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1 Continuous-time Markov chains

If A is any (finite, square, real or complex) matrix, then we define

eA :=
∞∑
n=0

1

n!
An,

where A0 := I, the identity matrix. If A and B commute (i.e., AB = BA),
then one can check that eAeB = eAB, but this formula does not hold in
general if A and B do not commute. Let s, t ≥ 0 be real numbers. Then
certainly sA commutes with tA, so

esAe tA = e (s+ t)A (s, t ≥ 0).

It is also clear that e0A = I, so the operators (etA)t≥0 form a semigroup. It
is easy to check that

∂
∂t
e tA = Ae tA (t ≥ 0).

Another useful formula, that is easy to prove, is

e tA = lim
n→∞

(I + t
n
A)n. (1.1)

Let X be a finite set and let P be a probability kernel on X . For any
integer n ≥ 0, we let P n denote the n-th matrix power of P , which corre-
sponds to the n-step transition kernel of the discrete-time Markov chain with
transition kernel P . For any real t ≥ 0, we define

Pt := e t(P − I) (t ≥ 0).

Then clearly, P0 = I and PsPt = Ps+t. A simple calculation yields

Pt =
∞∑
n=0

1

n!
tn(P − I)n =

∞∑
n=0

tn

n!

n∑
k=0

(
n

k

)
P k(−1)n−k

=
∞∑
n=0

n∑
k=0

tn

(n− k)! k!
P k(−1)n−k =

∞∑
k=0

∞∑
n=k

(−t)n−k

(n− k)!

tk

k!
P k

=
∞∑
k=0

e−t t
k

k!
P k =

∞∑
k=0

pt(k)P
k,

(1.2)

where pt is the Poisson distribution with parameter t. This means that Pt has
the following interpretation. Let (σk)k≥1 be i.i.d. exponentially distributed
random variables with mean one. Set

τn :=
n∑

k=1

σk (n ≥ 0),
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where τ0 := 0. Let (Xn)n≥0 be a (discrete time) Markov chain with transition

kernel P and an arbitrary initial law ν, and define (X̂t)t≥0 by

X̂t := Xn for τn ≤ t < τn+1, n ≥ 0.

Then, for any 0 = t0 < · · · < tm and x0, . . . , xm ∈ X , one has

P
[
X̂t0 = x0, . . . , X̂tm = xm

]
= ν(x0)Pt1−t0(x0, x1) · · ·Ptm−tm−1(xm−1, xm).

Indeed, the set {τn : n ≥ 1} is a Poisson point set with intensity 1, which
means that the number of jumps made by the process (X̂t)t≥0 in the time
interval [tk−1, tk) has a Poisson distribution with parameter tk − tk−1, and
disjoint time intervals are independent.

We recall that if P is a probability kernel, then we define its associated
lazy kernel as 1

2
(P + I). Applying (1.1) to A = P − I, we see that

Pt = lim
n→∞

(
t
n
P + (1− t

n
)I
)n
. (1.3)

This means that we may view continuous-time Markov chains as “extremely
lazy” chains. Another way of interpreting (1.3) is as follows: we divide the
interval [0, t] into n pieces, and then independently in each time interval
apply P with probability t/n and do nothing with the remaining probability.
Letting n → ∞, this means, of course, that we apply P at the times of a
rate one Poisson point process.

An invariant law is a probability law π such that πP = π. If P is ir-
reducible and aperiodic, then it has a unique invariant law π and P n(x, · )
converges to π as n → ∞. Even without aperiodicity, it is true that Pt(x, · )
converges to π as t → ∞. This should not surprise us, since lazy chains are
always aperiodic and continuous-time Markov chains are extremely lazy.

2 The relaxation and mixing times

If µ, ν are probability measures on X , then we let Π(µ, ν) denote the space
of all probability measures γ on X ×X whose first and second marginals are
µ and ν, respectively:

µ(x) =
∑
y∈X

γ(x, y) and ν(x) =
∑
x∈X

γ(x, y).

We call γ a coupling measure for µ and ν. The total variation distance
between µ and ν is given by

dTV(µ, ν) := inf
γ∈Π(µ,ν)

∑
(x,y)∈X 2

γ(x, y)1{x ̸= y}. (2.1)
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More probabilistically, we can formulate this by saying that

dTV(µ, ν) := inf
X∼µ

Y∼ν

P[X ̸= Y ],

where the infimum is over all possible couplings of random variables X and Y
with laws µ and ν, respectively. One can check that the infimum is attained
for a suitable coupling. There are other, simpler formulas for dTV, for example

dTV(µ, ν) =
1
2

∑
x∈X

∣∣µ(x)− ν(x)
∣∣.

If P is an irreducible probability kernel with invariant law π, then we set

DP (n) := sup
x∈X

dTV

(
π, P n(x, ·)

)
,

D̂P (t) := sup
x∈X

dTV

(
π, Pt(x, ·)

)
.

(2.2)

It is shown in [Sal22, Lemma 11] that

1
2
D̃P (n) ≤ DP (n) ≤ D̃P (n) with D̃P (n) := sup

x,y∈X
dTV

(
P n(x, ·), P n(y, ·)

)
.

(2.3)
A similar claim holds in the continuous-time setting. We define the mixing
time in the discrete and continuous-time settings as:

t
(ε)
MIX(P ) := inf

{
n ∈ N : DP (n) ≤ ε

}
,

t̂
(ε)
MIX(P ) := inf

{
t ≥ 0 : D̂P (t) ≤ ε

}
.

(2.4)

Let Spec(P ) denote the spectrum of P (i.e., the set of its complex eigen-
values) and let

λ⋆(P ) := max
{
|λ| : λ ∈ Spec(P ), λ ̸= 1

}
.

Then one can prove that (
DP (n)

)1/n −→
n→∞

λ⋆(P ).

In other words,
DP (n) =

(
λ⋆(P ) + o(1)

)n
, (2.5)

where o(1) is a term that tends to zero as n → ∞. Defining the relaxation
time by

−1

tREL(P )
:= log

(
λ⋆(P )

)
,
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we can rewrite (2.5) as

DP (n) = e−n/tREL(P ) + o(1).

In other words, for large n, the quantity DP (n) decays exponentially fast,
and the relaxation time tREL(P ) is the time needed for this quantity to get
a factor e−1 smaller (comparable to the half-life in nuclear decay).

In the continuous-time setting, we can define something similar. We start
by observing that

Spec(P − I) =
{
λ− 1 : λ ∈ Spec(P )

}
.

We can order the (complex) eigenvalues of P according to their real parts,
such that

1 = λ1 ≥ ℜ(λ2) ≥ · · · ≥ ℜ(λn).

Letting λ2(P ) denote the second eigenvalue in this order, we set

t̂REL(P ) :=
1

1−ℜ(λ2(P ))
. (2.6)

(Note that this definition is unambiguous even though there may be several
complex eigenvalues with the same real part as λ2(P ).) One can prove that

−1

t
log D̂P (t) −→

t→∞

1

t̂REL(P )
,

which can be rewritten as

D̂P (t) = e−t/t̂REL(P ) + o(1).

For probability kernels that are irreducible but periodic, the discrete time
relaxation time tREL(P ) is infinite while t̂REL(P ) is finite. This is because in
this case P has eigenvalues that are different from one, but whose absolute
value is equal to one.

3 Reversibility

If π is an invariant law of P , and (X0, . . . , Xn) is a Markov chain with tran-
sition kernel P and initial law π, then the reversed chain (Xn, . . . , X0) is a
Markov chain with transition kernel

P ∗(x, y) := π(y)P (y, x)π(x)−1 (x, y ∈ X ),
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as follows by observing that

π(x0)
n∏

k=1

P (xk−1, xk) = π(xn)
n∏

k=1

P ∗(xk, xk−1)

for all x0, . . . , xn. We can define an inner product on RX by

⟨f, g⟩ :=
∑
x∈X

π(x)f(x)g(x).

