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Chapter 1

Markov chains

1.1 Discrete time

Let S be a finite set. By definition, a probability kernel on S is a function P :
S × S → [0, 1] such that

∑
y P (x, y) = 1 for all x ∈ S. Let RS denote the space of

all functions f : S → R. We write

Pf(x) :=
∑
y

P (x, y)f(y) (x ∈ S),

i.e., we associate a probability kernel P with the linear map P : RS → RS such
that (P (x, y))x,y∈S is its matrix.

By definition, a Markov chain with transition kernel P is an S-valued stochastic
process X = (Xk)k≥0 such that

E
[
f(Xk+1)

∣∣ (X0, . . . , Xk)
]

= Pf(Xk) a.s.
(
k ≥ 0, f ∈ RS

)
. (1.1)

Lemma 1.1 (Markov chain) An S-valued stochastic process X = (Xk)k≥0 is a
Markov chain with transition kernel P if and only if

P
[
(X0, . . . , Xn) = (x0, . . . , xn)

]
= P[X0 = x0]P (x0, x1) · · ·P (xn−1, xn) (1.2)

for all n ≥ 0, x0, . . . , xn ∈ S.

Proof We first prove by induction that (1.1) implies (1.2). The statement is
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6 CHAPTER 1. MARKOV CHAINS

certainly true for n = 0 so assume that it holds for n. Then (1.1) implies that

P
[
(X0, . . . , Xn+1) = (x0, . . . , xn+1)

]
= E

[
E
[
1{(X0,...,Xn)=(x0,...,xn)}1{Xn+1=xn+1}

∣∣ (X0, . . . , Xn)
]]

= E
[
1{(X0,...,Xn)=(x0,...,xn)}E

[
1{Xn+1=xn+1}

∣∣ (X0, . . . , Xn)
]]

= E
[
1{(X0,...,Xn)=(x0,...,xn)}P (Xn, xn+1)

]
= P[X0 = x0]P (x0, x1) · · ·P (xn−1, xn),

where in the last step we have used the induction hypothesis.
To check that conversely (1.2) implies (1.1), by the definition of the conditional
expectation, we must check that Pf(Xk) is measurable with respect to the σ-field
σ(X0, . . . , Xk) generated by the random variables X0, . . . , Xk, and moreover, for
any A ∈ σ(X0, . . . , Xk),

E[1APf(Xk)] = E[1Af(Xk+1)].

By linearity, it suffices to check this for events of the form A = {(X0, . . . , Xk) =
(x0, . . . , xk)} and functions f(x) = 1{Xk+1=xk+1}, which we leave to the reader.

Lemma 1.1 shows that the law of a Markov chain X = (Xk)k≥0 is uniquely de-
termined by its initial law µ(x) := P[X0 = x] and its transition kernel. We write
Pµ,Eµ to indicate that we are considering the Markov chain with initial law µ
and more specifically Px := Pδx , Ex := Eδx for the Markov chain with initial state
X0 = x. (Here δx(y) := 1{x=y} is the Dirac measure at x.) We see from (1.2) that

Px[Xk = y] =
∑
x1

· · ·
∑
xk−1

P (x, x1) · · ·P (xk−1, y) = P k(x, y), (1.3)

where P k denotes the k-th power of P . For any function f ∈ RS and probability
law µ on S, let us set

µf :=
∑
x

µ(x)f(x),

i.e., we associate µ with a linear form µ : RS → R. Then µP k is the concatenation
of a linear map P k : RS → RS and a linear form µ : RS → R, which yields another
linear form (µP k) : RS → R, which by (1.3) corresponds to

(µP k)(y) = Pµ[Xk = y],

i.e., if the initial law is µ, then µP k is the law of the Markov chain at time k.
Similarly

P kf(x) = Ex[f(Xk)]



1.1. DISCRETE TIME 7

gives the expectation of f at time k as a function of the initial state.

Let µk(x) := Pµ[Xk = x] be the the law at time k of the Markov chain with initial
law µ. Then (µk)k≥0 solves the forward equations

µk+1 = µkP = P †µk,

where we multiply the vector1 µ from the right with the matrix P , or equivalently
from the left with the hermitian conjugate

P †(x, y) := P (y, x) (x, y ∈ S)

of P . Likewise, if fk(x) := Ex[f(Xk)] denotes the expectation of f at time k as a
function of the initial state, then (fk)k≥0 solves the backward equations

fk+1 = Pfk,

where this time the multiplication is from the left.

A fixed point of the forward equations, i.e., a probability measure π such that

π = πP (1.4)

is called an invariant law . If (Xk)k≥0 is started in an invariant law π, then Pπ[Xk =
x] = π(x) for all k and in fact (Xk)k≥0 is a stationary process. A fixed point of the
backward equations, i.e., a function h such that

h = Ph (1.5)

is called a harmonic function. Harmonic functions are characterized by the prop-
erty that (h(Xk))k≥0 is a martingale. A typical example of a harmonic function
is the following. Let S ′ ⊂ S be a set such that P (x, y) = 0 for all x ∈ S ′ and
y ∈ S\S ′, i.e., once the process enters S ′, no escape is possible. Then the trapping
probability

h(x) := Px[∃k ≥ 0 s.t. Xk ∈ S ′] (x ∈ S)

is a harmonic function. In our present set-up, where S is finite, it can even be
proved that all harmonic functions are linear combinations of functions of this
form.

Every probability kernel P on a finite set has at least one invariant law and at least
one harmonic function; the last statement is trivial, since the constant function 1

1Throughout these notes, we do not distinguish beteen row and column vectors.
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is always harmonic. It can be shown that one has uniqueness of the invariant law
provided P is irreducible, which means that

∀x, y ∈ S ∃k ≥ 0 s.t. P k(x, y) > 0. (1.6)

In this case moreover π(x) > 0 for all x ∈ S. Irreducibility also implies that all
harmonic functions are constant. If P is irreducible, then the greatest common
divisor of {k ≥ 1 : P k(x, x) > 0} does not depend on the choice of the point x ∈ S;
P is called aperiodic if this number is one. If P is irreducible and aperiodic, then
it is ergodic in the sense that for any initial law µ, one has

µP k −→
k→∞

π,

where π is the unique invariant law. From this, it is easy to see that also

P kf −→
k→∞

(πf)1,

i.e., P kf converges to a constant multiple of the constant function 1.

A probability law π is reversible if it satisfies the detailed balance equations

π(x)P (x, y) = π(y)P (y, x) (x, y ∈ S). (1.7)

One can show that this is equivalent to the statement that π is an invariant law
and moreover

Pπ
[
(X0, . . . , Xn) = (x0, . . . , xn)

]
= Pπ

[
(X0, . . . , Xn) = (xn, . . . , x0)

]
,

i.e., the stationary process with one-dimensional law π is symmetric with respect
to time reversal . Reversibility is a ‘nice’ property; for an irreducible probability
kernel, it will ‘typically’ not be the case that the unique invariant law is reversible.
We may define an inner product (or pseudo-inner product, if π is not everywhere
positive) on RS by

〈f |g〉π :=
∑
x

π(x)f(x)g(x). (1.8)

Then reversibility implies that P is self-adjoint with respect to this inner product:

〈f |Pg〉π =
∑
x,y

π(x)f(x)P (x, y)g(y) =
∑
x,y

π(y)P (y, x)f(x)g(y) = 〈Pf |g〉π. (1.9)

In particular, if π is the uniform distribution, then this says that P = P † but
in general we need to distinguish the hermitian conjugate of a matrix from its



1.1. DISCRETE TIME 9

adjoint with respect to the (pseudo) inner product 〈 · | · 〉π. By inserting f = 1{x′}
and g = 1{y′} into this equation we see that (1.7) is in fact equivalent to (1.9).2

Note that from (1.9), it is immediately clear that if π is reversible for P , then it
is also reversible for any power P n of P . For reversible Markov chains, there is a
symmetry between the forward and backward equations. Let π be a reversible law
and let f : S → [0,∞) be a function such that πf = 1. Let fk be a solution of the
backward equations with f0 = f , i.e., fk = P kf . Define measures µk by

µk(x) := fk(x)π(x) (k ≥ 0),

i.e., µk is given by the density fk with respect to π. Then we claim that the µk
are in fact probability measures and that they solve the forward equations, i.e.,

µk = µ0P
k.

Indeed, this follows by writing

µ0P
k(x) =

∑
y

f(y)π(y)P k(y, x) =
∑
y

f(y)π(x)P k(x, y) = fk(x)π(x),

where we have used that P k satisfies (1.7).

Markov chains describe systems with a random dynamics, where the state at time
k + 1 depends in a random way on the state at time k, using ‘fresh’ randomness
in each time step. In practise, this often takes the following form. Imagine that
one is given an i.i.d. collection of random variables (Zk)k≥1 taking values in some
measurable space (E, E), with common law µ, and that φ : S × E → S is a
measurable function such that

P (x, y) = P[φ(x, Z1) = y] (x, y ∈ S). (1.10)

Let X0 be an S-valued random variable, independent of the (Zk)k≥1. Then the
inductive formula

Xk := φ(Xk−1, Zk) (k ≥ 1)

defines a Markov chain X = (Xk)k≥0 with transition kernel P . A probability
space (E, E , µ) together with a map φ : S×E → S such that (1.10) holds is called
a random mapping representation of the probability kernel P . Each probability
kernel on a finite set S has a random mapping representation, which is far from

2If π(x) > 0 for all x, then the adjoint of P w.r.t. the inner product 〈 · | · 〉π is given by
P ∗(x, y) = π(y)P (y, x)π(x)−1. If π is not reversible, then P ∗ 6= P is the transition kernel of the
reversed chain.
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unique. Note that simulating a Markov chain on a computer usually involves a
random mapping representation, e.g., in code such as

if rand < 0.3
X = X + 1

else

X = X− 1

end

which applies the function φ(x, z) := x+1{z<0.3}−1{z≥0.3} to uniformly distributed
random variables (Zk)k≥1 to generate a Markov chain X that jumps from x to x+1
with probability 0.3 and to x−1 with the remaining probability. Random mapping
representations are also provide an important way of coupling Markov processes
with different initial states.

1.2 Continuous time

Let S be a finite set. By definition, a Markov semigroup (of a Markov process in
S) is a collection (Pt)t≥0 of probability kernels on S such that

PsPt = Ps+t (s, t ≥ 0) and lim
t↓0

Ptf = P0f = f (f ∈ RS).

One can show that each such Markov semigroup is of the form

Pt = e tG =
∞∑
n=0

1

n!
tnGn, (1.11)

where the generator G satisfies

G(x, y) ≥ 0 ∀x 6= y and
∑
y

G(x, y) = 0.

Conversely, each matrix G of this form defines a Markov semigroup. By definition,
a Markov process with semigroup (Pt)t≥0 is an S-valued stochastic process X =
(Xt)t≥0 with cadlag (i.e., right continuous with left limits) sample paths such that
(compare (1.1))

E
[
f(Xu)

∣∣ (Xs)0≤s≤t
]

= Pu−tf(Xt) a.s.
(
0 ≤ t ≤ u, f ∈ RS

)
. (1.12)

One can show that such a Markov process exists, and is unique in distribution, for
each Markov semigroup (Pt)t≥0 and initial law P[X0 ∈ · ]. If X is such a Markov



1.2. CONTINUOUS TIME 11

process, then for each ε > 0, the random variables (Xεk)k≥0 form a Markov chain
with transition kernel Pε, which by (1.11) satisfies

Pε(x, y) = 1{x=y} + εG(x, y) +O(ε2) as ε ↓ 0. (1.13)

Note that the condition
∑

y G(x, y) = 0 ensures that
∑

y Pε(x, y) = 1 + O(ε2)
as it should be for a probability kernel. Because of this condition, to specify the
generator (and hence the semigroup), it suffices to specify the nonnegative numbers(

G(x, y)
)
x 6=y.

Then (1.13) says that for each x 6= y, the Markov chain (Xεk)k≥0 jumps from x to
y with probability εG(x, y) +O(ε2) and stays at x with the remaining probability
1−ε

∑
y 6=xG(x, y). It can be shown that if Pε is any probability kernel on S which

depends on a parameter ε in such a way that (1.13) holds, then the associated
Markov chain approximates the continuous-time Markov process (Xt)t≥0 after a
rescaling of time by a factor ε. Usually, this gives the right intuition for thinking
about continuous-time Markov processes with finite state space S. For x 6= y, we
say that the process (Xt)t≥0 jumps from x to y with rate G(x, y). Because of the
similarity with discrete time, continuous-time Markov processes with finite state
space are often called continuous-time Markov chains .

Much of the theory of Markov chains (Xk)k≥0 with finite state space now generalizes
in a straightforward manner to continuous-time Markov processes (Xt)t≥0 with
finite state space. If µ is a probability measure on S, then µt := µPt is the law of
the process at time t, which satisfies the forward equations

∂
∂t
µt = µtG = G†µt.

Likewise, for any f ∈ RS, the function ft := Ptf satisfies the backward equations

∂
∂t
ft = Gft.

Both forward and backward equations can be summerized in the formula

∂
∂t
Pt = GPt = PtG. (1.14)

An invariant law is a fixed point of the forward equations, i.e., a probability mea-
sure π such that π = πPt (t ≥ 0) or equivalently πG = 0, and a harmonic function
is a fixed point of the backward equations, i.e., a function h such that Gh = 0. The
probability kernels Pt are either irreducible for no t > 0 or for all t > 0; the latter
happens if and only if for each x, y ∈ S there exist x = x0, . . . , xn = y such that
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G(xk−1, xk) > 0 for all k = 1, . . . , n. In this case we also say that G is irreducible
or, informally, that the Markov process (Xt)t≥0 is irreducible. If a continuous-time
Markov chain is irreducible, then the Pt are always aperiodic for all t > 0 and in
fact Pt(x, y) > 0 for all t > 0 and x, y ∈ S. A probability law π is reversibile if the
detailed balance equations (1.7) hold for Pt for all t > 0, or equivalently, if

π(x)G(x, y) = π(y)G(y, x) (x, y ∈ S, x 6= y), (1.15)

which is equivalent to saying that G is self-adjoint w.r.t. the inner product 〈 · | · 〉π.

There is also a sort of equivalent of the random mapping representation for con-
tinuous-time Markov chains. Let M be a finite set whose elements are maps
m : S → S, and let (rm)m∈M be nonnegative constants. Let ∆ be a Poisson point
subset ofM×R = {(m, t) : m ∈M, t ∈ R} with intensity rmdt, where dt denotes
Lebesgue measure, and for s ≤ t, set ∆s,t := ∆ ∩ (M× (s, t]). Define random
maps Φs,t : S → S (s ≤ t) by

Φs,t(x) := mn ◦ · · · ◦m1(x)

where ∆s,t := {(m1, t1), . . . , (mn, tn)}, t1 < · · · < tn,
(1.16)

with the convention that Φs,t(x) = x if ∆s,t = ∅.

