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1 ∗-Algebras

By definition, an algebra is a linear space over K = R or C such that

(i) (AB)C = A(BC) (A,B,C ∈ A),
(ii) A(bB + cC) = bAB + cAC (A,B,C ∈ A, b, c ∈ K),
(iii) (aA+ bB)C = aAC + bBC (A,B,C ∈ A, a, b ∈ K)

Often, it is assumed that A contains a (necessarily unique) element 1 such that

(iv) 1A = A = A1 (A ∈ A).

An algebra is abelian if
AB = BA (A,B ∈ A).

An adjoint operation is a map A 7→ A∗ such that

(v) (A∗)∗ = A (A ∈ A),

(vi) (aA+ bB)∗ = aA∗ + bB∗ (A,B ∈ A, a, b ∈ C),
(vii) (AB)∗ = B∗A∗ (A,B ∈ A).

In what follows, we reverse the term ∗-algebra for an algebra over C that is equipped with an
adjoint operation such that (i)–(vii) hold. A C∗-algebra is a ∗-algebra equipped with a norm
‖ · | such that

(viii) A is complete in the norm ‖ · ‖,
(ix) ‖AB‖ ≤ ‖A‖‖B‖ (A,B ∈ A),
(x) ‖A∗A‖ = ‖A‖2.

Let H be a Hilbert space and let L(H) denote the space of all bounded linear operators
A : H → H, equipped with the operator norm ‖A‖ := sup‖x‖≤1 ‖Ax‖. Let A ⊂ H be a linear
subspace of L(H) such that

• A,B ∈ A ⇒ AB ∈ A,

• A ∈ A ⇒ A∗ ∈ A,

• A is closed in the norm ‖ · ‖.

Then A is a C∗-algebra. The Gelfand-Naimark theorem says that each C∗-algebra is isomor-
phic to a C∗-algebra of this form. If A is separable, then H can be taken separable too.

A map τ : A → C is a linear form if

(xi) τ(aA+ bB) = aτ(A) + bτ(B) (A,B ∈ A, a, b ∈ C).

It is called real if

(xii) τ(A∗) = τ(A) (A ∈ A).
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A positive linear form is a real linear form such that

(xiii) τ(A∗A) ≥ 0 (A ∈ A).

If moreover

• τ(A∗A) = 0 ⇒ A = 0,

then we say that τ is faithful. A positive linear form that is normalized in the sense that

(xiv) τ(1) = 1

is called a state. If moreover

• τ(AB) = τ(BA) (A,B ∈ A),

then τ is called a pseudotrace. It can be shown that every positive linear form is continuous,
and in fact satisfies

|τ(A)| ≤ |τ(1)| ‖A‖.

Example 1 We can take A = Mn(C), the space of all complex n× n matrices, equipped with
the usual adjoint and the normalized trace τ(A) := 1

ntr(A). Then τ is a state, and moreover
a faithful pseudotrace.

Example 2a Let (Ω,F ,P) be a probability space and let L∞− be the space of all measurable
maps X : Ω → C such that E[|X|k] < ∞ for all k ≥ 0. Then A := L∞−, equipped with the
pointwise product (XY )(ω) := X(ω)Y (ω) and adjoint operation X∗(ω) := X(ω) is an abelian
∗-algebra, and τ(X) := E[X] is a state and moreover a pseudotrace. If we replace L∞− by the
space L∞− of equivalence classes of a.s. equal elements of L∞−, then τ is moreover faithful.

Example 2b If in the preceding example we let Ω be a compact metrizable space and replace
L∞− by the space C(Ω) of all continuous functions X : Ω→ C equipped with the supremum-
norm ‖X‖ := supω∈Ω |X(ω)|, then we obtain an abelian C∗-algebra. It can be proved that
each abelian separable C∗-algebra is isomorphic to a C∗-algebra of this form.