Then it is easy to see that

⟨f, Pg⟩ = ⟨P ∗f, g⟩, (3.1)

so P ∗ is the adjoint of P with respect to the inner product ⟨ · , · ⟩. We claim
that if µ has a density f with respect to π, then µP has the density P ∗f
with respect to π:

µ(x) = f(x)π(x) (x ∈ X ) ⇒ µP (x) = (P ∗f)(x)π(x) (x ∈ X ). (3.2)

Indeed, this follows by writing

µP (x) =
∑
y∈X

f(y)π(y)P (y, x) =
∑
y∈X

f(y)π(x)P ∗(x, y) = (P ∗f)(x)π(x).

A Markov chain is reversible if P = P ∗, i.e., if the detailed balance equa-
tion

π(x)P (x, y) = π(y)P (y, x) (x, y ∈ X )

holds. In view of (3.1), reversibility is equivalent to P being self-adjoint. In
view of (3.2), for a reversible chain, the forward and backward evolution are
the same.

If P is reversible, then there exist ϕ1, . . . , ϕn ∈ RX that are eigenvectors
of P , i.e.,

Pϕi = λiϕi

for some λ1, . . . , λn ∈ R, and that are moreover orthonormal in the sense
that

⟨ϕi, ϕj⟩ =
{

1 if i = j,
0 if i ̸= j.

Without loss of generality we can assume that 1 = λ1 ≥ · · · ≥ λn. If P is
irreducible, then λ1 > λ2. If P is moreover aperiodic, then also λn > −1 and
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hence |λi| < 1 for all i = 2, . . . , n. One has

P n(x, y)=π(y) + π(y)
n∑

i=2

λn
i ϕi(x)ϕi(y),

Pt(x, y)=π(y) + π(y)
n∑

i=2

e (λi − 1)tϕi(x)ϕi(y).

(3.3)

We observe that

Spec
(
1
2
(P + I)

)
=
{

1
2
(λ+ 1) : λ ∈ Spec(P )

}
,

which implies that the spectrum of a lazy, reversible kernel is contained in
[0, 1] and as a result

λ2

(
1
2
(P + 1)

)
= λ⋆

(
1
2
(P + 1)

)
.

4 Covariance formulas

For any probability law µ on X and functions f, g ∈ RX , we let

Covµ(f, g) := µ(fg)− (µf)(µg)

denote the covariance of f and g under µ. There is a nice way to calculate
the covariance of two functions of a Markov chain, that is not as well-known
as it should be. If P is a probability kernel on X and f, g ∈ RX , then we set

ΓP (f, g) :=
1
2

(
P (fg)− (Pf)(Pg)

)
.

The factor 1
2
is there for historical reasons.

Lemma 4.1 (Covariance formula). One has

CovµPn(f, g) = Covµ(P
nf, P ng) + 2

n∑
k=1

µP n−kΓP (P
k−1f, P k−1g). (4.1)

Proof The statement is trivial for n = 0. Fix n ≥ 1 and for each 0 ≤ k ≤ n
define a function Hk : X → R by

Hk := P k
(
(P n−kf)(P n−kg)

)
(0 ≤ k ≤ n).

Then

µ
(
Hn −H0

)
= µP n(fg)− µ

(
(P nf)(P ng)

)
=
[
µP n(fg)− (µP hf)(µP ng)

]
−
[
µ
(
(P nf)(P ng)

)
− (µP hf)(µP ng)

]
= CovµPn(f, g)− Covµ(P

nf, P ng).
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It follows that

CovµPn(f, g)− Covµ(P
nf, P ng) =

n∑
k=1

µ
[
Hk −Hk−1

]
=

n∑
k=1

µ
[
P k
(
(P n−kf)(P n−kg)

)
− P k−1

(
(P n−k+1f)(P n−k+1g)

)]
= 2

n∑
k=1

µP k−1ΓP (P
n−kf, P n−kg).

Changing the summation order (setting k′ := n− k + 1), we arrive at (4.1).

In the continuous-time setting, we have a similar formula. The carré du
champ of f and g is the function Γ̂P (f, g) defined as

Γ̂P (f, g)(x) :=
1
2

∑
y∈X

P (x, y)
(
f(y)− f(x)

)(
g(y)− g(x)

)
. (4.2)

It seems there is no English name for this object. We claim that

2Γ̂P (f, g) = G(fg)− (Gf)g − f(Gg) with G := P − I. (4.3)

To see this, we calculate

G(fg)(x)=
∑
y∈X

P (x, y)
(
f(y)g(y)− f(x)g(x)

)
=
∑
y∈X

P (x, y)
{(

f(y)− f(x)
)(
g(y)− g(x)

)
+ f(x)

(
g(y)− g(x)

)
+
(
f(y)− f(x)

)
g(x)

}
=2Γ̂P (f, g)(x) + (Gf)(x)g(x) + f(x)(Gg)(x).

(4.4)
Note that I+ εG = (1− ε)I+ εP is a probability kernel for all ε ∈ [0, 1], and
that

2ΓI+εG(f, g)= (I + εG)(fg)−
(
(I + εG)f

)(
(I + εG)g

)
= ε
[
G(fg) + (Gf)g + f(Gg)

]
+O(ε2) = 2εΓ̂P (f, g) +O(ε2)

(4.5)
as ε → 0. This explains why Γ̂P is the right continuous-time analogue of the
object ΓP . We state the following lemma without proof.

Lemma 4.2 (Covariance formula in continuous time). One has

CovµPt(f, g) = Covµ(Ptf, Ptg) + 2

∫ t

0

µPt−sΓ̂P (Psf, Psg)ds. (4.6)
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The Dirichlet form associated with an irreducible kernel P is the function
ÊP : RX → R defined as

ÊP (f) :=
∑
x∈X

π(x)Γ̂P (f, f), (4.7)

where π is the invariant law of P . Contrary to the carré du champ, which
is not very well-known outside the French literature, the Dirichlet form is a
well-known and much studied object. We claim that

ÊP (f) = −⟨f,Gf⟩ with G = P − I. (4.8)

Indeed, this follows from (4.3) and the observation that for any function
h ∈ RX (and hence in particular for h = fg)∑

x∈X

π(x)Gh(x) = π(P − I)h = πPh− πh = 0.

Formula (4.8) is historically the oldest definition of the Dirichlet form, which
explains the factor 1

2
in the definition of the carré du champ.

Lemma 4.3 (Equilibrium variance). Let P be an irredicuble probability ker-
nel with invariant law π. Then

Varπ(f) = 2

∫ ∞

0

ÊP (Psf) ds. (4.9)

Proof Since π is an invariant law, formula (4.6) simplifies to

Covπ(f, g) = Covπ(Ptf, Ptg) + 2

∫ t

0

π Γ̂P (Psf, Psg) ds. (4.10)

Setting f = g and letting t → ∞, using (4.7), we arrive at (4.9), where we
use that since P is irreducible, Ptf(x) → πf for all x ∈ X and the variance
of a constant function is zero.

Inserting (4.2) into (4.7) we see that

ÊP (f) = 1
2

∑
x,y∈X

π(x)P (x, y)
(
f(y)− f(x)

)2
. (4.11)

We see from this formula that ÊP (f) ≥ 0, with equality if and only if f is
constant. We recall that the time-reversed kernel P ∗ satisfies π(x)P (x, y) =
π(y)P ∗(y, x). We see from (4.11) that

ÊP (f) = ÊP ∗(f) = Ê(P+P ∗)/2(f). (4.12)
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By definition, the Poincaré constant is defined as

γ(P ) := inf
f

ÊP (f)
Varπ(f)

, (4.13)

where we take the infimum over all f that are not constant. Since EP (f)
and Varπ(f) do not change if we add a constant to f , it suffices to take the
infimum over all non-constant functions f with πf = 0. For such functions
Varπ(f) = ⟨f, f⟩ =: ∥f∥22. Since the fraction does not change if we multiply
f by a constant, we conclude that

γ(P ) := inf
{
ÊP (f) : f ∈ RX , πf = 0, ∥f∥2 = 1

}
.