Proposition 1.2 (Poisson construction of Markov process) Let X0 be an
S-valued random variable, independent of ∆. Then

Xt := Φ0,t(X0) (t ≥ 0) (1.17)

defines a Markov process (Xt)t≥0 with generator

Gf(x) =
∑
m∈M

rm
(
f(m(x))− f(x)

) (
x ∈ S, f ∈ RS

)
. (1.18)

We call (1.18) a random mapping representation for the generator G. It is not
hard to see that each Markov generator can be written (usually in many different
ways) in the form (1.18). We may order the elements of ∆0,∞ := ∆∩ (M× (0,∞))
as

∆0,∞ = {(mk, τk) : k ≥ 1} with 0 < τ1 < τ2 < · · ·
Then {τ1, τ2, . . .} is a Poisson point set on [0,∞) with intensity R :=

∑
m∈M rm

and hence (τk− τk−1)k≥1 (with τ0 := 0) are i.i.d. exponentially distributed random
variables with mean R−1. Conditional on the times τ1, τ2, . . ., the random variables
(mk)k≥1 are i.i.d. with common law

P[mk = m] = R−1rm (m ∈M).
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Thus, the evolution of X may be described as follows: wait an exponential time
with mean R−1, and then apply the map m with probability R−1rm. Note that
τ1, τ2, . . . are not necessarily the times when the process jumps, i.e., it may happen
that Xτk = mk(Xτk−) = Xτk− for some k.

Proof of Proposition 1.2 It is easy to see from the definition that X has cadlag
sample paths. We set

Pt(x, y) := P[Φ0,t(x) = y] (x, y ∈ S, t ≥ 0).

Let Gt be the σ-field generated by the random variables X0 and ∆0,t. Fix 0 ≤ s ≤ t.
Since X0 is independent of ∆ and since ∆ is a Poisson point process, we see that X0,
∆0,s and ∆s,t are independent. Since ∆s,t is up to a time shift equally distributed
with ∆0,t−s, it follows that

P[Xt ∈ · | Gs] = P
[
Φs,t(Xs) ∈ · |X0,∆0,s] = Pt−s(Xs, · ).

Since (Xs)0≤s≤t is a function of X0 and ∆0,t, we have Ft ⊂ Gt, so it follows that
for any f ∈ RS,

E[f(Xt) | Fs] = E
[
E[f(Xt) | Gs]

∣∣Fs] = E[Pt−sf(Xs) | Fs] = Pt−sf(Xs).

To finish the proof, we must show that (Pt)t≥0 is a Markov semigroup with gen-
erator G given by (1.18). The fact that limt↓0 Pt(x, y) = P0(x, y) = δx(y) follows
from the fact that P[∆0,t = ∅] → 1 as t ↓ 0. To see that PsPt = Ps+t, let Xx be
the process started in X0 = x. By what we have already proved,

Ps+tf(x) = E[f(Xx
s+t)] = E

[
E[f(Xx

s+t) | Fs]
]

= E[Ptf(Xx
s )] = PsPtf(Xx

0 ) = PsPtf(x).

To see that the generator G of (Pt)t≥0 is given by (1.18), we observe that

Ptf(x) = E[f(Xx
t )] = f(x) + t

∑
m∈M

rm
(
f(m(x))− f(x)

)
+O(t2) as t ↓ 0,

which follows from the fact that P[|∆0,t| ≥ 2] = O(t2) while

P[∆0,t = {(m, s)} for some s ∈ (0, t)] = trm +O(t2).
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Chapter 2

Duality

2.1 Basic facts

Duality is a widely used, and in general not precisely defined concept in math-
ematics that usually involves two objects plus a relation between them that is
symmetric in the sense that one can get from one object to the other ‘in the same
way’ as from the other object back to the first one. Examples are dual linear
spaces (which in the infinite-dimensional case are not always so nicely symmetric,
though) and planar graph duality. We cite the general definition of Markov process
duality that we are about to give from Ligget [Lig85, Def. II.3.1]. He may indeed
have been the first to formulate the concept in this generality, though the topic
is much older. Up to the present day, the term duality (of Markov processes) is
sometimes used in meanings that do not fit the definition below. (For example for
intertwining relations, which will be discussed in the next chapter.) On the other
hand, some authors also use the term ‘dual Markov process’ in a more restricted
meaning than we will (usually concerning a specific duality function) and use terms
such as ‘quasi-dual’ for the more general concept.

Let X = (Xt)t≥0 be a continuous-time Markov chain with finite state space S,
generator G, and semigroup (Pt)t≥0. Likewise, let Y = (Yt)t≥0 be a continuous-
time Markov chain with finite state space R, generator H, and semigroup (Qt)t≥0.
Finally, let ψ : S×R→ R be a function. By definition, X and Y are dual to each
other with duality function ψ if

Ex[ψ(Xt, y)] = Ey[ψ(x, Yt)] (x ∈ S, y ∈ R, t ≥ 0). (2.1)

More generally, we obtain from this that if X and Y are independent with (possi-
bly) random initial states, then

E[ψ(Xs, Yt−s)] does not depend on s ∈ [0, t]. (2.2)

15
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To see this,1 note that in terms of semigroups, formula (2.1) says that∑
x′∈S

Pt(x, x
′)ψ(x′, y) =

∑
y′∈R

Qt(y, y
′)ψ(x, y′). (2.3)

Using this, we see that for any 0 ≤ s ≤ s′ ≤ t,

E[ψ(Xs, Yt−s)] =
∑

x,x′,y,y′

P[X0 = x]Ps(x, x
′)P[Y0 = y]Qt−s(y, y

′)ψ(x′, y′)

=
∑

x,x′,y,y′

P[X0 = x]Ps(x, x
′)P[Y0 = y]Qt−s′(y, y

′)
∑
y′′

Qs′−s(y
′, y′′)ψ(x′, y′′)

=
∑

x,x′,y,y′

P[X0 = x]Ps(x, x
′)P[Y0 = y]Qt−s′(y, y

′)
∑
x′′

Ps′−s(x
′, x′′)ψ(x′′, y′),

which by the same reasoning backwards equals E[ψ(Xs′ , Yt−s′)].

Lemma 2.1 (Generator characterization) Two Markov processes X, Y with
finite state spaces S,R and generators G,H are dual with duality function ψ if and
only if

Gψ( · , y)(x) = Hψ(x, · )(y) (x ∈ S, y ∈ R). (2.4)

Proof We may define a linear operator ψ : RR → RS by

ψf(x) :=
∑
y∈R

ψ(x, y)f(y) (x ∈ S). (2.5)

Then (2.3) can more succinctly be written as

Ptψ = ψQ†t (t ≥ 0). (2.6)

Since Pt = 1 + tG + O(t2) and likewise Qt = 1 + tH + O(t2) as t ↓ 0, a necessary
condition for this is that

Gψ = ψH†, (2.7)

which is just another way of writing (2.4). To see that this condition is also
sufficient, we calculate, using (1.14),

∂
∂s

(
PsψQ

†
t−s
)

= ( ∂
∂s
Ps)ψQ

†
t−s + Psψ( ∂

∂s
Qt−s)

†

= PsGψQ
†
t−s + Psψ(−Qt−sH)† = Ps

(
Gψ − ψH†

)
Q†t−s = 0,

1It is in fact sufficient if in the expression E[ψ(Xs, Yt−s)], the random variables Xs and Yt−s
are independent, which is weaker than the statement that X = (Xt)t≥0 and Y = (Yt)t≥0 are
independent as processes.
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which shows that PsψQ
†
t−s does not depend on s ∈ [0, t].

In particular, if ψ : RR → RS is invertible, then (2.6) says that

Pt = ψQ†tψ
−1 (t ≥ 0), (2.8)

so a duality relates the backward evolution of one Markov process to the forward
evolution of the other process (and vice versa, as can be seen by taking adjoints
of this equation). In particular, we have that

π invariant law for Y implies ψπ harmonic function for X, (2.9)

as can be seen by writing

Ptψπ = ψQ†tπ = ψπ (t ≥ 0).

(Note this argument does not need ψ to be invertible.) Similarly, if h is a harmonic
function for the Markov process Y , then ψ†h is a fixed point of P †t , as can be seen
by writing

P †t ψ
†h = (ψPt)

†h = (Q†tψ)†h = ψ†Qth = ψ†h.

In general, ψ†h does not need to be nonnegative, however, so it may not correspond
to an invariant measure. (If ψ†h is nonnegative, then by the finiteness of the state
space, it can of course be normalized to a probability measure.)

2.2 Pathwise duality

Although a priori, Markov process duality is only a statement about expectations,
in practise, many dualities can be turned into an almost sure relation. Let S and R
be finite sets and let ψ : S×R→ R be a function. Let m : S → S and m̂ : R→ R
be maps. Then we say that m̂ is dual to m with respect to the duality function ψ
if

ψ
(
m(x), y

)
= ψ

(
x, m̂(y)

)
(x ∈ S, y ∈ R). (2.10)

Now let X be a continuous-time Markov chain with finite state space S, generator
G, and semigroup (Pt)t≥0. Let us assume that we are given a random mapping
representation of G as in (1.18), i.e.,

Gf(x) =
∑
m∈M

rm
(
f(m(x))− f(x)

) (
x ∈ S, f ∈ RS

)
,

where M is a finite collection of maps m : S → S and (rm)m∈M is a collection of
nonnegative rates. Assume that each map m ∈ M has a dual map m̂ : R → R
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with respect to the duality function ψ. Let M̂ := {m̂ : m ∈ M} and define a
Markov generator H by

Hf(y) :=
∑
m̂∈M̂

rm̂
(
f(m̂(y))− f(y)

) (
y ∈ S, f ∈ RR

)
,

with rm̂ := rm (m ∈M). Then we have the following elementary result.

Lemma 2.2 (Pathwise dual) The processes X and Y are dual to each other
with duality function ψ. Moreover, for each t ≥ 0, the processes X and Y (with
arbitrary initial laws) can be coupled such that for each s ∈ [0, t], (Xu)0≤u≤s is
independent of (Yu)0≤u≤t−s, and moreover, a.s.,

ψ(Xs−, Yt−s) does not depend on s ∈ [0, t]. (2.11)

Proof We will only prove (2.11). The statement about X and Y being dual then
follows by taking expectations and setting s = 0, t. Let ∆ be a Poisson point
subset ofM×R with local intensity rmdt and define random maps Φs,t with s ≤ t
as in (1.16). Set ∆s−,t− := ∆∩ (M× [s, t)) and in analogy with (1.16), define dual

maps Φ̂s−,t− (s ≤ t) by

Φ̂s−,t−(x) := m̂1 ◦ · · · ◦ m̂n(x)

where ∆s−,t− := {(m1, t1), . . . , (mn, tn)}, t1 < · · · < tn,
(2.12)

with the convention that Φ̂s−,t−(x) = x if ∆s−,t− = ∅. Fix t ≥ 0 and let X0, Y0 be
random variables with values in S and R, respectively, independent of each other
and of ∆. Then by Proposition 1.2 applied to ∆ and the same turned upside down
and shifted by t, we see that

Xs := Φ0,s(X0) and Ys := Φ̂(t−s)−,t−(Y0) (s ≥ 0)

are Markov processes with generator G and H and initial states X0, Y0, respec-
tively. For deterministic s ∈ [0, t], one has ∆s−,t− = ∆s,t a.s. and the latter is
independent of ∆0,s by the properties of Poisson point sets. Thus, since (Xu)0≤u≤s
and (Yu)0≤u≤t−s depend only on X0 and ∆0,s resp. Y0 and ∆s−,t−, we see that these
processes are independent.
Write

∆0,t = {(m1, t1), . . . , (mn, tn)} with t1 < · · · < tn.

and let s, s′ be such that

tk−1 < s ≤ tk < s′ ≤ tk+1.
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Then, by (2.10),

ψ(Xs, Yt−s) = ψ
(
mk−1 ◦ · · · ◦m1(X0), m̂k ◦ · · · ◦ m̂n(Y0)

)
= ψ

(
mk ◦ · · · ◦m1(X0), m̂k+1 ◦ · · · ◦ m̂n(Y0)

)
= ψ(Xs′ , Yt−s′).

Applying this repeatedly, we see that the expression in (2.11) does not depend on
s ∈ [0, t].

The same proof shows that apart from the expression in (2.11), for the same
coupling, also ψ(Xs, Y(t−s)−) does not depend on s ∈ [0, t]. Note that for either
X or Y , we have to choose a version with caglad (continuous from the left, limits
from the right) sample paths, contrary to our usual habit, since otherwise there
would be exceptional times where the expression takes a different value.

The term ‘pathwise duality’ was (to the best of my knowledge) first coined (in
a more general meaning) in a paper by Sabine Jansen and Noemi Kurt [JK12],
although the subject is much older.

2.3 Monotone systems duality

For any finite set S, we let P(S) denote the set of all subsets of S, which is of
course still finite, although, with 2|S| elements, it is usually much larger than S.
Consider the function ψ : S × P(S)→ R given by

ψ(x,A) := 1{x∈A}
(
x ∈ S, A ∈ P(S)

)
. (2.13)

For any map m : S → S, let m−1 : P(S) → P(S) denote the inverse image map,
i.e., m−1(A) := {x ∈ S : m(x) ∈ A}. Then m and m−1 are dual in the sense of
(2.10), i.e.,

ψ(m(x), A) = 1{m(x)∈A} = 1{x∈m−1(A)} = ψ(x,m−1(A)).

If X is any Markov process in S with generator G, and we are given any random
mapping representation of G as in (1.18), i.e.,

Gf(x) =
∑
m∈M

rm
(
f(m(x))− f(x)

) (
x ∈ S, f ∈ RS

)
,

then we can always find a pathwise dual to X with the duality function ψ in (2.13),
which is the P(S)-valued Markov process X = (Xt)t≥0 with generator

Gf(A) =
∑
m∈M

rm
(
f(m−1(A))− f(A)

) (
A ∈ P(S), f ∈ RP(S)

)
. (2.14)
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In practise, this duality is of little use since the space P(S) is so large. More
interesting pathwise duals can sometimes be found, however, if P(S) contains
interesting subspaces that are a.s. preserved under the dynamics of (Xt)t≥0. For
monotone systems, one such subspace is formed by the set of all monotone subsets
of S, as we explain now.

By definition, a partial order over S is a binary relation ≤ that satisfies, for any
x, y, z ∈ S

(i) x ≤ x,

(ii) x ≤ y and y ≤ x implies x = y,

(iii) x ≤ y ≤ z implies x ≤ z.

A partial order is called a total order if

x ≤ y or y ≤ x for all x, y ∈ S, x 6= y.

Finite (nonempty) totally ordered sets are always isomorphic to a finite discrete
interval of the form {1, . . . , n} with n ≥ 1. If S, S ′ are partially ordered sets, then
the product order on S × S ′ is defined by

(x, x′) ≤ (y, y′) iff x ≤ y and x′ ≤ y′.

