An introduction to free independence

January 9, 2018

1 *-Algebras

By definition, an algebra is a linear space over $\mathbb{K}=\mathbb{R}$ or \mathbb{C} such that
(i) $(A B) C=A(B C)$
$(A, B, C \in \mathcal{A})$,
(ii) $A(b B+c C)=b A B+c A C$
$(A, B, C \in \mathcal{A}, b, c \in \mathbb{K})$,
(iii) $(a A+b B) C=a A C+b B C$
$(A, B, C \in \mathcal{A}, a, b \in \mathbb{K})$

Often, it is assumed that \mathcal{A} contains a (necessarily unique) element 1 such that

$$
\text { (iv) } 1 A=A=A 1 \quad(A \in \mathcal{A}) \text {. }
$$

An algebra is abelian if

$$
A B=B A \quad(A, B \in \mathcal{A}) .
$$

An adjoint operation is a map $A \mapsto A^{*}$ such that

$$
\begin{array}{ll}
\text { (v) }\left(A^{*}\right)^{*}=A & (A \in \mathcal{A}), \\
\text { (vi) }(a A+b B)^{*}=\bar{a} A^{*}+\bar{b} B^{*} & (A, B \in \mathcal{A}, a, b \in \mathbb{C}), \\
\text { (vii) }(A B)^{*}=B^{*} A^{*} & (A, B \in \mathcal{A}) .
\end{array}
$$

In what follows, we reverse the term *-algebra for an algebra over \mathbb{C} that is equipped with an adjoint operation such that (i)-(vii) hold. A $C *$-algebra is a $*$-algebra equipped with a norm $\| \cdot \mid$ such that

$$
\begin{array}{ll}
\text { (viii) } & \mathcal{A} \text { is complete in the norm }\|\cdot\| \text {, } \\
\text { (ix) } & \|A B\| \leq\|A\|\|B\| \\
\text { (x) } & \left\|A^{*} A\right\|=\|A\|^{2} .
\end{array} \quad(A, B \in \mathcal{A}),
$$

Let \mathcal{H} be a Hilbert space and let $\mathcal{L}(\mathcal{H})$ denote the space of all bounded linear operators $A: \mathcal{H} \rightarrow \mathcal{H}$, equipped with the operator norm $\|A\|:=\sup _{\|x\| \leq 1}\|A x\|$. Let $\mathcal{A} \subset \mathcal{H}$ be a linear subspace of $\mathcal{L}(\mathcal{H})$ such that

- $A, B \in \mathcal{A} \Rightarrow A B \in \mathcal{A}$,
- $A \in \mathcal{A} \Rightarrow A^{*} \in \mathcal{A}$,
- \mathcal{A} is closed in the norm $\|\cdot\|$.

Then \mathcal{A} is a $C *$-algebra. The Gelfand-Naimark theorem says that each $C *$-algebra is isomorphic to a $C *$-algebra of this form. If \mathcal{A} is separable, then \mathcal{H} can be taken separable too.

A map $\tau: \mathcal{A} \rightarrow \mathbb{C}$ is a linear form if

$$
\text { (xi) } \quad \tau(a A+b B)=a \tau(A)+b \tau(B) \quad(A, B \in \mathcal{A}, a, b \in \mathbb{C}) \text {. }
$$

It is called real if

$$
\text { (xii) } \quad \tau\left(A^{*}\right)=\overline{\tau(A)} \quad(A \in \mathcal{A}) \text {. }
$$

A positive linear form is a real linear form such that

$$
\text { (xiii) } \quad \tau\left(A^{*} A\right) \geq 0 \quad(A \in \mathcal{A})
$$

If moreover

$$
\text { - } \tau\left(A^{*} A\right)=0 \Rightarrow A=0 \text {, }
$$

then we say that τ is faithful. A positive linear form that is normalized in the sense that

$$
\text { (xiv) } \quad \tau(1)=1
$$

is called a state. If moreover

$$
\tau(A B)=\tau(B A) \quad(A, B \in \mathcal{A})
$$

then τ is called a pseudotrace. It can be shown that every positive linear form is continuous, and in fact satisfies

$$
|\tau(A)| \leq|\tau(1)|\|A\|
$$

Example 1 We can take $\mathcal{A}=M_{n}(\mathbb{C})$, the space of all complex $n \times n$ matrices, equipped with the usual adjoint and the normalized trace $\tau(A):=\frac{1}{n} \operatorname{tr}(A)$. Then τ is a state, and moreover a faithful pseudotrace.

