Exam Quantum Probability
September 5th, 2017

Hints: You can use all results proved in the lecture notes (without proving them your-
selves), as well as claims one is supposed to prove in exercises from the lecture notes.
You can also use a claim you are supposed to prove in one excercise below to solve an-
other excercise (even if you did not prove the claim). Partial solutions also yield points;
this is in particular true for Exercise 2 (d).

Exercise 1 (Logarithm of an operator) Let H be an inner product space (complex,
finite dimensional). For each operator A € L(H), we define

=1
eA = 2—% EA”

(a) Show that if A € £(#H) is a normal operator, and 0 is not an eigenvalue of A, then
there exists a normal operator log(A) € L£(H) such that

elog(4) — 4. (1)

(b) Show that the operator log(A) is in general not uniquely defined by (1).

(c) Show that if A is a positive operator, then log(A) can be taken hermitian, and with
this extra condition it is unique.

Exercise 2 (Repeated measurements) Let «, 3 be real numbers with o < . Fix
n >1and for k =0,1,...,n, define

. n—k k
Qp =~ + ﬁﬁ

We perform, in sequence, n + 1 ideal measurements on the same photon, measuring
its polarization along the directions ag, a1, ..., a,. The polarization of the photon is
described by a Q-algebra of the form £(#), where H has dimension 2 and orthonormal
basis {e(1),e(2)}. For a € R, define n(«),&(a) € H by

n(a) :=cos(a)e(1) + sin(a)e(2),
&(a) :=—sin(a)e(1l) + cos(a)e(2) = n(a + 7/2).

Let P, := |n(a))(n(a)| and Q, = [£(a))({()| denote the projections on the orthog-
onal subspaces spanned by n(a) and &(«), respectively. For k = 0,...,n we perform,
in sequence, the ideal measurements corresponding to the partitions of the identity

{Pak’ Qak }

(a) Conditional on the event that the first measurement yields the outcome P, , give
an expression for the probability that the following n measurements yield the outcomes
Py, ...,P,,.



(b) Calculate the limit of the expression in (a) as n — oo, for fixed « and p.
(c) For k=0,...,n,let T}, : L(H) — L(H) denote the map
Ti(A) := P, AP, + Q0 AQa,,
and define T} : L(H)" — L(H)' by (T}p)(A) := p(Tx(A)). Show that T}, is an operation,

i.e., cite the right proposition from the lecture notes and check that its conditions are
satisfied.

(d) Show that
lim T,,0---0Ty =T,

n—o0

where 7" : L(H) — L(H)' is the operation defined by
T(A) == [n(B)) ()| Aln(a)) (n(B)| +1€(8)) (€ (a)[AlE())(E(B)]-

Exercise 3 (Correlation versus anticorrelation) Let H be a two-dimensional inner
product space with orthonormal basis {e(1),e(2)}. Let «, 5 € R and let {f(1), f(2)} be
the orthonormal basis of H given by

f(1):=cos(a)e(1) + e sin(a)e(2),
f(2):=—e"Psin(a)e(1) + cos(a)e(2).
Consider the vectors ¥, ¢ € H ® H defined as

1
)= ?(e(l) ®e(l)+e(2) ® 6(2)),
¢:= E(e(l) ®e(2) —e(2) ®e(1)).

While answering the following questions, it may be convenient to use the physicist’s
shortened notation

11) =e(l) ®@e(l), [12) =e(1)®e(2), ete.
(a) Show that ¢ looks the same with respect to the orthonormal basis {f(1), f(2)}, i.e.,

b= (1) ® F2) - f2)® £(1)).

V2
(b) Show that if 5 =0 or 8 =, then 1 also looks the same, i.e.,
1
Y= ﬁ(f(l) ® f(1)+ f(2) ® £(2)).

(c) Let P € L(H) be a projection on a one-dimensional subspace and let ps be the pure
state associated with ¢. Show that

(d) Show that there exists a projection P € L£(#) on a one-dimensional subspace such
that
py(P® (1—P)) #0.