A similar definition applies to the carthesian product of more than two partially
ordered sets. Even if the original sets are totally ordered, the product order is
only a partial order (trivial cases excluded). For example, (0, 1) 6≤ (1, 0) and
(0, 1) 6≥ (1, 0).

If S is a partially ordered set and A ⊂ S, then a minimal element of A is an
element x ∈ A such that there is no y ∈ A with x 6= y and y ≤ x. A subset of
a totally ordered set can have at most one minimal element, but the same is not
true for subsets of partially ordered sets. Finite subsets always have at least one
minimal element.

A map m : S → S ′ from one partially ordered set to another is called monotone if

x ≤ y implies m(x) ≤ m(y).

We will say that a subset A ⊂ S is increasing if its indicator function 1A : S →
{0, 1} is monotone, i.e., if A 3 x ≤ y implies y ∈ A. It is not hard to see2 that a

2OK, here is a proof: Imagine A ⊂ S′ is increasing. Then, for any m−1(A) 3 x ≤ y we have
A 3 m(x) ≤ m(y) and hence m(y) ∈ A, proving that y ∈ m−1(A) so m−1(A) is increasing.
Conversely, if (2.15) holds, then using notation as in (2.17) we have that m−1({m(x)}↑) = {z :
m(z) ≥ m(x)} is a increasing set for each x ∈ S. In particular, since x lies in this set, any y ≥ x
must also lie in this set, which implies that m(y) ≥ m(x).
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map m from one partially ordered set into another is monotone if and only if

A is increasing implies m−1(A) is increasing. (2.15)

Finite increasing sets are uniquely characterized by their minimal elements. In-
deed, if A is finite and increasing, then

A = (Amin)↑, (2.16)

where Amin denotes the set of minimal elements of A and for any set B ⊂ S, let
us call3

B↑ := {y ∈ S : y ≥ x for some x ∈ B} (2.17)

the episet of B.

Let X be a Markov process with finite state space S as at the start of this section,
with a given random mapping representation of its generator G in terms of random
maps m ∈M with rates rm. Assume that S is equipped with a partial order and
that the maps m ∈ M are all monotone. In this case, the maps Φs,t (s ≤ t)
defined in (1.16) are all monotone. From this, we see that the Markov process
with generator G has the following property: If X,X ′ are processes started in
initial states X0 = x and X ′0 = x′ that are ordered as x ≤ x′, then we can couple
X and X ′ such that Xt ≤ X ′t for all t ≥ 0. Markov processes with this property
are called monotone. Let Pinc(S) denote the space of all increasing subsets of S.
Then by the monotonicity of the maps m ∈ M and (2.15), the pathwise dual
X = (Xt)t≥0 of X with generator G as in (2.14) has the property that X0 ∈ Pinc(S)
implies that a.s. Xt ∈ Pinc(S) for all t ≥ 0.

To find a really useful dual, one usually needs a property that is somewhat stronger
than monotonicity. For any finite partially ordered set S, let us define

P!inc(S) :=
{
A ∈ Pinc : A has a unique minimal element

}
.

If the ordering on S is a total order, then P!inc(S) = Pinc(S)\{∅}, while for par-
tially ordered sets, P!inc(S) is usually much smaller than Pinc(S). Instead of just
assuming (2.15), let us assume that each m ∈M has the stronger4 property that

A ∈ P!inc(S) implies m−1(A) ∈ P!inc(S). (2.18)

3This is not standard terminology. I would be grateful if someone could tell me the established
lattice theoretic names for this and the hyposets introduced below.

4To see that indeed (2.18) implies (2.15), use (2.16) to see that each set in A ∈ Pinc(S) is
the union of finitelely many sets in P!inc(S), as A =

⋃
x∈Amin

{x}↑, and use this to conclude from

(2.18) that m−1(A) =
⋃
x∈Amin

m−1({x}↑) ∈ Pinc(S).
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There is a natural bijection between S and P!inc(S) given by the map

S 3 x 7→ {x}↑ ∈ P!inc(S).

In view of this, for each map m : S → S satisfying (2.18), we can define a map
m̂ : S → S by

m−1
(
{x}↑

)
=: {m̂(x)}↑. (2.19)

We define the set Pdec(S) of decreasing sets, a maximal element of a set, and the
hyposet A↓ of a set A ⊂ S in analogy with Pinc(S), minimal elements, and A↑, but
with the order ≤ replaced by its converse ≥. We also write P!dec(S) for the set of
all decreasing subsets of S that have a unique maximal element.

Proposition 2.3 (Monotone systems duality) Let S be a finite set equipped
with a partial order and let m : S → S satisfy (2.18). Then the map m̂ : S → S
defined in (2.19) satisfies

A ∈ P!dec(S) implies m̂−1(A) ∈ P!dec(S), (2.20)

and m̂ is dual to m with respect to the duality function

ψ(x, y) := 1{x≥y} (x, y ∈ S).

Moreover, the linear operator ψ : RS → RS associated with the matrix ψ is invert-
ible.

Proof Formula (2.19) says that {y : m(y) ≥ x} = {y : y ≥ m̂(x)}, i.e.,

x ≤ m(y) iff m̂(x) ≤ y (x, y ∈ S). (2.21)

It follows that for any x ∈ S

m̂−1({x}↓) = {y : m̂(y) ≤ x} = {y : y ≤ m(x)} = {m(x)}↓,

which proves that m̂−1 maps the space P!dec(S) into itself. We also see from (2.21)
that

ψ
(
m(x), y

)
= 1{m(x)≥y} = 1{x≥m̂(y)} = ψ

(
x, m̂(y)

)
,

i.e., m̂ is dual to m with respect to the duality function ψ.
To see that ψ : RS → RS is invertible, we must show that the functions {ψ(x, · ) :
x ∈ S} are linearly independent. Let (ax)x∈S be real numbers such that∑

x∈S

axψ(x, · ) = 0.
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Since S is finite, it contains a maxiimal element, x1, say. The functions ψ(x, · )
with x 6= x1 are all zero at x1 so we must have ax1 = 0. But now S\{x1} also has
a maximal element, x2, say, so continuing the process we see that ax = 0 for all
x ∈ S, i.e., the {ψ(x, · ) : x ∈ S} are linearly independent.

By applying Proposition 2.3 to the converse order, we see that also to each map
m with the property that m−1 maps P!dec(S) into itself there is a dual map, m̃,
say, such that

ψ(x,m(y)) = ψ(m̃(x), y) (x, y ∈ S).

Clearly,
˜̂m = m and ˆ̃m = m,

providedm−1 maps the space P!inc(S) resp. P!dec(S) into itself. We warn the reader,
however, that since the duality function ψ is not symmetric (i.e., ψ(x, y) 6= ψ(y, x)),
we need to distinguish m̃ from m̂. In particular, if a map m has the property that
m−1 maps both P!inc(S) and P!dec(S) into themselves, then it may happen that
m̂ 6= m̃.

Birth-and-death processes

As a simple application of Proposition 2.3, let us consider a Markov process X
with state space S = {0, . . . , n} and generator of the form

Gf(x) = bx+1

(
f(x+ 1)− f(x)

)
+ dx

(
f(x− 1)− f(x)

)
(x = 0, . . . , n), (2.22)

where b1, . . . , bn and d1, . . . , dn are nonnegative rates, and for notational convention
we set bn+1 = 0 = d0, i.e., the first (resp. second) term in (2.22) are absent if x = n
(resp. x = 0). Processes with generators as in (2.22) are called birth-and-death
processes . Let us define maps birthz : S → S and deathz : S → S by

birthz(x) :=

{
x+ 1 if x+ 1 = z,
x otherwise,

deathz(x) :=

{
x− 1 if x = z,
x otherwise.

Then a random mapping representation for the operator G in (2.22) is

Gf(x) =
n∑
z=1

bz
(
f(birthz(x))− f(x)

)
+

n∑
z=1

dz
(
f(deathz(x))− f(x)

)
.

The set S = {0, . . . , n} is totally ordered and the maps birthz and deathz are
monotone. With the exception of deathn, their inverse images map P!inc(S) into
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XX ′

Figure 2.1: Noncrossing duality between two birth-and-death processes. Arrows
to the right and left indicate birth and death events, respectively. The dual (down-
ward) process is drawn in green and for readability has been shifted a distance 1/2
to the left.

itself, so by Proposition 2.3 there exist duals of these maps with respect to the
duality function ψ(x, y) = 1{x≥y}. Indeed,

birthz(x) ≥ y ⇔ x ≥ y or x+ 1 = y = z ⇔ x ≥ deathz(y),

and

deathz(x) ≥ y ⇔ x ≥ y and not x = y = z ⇔ x ≥ birthz+1(y),

so
b̂irthz = deathz and d̂eathz = birthz+1.

Now let X,X ′ be two birth-and-death processes with generators as in (2.22) and
rates b1, . . . , bn, d1, . . . , dn resp. b′1, . . . , b

′
n, d

′
1, . . . , d

′
n. Assume that

dn = 0 and b′1 = 0,

and that

d′z = bz (z = 1, . . . , n) and b′z+1 = dz (z = 1, . . . , n− 1).



2.4. ADDITIVE SYSTEMS DUALITY 25

Then Lemma 2.2 and Proposition 2.3 together imply that for each t ≥ 0, the
processes X and X ′ can be coupled such that

1{Xs−≥X′t−s} does not depend on s ∈ [0, t].

See Figure 2.1 for a graphical demonstration of this duality. This form of duality
has been known for a long time and is nowadays usually associated with the name
of Siegmund [Sie76]; see also [KM57, CR83]. One-dimensional diffusion processes
(including Brownian motion) with the right boundary conditions satisfy similar
relations. A very readable discussion of this (from which I have taken these ref-
erences) can be found in [Lig85, Sect. II.3]. Note that the assumption that the
process only moves up and down in steps of one can be relaxed, as long as the
generator has a random mapping representation in terms of monotone maps whose
inverse images map P!inc(S) into itself.

2.4 Additive systems duality

In the previous section we saw one example of monotone systems duality when
we considered birth-and-death processes, which take values in the totally ordered
set {0, . . . , n}. In the present section, we will look at monotone Markov processes
taking values in very different partially ordered sets, namely, the set of subsets of
some finite set Λ.

Let Λ be a finite set. We will be interested in Markov processes X taking values
in the set P(Λ) of all subsets of Λ. The set P(Λ) is of course partially ordered
by inclusion ⊂. Let us assume that we have a random mapping representation for
the generator G of X, i.e.,

Gf(x) =
∑
m∈M

rm
(
f(m(x))− f(x)

) (
x ∈ P(Λ), f ∈ RP(Λ)

)
,

where the maps m ∈ M are all monotone, i.e., x ⊂ y implies m(x) ⊂ m(y). Let
xc := Λ\x denote the complement of a set x ⊂ Λ. Then Xc = (Xc

t )t≥0 is of course
also a Markov process, whose generator (informally denoted by Gc here) has the
random mapping representation

Gcf(x) =
∑
m∈M

rm
(
f(m(xc)c)− f(x)

) (
x ∈ P(Λ), f ∈ RP(Λ)

)
.

We observe that if m : P(Λ)→ P(Λ) is monotone, then the map

x 7→ m(xc)c
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is also monotone. Indeed:

x ⊂ y ⇒ xc ⊃ yc ⇒ m(xc) ⊃ m(yc) ⇒ m(xc)c ⊂ m(yc)c.

Thus, Xc is also a monotone Markov process. If X and Y are pathwise dual with
the duality function 1{x≥y}, then Xc and Y are pathwise dual with duality function
1{xc≥y} = 1{x∩y=∅}, or equivalently, with the duality function 1{x∩y 6=∅}. It turns out
that this formulation of the duality is more convenient to work with, so for the
remainder of this section, we shift our attention to this duality function.

By definition, a map m : P(Λ)→ P(Λ) is additive if

m(∅) = ∅ and m(x ∪ y) = m(x) ∪m(y)
(
x, y ∈ P(Λ)

)
.

Proposition 2.4 (Additive systems duality) Let m : P(Λ) → P(Λ). Then
the following statements are equivalent.

(i) m−1(A) ∈ P!dec(P(Λ)) for all A ∈ P!dec(P(Λ)).

(ii) There exists an m† : P(Λ) → P(Λ) that is dual to m with respect to the
duality function ψ(x, y) = 1{x∩y 6=∅} (x, y ∈ P(Λ)).

(iii) m is additive.

Proof (i)⇒(ii): By Proposition 2.3, (i) implies the existence of a dual map m̂ :
P(Λ)→ P(Λ) such that

1{m(x) ⊂ y} = 1{x ⊂ m̂(y)}
(
x, y ∈ P(Λ)

)
.

Setting m†(x) := m̂(xc)c, we see that

1{m(x) ∩ y = ∅} = 1{m(x) ⊂ yc} = 1{x ⊂ m̂(yc)} = 1{x ∩ m̂(yc)c = ∅},

so
m(x) ∩ y 6= ∅ if and only if x ∩m†(y) 6= ∅ (x, y ∈ P(Λ)

)
.

(ii)⇒(iii): We observe that

m(∅) = {i ∈ Λ : {i} ∩m(∅) 6= ∅} = {i ∈ Λ : m†({i}) ∩ ∅ 6= ∅} = ∅,

and

m(x ∪ x′) = {i ∈ Λ : {i} ∩m(x ∪ x′) 6= ∅} = {i ∈ Λ : m†({i}) ∩ (x ∪ x′) 6= ∅}
= {i ∈ Λ : m†({i}) ∩ x 6= ∅} ∪ {i ∈ Λ : m†({i}) ∩ x′ 6= ∅} = m(x) ∪m(x′),
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which shows that m is additive.
(iii)⇒(i): Set

m̂(y) := {i ∈ Λ : m({i}) ⊂ y}.
Then, using additivity,

m−1
(
{y}↓

)
= {x : m(x) ⊂ y} = {x :

⋃
i∈x

m({i}) ⊂ y} = {m̂(y)}↓,

proving that m−1 maps P!dec(P(Λ)) into itself.

For any additive map m : P(Λ)→ P(Λ), let us write

m(i, j) := 1{j ∈ m({i})} (i, j ∈ Λ).

Since
m(x) =

⋃
i

m({i}) = {j : m(i, j) = 1 for some i ∈ x},

the additive map m is uniquely characterized by the matrix m(i, j).

Lemma 2.5 (Dual map) For each additive map m : P(Λ)→ P(Λ), there exists
a unique additive map m† : P(Λ)→ P(Λ) such that

1{m(x) ∩ y 6= ∅} = 1{x ∩m†(y) 6= ∅}
(
x, y ∈ P(Λ)

)
,

and the matrix of m† is given by m†(i, j) = m(j, i).

