
Cutoff for non-negatively
curved Markov chains

An addition to Justin Salez’ lecture notes

J.M. Swart

November 24, 2022

Contents

1 Continuous-time Markov chains 2

2 The relaxation and mixing times 3

3 Reversibility 5

4 Covariance formulas 7

5 The Wasserstein distance 10

6 Curvature 14

7 Cut-off 16

8 Strategy of the proof 18

1



1 Continuous-time Markov chains

If A is any (finite, square, real or complex) matrix, then we define

eA :=
∞∑
n=0

1

n!
An, (1.1)

where A0 := I, the identity matrix. If A and B commute (i.e., AB = BA),
then one can check that eAeB = eAB, but this formula does not hold in
general if A and B do not commute. Let s, t ≥ 0 be real numbers. Then
certainly sA commutes with tA, so

esAe tA = e (s+ t)A (s, t ≥ 0). (1.2)

It is also clear that e0A = I, so the operators (etA)t≥0 form a semigroup. It
is easy to check that

∂
∂t

e tA = Ae tA (t ≥ 0). (1.3)

Another useful formula, that is easy to prove, is

e tA = lim
n→∞

(I + t
n
A)n. (1.4)

Let X be a finite set and let P be a probability kernel on X . For any
integer n ≥ 0, we let P n denote the n-th matrix power of P , which corre-
sponds to the n-step transition kernel of the discrete-time Markov chain with
transition kernel P . For any real t ≥ 0, we define

Pt := e t(P − I) (t ≥ 0). (1.5)

Then clearly, P0 = I and PsPt = Ps+t. A simple calculation yields

Pt =
∞∑
n=0

1

n!
tn(P − I)n =

∞∑
n=0

tn

n!

n∑
k=0

(
n

k

)
P k(−1)n−k

=
∞∑
n=0

n∑
k=0

tn

(n− k)! k!
P k(−1)n−k =

∞∑
k=0

∞∑
n=k

(−t)n−k

(n− k)!

tk

k!
P k

=
∞∑
k=0

e−t
tk

k!
P k =

∞∑
k=0

pt(k)P k,

(1.6)

where pt is the Poisson distribution with parameter t. This means that Pt has
the following interpretation. Let (σk)k≥1 be i.i.d. exponentially distributed
random variables with mean one. Set

τn :=
n∑
k=1

σk (n ≥ 0), (1.7)
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where τ0 := 0. Let (Xn)n≥0 be a (discrete time) Markov chain with transition

kernel P and an arbitrary initial law ν, and define (X̂t)t≥0 by

X̂t := Xn for τn ≤ t < τn+1, n ≥ 0. (1.8)

Then, for any 0 = t0 < · · · < tm and x0, . . . , xm ∈ X , one has

P
[
X̂t0 = x0, . . . , X̂tm = xm

]
= ν(x0)Pt1−t0(x0, x1) · · ·Ptm−tm−1(xm−1, xm).

(1.9)
Indeed, the set {τn : n ≥ 1} is a Poisson point set with intensity 1, which
means that the number of jumps made by the process (X̂t)t≥0 in the time
interval [tk−1, tk) has a Poisson distribution with parameter tk − tk−1, and
disjoint time intervals are independent.

We recall that if P is a probability kernel, then we define its associated
lazy kernel as 1

2
(P + I). Applying (1.4) to A = P − I, we see that

Pt = lim
n→∞

(
t
n
P + (1− t

n
)I
)n
. (1.10)

This means that we may view continuous-time Markov chains as “extremely
lazy” chains. Another way of interpreting (1.10) is as follows: we divide
the interval [0, t] into n pieces, and then independently in each time interval
apply P with probability t/n and do nothing with the remaining probability.
Letting n → ∞, this means, of course, that we apply P at the times of a
rate one Poisson point process.

An invariant law is a probability law π such that πP = π. If P is ir-
reducible and aperiodic, then it has a unique invariant law π and P n(x, · )
converges to π as n→∞. Even without aperiodicity, it is true that Pt(x, · )
converges to π as t→∞. This should not surprise us, since lazy chains are
always aperiodic and continuous-time Markov chains are extremely lazy.

2 The relaxation and mixing times

If µ, ν are probability measures on X , then we let Π(µ, ν) denote the space
of all probability measures γ on X ×X whose first and second marginals are
µ and ν, respectively:

µ(x) =
∑
y∈X

γ(x, y) and ν(x) =
∑
x∈X

γ(x, y). (2.1)

We call γ a coupling measure for µ and ν. The total variation distance
between µ and ν is given by

dTV(µ, ν) := inf
γ∈Π(µ,ν)

∑
(x,y)∈X 2

γ(x, y)1{x 6= y}. (2.2)
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More probabilistically, we can formulate this by saying that

dTV(µ, ν) := inf
X∼µ
Y∼ν

P[X 6= Y ], (2.3)

where the infimum is over all possible couplings of random variables X and Y
with laws µ and ν, respectively. One can check that the infimum is attained
for a suitable coupling. There are other, simpler formulas for dTV, for example

dTV(µ, ν) = 1
2

∑
x∈X

∣∣µ(x)− ν(x)
∣∣. (2.4)

If P is an irreducible probability kernel with invariant law π, then we set

DP (n) := sup
x∈X

dTV

(
π, P n(x, ·)

)
,

D̂P (t) := sup
x∈X

dTV

(
π, Pt(x, ·)

)
.

