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Optional stopping

Optional stopping, version 3 Let (Mt)t≥0 be a martingale with
respect to some filtration (Ft)t≥0 and let τ be a stopping time.
Assume that:

(i) There exists a constant C <∞ such that
|Mt −Mt−1| ≤ C a.s. for all t ≥ 1.

(ii) E[τ ] <∞.

Then E[Mτ ] = E[M0].

Proof

|Mτ∧t | ≤ |M0|+
τ∧t∑
s=1

|Ms −Ms−1| ≤ |M0|+ Cτ.

Since E[|M0|+ Cτ ] <∞, by optional stopping and dominated
convergence

E[M0] = E[Mτ∧t ] −→
t→∞

E[Mτ ].
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An application

Let (Bt)t≥1 be i.i.d. and uniformly distributed on {0, 1} and let
τ010 := inf{t ≥ 0 : (Bt−2,Bt−1,Bt) = (0, 1, 0)}.

Claim E[τ010] = 10.

Proof At each time t = 0, 1, . . . a gambler enters with one dollar.
The gambler bets all his money on the next outcome being 0.
If he wins, he bets all he has on the next outcome being 1.
If he wins again, he bets all he has on the next outcome being 0.

Let S0 := 1 and St := the sum of money owned by all gamblers
after the t-th outcome.
Then St − t is a martingale and hence E[τ ] = E[Sτ ]− 1.
We claim Sτ = 1 + 2 + 8 a.s.
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An application
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Doob transform

X = (Xt)t≥0 Markov chain with finite state space X and transition
kernel P. Assume z ∈ X is a trap. Let

h(x) := Px
[
Xt = z for some t ≥ 0

]
(x ∈ X )

Then h is a harmonic function, i.e., Ph = h.
Let X+ := {x ∈ X : h(x) > 0}. Then for each x ∈ X+,

Px
[
(Xt)t≥0 ∈ ·

∣∣Xt = z for some t ≥ 0
]

is the law of the Markov chain with state space X+, initial state x ,
and Doob transformed transition kernel

Ph(x , y) := h(x)−1P(x , y)h(y) (x , y ∈ X+).
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Doob transform

Proof Let A := {Xt = z for some t ≥ 0}.
For each (x0, . . . , xn) with x0 = x and xn = z

Px
[
(X0, . . . ,Xn) = (x0, . . . , xn)

]
= P(x0, x1) · · ·P(xn−1, xn)

= h(x0)Ph(x0, x1) · · ·Ph(xn−1, xn)h(xn)−1.

Here h(xn) = h(z) = 1 and h(x0) = h(x) = Px(A), so

Px
[
(X0, . . . ,Xn) = (x0, . . . , xn)

∣∣A] = Ph(x0, x1) · · ·Ph(xn−1, xn).
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Strong stationary times revisited

Let X = (Xt)t≥0 be the Markov chain with finite state space X ,
irreducible transition kernel P, and unique invariant law π.
Assume X is adapted to a filtration (Ft)t≥0 and that τ is an
Ft-stopping time.
By definition, τ is a strong stationary time if

P
[
Xτ = x

∣∣ τ] = π(x) (x ∈ X ).

Equivalently, Xτ is independent of τ and has law π.
Diaconis and Fill (1990) have shown that any irreducible Markov
chain has a strong stationary time.
The following treatment is influenced by Morris and Peres (2005).
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Evolving set process

Let R be defined by

π(x)P(x , y) = R(x , y)π(y) (x , y ∈ X ),

i.e., R ′(y , x) := R(x , y) is the transition kernel of the reversed
Markov chain.
We also write

P(x ,A) :=
∑
y∈A

P(x ,A) and R(A, y) :=
∑
x∈A

R(x , y).

Let 2X denote the space of all subsets of X .
Let Ac := X\A denote the complement of a set A ⊂ X .
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Evolving set process

We inductively construct:
(Xt ,St)t≥0 with values in X × 2X ,
(Ut)t≥1 with values in [0, 1].

Conditional on (Xs , Ss)0≤s≤t−1 and (Us)1≤s≤t−1:

(i) We choose Xt according to the probability law P(Xt−1, · ).

(ii) If Xt−1 ∈ St−1, we choose Ut uniformly on [0,R(St−1,Xt)].
If Xt−1 6∈ St−1, we choose Ut uniformly on [R(St−1,Xt), 1].

(iii) We set St := {y ∈ X : R(St−1, y) ≥ Ut}.

I (Xt)t≥0 is autonomous with transition kernel P.

