
Exam Quantum Probability
July 4th, 2017

Hints: You can use all results proved in the lecture notes (without proving them your-
selves), as well as claims one is supposed to prove in exercises from the lecture notes.
You can also use a claim you are supposed to prove in one excercise below to solve
another excercise (even if you did not prove the claim). Partial solutions (especially in
Exercise 3 (b) and (c)) also yield points.

Exercise 1 (Skew symmetric operators) Let H be an inner product space. By
definition, an operator A ∈ L(H) is skew symmetric if A∗ = −A.

(a) Prove that every skew symmetric operator is normal.

(b) Prove that the operator

B := eA =
∞∑
n=0

1

n!
An

is unitary if and only if A is skew symmetric.

Exercise 2 (An adjoint operation) Let L(C2) denote the space of all complex 2× 2
matrices. Let A 7→ A◦ be the map defined by

A◦ := MA∗M
(
A ∈ L(C2)

)
,

where M is the matrix

M :=

(
1 0
0 −1

)
,

and A∗ denotes the adjoint of A with respect to the usual inner product〈(
φ1

φ2

)∣∣∣∣ ( ψ1

ψ2

)〉
:= φ∗1ψ1 + φ∗2ψ2.

(a) Show that A 7→ A◦ is an adjoint operation on the algebra L(C2). (You do not have
to prove that L(C2) is an algebra.)

(b) Show that 〈φ|M |φ〉 = 0 implies (|φ〉〈φ|)◦ (|φ〉〈φ|) = 0.

(c) Show that the adjoint operation A 7→ A◦ is not positive in the sense defined in
Section 2.1 of the lecture notes.

Please turn over.
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Exercise 3 (W state) Let H be a two-dimensional inner product space with orthonor-
mal basis {e(1), e(2)}. Let ψ ∈ H ⊗H⊗H be defined by

ψ :=
1√
3

(
e(1)⊗ e(1)⊗ e(2) + e(1)⊗ e(2)⊗ e(1) + e(2)⊗ e(1)⊗ e(1)

)
and let ρ = ρψ be the associated pure state on L(H⊗H⊗H) ∼= L(H)⊗L(H)⊗L(H).

(a) Let P2 := |e(2)〉〈e(2)|. Calculate ρ(1⊗ 1⊗ P2).

(b) Let ρ12 be the marginal describing the first two subsystems, i.e.,

ρ12(A1 ⊗ A2) := ρ(A1 ⊗ A2 ⊗ 1).

Show that
ρ12 = 1

3
ρξ + 2

3
ρη,

where

ξ := e(1)⊗ e(1) and η :=
1√
2

(
e(1)⊗ e(2) + e(2)⊗ e(1)

)
.

Hint To simplify your calculations, you can use the physicist’s informal notation

|112〉 :=
∣∣e(1)⊗ e(1)⊗ e(2)

〉
, 〈121| :=

〈
e(1)⊗ e(2)⊗ e(1)

∣∣, etc.

(c) Bonus question: Do you think ρ12 is entangled?
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Solutions

Ex 1
One possible solution is to observe that A is skew symmetric if and only if it is of the
form A = iB with B a hermitian operator, as follows by writing (iB)∗ = −i · −B = iB.
By Exercise 1.2.8 of the lecture notes, an operator is hermitian if and only if it is normal
and all its eigenvalues are real. Since B normal ⇒ iB normal this proves part (a). By
Exercise 1.2.7 of the lecture notes, an operator U ∈ L(H) is unitary if and only if it is
normal and all its eigenvalues λi satisfy |λi| = 1. Any normal operator B can be written
as

B =
∑
j

λj|e(j)〉〈e(j)|

where {e(1), . . . , e(n)} is an orthonormal basis and λj are the eigenvalues of B. By
Exercise 1.2.13 of the lecture notes,

eiB =
∑
j

eiλj |e(j)〉〈e(j)|

Since |eiλj | = 1 if and only if λj ∈ R, this proves eiB unitary ⇔ B hermitian ⇔ A
skew symmetric. (Compare also Exercise 1.2.14 where one is supposed to prove the first
implication ⇐.)
Alternatively, since A∗A = −A2 = AA∗, we see that each skew symmetric operator is
normal and hence can be diagonalized with respect to an orthonormal basis. Since(∑

j

λj|e(j)〉〈e(j)|
)∗

=
∑
j

λ∗j |e(j)〉〈e(j)|,

we see that A is skew symmetric if and only if it is normal and all its eigenvalues are
strictly imaginary. The solution then proceeds as above.

Ex 2
We observe that M = M∗ and M2 = 1. Since

(i) (A◦)◦ = M(MA∗M)∗M = MM∗AM∗M = A,

(ii) (aA+ bB)◦ = M(aA+ bB)∗M = a∗MA∗M + b∗MB∗M = a∗A◦ + b∗B◦,

(iii) (AB)◦ = M(AB)∗M = MB∗A∗M = MB∗MMA∗M = B◦A◦,

we see that A 7→ A◦ is an adjoint operation, solving part (a).
Part (b) follows simply by observing that 〈φ|M |φ〉 = 0 implies

M(|φ〉〈φ|)∗M |φ〉〈φ| = M |φ〉〈φ|M |φ〉〈φ| = 0.