In [Sal22, Def 19], a similar claim is made but it seems ∥f∥2 is replaced by
the supremumnorm. I do not see why this should hold. In view of (4.12),

γ(P ) = γ(P ∗) = γ
(
(P + P ∗)/2

)
.

In [Sal22, Lemma 21], it is proved that

γ(P ) = 1− λ2

(
(P + P ∗)/2

)
.

In particular, by (2.6), this implies that

t̂REL(P ) =
1

γ(P )
if P = P ∗. (4.14)

The following lemma will be handy later.

Lemma 4.4 (Exponential bound). Let P be an irreducible probability kernel
with invariant law π. Then

Varπ(Ptf) ≤ e−2γ(P )Varπ(f) (t ≥ 0). (4.15)

Proof Differentiating (4.10) gives

∂
∂t
Varπ(Ptf) = 2

∑
x∈X

π(x) Γ̂P (Ptf, Ptf)(x) ≤ 2γ(P )Varπ(Ptf) (t ≥ 0).

By Gronwall’s lemma, this implies (4.15).
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5 The Wasserstein distance

Assume that P is irreducible reversible. Then we can equip X with the
structure of a connected graph with set of edges E such that

{x, y} ∈ E ⇔ P (x, y) > 0 ⇔ P (y, x) > 0. (5.1)

We define the graph distance by

dist(x, y) := inf{n ≥ 0 : P n(x, y) > 0
}
.

Equivalently, dist(x, y) is the length of the shortest path between x and y
in the graph we have just defined. For probability measures µ, ν on X , we
define (compare (2.1))

W(µ, ν) := inf
γ∈Π(µ,ν)

∑
(x,y)∈X 2

γ(x, y)dist(x, y). (5.2)

Note that since dist(x, y) ≤ 1{x ̸=y}, an immediate consequence of (2.1) and
(5.2) is that

dTV(µ, ν) ≤ W(µ, ν). (5.3)

The infimum in (5.2) is obtained, since it is the infimum of the continuous
function

γ 7→
∑

(x,y)∈X 2

γ(x, y)dist(x, y) (5.4)

over the compact and convex set Π(µ, ν). Any γ for which the infimum is
obtained is called an optimal coupling. We claim that the function

(µ, ν) 7→ W(µ, ν)

is convex. To see this, fix 0 < p < 1 and (µi, νi) (i = 1, 2). Let γi be an
optimal coupling for µi, νi. Then pγ1 + (1 − p)γ2 is a coupling measure for
µ := pµ1 + (1− p)µ2 and ν := pν1 + (1− p)ν2. Therefore,

W(µ, ν)≤ p
∑

(x,y)∈X 2

γ1(x, y)dist(x, y) + (1− p)
∑

(x,y)∈X 2

γ2(x, y)dist(x, y)

= pW(µ1, ν1) + (1− p)W(µ2, ν2).
(5.5)

Lemma 5.1 (Wasserstein metric). The Wasserstein distance is a metric on
the space of probability laws on X .
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Proof If W(µ, ν) = 0, then we can (optimally) couple random variables X
and Y with laws µ and ν such that E[dist(X, Y )] = 0. This implies X = Y
a.s. and hence µ = ν. It is also clear that W(µ, ν) = W(ν, µ), so it remains
to prove the triangle inequality. Let µ, ν, ρ be probability measures on X . By
Lemma 5.2 below, we can construct random variable X, Y, Z so that the law
of (X, Y ) is an optimal coupling for µ, ν, while (Y, Z) is an optimal coupling
for ν, ρ. Now

W(µ, ρ) =E
[
dist(X,Z)

]
≤E

[
dist(X, Y ) + dist(Y, Z)

]
= W(µ, ν) +W(ν, ρ),

(5.6)

where we have used the triangle inequality for the graph distance.

Lemma 5.2 (Combined coupling). Let (X1, Y1) and (Y2, Z2) be random vari-
ables with values in X 2, so that Y1 and Y2 have the same law. Then it is
possible to construct a random variable (X, Y, Z) with values in X 2 such that
(X, Y ) has the same law as (X1, Y1) and (Y, Z) has the same law as (Y2, Z2).

Proof Let µ(y) := P[Y1 = y] = P[Y2 = y] (y ∈ X ). For each y ∈ X such
that µ(y) > 0, define P1(y, x) := P[X1 = x |Y1 = y] and P2(y, z) := P[Z2 =
z |Y2 = y]. If µ(y) = 0, then define P1(y, x) and P2(y, z) in an arbitrary way.
Then

γ(x, y, z) := µ(y)P1(y, x)P2(y, z) (x, y, z ∈ X )

defines a probability measure on X 3, where it does not matter how P1(y, x)
and P2(y, z) are defined when µ(y) = 0. Let (X, Y, Z) be a random variable
with law γ. Then (X, Y ) has the same law as (X1, Y1) and (Y, Z) has the
same law as (Y2, Z2). Note that moreover, due to our construction, Z and X
are conditionally independent given Y .

For any f ∈ RX , we define the Lipschitz “norm” as

∥f∥LIP := sup
{x,y}∈E

∣∣f(x)− f(y)
∣∣, (5.7)

where E is the set of edges defined in (5.1). It is not hard to see that ∥ · ∥LIP
is a pseudonorm and that ∥f∥LIP = 0 if and only if f is constant. For any
x, y ∈ X , we can find x = x0, . . . , xd = y with d = d(x, y) and {xk−1, xk} ∈ E
for all 1 ≤ k ≤ d. Using the triangle inequality for W , we then get∣∣f(x)− f(y)

∣∣ ≤ ∥f∥LIP d(x, y) (x, y ∈ X ).

The following theorem says that for any f ∈ RX and probability measures
µ, ν on X , one has ∣∣µf − νf

∣∣ ≤ W(µ, ν) ∥f∥LIP, (5.8)
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and W(µ, ν) is the optimal constant for which this inequality holds. This
theorem is known under the name Kantorovich duality.

Theorem 5.3 (Wasserstein distance and Lipshitz functions). For probability
measures µ, ν on X , one has

W(µ, ν) = sup
∥f∥LIP≤1

∣∣µf − νf
∣∣. (5.9)

For better overview, we will split the proof of Theorem 5.3 into several
steps. The proof of the inequality ≥ in (5.9) is easy.

Lemma 5.4 (One-sided bound). For probability measures µ, ν on X , one
has

W(µ, ν) ≥ sup
∥f∥LIP≤1

∣∣µf − νf
∣∣.

Proof Let γ be an optimal coupling for µ and ν and let (X, Y ) have law γ.
Then for any f ∈ RX ,∣∣∣E[f(X)

]
− E

[
f(Y )

]∣∣∣ = ∣∣∣E[f(X)− f(Y )
]∣∣∣ ≤ E

[∣∣f(X)− f(Y )
∣∣]

≤ ∥f∥LIP E
[
dist(X, Y )

]
= W(µ, ν) ∥f∥LIP.

(5.10)

This proves (5.8) and the inequality ≥ in (5.9).

The inequality ≤ in (5.9) is a bit deeper. We will present a proof based
on the strong duality theorem of linear programming (Theorem 5.7 below).
In order for that theorem to be applicable, we first need to reformulate the
definition of the Wasserstein distance in a suitable form.