Example $2 a \operatorname{Let}(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathcal{L}^{\infty-}$ be the space of all measurable maps $X: \Omega \rightarrow \mathbb{C}$ such that $\mathbb{E}\left[|X|^{k}\right]<\infty$ for all $k \geq 0$. Then $\mathcal{A}:=\mathcal{L}^{\infty-}$, equipped with the pointwise product $(X Y)(\omega):=X(\omega) Y(\omega)$ and adjoint operation $X^{*}(\omega):=\overline{X(\omega)}$ is an abelian *-algebra, and $\tau(X):=\mathbb{E}[X]$ is a state and moreover a pseudotrace. If we replace $\mathcal{L}^{\infty-}$ by the space $L^{\infty-}$ of equivalence classes of a.s. equal elements of $\mathcal{L}^{\infty-}$, then τ is moreover faithful.

Example 26 If in the preceding example we let Ω be a compact metrizable space and replace $\mathcal{L}^{\infty-}$ by the space $\mathcal{C}(\Omega)$ of all continuous functions $X: \Omega \rightarrow \mathbb{C}$ equipped with the supremumnorm $\|X\|:=\sup _{\omega \in \Omega}|X(\omega)|$, then we obtain an abelian $C *$-algebra. It can be proved that each abelian separable $C *$-algebra is isomorphic to a $C *$-algebra of this form.

Example 3 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let \mathcal{A} be the space of all measurable maps $X: \Omega \rightarrow M_{n}(\mathbb{C})$ such that $X_{i j} \in \mathcal{L}^{\infty-}$ for all i, j. Equip \mathcal{A} with the product $(X Y)_{i k}(\omega):=$ $\sum_{j} X_{i j}(\omega) Y_{j k}(\omega)$ and adjoint operation $X_{i j}^{*}(\omega):=\overline{X_{j i}(\omega)}$. Then \mathcal{A} is a $*$-algebra. Moreover, $\tau(X):=\frac{1}{n} \mathbb{E}[\operatorname{tr}(X)]$ is a normalized pseudotrace. If we replace $\mathcal{L}^{\infty-}$ by the space $L^{\infty-}$ of equivalence classes of a.s. equal elements of $\mathcal{L}^{\infty-}$, then τ is moreover faithful.

By definition, an element $X \in \mathcal{A}$ is normal if $X X^{*}=X^{*} X$. An $n \times n$ matrix $X \in M_{n}(\mathbb{C})$ is normal if and only if it is diagonal with respect to an orthonormal basis of \mathbb{C}^{n}. Equivalently, this says that there exists an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of \mathbb{C}^{n} such that

$$
\begin{equation*}
X=\sum_{i=1}^{n} \lambda_{i} P_{e_{i}} \tag{1}
\end{equation*}
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of X and $P_{e_{i}}$ denotes the orthogonal projection operator on e_{i}. We can define a spectral measure π_{X} by

$$
\pi_{X}(D)=\sum_{i: \lambda_{i} \in D} P_{e_{i}} \quad(D \in \mathcal{B}(\mathbb{C}))
$$

where $\mathcal{B}(\mathbb{C})$ denotes the Borel- σ-algebra on \mathbb{C}. Then (1) can formally be written

$$
X=\int \lambda \pi_{X}(\mathrm{~d} \lambda)
$$

More generally,

$$
\begin{equation*}
X^{k}\left(X^{*}\right)^{l}=\int \lambda^{k} \bar{\lambda}^{l} \pi_{X}(\mathrm{~d} \lambda) . \tag{2}
\end{equation*}
$$

By the complex version of the Stone-Weierstrass theorem, this formula determines π_{X} uniquely. It turns out that (2) can be generalized to any normal element of a $C *$-algebra \mathcal{A}. More precisely, if \mathcal{A} is a $C *$-algebra and $X \in \mathcal{A}$ satisfies $X X^{*}=X^{*} X$, then there exists a unique compactly supported, projection operator-valued measure π_{X} on \mathbb{C} such that (2) holds for each k, l. The measure π_{X} is called the spectral measure of X. More generally than in (22), one has

$$
\begin{equation*}
F(X)=\int F(\lambda) \pi_{X}(\mathrm{~d} \lambda) \tag{3}
\end{equation*}
$$

for any continuous function $F: \mathbb{C} \rightarrow \mathbb{C}$, provided one defines $F(X)$ in the right way A^{A} normal operator is self-adjoint if and only if its spectrum is real, which means that π_{X} is concentrated on \mathbb{R}.