Example 3 Let (Ω,F ,P) be a probability space and let A be the space of all measurable maps
X : Ω → Mn(C) such that Xij ∈ L∞− for all i, j. Equip A with the product (XY )ik(ω) :=∑

j Xij(ω)Yjk(ω) and adjoint operation X∗ij(ω) := Xji(ω). Then A is a ∗-algebra. Moreover,

τ(X) := 1
nE[tr(X)] is a normalized pseudotrace. If we replace L∞− by the space L∞− of

equivalence classes of a.s. equal elements of L∞−, then τ is moreover faithful.

By definition, an element X ∈ A is normal if XX∗ = X∗X. An n× n matrix X ∈Mn(C)
is normal if and only if it is diagonal with respect to an orthonormal basis of Cn. Equivalently,
this says that there exists an orthonormal basis {e1, . . . , en} of Cn such that

X =

n∑
i=1

λiPei , (1)

where λ1, . . . , λn are the eigenvalues of X and Pei denotes the orthogonal projection operator
on ei. We can define a spectral measure πX by

πX(D) =
∑

i:λi∈D
Pei (D ∈ B(C)),

where B(C) denotes the Borel-σ-algebra on C. Then (1) can formally be written

X =

∫
λπX(dλ).
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More generally,

Xk(X∗)l =

∫
λkλ

l
πX(dλ). (2)

By the complex version of the Stone-Weierstrass theorem, this formula determines πX uniquely.
It turns out that (2) can be generalized to any normal element of a C∗-algebra A. More
precisely, if A is a C∗-algebra and X ∈ A satisfies XX∗ = X∗X, then there exists a unique
compactly supported, projection operator-valued measure πX on C such that (2) holds for
each k, l. The measure πX is called the spectral measure of X. More generally than in (2),
one has

F (X) =

∫
F (λ)πX(dλ) (3)

for any continuous function F : C → C, provided one defines F (X) in the right way.1 A
normal operator is self-adjoint if and only if its spectrum is real, which means that πX is
concentrated on R.

Let A be a C∗-algebra, let τ be a state on A, and X ∈ A be normal. Then we can define
a probability measure µX on C by setting∫

F (λ)µX(dλ) := τ
(
F (X)

)
= τ

(∫
F (λ)πX(dλ)

)
for any continuous F : C→ C. This is equivalent to∫

λkλ
l
µX(dλ) = τ(Xk(X∗)l).

Informally, µX(dλ) = τ(πX(dλ)). In the special case that X is self-adjoint, µX is the unique
compactly supported probability measure on R such that∫

λk µX(dλ) = τ(Xk) (k ≥ 1). (4)

One does not always need C∗-algebras:

Thm 2.5.8 Let A be a ∗-algebra and let τ be a normalized positive linear form.
Assume that X ∈ A satisfies X∗ = X. Then the limit

ρ(X) := lim
k→∞

|τ(X2k)|1/2k

exists. If ρ(X) < ∞, then there exists a unique probability measure µX on
[−ρ(X), ρ(X)] such that (4) holds.

Example 1 In our first example, µX is the empirical spectral distribution of a normal matrix
X.

Example 2 In our second example, µX is the law of a random variable X.

Example 3 In our third example, µX is the mean of the empirical spectral distribution of a
random matrix X.

Remark 1 The last two examples show that in many cases, one would like to allow self-
adjoint X for which µX has unbounded support. This is technically rather difficult. If X
is a bounded self-adjoint operator, then Ut := eitX defines a one-parameter group of unitary
operators. More generally, strongly continuous one-parameter group of unitary operators

1One way is to use (3) as a definition of F (X) but alternatively, using the Stone-Weierstrass theorem, one
can approximate any F by a polynomial of X and X∗ and then take the limit.
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have a generator that is a possibly unbounded self-adjoint operator. Unbounded self-adjoint
operators are best treated via their associated unitary groups.

Remark 2 A pair (A, τ) where A is a C∗-algebra and τ is a state on A is a quantum
probability space. Here τ plays more or less the role of a probability measure. Self-adjoint
operators correspond to observables and µX is the law of X.