Proof Existence of m† has been proved in Proposition 2.4. Since

m†(i, j) = 1{{j} ∩m†({i}) 6= ∅} = 1{m({j}) ∩ {i} 6= ∅} = m(j, i),

we see that m† is unique and its matrix is the adjoint of the matrix of m.

By definition, a Markov process X with state space P(Λ) is additive if its gener-
ator G has a random mapping representation involving only additive maps. We
construct such a system with the help of random maps Φs,t as in Proposition 1.2,
which in turn are defined in terms of the Poisson point set ∆. For additive systems,
there is a nice way of visualizing ∆, yielding a graphical representation of X. We
draw Λ horizontaly, time vertically, and for each (m, t) ∈ ∆, we draw:

an arrow from (i, t) to (j, t) for each i, j ∈ Λ, i 6= j such that m(i, j) = 1,

a blocking symbol at (i, t) for each i ∈ Λ such that m(i, i) = 0.

We will be interested in paths that walk upwards in time, that may follow arrows,
but must avoid blocking symbols. More precisely, for any s ≤ u, we say that a
cadlag function γ : [s, t] → Λ is an open path if for each t ∈ (s, u], it satisfies the
following requirements:
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(i) If (m, t) ∈ ∆ for some m ∈ ∆, then m(γt−, γt) = 1.

(ii) If there is no no m ∈M such that (m, t) ∈ ∆, then γt = γt−.

(Note that by the properties of a Poisson point set, there a.s. are no times t ∈ R
such that (t,m) ∈ ∆ and (t,m′) ∈ ∆ for two maps m,m′ ∈ M.) We write
(i, s)  (j, u) if there exists an open path γ : [s, u] → Λ such that γs = i and
γu = j.

Proposition 2.6 (Graphical representation) Let X0, Y0 be P(Λ)-valued ran-
dom variables, independent of each other and of the Poisson set ∆, and let t ≥ 0.
Define processes X and Y with cadlag sample paths by

Xs :=
{
j ∈ Λ : ∃i ∈ X0 s.t. (i, 0) (j, s)

}
,

Ys− :=
{
i ∈ Λ : ∃j ∈ Y0 s.t. (i, t− s) (j, t)

}
.

Then X and Y are Markov processes with generators G,H given by

Gf(x) :=
∑
m∈M

rm
(
f(m(x))− f(x)

)
,

Hf(y) :=
∑
m∈M

rm
(
f(m†(y))− f(y)

)
,

and X and Y are pathwise duals of each other, in the sense that the event{
Xs ∩ Y(t−s)− 6= ∅

}
=
{
∃i ∈ X0, j ∈ Y0 s.t. (i, 0) (j, t)

}
(2.23)

a.s. does not depend on s ∈ [0, t].

Proof Open paths are defined in such a way that X changes only at times of the
Poisson set ∆. If (m, s) ∈ ∆, then, again by the way open paths are defined

Xs = {j : ∃i ∈ Xs− s.t. m(i, j) = 1} = m(Xs−),

so by Proposition 1.2 we see that Xs = Φ0,s(X0) is the Markov process with
generator G. In the same way, using also Lemma 2.5, we see that Y is the Markov
process with generator H. Now (2.23) is obvious from our construction, and also
follows more abstractly from Lemma 2.2 and the fact that the maps m and m† are
dual with duality function ψ(x, y) = 1{x∩y 6=∅}.

We note that the construction of the dual process in terms of the arrows and block-
ing signs of the graphical representation is the same as for the original, ‘forward’
process, except that we follow open paths downwards in time and hence traverse
the arrows in the opposite direction. In particular, the dual m† of an additive map
m is obtained by reversing the arrows of m and keeping the blocking symbols in
place (see Figures 2.2 and 2.3 below).
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The voter model

Let Λ be a finite set as before, and for any i, j ∈ Λ, i 6= j, let us define a ‘voter
model map’ voti,j : P(Λ)→ P(Λ) by

voti,j(x) :=

{
x ∪ {j} if i ∈ x,
x\{j} if i 6∈ x.

(2.24)

Let us introduce the notation

x(i) := 1{i∈x}
(
x ∈ P(Λ), i ∈ Λ

)
,

which basically says that we identify a set x ∈ P(Λ) with its indicator function,
which is an element of {0, 1}Λ. In the voter model context, we interpret x(i) as
the type of the site i, i.e., we think of x as describing a population of individuals
occupying sites in a lattice, with one individual per site, where each individual can
be of two types, labeled 0 and 1. Then (2.24) says that applying the map voti,j
has the effect that the individual at site j adopts the type of the individual at the
site i, regardless of what type previously occupied j. In biology, types are often
interpreted as genetic types and voti,j describes the event that the individual at j
dies and is replaced by a offspring of the individual at site i.

For any collection of nonnegative constants p(i, j) (i, j ∈ Λ, i 6= j) we may consider
a Markov process X with values in P(Λ), or equivalently {0, 1}Λ, with generator
given by

Gvotf(x) :=
∑
i 6=j

p(i, j)
(
f(voti,j(x))− f(x)

)
. (2.25)

Then X is a voter model where the site j adopts the type of site i with rate p(i, j).
It is straightforward to check that the map voti,j is additive. In graphical repre-
sentations, voti,j is represented by an arrow from i to j and a blocking symbol
at j. In Figure 2.2 on the left, we have drawn an example of a graphical repre-
sentation for a one-dimensional nearest-neighbor voter model on a set of the form
Λ = {0, . . . , n} where p(i, j) > 0 if and only if |i− j| = 1.

Let rwj,i := vot†i,j be the dual map of voti,j. In graphical representations, rwj,i is
represented by an arrow from j to i and a blocking symbol at j. From this, we see
that

rwj,i(x) :=

{
(x\{j}) ∪ {i} if j ∈ x,
x if j 6∈ x.

(2.26)
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Figure 2.2: The voter model (on the left, with time running upwards) and its dual
system of coalescing random walks (on the right, with time running downwards).

The voter model X with generator Gvot as in (2.25) is dual to the Markov process
Y with generator given by

Grwf(y) :=
∑
i 6=j

p(i, j)
(
f(rwj,i(y))− f(y)

)
. (2.27)

An example of a graphical representation of Y is drawn in Figure 2.2 on the right.
If i ∈ Ys, then let us say that the site i is at time s occupied by a particle. Then
these particles form a system of coalescing random walks which independently
jump from i to j with rate p†(i, j) = p(j, i) and which coalesce (i.e., two particles
become one) as soon as one particle jumps on top of another one.

The contact process

With Λ a finite set as before, we define the following maps on P(Λ):

reci(x) :=x\{i} (i ∈ Λ),

infi,j(x) :=

{
x ∪ {j} if i ∈ Λ
x otherwise,

(i, j ∈ Λ, i 6= j).
(2.28)

Both maps are additive. In graphical representations, reci is represented by a
single blocking symbol at i while infi,j corresponds to a single arrow from i to j.
Given rates δ ≥ 0 and λ(i, j) ≥ 0 (i, j ∈ Λ, i 6= j), we call the Markov process X
with generator

Gcontf(x) := δ
∑
i

(
f(reci(x))− f(x)

)
+
∑
i 6=j

λ(i, j)
(
f(infi,j(x))− f(x)

)
(2.29)
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Figure 2.3: The contact process, which is self-dual, with time running upwards
and downwards on the left and right, respectively.

the contact process with recovery rate δ and infection rate λ(i, j). An example
of a graphical representation is drawn in Figure 2.2. If λ(i, j) = λ(j, i), then the
contact process is self-dual . In general, the contact process with rates λ(i, j) is
dual to the contact process with rates λ†(i, j) = λ(j, i).

In the traditional interpretation, sites in Λ are thought of as being occupied by an
organism (e.g., a tree) that can be infected by some bug (e.g., an insect). Then
Xt is the set of infected organisms at time t, λ(i, j) is the rate at which infected
organisms infect healthy organisms, and δ is the rate at which infected organisms
recover (after which they can be infected again).

Alternatively, sites i ∈ Xt can be interpreted as being occupied by an organism of
any kind (not necessarily a parasite). Then infection and recovery may simply be
interpreted as the production of offspring and death.

Notes and generalizations

Let S be a partially ordered set. It may happen that the inverse image m−1 of a
monotone map m does not map the space P!inc(S) into itself, but that it does map
the slightly larger set P!inc(S) ∪ {∅} into itself. In this case, one can still define
a dual by a recipe similar to (2.19) where we need one extra point in the state
space of the dual process to represent the set ∅. In this way, one can, for exampe,
find duals to variations of the voter model, coalescing random walks, or contact
process, that also have ‘spontaneous births’ corresponding to the map

birthi(x) := x ∪ {i}. (2.30)

More generally, one can allow maps m that satisfy m(x ∪ y) = m(x) ∪m(y) but
not m(∅) = ∅.
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We have so far restricted our attention to two very special partially ordered sets:
S = {0, . . . , n} and S = P(Λ), where the latter is naturally isomorphic to {0, 1}Λ,
equipped with the product order. I do not know what happens when one replaces
the latter by, for example, {0, 1, 2}Λ, equipped with the product order. A natural
question is whether there exists a generalization of Proposition 2.4 in this context,
i.e., can one classify all monotone maps on S = {0, 1, 2}Λ whose inverse image maps
P!inc(S) into itself? There might be interesting dualities waiting to be discovered.

2.5 Linear systems duality

In this section, we will temporarily drop the assumption that the state space
be finite, and look at linear systems, which take values in a linear space. We
hope the reader will trust us that -at least for the processes we will consider- the
technicalities concerning the construction of these processes and their associated
semigroups from their generators and from a Poisson set of events are basically
the same as in the case of finite state space. Obviously, in continuous space, more
complicated Markov processes like Brownian otion can be constructed, but the
processes that we will be interested in will have piecewise constant sample paths
and are from the viewpoint of their construction very similar to processes with
finite state spaces.

Let Λ be a finite set and let RΛ be the real vectorspace consisting of all functions
x : Λ→ R. We equip RΛ with the inner product

〈x, y〉 :=
∑
i∈Λ

x(i)y(i) (x, y ∈ RΛ).

Let M be a finite set whose elements are linear maps m : RΛ → RΛ and let
(rm)m∈M be a collection of nonnegative rates. Then the Markov process X with
generator

Gf(x) =
∑
m∈M

rm
(
f(m(x))− f(x)

)
can be constructed from a Poisson subset ∆ ⊂M×R just as we did for processes
with finite state spaces. We will will be interested in pathwise duals of X.

For each linear map m : RΛ → RΛ, let m(i, j) denote the matrix of m, so that
m(x)(i) =

∑
jm(i, j)x(j). Let m†(i, j) := m(j, i) denote its adjoint w.r.t. the

inner product 〈 · , · 〉. Then

〈m(x), y〉 = 〈x,m†(y)〉 (x, y ∈ RΛ).



2.5. LINEAR SYSTEMS DUALITY 33

In the language of (2.10), this says that the maps m and m† are dual with respect
to the duality function ψ(x, y) = 〈x, y〉. Thus, by (a straightforward generalization
of) Lemma 2.2, we see that the process Y with generator

G†f(y) =
∑
m∈M

rm
(
f(m†(y))− f(y)

)
is a pathwise dual of X, i.e., for each t ≥ 0, we can couple X and Y in such a way
that for each s ∈ [0, t], (Xu)0≤u≤s is independent of (Yu)0≤u≤t−s, and moreover,
a.s.,

〈Xs−, Yt−s〉 does not depend on s ∈ [0, t]. (2.31)

There is a way of interpreting this duality in terms of open paths, similar to
what we saw for additive systems. The only complication is that we have to give
each path a weight. Let ∆ be the Poisson set used for constructing X. Draw Λ
horizontaly, time vertically, and for each (m, t) ∈ ∆, draw:

an arrow with weight m(i, j) from (i, t) to (j, t)

for each i, j ∈ Λ with i 6= j such that m(i, j) 6= 0,

a symbol with weight m(i, i) at (i, t)

for each i ∈ Λ such that m(i, i) 6= 1.

We say that a cadlag function γ : [s, t] → Λ is an open path if for each t ∈ (s, u],
it satisfies the following requirements:

(i) If (m, t) ∈ ∆ for some m ∈ ∆, then m(γt−, γt) 6= 0.

(ii) If there is no no m ∈M such that (m, t) ∈ ∆, then γt = γt−.

We write (i, s)
γ
 (j, u) if γ is an open path with γs = i and γu = j. We give each

open path γ a weight

w(γ) := the product of the weights of all arrows and symbols on γ.

The following result is very similar to Proposition 2.6.

Proposition 2.7 (Graphical representation) Let X0, Y0 be RΛ-valued random
variables, independent of each other and of the Poisson set ∆, and let t ≥ 0.
Define processes X and Y with cadlag sample paths by

Xs(j) :=
∑
i∈Λ

∑
(i,0)

γ
 (j,s)

X0(i)w(γ),

Ys−(i) :=
∑
j∈Λ

∑
(i,t−s)

γ
 (j,t)

w(γ)Y0(j).
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Then X and Y are Markov processes with generators G,H given by

Gf(x) :=
∑
m∈M

rm
(
f(m(x))− f(x)

)
,

Hf(y) :=
∑
m∈M

rm
(
f(m†(y))− f(y)

)
,

and X and Y are pathwise duals of each other, in the sense that the function

〈Xs, Y(t−s)−〉 =
∑
i

∑
j

∑
(i,0)

γ
 (j,t)

X0(i)w(γ)Y0(j) (2.32)

a.s. does not depend on s ∈ [0, t].

As a simple example, consider the graphical representation of the contact process,
where we give each arrow weight 1 and each blocking symbol weight zero. If X0, Y0

take values in NΛ, then the processes X and Y constructed in Proposition 2.7 take
values in NΛ at all times; up to a deterministic rescaling of time, this is known a
the binary contact path process in the literature. Now the duality formula (2.32)
just says that

〈Xs, Y(t−s)−〉 =
∣∣{γ : (i, 0)

γ
 (j, t) for some i, j s.t. X0(i) = 1 = Y0(j)}

∣∣
a.s. does not depend on s ∈ [0, t].

2.6 Cancellative systems duality

We recall that a field is a set F equipped with two operations (x, y) 7→ x + y
(addition) and (x, y) 7→ xy (multiplication) such that:

(i) Addition and multiplication are associative.

(ii) Addition and multiplication are commutative.

(iii) Addition and multiplication satisfy the distributive property.

(iv) Addition and multiplication have identity elements 0 and 1, respectively,
with 0 6= 1.

(v) Each element x has inverses −x and x−1 with respect to addition and mul-
tiplication, respectively.
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Linear spaces can be defined over any field. In particular, the concepts of linear
independence, a basis, and the matrix of a linear map with respect to a given basis
of the source and target space work just in the same way as for the well-known
fields R and C.