Let \mathcal{A} be a $C *$-algebra, let τ be a state on \mathcal{A}, and $X \in \mathcal{A}$ be normal. Then we can define a probability measure μ_{X} on \mathbb{C} by setting

$$
\int F(\lambda) \mu_{X}(\mathrm{~d} \lambda):=\tau(F(X))=\tau\left(\int F(\lambda) \pi_{X}(\mathrm{~d} \lambda)\right)
$$

for any continuous $F: \mathbb{C} \rightarrow \mathbb{C}$. This is equivalent to

$$
\int \lambda^{k} \bar{\lambda}^{l} \mu_{X}(\mathrm{~d} \lambda)=\tau\left(X^{k}\left(X^{*}\right)^{l}\right)
$$

Informally, $\mu_{X}(\mathrm{~d} \lambda)=\tau\left(\pi_{X}(\mathrm{~d} \lambda)\right)$. In the special case that X is self-adjoint, μ_{X} is the unique compactly supported probability measure on \mathbb{R} such that

$$
\begin{equation*}
\int \lambda^{k} \mu_{X}(\mathrm{~d} \lambda)=\tau\left(X^{k}\right) \quad(k \geq 1) \tag{4}
\end{equation*}
$$

One does not always need $C *$-algebras:
Thm 2.5.8 Let \mathcal{A} be a $*$-algebra and let τ be a normalized positive linear form. Assume that $X \in \mathcal{A}$ satisfies $X^{*}=X$. Then the limit

$$
\rho(X):=\lim _{k \rightarrow \infty}\left|\tau\left(X^{2 k}\right)\right|^{1 / 2 k}
$$

exists. If $\rho(X)<\infty$, then there exists a unique probability measure μ_{X} on $[-\rho(X), \rho(X)]$ such that (4) holds.

Example 1 In our first example, μ_{X} is the empirical spectral distribution of a normal matrix X.

Example 2 In our second example, μ_{X} is the law of a random variable X.
Example 3 In our third example, μ_{X} is the mean of the empirical spectral distribution of a random matrix X.

Remark 1 The last two examples show that in many cases, one would like to allow selfadjoint X for which μ_{X} has unbounded support. This is technically rather difficult. If X is a bounded self-adjoint operator, then $U_{t}:=e^{i t X}$ defines a one-parameter group of unitary operators. More generally, strongly continuous one-parameter group of unitary operators

[^0]have a generator that is a possibly unbounded self-adjoint operator. Unbounded self-adjoint operators are best treated via their associated unitary groups.

Remark 2 A pair (\mathcal{A}, τ) where \mathcal{A} is a $C *$-algebra and τ is a state on \mathcal{A} is a quantum probability space. Here τ plays more or less the role of a probability measure. Self-adjoint operators correspond to observables and μ_{X} is the law of X.

2 Independence

Let \mathcal{A} be a $C *$-algebra and let $\mathcal{A}_{1}, \mathcal{A}_{2} \subset \mathcal{A}$ be sub- $C *$-algebras (i.e., linear spaces that are closed under the product and adjoint operation, and are closed in the norm). We say that \mathcal{A}_{1} and \mathcal{A}_{2} commute if

$$
A_{1} A_{2}=A_{2} A_{1} \quad\left(A_{1} \in \mathcal{A}_{1}, A_{2} \in \mathcal{A}_{2}\right)
$$

If \mathcal{A}_{1} and \mathcal{A}_{2} commute, then

$$
\begin{equation*}
\mathcal{A}_{1} \mathcal{A}_{2}:=\overline{\operatorname{span}\left\{A_{1} A_{2}: A_{1} \in \mathcal{A}_{1}, A_{2} \in \mathcal{A}_{2}\right\}} \tag{5}
\end{equation*}
$$

is a sub- $C *$-algebra of \mathcal{A}. (Here $\overline{\mathcal{B}}$ denotes the closure of \mathcal{B} in the norm.) Let τ be a state on \mathcal{A}. We say that \mathcal{A}_{1} and \mathcal{A}_{2} are independent if they commute and

$$
\tau\left(A_{1} A_{2}\right)=\tau\left(A_{1}\right) \tau\left(A_{2}\right) \quad\left(A_{1} \in \mathcal{A}_{1}, A_{2} \in \mathcal{A}_{2}\right)
$$

