ on the product space (E × F, E ⊗ F) such that the first marginal of ρ
is µ and its second marginal is ν.

Obviously, a trivial way to couple any two random variables is to make them
independent, but this is usually not what we are after. A typical coupling is
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designed to compare two random variables, for example by showing that they are
close, or one is larger than the other. The next excercise gives a simple example.

Exercise 1.25 (Monotone coupling) Let X be uniformly distributed on [0, λ]
and let Y be exponentially distributed with mean λ > 0. Show that X and
Y can be coupled such that X ≤ Y a.s. (Hint: note that this says that you
have to construct a probability measure on [0, λ]× [0,∞) that is concentrated on
{(x, y) : x ≤ y} and has the ‘right’ marginals.) Use your coupling to prove that
E[Xα] ≤ E[Y α] for all α > 0.

Now let ∆ ⊂ Zd be as defined at the beginning of this section and let P be the
transition kernel on Zd defined by

P (x, y) :=
1

2d
1{y − x ∈ ∆} (x, y ∈ Zd).

We are interested in bounded harmonic functions for P , i.e., bounded functions
h : Zd → R such that Ph = h. It is somewhat inconvenient that P is periodic.4

In light of this, we define a ‘lazy’ modification of our transition kernel by

Plazy(x, y) :=
1
2
P (x, y) + 1

2
1{x=y}.

Obviously, Plazyf = 1
2
Pf + 1

2
f , so a function h is harmonic for P if and only if it

is harmonic for Plazy.

Proposition 1.26 (Coupling of lazy walks) Let Xx and Xy be two lazy random
walks, i.e., Markov chains on Zd with transition kernel Plazy, and initial states
Xx

0 = x and Xy
0 = y, x, y ∈ Zd. Then Xx and Xy can be coupled such that

∃n ≥ 0 s.t. Xx
k = Xy

k ∀k ≥ n a.s.

Proof We start by choosing a suitable random mapping representation. Let
(Uk)k≥1, (Ik)k≥1, and (Wk)k≥1 be collections of i.i.d. random variables, each collec-
tion independent of the others, such that for each k ≥ 1, Uk is uniformly distributed
on {0, 1}, Ik is uniformly distributed on {1, . . . , d}, andWk is uniformly distributed
on {−1,+1}. Let ei ∈ Zd be defined as ei(j) := 1{i=j}. Then we may construct
Xx inductively by setting Xx

0 := x and

Xx
k = Xx

k−1 + UkWkeIk (k ≥ 1).

4Indeed, the Markov chain with transition kernel P takes values alternatively in Zd
even := {x ∈

Zd :
∑d

i=1 x(i) is even} and Zd
odd := {x ∈ Zd :

∑d
i=1 x(i) is odd}.



40 CHAPTER 1. HARMONIC FUNCTIONS

Note that this says that Uk decides if we jump at all, Ik decides which coordinate
jumps, and Wk decides whether up or down.

To construct also Xy on the same probability space, we define inductively Xy
0 := y

and

Xy
k =

{
Xy
k−1 + (1− Uk)WkeIk if Xy

k−1(Ik) ̸= Xx
k−1(Ik),

Xy
k−1 + UkWkeIk if Xy

k−1(Ik) = Xx
k−1(Ik),

(k ≥ 1).

Note that this says that Xx and Xy always select the same coordinate Ik ∈
{1, . . . , d} that is allowed to move. As long as Xx and Xy differ in this coor-
dinate, they jump at different times, but after the first time they agree in this
cordinate, they always increase or decrease this coordinate by the same amount at
the same time. In particular, these rules ensure that

Xx
k (i) = Xy

k (i) for all k ≥ τi := inf{n ≥ 0 : Xx
n(i) = Xy

n(i)}.

Since (Xx
k , X

y
k )k≥0 is defined in terms of i.i.d. random variables (Uk, Ik,Wk)k≥1 by

a random mapping representation, the joint process (Xx, Xy) is clearly a Markov
chain. We have already seen that Xx, on its own, is also a Markov chain, with
the right transition kernel Plazy. It is straightforward to check that P[Xy

k+1 =
z | (Xx

k , X
y
k )] = Plazy(X

y
k , z) a.s. In particular, this transition probability depends

only on Xy
k , hence by Lemma 0.12, Xy is an autonomous Markov chain with

transition kernel Plazy.

In view of this, our claim will follow provided we show that τi < ∞ a.s. for each
i = 1, . . . , d. Fix i and define inductively σ0 := 0 and

σk := inf{k > σk−1 : Ik = i}.

Consider the difference process

Dk := Xx
σk

−Xy
σk

(k ≥ 0).

Then D = (Dk)k≥0 is a Markov process on Z that in each step jumps from z to
z + 1 or z − 1 with equal probabilities, except when it is in zero, which is a trap.
In other words, this says that D is a simple random walk stopped at the first time
it hits zero. By Lemma 0.17, there a.s. exists some (random) k ≥ 0 such that
Dk = 0 and hence τi = σk <∞ a.s.

As a corollary of Proposition 1.26, we obtain that all bounded harmonic functions
for nearest-neighbor random walk on the d-dimensional integer lattice are constant.
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Corollary 1.27 (Bounded harmonic functions are constant) Let P (x, y) =
(2d)−11{|x−y|1=1} be the transition kernel of nearest-neighbor random walk on the
d-dimensional integer lattice Zd. If h : Zd → R is bounded and satisfies Ph = h,
then h is constant.

Proof CoupleXx andXy as in Proposition 1.26. Since h is harmonic and bounded,
(h(Xx

k ))k≥0 and (h(Xy
k ))k≥0 are martingales. It follows that

h(x)− h(y) = E[h(Xx
k )]− E[h(Xy

k )]

= E[h(Xx
k )− h(Xy

k )] ≤ 2∥h∥∞P[Xx
k ̸= Xy

k ] −→
k→∞

0

for each x, y ∈ Zd, proving that h is constant.

Remark Actually, a much stronger statement than Corollary 1.27 is true: for
nearest-neighbor random walk on Zd, all nonnegative harmonic functions are con-
stant. This is called the strong Liouville property, see [Woe00, Corollary 25.5]. In
general, the problem of finding all positive harmonic functions for a Markov chain
leads to the (rather difficult) problem of determining the Martin boundary of a
Markov chain.

1.4 Convergence in total variation norm

In this section we turn our attention away from harmonic functions and instead
show another application of coupling. We will use coupling to give a proof of the
statement in Theorem 0.20 (stated without proof in the Introduction) that any
aperiodic, irreducible, positively recurrent Markov chain is ergodic, in the sense
that regardless of the initial state, its law at time n converges to the invariant law
as n→ ∞.

In these lecture notes, we define the total variation distance between two proba-
bility measures µ, ν on a countable set S as as

∥µ− ν∥TV := max
A⊂S

∣∣µ(A)− ν(A)
∣∣

In the literature, one finds two different definitions of the total variation distance,
which differ by a factor 2 (our definition being the smaller of the two). Both
definitions have their advantages and disadvantages. The following lemma gives
another formula for ∥ · ∥TV (according to our definition).
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Lemma 1.28 (Total variation distance) For any probability measures µ, ν on
a countable set S, one has

∥µ−ν∥TV =
∑

x:µ(x)≥ν(x)

(
µ(x)−ν(x)

)
=

∑
x:µ(x)<ν(x)

(
ν(x)−µ(x)

)
= 1

2

∑
x∈S

∣∣µ(x)−ν(x)∣∣.
Proof Set S> := {x ∈ S : µ(x) > ν(x)}, S= := {x ∈ S : µ(x) = ν(x)}, and
S< := {x ∈ S : µ(x) < ν(x)}. Define finite measures µ+, ν+ and ρ by

ρ(x) := µ(x) ∧ ν(x), µ+(x) := µ(x)− ρ(x), and ν+(x) := ν(x)− ρ(x).

Note that µ+ is concentrated on S> and ν+ is concentrated on S<. For any A ⊂ S,

µ(A)− ν(A) = µ+(A ∩ S>)− ν+(A ∩ S<).

It follows that
−ν+(S<) ≤ µ(A)− ν(A) ≤ µ+(S>)

where either inequality may be an equality for a suitable choice of A (A = S< or
A = S>, respectively). Here

µ+(S>) =
∑
x∈S>

(
µ(x)− ρ(x)

)
= 1−

∑
x∈S

ρ(x) = ν+(S<).

Lemma 1.29 (Coupling and total variation distance) Let S be a countable
set, and let X and Y be S-valued random variables with laws µ and ν respectively.
Then

∥µ− ν∥TV ≤ P[X ̸= Y ]. (1.2)

Moreover, given µ, ν, we can couple random variables X and Y with laws µ, ν such
that equality holds in (1.2).

Proof Formula (1.2) follows from the observation that for any A ⊂ S,

µ(A)=P[X ∈ A] = P[X ∈ A, Y ∈ A] + P[X ∈ A, Y ̸∈ A],

ν(A)=P[Y ∈ A] = P[X ∈ A, Y ∈ A] + P[X ̸∈ A, Y ∈ A].

Subtracting gives∣∣µ(A)− ν(A)
∣∣ ≤ P[X ∈ A, Y ̸∈ A or X ̸∈ A, Y ∈ A] ≤ P[X ̸= Y ].



1.4. CONVERGENCE IN TOTAL VARIATION NORM 43

To construct the desired coupling, using notation as in the previous proof, set
p := µ+(S>) = ν+(S<). Let X>, X<, X= be random variables such that

pP[X> = x] = µ+(x), pP[X< = x] = ν+(x), and (1− p)P[X= = x] = ρ(x)

(x ∈ S), and letB be an independent Bernoulli random variable with P[B = 1] = p.
Set

X :=

{
X> if B = 1,
X= if B = 0,

and Y :=

{
X< if B = 1,
X= if B = 0.

Then P[X = x] = pP[X> = x] + (1− p)P[X= = x] = µ+(x) + ρ(x) = µ(x) (x ∈ S)
and in the same way we see that Y has law ν. Since P[X ̸= Y ] = P[B = 1] = p =
∥µ− ν∥TV we see that equality holds in (1.2).

Remark Lemmas 1.28 and 1.29 can be generalized to probability measures µ, ν on
a fairly general measurable space (S,S). The only catch is that the event {X ̸= Y }
must be measurable with respect to the product-σ-algebra on S × S, which is not
true in complete generality. Assuming this is OK, however, one can proceed as
follows. Let S> := {x ∈ S : dµ/(dµ + dν) > 1

2
}, where dµ/(dµ + dν) denotes the

Radon-Nikodym derivative of µ with respect to µ+ ν, define S< similarly, and for
measurable A set

µ+(A) := µ(A ∩ S>)− ν(A ∩ S>), ν+(A) := ν(A ∩ S<)− µ(A ∩ S<),
and ρ(A) := µ(A)− µ+(A) = ν(A)− ν+(A).

Then the rest of Lemmas 1.28 and 1.29, including the proofs, are the same as for
countable spaces.

Theorem 1.30 (Convergence to invariant law) Let X be an irreducible, ape-
riodic, positively recurrent Markov chain with transition kernel P , state space S,
and invariant law µ. Then the process started in any initial law satisfies∥∥P[Xn ∈ ·]− µ

∥∥
TV

−→
n→∞

0.

ProofWe take the existence of an invariant law µ as proven. Uniqueness will follow
from our proof. Let X and X be two independent Markov chains with transition
kernel P , where X is started in an arbitrary initial law and P[X0 ∈ · ] = µ. It is
easy to see that the joint process (X,X) = (Xk, Xk)k≥0 is a Markov process with
state space S×S. Let us denote its transition kernel by P2, i.e., by independence,

P2

(
(x, x), (y, y)

)
= P (x, y)P (x, y) (x, x, y, y ∈ S).
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We claim that P2 is irreducible. Fix x, x, y, y ∈ S. Since P is irreducible and
aperiodic, it is not hard to see that there exists an m1 ≥ 1 such that P n(x, y) > 0
for all n ≥ m1. Likewise, there exists an m2 ≥ 1 such that P n(x, y) > 0 for all
n ≥ m2. Choosing n ≥ m1 ∨m2, we see that

P n
2

(
(x, x), (y, y)

)
= P n(x, y)P n(x, y) > 0,

proving that P2 is irreducible.

By Theorem 0.19 (a) and (b), an irreducible Markov chain is positively recurrent
if and only if it has an invariant law. Obviously, the product measure µ⊗ µ is an
invariant law for P2, so P2 is positively recurrent. In particular, this proves that
the stopping time

τ := inf{k ≥ 0 : Xk = Xk}

is a.s. finite and has, in fact, finite expectation. Let X ′ = (X ′
k)k≥0 be the process

defined by

X ′
k :=

{
Xk if k < τ,

Xk if k ≥ τ.

It is not hard to see that X ′ is a Markov chain with transition kernel P and initial
law P[X ′

0 ∈ · ] = P[X0 ∈ · ], hence X ′ is equal in law with X. Now by Lemma 1.29∥∥P[Xn ∈ · ]− µ
∥∥
TV

≤ P
[
X ′
k ̸= Xk

]
= P[k < τ ] −→

k→∞
0.

Exercise 1.31 (Periodic kernels) Show that the probability kernel P2 in the
proof of Theorem 1.30 is not irreducible if P is periodic.



Chapter 2

Positive eigenfunctions

2.1 Introduction

In the previous chapter, we have seen that positive solutions h to the equation
Ph = h are harmonic functions of the Markov chain with transition kernel P and
that they give us information about the limit behavior of a Markov chain as time
tends to infinity; e.g., they tell us in which trap a chain ends up or to which part of
the (Martin) boundary a transient Markov chain converges. Moreover, through the
Doob transform P (h)(x, y) := h(x)−1P (x, y)h(y) they give us information about
the process conditioned on some form of long-time behavior. Also we have seen
that functions f such that Pf = f − 1 tell us about the expected time before a
Markov chain gets trapped, which through Foster’s theorem yields necessary and
sufficient conditions for positive recurrence.

In the present chapter, we will look at positive eigenfunctions of P , i.e., solutions
of the equation Ph = ch. These will tell us, e.g., that in many situations a Markov
chain gets trapped exponentially fast. Through a generalized Doob transform,
such functions also give information about Markov chains conditioned not to get
trapped for a long time. For reasons that will become clear soon, it is useful to
generalize a bit and replace P by a general nonnegative matrix A = (A(x, y))x,y∈S
indexed by a countable set S. Here “nonnegative” means1 that A(x, y) ≥ 0 for all

1The statement that a matrix A is nonnegative should not be confused with the statement
that A is nonnegative definite. The latter concept, which is defined only for linear spaces that
are equipped with an inner product ⟨ϕ, ψ⟩, means that ⟨ϕ,Aϕ⟩ is real and nonnegative for all ϕ.
One can show that A is nonnegative definite if and only if there exists an orthonormal basis of
eigenvectors of A and all eigenvalues are nonnegative. Operators whose matrix is nonnegative

45
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x, y. We define irreducibility and aperiodicity of nonnegative matrices just as for
probability kernels, i.e., A is irreducible if ∀x, y ∃n s.t. An(x, y) > 0 and x ∈ S is
aperiodic if the greatest common divisor of {n ≥ 1 : An(x, x) > 0} is one.

2.2 The spectral radius

The following lemma was first proved by Kingman [Kin63]. The quantity ρ(A)
below is called the spectral radius of A. This name is motivated by the fact that if
S is finite, then ρ(A) = sup{|λ| : λ is a complex eigenvalue of A} (see Lemma A.1
in the appendix). This formula does not hold in general for infinite S, but we use
the name spectral radius regardless.

Lemma 2.1 (Spectral radius) Let A be a nonnegative matrix indexed by a
countable set S and let x ∈ S be aperiodic. Then the limit

ρ(A) := lim
n→∞

(
An(x, x)

)1/n
= sup

n≥1

(
An(x, x)

)1/n ∈ (0,∞] (2.1)

exists. Similarly, if x has period k, then

ρ(A) := lim
n→∞

(
Akn(x, x)

)1/kn
= sup

n≥1

(
Akn(x, x)

)1/kn ∈ (0,∞]. (2.2)

If A is irreducible, then the limit in (2.1) does not depend on x ∈ S.

The proof of Lemma 2.1 follows from a superadditivity argument. By definition,
a function f : N+ → R is subadditive if

f(n+m) ≤ f(n) + f(m) (n,m ≥ 1),

and superadditive if the reverse inequality holds, i.e., if −f is subadditive. The
following simple lemma has many applications. Proofs can be found in many
places, e.g. [Lig99, Thm B.22].

Lemma 2.2 (Fekete’s lemma) If f : N+ → [−∞,∞) is subadditive, then the
limit

lim
n→∞

1

n
f(n) = inf

n≥1

1

n
f(n)

exists in [−∞,∞). The same conclusion holds if f takes values in [−∞,∞] (with
the convention ∞−∞ = ∞) but {n ≥ 1 : f(n) = ∞} is finite.

w.r.t. some basis, by contrast, need not be diagonalizable and their eigenvalues can be negative
or even complex.
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Proof Note that we can always extend f to a subadditive function f : N → R by
setting f(0) = 0. Fix m ≥ 1 and for each n ≥ 0 write n = km(n)m+ rm(n) where
km(n) ≥ 0 and 0 ≤ rm(n) < m, i.e., km(n) is n/m rounded off to below and rm(n)
is the remainder. Setting sm := sup1≤r<m f(r), we see that

f(n)

n
=
f
(
km(n)m+ rm(n)

)
km(n)m+ rm(n)

≤ km(n)f(m) + sm
km(n)m

−→
n→∞

f(m)

m
,

which proves that

lim sup
n→∞

f(n)

n
≤ f(m)

m
(m ≥ 1).

