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The Markov property

Lemma For random variables X0, . . . ,Xn taking values in a finite
set X , the following conditions are equivalent:

(i) For each 0 < t < n, the random variables (X0, . . . ,Xt−1) and
(Xt+1, . . . ,Xn) are conditionally independent given Xt .

(ii) For each 0 < t ≤ n, there exists a probability kernel Pt−1,t
such that P[Xt = x |X0, . . . ,Xt−1] = Pt−1,t(Xt−1, x) a.s. for
all x ∈ X .

(iii) There exists a probability law µ on X and probability kernels
(Pt−1,t)0<t≤n such that P[(X0, . . . ,Xn) = (x0, . . . , xn)] =
µ(x0)P0,1(x0, x1) · · ·Pn−1,n(xn−1, x) for all x0, . . . , xn ∈ X .

We say that (Xt)0≤t≤n is a Markov chain with initial law µ and
transition kernels (Pt−1,t)0<t≤n. If it is possible to choose the
transition kernels such that P(x , y) = Pt−1,t(x , y) does not
depend on t, then the Markov chain is time-homogenous.
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Markov chains

Usually, the starting point is not a sequence of random variables
X0, . . . ,Xn, but a transition kernel P. We fix P and are interested
in Markov chains with this transition kernel (and arbitrary initial
law). We write Pµ (resp. Px) for the law of the Markov chain with
initial law µ (resp. δx).

Using Kolmogorov’s extension theorem, we can without loss of
generality take n =∞, so usually we consider Markov chains
(Xt)t≥0.

One can idealize further and allow X to be countably infinite.
With more work, one can allow uncountable X .
It is also possible to consider continuous time.
This leads to the general theory of Markov processes, which
describe limits of finite Markov chains with large state spaces.

In the book, we will stick to finite state space X , but we will
nevertheless be interested in large X .
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Matrix notation

We observe that

Px [X2 = z ] =
∑
y

Px [X1 = y , X2 = z ]

=
∑
y

P(x , y)P(y , z) = P2(x , z).

More generally

Pµ[Xn = y ] =
∑
x

µ(x)Pn(x , y) =: µPn(y).

Also
Ex [f (Xn)] =

∑
y

Pn(x , y)f (y) =: Pnf (x).

We view probability laws as row vectors, transition kernels as
matrices, and real functions as column vectors.
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A simple example

Consider

P :=

(
1− p p

q 1− q

)
.

We plot Pt(1, 1) as a function of t:

p = q = 1/2 p = 0.2, q = 0.1 p = 0.95, q = 0.7
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Another example

Let (Zt)t≥0 be i.i.d. Bernoulli random vari-
ables with P[Zt = 0] = P[Zt = 1] = 1

2 .
Then (Zt ,Zt+1,Zt+2)t≥0 is a Markov chain
with state space X = {0, 1}3.

P =
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Random mapping representations

Lemma
Let (Zt)t≥1 be i.i.d. random variables with values in Λ.
Let X0 be an independent random variable with values in X .
Let f : X × Λ→ X be a (measurable) function. Then

Xt := f (Xt−1,Zt) (t ≥ 0)

defines a Markov chain with transition kernel

P(x , y) = P[f (x ,Z1) = y ] (x , y ∈ X ).

Proof By induction, Zt is independent of X0, . . . ,Xt−1, hence

P[Xt = xt | (X0, . . . ,Xt−1) = (x0, . . . , xt−1)]

= P[f (xt−1,Zt) = xt | (X0, . . . ,Xt−1) = (x0, . . . , xt−1)]

= P[f (xt−1,Zt) = xt ] = P(xt−1, xt).
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Random mapping representations

Setting M(x) := f (x ,Z ) defines a random map M : X → X such
that

(RM) P(x , y) = P[M(x) = y ].

Conversely, if M is defined on a probability space Ω, then
f (x , ω) := M(ω)(x) is a map f : X × Ω→ X .