Let τ_{i} denote the restriction of τ to \mathcal{A}_{i} and let τ_{12} denote the restriction of τ to $\mathcal{A}_{1} \mathcal{A}_{2}$. If \mathcal{A}_{1} and \mathcal{A}_{2} are independent, then in view of (5), using the linearity and continuity of states, we see that τ_{12} is uniquely determined by τ_{1} and τ_{2}. If moreover \mathcal{A}_{1} and \mathcal{A}_{2} are logically independent in the sense that

- $\left\{A_{k}^{1} A_{l}^{2}: 1 \leq k \leq n, 1 \leq l \leq m\right\}$ are linearly independent whenever $\left\{A_{1}^{1}, \ldots, A_{n}^{1}\right\} \subset \mathcal{A}_{1}$ and $\left\{A_{1}^{2}, \ldots, A_{m}^{2}\right\} \subset \mathcal{A}_{2}$ are linearly independent,
then one can show that given states τ_{i} on $\mathcal{A}_{i}(i=1,2)$, there always exists a unique state τ_{12} on $\mathcal{A}_{1} \mathcal{A}_{2}$ such that \mathcal{A}_{1} and \mathcal{A}_{2} are independent and the restriction of τ_{12} to \mathcal{A}_{i} is τ_{i}. We can view τ_{12} as a non-commutative generalization of the product measure.

Each $X \in \mathcal{A}$ generates a sub- $C *$-algebra

$$
\alpha(X):=\overline{\operatorname{span}\left\{\prod_{i=1}^{n} Y_{i}: Y_{i} \in\left\{X, X^{*}\right\}\right\}}
$$

If X is normal (i.e., X commutes with X^{*}), this simplifies to

$$
\alpha(X):=\overline{\operatorname{span}\left\{X^{k}\left(X^{*}\right)^{l}: k, l \geq 0\right\}} .
$$

If X is self-adjoint, this simplifies even more to

$$
\alpha(X):=\overline{\operatorname{span}\left\{X^{k}: k \geq 0\right\}}
$$

(with $X^{0}:=1$). Alternatively, for any normal operator X, we have the formula

$$
\alpha(X)=\{F(X): F: \mathbb{C} \rightarrow \mathbb{C} \text { continuous }\}
$$

Note that the law μ_{X} of a self-adjoint operator uniquely determines $\tau(F(X))$ for each F, and hence uniquely determines the restriction of τ to $\alpha(X)$.

We say that two self-adjoint operators X_{1} and X_{2} are independent if they generate independent sub- $C *$-algebras. Then clearly, the laws $\mu_{X_{i}}(i=1,2)$ uniquely determine τ on the sub- $C *$-algebra $\alpha\left(X_{1}\right) \alpha\left(X_{2}\right)$. In particular, $X_{1}+X_{2} \in \alpha\left(X_{1}\right) \alpha\left(X_{2}\right)$, so $\mu_{X_{1}+X_{2}}$ should be a function of $\mu_{X_{1}}$ and $\mu_{X_{2}}$. Indeed,

$$
\mu_{X_{1}+X_{2}}=\mu_{X_{1}} * \mu_{X_{2}}
$$

where $*$ denotes convolution of probability measures.

3 Free independence

Let \mathcal{A} be a $C *$-algebra and let $\mathcal{A}_{1}, \mathcal{A}_{2} \subset \mathcal{A}$ be sub- $C *$-algebras. Let $1, A_{1}^{1}, \ldots, A_{n}^{1} \in \mathcal{A}_{1}$ be linearly independent and likewise let $1, A_{1}^{2}, \ldots, A_{m}^{2} \in \mathcal{A}_{2}$ be linearly independent. We say that \mathcal{A}_{1} and \mathcal{A}_{2} are free if all elements of the form