Solutions

Ex 1
(a) If A is normal, then there exists an orthonormal basis {e(1),...,e(n)} of H such
that .
A=) Mle(k))(e(k)],
k=1
where Aj,..., A\, are the eigenvalues of A (not necessarily all different). Exercise 1.2.13

of the lecture notes tells us that
e =37 eMle(k)) (e (k).
k=1

We recall that if z = re® is a nonzero complex number written in radial form, with
r,¢ € R and —7 < ¢ < 7, then log(z) := log(r) + i¢ has the property that ¢!°8) = 2.
However, log(z) (defined in this way) is not the only complex number with this property,
since

plog(z) +i2mm _

for each m € Z. Using these observations, we see that if we define log(A) using the
functional calculus for normal operators, i.e., if we set

log(A) := Y log(Ae)le(k)) (e(k)],

then elos(d) = A,

(b) By our earlier remarks, for any my,...m, € Z, the operator

B =Y (log(A\) + i2mmy)le(k)) (e (k)|

k=1
has the property that e = A.

(c) A normal operator is hermitian if and only if its eigenvalues are real (see Exer-
cise 1.2.8 in the lecture notes). Since log(r) € R for all » € R, it follows that log(A)
(the way we have defined it) is hermitian if A is positive. Since for r € R, there is only
one real number s such that e®* = r, namely s = logr, it follows that log(A) is the only
hermitian matrix such that e84 = A,

Ex 2

(a) Conditional on the event that the first measurement yields the outcome P,, = P,,
our system is described by the pure state p, ). This is true regardless of the initial state
p and follows from point 5° of our interpretation of quantum probability spaces, which
says that after we observe P,, the new state is

o p(n(e) (@)l Aln(e) (@)
) = )y @)

= (n(a)[Aln(@)) = py(a) (A).



Similarly, after the (k — 1)-th measurement has yielded the outcome P,, ,, we have to
describe our system with the pure state p,, ,). In the state p,, ,), the probability
that an ideal measurement yields the outcome F,, is

it (Po) = (nfs2) n(en) (a0 (o)) = cos?(as — apr) = cos? (22).

(See Exercise 2.3.2 in the lecture notes.) In view of this, the probability that n consec-
utive ideal measurements yield the outcomes P, , ..., P,,, given that the initial state is

Pr(ao)» 18 given by

n 2n

[T cos® (252) = ((cos (52))

k=1
(b) Since

cos (;a) =1- %(5 —a)*n?+0(n™*)
as n — 00, we see that ,
(cos (’B_Ta)> ! — 1.

n—oo

More formally, there exists a constant K < oo such that

log (cos (B;O‘)) < Kn™2

n

for all n > 1, and hence
2nlog (cos (B;O‘)> — 0.

n n—00

(c) By Proposition 8.4.1, T} : L(H)" — L(#H)' is an operation if and only if 7} is of the
form

Ti(A) = V(m)AV (m)’

where V(1),...,V(n) € L(H) satisty D" _ V(m)V(m)* = 1. In our case, V(1) =
V(1)* = Py, and V(2) = V(2)* = Q.. , and

ST Vm)V(m)' = P2 + Q% =P, +Qa, =1
m=1

since {P,, Q. } is a partition of the identity.
(d) Let us write Vi (1) := P,, and V4(2) := Qq,. Then

T,0---0 TO(A) = Z ce Z Vn<mn) T V()(mO)AVO<mO) T Vn(mn)



This is a sum with 2"™! terms. We claim that in the limit n — oo, only two terms
contribute. These are the terms with either mg = m; =---=m,, =1 or mg = m; =
- =m, = 2. Indeed, for mg =m; =--- =m, = 1, we obtain

Vo(1) -+ Va(1) = [n()) (n(eo) n(en)) (nar) - - [n{am)) (nlewm)|

(1L
= (cos (252)) " n(a)) ()

By what we have already proved under (b), in the limit n — oo, this converges to
In(B8)){n(a)|. Likewise

::

nax-) (@) ) In(ao)) (n(a)|

Vo(2) -+~ Va(2) — [€(a))(E(P)].

To complete the proof, we must show that the combined effect of all other terms tends
to zero. Let {1,2}"! denote the space of all sequences 17 = (my, ..., m,) of I’'s and 2’s
and write

Up(m) == Vi (my,) - Vo(myg).

Then
T,o--oTy(A) = Y Un(m)AU,(m)".

me{1,2}n+1

Let 1,2 € {1,2}""! denote the sequences that consist only of 1’s resp. 2’s. We have just
seen that

Un(1) — W(1) and U,(2) — W(2),

" n—oo n—00
where

W (1) == [n(B))(n(e)| and  W(2) := [£(5))(E(e)]
It follows that for any A € L(H)

Un (AU (D) + Ua(2)AUL(2)" — W(D)AW(1)" + W(2AW(2)" = T(4).
To complete the proof, we must show that

> UL(m) AU, (i) — 0. (2)

n— oo
m#1,2

We start by observing that (as claimed in the exercise) 7" is an operation, i.e.,

> W(m)W(m)* =1.

m=1

Indeed

S W)W (m)* = [n(8)) (n(e)n(@) (1(8)] + [€(B)ME() () E(B)
" = () (n(B)] + €A (E(B)] = 1.