Lemma 5.5 (Alternative definition). For probability measures µ, ν on X ,
the Wasserstein distance W(µ, ν) is the minimum of the function

RX 2 ∋ γ 7→
∑
x,y

γ(x, y)dist(x, y) (5.11)

subject to the constraints

γ(x, y) ≥ 0 ∀x, y,
∑
y

γ(x, y) ≤ µ(x) ∀x,
∑
x

γ(x, y) ≤ ν(y) ∀y. (5.12)

Proof Any γ that satisfies the constraints (5.12) is a subprobability measure,
i.e.,

∑
x,y γ(x, y) ≤ 1. Since the space of subprobability measures is compact

and the function in (5.11) is continuous, there exists a γ in which the function
in (5.11) assumes its minimum. To complete the proof, it suffices to show
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that such a γ must necessarily be a probability measure with marginals µ
and ν. Imagine that it is not. Set

µ̃(x) := µ(x)−
∑
y

γ(x, y) and ν̃(y) := ν(y)−
∑
x

γ(x, y).

By assumption, p :=
∑

x µ̃(x) = 1 −
∑

x,y γ(x, y) =
∑

y ν̃(y) satisfies p > 0

so we can define probability measures µ := p−1µ̃ and ν := p−1ν̃. We now see
that

γ′(x, y) := γ(x, y) + pµ(x)ν(y)

satisfies (5.12) while the function in (5.11) has a strictly higher value in γ′

than in γ, contradicting our assumption that the maximum is assumed in γ.

For our next lemma, we let

∆ := sup
x,y∈X

dist(x, y)

denote the diameter of the graph (X , E).

Lemma 5.6 (Dual formulation). For probability measures µ, ν on X , the
Wasserstein distance W(µ, ν) is the maximum of the function

RX × RX ∋ (f, g) 7→
∑
x

ν(x)f(x)−
∑
x

µ(x)g(x) (5.13)

subject to the constraints

g(x) ≥ 0 ∀x, f(x) ≤ ∆ ∀x, f(y) ≤ g(x) + dist(x, y) ∀x, y. (5.14)

Proof By Lemma 5.5, ∆−W(µ, ν) is the maximum of the function

γ 7→
∑
x,y

γ(x, y)
[
∆− dist(x, y)

]
(5.15)

subject to the constraints (5.12). In order to apply the strong duality theorem
of linear programming (Theorem 5.7 below), we rewrite (5.15) and (5.12) in
a more abstract form. For each x, y, z ∈ X and i = 1, 2, we define

ρ(z, i) :=

{
µ(z) if i = 1,
ν(z) if i = 2.

and A(z, i;x, y) :=

{
1{z=x} if i = 1,
1{z=y} if i = 2.

Then we can rewrite the constraints (5.12) as

γ ≥ 0,
∑
x,y

A(z, i;x, y)γ(x, y) ≤ ρ(z, i).
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The strong duality theorem of linear programming (Theorem 5.7 below) now
tells us that ∆−W(µ, ν) is the minimum of the function

g 7→
∑
z,i

g(z, i)ρ(z, i) (5.16)

subject to the constraints

g ≥ 0,
∑
z,i

A(z, i;x, y)g(z, i) ≥ ∆− dist(x, y) ∀x, y. (5.17)

Let us write gi(z) := g(z, i) and define f(z) := ∆− g2(z). Then ∆−W(µ, ν)
is the minimum of the expression∑

x

µ(x)g1(x) + ∆−
∑
x

ν(x)f(x)

subject to the constraints

g1 ≥ 0, f ≤ ∆, f(y)− g1(x) ≤ dist(x, y) ∀x, y.

Therefore, W(µ, ν) is the maximum of the expression (5.13) subject to the
constraints (5.14).

Proof of Theorem 5.3 We first prove the statement under the additional
assumptions that µ(x) > 0 and ν(x) > 0 for all x ∈ X . Lemma 5.6 says that
the Wasserstein distance W(µ, ν) is the maximum of the function in (5.13)
subject to the constraints (5.14). Let (f, g) be a pair of functions for which
the function in (5.13) assumes its maximum. (The formulation of Lemma 5.6
is meant to include the fact that the maximum is assumed. This follows from
Theorem 5.7, on which Lemma 5.6 is based.) We claim that ∥g∥LIP ≤ 1. To
see this, define

g̃(x) := inf
y∈Y

[
g(y) + dist(x, y)

]
. (5.18)

Setting y = x in the right-hand side we see that g̃(x) ≤ g(x) for all x. Since
g(y) ≥ 0 and dist(x, y) ≥ 0 for all y we also have g̃ ≥ 0. The triangle
inequality and (5.14) imply that

g̃(x) + dist(x, y) = inf
z

[
g(z) + dist(x, z)

]
+ dist(x, y)

= inf
z

[
g(z) + dist(x, z) + dist(x, y)

]
≥ inf

z

[
g(z) + dist(y, z)

]
≥ f(y) ∀x, y.

(5.19)

This shows that (f, g̃) satisfies the constraints (5.14) while g̃ ≤ g. If g̃(x) <
g(x) for some x ∈ X , then by our assumption that µ(x) > 0 for all x ∈ X ,
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the value of the function in (5.13) in (f, g̃) is strictly larger than in (f, g),
which contradicts the assumption that the maximum is assumed in (f, g).
We therefore conclude that g̃ = g. By (5.18), this means that

g(x) ≤ g(y) + dist(x, y) ∀x, y.

Thus,

g(x)− g(y) ≤ dist(x, y) and g(y)− g(x) ≤ dist(y, x),

which means that |g(x)− g(y)| ≤ dist(x, y) and hence ∥g∥LIP ≤ 1.
By our arguments so far, there exists a pair of functions (f, g) for which

the function in (5.13) assumes its maximum, and each such pair must satisfy
∥g∥LIP ≤ 1. We claim that there exists a pair (f, g) for which the maximum
is assumed such that moreover infx g(x) = 0. Indeed, it this is not the case,
then we can make it true by subtracting the same constant from both f and
g, which does not change the value of the function in (5.13) and also does
not change the fact that the constraints (5.14) are satisfied.

Let (f, g) be such a pair in which the maximum is achieved and for which
infx g(x) = 0 and ∥g∥LIP ≤ 1. We claim that f = g. Setting x = y in
the constraint that f(y) ≤ g(x) + dist(x, y) forall x, y yields f ≤ g. If
f(x) < g(x) for some x ∈ X , then by our assumption that ν(x) > 0 for all
x ∈ X , the value of the function in (5.13) in (g, g) is strictly larger than in
(f, g). Therefore, by maximality, we can conclude that f = g provided we
show that the pair (f̃, g) with f̃ := g satisfies the constraints (5.14). Indeed
f̃(y) ≤ g(x) + dist(x, y) since f̃ = g and ∥g∥LIP ≤ 1. Moreover, recalling the
definition of ∆, we see that infx g(x) = 0 and ∥g∥LIP ≤ 1 imply g ≤ ∆, so
f̃ ≤ ∆ is also satisfied by f̃ = g.

We have now proved that there exists a function f with ∥f∥LIP ≤ 1 such
that W(µ, ν) = νf − µf . In particular, this proves that

W(µ, ν) ≤ sup
∥f∥LIP≤1

∣∣µf − νf
∣∣.

Together with Lemma 5.4, this proves Theorem 5.3 under the additional
assumptions that µ(x) > 0 and ν(x) > 0 for all x ∈ X . To remove these
assumptions, it suffices to show that both the left- and right-hand sides of
(5.9) are continuous as a function of (µ, ν).

By Lemma 5.1, the Wasserstein distance is a metric on the space of
probability laws on X . A metric is always continuous with respect to the
topology that it generates, which here is just the topology in which µn → µ
if µn(x) → µ(x) for all x ∈ X . This shows that W(µ, ν) is continuous in
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(µ, ν). It is easy to see that the right-hand sides of (5.9) also defines a metric
and hence is also continuous.

Below is the strong duality theorem of linear programming.

Theorem 5.7 (Strong duality). Let A(i, j)1≤i≤n, 1≤j≤m be a real matrix, and
let
(
b(1), . . . , b(m)

)
and

(
c(1), . . . , c(m)

)
be real vectors. Assume that the

function x 7→
∑m

j=1 c(j)x(j) assumes its maximum M+ over the set

{
x ∈ Rm : x(j) ≥ 0 ∀1 ≤ j ≤ m,

m∑
j=1

A(i, j)x(j) ≤ b(i) ∀1 ≤ i ≤ n
}
.