Taking the infimum over m we conclude that

lim sup
n→∞

f(n)

n
≤ inf

m≥1

f(m)

m
.

This shows in particular that the limit superior is less or equal than the limit infe-
rior, hence the limit exists. Moreover, the limit (which equals the limit superior)
is given by the infimum. Since f takes values in [−∞,∞), the infimum is clearly
less than +∞. To see that we can allow f to take the value +∞ finitely often, it
suffices to note that this implies sm < ∞ for m sufficiently large and we need the
arguments above only for n,m sufficiently large.

Proof of Lemma 2.1 It suffices to prove the statement for aperiodic x. The
general statement then follows since if x has period k with respect to A, then x is
aperiodic with respect to Ak. Since

An+m(x, x) =
∑
y

An(x, y)Am(y, x) ≥ An(x, x)Am(x, x),

we see that the function n 7→ logAn(x, x) is superadditive or equivalently n 7→
− logAn(x, x) is subadditive. Here we allow for the case that An(x, x) = ∞ which
means − logAn(x, x) = −∞ and An(x, x) = 0 which means − logAn(x, x) =
+∞. After taking − log, the convention 0 · ∞ := 0 translates into the convention
∞ − ∞ = ∞. Since we are assuming that x ∈ S is aperiodic, An(x, x) = 0 for
finitely many n which means − logAn(x, x) = +∞ for finitely many n and hence
Fekete’s lemma is applicable and tells us that

lim
n→∞

1

n
logAn(x, x) = sup

n≥1

1

n
logAn(x, x) ∈ (−∞,∞].
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Taking exponentials, we see that the limit in (2.1) exists in (0,∞] and equals the
supremum.

Let ρx(A) := ρ(A) denote the limit in (2.1), which may in general depend on
x ∈ S. We observe that (2.1) says that

An(x, x) = en log ρx(A)− o(n) (n ≥ 1) with 0 ≤ o(n)/n −→
n→∞

0. (2.3)

If A is irreducible, then for every y ∈ S we can find k,m ≥ 1 such that Ak(y, x) > 0
and Am(x, y) > 0. Now the estimate

Ak+n+m(y, y) ≥ Ak(y, x)An(x, x)Am(x, y) (2.4)

shows that ρy(A) ≥ ρx(A), and reversing the roles of x and y we also obtain
ρx(A) ≥ ρy(A), so ρx(A) does not depend on x ∈ S.

Exercise 2.3 Let A be an irreducible nonnegative matrix and let f : S → (0,∞)
be a function such that Af ≤ Kf for some K <∞. Prove that ρ(A) ≤ K.

2.3 R-recurrence

Let A be a nonnegative matrix indexed by a countable set S and let h : S → (0,∞)
be a positive eigenfunction of A, i.e., Ah = ch for some c > 0. Then setting

P (x, y) := c−1h(x)−1A(x, y)h(y) (x, y ∈ S) (2.5)

defines a probability kernel on S. (Indeed,
∑

y P (x, y) = c−1h(x)−1Ah(x) = 1.)
Since this generalizes the Doob transform of Lemma 1.5, we call this a generalized
Doob transform. By definition, we say that an irreducible nonnegative matrix A
is R-recurrent2 if there exists a positive eigenfunction h and a positive constant c
such that (2.5) defines a recurrent probability kernel P . The following facts were
proved by David Vere-Jones [Ver62, Ver67].

2Originally, the letter R was mathematical notation for 1/ρ(A). This then gave rise to a
number of similar definitions such as r-recurrence (where r can be any real constant) [Ver67] and
λ-recurrence (which applies in a continuous time setting) [Kin63]. For us the ‘R’ in the words
R-transience, R-recurrence etc. will just be part of the name and not refer to any mathematical
constant.
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Theorem 2.4 (R-recurrence) An irreducible nonnegative matrix A is R-recur-
rent if and only if ρ(A) <∞ and

∞∑
n=1

ρ(A)−nAn(x, x) = ∞ (2.6)

for some, and hence for all x ∈ S. In this case, there exists a function h : S →
(0,∞), which is unique up to scalar multiples, and a unique constant c > 0, such
that (2.5) defines a recurrent probability kernel. Moreover, c = ρ(A).

We will not give a full proof of Theorem 2.4 although we will prove most of the
statements and we give a sketch of the proof of the remaining part in Section 2.7.
Here, we only prove that the condition (2.6) is necessary for R-recurrence. We
start with a preliminary lemma.

Lemma 2.5 (Spectral radius of probability kernels) If P is an irreducible
probability kernel, then ρ(P ) ≤ 1. If P is recurrent, then ρ(P ) = 1.

Proof Since P n(x, x) ≤ 1 for all n, it is clear from (2.1) that ρ(P ) ≤ 1. If ρ(P ) < 1,
then (2.3) shows that P n(x, x) tends to zero exponentially fast. In particular, this
shows that the expected number of returns to x,∑

n≥1

P n(x, x) (2.7)

is finite, which proves that P is transient. (Recall from Section 0.8 that the
expected number of returns to x is finite if and only if P is transient.)

Lemma 2.6 (Necessary conditions for R-recurrence)Let A be an irreducible
nonnegative matrix indexed by a countable set S. Assume that for some h : S →
(0,∞) and 0 < c < ∞, formula (2.5) defines a recurrent probability kernel. Then
c = ρ(A) and A satisfies (2.6).

Proof We observe that

P 2(x, z) =
∑
y

c−1h(x)−1A(x, y)h(y)c−1h(y)−1A(y, z)h(z)

= c−2h(x)−1An(x, z)h(z),
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and more generally (with A0 := I, the identity matrix)

P n(x, y) = c−nh(x)−1An(x, y)h(y) (n ≥ 0). (2.8)

In particular, P n(x, x) = c−nAn(x, x) and hence by (2.1)

ρ(P ) = c−1ρ(A).

Since P is recurrent, ρ(P ) = 1 by Lemma 2.5 and hence c = ρ(A). The fact that
P is recurrent moreover implies that the sum in (2.7) is infinite, which by the fact
that P n(x, x) = c−nAn(x, x) implies (2.6).

As a consequence of Theorem 2.4 we can also prove the following result.

Theorem 2.7 (Unique eigenfunction) Let A be an irreducible, R-recurrent
nonnegative matrix indexed by a countable set S. Then there exists a function
h : S → (0,∞), unique up to scalar multiples, such that Ah = ρ(A)h.

Proof Since A is R-recurrent, there exists a function h : S → (0,∞) and a
constant c > 0 such that (2.5) defines a recurrent probability kernel P . Since P
is a probability kernel,

∑
y P (x, y) = Ah(x)/ch(x) = 1 (x ∈ S) which shows that

Ah = ch. By Lemma 2.6, c = ρ(A). This proves existence of h; we are left with
the task of showing uniqueness.

Let A†(x, y) := A(y, x) (x, y ∈ S ′) denote the adjoint of A. We observe from (2.1)
that

ρ(A†) = ρ(A).

Combining this with (2.6) we see that A† is R-recurrent if and only if A is R-
recurrent. In view of this, by our previous arguments, there exists a function
η : S → (0,∞) such that

ηA = ρ(A)η. (2.9)

Instead of showing uniqueness up to scalar multiples of positive solutions to the
equation Ah = ρ(A)h, we can alternatively show uniqueness up to scalar multiples
of positive solutions to the equation ηA = ρ(A)η. (Applying this to A† then also
gives the result for h.)

We claim that (2.9) implies that µ(x) := η(x)h(x) (x ∈ S) is an invariant measure
for the Markov chain with transition kernel P as in (2.5). Indeed,

µP (y) =
∑
x

µ(x)P (x, y) =
∑
x

η(x)h(x)ρ(A)−1h(x)−1A(x, y)h(y)

= ρ(A)−1(ηA)(y)h(y) = η(y)h(y).
(2.10)
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Since P is recurrent, by Theorem 0.21, its invariant measure is up to scalar mul-
tiples unique and hence the same is true for η.

Exercise 2.8 Improve Theorem 2.7 by showing that if A is an irreducible, R-
recurrent nonnegative matrix indexed by a countable set S and f : S → [0,∞)
satisfies Af ≤ ρ(A)f , then f = rh for some r ≥ 0, where h is the function from
Theorem 2.7.

Remark Exercise 2.8 implies that if A is an irreducible, R-recurrent nonnegative
matrix indexed by a countable set S, and Ah = ch for some function h : S → (0,∞)
and c > 0, then3 c ≥ ρ(A). If S is finite, then the Perron-Frobenius theorem
(Theorem 2.15 below) shows that in fact c = ρ(A), but for infinite matrices there
may exist4 positive eigenfunctions with eigenvalues c > ρ(A). In this case, (2.5)
still defines a probability kernel, but P is not recurrent. Note that in view of this,
the fact that ρ(A) is called the “spectral radius” is somewhat misleading.

An irreducible nonnegative matrix A that is not R-recurrent is called R-transient.
Warning: it is possible for a transient probability kernel to be R-recurrent (see
Exercise 2.29 below). If A is R-recurrent, then Theorem 2.4 says that there exist a
unique c > 0 and a function h : S → (0,∞) that is unique up to scalar multiples,
such that (2.5) defines a recurrent probability kernel P . Since multiplying h by
a scalar has no effect on P , this means in particular that such a recurrent P is
unique. We call A R-positive if P is positive recurrent and R-null recurrent if P
is null recurrent.

We conclude the present section with one more definition and lemma.

Lemma 2.9 (Positive recurrence) Let A be an irreducible, aperiodic nonnega-
tive matrix indexed by a countable set S. Let x ∈ S and assume that ρ(A) < ∞.
Then the limit

lim
n→∞

ρ(A)−nAn(x, x) (2.11)

exists in [0,∞) and A is R-positive if and only if this limit is > 0. Similarly, if A
has period k, then the limit limn→∞ ρ(A)−knAkn(x, x) exists and A is R-positive if
and only if this limit is positive.

3Indeed, the exercise shows that if Ah = ch with c ≤ ρ(A), then Ah = ρ(A)h and hence
c = ρ(A).

4An example is the probability kernel Pp from Exercise 2.29. Of course, the constant function
f ≡ 1 is an eigenfunction of this probability kernel with eigenvalue 1. If you solve the exercise,
then you will see that ρ(Pp) < 1 for all 0 < p < 1 with p ̸= 1

2 .
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Proof If A is not R-recurrent, then Theorem 2.4 says that
∑∞

n=1 ρ(A)
−nAn(x, x) <

∞ and hence ρ(A)−nAn(x, x) → 0, so we can without loss of generality assume
that A is R-recurrent.

Now Lemma 2.6 and (2.8) tell us that ρ(A)−nAn(x, x) = P n(x, x). If P is null
recurrent, then limn→∞ P n(x, x) = 0 by Lemma 0.18, and if P is positive recurrent,
then Theorem 0.20 tells us that limn→∞ P kn(x, x) = µ(x), where µ is the invariant
law of P k which satisfies µ(x) > 0 by Theorem 0.19.

Exercise 2.10 Let A be an irreducible nonnegative matrix indexed by a countable
set S. Assume that ρ(A) <∞. Prove that A is R-positive if and only if there exist
functions η : S → (0,∞) and h : S → (0,∞) such that ηA = ρ(A)η, Ah = ρ(A)h,
and ∑

x

η(x)h(x) <∞.

Hint: formula (2.10).

We postpone the proof of the remaining, deeper statements of Theorem 2.4 for a
while and in the next section first look at some motivating applications.

2.4 Conditioning to stay inside a set

LetX be a Markov chain with countable state space S and transition kernel P . For
any S ′ ⊂ S, we let P |S′ := (P (x, y))x,y∈S′ denote the restriction of P to S ′. Note
that P |S′ is in general not a probability kernel, but it is a subprobability kernel,
i.e.,

∑
y∈S′ P |S′(x, y) ≤ 1 for all x ∈ S ′. In particular, Q := P |S′ is a nonnegative

matrix. We will be interested in the case that Q is irreducible and R-positive.

Let Q†(x, y) := Q(y, x) (x, y ∈ S) denote the adjoint of Q. As we observed in the
proof of Theorem 2.7, ρ(Q) = ρ(Q†), and therefore by Lemma 2.9 Q† is R-positive
as well. Applying Theorem 2.7, we see that there exist functions η : S ′ → (0,∞)
and h : S ′ → (0,∞), unique up to scalar multiples, such that

ηQ = ρ(Q)η and Qh = ρ(Q)h. (2.12)

By the definition of R-positivity,

Q(h)(x, y) := ρ(Q)−1h(x)−1Q(x, y)h(y) (x, y ∈ S ′) (2.13)
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defines a positive recurrent probability kernel on S ′. Note that Q(h) is irreducible
since Q is. By the calculation in (2.10),

π(x) := η(x)h(x) (x ∈ S ′) (2.14)

is an invariant measure for Q(h). By Theorem 0.21 and the fact that Q(h) is positive
recurrent, π is up to a scalar multiple equal to the unique invariant law of Q(h).
In view of this we normalize η and h such that∑

x∈S′

η(x)h(x) = 1, (2.15)

which guarantees that π in (2.14) is the invariant law of Q(h).

Theorem 2.11 (Process conditioned not to leave a set - first version) Let
X be a Markov chain with countable state space S and transition kernel P , and let
S ′ ⊂ S. Assume that Q := P

∣∣
S′ is irreducible, aperiodic, and R-positive. Let η, h

as in (2.12) be positive left and right eigenfunctions of Q with eigenvalue ρ(Q),
normalized as in (2.15). Set

τ := inf
{
k ≥ 0 : Xk ̸∈ S ′}.

Then, for each m ≥ 1 and x, z ∈ S ′,

Px
[
(Xk)0≤k≤m ∈ ·

∣∣n < τ, Xn = z
]
=⇒
n→∞

Px
[
(Xh

k )0≤k≤m ∈ ·
]
, (2.16)

where Xh denotes the Markov chain with state space S ′ and Doob transformed
transition kernel Q(h) defined in (2.13). If Q is periodic, then (2.16) remains true
provided we restrict ourselves to those values of n for which Qn(x, z) > 0.

Proof Fix 0 ≤ m < n such that Qn(x, z) > 0 and x0, . . . , xm+1 ∈ S ′ such that
Px0

[
(X0, . . . , Xm) = (x0, . . . , xm), n < τ, Xn = z

]
> 0. Then

Px0
[
Xm+1 = xm+1

∣∣ (X0, . . . , Xm) = (x0, . . . , xm), n < τ, Xn = z
]

=
P[(X0, . . . , Xm+1) = (x0, . . . , xm+1), n < τ, Xn = z]

P[(X0, . . . , Xm) = (x0, . . . , xm), n < τ, Xn = z]

=

∏m+1
k=1 P (xk−1, xk) ·Qn−(m+1)(xm+1, z)∏m

k=1 P (xk−1, xk) ·Qn−m(xm, z)

=
P (xm, xm+1)Q

n−(m+1)(xm+1, z)

Qn−m(xm, z)
.
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This shows that under the conditional law given the event {n < τ, Xn = z},
the process (X0, . . . , Xn) is a time-inhomogeneous Markov chain whose transition
kernel in the (m+ 1)-th step is given by

P
(n)
m,m+1(x, y) :=

P (x, y)Qn−m−1(y, z)

Qn−m(x, z)
. (2.17)

We observe that (recall (2.8)

Qn(x, y) = ρ(Q)nh(x)(Q(h))n(x, y)h(y)−1 (x, y ∈ S ′).

Since Q(h) is positively recurrent with invariant law π(x) = η(x)h(x) as in (2.14),
in the aperiodic case, it follows from Theorem 0.20 that

ρ(Q)−nQn(x, y) −→
n→∞

h(x)η(y) (x, y ∈ S ′). (2.18)

Inserting this into (2.17) yields

P
(n)
m,m+1(x, y) =

P (x, y)ρ(Q)−(n−m−1)Qn−m−1(y, z)

ρ(Q)−(n−m−1)Qn−m(x, z)

−→
n→∞

P (x, y)h(y)η(z)

ρ(Q)h(x)η(z)
= Q(h)(x, y).

(2.19)

If Q has period k, then (2.18) changes in the sense that we must restrict ourselves
to those values of n for which Qn(x, y) > 0 and we pick up an extra factor k on
the right-hand side. This yields extra factors k in the nominator and denominator
of (2.19), which cancel, and the result is the same.