(2.5)

It is shown in [Sal22, Lemma 11] that

1
2
D̃P (n) ≤ DP (n) ≤ D̃P (n) with D̃P (n) := sup

x,y∈X
dTV

(
P n(x, ·), P n(y, ·)

)
.

(2.6)
A similar claim holds in the continuous-time setting. We define the mixing
time in the discrete and continuous-time settings as:

t
(ε)
MIX(P ) := inf

{
n ∈ N : DP (n) ≤ ε

}
,

t̂
(ε)
MIX(P ) := inf

{
t ≥ 0 : D̂P (t) ≤ ε

}
.

(2.7)

Let Spec(P ) denote the spectrum of P (i.e., the set of its complex eigen-
values) and let

λ?(P ) := max
{
|λ| : λ ∈ Spec(P ), λ 6= 1

}
. (2.8)

Then one can prove that (
DP (n)

)1/n −→
n→∞

λ?(P ). (2.9)

In other words,
DP (n) =

(
λ?(P ) + o(1)

)n
, (2.10)

where o(1) is a term that tends to zero as n → ∞. Defining the relaxation
time by

−1

tREL(P )
:= log

(
λ?(P )

)
, (2.11)
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we can rewrite (2.10) as

DP (n) = e−n/tREL(P ) + o(1). (2.12)

In other words, for large n, the quantity DP (n) decays exponentially fast,
and the relaxation time tREL(P ) is the time needed for this quantity to get
a factor e−1 smaller (comparable to the half-life in nuclear decay).

In the continuous-time setting, we can define something similar. We start
by observing that

Spec(P − I) =
{
λ− 1 : λ ∈ Spec(P )

}
. (2.13)

We can order the (complex) eigenvalues of P according to their real parts,
such that

1 = λ1 ≥ <(λ2) ≥ · · · ≥ <(λn). (2.14)

Letting λ2(P ) denote the second eigenvalue in this order, we set

t̂REL(P ) :=
1

1−<(λ2(P ))
. (2.15)

(Note that this definition is unambiguous even though there may be several
complex eigenvalues with the same real part as λ2(P ).) One can prove that

− 1

t
log D̂P (t) −→

t→∞

1

t̂REL(P )
, (2.16)

which can be rewritten as

D̂P (t) = e−t/t̂REL(P ) + o(1). (2.17)

For probability kernels that are irreducible but periodic, the discrete time
relaxation time tREL(P ) is infinite while t̂REL(P ) is finite. This is because in
this case P has eigenvalues that are different from one, but whose absolute
value is equal to one.

3 Reversibility

If π is an invariant law of P , and (X0, . . . , Xn) is a Markov chain with tran-
sition kernel P and initial law π, then the reversed chain (Xn, . . . , X0) is a
Markov chain with transition kernel

P ∗(x, y) := π(y)P (y, x)π(x)−1 (x, y ∈ X ), (3.1)
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as follows by observing that

π(x0)
n∏
k=1

P (xk−1, xk) = π(xn)
n∏
k=1

P ∗(xk, xk−1) (3.2)

for all x0, . . . , xn. A Markov chain is reversible if P = P ∗, i.e., if the detailed
balance equation

π(x)P (x, y) = π(y)P (y, x) (x, y ∈ X ) (3.3)

holds. We can define an inner product on RX by

〈f, g〉 :=
∑
x∈X

π(x)f(x)g(x). (3.4)

Then it is easy to see that

〈f, Pg〉 = 〈P ∗f, g〉, (3.5)

so P ∗ is the adjoint of P with respect to the inner product 〈 · , · 〉 and re-
versibility is equivalent to P being self-adjoint.

If P is reversible, then there exist φ1, . . . , φn ∈ RX that are eigenvectors
of P , i.e.,

Pφi = λiφi (3.6)

for some λ1, . . . , λn ∈ R, and that are moreover orthonormal in the sense
that

〈φi, φj〉 =

{
1 if i = j,
0 if i 6= j.

(3.7)

Without loss of generality we can assume that 1 = λ1 ≥ · · · ≥ λn. If P is
irreducible, then λ1 > λ2. If P is moreover aperiodic, then also λn > −1 and
hence |λi| < 1 for all i = 2, . . . , n. One has

P n(x, y) =π(y) + π(y)
n∑
i=2

λni φi(x)φi(y),

Pt(x, y) =π(y) + π(y)
n∑
i=2

e (λi − 1)tφi(x)φi(y).

(3.8)

We observe that

Spec
(

1
2
(P + I)

)
=
{

1
2
(λ+ 1) : λ ∈ Spec(P )

}
, (3.9)

which implies that the spectrum of a lazy, reversible kernel is contained in
[0, 1] and as a result

λ2

(
1
2
(P + 1)

)
= λ?