5



Likewise, (T;, 0 --- 0 Tp)" is an operation, so
> Uu(m)U, (1) = 1.
me{1,2}n+1

By what we have already proved

> U (i) U (1) = 1 = Un(D)Un (1) = Un(2)Un(2)"

This proves (2) in the special case that A = 1. We next observe that if P is a projection,
then

U@m)U(m)* — U(m)PU ()" = U@m) (1 — P)U(m)* = (U@m)(1 — P))(U(m)(1 - P))°

is a positive operator by Exercise 1.2.16, so using the partial order on the space of
operators introduced on page 14 of the lecture notes, we can estimate

0< ) Un(m)PU, < Y Un(m)U W(17)" — 0.
m#1,2 m#1,2

This proves (2) in the special case that A is a projection. By Exercise 4.1.8 of the lecture
notes, the projections span the space of all operators, so we conclude that (2) holds in
general.

Ex 3
(a) Using the physicist’s shortened notation, we have

f(1) ® f(2) = —e " cosasina|11) 4 cos® a|12) — sin? a|21) + € cos asin a|22),
f2)@ f(1)
which gives

f() @ f(2) = f(2) ® f(1) = (cos® a + sin? a)[12) — (cos? a + sin® ) |21),

—e P cosasinalll) — sin? a|12) 4 cos? a|21) 4 ¢” cos a sin a|22),

and hence

(F)® £2) - F2) @ f(1) = %(um 1) = 0.

Sl

(b) We have

f(1)® f(1)=cos asma|11> + ¢ cos acsin a|12) + € cos asin a|21) + €7 sin? «|22),
f(2) ® f(2) =e P sin® a|11) — e cos asin a|12) — e~ cos arsin ar|21) + cos? «[22),

which in the special case 8 € {0, 7} gives
f) @ f(1)+ f(2) @ f(2) = (cos® a + sin® a)|11) + (cos® a + sin® «)[22),

6



and hence

1 1
ﬁ(f(l) ® f(1)+f(2) @ f(2)) = E(lm +122)) = 9.

(c) Let P = |n)(n|, where n € H is a vector of norm one. A general vector n € H of
norm one is of the form

n = e (cos(a)e(l) + e sin(a)e(2))
with «, 8,7 € R, which gives
P =7 f)){e f(1)] = [F){FD)]-

By part (a), it follows that

(P& P)o = (P71 ® PFQ) ~ PFQ)® PI(1)) =0,

V2
po(P © P) = (¢|P ® P|¢) = 0.

(d) As we have seen in part (c), without loss of generality, we can take P = | f(1))(f(1)].
Using the physicist’s shortened notation

1) =fM) @ f(1), [12)=f1)@f(2), etc,

and hence

we then have

P& (1 —=P)=[f)){fM)]®[f(2)(f(2)] = [12){12].
In view of this, we need to choose a and 3 such that if we write ¢ =

terms of the basis |1'1"),[1'2"),|21), |2'2"), the constant in front of [1'2/
observe that

s(111) +122)) in
is nonzero. We

vg|H

e(1):=cosaf(1) — ¥ sinaf(2),
e(2):=e P sin(a) f(1) + cos(a) f(2),
which implies that
111) = cos® a|1'1") — e’ cos asin a|1'2") — €™ cos acsin a|2/1") + /27 sin? |2'2'),
122) = e P sin? a|1'1") + e cos asin a|1'2') + e cos arsin a|2'1") + cos® a|2'2').
In view of part (b), setting § = 0 or § = 7 will not work. We see that choosing
a € {—7n/2,0,7/2, 7} will also not work. Instead, we set &« = 7/4 and 5 = 7/2. In this
case, sina = cosa = 1/v/2 and e? =i, e = —i, s0
[11) = 3|1'1") — i5|1'2") —i[2'1") — $|2'2),
22) = —1|1'1") — i3|1'2') —i1[2'1") + £[2'2),
and ‘
= —Lf(|1’2’> +121%).

(Note the + sign; in view of part (c), 1 never takes the form —= (|1 2y —|2'1")).) Tt then
follows that

po(P @ (1= P)) = (YU2)(1'2|p) = 5 #0



