
Exam Quantum Probability
September 5th, 2017

Hints: You can use all results proved in the lecture notes (without proving them your-
selves), as well as claims one is supposed to prove in exercises from the lecture notes.
You can also use a claim you are supposed to prove in one excercise below to solve an-
other excercise (even if you did not prove the claim). Partial solutions also yield points;
this is in particular true for Exercise 2 (d).

Exercise 1 (Logarithm of an operator) Let H be an inner product space (complex,
finite dimensional). For each operator A ∈ L(H), we define

eA :=
∞∑
n=0

1

n!
An.

(a) Show that if A ∈ L(H) is a normal operator, and 0 is not an eigenvalue of A, then
there exists a normal operator log(A) ∈ L(H) such that

e log(A) = A. (1)

(b) Show that the operator log(A) is in general not uniquely defined by (1).

(c) Show that if A is a positive operator, then log(A) can be taken hermitian, and with
this extra condition it is unique.

Exercise 2 (Repeated measurements) Let α, β be real numbers with α < β. Fix
n ≥ 1 and for k = 0, 1, . . . , n, define

αk := n−k
n
α + k

n
β.

We perform, in sequence, n + 1 ideal measurements on the same photon, measuring
its polarization along the directions α0, α1, . . . , αn. The polarization of the photon is
described by a Q-algebra of the form L(H), where H has dimension 2 and orthonormal
basis {e(1), e(2)}. For α ∈ R, define η(α), ξ(α) ∈ H by

η(α) := cos(α)e(1) + sin(α)e(2),

ξ(α) :=− sin(α)e(1) + cos(α)e(2) = η(α + π/2).

Let Pα := |η(α)〉〈η(α)| and Qα := |ξ(α)〉〈ξ(α)| denote the projections on the orthog-
onal subspaces spanned by η(α) and ξ(α), respectively. For k = 0, . . . , n we perform,
in sequence, the ideal measurements corresponding to the partitions of the identity
{Pαk

, Qαk
}.

(a) Conditional on the event that the first measurement yields the outcome Pα0 , give
an expression for the probability that the following n measurements yield the outcomes
Pα1 , . . . , Pαn .
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(b) Calculate the limit of the expression in (a) as n→∞, for fixed α and β.

(c) For k = 0, . . . , n, let Tk : L(H)→ L(H) denote the map

Tk(A) := Pαk
APαk

+Qαk
AQαk

,

and define T ′k : L(H)′ → L(H)′ by (T ′kρ)(A) := ρ(Tk(A)). Show that T ′k is an operation,
i.e., cite the right proposition from the lecture notes and check that its conditions are
satisfied.

(d) Show that
lim
n→∞

Tn ◦ · · · ◦ T0 = T,

where T ′ : L(H)′ → L(H)′ is the operation defined by

T (A) := |η(β)〉〈η(α)|A|η(α)〉〈η(β)|+ |ξ(β)〉〈ξ(α)|A|ξ(α)〉〈ξ(β)|.

Exercise 3 (Correlation versus anticorrelation) Let H be a two-dimensional inner
product space with orthonormal basis {e(1), e(2)}. Let α, β ∈ R and let {f(1), f(2)} be
the orthonormal basis of H given by

f(1) := cos(α)e(1) + eiβ sin(α)e(2),

f(2) :=−e−iβ sin(α)e(1) + cos(α)e(2).

Consider the vectors ψ, φ ∈ H ⊗H defined as

ψ :=
1√
2

(
e(1)⊗ e(1) + e(2)⊗ e(2)

)
,

φ :=
1√
2

(
e(1)⊗ e(2)− e(2)⊗ e(1)

)
.

While answering the following questions, it may be convenient to use the physicist’s
shortened notation

|11〉 = e(1)⊗ e(1), |12〉 = e(1)⊗ e(2), etc.

(a) Show that φ looks the same with respect to the orthonormal basis {f(1), f(2)}, i.e.,

φ =
1√
2

(
f(1)⊗ f(2)− f(2)⊗ f(1)

)
.

(b) Show that if β = 0 or β = π, then ψ also looks the same, i.e.,

ψ =
1√
2

(
f(1)⊗ f(1) + f(2)⊗ f(2)

)
.

(c) Let P ∈ L(H) be a projection on a one-dimensional subspace and let ρφ be the pure
state associated with φ. Show that

ρφ(P ⊗ P ) = 0.