Remark 1 If A is a nonnegative matrix indexed by a countable set S, and 0 <
An(x, y) < ∞ for some x, y ∈ S and n ≥ 1, then we can define a probability
measure µA,nx,y on the space of all sequences (x0, . . . , xn) of elements of S by setting

µA,nx,y (x0, . . . , xn) :=
1

An(x, y)
1{x0=x, xn=y}

n∏
k=1

A(xk−1, xk). (2.20)

Such a measure is called a one-dimensional Gibbs measure with transfer matrix A
and boundary conditions x, y. The proof of Theorem 2.11 shows more generally
that if A is irreducible and R-positive, then for fixed x, y ∈ S, the Gibbs measures
µA,nx,y converge as n → ∞ to the law of the Markov chain with transition kernel P
as in (2.5) and initial state x.
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Remark 2 If S ′′ ⊂ S ′ is a finite set, then since (2.16) holds for all z ∈ S ′′, we also
obtain that

Px
[
(Xk)0≤k≤m ∈ ·

∣∣n < τ, Xn ∈ S ′′] =⇒
n→∞

Px
[
(Xh

k )0≤k≤m ∈ ·
]
.

In particular, if S ′ is finite, then it suffices to condition only on the event that
{n < τ}. In the next section, we will moreover see that if S ′ is finite, then P

∣∣
S′ is

automatically R-positive.

2.5 The Perron-Frobenius theorem

In this section, we prove the following fact.

Proposition 2.12 (Finite matrices) Let A be an irreducible nonnegative matrix
indexed by a finite set S. Then A is R-positive.

Proof It suffices to prove thatA is R-recurrent, because then there exists a function
h : S → (0,∞), unique up to scalar multiples, and a unique constant c > 0 such
that formula (2.5) defines a recurrent probability kernel on S. Since S is finite, it
then automatically follows that P is positive recurrent and hence A is R-positive.
In view of this, it suffices to check condition (2.6) of Theorem 2.4. If A has period
k, then A satisfies (2.6) if and only if Ak satisfies (2.6), so without loss of generality
we may assume that A is aperiodic.

We let CS denote the linear space consisting of all functions f : S → C. Through
the formula Af(x) :=

∑
y A(x, y)f(y), the matrix A defines a linear operator

A : CS → CS. Let ∥ · ∥ be any norm on CS and let ∥A∥ denote the associated
operator norm of A, i.e., ∥A∥ is the smallest constant such that

∥Af∥ ≤ ∥A∥ ∥f∥ ∀f ∈ CS.

It follows that ∥ABf∥ ≤ ∥A∥ ∥B∥ ∥f∥, which in turn shows that

∥AB∥ ≤ ∥A∥ ∥B∥. (2.21)

It follows that the map n 7→ log ∥An∥ is subadditive, and hence Fekete’s lemma
(Lemma 2.2) tells us that the limit

ρ̃(A) := lim
n→∞

∥An∥1/n = inf
n≥1

∥An∥1/n ∈ [−∞,∞). (2.22)
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exists, or equivalently (compare (2.3)), that

∥An∥ = en log ρ̃(A) + o(n) (n ≥ 1) with 0 ≤ o(n)/n −→
n→∞

0. (2.23)

Note that since n 7→ log ∥An∥ is subadditive while n 7→ logAn(x, x) is superad-
ditive, the error term here is positive while in (2.3) it is negative. We claim that
ρ̃(A) = ρ(A). It actually does not matter which operator norm we use (Exer-
cise 2.13 below) but for concreteness let us take the operator norm associated with
the supremumnorm on CS. Then Exercise 2.14 below tells us that

∥An∥ = sup
y

∑
z

An(y, z).

This immediately implies that An(x, x) ≤ ∥An∥. Since A is irreducible and ape-
riodic and S is finite, we can choose some m ≥ 1 such that Am(y, z) > 0 for all
y, z ∈ S. Set ε := infy,z A

m(y, z). Then

An+2m(x, x) ≥ Am(x, y)An(y, z)Am(z, x) ≥ ε2An(y, z),

and hence
An(x, x) ≤ ∥An∥ ≤ |S|ε−2An+2m(x, x), (2.24)

which shows that

log ρ(A) = lim
n→∞

n−1 logAn(x, x)

≤ log ρ̃(A) ≤ lim
n→∞

n−1 log
(
|S|ε−2An+2m(x, x)

)
= log ρ(A).

It now follows from (2.24) and (2.23) that∑
n≥1

ρ(A)−nAn(x, x) ≥ |S|−1ε2
∑
n≥2m

ρ(A)−n∥An−2m∥

≥ |S|−1ε2
∑
n≥2m

ρ(A)−nρ(A)n−2m = ∞,

which shows that condition (2.6) of Theorem 2.4 is satisfied.

Exercise 2.13 (Choice of the norm) Show that the limit ρ̃(A) from (2.22) does
not depend on the choice of the norm on CS. Hint: you can use the fact that on a
finite-dimensional space, all norms are equivalent. In particular, if ∥ · ∥ and ∥ · ∥′
are two different norms on the space of matrixes indexed by S, then there exist
constants 0 < c < C <∞ such that c∥A∥ ≤ ∥A∥′ ≤ C∥A∥ for all A.
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Exercise 2.14 (Operator norm induced by supremumnorm) If ∥ · ∥∞ de-
notes the supremumnorm on CS, then show that the associated operator norm of
a complex matrix (A(x, y))x,y∈S is given by

∥A∥∞ = sup
x∈S

∑
y∈S

|A(x, y)|.

As a corollary of Theorem 2.4 and Proposition 2.12, we obtain the following version
of the Perron-Frobenius theorem. This theorem was first proved in [Per07, Fro12],
at around the same time when Markov chains were introduced [Mar06], although
the link between the two subjects was discovered only much later. See [Gan00,
Section 8.3] or [Sen73, Chapter 1] for a modern statement of the Perron-Frobenius
theorem.

Theorem 2.15 (Perron-Frobenius) Let A be a irreducible nonnegative matrix
indexed by a finite set S. Then there exists a function h : S → (0,∞), unique up
to scalar multiples, and a unique constant c > 0 such that Ah = ch.

Proof By Proposition 2.12, A is R-positive, so by Theorem 2.4, there exist a
function h : S → (0,∞), unique up to scalar multiples, and a unique constant c > 0
such that formula (2.5) defines a recurrent probability kernel. Imagine that h′ :
S → (0,∞) and c′ > 0 satisfy Ah′ = c′h. Then formula (2.5) defines a probability
kernel P . Since S is finite, P is positive recurrent and hence Theorem 2.4 tells us
that c′ = c and h′ = rh for some r > 0.

Remark In view of Proposition 2.12, we can think of Theorem 2.4 as an infinite-
dimensional generalization of the Perron-Frobenius theorem. Another way to gen-
eralize the Perron-Frobenius theorem to infinite dimensions is to view A as a linear
operator acting on a Banach space of functions f : S → C and then use (2.22) as
a starting point. This approach works even for uncountable spaces; a well-known
result in this direction is the Krein-Rutman theorem [KR48].

2.6 Quasi-stationary laws

The following theorem removes the condition Xn = z from the conditional prob-
ability in (2.16), at the cost of introducing the condition (2.25). Note that if S ′

is finite, then (2.25) is automatically satisfied while P
∣∣
S′ is R-positive by Proposi-

tion 2.12.
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Theorem 2.16 (Process conditioned not to leave a set - second version)
Let X be a Markov chain with countable state space S and transition kernel P ,
and let S ′ ⊂ S. Assume that Q := P

∣∣
S′ is irreducible and R-positive. Let η, h as in

(2.12) be positive left and right eigenfunctions of Q with eigenvalue ρ(Q). Assume
that

inf
x∈S′

h(x) > 0. (2.25)

Then η and h can be normalized such that∑
x∈S′

η(x) = 1 and
∑
x∈S′

η(x)h(x) = 1. (2.26)

Set
τ := inf

{
k ≥ 0 : Xk ̸∈ S ′}.

Then, for each m ≥ 1 and x ∈ S ′,

Px
[
(Xk)0≤k≤m ∈ ·

∣∣n < τ
]
=⇒
n→∞

Px
[
(Xh

k )0≤k≤m ∈ ·
]
, (2.27)

where Xh denotes the Markov chain with state space S ′ and Doob transformed
transition kernel Q(h) defined in (2.13).

Proof It has already been shown in (2.15) that we can normalize η and h such
that

∑
x∈S′ η(x)h(x) = 1. Let 1 denote the function on S ′ that is constantly one.

Arguing as in the proof of Theorem 2.11, we see that conditional on the event
{n < τ}, the process (X0, . . . , Xn) is a time-inhomogeneous Markov chain whose
transition kernel in the (m+ 1)-th step is given by

P
(n)
m,m+1(x, y) :=

P (x, y)Qn−m−11(y)

Qn−m1(x)
. (2.28)

Here
Qn1(x) =

∑
y∈S′

Qn(x, y) =
∑
y∈S′

ρ(Q)nh(x)(Q(h))n(x, y)h(y)−1.

Condition (2.25) guarantees that h−1 is a bounded function. Combining this with
Theorem 0.20, it follows that∑

y∈S′

(Q(h))n(x, y)h(y)−1 −→
n→∞

∑
y∈S′

π(y)h(y)−1,

where π(y) = η(y)h(y) as in (2.14) is the invariant law of Q(h). It follows that

ρ(Q)−nQn1(x) −→
n→∞

h(x)
∑
y∈S′

π(y)h(y)−1 = h(x)
∑
y∈S′

η(y).
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In particular,
∑

y∈S′ η(y) is finite so we can normalize η and h as in (2.26) and
with this convention

ρ(Q)−nQn1(x) −→
n→∞

h(x). (2.29)

Inserting this into (2.28), the rest of the proof goes in the same way as the proof
of Theorem 2.11.

The proof of Theorem 2.16 yields the following corollary, which gives a nice inter-
pretation to the right eigenfunction h.

Corollary 2.17 (Asymptotical probability to stay in a set) Under the con-
ditions of Theorem 2.16, for each x ∈ S ′,

ρ(Q)−nPx[τ > n] −→
n→∞

h(x) (x ∈ S).

Proof This is just another way to write (2.29).

The left eigenvector η also has a nice interpretation. Let X be a Markov chain with
countable state space S and transition kernel P , and let S ′ ⊂ S. By definition, we
say that a probability measure χ on S ′ is a quasi-stationary law5 of P on S ′ if

P[X0 ∈ · ] = χ implies P[X1 ∈ · |X1 ∈ S ′] = χ.

It seems that quasi-stationary laws were first introduced by Darroch and Seneta
in [DS67].

Corollary 2.18 (Convergence to quasi-stationary law) Under the conditions
of Theorem 2.16, η is a quasi-stationary law of X on S ′. Moreover, for each x ∈ S ′,

Px
[
Xn = y

∣∣ τ > n
]
−→
n→∞

η(y) (x, y ∈ S).

Proof Let X be the process started in some initial law µ0 on S ′ and define finite
measures µn on S ′ by

µn(y) := P[Xn = y, n < τ ] (y ∈ S ′, n ≥ 0).

5Usually, the terms ‘stationary law’ and ‘invariant law’ can be used exchangeably. In this case,
this may lead to confusion, however, since the term ‘quasi-invariant measure’ is normally used in
ergodic theory for a measure that is mapped into an equivalent measure by some transformation.



60 CHAPTER 2. POSITIVE EIGENFUNCTIONS

Then

µn+1(y) = P[Xn+1 = y, n+ 1 < τ ] =
∑
z∈S′

P[Xn = z, n < τ ]Q(z, y) = µnQ(y)

(y ∈ S ′), i.e., µn+1 = µnQ. In particular, µ0 is a quasi-stationary law if and only
if µ0Q = cµ0 for some c > 0.

In the special case that X0 = x, we see that

µn(y) = Qn(x, y) = ρ(Q)nh(x)(Q(h))n(x, y)h(y)−1

and

Px
[
Xn = y

∣∣ τ > n
]
=

µn(y)∑
z∈S′ µn(z)

=
ρ(Q)nh(x)(Q(h))n(x, y)h(y)−1

ρ(Q)nh(x)
∑

z(Q
(h))n(x, z)h(z)−1

.

By Theorem 0.20, (Q(h))n(x, y) → π(y) = η(y)h(y) (y ∈ S ′) as n → ∞, so using
the fact that h−1 is a bounded function because of (2.25), we see that

Px
[
Xn = y

∣∣ τ > n
]
=

(Q(h))n(x, y)h(y)−1∑
z(Q

(h))n(x, z)h(z)−1
−→
n→∞

η(y)∑
z η(z)

= η(y) (y ∈ S ′).

for all y ∈ S ′.

Remark In the proof of Corollary 2.18, we have seen that a probability measure ν
on S ′ is a quasi-stationary law if and only if ν is a positive left eigenvector of Q. If
S ′ is finite, then the Perron-Frobenius Theorem (Theorem 2.15) tells us that such a
positive left eigenvector is unique (if we normalize it to get a probability measure).
In general, we can invoke Theorem 2.7 to conclude that η is the unique quasi-
stationary law with the additional property that ηQ = ρ(Q)η. It is not so easy,
however, to rule out the possibility that there could exist another quasi-stationary
law ν with νQ = cν for some c > ρ(Q).

Exercise 2.19 (Behavior at typical times) Let 0 ≤ mn ≤ n be such that
mn → ∞ and n−mn → ∞ as n→ ∞. Show that for any x ∈ S ′,

Px
[
Xmn ∈ ·

∣∣n < τ
]
=⇒
n→∞

π,

where π(y) = η(y)h(y) is the invariant law of the Doob transformed probability
kernel Q(h).

Excercise 2.19 shows that conditional on the unlikely event that n < τ where n
is large, most of the time up to n, the process X is approximately distributed
according to the invariant law π(y) = η(y)h(y). Corollary 2.18 shows that at the
time n, the situation is different.
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2.7 Sketch of the proof of the main theorem

In this section, we give the proof of Theorem 2.4. We need one preparatory lemma.

Lemma 2.20 (Speed of growth) Let A be an irreducible aperiodic nonnegative
matrix indexed by a countable set S and let ρ(A) ∈ (0,∞] denote its spectral radius.
Then

lim
n→∞

(
An(x, y)

)1/n
= ρ(A) (x, y ∈ S). (2.30)

If A is periodic, then (2.30) remains true provided we restrict ourselves to those
values of n for which An(x, y) > 0.

Proof In the special case x = y this follows from Lemma 2.1. By irreducibility,
for each x, y ∈ S there exist k,m ≥ 1 such that Ak(x, y) > 0 and Am(y, x) > 0.
Then

lim inf
n→∞

1

n
logAn(x, y) ≥ lim inf

n→∞

1

n
log

(
An−k(x, x)Ak(x, y)

)
= lim

n→∞

1

n
logAn−k(x, x) = ρ(A)

and

lim sup
n→∞

1

n
logAn(x, y) = lim sup

n→∞

1

n
log

(
An(x, y)Am(y, x)

)
≤ lim

n→∞

1

n
logAn+m(x, x) = ρ(A).

The most difficult part of Theorem 2.4 is the following proposition.

Proposition 2.21 (Existence of an eigenfunction) Let A be an irreducible
nonnegative matrix such that ρ(A) < ∞ and (2.6) holds. Then there exists a
function h : S → (0,∞) such that Ah = ρ(A)h.

We first show how this implies what we want.

Proof of Theorem 2.4 By Lemma 2.6, condition (2.6) is necessary for R-
recurrence. Conversely, by Proposition 2.21, condition (2.6) implies the existence
of a function h : S → (0,∞) such that Ah = ρ(A)h. It follows that

P (x, y) := ρ(A)−1h(x)−1A(x, y)h(y) (x, y ∈ S) (2.31)
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defines a probability kernel P . In view of (2.8)

∞∑
n=0

P n(x, x) =
∞∑
n=0

ρ(A)−nAn(x, x)

which is ∞ by our assumption (2.6), showing that P is recurrent. This proves that
A is R-recurrent. Imagine that for some function f : S → (0,∞) and constant
c > 0, setting

Q(x, y) := c−1f(x)−1A(x, y)f(y) (x, y ∈ S)

also defines a recurrent probability kernel. Then c = ρ(A) by Lemma 2.6 and hence
Af = ρ(A)f since Q is a probability kernel. A careful inspection of the proof of
Theorem 2.7 shows that although we have used Theorem 2.4 in that proof, all that
we really needed was Proposition 2.21 which guarantees the existence of left and
right eigenvectors η and h with eigenvalue ρ(A) = ρ(A†), as well as the fact that
the kernel in (2.31) is recurrent.

Proof of Proposition 2.21 (sketch) For each λ ≥ 0, we define aGreen’s function
Gλ by

Gλ(x, y) :=
∞∑
n=0

λnAn(x, y).

It follows from Lemma 2.20 that Gλ(x, y) < ∞ for all x, y as long as λρ(A) < 1.
We observe that

AGλ(x, z) =
∑
y

A(x, y)
∞∑
n=0

λnAn(y, z) =
∞∑
n=0

λn
∑
y

A(x, y)An(y, z)

=
∞∑
n=0

λnAn+1(x, z) = λ−1Gλ(x, z)− 1{x=z}.

(2.32)

Pick some reference point z ∈ S and define hλ : S → (0,∞) by

hλ(x) :=
Gλ(x, z)

Gλ(z, z)
(x ∈ S).

Then, for each λ < ρ(A)−1,

Ahλ(x) = λ−1hλ(x)−Gλ(z, z)
−11{x=z} (x ∈ S). (2.33)
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It follows from monotone convergence and (2.6) that

lim
λ↑ρ(A)−1

Gλ(z, z) = lim
λ↑ρ(A)−1

∞∑
n=0

λnAn(x, y) =
∞∑
n=0

ρ(A)−nAn(x, y) = ∞. (2.34)

In view of this, we may expect that letting λ ↑ ρ(A)−1 in (2.33), the function hλ
converges to a function h such that Ah = ρ(A)h.

