
Exam Quantum Probability
June 30th, 2017

Hints: You can use all results proved in the lecture notes (without proving them your-
selves), as well as claims one is supposed to prove in exercises from the lecture notes.
You can also use a claim you are supposed to prove in one excercise below to solve
another excercise (even if you did not prove the claim). Partial solutions also yield
points.

Exercise 1 (Lie algebras) Let A be an algebra. Recall that for any A,B ∈ A, the
commutator of A and B is defined as [A,B] := AB − BA. A linear subspace B ⊂ A is
a Lie algebra if A,B ∈ B ⇒ [A,B] ∈ B. Recall that B is itself an algebra (in fact, a
subalgebra of A) if A,B ∈ B ⇒ AB ∈ B.

(a) Let V be a (finite dimensional) linear space and let L(V) be the algebra of all linear
operators A : V → V . Let tr(A) denote the trace of an operator A ∈ L(V). Prove that
B := {A ∈ L(V) : tr(A) = 0} is a Lie algebra.

(b) Let A be a ∗-algebra. Prove that the real linear space B := {A ∈ A : A∗ = −A} is
a Lie algebra.

(c) Show by example that not every Lie algebra is an algebra.

Exercise 2 (A particle with spin 1) For each α ∈ [0, 2π), let Tα denote the hermitian
matrix

Tα :=
1√
2

 0 e−iα 0
eiα 0 e−iα

0 eiα 0

 .

(a) Show that there exist an orthonormal basis {φα, ηα, ψα} of C3 such that

Tαφα = −φα, Tαηα = 0, and Tαψα = ψα,

i.e., φα, ηα, ψα are eigenvectors of Tα with eigenvalues −1, 0, 1, respectively.

(b) Show that ψα+π = λφα, where λ ∈ C (which may depend on α) satisfies |λ| = 1.

(c) We prepare a physical system in the pure state ρψα corresponding to the state
vector ψα, which corresponds to the eigenvalue +1 of Tα, and then perform an ideal
measurement of the observable Tβ. Calculate the probability ρψα(|ψβ〉〈ψβ|) that this
ideal measurement yields the value +1.

Please turn over.
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Exercise 3 (The original Bell inequality) Let A1 and A2 be Q-algebras and let ρ
be a state on A1 ⊗A2. For projections P ∈ A1 and Q ∈ A2, let

ερ(P,Q) := ρ(P ⊗Q) + ρ
(
(1− P )⊗ (1−Q)

)
denote the probability that in a simultaneous measurement, P and Q are either both
true, or both false.

(a) Show that if ρ = ρ1⊗ ρ2 is a product state, then for any projections P, P ′ ∈ A1 and
Q,Q′ ∈ A2, one has

ερ(P,Q) ≤ ερ(P,Q
′) + ερ(P

′, Q′) + ερ(P
′, Q). (1)

Hint Set µ+ := ρ1(P ), µ− := ρ1(1−P ), ν+ := ρ2(Q), ν− := ρ2(1−Q), and define µ′±, ν
′
±

similarly with P and Q replaced by P ′ and Q′. Show that the difference of the right-
and left-hand sides of (1) can be written as∑

σ1

∑
σ′
1

∑
σ2

∑
σ′
2

µσ1µ
′
σ1
νσ2ν

′
σ2

(
1{σ1=σ′

2} + 1{σ′
1=σ

′
2} + 1{σ′

1=σ2} − 1{σ1=σ2}
)
,

where we sum over σ1 ∈ {−,+} etc.

(b) Show that (1) holds if ρ is not entangled.
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Solutions

Ex 1
(a) We need to check that A,B ∈ B implies [A,B] ∈ B. We calculate tr([A,B]) =
tr(AB) − tr(BA) = 0 where we have used the property of the trace that tr(AB) =
tr(BA).
(b) Again, we need to check that A,B ∈ B implies [A,B] ∈ B. We calculate

[A,B]∗ = (AB −BA)∗ = B∗A∗ − A∗B∗

= (−B)(−A)− (−A)(−B) = −(AB −BA) = −[A,B],

proving that [A,B] ∈ B.
(c) In view of parts (a) and (b), it suffices to show that either 1. tr(A) = 0 and tr(B) = 0
do not imply tr(AB) = 0, or 2. A∗ = −A and B∗ = −B do not imply (AB)∗ = −(AB).
A counterexample of type 1 is:

A = B =

(
0 1
1 0

)
, AB =

(
1 0
0 1

)
.

A counterexample of type 2 is:

A = B =

(
i 0
0 i

)
, AB =

(
−1 0
0 −1

)
.

(In fact, the latter example works in any dimension, including dimension one.)