2 Independence

Let A be a C∗-algebra and let A1,A2 ⊂ A be sub-C∗-algebras (i.e., linear spaces that are
closed under the product and adjoint operation, and are closed in the norm). We say that A1

and A2 commute if
A1A2 = A2A1 (A1 ∈ A1, A2 ∈ A2).

If A1 and A2 commute, then

A1A2 := span{A1A2 : A1 ∈ A1, A2 ∈ A2} (5)

is a sub-C∗-algebra of A. (Here B denotes the closure of B in the norm.) Let τ be a state on
A. We say that A1 and A2 are independent if they commute and

τ(A1A2) = τ(A1)τ(A2) (A1 ∈ A1, A2 ∈ A2).

Let τi denote the restriction of τ to Ai and let τ12 denote the restriction of τ to A1A2. If
A1 and A2 are independent, then in view of (5), using the linearity and continuity of states,
we see that τ12 is uniquely determined by τ1 and τ2. If moreover A1 and A2 are logically
independent in the sense that

• {A1
kA

2
l : 1 ≤ k ≤ n, 1 ≤ l ≤ m} are linearly independent whenever {A1

1, . . . , A
1
n} ⊂ A1

and {A2
1, . . . , A

2
m} ⊂ A2 are linearly independent,

then one can show that given states τi on Ai (i = 1, 2), there always exists a unique state τ12

on A1A2 such that A1 and A2 are independent and the restriction of τ12 to Ai is τi. We can
view τ12 as a non-commutative generalization of the product measure.

Each X ∈ A generates a sub-C∗-algebra

α(X) := span
{ n∏
i=1

Yi : Yi ∈ {X,X∗}
}
.

If X is normal (i.e., X commutes with X∗), this simplifies to

α(X) := span{Xk(X∗)l : k, l ≥ 0}.

If X is self-adjoint, this simplifies even more to

α(X) := span{Xk : k ≥ 0}

(with X0 := 1). Alternatively, for any normal operator X, we have the formula

α(X) = {F (X) : F : C→ C continuous}.

Note that the law µX of a self-adjoint operator uniquely determines τ(F (X)) for each F , and
hence uniquely determines the restriction of τ to α(X).

We say that two self-adjoint operators X1 and X2 are independent if they generate inde-
pendent sub-C∗-algebras. Then clearly, the laws µXi (i = 1, 2) uniquely determine τ on the
sub-C∗-algebra α(X1)α(X2). In particular, X1 + X2 ∈ α(X1)α(X2), so µX1+X2 should be a
function of µX1 and µX2 . Indeed,

µX1+X2 = µX1 ∗ µX2 ,

where ∗ denotes convolution of probability measures.
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3 Free independence

Let A be a C∗-algebra and let A1,A2 ⊂ A be sub-C∗-algebras. Let 1, A1
1, . . . , A

1
n ∈ A1 be

linearly independent and likewise let 1, A2
1, . . . , A

2
m ∈ A2 be linearly independent. We say that

A1 and A2 are free if all elements of the form

1, A1
i , A

2
i , A

1
iA

2
j , A

2
iA

1
j , A

1
iA

2
jA

1
k, A

2
iA

1
jA

2
k, A

1
iA

2
jA

1
kA

2
l , . . . (6)

are linearly independent. Note that this says that in a sense, the algebras A1 and A2 are
maximally noncommuting. Let α(A1∪A2) denote the smallest C∗-algebra containing A1 and
A2, i.e., the closure of the linear span of all elements of the form (6). Note that α(A1 ∪ A2)
is infinite dimensional as soon as A1 and A2 each have dimension ≥ 2.