(
1
2
(P + 1)

)
. (3.10)
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4 Covariance formulas

For any probability law µ on X and functions f, g ∈ RX , we let

Covµ(f, g) := µ(fg)− (µf)(µg) (4.1)

denote the covariance of f and g under µ. There is a nice way to calculate
the covariance of two functions of a Markov chain, that is not as well-known
as it should be. If P is a probability kernel on X and f, g ∈ RX , then we set

ΓP (f, g) := 1
2

(
P (fg)− (Pf)(Pg)

)
. (4.2)

The factor 1
2

is there for historical reasons.

Lemma 4.1 (Covariance formula). One has

CovµPn(f, g) = Covµ(P nf, P ng) + 2
n∑
k=1

µP n−kΓP (P k−1f, P k−1g). (4.3)

Proof The statement is trivial for n = 0. Fix n ≥ 1 and for each 0 ≤ k ≤ n
define a function Hk : X → R by

Hk := P k
(
(P n−kf)(P n−kg)

)
(0 ≤ k ≤ n).

Then

µ
(
Hn −H0

)
= µP n(fg)− µ

(
(P nf)(P ng)

)
=
[
µP n(fg)− (µP hf)(µP ng)

]
−
[
µ
(
(P nf)(P ng)

)
− (µP hf)(µP ng)

]
= CovµPn(f, g)− Covµ(P nf, P ng).

It follows that

CovµPn(f, g)− Covµ(P nf, P ng) =
n∑
k=1

µ
[
Hk −Hk−1

]
=

n∑
k=1

µ
[
P k
(
(P n−kf)(P n−kg)

)
− P k−1

(
(P n−k+1f)(P n−k+1g)

)]
= 2

n∑
k=1

µP k−1ΓP (P n−kf, P n−kg).

Changing the summation order (setting k′ := n− k + 1), we arrive at (4.3).

In the continuous-time setting, we have a similar formula. The carré du
champ of f and g is the function Γ̂P (f, g) defined as

Γ̂P (f, g)(x) := 1
2

∑
y∈X

P (x, y)
(
f(y)− f(x)

)(
g(y)− g(x)

)
. (4.4)
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It seems there is no English name for this object. We claim that

2Γ̂P (f, g) = G(fg)− (Gf)g − f(Gg) with G := P − I. (4.5)

To see this, we calculate

G(fg)(x) =
∑
y∈X

P (x, y)
(
f(y)g(y)− f(x)g(x)

)
=
∑
y∈X

P (x, y)
{(
f(y)− f(x)

)(
g(y)− g(x)

)
+ f(x)

(
g(y)− g(x)

)
+
(
f(y)− f(x)

)
g(x)

}
= 2Γ̂P (f, g)(x) + (Gf)(x)g(x) + f(x)(Gg)(x).

(4.6)
Note that I+ εG = (1− ε)I+ εP is a probability kernel for all ε ∈ [0, 1], and
that

2ΓI+εG(f, g) = (I + εG)(fg)−
(
(I + εG)f

)(
(I + εG)g

)
= ε
[
G(fg) + (Gf)g + f(Gg)

]
+O(ε2) = 2εΓ̂P (f, g) +O(ε2)

(4.7)
as ε→ 0. This explains why Γ̂P is the right continuous-time analogue of the
object ΓP . We state the following lemma without proof.

Lemma 4.2 (Covariance formula in continuous time). One has

CovµPt(f, g) = Covµ(Ptf, Ptg) + 2

∫ t

0

µPt−sΓ̂P (Psf, Psg)ds. (4.8)

The Dirichlet form associated with an irreducible kernel P is the function
ÊP : RX → R defined as

ÊP (f) :=
∑
x∈X

π(x)Γ̂P (f, f), (4.9)

where π is the invariant law of P . Contrary to the carré du champ, which
is not very well-known outside the French literature, the Dirichlet form is a
well-known and much studied object. We claim that

ÊP (f) = −〈f,Gf〉 with G = P − I. (4.10)

Indeed, this follows from (4.5) and the observation that for any function
h ∈ RX (and hence in particular for h = fg)∑

x∈X

π(x)Gh(x) = π(P − I)h = πPh− πh = 0. (4.11)

Formula (4.10) is historically the oldest definition of the Dirichlet form, which
explains the factor 1

2
in the definition of the carré du champ.
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Lemma 4.3 (Equilibrium variance). Let P be an irredicuble probability ker-
nel with invariant law π. Then

Varπ(f) = 2

∫ ∞
0

ÊP (Psf) ds. (4.12)

Proof Since π is an invariant law, formula (4.8) simplifies to

Covπ(f, g) = Covµ(Ptf, Ptg) + 2

∫ t

0

π Γ̂P (Psf, Psg) ds. (4.13)

Setting f = g and letting t→∞, using (4.9), we arrive at (4.12), where we
use that since P is irreducible, Ptf(x) → πf for all x ∈ X and the variance
of a constant function is zero.