(d) Show that there exists a projection P ∈ L(H) on a one-dimensional subspace such
that

ρψ
(
P ⊗ (1− P )

)
6= 0.
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Solutions

Ex 1
(a) If A is normal, then there exists an orthonormal basis {e(1), . . . , e(n)} of H such
that

A =
n∑
k=1

λk|e(k)〉〈e(k)|,

where λ1, . . . , λn are the eigenvalues of A (not necessarily all different). Exercise 1.2.13
of the lecture notes tells us that

eA =
n∑
k=1

eλk |e(k)〉〈e(k)|.

We recall that if z = reiφ is a nonzero complex number written in radial form, with
r, φ ∈ R and −π < φ ≤ π, then log(z) := log(r) + iφ has the property that elog(z) = z.
However, log(z) (defined in this way) is not the only complex number with this property,
since

e log(z) + i2πm = z

for each m ∈ Z. Using these observations, we see that if we define log(A) using the
functional calculus for normal operators, i.e., if we set

log(A) :=
n∑
k=1

log(λk)|e(k)〉〈e(k)|,

then elog(A) = A.

(b) By our earlier remarks, for any m1, . . .mn ∈ Z, the operator

B :=
n∑
k=1

(
log(λk) + i2πmk

)
|e(k)〉〈e(k)|

has the property that eB = A.

(c) A normal operator is hermitian if and only if its eigenvalues are real (see Exer-
cise 1.2.8 in the lecture notes). Since log(r) ∈ R for all r ∈ R+, it follows that log(A)
(the way we have defined it) is hermitian if A is positive. Since for r ∈ R+, there is only
one real number s such that es = r, namely s = log r, it follows that log(A) is the only
hermitian matrix such that elog(A) = A.

Ex 2
(a) Conditional on the event that the first measurement yields the outcome Pα0 = Pα,
our system is described by the pure state ρη(α). This is true regardless of the initial state
ρ and follows from point 5◦ of our interpretation of quantum probability spaces, which
says that after we observe Pα, the new state is

ρ′(A) =
ρ
(
|η(α)〉〈η(α)|A|η(α)〉〈η(α)|

)
ρ
(
|η(α)〉〈η(α)|

= 〈η(α)|A|η(α)〉 = ρη(α)(A).
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Similarly, after the (k − 1)-th measurement has yielded the outcome Pαk−1
, we have to

describe our system with the pure state ρη(αk−1). In the state ρη(αk−1), the probability
that an ideal measurement yields the outcome Pαk

is

ρη(αk−1)(Pαk
) = 〈η(αk−1)|η(αk)〉〈η(αk)|η(αk−1)〉 = cos2(αk − αk−1) = cos2

(β − α
n

)
.

(See Exercise 2.3.2 in the lecture notes.) In view of this, the probability that n consec-
utive ideal measurements yield the outcomes Pα1 , . . . , Pαn , given that the initial state is
ρη(α0), is given by

n∏
k=1

cos2
(
β−α
n

)
=
(

cos
(
β−α
n

))2n
.

(b) Since
cos
(
β−α
n

)
= 1− 1

2
(β − α)2n−2 +O(n−4)

as n→∞, we see that (
cos
(
β−α
n

))2n
−→
n→∞

1.

More formally, there exists a constant K <∞ such that

log
(

cos
(
β−α
n

))
≤ Kn−2

for all n ≥ 1, and hence

2n log
(

cos
(
β−α
n

))
−→
n→∞

0.

(c) By Proposition 8.4.1, T ′k : L(H)′ → L(H)′ is an operation if and only if Tk is of the
form

Tk(A) =
n∑

m=1

V (m)AV (m)∗

where V (1), . . . , V (n) ∈ L(H) satisfy
∑n

m=1 V (m)V (m)∗ = 1. In our case, V (1) =
V (1)∗ = Pαk

and V (2) = V (2)∗ = Qαk
, and

n∑
m=1

V (m)V (m)∗ = P 2
αk

+Q2
αk

= Pαk
+Qαk

= 1

since {Pα, Qα} is a partition of the identity.