Let τ be a state on A and let A1,A2 ⊂ A be sub-C∗-algebras. We say that A1 and A2

are freely independent if

τ(A1
iA

2
j ) = 0, τ(A2

jA
1
i ) = 0, τ(A1

iA
2
jA

1
k) = 0, τ(A2

jA
1
iA

2
l ) = 0, τ(A1

iA
2
jA

1
kA

2
l ) = 0, . . . (7)

whenever A1
i , A

1
k, . . . ∈ A1 and A2

j , A
2
l , . . . ∈ A2 satisfy τ(A1

i ) = 0, τ(A1
k) = 0, τ(A2

j ) = 0,

τ(A2
l ) = 0, etc.

Proposition 1 (Free product measure) Let A1 and A2 be free and let τi be states on Ai
(i = 1, 2). Then there exists a unique state τ12 on α(A1 ∪ A2) whose restriction to Ai is τi
(i = 1, 2) such that under τ12, the algebras A1 and A2 are freely independent. If we drop the
assumption that A1 and A2 are free, then the uniqueness statement still holds (but τ12 may
fail to exist in general).

Proof See Exercises 2.5.17 and 2.5.18. Let X ∈ A1 and Y ∈ A2. Then X − τ(X)1 has trace
zero and hence

0 = τ
(
(X − τ(X))(Y − τ(Y ))

)
= τ(XY )− τ(X)τ(Y ),

from which we see that
τ(XY ) = τ(X)τ(Y ). (8)

Similarly,
0 = τ

(
(X − τ(X))(Y − τ(Y ))(X − τ(X))

)
= τ(XYX)− τ(XY )τ(X)− τ(X2)τ(Y )− τ(Y X)τ(X)

+3τ(X)τ(Y )τ(X)− τ(X)τ(Y )τ(X)

= τ(XYX)− τ(X2)τ(Y ),

where in the last step we have used (8). It follows that

τ(XYX) = τ(X2)τ(Y ), (9)

which in fact we would also have if X and Y were independent (and would commute). In a
similar way

τ(X2Y ) = τ(X2)τ(Y ), (10)

which is again the same as we would get in the independent case. However, continuing in the
same spirit, we find that

0 = τ
(
(X − τ(X))(Y − τ(Y ))(X − τ(X))(Y − τ(Y ))

)
= τ(XYXY )− τ(XYX)τ(Y )− τ(XY 2)τ(X)− τ(X2Y )τ(Y )− τ(Y XY )τ(X)

+τ(XY )τ(X)τ(Y ) + τ(X2)τ(Y )2 + τ(Y X)τ(X)τ(Y ) + τ(Y 2)τ(X)2

−4τ(X)2τ(Y )2 + τ(X)2τ(Y )2,
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from which using (8), (9), and (10) we obtain

τ(XYXY ) = τ(X2)τ(Y 2)− τ(X2)τ(Y )2 − τ(X)2τ(Y 2). (11)

This time, we get something different from the independent case. Nevertheless, it is not hard
to show by induction that using (7), one can express τ of any mixed moment of elements of
A1 and A2 in moments of elements of A1 and A2 separately.

We say that two self-adjoint operators X1 and X2 are freely independent if they generate
freely independent sub-C∗-algebras. It follows from Proposition 1 that if X1 and X2 are freely
independent, then the law of µX1+X2 (and in fact any reasonable function of X1 and X2) is
uniquely determined by the marginal laws µX1 and µX2 , so we can write

µX1+X2 = µX1 � µX2 ,

where � is called free convolution of probability measures.
Free independence of three or more algebras is defined in a similar way as for two algebras,

i.e., algebras A1, . . . ,An are free if, roughly speaking, a product A1, . . . , Ak of operators from
A1 ∪ · · · ∪ An cannot be simplified if Ai and Ai+1 are from different sub-algebras for each i.
(More precisely, this should be formulated in terms of linear independence as in (6).) It is not
hard to see that A1, . . . ,An are freely independent if and only if Ai+1 is freely independent of
α(A1 ∪ · · · ∪ Ai) for each i.