Inserting (4.4) into (4.9) we see that

ÊP (f) = 1
2

∑
x,y∈X

π(x)P (x, y)
(
f(y)− f(x)

)2
. (4.14)

We see from this formula that ÊP (f) ≥ 0, with equality if and only if f is
constant. We recall that the time-reversed kernel P ∗ satisfies π(x)P (x, y) =
π(y)P ∗(y, x). We see from (4.14) that

ÊP (f) = ÊP ∗(f) = Ê(P+P ∗)/2(f). (4.15)

By definition, the Poincaré constant is defined as

γ(P ) := inf
f

ÊP (f)

Varπ(f)
, (4.16)

where we take the infimum over all f that are not constant. Since EP (f)
and Varπ(f) do not change if we add a constant to f , it suffices to take the
infimum over all non-constant functions f with πf = 0. For such functions
Varπ(f) = 〈f, f〉 =: ‖f‖2

2. Since the fraction does not change if we multiply
f by a constant, we conclude that

γ(P ) := inf
{
ÊP (f) : f ∈ RX , πf = 0, ‖f‖2 = 1

}
. (4.17)

In [Sal22, Def 19], a similar claim is made but it seems ‖f‖2 is replaced by
the supremumnorm. I do not see why this should hold. In view of (4.15),

γ(P ) = γ(P ∗) = γ
(
(P + P ∗)/2

)
. (4.18)

In [Sal22, Lemma 21], it is proved that

γ(P ) = 1− λ2

(
(P + P ∗)/2

)
. (4.19)

In particular, by (2.15), this implies that

t̂REL(P ) =
1

γ(P )
if P = P ∗. (4.20)
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5 The Wasserstein distance

Assume that P is irreducible reversible. Then we can equip X with the
structure of a connected graph with set of edges E such that

{x, y} ∈ E ⇔ P (x, y) > 0 ⇔ P (y, x) > 0. (5.1)

We define the graph distance by

dist(x, y) := inf{n ≥ 0 : P n(x, y) > 0
}
. (5.2)

Equivalently, dist(x, y) is the length of the shortest path between x and y
in the graph we have just defined. For probability measures µ, ν on X , we
define (compare (2.2))

W(µ, ν) := inf
γ∈Π(µ,ν)

∑
(x,y)∈X 2

γ(x, y)dist(x, y). (5.3)

Note that since dist(x, y) ≤ 1{x 6=y}, an immediate consequence of (2.2) and
(5.3) is that

dTV(µ, ν) ≤ W(µ, ν). (5.4)

The infimum in (5.3) is obtained, since it is the infimum of the continuous
function

γ 7→
∑

(x,y)∈X 2

γ(x, y)dist(x, y) (5.5)

over the compact and convex set Π(µ, ν). Any γ for which the infimum is
obtained is called an optimal coupling. We claim that the function

(µ, ν) 7→ W(µ, ν) (5.6)

is convex. To see this, fix 0 < p < 1 and (µi, νi) (i = 1, 2). Let γi be an
optimal coupling for µi, νi. Then pγ1 + (1 − p)γ2 is a coupling measure for
µ := pµ1 + (1− p)µ2 and ν := pν1 + (1− p)ν2. Therefore,

W(µ, ν)≤ p
∑

(x,y)∈X 2

γ1(x, y)dist(x, y) + (1− p)
∑

(x,y)∈X 2

γ2(x, y)dist(x, y)

= pW(µ1, ν1) + (1− p)W(µ2, ν2).
(5.7)

Lemma 5.1 (Wasserstein metric). The Wasserstein distance is a metric on
the space of probability laws on X .
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Proof If W(µ, ν) = 0, then we can (optimally) couple random variables X
and Y with laws µ and ν such that E[dist(X, Y )] = 0. This implies X = Y
a.s. and hence µ = ν. It is also clear that W(µ, ν) = W(ν, µ), so it remains
to prove the triangle inequality. Let µ, ν, ρ be probability measures on X . By
Lemma 5.2 below, we can construct random variable X, Y, Z so that the law
of (X, Y ) is an optimal coupling for µ, ν, while (Y, Z) is an optimal coupling
for ν, ρ. Now

W(µ, ρ) =E
[
dist(X,Z)

]
≤E

[
dist(X, Y ) + dist(Y, Z)

]
=W(µ, ν) +W(ν, ρ),

(5.8)

where we have used the triangle inequality for the graph distance.

Lemma 5.2 (Combined coupling). Let (X1, Y1) and (Y2, Z2) be random vari-
ables with values in X 2, so that Y1 and Y2 have the same law. Then it is
possible to construct a random variable (X, Y, Z) with values in X 2 such that
(X, Y ) has the same law as (X1, Y1) and (Y, Z) has the same law as (Y2, Z2).

Proof Let µ(y) := P[Y1 = y] = P[Y2 = y] (y ∈ X ). For each y ∈ X such
that µ(y) > 0, define P1(y, x) := P[X1 = x |Y1 = y] and P2(y, z) := P[Z2 =
z |Y2 = y]. If µ(y) = 0, then define P1(y, x) and P2(y, z) in an arbitrary way.
Then

γ(x, y, z) := µ(y)P1(y, x)P2(y, z) (x, y, z ∈ X ) (5.9)

defines a probability measure on X 3, where it does not matter how P1(y, x)
and P2(y, z) are defined when µ(y) = 0. Let (X, Y, Z) be a random variable
with law γ. Then (X, Y ) has the same law as (X1, Y1) and (Y, Z) has the
same law as (Y2, Z2). Note that moreover, due to our construction, Z and X
are conditionally independent given Y .