Every probability kernel has a random mapping representation:
For each x ∈ X , let M(x) be a random variable with law P(x , · ).
Couple the random variables (M(x))x∈X in any way.
Then (RM) holds.

Random mapping representations are not unique, since we are free
to choose any joint law for (M(x))x∈X ,
as long as the marginals satisfy (RM).
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Random mapping representations

Simulations of Markov chains on a computer usually involve a
random mapping representation with (Zt)t≥1 i.i.d. uniformly
distributed on [0, 1].

Example X = {0, 1}, P(x , y) = P(y , x) = 1
2 .

Representation 1 f (x ,Z ) := 1− x if Z ≤ 1
2 and f (x ,Z ) := x

otherwise.

Representation 2 f (x ,Z ) := 1 if Z ≤ 1
2 and f (x ,Z ) := 0

otherwise.

Random mapping representations yield a natural way of coupling
Markov chains with different initial states.
Let (X x

t )t≥0 be the Markov chain with initial state X x
0 = x .

In Representation 1, P[X 0
t 6= X 1

t ] = 1 for all t ≥ 1.
In Representation 2, P[X 0

t 6= X 1
t ] = 0 for all t ≥ 1.
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Classification of states

Write x −→ y if Pt(x , y) > 0 for some
t ≥ 0.
In the oriented graph picture, this means
that there is a walk from x to y .

Write x ←→ y if x −→ y −→ x .
This defines an equivalence relation. The
equivalence classes are called communicat-
ing classes.

A communicating class C is essential if there
are no x ∈ C , y 6∈ C such that x → y .
An essential class with one element is an
absorbing state.

A Markov chain is irreducible if X is a com-
municating class.
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Aperiodicity

By definition, the period of x is the greatest common divisor of
{t ≥ 1 : Pt(x , x) > 0}.

I All states in a communicating class have the same period.

I An irreducible chain with period 1 is called aperiodic.

I If an irreducible chain has period n, then we can partition
X = X0 ∪ · · · ∪ Xn−1 so that from Xk , it is only possible to
jump to Xk+1 mod(n).

I If (Xt)t≥0 has period n, then (Xnt)t≥0 is aperiodic with state
space X0.

I If X is finite and P is irreducible and aperiodic, then there
exists a t > 0 such that Pt(x , y) > 0 for all x , y ∈ X .

Jan M. Swart (Czech Academy of Sciences) Markov Chains and Mixing Times



Hitting times

For x ∈ X , we define:

hitting time τx := inf{t ≥ 0 : Xt = x},
first return time τ+x := inf{t ≥ 1 : Xt = x}.

Lemma In an irreducible chain with finite state space,

Ex [τy ] <∞ and Ex [τ+y ] <∞ (x , y ∈ X ).

Proof In the aperiodic case, we can choose t > 0 such that
Pt(x , y) > 0 for all x , y ∈ X .
Fix y and set ε := infx∈X Pt(x , y). Then

P[Xnt 6= y |Xt 6= y , X2t 6= y , . . . ,X(n−1)t 6= y ] ≤ 1− ε,
and hence

Px [τ+y > nt] ≤ (1− ε)n,

so
Ex [τy ] ≤ Ex [τ+y ] =

∑
t≥0

Px [τ+y > t] <∞.
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Transient states

Lemma If C is an inessential class and

σC := inf{t ≥ 0 : Xt 6∈ C},

is the first exit time of C , then Ex [σC ] <∞ for all x ∈ C .

Proof Define a new Markov chain with state space Y := C ∪ {∗}
and transition kernel Q(x , y) := P(x , y) (x , y ∈ C ),
Q(x , ∗) :=

∑
y∈X\C P(x , y), and Q(∗, x) := 1 for some fixed

x ∈ C . This new chain is irreducible and σC is equally distributed
with τ∗.
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Invariant laws

An invariant law is a probability law π that satisfies the equivalent
conditions:

I πP = π,

I Pπ is stationary, i.e.,
Pπ[(X1, . . . ,Xt) ∈ · ] = Pπ[(X0, . . . ,Xt−1) ∈ · ] ∀t.