If S is finite, then this last step can be made rigorous in a straightforward manner
(Exercise 2.22 below), but if S is infinite the only proofs I know are quite compli-
cated. Proposition 2.21 follows from [Ver67, Thm 4.1], which is also treated in the
books [Sen81, Woe00] (with basically the same proof). Below, I sketch a somewhat
different proof (as yet unpublished, but I can give the details on request).

For each λ < ρ(A)−1, set

Pλ(x, y) := λhλ(x)
−1A(x, y)hλ(y) (x, y ∈ S)

By (2.32),∑
y

Pλ(x, y) = λGλ(x, z)
−1AGλ(x, z) = 1− λGλ(z, z)

−11{x=z} =: 1− pλ1{x=z}

which shows that Pλ is a subprobability kernel on S. By definition, an excursion
away from z is a finite sequence (x0, . . . , xn) such that x0 = z = xn and xk ̸= z for
all 0 < k < n. For each λ ≤ ρ(A)−1, we define a measure νλ on the space Γz of
excursions away from z by

νλ(x0, . . . , xn) := λn
n∏
k=1

A(xk−1, xk).

One can prove that νλ(Γz) = 1− pλ for λ < ρ(A)−1 and the subprobability kernel
Pλ corresponds to a Markov chain with killing at z, where after each visit to z
either the chain makes with probability 1−pλ an excursion away from z according
to the subprobability measure νλ, or is killed with the remaining probability pλ.

It follows from (2.34) that pλ → 0 as λ ↑ ρ(A)−1. Therefore, ν := νρ(A)−1 is
a probability measure on Γz. One can check that the process that makes i.i.d.
excursions away from z with law ν is a recurrent Markov chain with some transition
kernel P . Using notation as in (2.20), it is easy to see from the definition of ν that

µA,nz,z = µP,nz,z
(
z ≥ 1, An(z, z) > 0

)
,
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i.e., A and P , viewed as transfer matrices, define the same Gibbs measures. It can
be show that this implies that A and P must be related as in (2.5) for some h : S →
(0,∞) and c > 0. For strictly positive matrices this is proved in [Geo88, Remark
(11.4)]; with some care the argument can be adapted to irreducible nonnegative
matrices. Since P is recurrent, Lemma 2.6 implies that c = ρ(A) and now (2.5)
implies that Ah = ρ(A)h.

The proof of [Ver67, Thm 4.1] is at first sight different from the proof we have just
sketched, since it is formulated entirely in terms of functions that are defined on
the set S. On closer inspection, however, these functions are closely related to the
excursions that played such an important role in our proof, so on a deeper level
both proofs are probably similar.

Exercise 2.22 (Compactness argument) Prove that if S is finite, then there
exist λn ↑ ρ(A)−1 such that the functions hλn from (2.33) converge to a function h :
S → (0,∞) satisfyingAh = ρ(A)h. Note that toghether with what we have already
proved, this completes the proof of the Perron-Frobenius theorem (Theorem 2.15).
Hint: first show convergence to a function h : S → [0,∞] satisfying Ah = ρ(A)h
and then show that h takes values in (0,∞).

2.8 Further results

Let X be a Markov chain with countable state space S and transition kernel P .
Let σx := inf{k ≥ 1 : Xk = x} denote the first return time to a point x ∈ S. Let
us say that a point x ∈ S is strongly positive recurrent if

Ex
[
eεσx

]
<∞ for some ε > 0.

It is known [Ken59] that strong positive recurrence is a class property, i.e., if one
point in a communicating class is strongly positive recurrent then the same is true
for all points in this communicating class. In the aperiodic case, strong positive
recurrence is equivalent to exponentially fast convergence to the invariant law; it is
then said that the Markov chainn is geometrically ergodic. If x is positive recurrent
but not strongly so, then we say that x is weakly positive recurrent. Recall that
by Theorem 2.4, if A is an R-recurrent irreducible nonnegative matrix, then there
exists a unique recurrent probability kernel P that is related to A as in (2.5). We
say that A is strongly R-positive resp. weakly R-positive if P is strongly or weakly
positive recurrent respectively.
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In general, it is not easy to verify conditions (2.6) or (2.11) to check that a given
nonnegative matrix A is R-recurrent or R-positive, respectively. In our proof that
finite matrices are R-positive (Proposition 2.12) we used a subadditivity argument.
Such arguments sometimes work in an infinite dimensional setting as well. The
following theorem, which we cite from [Swa17] without proof, gives necessary and
sufficient conditions for strong R-positivity.

Theorem 2.23 (Strong R-positivity) Let A be an irreducible nonnegative ma-
trice indexed by a countable set S. Let B ≤ A be another nonnegative matrix such
that B(x, y) > 0 if and only if A(x, y) > 0, B ̸= A, and {(x, y) : B(x, y) ̸= A(x, y)}
is finite. Then A is strongly R-positive if and only if ρ(B) < ρ(A).

In words, Theorem 2.23 says that A is strongly R-positive if and only if lowering the
value of finitely many entries of the matrix lowers its spectral radius. This reduces
the problem of proving R-positivity to finding good upper and lower bounds on
the spectral radii of two matrices. We note that upper bounds can be obtained
with Exercise 2.3.

We conclude this chapter with two lemmas and a series of exercises. We extend our
definition of the spectral radius to nonnegative matrices A that are not necessarily
irreducible by putting

ρ(A) := sup
x∈S

sup
n≥1

(
An(x, x)

)1/n
. (2.35)

In view of Lemma 2.1, this coincides with our previous definition if A is irreducible.
(Note that this is true even in the periodic case.)

Lemma 2.24 (Lower semi-continuity of the spectral radius) The function
A 7→ ρ(A) is lower semi-continuous with respect to pointwise convergence, i.e., if
S is a countable set and Am, A are nonnegative matrices indexed by S such that
limm→∞Am(x, y) = A(x, y) for all x, y ∈ S, then

lim inf
m→∞

ρ(Am) ≥ ρ(A).

Proof It is well-known that the supremum of a collection of lower semi-continuous
functions is again lower semi-continuous. Therefore, in view of (2.35), it suffices to

prove that for fixed x and n, the map A 7→
(
An(x, x)

)1/n
is lower semi-continuous.

Equivalently, we can show that A 7→ An(x, x) is lower semi-continuous. Let Ωx,x
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denote the space of all sequences (x0, . . . , xn) ∈ Sn+1 such that x0 = x = xn. Then
we can write, using Fatou’s lemma,

lim inf
m→∞

Anm(x, x)

= lim inf
m→∞

∑
(x0,...,xn)∈Ωx,x

n∏
k=1

Am(xk−1, xk) ≥
∑

(x0,...,xn)∈Ωx,x

n∏
k=1

A(xk−1, xk).

Lemma 2.25 (Increasing limits) The function A 7→ ρ(A) is continuous with
respect to increasing sequences, i.e., if A1 ≤ A2 ≤ · · · are nonnegative matrices
indexed by a countable set S and A(x, y) := limm→∞Am(x, y) = A(x, y) (x, y ∈ S),
then

lim
m→∞

ρ(Am) = ρ(A).

Proof Lemma 2.24 implies that lim infm→∞ ρ(Am) ≥ ρ(A). Since Am ≤ A and
hence ρ(Am) ≤ ρ(A) for all m, the other inequality is trivial.

Exercise 2.26 (R-transience) Let P be an irreducible probability kernel in-
dexed by a countable set S that is transient and satisfies ρ(P ) = 1. Show
that P is R-transient. Now let A be an irreducible nonnegative matrix and let
h : S → (0,∞) satisfy Ah = ch for some c > 0. Assume that the probability ker-
nel defined by P (x, y) := c−1h(x)−1A(x, y)h(y) (x, y ∈ S) is transient and satisfies
ρ(P ) = 1. Show that this implies that A is R-transient.

Exercise 2.27 (Examples of R-transient matrices) Let P be the transition
kernel of nearest-neighbor random walk on Zd, i.e., P (x, y) := 1/(2d) if |x−y| = 1
and P (x, y) := 0 otherwise. The Local Central Limit Theorem [LL10, Thm 2.3.9]
implies that

P 2n(0, 0) ∼
( d

2π(2n)

)d/2
as n→ ∞, (2.36)

where the notation fn ∼ gn means fn/gn → 1. Use this to prove that ρ(P ) = 1 and
that P is R-null recurrent in dimensions d = 1, 2 and R-transient in dimensions
d ≥ 3.
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Exercise 2.28 (Strong Liouville property) Let P be the transition kernel
of an irreducible recurrent Markov chain with countable state space S and let
f : S → (0,∞) be a harmonic function, i.e., Pf = f . Prove that f is constant.
Note that this strengthens Corollary 1.27 in dimensions d = 1, 2.

Exercise 2.29 (R-null recurrence) For p ∈ (0, 1) let Pp be the probability
kernel on Z defined as

Pp(x, x+ 1) := p, Pp(x, x− 1) := 1− p, and P (x, y) := 0 (|x− y| ≠ 1).

Show that Pp is R-null recurrent and determine ρ(Pp). Hint: transform Pp into a
null-recurrent probability kernel.

Exercise 2.30 (Restricted kernel) Using notation as in Exercise 2.29, let Qp :=
Pp|N denote the restriction of Pp to N. Prove that ρ(Qp) = ρ(Pp). Hint: apply
Lemma 2.25.

Exercise 2.31 (Entropic repulsion of driftless walk) Using notation as in
the previous exercise, prove that Q1/2 is R-transient. Hint: You can use that by
Exercises 2.29 and 2.30, ρ(Q1/2) = ρ(P1/2) = 1. Now use the function h(x) := x+1

(x ∈ Z) to transform Q1/2 into a probability kernel Q
(h)
1/2 such that ρ(Q

(h)
1/2) = 1

and apply Exercise 1.19 to check that Q
(h)
1/2 is transient.

Exercise 2.32 (Entropic repulsion of drifted walk) For nonnegative matrices
A and B indexed by the same countable set S, write A ∼ B if there exist a function
h : S → (0,∞) and constant c > 0 such that

A(x, y) = c−1h(x)−1B(x, y)h(y) (x, y ∈ S).

Show that ∼ is an equivalence relation. Use this to generalize Exercise 2.31 by
showing that Qp is R-transient for each p ∈ (0, 1).

Exercise 2.33 (Quasi-stationary law) Let X be a Markov chain with state
space Z and transition kernel P given by

P (x, x+ 1) := p P (x, x− 1) = 1− p (x ̸= 0)

P (0, 1) := 1
2

P (0,−1) = 1
2
.
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Let τ := inf{k ≥ 0 : Xk < 0}. Assume that p < 1
4
. Show that there exists a

probability kernel Q(h) on N such that, for each x > 0,

Px
[
(Xk)0≤k≤m ∈ ·

∣∣n < τ
]
=⇒
n→∞

Px
[
(Xh

k )0≤k≤m ∈ ·
]
,

where Xh denotes the Markov chain with transition kernel Q(h), and give a formula
for Q(h). Hint: try positive eigenfunctions of the form h(x) = θx with θ > 0.



Chapter 3

Intertwining

3.1 Intertwining of Markov chains

In linear algebra,1 an intertwining relation is a relation between linear operators
of the form

AB = BÃ.

In particular, if B is invertible, then this says that A = BÃB−1, or, in other words,
that the matrices A and Ã are similar. In this case, we may associate B with a
change of basis, and Ã corresponds to the matrix A written in terms of a different
basis. In general, however, B need not be invertible. It is especially in this case
that the word intertwining is used.

We will be especially interested in the case that A, Ã and B are (linear operators
corresponding to) probability kernels. So let us assume that we have probability
kernels P, P̃ on countable spaces S, S̃, respectively, and a probability kernel K
from S to S̃ (i.e., S × S̃ ∋ (x, y) 7→ K(x, y)), such that

PK = KP̃. (3.1)

Note that P, P̃ and K correspond to linear operators P : CS → CS, P̃ : CS̃ → CS̃,
and K : CS̃ → CS, so both sides of the equation (3.1) correspond to a linear

operator from CS̃ into CS. We need some examples to see this sort of relations
between probability kernels can really happen.

1For example, in the theory of representations of Lie algebras and Lie groups

69
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Exclusion process. Fix n ≥ 2 and let Cn := Z/n, i.e., Cn = {0, . . . , n − 1}
with addition modulo n. (I.e., Cn is the cyclic group with n elements.) Let
S := {0, 1}Cn , i.e., S consists of all finite sequences x = (x(0), . . . , x(n − 1))
indexed by Cn. Let (Ik)k≥1 be i.i.d. and uniformly distributed on Cn. For each
x ∈ S, we may define a Markov chain X = (Xk)k≥0, started in X0 = x and with
values in S, by setting

Xk+1(i) :=


Xk(I + 1) if i = I,

Xk(I) if i = I + 1,

Xk(i) otherwise.

(3.2)

In words, this says that in each time step, we choose a uniformly distributed
position I ∈ Cn and exchange the values of X in I and I + 1 (where we calculate
modulo n). Note that we have described our Markov chain in terms of a random
mapping representation. In particular, it is clear from this construction that X is
a Markov chain.

Thinning Let C be any countable set and let S := {0, 1}C be the set of all x =
(x(i))i∈C with x(i) ∈ {0, 1} for all i ∈ C, i.e., S is the set of all sequences of zeros
and ones indexed by C. Fix 0 ≤ p ≤ 1, and let (χi)i∈C be i.i.d. Bernoulli (i.e.,
{0, 1}-valued) random variables with P[χi = 1] = p. We define a probability kernel
Kp from S to S by

Kp(x, · ) = P
[(
χix(i)

)
i∈C ∈ ·

]
(x ∈ S). (3.3)

Note that
(
χix(i)

)
i∈C is obtained from x by setting some coordinates of x to

zero, independently for each i ∈ C, where each coordinate x(i) that is one has
probability p to remain one and probability 1− p to become a zero. We describe
this procedure as thinning the ones with parameter p.

Exercise 3.1 (Thinning of exclusion processes) Let P be the transition ker-
nel of the exclusion process on Cn described above, with state space S = {0, 1}Cn ,
and for 0 ≤ p ≤ 1, let Kp be the kernel from S to S corresponding to thinning
with parameter p. Show that

PKp = KpP (0 ≤ p ≤ 1).

Counting process Let P be a transition kernel on a countable space S and let
Y 1 = (Y 1

k )k≥0 and Y
2 = (Y 2

k )k≥0 be two independent Markov chains with transition
kernel P and possibly different deterministic initial states Y i

0 = yi (i = 1, 2). Then
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(Y 1, Y 2) = (Y 1
k , Y

2
k )k≥0 is a Markov chain with values in the product space S × S.

We may view (Y 1, Y 2) as two particles, walking around in the space S. Now maybe
we are not interested in which particle is where, but only in how many particles
are on which place. In that case, we may look at the process

Xk(y) := 1{Y 1
k =y} + 1{Y 2

k =y} (y ∈ S, k ≥ 0),

which takes values in the space S̃ consisting of all functions x : S → {0, 1, 2} such
that

∑
y∈S x(y) = 2. Note that X just counts how many particles are present on

each site x ∈ S. It is not hard to see that X = (Xk)k≥0 is an autonomous Markov
chain.

Exercise 3.2 (Counting process) Let (Y 1, Y 2) and X be the Markov chains
with state spaces S × S and S̃ described above. Let P2 be the transition kernel of
(Y 1, Y 2) and let Q be the transition kernel of X. For each x ∈ S̃, let K(x, · ) be
the uniform distribution on the set

Ux :=
{(
y1, y2

)
∈ S × S : x = 1y1 + 1y2

}
,

where 1y(y
′) := 1{y=y′}. Note that K is a probability kernel from S̃ to S×S. From

x, we can see that there are two particles and where these are, but not which is
the first and which is the second particle. All K does is arbitrarily ordering the
particles in x. Show that

QK = KP2.

This example can easily be generalized to any number of independent Markov
chains (all with the same transition kernel).

Conditioning on the future As a third example, we look at a Markov chain X with
finite state space S and transition kernel Q. We assume that Q is such that all
states in S are transient, except for two states z1 and z2, which are traps. We set

hi(x) := Px
[
Xk = zi for some k ≥ 0

]
(i = 1, 2).

By Lemma 1.2, we know that h1 and h2 are harmonic functions. Since all states
except z1 and z2 are transient and our state space is finite, we have h1 + h2 = 1.
By Proposition 1.6, the process X conditioned to be eventually trapped in zi is
itself a Markov chain, with state space {x ∈ S : hi(x) > 0} and Doob transformed
transition kernel Q(hi). Set

S̃ :=
{
(x, i) : x ∈ S, i ∈ {1, 2}, hi(x) > 0

}
.
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We define a probability kernel P̃ on S̃ by

P̃
(
(x, i), (y, j)

)
:= Q(hi)(x, y)1{i=j} (x, y ∈ S, i, j ∈ {1, 2}).