Then the function y 7→
∑n

i=1 b(i)y(i) assumes its minimum M− over the set

{
y ∈ Rn : y(i) ≥ 0 ∀1 ≤ i ≤ n,

n∑
i=1

A(i, j)y(i) ≥ c(j) ∀1 ≤ j ≤ m
}
,

and one has M− = M+.

6 Curvature

We continue to assume that P is irreducible and reversible. The (Ollivier-
Ricci) curvature of P is the quantity κ(P ) ≤ 1 defined as

κ(P ) := 1− sup
{x,y}∈E

W
(
P (x, · ), P (y, · )

)
,

where E is the set of edges defined in (5.1). A Markov chain is said to have
positive curvature if κ(P ) > 0. In view of Theorem 5.3 and (5.7),

1− κ(P )= sup
{x,y}∈E

sup
∥f∥LIP≤1

∣∣Pf(x)− Pf(y)
∣∣

= sup
∥f∥LIP≤1

∥Pf∥LIP.
(6.1)

For positively curved Markov chains, in the light of (2.3) and (5.3), the
following lemma gives a bound on the total variation distance to equilibrium.

Lemma 6.1 (Curvature bound). For any probability measures µ, ν on X ,
one has

(i) W(µP n, νP n)≤
(
1− κ(P )

)nW(µ, ν) (n ≥ 0),

(ii) W(µPt, νPt)≤ e−κ(P )tW(µ, ν) (n ≥ 0)
(6.2)
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Proof In the discrete time setting this is proved in [Sal22, Lemma 20]. Note,
however, that the notation there is a bit different. What we call 1− κ(P ) is
called e−κ(P ) there. Our definition is more suitable for the continuous-time
setting and coincides with the definition in [Sal21].

To prove (6.2) (i), we use (6.1) and induction to obtain

∥P nf∥LIP ≤
(
1− κ(P )

)n∥f∥LIP (n ≥ 0). (6.3)

By Theorem 5.3 and (5.8), it follows that

W(µP n, νP n) = sup
∥f∥LIP≤1

∣∣µP nf − νP nf
∣∣

≤ sup
∥f∥LIP≤1

W(µ, ν)∥P nf∥LIP ≤
(
1− κ(P )

)nW(µ, ν),
(6.4)

proving (6.2) (i). To prove also (6.2) (ii), we use (1.2), which says that

Pt =
∞∑
n=0

pt(n)P
n with pt(n) := e−t t

n

n!
(n ≥ 0).

The Lipschitz “norm” is not really a norm but only a pseudonorm. Using
the triangle inequality for this pseudonorm, as well as the continuity of the
map f 7→ ∥f∥LIP, we obtain

∥Ptf∥LIP =
∥∥ ∞∑

n=0

pt(n)P
n
∥∥
LIP

≤
∞∑
n=0

pt(n)
∥∥P n

∥∥
LIP

≤
∞∑
n=0

pt(n)(1− κ(P ))n∥f∥LIP = e−κ(P )t∥f∥LIP.
(6.5)

The final equality here is not completely obvious. Recall that κ(P ) ≤ 1 by
definition. If κ(P ) ≥ 0, then we can interpret κ = κ(P ) as a probability.
Now

∑∞
n=0 pt(n)(1 − κ)n is the probability that if we have a random num-

ber of particles with a Poisson distribution with mean t, and we perform a
random thinning of these particles, where each particle has an independent
probability κ that we keep it, then no particles survive the thinning. Now it
is well-known that after thinning, the number of particles that is left is Pois-
son distributed with mean κt. Thus pκt(0) = e−κt is the probability that no
particles survive the thinning. For general κ, one can verify the final equality
in (6.5) by direct computation. We leave this as an exercise to the reader.
Formula (6.2) (ii) follows from (6.5) in the same way we derived (6.2) (i)
from (6.3).
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7 Cut-off

For any probability kernel P , we define the sparsity parameter ∆(P ) by

∆(P ) := sup
{ 1

P (x, y)
: P (x, y) ̸= 0

}
. (7.1)

For positive functions fn, gn, we write fn ≪ gn as n → ∞ if fn/gn → 0.
Recall the definitions of the mixing and relaxation times (in the continuous-

time setting) in (2.4) and (2.6). We set t̂MIX(Pn) := t̂
(1/4)
MIX (Pn). Below is a

simplified version of the main result of [Sal21].

Theorem 7.1 (Conditions for cut-off). Let Pn be a sequence of irreducible
reversible probability kernels on finite sets Xn. Assume that |Xn| ≥ 3 and
κ(Pn) ≥ 0 for all n. Assume that for each ε ∈ (0, 1),(

t̂REL(Pn) log∆(Pn)
)2 ≪ t̂

(ε)
MIX(Pn) as n → ∞. (7.2)

Then for each 0 < ε < 1
2
, there exists a constant Cε such that

t̂
(ε)
MIX(Pn)− t̂

(1−ε)
MIX (Pn) ≤ Cε

√
t̂MIX(Pn) t̂REL(Pn) log∆(Pn) (7.3)

for all n large enough.

Remark 1 Assmption (7.2) implies that t̂REL(Pn) log∆(Pn) ≪
√

t̂MIX(Pn)

so that the right-hand side of (7.3) satisfies√
t̂MIX(Pn) t̂REL(Pn) log∆(Pn) ≪ t̂MIX(Pn).

This shows that the sequence of Markov chains with transition kernels Pn

exhibits cut-off : the total variation distance D̂Pn(t) changes from being close
to one to close to zero in a time interval centered around t̂MIX(Pn) whose
duration is in the limit much shorter than t̂MIX(Pn).

Remark 2 In these notes, we use a hat to indicate that a certain quantity
belongs to the continuous-time setting. This is why our notation is a bit
different from the notation in [Sal21].

Remark 3 The main result of [Sal21] is considerably more general than
Theorem 7.1. The condition κ(Pn) ≥ 0 says that Pn has non-negative
Ollivier-Ricci curvature. In [Sal21], it is shown that the result remains true
if Ollivier-Ricci curvature is replaced by Bakry-Émery curvature, a concept
that we have not treated here. The main result of [Sal21] moreover applies
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to a large class of non-reversible chains as well. In that case, however, the re-
laxation time from Theorem 7.1 has to be replaced by the relaxation time of
the symmetrised kernel (P +P ∗)/2 and one needs the additional assumption
that P (x, y) > 0 if and only if P (y, x) > 0.

Remark 4 The assmption (7.2) is inspired by the so-called product condition

t̂REL(Pn) ≪ t̂
(ε)
MIX(Pn) (ε ∈ (0, 1)), that has in the past been conjectured to

imply cut-off. This conjecture is known to be wrong, however. Typical
counterexamples, however, are extremely non-sparse, in the sense that the
Markov chain can jump from any point in the state space to any other point
with positive probability. For these counterexamples, ∆(Pn) would grow very
fast with n and (7.2) would not be satisfied. This justifies the occurrence of
∆(Pn) in (7.2).

Remark 5 The occurrence of the square in (7.2) is a less pleasant feature of
the theorem. It seems natural that in order to prove a quantitative statement
like (7.3) on the size of the “critical window” where D̂Pn(t) changes from
being close to one to being close to zero, one needs a quantitive version of
the product condition, i.e., one needs to say how much larger t̂

(ε)
MIX(Pn) is

in comparison with t̂REL(Pn). However, (7.2) is quite a strong assumption

in the sense that even when ∆(Pn) is of order one, it requires t̂
(ε)
MIX(Pn) to

be much larger than the square of t̂REL(Pn) (for example, t̂
(ε)
MIX(Pn) could be

of order (t̂REL(Pn))
2+ε for any ε > 0). In [Sal22, Section 5] we have seen

that the random walk on the hypercube has cut-off with tREL(Pn) ∼ n and
tMIX(Pn) ∼ 1

2
n log n. In this example, the mixing time grows only a little bit

faster than the relaxation time (the difference is the logaritmic term) so this
example cannot be covered by Theorem 7.1. In future, one would hope to
relax condition (7.2) in this respect..