Proposition On each essential class C , there exists a unique
invariant law. On inessential classes, there do not exist invariant
laws.

Proof idea Fix a reference point x ∈ C . By definition, an
excursion away from x is a finite sequence ~x = (x0, . . . , xn) with
n ≥ 1, x0 = x = xn, and xk 6= x for all 0 < k < n. Define

µ(x0, . . . , xn) := Px

[
(X0, . . . ,Xτ+x ) = (x0, . . . , xn)

]
.
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Invariant laws

Assume that (Xt)t∈Z is stationary. Let

σx := inf{t ≤ −1 : Xt = x} and τx := inf{t ≥ 0 : Xt = x}.

Then
P
[
σx = −t, (Xσx , . . . ,Xτx ) = (x0, . . . , xn)

]
= P[X−t = x ]µ(x0, . . . , xn)1{t≤n},

so

P[X0 = y ] =
∞∑
t=1

∑
~x

P[X−t = x ]µ(x0, . . . , xn)1{t≤n}1{xt=y}

=P[X−t = x ]
∞∑
t=1

P[Xt = y , t ≤ τ+x ].

Summing over y , we see that P[X−t = x ] = Ex [τ+x ]−1.
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Invariant laws

We can turn this idea around and define

π(y) := Ex [τ+x ]−1
∞∑
t=1

P[Xt = y , t ≤ τ+x ].

One can then check that this indeed defines an invariant law (see
the book).

This proves existence of an invariant law. We postpone the proof
of uniqueness till later.

The fact that there are no invariant laws on inessential classes
follows from our earlier lemma, wich says that the Markov chain
exits such classes in finite expected time.
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The Convergence Theorem

Theorem Let (Xt)t≥0 be an irreducible aperiodic Markov chain
with finite state space and let π be its invariant law. Then

Pµ[Xt = x ] −→
t→∞

π(x) (x ∈ X ).

Remark The proof works for any invarant law π. Uniqueness of π
(for aperiodic chains) then follows from the theorem.

Proof Let P be the transition kernel and X the state space.
Let (Xt)t≥0 and (Yt)t≥0 be independent Markov chains with
transiton kernel P and initial laws µ, ν.
Then (Xt ,Yt)t≥0 is a Markov chain with transition kernel
P(x , y ; x ′, y ′) = P(x , x ′)P(y , y ′).
Since P is aperiodic, there exists t such that Pt(x , y) > 0 for all

x , y and hence P
t
(x , y ; x ′, y ′) = Pt(x , x ′)Pt(y , y ′) > 0 for all

(x , y), (x ′, y ′), proving that P is irreducible.
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The Convergence Theorem

Define
τc := inf{t ≥ 0 : Xt = Yt}.

Since P is irreducible, E[τc] <∞. Let

Y ′t :=

{
Yt if t ≤ τc,
Xt if t ≥ τc.

Then (Y ′t )t≥0 is equal in law to (Yt)t≥0 and

Pµ[Xt = x ]− Pν [Yt = x ] ≤ P[Xt 6= Y ′t ] ≤ P[t < τc] −→
t→∞

0

for all x ∈ X . In particular, if µ = π is any invariant law, then
Pπ[Xt = x ] = π(x) and the claim follows.
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Lazy chains

Remark 1 The proof actually shows that

‖µPt − νPt‖TV :=
∑
x∈X

∣∣µPt(x)− νPt(x)
∣∣ ≤ P[t < τc],

which by an earlier lemma goes to zero exponentially fast.