For any f ∈ RX , we define the Lipschitz “norm” as

‖f‖LIP := sup
{x,y}∈E

∣∣f(x)− f(y)
∣∣, (5.10)

where E is the set of edges defined in (5.1). For any x, y ∈ X , we can find
x = x0, . . . , xd = y with d = d(x, y) and {xk−1, xk} ∈ E for all 1 ≤ k ≤ d.
Using the triangle inequality for W , we then get∣∣f(x)− f(y)

∣∣ ≤ ‖f‖LIP d(x, y) (x, y ∈ X ). (5.11)

The following lemma says that for any f ∈ RX and probability measures µ, ν
on X , one has ∣∣µf − νf ∣∣ ≤ W(µ, ν) ‖f‖LIP, (5.12)

and W(µ, ν) is the optimal constant for which this inequality holds.
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Theorem 5.3 (Wasserstein distance and Lipshitz functions). For probability
measures µ, ν on X , one has

W(µ, ν) = sup
‖f‖LIP≤1

∣∣µf − νf ∣∣. (5.13)

Proof Let γ be an optimal coupling for µ and ν and let (X, Y ) have law γ.
Then for any f ∈ RX ,∣∣∣E[f(X)

]
− E

[
f(Y )

]∣∣∣ =
∣∣∣E[f(X)− f(Y )

]∣∣∣ ≤ E
[∣∣f(X)− f(Y )

∣∣]
≤ ‖f‖LIP E

[
dist(X, Y )

]
=W(µ, ν) ‖f‖LIP.

(5.14)

This proves (5.12) and the inequality ≥ in (5.13). The opposite inequality is
a bit deeper. Recall that W(µ, ν) is the minimum of the linear function in
(5.5) over the compact and convex set Π(µ, ν). Let

∆ := sup
x,y∈X

dist(x, y) (5.15)

denote the diameter of the graph (X , E). We claim that ∆−W(µ, ν) is the
maximum of the function

γ 7→
∑
x,y

γ(x, y)
[
∆− dist(x, y)

]
(5.16)

subject to the constraints

γ ≥ 0,
∑
y

γ(x, y) ≤ µ(x) ∀x,
∑
x

γ(x, y) ≤ ν(y) ∀y. (5.17)

Indeed, if we find some γ that satisfies the constraints (5.17) that satisfies
strict inequality

∑
x,y γ(x, y) < 1, then we can make the function in (5.16)

larger by making γ larger, so the optimal γ must be a probability measure
which implies that

∑
y γ(x, y) = µ(x) and

∑
x γ(x, y) = ν(y), i.e., its first

and second marginals are µ and ν. Comparing with the definition of the
Wasserstein distance, we see that the maximum of the function in (5.16)
subject to the constraints (5.17) is indeed ∆−W(µ, ν).

It will be useful to cast (5.16) and (5.17) in a more abstract form. For
each x, y, z ∈ X and i = 1, 2, we define

ρ(z, i) :=

{
µ(z) if i = 1,
ν(z) if i = 2.

and A(z, i;x, y) :=

{
1{z=x} if i = 1,
1{z=y} if i = 2.

(5.18)
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Then we can rewrite the constraints (5.17) as

γ ≥ 0,
∑
x,y

A(z, i;x, y)γ(x, y) ≤ ρ(z, i). (5.19)

We can now apply the strong duality theorem of linear programming (Theo-
rem 5.4 below) to conclude that ∆−W(µ, ν) is the minimum of the function

g 7→
∑
z,i

g(z, i)ρ(z, i) (5.20)

subject to the constraints

g ≥ 0,
∑
z,i

A(z, i;x, y)g(z, i) ≥ ∆− dist(x, y) ∀x, y. (5.21)

Let us write gi(z) := g(z, i) and define f(z) := ∆− g2(z). Then ∆−W(µ, ν)
is the minimum of the expression∑

x

µ(x)g1(x) + ∆−
∑
x

ν(x)f(x) (5.22)

subject to the constraints

g1 ≥ 0, f ≤ ∆, f(y)− g1(x) ≤ dist(x, y) ∀x, y. (5.23)

Therefore, W(µ, ν) is the maximum of the expression∑
x

ν(x)f(x)−
∑
x

µ(x)g(x) (5.24)

subject to the constraints

g ≥ 0, f ≤ ∆, f(y)− g(x) ≤ dist(x, y) ∀x, y. (5.25)

Forgetting a constraint will only make the maximum larger, so W(µ, ν) is
less or equal than the maximum of the expression∑

x

ν(x)f(x)−
∑
x

µ(x)g(x) (5.26)

subject to the constraints

g ≥ 0, f(y)− g(x) ≤ dist(x, y) ∀x, y. (5.27)

Since dist(x, x) = 0, these constraints force f ≤ g. Making f larger will
only increase the expression in (5.26), so it suffices to take the maximum
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over all pairs (f, g) for which f = g. Thus, W(µ, ν) is less or equal than the
maximum of the expression∑

x

ν(x)f(x)−
∑
x

µ(x)f(x) (5.28)

subject to the constraints

f ≥ 0, f(y)− f(x) ≤ dist(x, y) ∀x, y. (5.29)

Adding a constant to f does not change the expression in (5.28), so we can
forget about the constraint f ≥ 0. Reversing the roles of x and y, our only
remaining constraint of course also implies −

(
f(y)− f(x)

)
= f(x)− f(y) ≤

dist(y, x) = dist(x, y), so

W(µ, ν) ≤ sup
‖f‖LIP≤1

νf − µf = sup
‖f‖LIP≤1

∣∣νf − µf ∣∣, (5.30)

where the equality follows from the fact that we can always replace f by −f .
The opposite inequality forW(µ, ν) had already been proved, so we conclude
that (5.13) holds.