There exist many other fields than R and C. In particular, there exist finite fields .
The simplest example is {0, 1} equipped with addition modulo 2 and the usual
product. Let us (somewhat nonstandardly) write ⊕ for addition modulo 2 to
remind ourselves that this is not the usual addition. Then, for any finite set Λ,
the space {0, 1}Λ equipped with ⊕ is a linear space over the finite field {0, 1}. We
can even equip {0, 1}Λ with something similar to an inner product by setting

〈x, y〉 :=
⊕
i∈Λ

x(i)y(i).

This is not positive definite but it is true that

〈x, y〉 = 0 ∀y ∈ {0, 1}Λ implies x = 0.

Each linear map m : {0, 1}Λ → {0, 1}Λ (where linearity should be interpreted over
the finite field {0, 1}) is uniquely characterized by its matrix m(i, j), where

m(x)(i) =
⊕
j

m(i, j)x(j),

and the entries m(i, j) of m take of course values in {0, 1}. Setting m†(i, j) :=
m(j, i), we have that

〈m(x), y〉 = 〈x,m†(y)〉,
which says that m and m† are dual with respect to the duality function ψ(x, y) =
〈x, y〉.
In view of this, all that we have said in the previous section about linear systems
duality applies without a change to Markov processes X with a generator of the
form

Gf(x) =
∑
m∈M

rm
(
f(m(x))− f(x)

)
where the maps m ∈ M are linear maps m : {0, 1}Λ → {0, 1}Λ with respect to
the finite field {0, 1}. Such Markov processes are called cancellative systems , as
defined5 in the classical monograpph [Gri79]. Let Y be the dual process with
generator

Hf(y) =
∑
m∈M

rm
(
f(m†(y))− f(y)

)
.

5Actually, Griffeath’s definition of cancellative systems is somewhat more general, in the sense
that he also allows for spontaneous births. (Compare Exercise 2.8.)
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For given t ≥ 0, we may construct X and Y as in Proposition 2.7. Since the weight
of each arrow must be a number in the finite field {0, 1}, different from zero, and
the weight of each symbol must be a number in the finite field {0, 1} different
from one, we see that each arrow has weight one and each symbol is, indeed,
a blocking symbol. Now every open path (that must avoid blocking symbols) has
weight 1. Let

Γ := {γ : (i, 0)
γ
 (j, t) for some i, j s.t. X0(i) = 1 = Y0(j)}.

Then the duality formula (2.32) just says that

〈Xs, Y(t−s)−〉 =

{
0 if |Γ| is even

1 if |Γ| is odd,

does not depend on s ∈ [0, t].

The voter model revisited

Identifying sets with their indicator functions and P(Λ) ∼= {0, 1}Λ, we may write
the voter model map voti,j defined in (2.24) as

voti,j(x)(k) =

{
x(i) if k = j,

x(k) otherwise,

which is clearly linear modulo 2. Thus, the voter model is also a cancellative
system. In fact, as a cancellative system, it can be constructed from the same
arrows and blocking symbols that are used in its construction as an additive system.
Its dual with respect to the cancellative duality function

ψ(x, y) = 〈x, y〉 =
⊕
i

x(i)y(i) = 1{|x ∩ y| is odd} (2.33)

is different, however, from its dual with respect to the additive duality function

1{x ∩ y 6= ∅}.

Indeed,
〈voti,j(x), y〉 = 〈x, annj,i(y)〉,

where annj,i is the map

anni.j(y)(k) =


0 if k = i,

y(i)⊕ y(j) if k = j,

y(k) otherwise,

(2.34)
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Figure 2.4: The voter model (on the left, with time running upwards) and its dual
system of annihilating random walks (on the right, with time running downwards).

which corresponds to a transition of annihilating random walks , where a particle
at i jumps to j with the rule that if a particle lands on an occupied site, then both
particles annihilate each other, i.e., both particles disappear; see Figure 2.4 and
compare Figure 2.2.

2.7 Lloyd-Sudbury theory

In a series of papers6 [LS95, LS97, Sud00], Lloyd and Sudbury systematically look
for dualities of Markov processes with state space of the form {0, 1}Z. They do not
require that their duals be pathwise, and in fact, it seems that almost all of the
‘new’ duals they find (compared to those that we have already seen in the previous
sections) cannot be constructed in a pathwise way.

Recall that R{0,1}Λ is the space of all functions f : Λ → {0, 1}. If Λ1,Λ2 are
disjoint finite sets, and f1 ∈ R{0,1}Λ1 , f2 ∈ R{0,1}Λ2 are real functions on {0, 1}Λ1

and {0, 1}Λ2 , respectively, then we may define a function f1 ⊗ f2 on {0, 1}Λ1∪Λ2 ∼=
{0, 1}Λ1 × {0, 1}Λ2 by

f1 ⊗ f2(x1, x2) := f1(x1)f2(x2)
(
x1 ∈ {0, 1}Λ1 , x2 ∈ {0, 1}Λ2

)
.

6The names of these papers are slightly confusing. The papers [LS95, LS97] are called Quan-
tum operators in classical probability theory. II and IV, respectively. The authors also have a
paper with the same name and serial number I, but this is on a somewhat different topic than
the other two and certainly no required reading before one can understand parts II and IV. A
part III has apparently also been planned but as far as I have been able to find out, no such
paper has ever appeared.
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In this way, we may identify R{0,1}Λ with the tensor product

R{0,1}Λ ∼= (R{0,1})⊗Λ

of |Λ| copies of the two-dimensional vector space R{0,1}. For any x ∈ {0, 1}Λ, define
|x〉 ∈ R{0,1}Λ by

|x〉(y) := 1{x=y}
(
y ∈ {0, 1}Λ

)
.

The functions |x〉 with x ∈ {0, 1}Λ obviously form a basis for R{0,1}Λ and in fact

|x〉(y) =
∏
i∈Λ

1{x(i)=y(i)} =
(⊗
i∈Λ

|x(i)〉
)

(y),

where {|0〉, |1〉} is the obvious basis of R{0,1}.

If Λ1,Λ2 are again disjoint finite sets, and A1, A2 are linear operators on R{0,1}Λ1

and R{0,1}Λ2 , respectively, then we may define an operator A1 ⊗ A2 on

R{0,1}Λ1∪Λ2 ∼= R{0,1}Λ1 ⊗ R{0,1}Λ2

by
(A1 ⊗ A2)(f1 ⊗ f2) := (A1f1)⊗ (A2f2).

In coordinates, this says that the matrix of A1 ⊗ A2 has the structure

(A1 ⊗ A2)
(
(x1, x2), (x1, x2)

)
= A1(x1, y1)A2(x2, y2)

(x1, y1 ∈ {0, 1}Λ1 , x2, y2 ∈ {0, 1}Λ2). It is easy to see that (A1 ⊗ A2)(B1 ⊗ B2) =
A1B1 ⊗ A2B2. In particular, two operators of the form A ⊗ 1 and 1 ⊗ B always
commute. We may informally describe an operator of the form A⊗ 1 as ‘let A act
on the coordinates in Λ1 and do nothing with the coordinates in Λ2’.

Lloyd and Sudbury look for dualities between Markov processes X and Y that
both have the state space {0, 1}Λ (with the same Λ). Their starting point is the
algebraic formulation of duality in (2.7). Let G and H be the generators of X
and Y , respectively, which are linear operators on R{0,1}Λ , and let ψ be the duality
function, which we also associate with a linear operator on R{0,1}Λ as in (2.5).
Lloyd and Sudbury restrict themselves to processes with two-point interactions, in
a sense that the generator G, and likewise H, can be written as

G =
∑
{i,j}⊂Λ

i 6=j

Gij and H =
∑
{i,j}⊂Λ

i 6=j

Hij, (2.35)
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where the sums run over all subsets of Λ with exactly two elements, and Gij and
Hij are operators that act only on the coordinates i, j in the sense described above,

i.e., there are operators G̃ij and H̃ij acting on R{0,1}{i,j} such that the matrices of
Gij and Hij have the special form

Gij(x, y) = G̃ij

(
(x(i), x(j)), (y(i), y(j))

)
1{x(k) = y(k) ∀k 6∈ {i, j}},

Hij(x, y) = H̃ij

(
(x(i), x(j)), (y(i), y(j))

)
.1{x(k) = y(k) ∀k 6∈ {i, j}}.

The main idea of Lloyd and Sudbury is now to try duality functions whose corre-
sponding operator ψ is a product of operators acting on a single coordinate only.
In fact, they choose the same operator ψ̃ for each coordinate, which yields a duality
function of the form

ψ(x, y) =
∏
i∈Λ

ψ̃
(
x(i), y(i)

)
. (2.36)

To satisfy (2.7), it suffices to match up the terms Gij and Hij separately, i.e.,

Gijψ = ψH†ij ({i, j} ⊂ Λ, i 6= j). (2.37)

Identifying {0, 1}Λ ∼= {0, 1}{i,j} × {0, 1}Λ\{i,j} we may write x ∈ {0, 1}Λ as x =
(x1, x2) with x1 ∈ {0, 1}{i,j} and x2 ∈ {0, 1}Λ\{i,j}. Then

Gij|x〉 = Gij

(
|x1〉 ⊗ |x2〉

)
= (G̃ij|x1〉)⊗ |x2〉,

H†ij|x〉 = (H̃†ij|x1〉)⊗ |x2〉.

Because of the special form of ψ,

ψ|x〉 = ψ
(⊗
i∈Λ

|x(i)〉
)

=
⊗
i∈Λ

ψ̃|x(i)〉 = ψ1|x1〉 ⊗ ψ2|x2〉,

where ψ1 := ψ̃ ⊗ ψ̃ and ψ2 :=
⊗
k 6=i,j

ψ̃.

Now
Gijψ|x〉 = Gij

[
ψ1|x1〉 ⊗ ψ2|x2〉

]
= G̃ijψ1|x1〉 ⊗ ψ2|x2〉,

ψH†ij|x〉 = ψ
[
H̃†ij|x1〉 ⊗ |x2〉

]
= ψ1H̃

†
ij|x1〉 ⊗ ψ2|x2〉,

so, recalling that ψ1 = ψ̃ ⊗ ψ̃, we see that (2.37) is equivalent to

G̃ij

(
ψ̃ ⊗ ψ̃

)
=
(
ψ̃ ⊗ ψ̃

)
H̃†ij (i, j ∈ Λ, i 6= j), (2.38)

which is just a statement about 4× 4 matrices.
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Lloyd and Sudbury [LS95, LS97] give several examples where (2.38) is satisfied and
hence two processes X and Y are dual. Their most elaborate example concerns
two-point interactions described by a matrix G̃ij = G of the form

G(00, 00) G(00, 01) G(00, 10) G(00, 11)
G(01, 00) G(01, 01) G(01, 10) G(01, 11)
G(10, 00) G(10, 01) G(10, 10) G(10, 11)
G(11, 00) G(11, 01) G(11, 10) G(11, 11)

 =


· 0 0 0
d · e b
d e · b
a c c ·

 . (2.39)

For clarity, we have not written the diagonal entries, which are determined by
the requirement that

∑
y G(x, y) = 0. (For example, G(01, 01) = −d − e − b.)

The generator in (2.39) corresponds to a Markov process in {0, 1}2 that makes the
following transitions with the following rates:

annihilation 11 7→ 00 with rate a,

branching 01 7→ 11 with rate b,

coalescence 11 7→ 01 with rate c,

death 01 7→ 00 with rate d,

exclusion 01 7→ 10 with rate e.

Here, we have not written down transitions that are mirror images of other tran-
sitions, i.e., it is understood that the transition 01 7→ 11 happens at the same
rate as 10 7→ 11, etc. Note that within the class of two-point interactions that are
symmetric in this sense and for which 00 is trap, this is as general as one can get.
For generators of the form (2.39), it turns out that the most useful duality func-
tions, that give the richest class of dualities, are those of the form(

ψ̃(0, 0) ψ̃(0, 1)

ψ̃(1, 0) ψ̃(1, 1)

)
=

(
1 1
1 q

)
, (2.40)

where q ∈ R\{1} is a constant. (This is not the complete picture, however. Lloyd
and Sudbury also find some dualities with a more complicated duality function.)
The following theorem is proved in [LS95], but stated more clearly in [Sud00]. In
the definition of the generator G below, we have added a factor 1

2
in front of the

rate a to avoid double counting. (Note that a is the only rate that occurs only
once in the matrix in (2.39).)

Theorem 2.8 (Lloyd-Sudbury duals) Let Λ be a finite set. Let p : Λ × Λ →
[0,∞) satisfy p(i, j) = p(j, i). Let a, b, c, d, e ≥ 0 be constants. Let X be the
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Markov process with state space P(Λ) and generator

Gf(x)=
∑
i,j∈Λ

i 6=j

p(i, j)
[

1{i∈x, j∈x}

{
1
2
a
(
f(x\{i, j})− f(x)

)
+ c
(
f(x\{i})− f(x)

)}
+1{i 6∈x, j∈x}

{
b
(
f(x ∪ {i})− f(x)

)
+ d
(
f(x\{j})− f(x)

)
+ e
(
f((x\{j}) ∪ {i})− f(x)

)}]
.

Let q ∈ R\{1} and let X ′ be independent of X with similar dynamics but with
rates a′, b′, c′, d′, e′ ≥ 0 satisfying

a′ = a+ 2qγ, b′ = b+ γ, c′ = c− (1 + q)γ, d′ = d+ γ, e′ = e− γ, (2.41)

where γ := (a+ c− d+ qb)/(1− q). Then

E
[
q |Xt ∩X ′0|] = E

[
q |X0 ∩X ′t|] (t ≥ 0). (2.42)

Remark The symmetry assumption that p(i, j) = p(j, i) can be dropped and one
can even allow the rates a, b, . . . = a(i, j), b(i, j), . . . to depend individually on i
and j, at the cost of replacing (2.41) by a somewhat more complicated set of
conditions; see [Swa06, Appendix A in the version on the ArXiv].

Proof We observe that, identifying sets with their indicator functions

q|x∩y| =
∏
i∈Λ

qx(i)y(i) =
∏
i∈Λ

ψ̃
(
x(i), y(i)

)
= ψ(x, y),

with ψ̃ as in (2.40). In view of this, it suffices to check (2.37). Dividing out a
factor p(i, j) + p(j, i) on each site, this amounts to checking that

G(ψ̃ ⊗ ψ̃) = (ψ̃ ⊗ ψ̃)H†,

where by a slight abuse of notation G now denotes the generator in (2.39) and H
is the same but with the rates a, b, c, d, e replaced by a′, b′, c′, d′, e′. Here

ψ̃ ⊗ ψ̃ =


1 1 1 1
1 q 1 q
1 1 q q
1 q q q2

 ,



42 CHAPTER 2. DUALITY

so, setting f := b+ d+ e and g := a+ 2c and similarly for the primed parameters,
we need to check that

0 0 0 0
d −f e b
d e −f b
a c c −g




1 1 1 1
1 q 1 q
1 1 q q
1 q q q2



=


1 1 1 1
1 q 1 q
1 1 q q
1 q q q2




0 d′ d′ a′

0 −f ′ e′ c′

0 e′ −f ′ c′

0 b′ b′ −g′

 .