$$
\begin{equation*}
1, A_{i}^{1}, A_{i}^{2}, A_{i}^{1} A_{j}^{2}, A_{i}^{2} A_{j}^{1}, A_{i}^{1} A_{j}^{2} A_{k}^{1}, A_{i}^{2} A_{j}^{1} A_{k}^{2}, A_{i}^{1} A_{j}^{2} A_{k}^{1} A_{l}^{2}, \ldots \tag{6}
\end{equation*}
$$

are linearly independent. Note that this says that in a sense, the algebras \mathcal{A}_{1} and \mathcal{A}_{2} are maximally noncommuting. Let $\alpha\left(\mathcal{A}_{1} \cup \mathcal{A}_{2}\right)$ denote the smallest $C *$-algebra containing \mathcal{A}_{1} and \mathcal{A}_{2}, i.e., the closure of the linear span of all elements of the form (6). Note that $\alpha\left(\mathcal{A}_{1} \cup \mathcal{A}_{2}\right)$ is infinite dimensional as soon as \mathcal{A}_{1} and \mathcal{A}_{2} each have dimension ≥ 2.

Let τ be a state on \mathcal{A} and let $\mathcal{A}_{1}, \mathcal{A}_{2} \subset \mathcal{A}$ be sub- $C *$-algebras. We say that \mathcal{A}_{1} and \mathcal{A}_{2} are freely independent if

$$
\begin{equation*}
\tau\left(A_{i}^{1} A_{j}^{2}\right)=0, \tau\left(A_{j}^{2} A_{i}^{1}\right)=0, \tau\left(A_{i}^{1} A_{j}^{2} A_{k}^{1}\right)=0, \tau\left(A_{j}^{2} A_{i}^{1} A_{l}^{2}\right)=0, \tau\left(A_{i}^{1} A_{j}^{2} A_{k}^{1} A_{l}^{2}\right)=0, \ldots \tag{7}
\end{equation*}
$$

whenever $A_{i}^{1}, A_{k}^{1}, \ldots \in \mathcal{A}_{1}$ and $A_{j}^{2}, A_{l}^{2}, \ldots \in \mathcal{A}_{2}$ satisfy $\tau\left(A_{i}^{1}\right)=0, \tau\left(A_{k}^{1}\right)=0, \tau\left(A_{j}^{2}\right)=0$, $\tau\left(A_{l}^{2}\right)=0$, etc.

Proposition 1 (Free product measure) Let \mathcal{A}_{1} and \mathcal{A}_{2} be free and let τ_{i} be states on \mathcal{A}_{i} $(i=1,2)$. Then there exists a unique state τ_{12} on $\alpha\left(\mathcal{A}_{1} \cup \mathcal{A}_{2}\right)$ whose restriction to \mathcal{A}_{i} is τ_{i} $(i=1,2)$ such that under τ_{12}, the algebras \mathcal{A}_{1} and \mathcal{A}_{2} are freely independent. If we drop the assumption that \mathcal{A}_{1} and \mathcal{A}_{2} are free, then the uniqueness statement still holds (but τ_{12} may fail to exist in general).

Proof See Exercises 2.5.17 and 2.5.18. Let $X \in \mathcal{A}_{1}$ and $Y \in \mathcal{A}_{2}$. Then $X-\tau(X) 1$ has trace zero and hence

$$
0=\tau((X-\tau(X))(Y-\tau(Y)))=\tau(X Y)-\tau(X) \tau(Y)
$$

from which we see that

$$
\begin{equation*}
\tau(X Y)=\tau(X) \tau(Y) \tag{8}
\end{equation*}
$$

Similarly,

$$
\begin{aligned}
0= & \tau((X-\tau(X))(Y-\tau(Y))(X-\tau(X))) \\
= & \tau(X Y X)-\tau(X Y) \tau(X)-\tau\left(X^{2}\right) \tau(Y)-\tau(Y X) \tau(X) \\
& +3 \tau(X) \tau(Y) \tau(X)-\tau(X) \tau(Y) \tau(X) \\
= & \tau(X Y X)-\tau\left(X^{2}\right) \tau(Y),
\end{aligned}
$$

where in the last step we have used (8). It follows that

$$
\begin{equation*}
\tau(X Y X)=\tau\left(X^{2}\right) \tau(Y) \tag{9}
\end{equation*}
$$

which in fact we would also have if X and Y were independent (and would commute). In a similar way