Remark 2 If P is a irreducible probability kernel, then

Q(x , y) := 1
2P(x , y) + 1

21{x=y}

is called the lazy version of P. Since Q is always aperiodic, it has a
unique invariant law. But each invariant law π of P also solves
πQ = π(12P + 1

21) = 1
2πP + 1

2π = π. Thus, P has a unique
invariant law too.
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Reversibility

Let (Xt)t∈Z is a stationary Markov chain with transition kernel P
and invariant law π.
Then (X−t)t∈Z is a stationary Markov chain with transition kernel

P̂(x , y) =
π(y)P(y , x)

π(x)
.

The chain (Xt)t∈Z and the reversed chain (X−t)t∈Z are equal in
law if and only if detailed balance holds:

π(x)P(x , y) = π(y)P(y , x).

In general: π(x)P(x , y) = P[X0 = x , X1 = y ] = π(y)P̂(y , x).
A measure satisfying detailed balance is called a reversible measure.
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Reversibility

Example Our earlier Markov chain (Zt ,Zt+1,Zt+2)t≥0 taking
values in {0, 1}3 is not reversible.
In the forward time direction, (z1, z2, z3) 7→ (z2, z3, 0) or
7→ (z2, z3, 1) with equal probabilities. The invariant law π is the
uniform law on {0, 1}3 and the reversed chain makes the transitions
(z1, z2, z3) 7→ (0, z1, z2) or 7→ (1, z1, z2) with equal probabilities.
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Harmonic functions

A function h : X → R satisfying Ph = h is called harmonic.

Lemma A harmonic function is constant on each essential
communicating class, and uniquely determined by its values on the
essential communicating classes.

Proof Let h be harmonic and let C be an essential communicating
class. Let x ∈ C be such that h(y) ≤ h(x) for all y ∈ C . Then

h(x) =
∑
y∈C

P(x , y)h(y) ≤ h(x),

with equality if and only if h(x) = h(y) for all y such that
P(x , y) > 0. By induction, h(x) = h(y) for all y ∈ C .
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Harmonic functions

For any x ∈ X ,

h(x) = Pth(x) = Px [h(Xt)] (t ≥ 0).

Let C1, . . . ,Cn be the essential classes and let h(x) = ci for all
i ∈ Ci .
Set τ := inf{t ≥ 0 : Xt ∈ C1 ∪ · · · ∪ Cn}. Then

h(x) = Px [h(Xt)] = Px [h(Xt)1{t<τ}] +
n∑

i=1

ciPx [Xt ∈ Ci ]

−→
t→∞

n∑
i=1

ciP[Xτ ∈ Ci ].
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Harmonic functions

More precise lemma Let C1, . . . ,Cn be the essential classes.
Then for each i , there exists a unique harmonic function hi such
that

hi (x) = 1 (x ∈ Ci ) and hi (x) = 0 (x ∈ Cj , j 6= i).

This function is given by

hi (x) = Px [Xτ ∈ Ci ] (x ∈ X ).

Moreover, each harmonic function is a linear combination of the
functions h1, . . . , hn.
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Harmonic functions

Example Let (Zt)t≥0 be i.i.d. Bernoulli ran-
dom variables with P[Zt = 0] = P[Zt =
1] = 1

2 and let

τ110 := inf
{

t ≥ 0 : (Zt ,Zt+1Zt+2) = (1, 1, 0)
}
,

τ010 := inf
{

t ≥ 0 : (Zt ,Zt+1Zt+2) = (0, 1, 0)
}
.

We can calculate P[τ010 < τ110] = πh =
3/8 where π is the uniform distribution on
{0, 1}3 and h is the harmonic function on
the right.
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Harmonic functions

Example Let (Zt)t≥0 be i.i.d. Bernoulli ran-
dom variables with P[Zt = 0] = P[Zt = 1] =
1
2 and let

τ110 := inf
{

t ≥ 0 : (Zt ,Zt+1Zt+2) = (1, 1, 0)
}
,

τ010 := inf
{

t ≥ 0 : (Zt ,Zt+1Zt+2) = (0, 1, 0)
}
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We can calculate P[τ010 < τ110] = πh = 3/8
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