(2.43)

We can simplify these equations a bit by noting that by the fact that
∑

y G(x, y) =
0, and similarly for H,

G


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 = 0 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

H†.

Thus, subtracting the matrix with all entries equal to one and dividing out a factor
q − 1, we may equivalently solve (2.43) with

1 1 1 1
1 q 1 q
1 1 q q
1 q q q2

 replaced by


0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 q + 1

 .

This gives (note the transpose sign on the right-hand side!)
0 0 0 0
0 b− f b+ e (q + 1)b+ e− f
0 b+ e b− f (q + 1)b+ e− f
0 c− g c− g 2c− (q + 1)g



=


0 0 0 0
0 b′ − f ′ b′ + e′ (q + 1)b′ + e′ − f ′
0 b′ + e′ b′ − f ′ (q + 1)b′ + e′ − f ′
0 c′ − g′ c′ − g′ 2c′ − (q + 1)g′


†

.
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This yields the equations

(i) b− f = b′ − f ′,
(ii) b+ e= b+ e′,

(iii) (q + 1)b+ e− f = c′ − g′,
(iv) c− g= (q + 1)b′ + e′ − f ′,
(v) 2c− (q + 1)g= 2c′ − (q + 1)g′.

Filling in the defintions of f and g yields

(i) d+ e= d′ + e′,

(ii) b+ e= b′ + e′,

(iii) d− qb= a′ + c′,

(iv) a+ c= d′ − qb′,
(v) (q + 1)a+ 2qc= (q + 1)a′ + 2qc′.

Given a, b, c, d, e, these are five equations for five variables a′, b′, c′, d′, e′. The first
two equations give b′ = b+ (e− e′) and d′ = d+ (e− e′), so setting γ := e− e′ we
have that

b′ = b+ γ, d′ = d+ γ, and e′ = e− γ.

Equation (iv) now says that

a+ c = (d+ γ)− q(b+ γ) = d− qb+ (1− q)γ,

which forces us to choose

γ =
a+ c− d+ qb

1− q
.

We are left with the equations

(iii) d− qb= a′ + c′,

(v) (q + 1)a+ 2qc= (q + 1)a′ + 2qc′.

Multiplying the first equation by 2q and subtracting this from the second equation
yields

(1− q)a+ 2q
(
a+ c− d′ + qb

)
= (1− q)a′.

Recalling the definition of γ, we may rewrite this as

a′ = a+ 2qγ.
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Inserting this into equation (v), finally, we obtain that

c′ = c+
q + 1

2q
(a− a′) = c− (q + 1)γ.

We have, in fact, already seem two special cases of the duality function

ψ(x, y) = q|x∩y|
(
x, y ∈ P(Λ)

)
that occurs in Theorem 2.8. First, when q = 0, this reduces to

ψ(x, y) = 0|x∩y| = 1{x∩y=∅},

which is the duality function familiar to us from additive systems duality. Secondly,
taking q = −1 yields (letting ⊕ denote addition modulo 2)

ψ(x, y) = (−1)|x∩y| = 1− 2
⊕
i∈Λ

x(i)y(x),

which is equivalent to the duality function that we used for cancellative systems.

In general, if X and Y are P(Λ)-valued Markov processes that are dual with respect
to the duality function

ψq(x, y) = q|x∩y|
(
x, y ∈ P(Λ)

)
(2.44)

for some q ∈ R\{1}, then we will say that Y is a q-dual of X. Some of the most
useful dualities covered by Theorem 2.8 have −1 < q < 0, which interpolates
between additive and cancellative systems duality. We conclude this section with
some examples.

Duals of the voter model

Let Λ be a finite set and let p : Λ × Λ → [0,∞) be a function. We recall from
(2.25) that the voter model X with these rates is the P(Λ)-valued Markov process
with generator

Gvot =
∑
i 6=j

p(i, j)
{

1{i∈x(i), j 6∈x(j)}
(
f(x ∪ {j})− f(x)

)
+1{i 6∈x(i), j∈x(j)}

(
f(x\{j})− f(x)

)}
.
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Assuming moreover that p(i, j) = p(j, i), we can write this generator in the form
of Theorem 2.8 by choosing

a = 0, b = 1, c = 0, d = 1, e = 0.

It follows that the parameter γ from Theorem 2.8 equals

γ =
a+ c− d+ qb

1− q
= −1,

and for a given value of q ∈ R\{0}, we find that X is q-dual to the process X ′

with rates
a′ = −2q, b′ = 0, c′ = 1 + q, d′ = 0, e′ = 1,

provided these rates are all nonnegative, which requires us to choose −1 ≤ q ≤ 0.
Set α := −q, which satisfies 0 ≤ α ≤ 1. Using the maps rwij and annij defined in
(2.26) and (2.34), we may write the generator G′ of X ′ in the form

G′f(x) =
∑
i 6=j

p(i, j)
{
α
(
f(anni,j(x))−f(x)

)
+(1−α)

(
f(rwi,j(x))−f(x)

)
}. (2.45)

We may interpret X ′ as a system of particles performing independent random
walks, jumping from i to j with rate p(i, j), with the rule that when one particle
lands on an already occupied site, it annihilates (resulting in an empty site) with
probability α and coalesces (resulting in an occupied site) with probability 1− α.
In particular, for α = 0, 1, respectively, we find back the duals of the voter model in
the sense of additive systems duality and cancellative systems duality, respectively.

Duals of the contact process

Let Λ be a finite set and let p : Λ×Λ→ [0,∞) be a function satisfying p(i, i) = 0,
p(i, j) = p(j, i), and

∑
j p(i, j) = 1. Fix λ ≥ 0 and let X be the contact process

with generator (compare (2.29))

Gvot =
∑
i

(
f(reci(x))− f(x)

)
+ λ

∑
i 6=j

p(i, j)
(
f(infi,j(x))− f(x)

)
=
∑
i 6=j

p(i, j)
{(
f(reci(x))− f(x)

)
+ λ
(
f(infi,j(x))− f(x)

)}
.

We observe that this generator is of the form of Theorem 2.8 if we choose

a = 0, b = λ, c = 1, d = 1, e = 0.
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It follows that for a given value of the duality parameter q ∈ R\{1}, the parameter
γ from Theorem 2.8 equals

γ =
a+ c− d+ qb

1− q
=

qλ

1− q
.

We find that X is q-dual to the process X ′ with rates

a′ =
q2λ

1− q
, b′ =

1

1− q
, c′ = 1− q1 + q

1− q
λ, d′ = 1 +

qλ

1− q
, e′ = − qλ

1− q
,

provided these rates are all nonnegative. Here b′ ≥ 0 requires 1− q > 0 and hence
e′ ≥ 0 requires q ≤ 0. Now a′ ≥ 0 is automatically satisfied. Let us assume, for
simplicity, that −1 ≤ q ≤ 0. Then c′ ≥ 0 is also automatically satisfied, while
d′ ≥ 0 leads to the requirement 1 − q + qλ ≥ 0 or equivalently (λ − 1)q ≥ −1, so
sufficient conditions for the rates a′, . . . , e′ to be all nonnegative are that

q = 0 or 0 > q ≥
{
−1 (λ ≤ 2),
−(λ− 1)−1 (λ > 2).

In particular, for q = 0, we find back the additive self-duality of the contact
process.

2.8 Concluding remarks

There exists a lot of material on Markov process duality that we have been able
to cover in the limited space of these notes. Several authors have tried to look
for dualities in a systematic way. An interesting approach is that of [GKR07,
CGGR13], who attempt to find dualities by writing Markov generators in terms of
creation and annihilation operators7 look for symmetry groups, and link dualities
to different representations of the same group.

We have restricted most of our analysis to Markov processes with state space of
the form {0, 1}Λ with Λ a finite set. The extension to countably infinite Λ is in fact
not hard, but skipped here for lack of space. Within this class, the approach by
Lloyd and Sudbury, who look at duality functions that act ‘locally’ on each site as
in (2.36), seems pretty compelling. Nevertheless, there exist useful dualities that
do not fall into this class; an example can be found in [Swa13, Lemma 4].

7This is something that Lloyd and Sudbury [LS95, LS97] also do, though we have not made
use of this in our brief exposition of their work.
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Leaving the class of Markov processes with state space of the form {0, 1}Λ, there
exist many more dualities that we cannot cover here. Examples include processes
with state space of the form NΛ and diffusion processes with state space of the
form IΛ, where I ⊂ R is some interval. As explained in [Swa06], many of these
dualities can be found by starting with a Lloyd-Sudbury duality and then looking
at suitable functions of processes with Λ tending to infinity, which in the right
limit may converge to diffusion processes etc. Nevertheless, this approach cannot
cover all cases. For example, it is difficult to see how the intricate self-duality of
the mutual catalyst described in [Myt98] could be derived in such a way.

2.9 Exercises

Exercise 2.1 (Subduality) Let X and Y be Markov processes with finite state
spaces S and R and generators G and H, respectively, and let ψ : S × R→ R be
a function. Let us say that Y is a subdual of X with duality function ψ if

Ex[ψ(Xt, y)] ≥ Ey[ψ(x, Yt)] (x ∈ S, y ∈ R, t ≥ 0). (2.46)

Show that a necessary and sufficient condition for (2.46) is that

Gψ( · , y)(x) ≥ Hψ(x, · )(y) (x ∈ S, y ∈ R).

Let ψ : RR → RS be the operator defined in (2.5) and let π be an invariant law
of Y . Show that ψπ is a superharmonic function of X. Note: subduality has
successfully been applied in, for example, [AS05, SS13].

Exercise 2.2 (Reversibility and duality) Let X be a Markov process with
finite state space S and reversible invariant law π satisfying π(x) > 0 for all x ∈ S.
Show that X is self-dual with respect to the duality function

ψ(x, y) = 1{x=y}π(x)−1 (x, y ∈ S).

Note Some authors, such as [GKR07], use this simple fact as a starting point to
look for more interesting dualities.

Exercise 2.3 (Birth-and-death chains on N) Let (bk)k≥1 and (dk)k≥1 be
strictly positive constants. Let X be the continuous-time Markov process with
state space N (= {0, 1, . . .}) that jumps from k− 1 to k with rate bk and from k to
k − 1 with rate dk. Let X ′ be another continuous-time Markov process with state
space N, that jumps from k − 1 to k with rate b′k := dk−1 (k ≥ 2) and from k to
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k − 1 with rate d′k := bk (k ≥ 1). The process X ′ cannot jump from 0 to 1, i.e., 0
is a trap for X ′. Assume that the trapping probability

h(k) := Pk
[
∃t ≥ 0 s.t. X ′t = 0

]
satisfies h(k)→ 0 as k →∞. Prove that

π(k) := h(k)− h(k + 1) (k ≥ 0)

is an invariant law for the process X.

Exercise 2.4 (Symmetric exclusion process) Let exci,j : {0, 1}Λ → {0, 1}Λ

be the map defined by

exci,j(x)(k) :=


x(i) if k = j,

x(j) if k = i,

x(k) otherwise.

(2.47)

Show that exci,j is both additive and cancellative and determine its dual maps with
respect to the duality functions ψ(x, y) = 1{x∩y 6=∅} and ψ(x, y) =

⊕
i∈Λ x(i)y(i),

respectively.

Exercise 2.5 (Biased voter model (part 1)) Let Λ be a finite set and let
p : Λ× Λ → [0, 1] satisfy

∑
j p(i, j) = 1 and p(i, j) = p(j, i). For any x ∈ {0, 1}Λ,

let
f0(x, i) :=

∑
j∈Λ

p(i, j)
(
1− x(j)

)
and f1(x, i) :=

∑
j∈Λ

p(i, j)x(j)

denote the local frequency of zeros and ones around the site i, weighted with the
kernel p. The biased voter model with bias β ≥ 0 is the Markov process X with
state space {0, 1}Λ such that in each jump of the process, only one coordinate x(i)
of the vector x ∈ {0, 1}Λ changes its value, and

x(i) jumps

{
0 7→ 1 with rate (1 + β)f1(x, i),

1 7→ 0 with rate f0(x, i).

Show that X is dual, in the sense of additive systems duality, to a Markov process
Y with the following description. Say that a site i is occupied by a particle at
time t if Yt(i) = 1. Then these particles form a system of branching and coalescing
random walks, where a particle at i jumps with rate p(i, j) to the site j, a particle
at i gives with rate βp(i, j) birth to a new particle at j, and particles that jump to
or are created on an already occupied site immediately coalesce with the particle
that is already present there.
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Exercise 2.6 (Biased voter model (part 2)) Show that there exists some q > 0
(depending on β > 0) such that product measure with intensity q is a reversible
law for the branching coalescing walk defined in the previous exercise.

Exercise 2.7 (Biased voter model (part 3)) The constant configurations 0
and 1 are traps for the biased voter model, and the trapping probability

h(x) := Px
[
∃t ≥ 0 s.t. Xt = 1

]
,

as a function of the initial state x, is a harmonic function for X. Give an expression
for h in terms of the invariant law of the dual system of branching and coalescing
random walks described in the previous exercise.

Exercise 2.8 (Contact process with spontaneous births (part 1))Let Λ be
a finite set and for each i ∈ Λ, define a map birthi : P(Λ)→ P(Λ) by

birthi(x) := x ∪ {i}.

Show that birthi is not additive. Let Λ∗ := Λ ∪ {∗} be the set Λ with one extra
adjoined element ∗. Define maps infi,∗ from P(Λ∗) into itself in the obvious way,
i.e.,

infi,∗(x) =

{
x ∪ {∗} if i ∈ x,
x otherwise.

Let α, δ ≥ 0, let λ : Λ × Λ → [0,∞) be a function and let X and Y be Markov
processes with state spaces P(Λ) and P(Λ∗), respectively, and generators G and
H given by

Gf(x) := δ
∑
i

(
f(reci(x))− f(x)

)
+
∑
i 6=j

λ(i, j)
(
f(infi,j(x))− f(x)

)
+α
∑
i

(
f(birthi(x))− f(x)

)
,

Hf(y) := δ
∑
i

(
f(reci(y))− f(y)

)
+
∑
i 6=j

λ(j, i)
(
f(infi,j(y))− f(y)

)
+α
∑
i

(
f(infi,∗(y))− f(y)

)
,

where all sums run over i, j ∈ Λ only (excluding ∗). Show that X and Y are
pathwise dual with duality function

ψ(x, y) := 1{x∗ ∩ y 6= ∅} where x∗ := x ∪ {∗}.