4 The Free Central Limit Theorem

We note that if X and Y are freely independent with mean

τ(X) =

∫
λµX(dλ) = 0 and τ(Y ) =

∫
λµY (dλ) = 0,

then by (8), ∫
λ2 µX+Y (dλ) = τ

(
(X + Y )2

)
= τ(X2) + τ(Y 2).

More generally, the variance of X + Y is the sum of the variances of X and Y . We recall
that the (standard) semicircle law has mean zero and variance C2/2 = 1. More generally,
we can define semicircle laws with any mean and variance by adding a constant and scaling.
The following proposition and theorem show that free independence is indeed very similar to
classical independence.

Proposition 2 (Stability of the semicircle law) Assume that X1, . . . , Xk are freely in-
dependent and that Xi has a semicircle law with mean τ(Xi) and variance Var(Xi) := τ

(
(Xi−

τ(Xi))
2
)
. Then

∑k
i=1Xi has a semicircle law with mean

∑k
i=1 τ(Xi) and variance

∑k
i=1 Var(Xi).

Theorem 3 (Free Central Limit Theorem) Let (Xi)i≥1 bee freely independent and identi-
cally distributed with mean zero and variance 1. Then the law of 1√

n

∑k
i=1Xi converges weakly

to the semicircle law.

Before we give some idea of how Proposition 2 and Theorem 3 can be proved, we first
discuss the relation of free independence to random matrix theory. Recall that the space An
of all random n × n matrices with finite moments of all orders on a given probability space
forms a ∗-algebra, and that τn(X) := 1

nE[tr(X)] defines a normalized pseudotrace. Let Mn

be a Wigner matrix where all upper diagonal entries are i.i.d. with mean zero, variance 1 (!),
and finite moments of all orders. Set Xn := n−1/2Mn. Note that µXn is the mean of the
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empirical distribution of Xn. Since the empirical distribution of Xn converges in expectation
to the semicircle law, µXn converges to the semicircle law.

Let X ′n be an independent copy of Xn. We claim that Xn and X ′n are asymptotically free
in the sense that

τ
(
{F (Xn)− τ(F (Xn))}{G(X ′n)− τ(G(X ′n))}

)
−→
n→∞

0

for any fixed polynomials F,G. (See Proposition 2.5.1 in the book for a sketch of a proof.) Now
it is actually not so hard to show (see Section 2.5.2 in the book) that, going to a subsequence
if necessary, we can find a ∗-algebra and pseudotrace (A∞, τ∞) as well as elements X∞, X

′
∞ ∈

A∞ such that all mixed moments of Xn and X ′n converge to those of X∞ and X ′∞. In
particular, this implies that X∞ and X ′∞ are freely independent. We know that µXn and µX′n
converge to the standard semicircle law while µXn+X′n converges to the semicircle law with
mean zero and variance 2. This explains why the limit law we find in random matrix theory
(the semicircle law) should be stable under free convolution.

Proof of Proposition 2 (sketch) We only consider the case of two freely independent
X1, X2 that each have a standard semicircle law. Consider the Hilbert space `2(N) of square
integrable functions f : N → C. Let e0, e1, . . . denote the usual basis. Set A := `2(N) and
define

τ(A) := 〈e0, Ae0〉.

It is not hard to check this is a normalized positive linear form (but not faithful and not a
pseudotrace). Define U : `2(N) → `2(N) by Uen := en+1 (n ≥ 0). It is not hard to see that
U is a unitary operator and U∗en = en−1 (n ≥ 1) while U∗e0 = 0. Set X = U + U∗, which
is self-adjoint. We claim that µX is the semicircle law. This can be proved by showing that
the k-th moment of X equals the number of walks ω : {0, . . . , k} → N such that ωi+1 = ωi± 1
for all i and ω0 = ωk = 0. As we have already seen, this is zero for odd k and equal to the
Catalan number Ck/2 for even k. (See Exercises 2.5.12 and 2.5.13.)
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