Note that if (X̃, I) = (X̃k, Ik)k≥0 is a Markov chain with transition kernel P̃ , then
I never changes its value, and depending on whether Ik = 1 for all k ≥ 0 or Ik = 2
for all k ≥ 0, the process X̃ is our original Markov chain X conditioned to be
trapped in either z1 or z2.

Exercise 3.3 (Conditioning on the future) In the example above, define a
probability kernel K̃ from S to S̃ by

K̃
(
x, (y, i)

)
:= 1{x=y}hi(x) (x, y ∈ S, i ∈ {1, 2}).

Show that
QK̃ = K̃P̃.

Returning to our general set-up, we observe that the intertwining relation (3.1)
implies that for any probability measure µ on S

µP nK = µKP̃ n (n ≥ 0).

This function has the following interpretation. If we start the Markov chain with
transition kernel P in the initial law µ, run it till time n, and then apply the kernel
K to its law, then the result is the same as if we start the the Markov chain with
transition kernel P̃ in the initial law µK, run it till time n, and look at its law.

More concretely, in our three examples, this says:

� If we start an exclusion process in some initial law, run it till time n, and
then thin it with the parameter p, then the result is the same as when we
thin the initial state with p, and then run the process till time n.

� If we start the counting process Y in any initial law, run it to time n, and
then arbitrarily order the particles, then the result is the same as when we
first arbitrarily order the particles, and then run the process (X(1), X(2))
till time n.

� If we run the two-trap Markov chain X till time n, and then assign it a value
1 or 2 according to the probability, given its present state Xn, that it will
eventually get trapped in z1 or z2, respectively, then the result is the same
as when we assign such values at time zero, and then run the appropriate
Doob transformed Markov chain till time n.



3.2. MARKOV FUNCTIONALS 73

None of these statement comes as a big surprise, but we will later see less trivial
examples of this phenomenon.

3.2 Markov functionals

We already know that functions of Markov chains usually do not have the Markov
property. An exception, as we have seen in Lemma 0.12, is the case when a function
of a Markov chain is autonomous. Let us quickly recall what this means. Let Y
be a Markov chain with countable state space T and transition kernel P , and let
ψ : T → S be a function from T into some other countable set S. Then we say
that (Xk)k≥0 := (ψ(Yk))k≥0 is an autonomous Markov chain if

P
[
ψ(Yk+1) = x

∣∣Yk = y
]

depends on y only through ψ(y). Equivalently, this says that there exists a tran-
sition kernel Q on S such that

Q(x, x′) =
∑

y′:ψ(y′)=x′

P (y, y′) ∀y ∈ S s.t. ψ(y) = x. (3.4)

If (3.4) holds, then, regardless of the initial law of Y , one has that the process
(Xk)k≥0 = (ψ(Yk))k≥0 is a Markov chain with transition kernel Q.

In Theorem 3.5 below we will see that sometimes, a function (ψ(Yk))k≥0 of a
Markov chain (Yk)k≥0 can be a Markov chain itself, even when it is not autonomous.
In this case, however, this is usually only true for certain special initial laws ofX. It
seems this result is due to Rogers and Pitman [RP81]. We start with a preliminary
result that makes clear why in general, functions of a Markov chain do not have
the Markov property.

Theorem 3.4 (Filtering equations) Let (Yk)k≥0 be a Markov chain with count-
able state space T and transition kernel P , let ψ : T → S be a function from T
into some other countable set S, and let Xk := ψ(Yk) (k ≥ 0). Set

π(y |x0, . . . , xn) := P
[
Yn = y

∣∣ (X0, . . . , Xn) = (x0, . . . , xn)
]

for all n ≥ 0 and x0, . . . , xn for which P[(X0, . . . , Xn) = (x0, . . . , xn)] > 0. Then

π(y |x0, . . . , xn) =
∑

y′ P (y
′, y)1{ψ(y)=xn}π(y

′ |x0, . . . , xn−1)∑
y′,y′′ P (y

′, y′′)1{ψ(y′′)=xn}π(y
′ |x0, . . . , xn−1)

. (3.5)
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Moreover,
P
[
Xn = xn

∣∣ (X0, . . . , Xn−1) = (x0, . . . , xn−1)
]

=
∑
y,y′

P (y′, y)1{ψ(y)=xn}π(y
′ |x0, . . . , xn−1).

(3.6)

Remark 1 Equation (3.5) is called the filtering equation , which is the basis for
filtering theory. It shows how we have to update in real time our information
about the present state of a Markov chain Y based on partial information in the
form of an observed process X which is a function of Y .

Remark 2 Since in general, π(y |x0, . . . , xn) depends on the whole history of the
process X and not just on its current state xn, we see that the process X is in
general not a Markov chain.

Remark 3 The filtering equation (3.5) has a natural interpretation in terms of
Bayesian statistics. Here

∑
y′ P (y

′, y)π(y′ |x0, . . . , xn−1) is our prior distribution
of Yn given the information that X0 = x0, . . . , Xn−1 = xn−1. If we recieve the new
information that Xn = xn, then we have to weight our prior with the conditional
probability that Xn = xn given Yn = y, which is one if ψ(y) = xn and zero
otherwise, and then normalize to get the posterior distribution π(y |x0, . . . , xn).

Proof of Theorem 3.4 We start by proving the filtering equation (3.5). Condi-
tioning first on X0, . . . , Xn−1 and then using the formula for conditional probabil-
ities to condition also on Xn, we obtain

π(y |x0, . . . , xn) =
P[Yn = y, Xn = xn | (X0, . . . , Xn−1) = (x0, . . . , xn−1)]

P[Xn = xn | ,, ]
, (3.7)

where ,, is shorthand for (X0, . . . , Xn−1) = (x0, . . . , xn−1). Conditioning on
the value of Yn−1, the nominator in (3.7) can be rewritten as

P
[
Yn = y, Xn = xn

∣∣ ,,
]

=
∑
y′

P
[
Yn = y, Xn = xn

∣∣Yn−1 = y′ and ,,
]
P
[
Yn−1 = y′

∣∣ ,,
]

=
∑
y′

P (y′, y)1{ψ(y)=xn}π(y
′ |x0, . . . , xn−1),

(3.8)

where in the last step we have used the Markov property of Y . The denominator
in (3.7) is the same as the nominator summed over all values of y, so inserting
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(3.8) into (3.7) we obtain (3.5). Summing (3.8) over y we also obtain (3.6).

Although in general the right-hand side of (3.6) depends on the whole history of the
process X and hence X is not a Markov chain, the following theorem shows that in
special cases and for special initial laws, it may happen that X is Markovian after
all, even when it is not autonomous. Note formula (3.9) below says that if X and
Y are random variables such that P[Y ∈ · |X] = K(X, · ), then that ψ(Y ) = X
a.s. Thus, the probability kernel K from S to T is in a sense the ‘inverse’ of the
function ψ : T → S.

Theorem 3.5 (Markov functionals) Let (Yk)k≥0 be a Markov chain with count-
able state space T and transition kernel P , let ψ : T → S be a function from T
into some other countable set S, and let Xk := ψ(Yk) (k ≥ 0). Assume that there
exists a probability kernel K from S to T such that{

y ∈ T : K(x, y) > 0
}
⊂

{
y ∈ T : ψ(y) = x

}
(x ∈ S), (3.9)

and a probability kernel Q on S such that

QK = KP. (3.10)

Then

P
[
Y0 = y

∣∣X0

]
= K(X0, y) a.s. (y ∈ T ) (3.11)

implies that

P
[
Yn = y

∣∣ (X0, . . . , Xn)
]
= K(Xn, y) a.s. (y ∈ T, n ≥ 0). (3.12)

Moreover, (3.11) implies that the process (Xk)k≥0, on its own, is a Markov chain
with transition kernel Q.

Proof Formula (3.12) says that

π(y |x0, . . . , xn) = K(xn, y).

We will prove this by induction. For n = 0 the statement is just (3.11). Assuming
that the statement is true for n− 1, the filtering equation (3.5) tells us that

π(y |x0, . . . , xn) =
∑

y′ P (y
′, y)1{ψ(y)=xn}K(xn−1, y

′)∑
y′,y′′ P (y

′, y′′)1{ψ(y′′)=xn}K(xn−1, y′)
. (3.13)
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We can rewrite the nominator as∑
y′

P (y′, y)1{ψ(y)=xn}K(xn−1, y
′) = KP (xn−1, y)1{ψ(y)=xn}

= QK(xn−1, y)1{ψ(y)=xn} =
∑
x

Q(xn−1, x)K(x, y)1{ψ(y)=xn}

= Q(xn−1, xn)K(xn, y),

(3.14)

where in the second step we have used (3.10) and in the last step (3.9). The
denominator in (3.13) is the same as the nominator summed over y, so we obtain

π(y |x0, . . . , xn) =
Q(xn−1, xn)K(xn, y)∑
y′′ Q(xn−1, xn)K(xn, y′′)

=
Q(xn−1, xn)K(xn, y)

Q(xn−1, xn)
= K(xn, y).

This proves (3.12).

Inserting (3.12) into (3.6), using (3.14), we obtain

P
[
Xn = xn

∣∣ (X0, . . . , Xn−1) = (x0, . . . , xn−1)
]

=
∑
y,y′

P (y′, y)1{ψ(y)=xn}K(xn−1, y
′) =

∑
y

Q(xn−1, xn)K(xn, y) = Q(xn−1, xn),

which shows that (Xk)k≥0 is a Markov chain with transition kernel Q.

Let us see how Theorem 3.5 relates to the examples developed in the previous
section.

Counting process Let (Y 1, Y 2) be two independent Markov processes, where each
process takes values in S and has transition kernel P , as in Excercise 3.2. Let X
and S̃ be as defined there and let ψ : S × S → S̃ be the function

ψ(y1, y2) := 1y1 + 1y2 ,

so that X = ψ(Y 1, Y 2). Then the kernel K defined in Excercise 3.2 satisfies{
(y1, y2) : K

(
x, (y1, y2)

)
> 0

}
⊂ {(y1, y2) : ψ(y1, y2) = x

}
.

Since moreover QK = KP2, all assumptions of Theorem 3.5 are fulfilled, so we
find that

P
[
(Y 1

0 , Y
2
0 ) = (y1, y2)

∣∣X0

]
= K

(
X0, (y

1, y2)
)

a.s. (3.15)

for all (y1, y2) ∈ S × S implies that

P
[
(Y 1

n , Y
2
n ) = (y1, y2)

∣∣ (X0, . . . , Xn)
]
= K

(
Xn, (y

1, y2)
)

a.s. (3.16)
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for all (y1, y2) ∈ S × S and n ≥ 0, and under the same assumption, Xk =
ψ(Y 1)k, Y 2

k ) is a Markov chain with transition kernel Q. Note that this latter con-
clusion holds in fact even without the assumption (3.15), since X is autonomous.
Formula (3.16) tells us that if initially we do not know the order of the particles,
then by observing the process X up to time n, we obtain no information about
the order of the particles.

Conditioning on the future Let X and (X̃, I) be Markov chains with state spaces
S and S̃ and transition kernels Q and P̃ as in Excercise 3.3. Thus, X is a Markov
chain that eventually gets trapped in one of two traps z1 and z2, and (X̃, I) is the
same process where the second coordinate I tells us from the beginning in which
of the two traps we will end up.

Define ψ : S̃ → S by
ψ(x, i) := x

(
(x, i) ∈ S̃

)
,

i.e., ψ is just projection on the first coordinate. Then the kernel K̃ from Excer-
cise 3.3 satisfies{

(x̃, i) ∈ S̃ : K̃
(
x, (x̃, i)

)
> 0

}
⊂

{
(x̃, i) ∈ S̃ : ψ(x̃, i) = x

}
and PK̃ = K̃P̃ , so all assumptions of Theorem 3.5 are fulfilled. We therefore
conclude that

P
[
(X̃0, I0) = (x̃, i)

∣∣X̃0] = K̃
(
X0, (x̃, i)

)
a.s.

(
(x̃, i) ∈ S̃

)
implies that

P
[
(X̃n, In) = (x̃, i)

∣∣(X̃0, . . . , X̃n)] = K̃
(
Xn, (x̃, i)

)
a.s.

for all n ≥ 0 and (x̃, i) ∈ S̃. More simply formulated, this says that

P
[
I0 = i

∣∣ X̃0

]
= hi(X0) a.s. (i = 0, 1)

implies that

P
[
In = i

∣∣ (X̃0, . . . , X̃n)
]
= hi(X̃n) a.s. (n ≥ 0, i = 1, 2). (3.17)

Moreover, under the same assumption, the process X̃, on its own, is a Markov
chain with transition kernel P . Note that this is more surprising than in the
previous example, since in the present set-up, X̃ is not autonomous as part of the
joint Markov chain (X̃, I). Indeed, X̃ evolves according to the transition kernel
Q(h1), resp. Q(h2), depending on whether I = 1 or = 2.
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To understand how it is possible that X̃ has the Markov property even though it
is not autonomous, we observe that by (3.17), if we observe the whole path of the
process X̃ up to time n, then we do not gain more information about the present
state of I than we would get from knowing Xn. As a result,

P
[
X̃n+1 = xn+1

∣∣ (X̃0, . . . , X̃n) = (x0, . . . , xn)
]

= P
[
X̃n+1 = xn+1

∣∣ (X̃n, In) = (xn, 1)
]
h1(xn)

+ P
[
X̃n+1 = xn+1

∣∣ (X̃n, I) = (xn, 2)
]
h2(xn),

which depends only on xn and not on (x0, . . . , xn−1).

Thinning of exclusion processes This example does not satisfy condition (3.9),
hence Theorem 3.5 is not applicable. In view of this and other examples, we will
prove a more general theorem in the next section.

3.3 Intertwining and coupling

In Theorem 3.5 we have seen how intertwining is related to the problem of Markov
functionals, i.e., the question whether certain functions of a Markov chain them-
selves have the Markov property. The intertwinings in Theorem 3.5 are of a special
kind, because of the condition (3.9). In this section, we will see that intertwining
relations between two Markov chains X and Y in general give rise to couplings
between X and Y such that (3.12) holds. The following result is due to Diaco-
nis and Fill [DF90, Thm 2.17]; the continuous-time analogue has been proved in
[Fil92, Thm. 2].

Theorem 3.6 (Intertwining coupling) Let Q and P be probability kernels on
countable state spaces S and T , respectively. Assume that K is a probability kernel
from S to T such that

QK = KP.

Let

Qy′(x, x
′) :=

Q(x, x′)K(x′, y′)

QK(x, y′)

(
x, x′ ∈ S, y′ ∈ T, QK(x, y′) > 0

)
, (3.18)

and choose for Qy′(x, · ) any probability law on S if QK(x, y′) = 0. Then Qy′ is a
probability kernel on S for each y′ ∈ T and

P̂ (x, y;x′, y′) := P (y, y′)Qy′(x, x
′)

(
(x, y), (x′, y′) ∈ Ŝ) (3.19)
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defines a probability kernel on T̂ := {(x, y) ∈ S × T : K(x, y) > 0}, where P̂ does
not depend on the freedom in the choice of the Qy′. If (X, Y ) is the Markov chain

with transition kernel P̂ started in an initial law such that

P
[
Y0 = y

∣∣X0

]
= K(X0, y) (y ∈ S̃),

then
P
[
Yn = y

∣∣ (Xk)0≤k≤n
]
= K(Xn, y) (y ∈ S̃, n ≥ 0), (3.20)

and X, on its own, is a Markov chain with transition kernel Q.

Remark It is clear from (3.19) that in the joint Markov chain (X, Y ), the second
component Y is autonomous with transition kernel P , but X is in general not
autonomous, unless Qy′ can be chosen so that it does not depend on y′.

Proof of Theorem 3.6 We observe that∑
x′∈S

Qy′(x, x
′) =

QK(x, y′)

QK(x, y′)
= 1 (QK(x, y′) > 0),

which shows that Qy′ is a probability kernel. To show that the definition of P̂
does not depend on how we define Qy′(x, · ) when QK(x, y′) = 0, we observe that

(x, y) ∈ Ŝ and P (y, y′) > 0 imply that K(x, y)P (y, y′) > 0 and hence QK(x, y′) =
KP (x, y′) > 0.

To prove the remaining statements, let K̂ be the probability kernel from S to T̂
defined by

K̂
(
x, (x′, y′)

)
:= 1{x=x′}K(x, y′)

(
x ∈ S, (x′, y′) ∈ Ŝ

)
,

and define ψ : T̂ → S by ψ(x, y) := x. If we show that

QK̂ = K̂P̂,

then the remaining claims follow from Theorem 3.5. We observe that

QK̂(x;x′, y′) =
∑
x′′∈S

Q(x, x′′)1{x′′=x′}K(x′′, y′) = Q(x, x′)K(x′, y′)

and
K̂P̂ (x;x′, y′) =

∑
(x′′,y′′)∈T̂

1{x=x′′}K(x, y′′)P̂ (x′′, y′′;x′, y′)

=
∑
y′′∈S̃

K(x, y′′)P̂ (x, y′′;x′, y′),
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so that QK̂ = K̂P̂ can be written coordinatewise as

Q(x, x′)K(x′, y′) =
∑
y′′∈S̃

K(x, y′′)P̂ (x, y′′;x′, y′)
(
x ∈ S, (x′, y′) ∈ Ŝ

)
.