Note: By a similar trick, it is also possible to allow for spontaneous birth of
particles in cancellative systems.
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Exercise 2.9 (Contact process with spontaneous births (part 2)) Let
X and Y be the contact process with spontaneous births and its dual from the
previous exercise. Show that the process started in X0 = Λ satisfies

PΛ[Xt ∈ · ] −→
t→∞

P[X∞ ∈ · ],

where X∞ is a P(Λ)-valued random variable whose law is uniquely characterized
by the relation

P[X∞ ∩ y 6= ∅] =Py[Yt 6= ∅ ∀t ≥ 0]

=Py[∃t ≥ 0 s.t. ∗ ∈ Yt]
(
y ∈ P(Λ)

)
.

Note: The law of X∞ is called the upper invariant law. For processes on infinite
lattices, this can be nontrivial even if there are no spontaneous births.

Exercise 2.10 (Odd upper invariant law) Let X and Y be P(Λ)-valued
Markov processes that are dual in the sense of cancellative systems duality. Iden-
tifying P(Λ) ∼= {0, 1}Λ, let π1/2 denote product measure on {0, 1}Λ with intensity
1/2. Show that the process X started in the initial law π1/2 satisfies

Pπ1/2 [Xt ∈ · ] −→
t→∞

P[X∞ ∈ · ],

where X∞ is a P(Λ)-valued random variable whose law is uniquely characterized
by the relation

P[|X∞ ∩ y| is odd] = 1
2
Py[Yt 6= ∅ ∀t ≥ 0]

(
y ∈ P(Λ)

)
.

Hint Recall the form of the cancellative systems duality function from (2.33).

Exercise 2.11 (Moran model) Let Λ be a set with |Λ| = N elements and let
X be the voter model with generator (compare (2.25))

Gf(x) = 1
2

∑
i 6=j

(
f(voti,j(x))− f(x)

)
.

Show that
Mt := |Xt| (t ≥ 0)

defines a Markov process (Mt)t≥0 with state space {0, . . . , N}, and determine
its generator. Show that M has a dual process K = (Kt)t≥0 with state space
{1, . . . , N}, with respect to the duality function

ψ(m, k) :=
k−1∏
i=0

N −m− i
N − i

,
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which corresponds to the probability that a sample of k individuals does not con-
tain an individual of type one, when drawn (without replacement) from a popu-
lation of N individuals of which m are of type one. Determine the generator of
K. Note The process M is a continuous-time version of the Moran model, which
is used in mathematical population dynamics.

Exercise 2.12 (Self-duality) In the set-up of Theorem 2.8, show that each
model with b > 0 and q := (d − a − c)/b 6= 1 is self-dual with parameter q. Use
this to show that the biased voter model with rates

a = 0, b = 1 + β, c = 0, d = 1, e = 0,

where β > 0, is self-dual. What happens if the bias β is zero?

Exercise 2.13 (Weak stochastic order) Let Λ be a finite set. The laws µ =
P[X ∈ · ] and µ′ = P[X ′ ∈ · ] of two P(Λ)-valued random variables X and X ′ are
called stochastically ordered, denoted µ ≤ µ′, if X and X ′ can be coupled such
that X ≤ X ′. It is known that this is equivalent to the statement that E[f(X)] ≤
E[f(X ′)] for each monotone function f : {0, 1}Λ → R [Lig85, Thm II.2.4]. Let us
say that µ and µ′ are weakly stochastically ordered, denoted µ ≺ µ′, if P[X ∩ y 6=
∅] ≤ P[X ′ ∩ y 6= ∅] for all y ∈ P(Λ). Prove the following statements.

(i) µ ≤ µ′ implies µ ≺ µ′ but the converse statement does not hold.

(ii) If (Pt)t≥0 is the semigroup of a monotone Markov process, then µ ≤ µ′ implies
µPt ≤ µ′Pt for all t ≥ 0.

(iii) If (Pt)t≥0 is the semigroup of an additive Markov process, then µ ≺ µ′ implies
µPt ≺ µ′Pt for all t ≥ 0.
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Chapter 3

Intertwining

3.1 Markov functionals

Let X = (Xk)k≥0 be a Markov chain with finite state space S and transition kernel
P , let f : S → R be a surjective function from S onto some other space R, and let
Y = (Yk)k≥0 be the chain given by

Yk := f(Xk) (k ≥ 0).

We ask ourselves the following question: Under what conditions is Y itself a
Markov chain with some transition kernel Q?

By definition, we say that (Yk)k≥0 = (f(Xk))k≥0 is autonomous if

f(x) = f(x′) implies Px[f(X1) = y] = Px′ [f(X1) = y] (3.1)

for all x, x′ ∈ S and y ∈ R.

Lemma 3.1 (Autonomous Markov chain) In the set-up above, if Y is au-
tonomous, then Y is a Markov chain with transition kernel Q given by

Q(y, y′) := Px[f(X1) = y′] =
∑
x′∈S

1{f(x′)=y}P (x, x′)

(x ∈ S, y, y′ ∈ R, f(x) = y).

Proof We note that the fact that f is surjective says that for each y ∈ R there
exists an x ∈ S with f(x) = y. Since by the definition of autonomy, Px[f(X1) = y′]
does not depend on the choice of such an x, this shows that Q is well-defined.

53
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Now, by the Markov property of X and the definition of autonomy,

P
[
Yk+1 = y

∣∣ (Y0, . . . , Yk) = (y0, . . . , yk)
]

=
∑
x∈S

1{f(x)=yk}P
[
Yk+1 = y

∣∣Xk = x, (Y0, . . . , Yk) = (y0, . . . , yk)
]

· P
[
Xk = x

∣∣ (Y0, . . . , Yk) = (y0, . . . , yk)
]

=
∑
x∈S

1{f(x)=yk}P
[
Yk+1 = y

∣∣Xk = x
]
· P
[
Xk = x

∣∣ (Y0, . . . , Yk) = (y0, . . . , yk)
]

= Q(yk, y)
∑
x∈S

1{f(x)=yk} · P
[
Xk = x

∣∣ (Y0, . . . , Yk) = (y0, . . . , yk)
]

= Q(yk, y).

It seems that Lemma 3.1 is more or less optimal when the aim is to ensure the
Markov property of Y by putting restrictions on the transition kernel of X alone.
If, however, one is also prepared to put restrictions on the initial law of X, then it
turns out that there are interesting cases where Y , on its own, is a Markov process,
even though it is not autonomous.

Proposition 3.2 (Markov functionals) Let S,R be finite spaces, let P,Q be
probability kernels on S and R, respectively, let f : S → R be a surjective function,
and let K be a probability kernel from R to S such that

K(y, x) = 0 whenever f(x) 6= y (x ∈ S, y ∈ R).

Let X = (Xk)k≥0 be a Markov chain with transition kernel P and let Yk := f(Xk)
(k ≥ 0). Assume that

QK = KP. (3.2)

Then, if X is started in an initial law such that

P[X0 = x |Y0] = K(Y0, x) a.s. (x ∈ S), (3.3)

this implies that

P[Xk = x | (Y0, . . . , Yk)] = K(Yk, x) a.s. (x ∈ S), (3.4)

and Y , on its own, is a Markov chain with transition kernel Q.

Proof We start by proving (3.4). For each x ∈ S and (y0, . . . , yk) ∈ Rk such that
P[(Y0, . . . , Yk) = (y0, . . . , yk)] > 0, let us define

π(x | y0, . . . , yk) := P
[
Xk = x

∣∣ (Y0, . . . , Yk) = (y0, . . . , yk)
]
.



3.1. MARKOV FUNCTIONALS 55

Let us also introduce the notation

P (x, x′; y) := 1{f(x′)=y}P (x, x′) (x, x′ ∈ S, y ∈ R).

Then (3.2) and the fact that K(y, x) = 0 whenever f(x) 6= y imply that∑
x∈S

K(y, x)P (x, x′; y′) = 1{f(x′)=y′}(KP )(y, x′) = 1{f(x′)=y′}(QK)(y, x′)

=
∑
y′′∈R

Q(y, y′′)K(y′′, x′)1{f(x′)=y′} = Q(y, y′)K(y′, x′)
(3.5)

Filtering theory tells us that there is a systematic way of calculating the functions
π(x | y0, . . . , yk) for k = 0, 1, . . .. For k = 0, obviously, by (3.3),

π(x | y0) = P
[
X0 = x

∣∣Y0 = y0] = K(y0, x). (3.6)

The filtering equations now tell us that for k ≥ 1,

π(x | y0, . . . , yk) =

∑
x′∈S P (x′, x; yk)π(x′ | y0, . . . , yk−1)∑

x′,x′′∈S P (x′, x′′; yk)π(x′ | y0, . . . , yk−1)
, (3.7)

which can be proved by writing the left-hand side as

P[Xk = x, Yk = yk | (Y0, . . . , Yk−1) = (y0, . . . , yk−1)]

P[Yk = yk | (Y0, . . . , Yk−1) = (y0, . . . , yk−1)]
,

which obviously equals the right-hand side of (3.7).

To prove (3.4), we need to show that

π(x | y0, . . . , yk) = K(x, yk) (k ≥ 0).

Formula (3.6) says that this is OK for k = 0. By induction, using the filtering
equations (3.7) and (3.5),

π(x | y0, . . . , yk+1) =

∑
x′∈S P (x′, x; yk+1)K(yk, x

′)∑
x′,x′′∈S P (x′, x′′; yk+1)K(yk, x′)

=
Q(yk, yk+1)K(yk+1, x)∑

x′′∈S Q(yk, yk+1)K(yk+1, x′′)
= K(yk+1, x),

completing the induction step in the proof of (3.4).
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Now, by the Markov property of X and formulas (3.4) and (3.5),

P
[
Yk+1 = y

∣∣(Y0, . . . , Yk) = (y0, . . . , yk)
]

=
∑
x∈S

P
[
Yk+1 = y

∣∣Xk = x, (Y0, . . . , Yk) = (y0, . . . , yk)
]

· P
[
Xk = x

∣∣(Y0, . . . , Yk) = (y0, . . . , yk)
]

=
∑
x∈S

P
[
Yk+1 = y

∣∣Xk = x
]
π(x | y0, . . . , yk)

=
∑
x,x′∈S

P (x, x′; y)K(yk, x) =
∑
x′∈S

Q(yk, y)K(yk, x
′) = Q(yk, y),

(3.8)

proving that Y is a Markov chain with transition kernel Q.

3.2 Intertwining of Markov processes

In algebra, a relation between operators A,B,C of the form

AB = BC

is called an intertwining relation. In particular, if B is invertible, this implies
that A = BCB−1; the term ‘intertwining’, however, is especially used in situations
where B is not (necessarily) invertible.

The relation (3.2) is thus an example of an intertwining relation as is the abstract
formulation of duality in (2.6). We now make a more specific definition. Let X
and Y be Markov chains with finite state spaces S and R and transition kernels P
and Q, respectively, and let K be a probability kernel from R to S (in this order!).
If

QK = KP, (3.9)

then we say that X and Y are intertwined . Since the inverse of a probability kernel,
if it exists, is usually not a probability kernel, intertwining of Markov processes
(unlike duality) is not a symmetric relation. To distinguish the different roles of
X and Y , we will say that X is an intertwined chain on top of Y .

By induction, (3.9) implies QkK = KP k (k ≥ 0), so intertwining relations make a
connection between the forward equations of X and the forward equations of Y .
(Recall from (2.8) that a duality links the forward evolution of one process to the
backward evolution of the other process.)
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It seems the use of the word intertwining in this specific sense for Markov chains
was first introduced by Marc Yor in the preprint [Yor88], and then quickly adopted
by Diaconis and Fill [DF90] who proved Proposition 3.3 below. Since Marc Yor’s
work appeared only several years later and in a form quite different from the
original preprint, the paper by Diaconis and Fill seems to be the first place in
the literature where intertwining of Markov chains occurs as an abstract concept.
Although examples of intertwinings of Markov processes have been known and
studied (without being called so) for a long time, the more systematic investiga-
tion of the subject is quite new. Much of it has been motivated by the study
of mixing times (the book [LPW09] is a good general reference of this concept).
Proposition 3.2 on Markov functionals can be traced back to Rogers and Pitman
[RP81].

Note that in general (unlike the set-up in Proposition 3.2), we do not assume that
there exists a function f : S → R such that K(y, x) = 0 unless f(x) = y. In this
more general context, a result similar to Proposition 3.2 holds, but we have to
formulate it somewhat differently since Y is in general no longer a function of X.

Proposition 3.3 (Intertwining of Markov chains) Let S,R be finite spaces,
let P,Q be probability kernels on S and R, respectively, let K be a probability
kernel from R to S, and assume that (3.9) holds. Then there exists a Markov
chain (X, Y ) = (Xk, Yk)k≥0 with state space Ŝ := {(x, y) ∈ S × R : K(y, x) > 0}
such that

(i) X is autonomous with transition kernel P ,

and moreover, the condition

P[X0 = x |Y0] = K(Y0, x) a.s. (x ∈ S) (3.10)

implies that

(ii) Y , on its own, is a Markov chain with transition kernel Q,

(iii) P[Xk = x | (Y0, . . . , Yk)] = K(Yk, x) a.s. (k ≥ 0, x ∈ S).

Remark Proposition 3.3 contains Proposition 3.2 as a special case. Indeed, if
there exists a function f : S → R such that K(y, x) = 0 unless f(x) = y, then we
can naturally identify the sets S and Ŝ through the bijection x 7→ (x, f(x)).

Proof The strategy will be to construct the transition kernel of (X, Y ) ‘by hand’
and then apply Proposition 3.2 to the joint process (X, Y ). For each x′ ∈ S and
y ∈ R such that QK(y, x′) > 0, we define a probability law Qx′(y, · ) on R by

Qx′(y, y
′) :=

Q(y, y′)K(y′, x′)

QK(y, x′)
.
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For notational convenience, if QK(y, x′) = 0, then we choose for Qx′(y, · ) some
arbitrary probability on R. Next, we define a probability kernel P̂ on S ×R by

P̂ (x, y;x′, y′) := P (x, x′)Qx′(y, y
′) (x, x′ ∈ S, y, y′ ∈ R).

We claim that if (x, y) ∈ Ŝ, then P̂ (x, y; · ) is concentrated on Ŝ and its definition
does not depend on our arbitrary choice of Qx′(y, · ) for QK(y, x′) = 0. Indeed,
if (x, y) ∈ Ŝ and P̂ (x, y;x′, y′) > 0, then P (x, x′) > 0 while K(y, x) > 0 by the
definition of Ŝ, so K(y, x)P (x, x′) > 0 which by (3.9) implies that QK(y, x′) =
KP (y, x′) > 0 and hence Qx′(y, · ) is unambiguous. Now P̂ (x, y;x′, y′) > 0 im-
plies Qx′(y, y

′) > 0 which by the (unambiguous) definition of the latter implies
K(y′, x′) > 0 and hence (x′, y′) ∈ Ŝ.
Let K̂ be the kernel from R to Ŝ defined by

K̂(y;x′, y′) := K(y, x′)1{y=y′},

and let f : Ŝ → R be defined by f(x, y) := y. Then K̂(y;x′, y′) > 0 implies
f(x′, y′) = y. We claim that moreover

QK̂ = K̂P̂.