In view of part (b), to solve part (c), it suffices to find a nonzero φ ∈ C2 such that
〈φ|M |φ〉 = 0. Here

〈φ|M |φ〉 =
∑
ij

φ∗iMijφj = φ∗1φ1 − φ∗2φ2,

3



so setting φ1 = φ2 = 1 solves the exercise.

Ex 3
(a) Since

(1⊗ 1⊗ P2)(φ⊗ ψ ⊗ χ) = φ⊗ ψ ⊗ (P2χ),

and P2e(1) = 0, P2e(2) = e(2), we see that

(1⊗ 1⊗ P2)ψ =
1√
3
e(1)⊗ e(1)⊗ e(2)

and hence

ρψ(1⊗ 1⊗ P2) = 〈ψ|1⊗ 1⊗ P2|ψ〉 =
1

3
,

where we have used that vectors of the form e(i) ⊗ e(j) ⊗ e(k) form an orthonormal
basis for H⊗H⊗H.

(b) Using the physicist’s simplified notation, we have that

ρ12(A⊗B) = 〈ψ|A⊗B ⊗ 1|ψ〉

=
1

3

(
〈112|+ 〈121|+ 〈211|

)(
A⊗B ⊗ 1

)(
|112〉+ |121〉+ |211〉

)
.

We observe that in our new notation

(A⊗ 1⊗ 1)|112〉 = (A⊗ 1⊗ 1)
(
e(1)⊗ e(1)⊗ e(2)

)
= Ae(1)⊗ e(1)⊗ e(2)

= A11e(1)⊗ e(1)⊗ e(2) + A21e(2)⊗ e(1)⊗ e(2) = A11|112〉+ A21|212〉,

and similarly

(A⊗B ⊗ 1)|112〉=A11B11|112〉+ A21B11|212〉+ A11B21|122〉+ A21B21|222〉,
(A⊗B ⊗ 1)|121〉=A11B12|111〉+ A21B12|211〉+ A11B22|121〉+ A21B22|221〉,
(A⊗B ⊗ 1)|211〉=A12B11|111〉+ A22B11|211〉+ A12B21|121〉+ A22B21|221〉.

Using the fact that vectors of the form |111〉, |112〉, . . . are orthonormal, we see that

ρ12(A⊗B) =
1

3

(
A11B11 + A21B12 + A11B22 + A22B11 + A12B21

)
=

1

3

(
〈11|A⊗B|11〉+ 〈21|A⊗B|12〉+ 〈12|A⊗B|12〉

+ 〈21|A⊗B|21〉+ 〈12|A⊗B|21〉
)

=
1

3
〈11|A⊗B|11〉+

2

3
〈η|A⊗B|η〉.

A simpler way to arrive at the same answer is to note that

ψ =
1√
3

{
ξ ⊗ e(2) + 2η ⊗ e(1)

}
.
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Let Pi := |e(i)〉〈e(i)|. Performing the ideal measurement {P1, P2} on the third subsystem
changes ρψ into

1
3
ρξ ⊗ ρe(2) + 2

3
ρη ⊗ ρe(1).

Since performing a operation on the third system does not change the joint law of the
first two systems, this also proves the claim. More precisely, this argument goes as
follows. We define an operation T ′ by

(T ′ρ)(A) := ρ
(
(1⊗ 1⊗ P1)A(1⊗ 1⊗ P1)

)
+ ρ
(
(1⊗ 1⊗ P2)A(1⊗ 1⊗ P2)

)
(
A ∈ L(H⊗H⊗H)

)
. By Proposition 8.4.1 of the lecture notes, this formula defines an

operation. By Lemma 8.4.3, ρ12 = (T ′ρ)12, i.e., performing an operation on the third
subsystem does not change the marginal describing the first and second subsystem. Now
for ρ = ρψ, we get

(T ′ρ)(A) := 〈ψ|(1⊗ 1⊗ P1)A(1⊗ 1⊗ P1)|ψ〉+ 〈ψ|(1⊗ 1⊗ P2)A(1⊗ 1⊗ P2)|ψ〉.

Using the fact that

(1⊗ 1⊗ P1)ψ = 2√
3
η ⊗ e(1) and (1⊗ 1⊗ P2)ψ = 1√

3
ξ ⊗ e(2),

we see that
T ′ρ = 1

3
ρξ⊗e(2) + 2

3
ρη⊗e(1).

Since ρξ⊗e(2) = ρξ ⊗ ρe(2) and ρη⊗e(1) = ρη ⊗ ρe(1), it is easy to see that the marginal
ρ12 = (T ′ρ)12 is given by

ρ12 = 1
3
ρξ + 2

3
ρη.

(c) We know that states of the form η are entangled; see Section 7.3 in the lecture
notes. However, this does not necessarily mean that ρ12 is entangled. Nevertheless, it is
claimed on Wikipedia that this is the case, but I do not see an easy way to prove this.
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