To check this, we write∑
y′′∈S̃

K(x, y′′)P̂ (x, y′′;x′, y′) =
∑
y′′∈S̃

K(x, y′′)P (y′′, y′)
Q(x, x′)K(x′, y′)

QK(x, y′)

=
KP (x, y′)

QK(x, y′)
Q(x, x′)K(x′, y′) = Q(x, x′)K(x′, y′),

where we have used our assumption that QK = KP .

Below, we revisit two of our previous examples of intertwining relations in the light
of Theorem 3.6.

Thinning of exclusion processes In this example,

Ŝ =
{
(x, y) : x, y ∈ {0, 1}Cn , y ≤ x

}
,

and the joint evolution of (X, Y ) can be described in the same way as in (3.2),
using the same random pair I for both X and Y .

Condition on the future This example was already covered by Theorem 3.5, but
we can also look at it a bit differently. Let K be the probability kernel from S to
T := {0, 1} defined by

K(x, i) := hi(x) (x ∈ S, i = 0, 1),

and let P be the trivial kernel on T defined by P (0, 0) := 1 and P (1, 1) := 1. Then
one can check that

QK = KP

so Theorem 3.6 is applicable. Now Q1 and Q2 from (3.18) are just the Doob
transformed kernels Q(h1) and Q(h1), while T̂ , P̂ , and the kernel K̂ from the proof
of Theorem 3.6 are what we called S̃, P̃ , and K̃ before.

Exercise 3.7 (Intertwining based on generalized Doob transform) Let X
be a Markov chain with finite state space S and transition kernel Q. Assume that
z ∈ S is a trap and set S ′ := S\{z}. Assume that Q′ := Q|S′ is irreducible, and
that Q(x, z) > 0 for at least one x ∈ S ′. Let c = ρ(Q′) and let h : S ′ → (0,∞) be
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the Perron-Frobenius eigenvector of Q′, normalized such that maxx∈S′ h(x) = 1.
Extend h to S by setting h(z) := 0 and observe that this implies that h is also an
eigenvector of Q, i.e., Qh = ch. Define a probability kernel K from S to {1, 2} by
setting

K(x, 1) := h(x) and K(x, 2) := 1− h(x).

Find a probability kernel P on T := {1, 2} such that

QK = KP

and give expressions for the kernels Q1 and Q2 from (3.18). Check, in particular,
that Q1 = Q(h1) is a generalized Doob transform of Q in the sense of (2.5).

Exercise 3.8 (Survival estimate) Let X be the Markov chain from Exercise 3.7
and let K and P be as in that exercise. Apply Theorem 3.6 to couple X to Markov
chain Y with transition kernel P such that (3.20) holds. Use this coupling to derive
the estimate

Px[Xn ∈ S ′] ≥ cnh(x). (3.21)

Remark 1 In view of Corollary 2.17, the estimate (3.21) is quite good, but it
is not completely sharp since the function h in Theorem 2.16 is normalized in a
different way than in the present section. Indeed, in Section 2.4 we chose h such
that

∑
x∈S′ η(x)h(x) = 1, where η is a probability measure, while at present we

need supx∈S′ h(x) ≤ 1. Thus (unless h is constant on S ′), the h in our present
section is always smaller than the one in Section 2.4.

Remark 2 Interesting examples of intertwining relations for birth-and-death pro-
cesses can be found in [DM09, Swa11]. Lower estimates in the spirit of (3.21)
but in the more complicated set-up of hierarchical contact processes have been
derived in [AS10]. The ‘evolving set process’ in [LPW09, Thm 17.23] (which can
be defined for quite general Markov chains) provides another nontrivial example
of an intertwining relation.
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Chapter 4

Branching processes

4.1 The branching property

Let S be a countable set and let N (S) be the set of all functions x : S → N such
that

∑
i∈S x(i) <∞. It is easy to check that N (S) is a countable set (even though

the set of all functions x : S → N is uncountable). We interpret x ∈ N (S) as
a collection of finitely many particles or individuals, where x(i) is the number of
individuals of type i, where S is the type space, or sometimes also the number of
particles at the position i, where S represents physical space. Each x ∈ N (S) can
be written as

x =

|x|∑
β=1

δiβ , (4.1)

where |x| :=
∑

i x(i), i1, . . . , i|x| ∈ S, and δi ∈ N (S) is defined as

δi(j) := 1{i=j} (i, j ∈ S).

This way of writing x is of course not unique but depends on the way we order
the individuals. We will be interested in Markov processes with state space N (S),
where in each time step, each individual, independently of the others, is replaced
by a finite number of new individuals (its offspring). Let Q be a probability kernel
from S to N (S). For a given x ∈ N (S) of the form (4.1), we can construct
independent N (S)-valued random variables V 1, . . . , V |x| such that

P[V β ∈ · ] = Q(iβ, · ) (β = 1, . . . , |x|).

83
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Then

P (x, · ) := P
[ |x|∑
β=1

V β ∈ ·
]

defines a probability law on N (S). Doing this for each x ∈ N (S) defines a prob-
ability kernel P on N (S). By definition, the Markov chain X with state space
N (S) and transition kernel P is called the multitype branching process with off-
spring distribution Q.

We define the convolution of two probability laws µ, ν on N (S) by

µ ∗ ν(z) :=
∑
x′≤z

µ(x′)ν(z − x′).

Note that this says that ifX and Y are independentN (S)-valued random variables
with laws µ and ν, respectively, then X + Y has law µ ∗ ν. This is similar to the
convolution of two probability laws on Rd, except that in our case the space is
N (S).

Lemma 4.1 (Branching property - first version) The transition kernel P of
a branching process has the property that

P (x+ y, · ) = P (x, · ) ∗ P (y, · )
(
x, y ∈ N (S)

)
. (4.2)

Proof We need to check that

P (x+ y, z) =
∑
x′≤z

P (x, x′)P (y, z − x′)
(
x, y, z ∈ N (S)

)
. (4.3)

Let us write

x =

|x|∑
β=1

δiβ and y =

|y|∑
γ=1

δjγ ,

and let V 1, . . . , V |x| and W 1, . . . ,W |y| be all independent of each other such that

P[V β ∈ · ] =Q(iβ, · ) (β = 1, . . . , |x|),
P[W γ ∈ · ] =Q(jγ, · ) (γ = 1, . . . , |y|).

Then

P (x+ y, z) = P
[ |x|∑
β=1

V β +

|y|∑
γ=1

W γ = z
]

=
∑
x′≤z

P
[ |x|∑
β=1

V β = x′,

|y|∑
γ=1

W γ = z − x′
]
=

∑
x′≤z

P (x, x′)P (y, z − x′)
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as required.

In general, any probability kernel on N (S) for which (4.2) holds is said to have
the branching property. In particular (4.2) implies that if

x =

|x|∑
β=1

δiβ ,

then
P (x, · ) = P (δi1 , · ) ∗ · · · ∗ P (δi|x| , · ),

where P (δi, · ) = Q(i, · ). Thus, each Markov process that has the branching
property is a branching process, and its transition probabilities are uniquely char-
acterized by the offspring distribution.

Lemma 4.2 (Branching property - stronger version) Let X = (Xk)k≥0 and
Y = (Yk)k≥0 be independent branching processes with the same type space N (S)
and offspring distribution Q. Then Z = (Zk)k≥0, defined by

Zk(i) := Xk(i) + Yk(i) (k ≥ 0, i ∈ S) (4.4)

is distributed as a branching processes with type space N (S) and offspring distri-
bution Q.

Proof We need to check that

P
[
Zk+1 = z

∣∣FZ
k

]
= P (Zk, z) a.s.

(
k ≥ 0, z ∈ N (S)

)
,

where (FZ
k )k≥0 is the filtration generated by Z. We will show that actually

P
[
Zk+1 = z

∣∣F (X,Y )
k

]
= P (Zk, z) a.s.

(
k ≥ 0, z ∈ N (S)

)
,

where (F (X,Y )
k )k≥0 is the filtration generated by (X, Y ) = (Xk, Yk)k≥0. Since FZ

k ⊂
F (X,Y )
k and P (Zk, z) is FZ

k -measurable, this then implies that

P
[
Zk+1 = z

∣∣FZ
k

]
= E

[
P
[
Zk+1 = z

∣∣F (X,Y )
k

] ∣∣FZ
k

]
= E

[
P (Zk, z)

∣∣FZ
k

]
= P (Zk, z).

Thus, by the Markov property of (X, Y ), it suffices to show that

P
[
Zk+1 = z

∣∣Xk = x, Yk = y
]
= P (x+ y, z)

(
k ≥ 0, x, y, z ∈ N (S)

)
.
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Here
P
[
Zk+1 = z

∣∣Xk = x, Yk = y
]

=
∑
x′≤z

P
[
Xk+1 = x′, Yk+1 = z − x′

∣∣Xk = x, Yk = y
]

=
∑
x′≤z

P (x, x′)P (y, z − x′) = P (x+ y, z),

where we have used that by the independence of X and Y , the process (X, Y ) is
a Markov process with transition kernel P2(x, y;x

′, y′) := P (x, x′)P (y, y′), and in
the last equality we have used Lemma 4.1.

It is not hard to see that a Markov process with state spaceN (S) has the branching
property (4.4) if and only if its transition kernel has the branching property (4.2).

4.2 Generating functions

For each function ϕ : S → R and x ∈ N (S), let us write

ϕx :=
∏
i∈S

ϕ(i)x(i) =

|x|∏
β=1

ϕ(iβ) where x =

|x|∑
β=1

δiβ ,

where ϕ0 := 1. It is easy to see that

ϕx+y = ϕxϕy
(
x, y ∈ N (S), ϕ : S → R

)
.

Because of all the independence coming from the branching property, the linear
operator P associated with the transition kernel of a branching process maps
such ‘multiplicative functions’ into multiplicative functions. We will especially be
interested in the case that ϕ takes values in [0, 1]. We let [0, 1]S denote the space
of all functions ϕ : S → [0, 1].

Lemma 4.3 (Generating operator) Let P denote the transition kernel of a
multitype branching process with type space S and offspring distribution Q. Let U
be the nonlinear operator defined by

1− Uϕ(i) :=
∑

x∈N (S)

Q(i, x)(1− ϕ)x
(
i ∈ S, ϕ ∈ [0, 1]S

)
.

Then
Pfϕ = fUϕ

(
ϕ ∈ [0, 1]S

)
,

where for any ϕ ∈ [0, 1]S, we define fϕ : N (S) → [0, 1] by fϕ(x) := (1− ϕ)x.
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Proof IfX is started inX0 = x with x =
∑|x|

β=1 δiβ , thenX1 is equal in distribution

to
∑|x|

β=1 V
β where the V β’s are independent with distribution Q(iβ, · ). It follows

that

Pfϕ(x) = E
[
(1− ϕ)

∑|x|
β=1 V

β]
= E

[ |x|∏
β=1

(1− ϕ)V
β]

=

|x|∏
β=1

E
[
(1− ϕ)V

β]
=

|x|∏
β=1

(1− Uϕ)(iβ) = fUϕ(x).

Remark 1 It would seem that the formulation of the lemma is simpler if we
replace ϕ by 1 − ϕ everywhere, but as we will see later there are good reasons to
formulate things in terms of 1− ϕ.

Remark 2 Our assumption that 0 ≤ ϕ ≤ 1 guarantees that the sum
∑

xQ(i, x)ϕ
x

in the definition of Uϕ(i) is finite. Under more restrictive assumptions on Q, we
can define Uϕ also for more general real-valued ϕ.

We call the nonlinear operator U from Lemma 4.3 the generating operator of the
branching process with offspring distribution Q. By induction, Lemma 4.3 shows
that P nfϕ = fUnϕ, or, in other words

Ex
[
(1− ϕ)Xn

]
= (1− Unϕ)x

(
n ≥ 0, ϕ ∈ [0, 1]S

)
. (4.5)

The advantage of the operator U is that it acts on functions ‘living’ on the space
S, while P acts on functions on the much larger space N (S). The price we pay
for this is that U , unlike P , is not linear.

The next lemma shows that U contains, in a sense ‘all information we need’.

Lemma 4.4 (Generating functions are distribution determining) Let µ, ν
be probability measures on N (S) such that∑

x∈N (S)

µ(x)(1− ϕ)x =
∑

x∈N (S)

ν(x)(1− ϕ)x
(
ϕ ∈ [0, 1]S

)
.

Then µ = ν.

Proof We will prove the statement first under the assumtion that S is finite. Let
N (S) ∪ {∞} be the one-point compactification of N (S). For each ψ ∈ [0, 1)S,
define gψ(x) := ψx and gψ(∞) := 0. Then the gψ’s are continuous functions on the
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compact space N (S)∪{∞}. It is not hard to see that they separate points, i.e., for
each x ̸= x′ there exists a ψ ∈ [0, 1)S such that gψ(x) ̸= gψ(x

′). Since gψgψ′ = gψψ′ ,
the class {gψ : ψ ∈ [0, 1)S} is closed under multiplication. Let H be the space
of all linear combinations of functions from this class and the identity function.
ThenH is an algebra that separates points, hence by the Stone-Weierstras theorem
H is dense in the space of continuous functions on N (S) ∪ {∞}, equipped with
the supremumnorm. By linearity and because µ and ν are probability measures,∑

x µ(x)f(x) =
∑

x ν(x)f(x) for all f ∈ H. Since H is dense, it follows that µ = ν.

If S is not finite, then by applying our argument to functions ψ that are zero
outside a finite set, we see that the finite-dimensional marginals of µ and ν agree,
which shows that µ = ν in general.

There is a nice suggestive way of writing the relation (4.5). Generalizing (3.3), for
any ϕ ∈ [0, 1]S, we define a probability kernel Kϕ from N (S) to N (S) by

Kϕ(x, · ) := P
[ |x|∑
β=1

χβδiβ ∈ ·
]
, (4.6)

where x =
∑|x|

β=1 δiβ and the χ1, . . . , χ|x| are independent Bernoulli random vari-
ables with P[χβ = 1] = ϕ(iβ). Thus, if Z is distributed according to the law
Kϕ(x, · ), then Z is obtained from x by independent thinning, where a particle of
type i is kept with probability ϕ(i) and thrown away with the remaining probabil-
ity. Note that Kϕ has the branching property (4.2) and corresponds in fact to the
offspring distribution

Qϕ(i, y) := Kϕ(δi, y) = ρ(i)1{y=δi} + (1− ρ(i))1{y=0}
(
i ∈ S, y ∈ N (S)

)
.

Let Thinϕ(x) denote a random variable with law Kϕ(x, · ). Then

P
[
Thinϕ(x) = 0

]
= (1− ϕ)x

(
x ∈ N (S), ϕ ∈ [0, 1]S

)
,

where 0 denotes the configuration in N (S) with no particles. In view of this,

1− Uϕ(i) =
∑

x∈N (S)

Q(i, x)(1− ϕ)x = δiPKϕ(0)

and hence

Uϕ(i) = δiQKϕ(N (S)\{0}). (4.7)
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Note that this says that if we start with one particle of type i, let it produce
offspring, and then thin with ϕ, then Uϕ(i) is the probability that we are left with
at least one individual. Likewise, we may rewrite (4.5) in the form

δxP
nKϕ(0) = δxKUnϕ(0), (4.8)

where µP nKϕ is the law obtained by starting the branching process in x, running
it till time t, and then applying the kernel Kϕ, while δxKUnϕ is the law obtained
by thinning x with Unϕ.

Exercise 4.5 (Repeated thinning) Show that KϕKψ = Kϕψ (ϕ, ψ ∈ [0, 1]S).

Exercise 4.6 (Thinning characterization) Let µ, ν be probability laws on
N (S) such that µKϕ(0) = νKϕ(0) for all ϕ ∈ [0, 1]S. Show that µ = ν.

4.3 The survival probability

Let X be a branching process with type space S and generating operator U . We
observe that

Pδi
[
Xn ̸= 0] = 1− Pδi

[
Thin1(Xn) = 0]

= 1− Pδi
[
ThinUn1(δi) = 0] = 1−

(
1− Un1(i)

)
= Un1(i),

where we use the symbol 1 also to denote the function that is constantly one. Since
0 is a trap for any branching process,

Pδi
[
Xn ̸= 0] = Pδi

[
Xk ̸= 0 ∀0 ≤ k ≤ n] −→

n→∞
Pδi

[
Xk ̸= 0 ∀k ≥ 0],

where we have used the continuity of our probability measure with respect to
decreasing sequences of events. In view of this, let us write

ρ(i) := lim
n→∞

Un1(i) = Pδi
[
Xk ̸= 0 ∀k ≥ 0] (4.9)

for the probability to survive starting from a single particle of type i.

Lemma 4.7 (Survival probability) The function ρ in (4.9) is the largest solu-
tion (in [0, 1]S) of the equation

Uρ = ρ,

i.e., ρ solves this equation and any other solutions ρ′ of this equation, if they exist,
satisfy ρ′ ≤ ρ.
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Proof Since
Uϕ(i) =

∑
x

Q(i, x)
(
1− (1− ϕ)x

)
,

and since ϕ 7→ 1− (1− ϕ)x is a nondecreasing function, we see that

ϕ ≤ ψ implies Uϕ ≤ Uψ. (4.10)

By monotone convergence, we see moreover that

ϕn ↓ ϕ implies Uϕn ↓ Uϕ. (4.11)

Since 1 ≥ U1 we see by (4.10) and induction that Un1 ≥ Un+11 and Un1 ↓ ρ,
which was in fact also clear from our probabilistic interpretation. By (4.11), it
follows that

Uρ = U lim
n→∞

Un1 = lim
n→∞

Un+1 = ρ.