I Either Xt ∈ St for all t ≥ 0, or Xt ∈ Sc
t for all t ≥ 0.
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Evolving set process

Lemma Assume that X0 has law π and is independent of S0.
Then:

(a) At each time t ≥ 1, the random variable Ut is uniformly
distributed on [0, 1] and independent of Xt and (Ss)0≤s≤t−1.

(b) At each time t ≥ 0, the random variable Xt has law π and is
independent of (Ss)0≤s≤t .

Proof µ[a,b] := uniform distribution on the interval [a, b].
Part (b) is true by assumption at time t = 0. We now prove parts
(a) and (b) by induction, showing that if (b) holds at time t − 1,
then (a) and (b) hold at time t.
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Evolving set process

We start by proving (a). By our induction hypothesis, conditional
on (Ss)0≤s≤t−1, the random variable Xt−1 has law π and hence

P
[
(Xt−1,Xt) = (x , y)

∣∣ (Ss)0≤s≤t−1
]

= π(x)P(x , y) (?)

Therefore, if we condition both on (Ss)0≤s≤t−1 and Xt , then the
conditional law of Xt−1 is R( · ,Xt) and hence

P
[
Ut ∈ ·

∣∣Xt , (Ss)0≤s≤t−1
]

= P
[
Xt−1 ∈ St−1

∣∣Xt , (Ss)0≤s≤t−1
]
· µ[0,R(St−1,Xt)]

+ P
[
Xt−1 ∈ Sc

t−1
∣∣Xt , (Ss)0≤s≤t−1

]
· µ[R(St−1,Xt),1]

= R(St−1,Xt)µ[0,R(St−1,Xt)] + R(Sc
t−1,Xt)µ[R(St−1,Xt),1] = µ[0,1],

which proves that (a) holds at time t.
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Evolving set process

Formula (?) shows that Xt is independent of (Ss)0≤s≤t−1, so

P
[
(Ss)0≤s≤t−1 ∈ ·

∣∣Xt

]
= P

[
(Ss)0≤s≤t−1 ∈ ·

]
a.s.

Since (a) holds at time t, Ut is independent of Xt and
(Ss)0≤s≤t−1, so

P
[
Ut ∈ ·

∣∣Xt , (Ss)0≤s≤t−1
]

= P
[
Ut ∈ ·

]
a.s.

Together, these formulas show that
(
Ut , (Ss)0≤s≤t−1

)
is

independent of Xt . Since St is a function of Ut and St−1, it follows
that also (Ss)0≤s≤t is independent of Xt , which proves that (b)
holds at time t.
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Evolving set process

Corollary If X0 has law π and is independent of S0, then
(St)t≥0, taken on its own, is a Markov chain with state space 2X

and transition kernel

K (A,B) := P
[
{y ∈ X : R(A, y) ≥ U} = B

]
(A,B ∈ 2X ),

where U is uniformly distributed on [0, 1].

Remark (St)t≥0 is clearly not autonomous.

We call the Markov chain with kernel K the evolving set process.

I (Sc
t )t≥0 is also an evolving set process.

I ∅,X are traps.

I τ := inf
{
t ≥ 0 : St ∈ {∅,X}

}
is a.s. finite.
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Conditioned evolving set process

Lemma Assume S0 6= ∅ is deterministic and X0 has law π. Then

P
[
(St)t≥0 ∈ ·

∣∣X0 ∈ S0
]

is the law of the Markov chain with state space
2X+ := {A ⊂ X : A 6= ∅} and Doob-transformed transition kernel

Kπ(A,B) := π(A)−1K (A,B)π(B) (A,B ∈ 2X+).

Proof Since either Xt ∈ St for all t ≥ 0 or Xt ∈ Sc
t for all t ≥ 0,

the events {Sτ = X} and {X0 ∈ S0} are a.s. equal. In particular

P
[
Sτ = X | S0 = A

]
= P[X0 ∈ A] = π(A).
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Construction of the strong stationary time

Corollary Assume X0 = x and S0 = {x}.
Then X = (Xt)t≥0 is the Markov chain with initial state x and
transition kernel P and τ is a strong stationary time for X .

Proof Equivalently, let X0 have law π and condition on X0 ∈ S0 or
equivalently on Xt ∈ St . By property (b)

P
[
Xt = y

∣∣ (Ss)0≤s≤t
]

=
π(y)

π(St)
1{y∈St} (y ∈ X , t ≥ 0).

and hence

P
[
Xt = y

∣∣ (Ss)0≤s≤t , τ = t
]

= π(y) (y ∈ X , t ≥ 0).
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Application

Q(x , y) := π(x)P(x , y), Q(A,B) :=
∑

x∈A, y∈B
Q(x , y).

Bottleneck ratio:

Φ∗ := min
A: π(A)≤ 1

2

Q(A,Ac)

π(A)
.