Indeed, by (3.9),

K̂P̂ (y;x′, y′) =
∑

(x′′,y′′)∈Ŝ

K(y;x′′, y′′)P (x′′, x′)Qx′(y
′′, y′)

=
∑
x′′∈S

K(y, x′′)P (x′′, x′)
Q(y, y′)K(y′, x′)

QK(y, x′)
= KP (y, x′)

Q(y, y′)K(y′, x′)

KP (y, x′)

= Q(y, y′)K(y′, x′) =
∑
y′′

Q(y, y′′)K̂(y′′;x′, y′) = QK̂(y;x′, y′).

This shows that all assumptions of Proposition 3.2 are satisfied. Claims (ii) and
(iii) are now immediate from that proposition, while the fact that X is autonomous
with kernel P is clear from our definition of P̂ .

We note that condition (3.10) does not put any restrictions on the initial law of Y .
Proposition 3.3 can therefore be read in such a way that the intertwining condition
(3.9) implies that the process Y , started in an arbitrary initial law, can be coupled
to a process X such that (i) and (iii) hold. We may view X as some added structure
that we have added on top of Y . Proposition 3.3 has a continuous-time analogue,
that we cite here from [Fil92]. We note that an extension of this result, where
X need not be autonomous (but in applications may be almost autonomous) is
proved in [AS10].
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Proposition 3.4 (Intertwining of Markov processes) Let let G,H be gener-
ators of Markov processes with finite state spaces S,R, let K be a probability kernel
from R to S, and assume that

HK = KG. (3.11)

Then there exists a Markov process (X, Y ) = (Xt, Yt)t≥0 with state space Ŝ :=
{(x, y) ∈ S ×R : K(y, x) > 0} such that

(i) X is autonomous with generator G,

and moreover, the condition

P[X0 = x |Y0] = K(Y0, x) a.s. (x ∈ S)

implies that

(ii) Y , on its own, is a Markov process with generator H,

(iii) P[Xt = x | (Ys)0≤s≤t] = K(Yt, x) a.s. (t ≥ 0, x ∈ S).

Remark In particular, if there exists a function f : S → R such that K(y, x) = 0
unless f(x) = y, then by identifying the sets S and Ŝ through the bijection x 7→
(x, f(x)), one may derive a continuous-time analogue of Proposition 3.2.

3.3 Thinning

Let Λ be a finite set and let (χ(i))i∈Λ be an i.i.d. collection of Bernoulli (i.e.,
{0, 1}-valued) random variables with intensity P[χ(i) = 1] = p ∈ [0, 1]. Then
χ = (χ(i))i∈Λ is a {0, 1}Λ-valued random variable. Alternatively, identifying sets
with their indicator functions, we may view χ = {i ∈ Λ : χ(i) = 1} as a random
element of P(Λ), the space of all subsets of Λ. If x is another P(Λ)-valued random
variable, independent of χ, then we call

Thinp(x) := x ∩ χ

a p-thinning of x. Note that x ∩ χ is obtained from x by independently throwing
away elements of x (with probability 1− p) or keeping them (with probability p).
We may define a probability kernel Tp on P(Λ) by

Tp(x, y) := P[x ∩ χ = y]
(
x, y ∈ P(Λ)

)
, (3.12)
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where in this formula, x is (of course) deterministic. It is not hard to see that the
thinning of a thinning is again a thinning:

TpTp′ = Tpp′
(
p, p′ ∈ [0, 1]

)
. (3.13)

Thinnings are closely related to the Lloyd-Sudbury duals of Theorem 2.8. Recall
from (2.44) that P(Λ)-valued Markov processes X and Y are called q-dual for
some q ∈ R\{1} if they are dual with respect to the duality function

ψq(x, y) = q|x∩y|
(
x, y ∈ P(Λ)

)
.

The following proposition is (more or less) [Sud00, Thm 2.1].

Proposition 3.5 (Thinnings and q-duality) Let X,X ′ and Y be Markov pro-
cesses with state space P(Λ) and generators G,G′ and H, respectively. Assume
that Y is a q-dual of X and a q′-dual of X ′, for constants q, q′ ∈ R\{1} satisfying

p :=
1− q
1− q′

∈ [0, 1].

Then the generators of X and X ′ satisfy the intertwining relation

GTp = TpG
′.

In particular, the process X, started in an arbitrary initial law, can be coupled to
a process X ′ such that

(i) X ′ is an autonomous Markov process with generator G,

(ii) P[X ′t ∈ · | (Xs)0≤s≤t] = Tp(Xt, · ) a.s. (t ≥ 0).

Proof We will give an algebraic proof. For a proof with a more probabilistic
flavour, see [Swa06, Lemma 2 in the version on the ArXiv]. Let ψq denote the
linear operator on RP(Λ) with matrix ψq(x, y). We claim that ψq is invertible for
each q 6= 1 and that

ψqψ
−1
q′ = Tp provided that p =

1− q
1− q′

∈ [0, 1]. (3.14)

We observe that both ψq′ and Tp are products of local operators that act on a
single coordinate only. In view of this, it suffices to prove the statement for the
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case that Λ consists of a single element and hence P(Λ) ∼= {0, 1}Λ = {0, 1}. We
recall from (2.40) that(

ψq(0, 0) ψq(0, 1)
ψq(1, 0) ψq(1, 1)

)
=

(
1 1
1 q

)
.

It is straightforward to check that(
1 1
1 q

)−1

= (1− q)−1

(
−q 1
1 −1

)
.

For a single site, the matrix of Tp is given by(
Tp(0, 0) Tp(0, 1)
Tp(1, 0) Tp(1, 1)

)
=

(
1 0

1− p p

)
.

Now

ψqψ
−1
q′ = (1− q′)−1

(
1 1
1 q

)(
−q′ 1
1 −1

)
=

(
1 0

q−q′
1−q′

1−q
1−q′

)
= Tp,

provided that (1− q)/(1− q′) = p ∈ [0, 1].

By (2.7), the fact that Y is a q-dual of X and a q′-dual of X ′ may algebraically be
expressed as

ψ−1
q Gψq = H† and G′ = ψq′H

†ψ−1
q′ .

Using (3.14), it follows that

GTp = Gψqψ
−1
q′ = ψqH

†ψ−1
q′ = ψqψ

−1
q′ G

′ = TpG
′.

The rest of the statements are now immediate from Proposition 3.4.

Remark In our proof, we have actually never used that H is a Markov generator.
In view of this, all conclusions of Proposition 3.5 remain true if Y is only a formal
dual . In particular, when we apply Theorem 2.8 to find three processes X,X ′

and Y such that Y is a q-dual of X and a q′-dual of X ′, then it is not necessary
that the rates a, b, c, d, e corresponding to Y are all nonnegative, even though this
means, of course, that H is not a Markov generator.
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Annihilating and coalescing random walks

For 0 ≤ α ≤ 1, let Xα be the process with generator

Gαf(x) =
∑
i 6=j

p(i, j)
{
α
(
f(anni,j(x))− f(x)

)
+ (1− α)

(
f(rwi,j(x))− f(x)

)
}.

as in (2.45), i.e., Xα is a collection of random walks with the property that if a
particles lands on an occupied site, the two particles annihilates with probability
α and coalesce with probability 1−α. As we have seen near the end of Section 2.7,
such a system is q-dual to the voter model, with q = −α. Applying Proposition 3.5
we see that for any 0 ≤ α ≤ α′ ≤ 1, the process Xα (started in an arbitrary initial
law) can be coupled to a process Xα′ in such a way that

P[Xα′

t ∈ · | (Xα
s )0≤s≤t] = T(1+α)/(1+α′)(X

α
t , · ) a.s. (t ≥ 0).

In particular, setting α = 0 and α′ = 1, we see that we can couple a system of
coalescing random walks to a system of annihilating random walks in such a way
that the latter are a 1/2-thinning of the former.

3.4 Concluding remarks

Our discussion of duality has focussed on Markov processes with state space of the
form {0, 1}Λ. For these processes, we have seen that a large class of duals, that
contains most of the known examples, consists of Lloyd and Sudbury’s q-duals.
In view of the close connection between q-duality and thinning, one might have
the impression that most of the intertwinings occuring in practice are thinning
relations. Little could be further from the truth.
Intertwining relations between Markov processes are very common. Indeed, this is
such a diverse subject, and at the same time such a young subject, that it is hard to
give anything like a comprehensive overview. A thorough discussion of the matter
should at least discuss the interesting intertwinings for birth-and-death processes
discivered by Diaconis and Miclo [DM09] and elaborated on in [Swa11], as well
as some examples of how intertwinings can be used to construct strong stationary
times and give bounds on mixing times. For this subject, see [DF90, Fil92, DM09]
and also the evolving-set process discussed in [LPW09, Chap. 17] (even though the
latter do not formalize the concept of intertwining). Intertwining can also nicely
be applied to give lower bounds on the time till absorption, as is done in [AS10].
To give the reader at least some idea of the various sorts of intertwinings that can
be constructed and made use of, we have tried to include a wide range of examples
in the exercises.
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3.5 Exercises

Exercise 3.1 (Autonomous Markov chain) Let X = (Xk)k≥0 be a Markov
chain with finite state space S and transition kernel P , let f : S → R be a
surjective function from S onto some other space R, and let Yk := f(Xk) (k ≥ 0).
Recall that a random mapping representation for P is a probability space (E, E , µ)
together with a measurable map φ : S × E → S such that (compare (1.10))

P (x, x′) = µ({z ∈ E : φ(x, z) = x′}) (x, x′ ∈ S).

Show that Y = (Yk)k≥0 is an autonomous Markov chain if and only if there exists
such a random mapping representation for P with the additional property that

f(x) = f(x′) implies f(φ(x, z)) = f(φ(x′, z)) (x, x′ ∈ S, z ∈ E).

Note that this says that when we construct X inductively as Xk = φ(Xk−1, Zk),
where the (Zk)k≥1 are i.i.d. with common law µ, then Yk = f(φ(Xk−1, Zk)) is a
function of Yk−1 and Zk only.

Exercise 3.2 (Thinning semigroup) Let Λ be a finite set and let X be the
Markov process with state space P(Λ) and generator

Gf(x) :=
∑
i∈Λ

(
f(x\{i})− f(x)

)
.

Let (Pt)t≥0 be the transition kernels of X. Show that

Pt = Te−t (t ≥ 0),

where Tp is the thinning kernel defined in (3.12).

Exercise 3.3 (Conditioning on the future) Fix N ≥ 2 and let X = (Xt)t≥0

be the Markov process with state space {0, . . . , N} and generator

Gf(x) :=

{
1
2

(
f(x+ 1) + f(x− 1)− 2f(x)

)
if 0 < x < N,

0 if x = 0, N.

Note that X is a nearest-neighbor random walk on {0, . . . , N} that gets trapped
in 0, N . Let p be the function

p(x) :=
x

N
.

Define a probability kernel K from {0, . . . , N} to the space

R := {(x, 1) : 1 ≤ x ≤ N} ∪ {(x, 2) : 0 ≤ x ≤ N − 1}
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by

K(x;x′, a) :=

{
1{x=x′}p(x) if a = 1,
1{x=x′}(1− p(x)) if a = 2.

Show that there exists a Markov process Y with state space R and generator H
satisfying the intertwining relation

GK = KH.

The process Y corresponds to a ‘richer’ version of X where the process knows in
advance in which trap it will get absorbed.

Exercise 3.4 (Leading eigenvector) Let X be the Markov process from the
previous exercise, assume that N is even and let f be the function

f(x) := sin
(πx
N

)
(0 ≤ x ≤ N).

Define a probability kernel K from {0, . . . , N} to the space {1, 2} by

K(x, a) :=

{
f(x) if a = 1,
1− f(x) if a = 2.

Show that there exists a Markov process Y with state space {1, 2} and generator
H satisfying the intertwining relation

GK = KH.

Use this to give a lower bound on the probability

Px
[
Xt 6∈ {0, N}

]
(0 < x < N, t ≥ 0).

Exercise 3.5 (Look-down construction) Let M be a Markov process with
state space {0, . . . , N} and generator

Gf(m) := 1
2
m(N −m)

(
f(m+ 1) + f(m− 1)− 2f(m)

)
.

(Compare Exercise 2.11.) Let Λ = {1, . . . , N} and let Y be the Markov process
with state space P(Λ) and generator

Hf(y) :=
∑
i<j

(
f(voti,j(y))− f(y)

)
,
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which is a voter model in which a site j can only adopt the type of a site i if i lies
below j. For m ∈ {0, . . . , N}, write [1 : m] := {0, . . . ,m} (with [1 : 0] := ∅) and
define a probability kernel K from {0, . . . , N} to P(Λ) by

K(m, y) :=
1

N !

∑
π

1{π([0:m])=y}
(
m ∈ [0 : N ], y ∈ P(Λ)

)
,

where the sum runs over all permutations π of Λ = {1, . . . , N} and π([0 : m]) :=
{π(k) : k ≤ m} denotes the image of the discrete interval [1 : m] under π. Show
that G,H and K satisfy the intertwining relation

GK = KH.

The process Y is a ‘richer’ version of the process X in which a lot of information is
already known from the start (such as in which trap X will end up!). Note that it
is easy to define the limit as N →∞ of the process Y . This may be used to study
the scaling limit as N →∞ of the process X, which is the Wright-Fisher diffusion.
This ‘look-down’ construction was invented by Donnelly and Kurtz [DK99].

Exercise 3.6 (Thinnings of the biased voter model) Fix β > 0 and in the
set-up of Theorem 2.8, let X be the biased voter model defined by the rates

a = 0, b = 1 + β, c = 0, d = 1, e = 0.

Let Y be its additive dual (q = 0), defined by the rates

a′ = 0, b′ = β, c = 1, d = 0, e = 1,

which corresponds to a system of branching and coalescing random walks with
branching rate β. Show that X and Y can be coupled such that

P[Yt ∈ · | (Xs)0≤s≤t] = P
[
Thinβ/(1+β)(Xt) ∈ ·

]
a.s. (t ≥ 0).

Use your result to show that product measure with intensity β/(1 + β) is an
invariant law for the process Y . Hint Use Theorem 3.5 and the self-duality of the
biased voter model (see Exercise 2.12). Note This intertwining can be used to
give bounds on the time needed by the process Y started with a single particle to
converge to its invariant law.
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maximal element, 22
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addition, 35
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map, 20
Markov process, 21

Moran model, 51

odd upper invariant law, 50
open path, 27, 33

partial order, 20
probability kernel, 5
product order, 20

q-duality, 44, 60

random mapping representation, 9, 12
rate, 11
recovery rate, 31
reversibile, 12
reversible, 8
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stochastic order, 51
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time reversal, 8
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