Now if ρ′ ∈ [0, 1]S is any other fixed point of U , then by (4.10) and (4.11)

ρ′ ≤ 1 implies ρ′ = Unρ′ ≤ Un1 −→
ρ→∞

,

which shows that ρ′ ≤ ρ.

Exercise 4.8 (Galton-Watson process) Let X be a branching process whose
type space S = {1} consists of a single point, and let Q be its offspring distribution.
We identify N ({1}) ∼= N. Since there is only one type of individual, we only need
to know with which probability a single individual produces n offspring (n ≥ 0).
Thus, we simply write

Q(n) = Q(1, nδ1)

which is a probability law on N. Assume that Q has a finite second moment and
let

a :=
∞∑
n=0

nQ(n)

denote its mean. We identify [0, 1]S ∼= [0, 1] and let U : [0, 1] → [0, 1] be the
generating operator of X, which is now just a (nonlinear) function from [0, 1] to
[0, 1].

(a) Show that U is a concave function and that U ′(0) = a.

(b) Assume that Q(1) < 1. Show that

P 1[Xk ̸= 0 ∀k ≥ 0] > 0

if and only if a > 1.
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Remark Single-type branching processes as in Excercise 4.8 are called Galton-
Watson processes after the seminal paper (from 1875) [WG75], where they proved
that the survival probability ρ solves Uρ = ρ but incorrectly concluded from this
that the process dies out for all a ≥ 0, since ‘obviously the solution of this equation
is ρ = 0’.

Exercise 4.9 (Spatial branching) Let (Ik)k≥0 be i.i.d. with P[Ik = −1] = 1/2 =
P[Ik = 1], and let N be a Poisson distributed random variable with mean a,
independent of (Ik)k≥0. Let X be the branching process with type space Z and
offspring distribution Q given by

Q(i, · ) := P
[ N∑
k=1

δi+Ik ∈ ·
]

(i ∈ Z),

which says that a particle at i produces Pois(a) offspring which are independently
placed on either i− 1 or i+ 1, with equal probabilities. Show that

Pδ0
[
Xk ̸= 0 ∀k ≥ 0

]
> 0

if and only if a > 1.

Exercise 4.10 (Two-type process) Let X be a branching process with type
space S = {1, 2} and the following offspring distribution. Individuals of both
types produce a Poisson number of offspring, with mean a. If the parent is of
type 1, then its offspring are, independently of each other, of type 1 or 2 with
probability 1/2 each. All offspring of individuals of type 2 are again of type 2.
Starting with a single individual of type 1, for what values of a is there a positive
probability that there will be individuals of type 1 at all times?

Exercise 4.11 (Poisson offspring) Let X be a Galton-Watson process where
each individual produces a Poisson number of offspring with mean a, and let

ρn := P1[Xn = 0] (n ≥ 0)

be the probability that the process started with a single individual is extinct after
n steps. Prove that ρn+1 = ea(ρn−1).
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4.4 First moment formula

Proposition 4.12 (First moment formula) Let X be a branching process with
type space S and offspring distribution Q. Assume that the matrix

A(i, j) :=
∑

x∈N (S)

Q(i, x)x(j) (i, j ∈ S) (4.12)

satisfies

sup
i∈S

∑
j∈S

A(i, j) <∞. (4.13)

Then
Ex[Xn(j)] =

∑
i

x(i)An(i, j)
(
x ∈ N (S), j ∈ S, n ≥ 0

)
.

Proof We first prove the statement for n = 1. If x =
∑|x|

β=1 δiβ , then X1 is equal in

distribution to
∑|x|

β=1 V
β where the V β’s are independent with distributionQ(iβ, · ).

Therefore,

Ex[X1(j)] = E
[ |x|∑
β=1

V β(j)
]
=

|x|∑
β=1

E
[
V β(j)

]
=

|x|∑
β=1

∑
y

Q(iβ, y)y(j) =

|x|∑
β=1

A(iβ, j) =
∑
i

x(i)A(i, j).

By induction, it follows that

Ex[Xn+1(j)] =
∑
x′

Px[Xn = x′]Ex[Xn+1(j) |Xn = x′]

=
∑
x′

Px[Xn = x′]
∑
i

x′(i)A(i, j) =
∑
i

A(i, j)
∑
x′

Px[Xn = x′]x′(i)

=
∑
i

A(i, j)
∑
x′

Ex[Xn(i)] =
∑
i

A(i, j)
∑
k

x(k)An(k, i) = An+1(i, k),

where all expressions are finite by (4.13).

Lemma 4.13 (Subcritical processes) Let X be a branching process with finite
type space S and offspring distribution Q. Assume that its first moment matrix
A defined in (4.12) is irreducible and satisfies (4.13), and let α be its Perron-
Frobenius eigenvalue. If α < 1, then

Px
[
Xk ̸= 0 ∀k ≥ 0

]
= 0

(
x ∈ N (S)

)
.
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Proof For any f : S → R, let lf : N (S) → R denote the ‘linear’ function

lf (x) :=
∑
i∈S

x(i)f(i)
(
x ∈ N (S), f : S → R

)
.

Then by Lemma 4.12,

P nlf (x) = Ex
[
lf (Xn)

]
=

∑
i

f(i)Ex
[
Xn(i)

]
=

∑
i

f(i)
∑
j

x(j)An(j, i) =
∑
j

x(j)Anf(j) = lAnf (x).

In particular, if h is the (strictly positive) right eigenvector of A with eigenvalue
α, then

P nlh = lAnh = lαnh,

which says that

Ex
[
h(Xn)

]
= αnh(x),

which tends to zero by our assumption that α < 1. Since h is strictly positive, it
follows that Px[Xn ̸= 0] → 0.

Proposition 4.14 (Critical processes) Let X be a branching process with finite
type space S and offspring distribution Q. Assume that its first moment matrix
A defined in (4.12) is irreducible and satisfies (4.13), and let α be its Perron-
Frobenius eigenvalue. If α = 1 and there exists some i ∈ S such that Q(i, 0) > 0,
then

Px
[
Xk ̸= 0 ∀k ≥ 0

]
= 0

(
x ∈ N (S)

)
.

Proof Let A := {Xn ̸= 0 ∀n ≥ 0} and let

ρ(i) := Pδi(A).

By the branching property,

Px(Ac) = (1− ρ)x
(
x ∈ N (S)

)
.

By the principle ‘what can happen must happen’ (Proposition 0.14), we have

(1− ρ)Xn −→
0→∞

a.s. on the event A.
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By irreducibility and the fact that Q(j, 0) > 0 for some j, it is not hard to see that
ρ(i) < 1 for all i ∈ S. By the finiteness of S, it follows that supi∈S ρ(i) < 1 and
hence

inf
x∈N (S), |x|≤N

(1− ρ)x > 0 (N ≥ 0).

It follows that
|Xn| −→

n→∞
∞ a.s. on the event A, (4.14)

i.e., the only way for the process to survive is to let the number of particles tend
to infinity.

Let h be the (strictly positive) right eigenvector of A with eigenvalue α. Then

E
[
lh(Xn+1)

∣∣FX
n

]
= (Plh)(Xn) = lαh(Xn) = αlh(Xn),

which shows that (provided that E[h(X0)] < ∞, which is satisfied for processes
started in deterministic initial states) the process

Mn := α−n
∑
i∈S

h(i)Xn(i) (n ≥ 0) (4.15)

is a nonnegative martingale. By martingale convergence, it follows that there exists
a random variable M∞ such that

Mn −→
n→∞

M∞ a.s. (4.16)

In particular, if α = 1, this proves that

|Xn| −̸→
n→∞

∞ a.s.,

which by (4.14) implies that P(A) = 0.

4.5 Second moment formula

We start with some general Markov chain theory. For any probability law µ on a
countable set S and functions f, g : S → R, let us write

Covµ(f, g) := µ(fg)− (µf)(µg)

for the covariace of f and g, whenever this is well-defined. Note that if X is a
random variable with law µ, then Covµ(f, g) = E[f(X)g(X)] − E[f(X)]E[g(X)],
in accordance with the usual formula for the covariance of two functions.
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Lemma 4.15 (Covariance formula) Let X be a Markov chain with countable
state space S and transition kernel P . Let µ be a probability law on S and let C be
a class of functions f : S → R such that

(i) f ∈ C implies Pf ∈ C.

(ii)
∑
x,y

µ(x)P (x, y)|f(y)g(y)| <∞ for all x ∈ S and f, g ∈ C.

Then, for any f, g ∈ C,

CovµPn(f, g) = Covµ(P
nf, P ng) +

n∑
k=1

µP n−kΓ(P k−1f, P k−1g), (4.17)

where
Γ(f, g) := P (fg)− (Pf)(Pg) (f, g ∈ C).

Remark 1 If X = (Xk)k≥0 is the Markov chain with initial law µ and transition
kernel P , then

CovµPn(f, g) = E
[
f(Xn)g(Xn)

]
− E

[
f(Xn)

]
E
[
g(Xn)

]
,

=:Cov
(
f(Xn), g(Xn)

)
,

and similarly

Covµ(P
nf, P ng) = Cov

(
(P nf)(X0), (P

ng)(X0)
)
.

Remark 2 The assumptions of the lemma are trivially fulfilled if we take for C
the class of all bounded real functions on S. Often, we also need the lemma for
certain unbounded functions, but in this case we need to find a class C satisfying
the assumptions of the lemma to ensure that all second moments are finite.

Proof of Lemma 4.15 The statement is trivial for n = 0. Fix n ≥ 1 and define
a function H : {0, . . . , n} → R by

H(k) := P k
(
(P n−kf)(P n−kg)

)
(0 ≤ k ≤ n).

Then

µ
(
H(n)−H(0)

)
= µP n(fg)− µ

(
(P nf)(P ng)

)
=

[
µP n(fg)− (µP hf)(µP ng)

]
−
[
µ
(
(P nf)(P ng)

)
− (µP hf)(µP ng)

]
= CovµPn(f, g)− Covµ(P

nf, P ng).
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It follows that

CovµPn(f, g)− Covµ(P
nf, P ng) =

n∑
k=1

µ
[
H(k)−H(k − 1)

]
=

n∑
k=1

µ
[
P k

(
(P n−kf)(P n−kg)

)
− P k−1

(
(P n−k+1f)(P n−k+1g)

)]
=

n∑
k=1

µP k−1Γ(P n−kf, P n−kg).

Changing the summation order (setting k′ := n− k + 1), we arrive at (4.17).

We now apply this general formula to branching processes. To simplify matters,
we will only look at finite type spaces.

Proposition 4.16 (Second moment formula) Let X be a branching process
with finite type space S and offspring distribution Q. Let V i denote a random
variable with law Q(i, · ) and assume that

A(i, j) :=E[V i(j)],

C(i; j, k) :=E[V i(j)V i(k)]
(4.18)

are finite for all i, j, k ∈ S. Let A be the linear operator with matrix A(i, j) and
for functions f, g : S → R, let C(f, g) : S → R be defined by

C(f, g)(i) :=
∑
j,k∈S

C(i; j, k)f(j)g(k).

Fox x ∈ N (S) and f : S → R, let xf :=
∑

i x(i)f(i). Then, for functions
f, g : S → R, one has

Ex
[
Xnf

]
=xAnf,

Covx
(
Xnf,Xng

)
=

n∑
k=1

xAn−kC(Ak−1f, Ak−1g),
(4.19)

where Covx denotes covariance w.r.t. to the law Px.

Proof The first formula in (4.19) has already been proved in Lemma 4.12. As in
the proof of Lemma 4.13, for any real function f on S, let lf : N (S) → R denote



4.6. SUPERCRITICAL PROCESSES 97

the ‘linear’ function lf (x) :=
∑

i f(i)x(i). Then the first formula in (4.19) says
that

P nlf = lAnf (f ∈ RS),

which motivates us to take for the class C in Lemma 4.15 the class of ‘linear’
functions lf with f : S → R any function. Using the fact that C(i; j, k) < ∞ for
all i, j, k ∈ S, it is not hard to prove that C satisfies the assumptions of Lemma 4.15.
Let x =

∑|x|
β=1 δiβ and let V 1, . . . , V |x| be independent such that V β is distributed

according to Q(iβ, · ). We calculate

Γ(lf , lg)(x) =
(
P (lf lg)− (Plf )(Plg)

)
(x)

= Cov
(∑
j,β

f(j)V β(j) ,
∑
k,γ

g(k)V γ(k)
)
=

∑
jk

f(j)g(k)
∑
β

Cov
(
V β(j), V β(k)

)
=

∑
ijk

x(i)f(j)g(k)C(i; j, k) = lC(f, g)(x),

where we have used that Cov
(
V β(i), V γ(j)

)
= 0 for β ̸= γ by independence. Then

Lemma 4.15 tells us that

CovδxPn(lf , lg) =
n∑
k=1

δxP
n−kΓ(P k−1lf , P

k−1lg) =
n∑
k=1

δxP
n−kΓ(lAk−1f , lAk−1g)

=
n∑
k=1

δxP
n−klC(Ak−1f, Ak−1g) =

n∑
k=1

lAn−kC(Ak−1f, Ak−1g)(x),

which proves the second formula in (4.19).

4.6 Supercritical processes

The aim of this section is to prove that supercritical branching processes survive.

Proposition 4.17 (Supercritical process) Let X be a branching process with
finite type space S and offspring distribution Q. Assume that the first and second
moments A(i, j) and C(i; j, k) of Q, defined in (4.18), are all finite and that A is
irreducible. Assume that the Perron-Frobenius eigenvalue α of A satisfies α > 1.
Then

Px
[
Xk ̸= 0 ∀k ≥ 0

]
> 0

(
x ∈ N (S), x ̸= 0

)
.

Proof Let h be the (strictly positive) right eigenvector of A with eigenvalue α. We
have already seen in formulas (4.15)–(4.16) in the proof of Proposition 4.14 that
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Mn = α−nXnh is a nonnegative martingale that converges to an a.s. limit M∞.
By Proposition 0.8, if we can show that M is uniformly integrable, then

Ex[M∞] = xh > 0

for all x ̸= 0, which shows that the process survives with positive probability.
Thus, it suffices to show that

sup
n≥0

Ex
[
M2

n] <∞.

We write
Ex

[
M2

n] =
(
Ex[α−nXnh]

)2
+Varx(α−nXnh),

where by the first formula in (4.19)(
Ex[α−nXnh]

)2
= (α−nxAnh)2 = (xh)2

is clearly bounded uniformly in n. We observe that since h is strictly positive and
S is finite, we can find a constant K <∞ such that

C(h, h) ≤ Kh.

Therefore, applying the second formula in (4.19), we see that

Varx(α−nXnh) = α−2n

n∑
k=1

xAn−kC(Ak−1h,Ak−1h)

= α−2n

n∑
k=1

xAn−kα2(k−1)C(h, h) ≤ α−2nK
n∑
k=1

xAn−kα2(k−1)h

= α−2nK
n∑
k=1

αn−kα2(k−1)xh = Kxh
n∑
k=1

αk−n−2 ≤ Kxhα−2

∞∑
k=0

α−k <∞,

uniformly in n ≥ 1, where we have used that α > 1.

4.7 Trimmed processes

Let X be a multitype branching process with countable type space S and offspring
distribution Q. Recall from Lemma 4.7 that

ρ(i) := Pδi
[
Xk ̸= 0 ∀k ≥ 0

]
(i ∈ S)
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is the largest solution of the equation Uρ = ρ, where U is the generating operator
of X. Let ρ ∈ [0, 1]S be any solution of Uρ = ρ. The aim of the present section
is to prove a result similar to conditioning on the future (as in Proposition 1.6) or
intertwining of processes with one trap (Exercise 3.7), but now on the level of the
individuals in a branching process. More precisely, we will divide the population
into two ‘sorts’ of individuals, with probabilities (depending on the type) ρ(i) and
1−ρ(i). In particular, if ρ is the survival probability, then we divide the population
at each time k into those individuals which we know are going to survive (or, more
precisely, that have living descendants at all times), and those whose descendants
are going to die out completely.

To this aim, let x =
∑|x|

β=1 δiβ ∈ N (S) and let χ1, . . . , χ|x| be independent Bernoulli
random variables with P[χβ = 1] = ρ(iβ). Doing this for any x ∈ N (S), we define
a probability kernel Lρ from N (S) to N (S × {0, 1}) by

Lρ(x, · ) := P
[ |x|∑
β=1

δ(iβ ,χβ) ∈ ·
]
.

Another way to describe Lρ is to note that Lρ has the branching property (4.2)
and

Lρ(δi, y) = ρ(i)1{y=δ(i,1)} + (1− ρ(i))1{y=δ(i,0)}
(
i ∈ S, y ∈ N (Ŝ)

)
.

Note that this is very similar to the thinning kernel Kρ defined in (4.6).