Remark 6 In order to check assumption (7.2) of Theorem 7.1, one only needs

upper bounds on t̂REL(Pn) and lower bounds on t̂
(ε)
MIX(Pn). In particular, one

does not need to determine the precise asymptotics of t̂
(ε)
MIX(Pn), including

the preconstant, which is often very difficult. Theorem 7.1 is one of very few
results of this sort and the first one that applies to a very general class of
probability kernels, instead of only to very special classes such as birth-and-
death chains etc. In this sense, Theorem 7.1 is a breakthrough result.

8 Strategy of the proof

The relative entropy (orKullback-Leibler divergence) or a probability measure
µ on a finite set X with respect to another probability measure π is defined
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as

dKL(µ∥π) :=
∑
x∈X

µ(x) log
µ(x)

π(x)
.

Here, for simplicity, we assume that π(x) > 0 everywhere. A related quantity,
relatively unknown, the varentropy, is defined as

VKL(µ∥π) :=
∑
x∈X

µ(x)
(
log

µ(x)

π(x)
− dKL(µ∥π)

)2
.

Note that

VKL(µ∥π) = Varµ(f) with f(x) := log
µ(x)

π(x)
,

since clearly µf = dKL(µ∥π). Following [Sal21], we define

d⋆KL(t) := sup
x∈X

dKL(Pt(x, · )∥π),

V⋆
KL(t) := sup

x∈X
VKL(Pt(x, · )∥π).

(8.1)

The following theorem, which is [Sal21, Thm 5], is key to the proof of Theo-
rem 7.1.

Theorem 8.1 (Entropic concentration). Let P be an irreducible probability
kernel on a finite set X and let 0 < ε < 1

2
. Then

t̂
(ε)
MIX(P )− t̂

(1−ε)
MIX (P ) ≤ 2ε−2t̂REL(P )

[
1 +

√
V⋆
KL(t̂

(1−ε)
MIX (P ))

]
. (8.2)

The second incredient of the proof of Theorem 7.1 is [Sal21, Thm 5],
which we cite here in simplified form.

Theorem 8.2 (Varentropy estimate). Let Pn be a sequence of irreducible
reversible probability kernels with κ(Pn) ≥ 0. Fix 0 < ε < 1 and assume that√

t̂REL(Pn) ≪ t̂
(ε)
MIX(Pn) as n → ∞. (8.3)

Then there exists a constant C < ∞ such that

V⋆
KL

(
t̂
(ε)
MIX(Pn)

)
≤ C t̂

(ε)
MIX(Pn)

(
log∆(Pn)

)2
(8.4)

for all n large enough.
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We now show how Theorems 8.1 and 8.2 imply Theorem 7.1.

Proof of Theorem 7.1 We first make some trivial observations. Since
|Xn| ≥ 3 and Pn is irreducible and reversible, there must be at least one
x ∈ X that has degree two in the graph (Xn, En), where En = {{x, y} :
Pn(x, y) > 0}. It follows that P (x, y) ≤ 1

2
for at least one {x, y} ∈ En and

hence ∆(Pn) ≥ 2 for all n. Since Pn is a probability measure, |λ| ≤ 1 for all
eigenvalues λ of Pn. Since Pn is irreducible, the multiplicity of the eigenvalue
one is one, so−1 ≤ ℜ(λ2(Pn)) < 1, which by (2.6) implies 1

2
≤ t̂REL(Pn) < ∞.

Thus
∆(Pn) ≥ 2 and t̂REL(Pn) ≥ 1

2
∀n. (8.5)

In view of this, (7.2) implies that

t̂
(ε)
MIX(Pn) → ∞ as n → ∞ ∀0 < ε < 1. (8.6)

Fix 0 < ε < 1
2
. Since ∆(Pn) ≥ 2, (7.2) implies that(

t̂REL(Pn)
)2 ≪ t̂

(ε)
MIX(Pn)

⇒
√

t̂REL(Pn) ≪ t̂
(ε)
MIX(Pn)

1/4 ≪ t̂
(ε)
MIX(Pn),

(8.7)

where in the last step we have used (8.6). This shows that Theorem 8.2 is
applicable. Using moreover Theorem 8.1, inserting (8.4) into (8.2), we obtain

t̂
(ε)
MIX(Pn)− t̂

(1−ε)
MIX (Pn)≤ 2ε−2t̂REL(Pn)

[
1 +

√
C t̂

(1−ε)
MIX (Pn)

(
log∆(Pn)

)2]
≤ 2ε−2t̂REL(Pn)

[
1 +

√
C

√
t̂
(1−ε)
MIX (Pn) log∆(Pn)

]
.

(8.8)
In view of (8.5) and (8.6), the expression under the square root tends to
infinity, so for sufficiently large n we can forget about the term that is 1, at
the cost of making the constant

√
C a bit larger. Thus, we see that for some

Cε < ∞

t̂
(ε)
MIX(Pn)− t̂

(1−ε)
MIX (Pn) ≤ Cε

√
t̂
(1−ε)
MIX (Pn) t̂REL(Pn) log∆(Pn). (8.9)

This is almost the same as (7.3), except that in the right-hand side we need

to replace t̂
(1−ε)
MIX (Pn) by t̂MIX(Pn), which is defined as t̂

(1/4)
MIX (Pn). Assmption

(7.2) implies that t̂REL(Pn) log∆(Pn) ≪
√

t̂
(1−ε)
MIX (Pn). Inserting this into (8.9)

yields
t̂
(ε)
MIX(Pn)− t̂

(1−ε)
MIX (Pn) ≪ t̂

(1−ε)
MIX (Pn).
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This shows that the chain exhibits cut-off, and hence, for each 0 < ε < 1
2
,

t̂
(ε)
MIX(Pn)

t̂
(1−ε)
MIX (Pn)

−→
n→∞

1

As a result, in the right-hand side of (8.9), it asymptotically does not matter

if we write t̂
(1−ε)
MIX (Pn) or t̂

(1/4)
MIX (Pn). We can replace one by the other and

the inequality will remain true for large n, at the cost of perhaps having to
change the constant Cε a bit.

9 Entropic concentration

In this section, we sketch the main line of the proof of Theorem 8.1. The
proof is based on two lemmas.

Lemma 9.1 (Entropic upper bound). For all t ≥ 0 and 0 < ε < 1, one has

t̂
(ε)
MIX ≤ t+ ε−1t̂REL

(
1 + d⋆KL(t)

)
.

Lemma 9.2 (Entropic lower bound). Let µ, π be probability laws on X with
π(x) > 0 for all x ∈ X , and let 0 < ε < 1. Then∥∥µ− π

∥∥
TV

≤ 1− ε ⇒ dKL(µ∥π) ≤ ε−1
(
1 +

√
VKL(µ∥π)

)
.

Proof of Theorem 8.1 Applying Lemma 9.2 to µ := Pt(z, · ) gives∥∥Pt(z, · )−π
∥∥
TV

≤ 1−ε ⇒ dKL

(
Pt(z, · )

∥∥π) ≤ ε−1
(
1+
√
VKL(Pt(z, · )∥π)

)
.

Taking the supremum over all initial states, recalling (8.1), we obtain that

d⋆KL(t) ≤ 1− ε ⇒ d⋆KL(t) ≤ ε−1
(
1 +

√
V⋆
KL(t)

)
.