$$
\begin{equation*}
\tau\left(X^{2} Y\right)=\tau\left(X^{2}\right) \tau(Y) \tag{10}
\end{equation*}
$$

which is again the same as we would get in the independent case. However, continuing in the same spirit, we find that

$$
\begin{aligned}
0= & \tau((X-\tau(X))(Y-\tau(Y))(X-\tau(X))(Y-\tau(Y))) \\
= & \tau(X Y X Y)-\tau(X Y X) \tau(Y)-\tau\left(X Y^{2}\right) \tau(X)-\tau\left(X^{2} Y\right) \tau(Y)-\tau(Y X Y) \tau(X) \\
& +\tau(X Y) \tau(X) \tau(Y)+\tau\left(X^{2}\right) \tau(Y)^{2}+\tau(Y X) \tau(X) \tau(Y)+\tau\left(Y^{2}\right) \tau(X)^{2} \\
& -4 \tau(X)^{2} \tau(Y)^{2}+\tau(X)^{2} \tau(Y)^{2},
\end{aligned}
$$

from which using (8), (9), and (10) we obtain

$$
\begin{equation*}
\tau(X Y X Y)=\tau\left(X^{2}\right) \tau\left(Y^{2}\right)-\tau\left(X^{2}\right) \tau(Y)^{2}-\tau(X)^{2} \tau\left(Y^{2}\right) \tag{11}
\end{equation*}
$$

This time, we get something different from the independent case. Nevertheless, it is not hard to show by induction that using (7), one can express τ of any mixed moment of elements of \mathcal{A}_{1} and \mathcal{A}_{2} in moments of elements of \mathcal{A}_{1} and \mathcal{A}_{2} separately.

We say that two self-adjoint operators X_{1} and X_{2} are freely independent if they generate freely independent sub- $C *$-algebras. It follows from Proposition 1 that if X_{1} and X_{2} are freely independent, then the law of $\mu_{X_{1}+X_{2}}$ (and in fact any reasonable function of X_{1} and X_{2}) is uniquely determined by the marginal laws $\mu_{X_{1}}$ and $\mu_{X_{2}}$, so we can write

$$
\mu_{X_{1}+X_{2}}=\mu_{X_{1}} \boxplus \mu_{X_{2}}
$$

where \boxplus is called free convolution of probability measures.
Free independence of three or more algebras is defined in a similar way as for two algebras, i.e., algebras $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ are free if, roughly speaking, a product A_{1}, \ldots, A_{k} of operators from $\mathcal{A}_{1} \cup \cdots \cup \mathcal{A}_{n}$ cannot be simplified if A_{i} and A_{i+1} are from different sub-algebras for each i. (More precisely, this should be formulated in terms of linear independence as in (6).) It is not hard to see that $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ are freely independent if and only if \mathcal{A}_{i+1} is freely independent of $\alpha\left(\mathcal{A}_{1} \cup \cdots \cup \mathcal{A}_{i}\right)$ for each i.

4 The Free Central Limit Theorem

We note that if X and Y are freely independent with mean

$$
\tau(X)=\int \lambda \mu_{X}(\mathrm{~d} \lambda)=0 \quad \text { and } \quad \tau(Y)=\int \lambda \mu_{Y}(\mathrm{~d} \lambda)=0
$$

then by (8),

$$
\int \lambda^{2} \mu_{X+Y}(\mathrm{~d} \lambda)=\tau\left((X+Y)^{2}\right)=\tau\left(X^{2}\right)+\tau\left(Y^{2}\right)
$$

More generally, the variance of $X+Y$ is the sum of the variances of X and Y. We recall that the (standard) semicircle law has mean zero and variance $C_{2 / 2}=1$. More generally, we can define semicircle laws with any mean and variance by adding a constant and scaling. The following proposition and theorem show that free independence is indeed very similar to classical independence.

Proposition 2 (Stability of the semicircle law) Assume that X_{1}, \ldots, X_{k} are freely independent and that X_{i} has a semicircle law with mean $\tau\left(X_{i}\right)$ and variance $\operatorname{Var}\left(X_{i}\right):=\tau\left(\left(X_{i}-\right.\right.$ $\left.\left.\tau\left(X_{i}\right)\right)^{2}\right)$. Then $\sum_{i=1}^{k} X_{i}$ has a semicircle law with mean $\sum_{i=1}^{k} \tau\left(X_{i}\right)$ and variance $\sum_{i=1}^{k} \operatorname{Var}\left(X_{i}\right)$.