Ex 2
(a) For a vector of the form

ψ =

 x
y
z


we calculate Tαψ as

1√
2

 0 e−iα 0
eiα 0 e−iα

0 eiα 0

 x
y
z

 =
1√
2

 e−iαy
eiαx+ e−iαz

eiαy

 .

The eigenvalue equation Tαψ = λψ then becomes the system of equations

1√
2
e−iαy=λx,

1√
2
(eiαx+ e−iαz) =λy,

1√
2
eiαy=λz.

Setting w = 1/
√

2y, we can simplify this to

e−iαw=λx,
eiαx+ e−iαz= 2λw,

eiαw=λz.
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For λ = −1, 0, 1, these equations can easily be solved to find unnormalized eigenvectors −e−iα√
2

−eiα

 ,

 e−iα

0
−eiα

 ,

 e−iα√
2

eiα

 ,

Since Tα is hermitian, these eigenvectors are orthogonal. We can normalize them to get

φα =
1

2

 −e−iα√
2

−eiα

 , ηα =
1

2

 e−iα

0
−eiα

 , ψα =
1

2

 e−iα√
2

eiα

 .

(b) Since ei(α+π) = −eiα and e−i(α+π) = −e−iα, we see that ψα+π = φα, so in our case
λ = 1. (Since there is some freedom in how one defines ψα and φα, the constant λ may
be something different for other definitions of ψα and φα.)

(c) We need to calculate

ρψα(|ψβ〉〈ψβ|) = 〈ψα|ψβ〉〈ψβ|ψα〉 =
∣∣〈ψα|ψβ〉∣∣2.

This yields〈
1

2

 e−iα√
2

eiα

∣∣∣∣∣∣ 1

2

 e−iβ√
2

eiβ

〉

=
1

4

(
eiαe−iβ + 2 + e−iαeiβ

)
= 1

2
+ 1

2
cos(α− β) = cos

(
2(α− β)

)2
,

so the requested probability is

ρψα(|ψβ〉〈ψβ|) =
(
1
2

+ 1
2

cos(α− β)
)2

= cos
(
2(α− β)

)4
.

Ex 3
(a) We observe that∑

σ1

∑
σ′
1

∑
σ2

∑
σ′
2

µσ1µσ′
1
νσ2νσ′

2
1{σ1=σ′

2}

=
(∑

σ′
1

µσ′
1

)(∑
σ2

νσ2

)(∑
σ1

µσ1
∑
σ′
2

νσ′
2
1{σ1=σ′

2}

)
= 1 · 1 · (µ−ν ′− + µ+ν

′
+)

= ρ1(P )ρ2(Q
′) + ρ1(1− P )ρ2(1−Q′)

= ρ
(
P ⊗Q′

)
+ ρ
(
(1− P )⊗ (1−Q)

)
= ερ(P,Q

′).

Treating the other terms similarly, we see that∑
σ1

∑
σ′
1

∑
σ2

∑
σ′
2

µσ1µ
′
σ1
νσ2ν

′
σ2

(
1{σ1=σ′

2} + 1{σ′
1=σ2} + 1{σ′

1=σ
′
2} − 1{σ1=σ2}

)
= ερ(P,Q

′) + ερ(P
′, Q′) + ερ(P

′, Q)− ερ(P,Q).
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We need to prove that this expression is ≥ 0. It suffices to show that

1{σ1=σ′
2} + 1{σ′

1=σ
′
2} + 1{σ′

1=σ2} − 1{σ1=σ2} ≥ 0

for any choice of σ1, σ
′
1, σ2, σ

′
2 ∈ {−,+}. The statement is clearly true if at least one

of the events σ1 = σ′2, σ
′
1 = σ′2, and σ′1 = σ2 is true. But if σ1 6= σ′2 6= σ′1 6= σ2, then

σ1 6= σ2, so we are fine in this case as well.

(b) If ρ is not entangled, then it is a convex combination of product states, i.e.,

ρ =
∑
k

pkρk where ρk = ρ1,k ⊗ ρ2,k

are product states and pk ≥ 0 are constants such that
∑

k pk = 1. We observe that

ερ(P,Q) = ρ(P ⊗Q) + ρ
(
(1− P )⊗ (1−Q)

)
is linear as a function of ρ, so

ερ(P,Q) =
∑
k

pkερk(P,Q).

Now
ερ(P,Q

′) + ερ(P
′, Q′) + ερ(P

′, Q)− ερ(P,Q)

=
∑
k

pk
(
ερk(P,Q

′) + ερk(P
′, Q′) + ερk(P

′, Q)− ερk(P,Q)
)
≥ 0

by part (a).
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