Below is the strong duality theorem of linear programming.

Theorem 5.4 (Strong duality). Let A(i, j)1≤i≤n, 1≤j≤m be a real matrix, and
let
(
b(1), . . . , b(m)

)
and

(
c(1), . . . , c(m)

)
be real vectors. Assume that the

function x 7→
∑m

j=1 c(j)x(j) assumes its maximum M+ over the set

{
x ∈ Rm : x(j) ≥ 0 ∀1 ≤ j ≤ m,

m∑
j=1

A(i, j)x(j) ≤ b(i) ∀1 ≤ i ≤ n
}
. (5.31)

Then the function y 7→
∑n

i=1 b(i)y(i) assumes its minimum M− over the set

{
y ∈ Rn : y(i) ≥ 0 ∀1 ≤ i ≤ n,

n∑
i=1

A(i, j)y(i) ≥ c(j) ∀1 ≤ j ≤ m
}
, (5.32)

and one has M− = M+.

6 Curvature

We continue to assume that P is irreducible and reversible. The (Ollivier-
Ricci) curvature of P is the quantity κ(P ) ≤ 1 defined as

κ(P ) := 1− sup
{x,y}∈E

W
(
P (x, · ), P (y, · )

)
, (6.1)
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where E is the set of edges defined in (5.1). A Markov chain is said to have
positive curvature if κ(P ) > 0. In view of Theorem 5.3 and (5.10),

1− κ(P ) = sup
{x,y}∈E

sup
‖f‖LIP≤1

∣∣Pf(x)− Pf(y)
∣∣

= sup
‖f‖LIP≤1

‖Pf‖LIP.
(6.2)

For positively curved Markov chains, in the light of (2.6) and (5.4), the
following lemma gives a bound on the total variation distance to equilibrium.

Lemma 6.1 (Curvature bound). For any probability measures µ, ν on X ,
one has

(i) W(µP n, νP n)≤
(
1− κ(P )

)nW(µ, ν) (n ≥ 0),

(ii) W(µPt, νPt)≤ e−κ(P )tW(µ, ν) (n ≥ 0)
(6.3)

Proof In the discrete time setting this is proved in [Sal22, Lemma 20]. Note,
however, that the notation there is a bit different. What we call 1− κ(P ) is
called e−κ(P ) there. Our definition is more suitable for the continuous-time
setting and coincides with the definition in [Sal21].

To prove (6.3) (i), we use (6.2) and induction to obtain

‖P nf‖LIP ≤
(
1− κ(P )

)n‖f‖LIP (n ≥ 0). (6.4)

By Theorem 5.3 and (5.12), it follows that

W(µP n, νP n) = sup
‖f‖LIP≤1

∣∣µP nf − νP nf
∣∣

≤ sup
‖f‖LIP≤1

W(µ, ν)‖P nf‖LIP ≤
(
1− κ(P )

)nW(µ, ν),
(6.5)

proving (6.3) (i). To prove also (6.3) (ii), we use (1.6), which says that

Pt =
∞∑
n=0

pt(n)P n with pt(n) := e−t
tn

n!
(n ≥ 0). (6.6)

The Lipschitz “norm” is not really a norm but only a pseudonorm. Using
the triangle inequality for this pseudonorm, as well as the continuity of the
map f 7→ ‖f‖LIP, we obtain

‖Ptf‖LIP =
∥∥ ∞∑
n=0

pt(n)P n
∥∥

LIP
≤

∞∑
n=0

pt(n)
∥∥P n

∥∥
LIP

≤
∞∑
n=0

pt(n)(1− κ(P ))n‖f‖LIP = e−κ(P )t‖f‖LIP.

(6.7)
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The final equality here is not completely obvious. Recall that κ(P ) ≤ 1 by
definition. If κ(P ) ≥ 0, then we can interpret κ = κ(P ) as a probability.
Now

∑∞
n=0 pt(n)(1 − κ)n is the probability that if we have a random num-

ber of particles with a Poisson distribution with mean t, and we perform a
random thinning of these particles, where each particle has an independent
probability κ that we keep it, then no particles survive the thinning. Now it
is well-known that after thinning, the number of particles that is left is Pois-
son distributed with mean κt. Thus pκt(0) = e−κt is the probability that no
particles survive the thinning. For general κ, one can verify the final equality
in (6.7) by direct computation. We leave this as an exercise to the reader.
Formula (6.3) (ii) follows from (6.7) in the same way we derived (6.3) (i)
from (6.4).