Theorem 3 (Free Central Limit Theorem) Let $\left(X_{i}\right)_{i \geq 1}$ bee freely independent and identically distributed with mean zero and variance 1. Then the law of $\frac{1}{\sqrt{n}} \sum_{i=1}^{k} X_{i}$ converges weakly to the semicircle law.

Before we give some idea of how Proposition 2 and Theorem 3 can be proved, we first discuss the relation of free independence to random matrix theory. Recall that the space \mathcal{A}_{n} of all random $n \times n$ matrices with finite moments of all orders on a given probability space forms a $*$-algebra, and that $\tau_{n}(X):=\frac{1}{n} \mathbb{E}[\operatorname{tr}(X)]$ defines a normalized pseudotrace. Let M_{n} be a Wigner matrix where all upper diagonal entries are i.i.d. with mean zero, variance 1 (!), and finite moments of all orders. Set $X_{n}:=n^{-1 / 2} M_{n}$. Note that $\mu_{X_{n}}$ is the mean of the
empirical distribution of X_{n}. Since the empirical distribution of X_{n} converges in expectation to the semicircle law, $\mu_{X_{n}}$ converges to the semicircle law.

Let X_{n}^{\prime} be an independent copy of X_{n}. We claim that X_{n} and X_{n}^{\prime} are asymptotically free in the sense that

$$
\tau\left(\left\{F\left(X_{n}\right)-\tau\left(F\left(X_{n}\right)\right)\right\}\left\{G\left(X_{n}^{\prime}\right)-\tau\left(G\left(X_{n}^{\prime}\right)\right)\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

for any fixed polynomials F, G. (See Proposition 2.5.1 in the book for a sketch of a proof.) Now it is actually not so hard to show (see Section 2.5.2 in the book) that, going to a subsequence if necessary, we can find a $*$-algebra and pseudotrace $\left(\mathcal{A}_{\infty}, \tau_{\infty}\right)$ as well as elements $X_{\infty}, X_{\infty}^{\prime} \in$ \mathcal{A}_{∞} such that all mixed moments of X_{n} and X_{n}^{\prime} converge to those of X_{∞} and X_{∞}^{\prime}. In particular, this implies that X_{∞} and X_{∞}^{\prime} are freely independent. We know that $\mu_{X_{n}}$ and $\mu_{X_{n}^{\prime}}$ converge to the standard semicircle law while $\mu_{X_{n}+X_{n}^{\prime}}$ converges to the semicircle law with mean zero and variance 2 . This explains why the limit law we find in random matrix theory (the semicircle law) should be stable under free convolution.

Proof of Proposition 2 (sketch) We only consider the case of two freely independent X_{1}, X_{2} that each have a standard semicircle law. Consider the Hilbert space $\ell^{2}(\mathbb{N})$ of square integrable functions $f: \mathbb{N} \rightarrow \mathbb{C}$. Let e_{0}, e_{1}, \ldots denote the usual basis. Set $\mathcal{A}:=\ell^{2}(\mathbb{N})$ and define

$$
\tau(A):=\left\langle e_{0}, A e_{0}\right\rangle .
$$

It is not hard to check this is a normalized positive linear form (but not faithful and not a pseudotrace). Define $U: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ by $U e_{n}:=e_{n+1}(n \geq 0)$. It is not hard to see that U is a unitary operator and $U^{*} e_{n}=e_{n-1}(n \geq 1)$ while $U^{*} e_{0}=0$. Set $X=U+U^{*}$, which is self-adjoint. We claim that μ_{X} is the semicircle law. This can be proved by showing that the k-th moment of X equals the number of walks $\omega:\{0, \ldots, k\} \rightarrow \mathbb{N}$ such that $\omega_{i+1}=\omega_{i} \pm 1$ for all i and $\omega_{0}=\omega_{k}=0$. As we have already seen, this is zero for odd k and equal to the Catalan number $C_{k / 2}$ for even k. (See Exercises 2.5.12 and 2.5.13.)

[^0]: ${ }^{1}$ One way is to use (3) as a definition of $F(X)$ but alternatively, using the Stone-Weierstrass theorem, one can approximate any F by a polynomial of X and X^{*} and then take the limit.