Small value of Φ∗ signifies strong bottleneck.

λ? leading eigenvalue, γ? := 1− |λ?| spectral gap, τrel := 1/γ?
relaxation time, πmin := minx∈X π(x).

Thm 12.4 π reversible, then τmix(ε) ≤ τrel log
(
1/(επmin)

)
.

Thm 13.10 π reversible, then τrel ≤ 2/Φ2
∗.

Thm 17.10 π lazy, then τmix(ε) ≤ (2/Φ2
∗) · log

(
1/(επmin)

)
.
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Application

Proof of Thm 17.10 Since d(t) ≤ d (∞)(t), it suffices to show
that

d (∞)(t) ≤ 1

πmin

(
1− Φ2

?

2

)t

,

where

d (∞)(t) := max
x ,y∈X

∣∣∣∣Pt(x , y)

π(y)
− 1

∣∣∣∣ .
Lemma 1 Pt(x , y) =

π(y)

π(x)
P{x}

[
y ∈ St

]
.

Consequence d (∞)(t) = max
x ,y∈X

∣∣P{x}[y ∈ St
]
− π(x)

∣∣
π(x)

.
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Application

Since π(x) = P{x}
[
Sτ = X

]
,

d (∞)(t) = max
x ,y∈X

1

π(x)

∣∣∣P{x}[y ∈ St
]
− P{x}

[
Sτ = X

]∣∣∣
= max

x ,y∈X

1

π(x)

∣∣∣P{x}[y ∈ St , Sτ = ∅
]
− P{x}

[
y 6∈ St , Sτ = X

]∣∣∣
≤ max

x∈X

1

π(x)
P{x}

[
τ > t

]
.

Lemma 2 P{x}
[
τ > t

]
≤

√
π(x)

πmin

(
1− Φ2

?

2

)t

.

Consequence

d (∞)(t) ≤ max
x∈X

1√
π(x)πmin

(
1− Φ2

?

2

)t

=
1

πmin

(
1− Φ2

?

2

)t

.
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Application

Proof of Lemma 1 Start the coupled process (Xt ,St)t≥0 such
that X0 has law π and S0 = {x}. By property (b) Xt has law π
and is independent of St , so

π(y)P
[
y ∈ St

]
= P

[
Xt = y , y ∈ St

]
= P

[
Xt = y , X0 ∈ {x}

]
= π(x)Pt(x , y).
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Application

Proof of Lemma 2 Define

S#
t :=

{
St if π(St) ≤ 1/2,
Sc
t otherwise.

Lemma 17.16 E
[√

π(S#
t+1)

∣∣∣ St] ≤ (1− Φ2
?

2

)√
π(S#

t ).

Consequence

E
[√

π(S#
t+1)

]
= E

[
E
[√

π(S#
t+1)

∣∣∣St]] ≤ (1− Φ2
?

2

)
E
[√

π(S#
t )
]
,

so by induction

E{x}
[√

π(S#
t )
]
≤
(

1− Φ2
?

2

)t√
π(x).
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Application

Since

E{x}
[√

π(S#
t )
]
≥
√
πmin P{x}

[
S#
t 6= ∅

]
,

it follows that

P{x}
[
τ > t

]
= P{x}

[
S#
t 6= ∅

]
≤ 1
√
πmin

E{x}
[√

π(S#
t )
]
≤
√
π(x)
√
πmin

(
1− Φ2

?

2

)t
.
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Application

Recall

S#
t :=

{
St if π(St) ≤ 1/2,
Sc
t otherwise.

Proof of Lemma 17.16 (sketch) Since π(St) is a martingale, by
Jensen’s inequality,

√
π(St) is a supermartingale and hence so is√

π(S#
t ) =

√
π(St) ∧

√
π(Sc

t ).

Lemma 17.14 says that if π(S) ≤ 1
2 , then

E
[
St+1/St

∣∣∣Ut+1 ≤ 1
2 , St = S

]
= 1 + 2

Q(S , Sc)

π(S)
≥ 1 + 2Φ∗,

E
[
St+1/St

∣∣∣Ut+1 ≥ 1
2 , St = S

]
= 1− 2

Q(S , Sc)

π(S)
≤ 1− 2Φ∗,

which allows to prove that π(S#
t ) fluctuates enough and hence√

π(S#
t ) tends to decrease on average, with explicit estimates.
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Application

Final remark Laziness is use right at the start of the proof of
Lemma 17.14 to conclude that y 6∈ S implies R(S , y) ≤ 1

2 .
This then becomes important in connection with the inequalities
Ut+1 ≤ 1

2 and Ut+1 ≥ 1
2 .
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