7 Cut-off

For any probability kernel P , we define the sparsity parameter ∆(P ) by

∆(P ) := max
{x,y}∈E

1

P (x, y)
(7.1)

For positive functions fn, gn, we write fn � gn as n → ∞ if fn/gn → 0.
Recall the definitions of the mixing and relaxation times (in the continuous-

time setting) in (2.7) and (2.15). We set t̂MIX(Pn) := t̂
(1/4)
MIX (Pn). Below is a

simplified version of the main result of [Sal21].

Theorem 7.1 (Conditions for cut-off). Let Pn be a sequence of irreducible
reversible probability kernels on finite sets Xn. Assume that |Xn| ≥ 3 and
κ(Pn) ≥ 0 for all n. Assume that for each ε ∈ (0, 1),(

t̂REL(Pn) log ∆(Pn)
)2 � t̂

(ε)
MIX(Pn) as n→∞. (7.2)

Then for each 0 < ε < 1
2
, there exists a constant Cε such that

t̂
(ε)
MIX(Pn)− t̂(1−ε)MIX (Pn) ≤ Cε

√
t̂MIX(Pn) t̂REL(Pn) log ∆(Pn) (7.3)

for all n large enough.

Remark 1 Assmption (7.2) implies that t̂REL(Pn) log ∆(Pn) �
√
t̂MIX(Pn)

so that the right-hand side of (7.3) satisfies√
t̂MIX(Pn) t̂REL(Pn) log ∆(Pn)� t̂MIX(Pn). (7.4)
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This shows that the sequence of Markov chains with transition kernels Pn
exhibits cut-off : the total variation distance D̂Pn(t) changes from being close
to one to close to zero in a time interval centered around t̂MIX(Pn) whose
duration is in the limit much shorter than t̂MIX(Pn).

Remark 2 In these notes, we use a hat to indicate that a certain quantity
belongs to the continuous-time setting. This is why our notation is a bit
different from the notation in [Sal21].

Remark 3 The main result of [Sal21] is considerably more general than
Theorem 7.1. The condition κ(Pn) ≥ 0 says that Pn has non-negative
Ollivier-Ricci curvature. In [Sal21], it is shown that the result remains true
if Ollivier-Ricci curvature is replaced by Bakry-Émery curvature, a concept
that we have not treated here. The main result of [Sal21] moreover applies
to a large class of non-reversible chains as well. In that case, however, the re-
laxation time from Theorem 7.1 has to be replaced by the relaxation time of
the symmetrised kernel (P +P ∗)/2 and one needs the additional assumption
that P (x, y) > 0 if and only if P (y, x) > 0.

Remark 4 The assmption (7.2) is inspired by the so-called product condition

t̂REL(Pn) � t̂
(ε)
MIX(Pn) (ε ∈ (0, 1)), that has in the past been conjectured to

imply cut-off. This conjecture is known to be wrong, however. Typical
counterexamples, however, are extremely non-sparse, in the sense that the
Markov chain can jump from any point in the state space to any other point
with positive probability. For these counterexamples, ∆(Pn) would grow very
fast with n and (7.2) would not be satisfied. This justifies the occurrence of
∆(Pn) in (7.2).

Remark 5 The occurrence of the square in (7.2) is a less pleasant feature of
the theorem. It seems natural that in order to prove a quantitative statement
like (7.3) on the size of the “critical window” where D̂Pn(t) changes from
being close to one to being close to zero, one needs a quantitive version of
the product condition, i.e., one needs to say how much larger t̂

(ε)
MIX(Pn) is

in comparison with t̂REL(Pn). However, (7.2) is quite a strong assumption

in the sense that even when ∆(Pn) is of order one, it requires t̂
(ε)
MIX(Pn) to

be much larger than the square of t̂REL(Pn) (for example, t̂
(ε)
MIX(Pn) could be

of order (t̂REL(Pn))2+ε for any ε > 0). In [Sal22, Section 5] we have seen
that the random walk on the hypercube has cut-off with tREL(Pn) ∼ n and
tMIX(Pn) ∼ 1

2
n log n. In this example, the mixing time grows only a little bit

faster than the relaxation time (the difference is the logaritmic term) so this
example cannot be covered by Theorem 7.1. In future, one would hope to
relax condition (7.2) in this respect..
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Remark 6 In order to check assumption (7.2) of Theorem 7.1, one only needs

upper bounds on t̂REL(Pn) and lower bounds on t̂
(ε)
MIX(Pn). In particular, one

does not need to determine the precise asymptotics of t̂
(ε)
MIX(Pn), including

the preconstant, which is often very difficult. Theorem 7.1 is one of very few
results of this sort and the first one that applies to a very general class of
probability kernels, instead of only to very special classes such as birth-and-
death chains etc. In this sense, Theorem 7.1 is a breakthrough result.