Clearly d⋆KL(t) ≤ 1− ε holds for t := t̂
(1−ε)
MIX , so Lemma 9.1 gives

t̂
(ε)
MIX ≤ t̂

(1−ε)
MIX + ε−1t̂REL

[
1 + d⋆KL

(
t̂
(1−ε)
MIX

)]
≤ t̂

(1−ε)
MIX + ε−1t̂REL

[
1 + ε−1

(
1 +

√
V⋆
KL(t̂

(1−ε)
MIX )

)]
≤ t̂

(1−ε)
MIX + 2ε−2t̂REL

[
1 +

√
V⋆
KL(t̂

(1−ε)
MIX )

]
.

The proof of Lemma 9.1 depends on one further lemma, that is well-
known to experts in the field. For the proof below, I got a lot of help from
Justin Salez.
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Lemma 9.3 (Poincaré bound). Let P be an irreducible probability kernel
with invariant law π, and let γ(P ) be its Poincaré constant, defined in (4.13).
Then ∥∥µPt − π

∥∥
TV

≤ 1
2
e−γ(P )t

√∥∥∥µ
π

∥∥∥
∞

(t ≥ 0), (9.1)

Proof We observe that for any probability measure µ on X , one has

∥∥µ− π
∥∥
TV

= 1
2

∑
x∈X

∣∣µ(x)− π(x)
∣∣ = 1

2

∑
x∈X

π(x)

∣∣∣∣µ(x)π(x)
− 1

∣∣∣∣ = 1
2

∥∥∥µ
π
− 1
∥∥∥
1,π

,

where ∥ · ∥p,π denotes the Lp-norm with respect to π. This allows us to
estimate

∥∥µPt − π
∥∥
TV

= 1
2

∥∥∥∥µPt

π
− 1

∥∥∥∥
1,π

≤ 1
2

∥∥∥∥µPt

π
− 1

∥∥∥∥
2,π

= 1
2

√
Varπ

(
µPt

π

)
.

Here, by (3.2)
µPt

π
= P ∗

t

(µ
π

)
.

Now Lemma 4.4 and the fact that γ(P ) = γ(P ∗) allow us to estimate

Varπ

(
P ∗
t

(µ
π

))
≤ e−2γ(P )t Varπ

(µ
π

)
.

Here

Varπ

(µ
π

)
=
∑
x∈X

π(x)

(
µ(x)

π(x)

)2

−

(∑
x∈X

π(x)
µ(x)

π(x)

)2

≤
∑
x∈X

π(x)

(
µ(x)

π(x)

)2

≤
∥∥∥µ
π

∥∥∥
∞

∑
x∈X

π(x)
µ(x)

π(x)
=
∥∥∥µ
π

∥∥∥
∞
,

where in the last step we have used that
∑

x µ(x) = 1. Inserting this into
our previous formula, then in the one before etcetera, we arrive at (9.1).

Proof of Lemma 9.1 Since we are also assuming that P is reversible, we
have γ(P ) = 1/t̂REL by (4.14). Fix t ≥ 0 and 0 < ε < 1 and set

s := ε−1t̂REL

(
1 + d⋆KL(t)

)
.

We need to show that for each z ∈ X ,∥∥Pt+s(z, · )− π
∥∥
TV

≤ ε.
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Fix z ∈ X and set µ := Pt(z, · ). Then we need to show that∥∥µPs − π
∥∥
TV

≤ ε. (9.2)

Let

A :=
{
x ∈ X : log

µ(x)

π(x)
< 1 + 2ε−1dKL(µ∥π)

}
,

and let µ̂ := µ( · |A) be µ conditioned on A. Then∥∥µPs − π
∥∥
TV

≤
∥∥µPs − µ̂Ps

∥∥
TV

+
∥∥µ̂Ps − π

∥∥
TV

,

where ∥∥µPs − µ̂Ps

∥∥
TV

≤
∥∥µ− µ̂

∥∥
TV

= µ(Ac).

We will prove below that
µ(Ac) ≤ 1

2
ε. (9.3)

To estimate
∥∥µ̂Ps − π

∥∥
TV

, we apply Lemma 9.3 to µ̂, using the fact that

γ(P ) = 1/t̂REL. We start by observing that by the definition of A,∥∥∥∥ µ̂π
∥∥∥∥
∞

=
1

µ(A)
sup
x∈A

µ(x)

π(x)
≤ 1

µ(A)
exp

(
1 + 2ε−1dKL(µ∥π)

)
Using also (9.3), we have µ(A) ≥ 1/2 ≥ e−1, which allows us to estimate∥∥∥∥ µ̂π

∥∥∥∥
∞

≤ exp
(
2 + 2ε−1dKL(µ∥π)

)
.

Now (9.1) gives∥∥µ̂Ps − π
∥∥
TV

≤ 1
2
exp

(
1 + ε−1dKL(µ∥π)−

s

t̂REL

)
= 1

2
exp

(
1− ε−1

)
,

where we have used the definition of s. We note that log r ≤ r − 1 for
all r > 0. Applying this to r = ε−1 yields − log ε ≤ ε−1 − 1 and hence
ε ≥ exp(1 − ε−1). Inserting this into our previous formula, combining with
(9.3), we arrive at (9.2).

It therefore remains to prove (9.3). By the definition of A,

(
1 + 2ε−1dKL(µ∥π)

)
µ(Ac)≤

∑
x∈Ac

µ(x) log
µ(x)

π(x)

= dKL(µ∥π) +
∑
x∈A

µ(x) log
π(x)

µ(x)
.
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Since log r ≤ r − 1, we have∑
x∈A

µ(x) log
π(x)

µ(x)
≤ π(A)− µ(A) ≤ 1− µ(A).

This yields (
1 + 2ε−1dKL(µ∥π)

)
µ(Ac) ≤ dKL(µ∥π) + µ(Ac)

⇒ 2ε−1dKL(µ∥π)µ(Ac) ≤ dKL(µ∥π)
⇒ µ(Ac) ≤ 1

2
ε,

as claimed.

Proof of Lemma 9.2 The function log(µ/π) has mean dKL(µ∥π) and vari-
ance VKL(µ∥π) under µ. Chebyshev’s inequality then tells us that

µ
({

x ∈ X : log
(µ(x)
π(x)

)
≤ dKL(µ∥π)− ε−1

√
VKL(µ∥π)

})
≤ ε2.

Setting

A :=
{
x ∈ X : µ(x) ≥ π(x)eθ

}
with θ := dKL(µ∥π)− ε−1

√
VKL(µ∥π),

this means that µ(A) ≥ 1−ε2. On the other hand, we see from the definition
of A that π(A) ≤ e−θµ(A). It follows that

µ(A)− π(A) ≥ (1− ε2)(1− e−θ),

which by our assumption that ∥µ− π∥ ≤ 1− ε implies that

1− ε ≥ (1− ε2)(1− e−θ).

It follows that

1 ≥ (1 + ε)(1− e−θ) ⇒ ε ≤ (1 + ε)e−θ ⇒ eθ ≤ ε−1 + 1,

from which we conclude that θ ≤ log(ε−1 + 1). Since log(1 + u) ≤ u, this
implies θ ≤ ε−1. Filling in the definition of θ, this yields

dKL(µ∥π)− ε−1
√

VKL(µ∥π) ≤ ε−1 ⇒ dKL(µ∥π) ≤ ε−1
(
1+

√
VKL(µ∥π)

)
.

26



10 Varentropy estimate

In this section, we sketch the main line of the proof of Theorem 8.2. The
proof is based on three lemmas.

Lemma 10.1 (Local concentration). Assume that the curvature κ = κ(P )
is nonnegative. Then

Pt(f
2)− (Ptf)

2 ≤ t∥f∥2LIP (t ≥ 0, f ∈ RX ). (10.1)

Lemma 10.2 (Logarithmic gradient estimate). There exists a finite constant
C such that for any t ≥ diam(X )/4, one has

sup
z∈X

∥∥∥∥log Pt(z, · )
π( · )

∥∥∥∥
LIP

≤ C(1 + log∆).