We set

Ŝ :=
{
(i, σ) : i ∈ S, σ ∈ {0, 1}, K(δi, δ(i,σ)) > 0

}
,

i.e.,

Ŝ := S0 ∪ S1, where

S0 := {(i, 0) : 1− ρ(i) > 0} and S1 := {(i, 0) : 1− ρ(i) > 0}.

Then Lρ is in effect a probability kernel from N (S) to N (Ŝ).

For any x ∈ N (S) and S ′ ⊂ S, let us write

x
∣∣
S′ :=

(
x(i))i∈S′ ∈ N (S ′)

for the restriction of x to S ′ (and similarly for subsets of Ŝ). With this notation,
if Y is a random variable with law Lρ(x, · ), then Y |S1 (resp. Y |S0) is a thinning
of x with the function ρ (resp. 1− ρ).
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Recall that the offspring distribution Q of X is a probability kernel from S to
N (S). Let

E :=
{
y ∈ N (Ŝ) : y

∣∣
S1

= 0
}
.

Observe that QLρ is a probability kernel from S to N (Ŝ). For given i ∈ S, the
probability of E under QLρ(i, · ) is given by

QLρ(i, E) =
∑

x∈N (S)

Q(i, x)(1− ρ)x = 1− Uρ(i) = 1− ρ(i), (4.20)

where we have used that Uρ = ρ. We define a probability kernel Q̂ from Ŝ to
N (Ŝ) by

Q̂(i, σ; · ) :=

{
QLρ

(
i, ·

∣∣ E) if σ = 0,

QLρ
(
i, ·

∣∣ Ec
)

if σ = 1,

where we are conditioning the probability lawQLρ
(
i, · ) on the event E and its com-

plement, respectively. By (4.20), these conditional probabilities are well-defined,
i.e., QLρ(i, E) > 0 for all (i, 0) ∈ S0 and QLρ(i, Ec) > 0 for all (i, 1) ∈ S1.

In words, our definition of Q̂ says that an individual of type (i, 0) ∈ S0 produces
offspring in the following manner. First, we produce offspring according to the
law Q(i, · ) of our original branching process. Next, we assign to these individuals
independent ‘signs’ 0, 1 with probabilities depending on the type of the individual
through the function ρ. Finally, we condition on producing only offspring with sign
0. Individuals of type (i, 1) ∈ S1 reproduce similarly, but in this case we condition
on producing at least one offspring with sign 1. Note that individuals of a type in
S1 always produce at least one offspring in S1, and possibly also offspring in S0.
Individuals in S0 produce only offspring in S0, and possibly no offspring at all.

Theorem 4.18 (Distinguishing surviving particles) Let X = (Xk)k≥0 be a
branching process with finite type space S and irreducible offspring distribution Q.
Assume that X survives (with positive probability). Let ρ, Lρ, Ŝ, and Q̂ be as

defined above. Then X can be coupled to a branching process Y with type space Ŝ
and offspring distribution Q̂, in such a way that

P
[
Yn = y

∣∣ (Xk)0≤k≤n
]
= Lρ(Xn, · ) (y ∈ Ŝ, n ≥ 0). (4.21)

Proof We apply Theorem 3.6. In fact, for our present purpose Theorem 3.5 is
sufficient, where the function ψ occurring there is given by

ψ(y)(i) := y(i, 0) + y(i, 1)
(
y ∈ N (Ŝ), i ∈ S

)
.



4.7. TRIMMED PROCESSES 101

Let P and P̂ denote the transition kernels of X and Y , respectively. We need to
check that

PLρ = LρP̂.

Since P,Lρ, and P̂ have the branching property (4.2), it suffices to check that

δiPLρ = δiLρP̂ (i ∈ S).

Indeed, by our definition of Q̂,

δiLρP̂ = (1− ρ(i))Q(i, 0; · ) + ρ(i)Q(i, 1; · )
= (1− ρ(i))QLρ(i, · | E) + ρ(i)QLρ(i, · | Ec) = QLρ(i, · ) = δiPLρ,

where we have used (4.20).

Proposition 4.19 (Trimmed process) Let X and Y be the branching processes
with type spaces S and Ŝ in Theorem 4.18, let ρ be as in that theorem and let U
be the generating operator of X. Then(

Yk
∣∣
S1

)
k≥0

is a branching process with type space S1 and generating operator Uρ given by

Uρϕ(i) = ρ−1(i)U(ρϕ)(i)
(
i ∈ S1, ϕ ∈ [0, 1]S1

)
,

where ρϕ denotes the pointwise product of ρ and ϕ, which is extended to a function
on S by setting ρϕ(j) = 0 for all j ∈ S\S1.

Proof Since individuals in S0 never produce offpring in S1, it is clear that the
restriction of Y to S1 is a branching process. Let Q′ be the offspring distribution
of the restricted process. Then Q′(i, · ) is just QKρ(i, · ) conditioned on producing
at least one offspring, where Kρ is the thinning kernel defined in (4.6). Then,
setting G := N (S1)\{0}, we have by (4.7)

Uρϕ(i) = δiQ
′Kϕ(G) =

δiQKρKϕ(G)
δiQKρ(G)

=
δiQKρϕ(G)
δiQKρ(G)

=
U(ρϕ)(i)

Uρ(i)
= ρ(i)−1U(ρϕ)(i),

where we have used that Uρ = ρ.

Remark In particular, if ρ is the survival probability, then the branching process
Y from Proposition 4.19 has been called the trimmed tree of X in [FS04], which
deals with continuous type spaces and continuous time. Similar constructions have
been used in branching theory long before this paper and go under different names.
It seems skeletal process is the term that is most used nowadays. An overview of
the literature on skeletal processes can be found in [EKW15].
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Exercise 4.20 (Nonbranching process) Let S be a countable set, let P ′ be a
probability kernel on S, and let Q be the offspring distribution defined by

Q(i, δj) := P ′(i, j) (i, j ∈ S),

and Q(i, x) := 0 if |x| ≠ 1. In other words: a particle at the position i produces
exactly one offspring on a position that is distributed according to P ′(i, · ). Let
X be the branching process with type space S and ofspring distribution Q and let
U be its generating operator. Show that U = P ′. In particular, this says that a
function ρ ∈ [0, 1]S solves Uρ = ρ if and only if ρ is harmonic for P ′ and Uρ = (P ′)ρ

is just the classical Doob transform of P ′.

If X is a multitype branching process with type space S and offspring distribution
Q, then let us write i → j if Q(i, {x : x(j) > 0}) > 0 and i ⇝ j if there
exist i = i0 → · · · → in = j. We say that Q is irreducible if i ⇝ j for all
i, j ∈ S. In particular, if Q has finite first moments, then this is equivalent to
irreducibility of the matrix A(i, j) in (4.18). We also define aperiodicity of Q in
the obvious way, i.e., an irreducible Q is aperiodic if the greatest common divisior
of {n ≥ 1 : P n(δi, {x : x ≥ δi}) > 0} is one for some, and hence for all i ∈ S. If Q
is irreducible and

ρ(i) = Pδi
[
Xk ̸= 0 ∀k ≥ 0

]
(i ∈ S), (4.22)

then it is not hard to see that either ρ(i) > 0 for all i ∈ S, or ρ(i) = 0 for all i ∈ S.
In the first case, we say that X survives, while in the second case we say that X
dies out.

Exercise 4.21 (Immortal process) Let X be a branching process with finite
type space S, offspring distribution Q, and generating operator U . Assume that Q
is irreducible and aperiodic and that Q(i, 0) = 0 for each i ∈ S, i.e., each individual
always produces at least one offspring. Assume also that Q(i, {x : |x| ≥ 2}) > 0
for at least one i ∈ S. Then it is not hard to show that

Pδi [Xn(j) ≥ N ] −→
n→∞

1 (i ∈ S, N <∞).

Use this to show that for any ϕ ∈ [0, 1]S that is not identically zero,

Unϕ(i) −→
n→∞

1 (i ∈ S).

In particular, this shows that the equation Uρ = ρ has only two solutions: ρ = 0
and ρ = 1.
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Exercise 4.22 (Fixed points of generating operator) Let X be a branching
process with finite type space S, offspring distribution Q, and generating operator
U . Assume that Q is irreducible and aperiodic and that Q(i, {x : |x| ≥ 2}) > 0 for
at least one i ∈ S. Assume that the survival probability ρ in (4.22) is positive for
some, and hence for all i ∈ S. Show that for any ϕ ∈ [0, 1]S that is not identically
zero,

Unϕ(i) −→
n→∞

ρ(i) (i ∈ S).

In particular, this shows that ρ is the only nonzero solution of the equation Uρ = ρ.
Hint: use Proposition 4.19 to reduce the problem to the set-up of Excercise 4.21.

Exercise 4.23 (Exponential growth) In the set-up of Excercise 4.22, assume
that Q has finite first moments. Let α be the Perron-Frobenis eigenvalue of the
first moment matrix A defined in (4.12) and let h > 0 be the associated right
eigenvector. Assume that α > 0, let M = (Mn)n≥0 be the martingale defined in
(4.15), and let M∞ := limn→∞Mn. Set

ρ′(i) := Pδi
[
M∞ > 0

]
.

Prove that ρ′ = ρ, where ρ is the survival probability defined in (4.22). Hint: show
that Uρ′ = ρ′.
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Appendix A

Supplementary material

A.1 The spectral radius

For any complex matrix A indexed by a finite set S, we define

ρ(A) := lim
n→∞

∥An∥1/n,

where ∥ · ∥ denote the operator norm associated with some norm on CS. The
arguments around (2.22) show that the limit exists and does not depend on the
choice of the norm on CS. It is also shown there that in the special case that
A is a nonnegative matrix, this definition coincides with the definition in (2.1).
Let spec(A) denote the spectrum of A, i.e., the collection of all eigenvalues. The
following lemma links ρ(A) to spec(A). In particular, for nonnegative matrices, the
Perron-Frobenius theorem tells us that ρ(A) ∈ spec(A) and the following lemma
identifies ρ(A) as the largest eigenvalue (in absolute value).

Lemma A.1 (Gelfand’s formula) One has

ρ(A) = sup{|λ| : λ ∈ spec(A)}.

Proof of Lemma Suppose that λ ∈ spec(A) and let f be an associated eigenvec-
tor. Then ∥Anf∥ = |λ|n∥f∥ which shows that ∥An∥1/n ≥ |λ| and hence ρ(A) ≥ |λ|.

To complete the proof, it suffices to show that ρ(A) ≤ λ+, where λ+ := sup{|λ| :
λ ∈ spec(A)}. We start with the case that A can be diagonalized, i.e., there
exists a basis {e1, . . . , ed} of eigenvectors with associated eigenvalues λ1, . . . , λd.

105
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By Excercise 2.13 the choice of our norm on V is irrelevant. We choose the ℓ1-
norm with respect to the basis {e1, . . . , ed}, i.e.,

∥ϕ∥ :=
∑
i=1

|ϕ(i)|,

where ϕ(1), . . . , ϕ(d) are the coordinates of ϕ w.r.t. this basis. Then

∥Anϕ∥ = ∥
d∑
i=1

ϕ(i)λni ei∥ =
d∑
i=1

|ϕ(i)| |λi|n ≤ λn+∥ϕ∥,

which proves that ∥An∥ ≤ λn+ for each n ≥ 1 and hence ρ(A) ≤ λ+.

In general, A need not be diagonalizable, but we can choose a basis such that
the matrix of A w.r.t. this basis has a Jordan normal form. Then we may write
A = D+E where D is the diagonal part of A and E has ones only on some places
just above the diagonal and zeroes elsewhere. One can check that E is nilpotent,
i.e., Em = 0 for some m ≥ 1. Moreover E commutes with D and ∥E∥ ≤ 1 if we
choose the ℓ1-norm with respect to the basis {e1, . . . , ed}. Now

An = (D + E)n =
m−1∑
k=0

(
n

k

)
Dn−kEk

and therefore

∥An∥ ≤
m−1∑
k=0

(
n

k

)
∥Dn−k∥ ≤

m−1∑
k=0

(
n

k

)
λn−k+ = λn+

m−1∑
k=0

(
n

k

)
λ−k+ =: q(n)λn+,

where
q(n) = 1 + nλ−1

+ + 1
2
n(n− 1)λ−2

+ + · · ·

is a polynomial in n of degree m. In particular, this shows that ∥An∥ ≪ (λ++ ε)n

as n→ ∞ for all ε > 0, which again yields that ρ(A) ≤ λ+.
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English-Czech glossary

A inverse A na minus prvńı
A squared, A cubed A na druhou, třet́ı

assume values nabývat hodnot
binary branching process lineárńı proces množeńı a zániku
birth-and-death process proces množeńı a zániku

Borel sigma-field borelovská sigma-algebra
Brownian motion (Wiener process) Wiener̊uv proces/Brown̊uv pohyb

closed set uzavřená množina
closure uzávěr

complement doplněk
(conditional) probability podmı́něná/absolutńı pravděpodobnost
continuous in probability stochasticky spojitý

/ spojitý podle pravděpodobnosti
continuous-time Markov chain Markovový řetězec se spojitým časem

coupling párováńı (nebo coupling)
differentiable diferencovatelný

distribution function distribučńı funkce
embedded Markov chain vnořený diskrétńı řetězec skok̊u

event jev
explosion time čas exploze
first exit time čas výstupu

first hitting time čas prvńıho nástupu, vstupu do stavu x
Galton-Watson branching process Galton-Watson̊uv proces větveńı

homogenoeus Markov process homogenńı Markovový proces
initial distribution počátečńı rozděleńı

integer valued random variable čeloč́ıselná náhodná veličina
intertwining ???
invariant law stacionárńı rozděleńı

invariant measure invariantńı mı́ra
irreducible (ne)rozložitelná/irreducibilńı
joint law sdružené rozděleńı

Kolmogorov differential equation Kolmogorovovy diferenciálńı rovnice
backwards/forwards retrospektivńı a prospektivńı

Markov chain with discrete time Markovový řetězec s diskrétńım časem
mean středńı hodnota
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nearest-neighbor random walk ???
nonexplosive chain regulárńı řetězec

null/positive recurrent state nulový/nenulový trvalý stav
(a)periodic state (ne)periodický stav
Poisson process Poison̊uv proces

probability kernel pravděpodobnostńı jádro
process with independent increments proces s nezávislými př́ır̊ustky

proper subset vlastńı podmnožina
Q-matrix, generator matice intenzit (přechod̊u)

queueing systems systémy hromadné obsluhy
random walk on the real line náhodná procházka na př́ımce

reachable (from state i) dosažitelný stav (ze stavu i)
recurrent / transient state tvrvalý/přechodný stav

rekurentńı/transientńı
reversible reversibilńı (vratný)
singleton jednoprvková množina

standard deviation rozptyl
state space stavový prostor

step function schodovitá funkce
stochastic matrix stochastická matice
stochastic process nahodný/stochastický proces

stopping time Markovský čas, zastavovaćı čas
strong markov property silná markovská vlastnost

square matrix čtverecová matice
thinning ztenčeńı

trajectory trajektorie
transition probabilities pravděpodobnosti přechod̊u

(n-step) (n-tého řádu)
transition rates intenzity přechod̊u

trap absorpčńı stav
unique up to a multiplicative constant jednoznačné až na násobek skalárem

white noise b́ılý šum
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[Fro12] G. Frobenius. Über Matrizen aus nicht negativen Elementen. Sitzungs-
ber. Königl. Preuss. Akad. Wiss. (1912), 456–477.

[FS04] K. Fleischmann and J.M. Swart. Trimmed trees and embedded particle
systems. Ann. Probab. 32(3A), 2179-2221, 2004.

109



110 BIBLIOGRAPHY

[Gan00] F.R. Gantmacher. The Theory of Matrices, Vol. 2. AMS, Providence RI,
2000.

[Geo88] H.-O. Georgii. Gibbs Measures and Phase Transitions. De Gruyter,
Berlin, 1988.

[Ken59] D.G. Kendall. Unitary dilations of Markov transition operators, and the
corresponding integral representations for transition-probability matri-
ces. Pages 139–161 in: U. Grenander (ed), Probability and Statistics.
The Harald Cramér volume. Almqvist & Wiksell, Stockholm, 1959.

[Kin63] J.F.C. Kingman. The exponential decay of Markov transition probabil-
ities. Proc. London Math. Soc. (3) 13 (1963), 337–358.
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periodicity, 20
positive recurrence, 19, 21

quasi-stationary law, 59

R-null recurrent, 51
R-positive, 51
R-recurrence, 48
R-transience, 51
random mapping representation, 13
random walk

on integer lattice, 38
on tree, 34

recurrence, 19
null, 19
positive, 19, 21

reversibility, 23

sample path, 5
self-adjoint transition kernel, 23
similar matrices, 69
spectral radius, 46, 65
stochastic process, 5
stopped

Markov chain, 13
stochastic process, 7
submartingale, 8

stopping time, 6
strong Markov property, 16
strong positive recurrence, 64
subadditivity, 46
subharmonic function, 25
submartingale, 7

convergence, 9
subprobability kernel, 52
superadditivity, 46
superharmonic function, 25
supermartingale, 7

convergence, 9
survival, 102

thinning, 70, 88
total variation distance, 41
transfer matrix, 54
transience, 19
transition

kernel, 12
probabilities, 12

trap, 26
type space, 83

uniformly integrable, 10

weak positive recurrence, 64
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