8 Strategy of the proof

The relative entropy (or Kullback-Leibler divergence) or a probability measure
µ on a finite set X with respect to another probability measure π is defined
as

dKL(µ‖π) :=
∑
x∈X

µ(x) log
µ(x)

π(x)
. (8.1)

Here, for simplicity, we assume that π(x) > 0 everywhere. A related quantity,
relatively unknown, the varentropy, is defined as

VKL(µ‖π) :=
∑
x∈X

µ(x)
(

log
µ(x)

π(x)
− dKL(µ‖π)

)2

. (8.2)

Note that

VKL(µ‖π) = Varµ(f) with f(x) := log
µ(x)

π(x)
, (8.3)

since clearly µf = dKL(µ‖π). Following [Sal21], we define

V?KL(t) := sup
x∈X
VKL(Pt(x, · )‖π). (8.4)

The following theorem, which is [Sal21, Thm 5], is key to the proof of Theo-
rem 7.1.

Theorem 8.1 (Entropic concentration). Let P be an irreducible probability
kernel on a finite set X and let 0 < ε < 1

2
. Then

t̂
(ε)
MIX(P )− t̂(1−ε)MIX (P ) ≤ 2ε−2t̂REL(P )

[
1 +

√
V?KL(t̂

(1−ε)
MIX (P ))

]
. (8.5)

The second incredient of the proof of Theorem 7.1 is [Sal21, Thm 5],
which we cite here in simplified form.
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Theorem 8.2 (Varentropy estimate). Let Pn be a sequence of irreducible
reversible probability kernels with κ(Pn) ≥ 0. Fix 0 < ε < 1 and assume that√

t̂REL(Pn)� t̂
(ε)
MIX(Pn) as n→∞. (8.6)

Then there exists a constant C <∞ such that

V?KL

(
t̂
(ε)
MIX(Pn)

)
≤ C t̂

(ε)
MIX(Pn)

(
log ∆(Pn)

)2
(8.7)

for all n large enough.

We now show how Theorems 8.1 and 8.2 imply Theorem 7.1.

Proof of Theorem 7.1 We first make some trivial observations. Since
|Xn| ≥ 3 and Pn is irreducible and reversible, there must be at least one
x ∈ X that has degree two in the graph (Xn, En), where En = {{x, y} :
Pn(x, y) > 0}. It follows that P (x, y) ≤ 1

2
for at least one {x, y} ∈ En

and hence ∆(Pn) ≥ 2 for all n. Since Pn is a probability measure, |λ| ≤ 1
for all eigenvalues λ of Pn. Since Pn is irreducible, the multiplicity of the
eigenvalue one is one, so −1 ≤ <(λ2(Pn)) < 1, which by (2.15) implies
1
2
≤ t̂REL(Pn) <∞. Thus

∆(Pn) ≥ 2 and t̂REL(Pn) ≥ 1
2
∀n. (8.8)

In view of this, (7.2) implies that

t̂
(ε)
MIX(Pn)→∞ as n→∞ ∀0 < ε < 1. (8.9)

Fix 0 < ε < 1
2
. Since ∆(Pn) ≥ 2, (7.2) implies that(
t̂REL(Pn)

)2 � t̂
(ε)
MIX(Pn)

⇒
√
t̂REL(Pn)� t̂

(ε)
MIX(Pn)1/4 � t̂

(ε)
MIX(Pn),

(8.10)

where in the last step we have used (8.9). This shows that Theorem 8.2 is
applicable. Using moreover Theorem 8.1, inserting (8.7) into (8.5), we obtain

t̂
(ε)
MIX(Pn)− t̂(1−ε)MIX (Pn)≤ 2ε−2t̂REL(Pn)

[
1 +

√
C t̂

(1−ε)
MIX (Pn)

(
log ∆(Pn)

)2
]

≤ 2ε−2t̂REL(Pn)
[
1 +
√
C

√
t̂
(1−ε)
MIX (Pn) log ∆(Pn)

]
.

(8.11)
In view of (8.8) and (8.9), the expression under the square root tends to
infinity, so for sufficiently large n we can forget about the term that is 1, at
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the cost of making the constant
√
C a bit larger. Thus, we see that for some

Cε <∞

t̂
(ε)
MIX(Pn)− t̂(1−ε)MIX (Pn) ≤ Cε

√
t̂
(1−ε)
MIX (Pn) t̂REL(Pn) log ∆(Pn). (8.12)

This is almost the same as (7.3), except that in the right-hand side we need

to replace t̂
(1−ε)
MIX (Pn) by t̂MIX(Pn), which is defined as t̂

(1/4)
MIX (Pn). Assmption

(7.2) implies that t̂REL(Pn) log ∆(Pn) �
√
t̂
(1−ε)
MIX (Pn). Inserting this into

(8.12) yields

t̂
(ε)
MIX(Pn)− t̂(1−ε)MIX (Pn)� t̂

(1−ε)
MIX (Pn). (8.13)

This shows that the chain exhibits cut-off, and hence, for each 0 < ε < 1
2
,

t̂
(ε)
MIX(Pn)

t̂
(1−ε)
MIX (Pn)

−→
n→∞

1 (8.14)

As a result, in the right-hand side of (8.12), it asymptotically does not matter

if we write t̂
(1−ε)
MIX (Pn) or t̂

(1/4)
MIX (Pn). We can replace one by the other and the

inequality will remain true for large n, at the cost of perhaps having to change
the constant Cε a bit.
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