Lemma 10.3 (Diameter bound). For any 0 < ε < 1, one has

diam(X ) ≤ 2t̂
(ε)
MIX +

√
8t̂

(ε)
MIX

1− ε
+

√
8tREL

1− ε
.

Proof of Theorem 8.2 Applying Lemma 10.1 to f := Pt(z, · )/π( · ), then
using Lemma 10.2 and taking the supremum over all initial states, we obtain

V⋆
KL(t) ≤ t ·

(
C(1 + log∆)

)2
,

for all t ≥ diam(X )/4. In particular, if (8.3) holds, then Lemma 10.3 implies

that t
(ε)
MIX(Pn) ≥ diam(Xn)/4 for n sufficiently large, so we can apply our

previous estimate to t = t̂
(ε)
MIX and obtain

V⋆
KL(t̂

(ε)
MIX) ≤ C2t̂

(ε)
MIX(1 + log∆)2.

Since ∆ ≥ 2, this implies (8.4).

Remark 1 Lemma 10.1 is the only place where nonnegative curvature is
used and Lemma 10.2 is the only place where the sparsity constant ∆ comes
into the proofs.

Proof of Lemma 10.1 Lemma 4.2 tells us that

Pt(f
2)(x)−

(
Ptf(x)

)2
= 2

∫ t

0

Pt−sΓ̂P (Psf, Psf)(x)ds

Formula (4.2) and the fact that P (x, y) > 0 only if {x, y} is an edge of the
graph (V,E) yield the bound

2ΓP (Psf, Psf)(x) ≤ ∥Psf∥2LIP.
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Finally, formula (6.5) tells us that ∥Ptf∥LIP ≤ e−κt∥f∥LIP. Putting every-
thing together, we obtain the estimate

Pt(f
2)(x)−

(
Ptf(x)

)2 ≤ ∥f∥2LIP
∫ t

0

e−2κsds, (10.2)

which yields (10.1).

Remark 2 The factor t in (10.1) gives rise to the factor t̂
(ε)
MIX(Pn) on the

right-hand side of (8.4), which then gives rise to the factor

√
t̂
(1−ε)
MIX (Pn) on

the right-hand side of (8.9). This factor is the reason why in Theorem 7.1 we
need the rather strong assumption (7.2), which implies that the relaxation
time must be much smaller than the root of the mixing time (instead of just
the mixing time, plus some sparseness factor). As discussed in Remark 5
below Theorem 7.1, this is the main weakness of the theorem. If κ > 0 and
one has explicit lower bounds on κ, then it may be better to estimate the
right-hand side of (10.2) from above by∫ ∞

0

e−2κsds =
1

2κ
.

If κ(Pn) does not tend to zero too fast, this may yield cutoff in situations
where Theorem 7.1 is not applicable.

Proof of Lemma 10.2 Fix z ∈ X and define f(x) := Pt(z, x)/π(x) (x ∈ X ).
Then ∥∥∥∥log Pt(z, · )

π( · )

∥∥∥∥
LIP

= sup
{x,y}∈E

log
(f(y)
f(x)

)
.

Recall that E =
{
{x, y} : P (x, y) > 0

}
and recall the definition of the

sparsity parameter ∆(P ) in (7.1). We observe that ∆(P ) is the optimal
constant such that the inequality

1{P (x,y)>0} ≤ ∆(P )P (x, y)

holds for all x, y ∈ X . This allows us to estimate

sup
{x,y}∈E

f(y)

f(x)
≤ ∆(P ) sup

x

∑
y

P (x, y)
f(y)

f(x)
= ∆(P ) sup

x

Pf(x)

f(x)
. (10.3)

Here

Pf(x) =
∑
y

P (x, y)f(y) =
∑
y

P (x, y)
Pt(z, y)

π(y)

!
=
∑
y

P (y, x)

π(x)
Pt(z, y) =

1

π(x)

n∑
k=0

pt(k)P
k+1(z, x),
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where pt is the Poisson distribution with parameter t and in the step marked
! we have used reversibility. We observe that

tpt(k) = e−t t
k+1

k!
= (k + 1)pt(k + 1).

Inserting this into our previous formula yields

tπ(x)Pf(x) =
n∑

k=0

(k + 1)pt(k + 1)P k+1(z, x) =
n∑

k=0

kpt(k)P
k(z, x).

Dividing both sides by π(x)f(x) = Pt(z, x) yields

t
Pf(x)

f(x)
=

∑n
k=0 kpt(k)P

k(z, x)∑n
k=0 pt(k)P

k(z, x)
=
∑
k=0

kqt,x(k)

with qt,x(k) :=
pt(k)P

k(z, x)∑n
k=0 pt(k)P

k(z, x)
.

(10.4)

Jensen’s inequality gives∑
k=0

kqt,x(k) ≤ log
(∑

k=0

ekqt,x(k)
)
= log

(∑n
k=0 e

kpt(k)P
k(z, x)∑n

k=0 pt(k)P
k(z, x)

)
.

We can estimate the numerator inside the logarithm as

n∑
k=0

ekpt(k)P
k(z, x) ≤

n∑
k=0

ekpt(k)

=
n∑

k=0

eke−t t
k

k!
= e(e−1)t

n∑
k=0

e−et (et)
k

k!
= e(e−1)t,

which yields ∑
k=0

kqt,x(k) ≤ (e− 1)t+ log
( 1

Pt(z, x)

)
.

Inserting this into (10.4) and dividing by t, we obtain the estimate

Ptf(x)

f(x)
≤ e− 1 + t−1 log

( 1

Pt(z, x)

)
. (10.5)

This estimate is not very good when t is too small, since in that case 1/t
is large and more seriously, Pt(z, x) can be very small when the distance
between z and x is large. This why in the lemma, we assume that t ≥
diam(X )/4.

29



To find a lower bound on Pt(z, x) for t ≥ diam(X )/4, we define a lazy
probability kernel by

P̂ :=
1

4
P +

3

4
I.

For each x, y ∈ X , we can find a walk of length diam(X ) that starts at x and
ends at y, such that each step of the walk has probability ≥ 1/(4∆(P )) under
the kernel P̂ . Indeed, we can certainly find such a walk of length dist(x, y),
and then we can let it stay at y for the remaining diam(X )−dist(x, y) steps,
which has probability ≥ 3/4 for each step. It follows that for k = diam

P̂ k(x, y) ≥
( 1

4∆(P )

)diam(X ) ∀x, y ∈ X , (10.6)

which by induction is easily seen to imply that (10.6) holds for all k ≥ diam.
It is not hard to prove (for example using (1.3)) that

Pt =
∞∑
k=0

p4t(k)P̂
k.

Using (10.6) this yields the estimate, for all t ≥ diam(X )/4,

Pt(x, z) ≥
( 1

4∆(P )

)diam(X )
∞∑

k=diam(X )

p4t(k) ≥ 1
2

( 1

4∆(P )

)diam(X )
,

where in the last step we have used that if the intensity 4t of the Poisson
distribution is at least diam(X ), then a random variable with this distribution
is ≥ diam(X ) with probability ≥ 1/2. Inserting this into (10.5) yields

Ptf(x)

f(x)
≤ e− 1 + t−1

[
log 2 + diam(X )

(
log 4 + log∆(P )

)]
≤ e− 1 +

4 log 2

diam(X )
+ 4 log 4 + 4 log∆(P )

≤C
(
1 + log∆(P )

)
,

where in the second step we have used that t ≥ diam(X )/4. Inserting this
into (10.3) yields

sup
{x,y}∈E

f(y)

f(x)
≤ ∆(P )C

(
1 + log∆(P )

)
which in the end yields an estimate of the form∥∥∥∥log Pt(z, · )

π( · )

∥∥∥∥
LIP

≤ log∆ + logC + log(1 + log∆) ≤ C ′(1 + log∆)

for some finite constant C ′.
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