(d) Let us write Vk(1) := Pαk
and Vk(2) := Qαk

. Then

Tn ◦ · · · ◦ T0(A) =
2∑

m0=1

· · ·
2∑

mn=1

Vn(mn) · · ·V0(m0)AV0(m0) · · ·Vn(mn).
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This is a sum with 2n+1 terms. We claim that in the limit n → ∞, only two terms
contribute. These are the terms with either m0 = m1 = · · · = mn = 1 or m0 = m1 =
· · · = mn = 2. Indeed, for m0 = m1 = · · · = mn = 1, we obtain

V0(1) · · ·Vn(1) = |η(α0)〉〈η(α0)|η(α1)〉〈η(α1) · · · |η(αn)〉〈η(αn)|

=
( n∏
k=1

〈η(αk−1)|η(αk)〉
)
|η(α0)〉〈η(αn)|

=
(

cos
(
β−α
n

))n
|η(α)〉〈η(β)|

By what we have already proved under (b), in the limit n → ∞, this converges to
|η(β)〉〈η(α)|. Likewise

V0(2) · · ·Vn(2) −→
n→∞

|ξ(α)〉〈ξ(β)|.

To complete the proof, we must show that the combined effect of all other terms tends
to zero. Let {1, 2}n+1 denote the space of all sequences ~m = (m0, . . . ,mn) of 1’s and 2’s
and write

Un(~m) := Vn(mn) · · ·V0(m0).

Then
Tn ◦ · · · ◦ T0(A) =

∑
~m∈{1,2}n+1

Un(~m)AUn(~m)∗.

Let 1, 2 ∈ {1, 2}n+1 denote the sequences that consist only of 1’s resp. 2’s. We have just
seen that

Un(1) −→
n→∞

W (1) and Un(2) −→
n→∞

W (2),

where
W (1) := |η(β)〉〈η(α)| and W (2) := |ξ(β)〉〈ξ(α)|

It follows that for any A ∈ L(H)

Un(1)AUn(1)∗ + Un(2)AUn(2)∗ −→
n→∞

W (1)AW (1)∗ +W (2)AW (2)∗ = T (A).

To complete the proof, we must show that∑
~m 6=1,2

Un(~m)AUn(~m)∗ −→
n→∞

0. (2)

We start by observing that (as claimed in the exercise) T ′ is an operation, i.e.,

2∑
m=1

W (m)W (m)∗ = 1.

Indeed

2∑
m=1

W (m)W (m)∗= |η(β)〉〈η(α)|η(α)〉〈η(β)|+ |ξ(β)〉〈ξ(α)|ξ(α)〉〈ξ(β)|

= |η(β)〉〈η(β)|+ |ξ(β)〉〈ξ(β)| = 1.

5



Likewise, (Tn ◦ · · · ◦ T0)′ is an operation, so∑
~m∈{1,2}n+1

Un(~m)Un(~m)∗ = 1.

By what we have already proved∑
~m 6=1,2

Un(~m)Un(~m)∗ = 1− Un(1)Un(1)∗ − Un(2)Un(2)∗

−→
n→∞

1−W (1)W (1)∗ −W (2)W (2)∗ = 0.

This proves (2) in the special case that A = 1. We next observe that if P is a projection,
then

U(~m)U(~m)∗ − U(~m)PU(~m)∗ = U(~m)(1− P )U(~m)∗ =
(
U(~m)(1− P )

)(
U(~m)(1− P )

)∗
is a positive operator by Exercise 1.2.16, so using the partial order on the space of
operators introduced on page 14 of the lecture notes, we can estimate

0 ≤
∑
~m 6=1,2

Un(~m)PUn(~m)∗ ≤
∑
~m 6=1,2

Un(~m)Un(~m)∗ −→
n→∞

0.

This proves (2) in the special case that A is a projection. By Exercise 4.1.8 of the lecture
notes, the projections span the space of all operators, so we conclude that (2) holds in
general.

Ex 3
(a) Using the physicist’s shortened notation, we have

f(1)⊗ f(2) =−e−iβ cosα sinα|11〉+ cos2 α|12〉 − sin2 α|21〉+ eiβ cosα sinα|22〉,
f(2)⊗ f(1) =−e−iβ cosα sinα|11〉 − sin2 α|12〉+ cos2 α|21〉+ eiβ cosα sinα|22〉,

which gives

f(1)⊗ f(2)− f(2)⊗ f(1) = (cos2 α + sin2 α)|12〉 − (cos2 α + sin2 α)|21〉,

and hence
1√
2

(
f(1)⊗ f(2)− f(2)⊗ f(1)

)
=

1√
2

(
|12〉 − |21〉

)
= φ.

(b) We have

f(1)⊗ f(1) = cos2 α sinα|11〉+ eiβ cosα sinα|12〉+ eiβ cosα sinα|21〉+ ei2β sin2 α|22〉,
f(2)⊗ f(2) = e−i2β sin2 α|11〉 − e−iβ cosα sinα|12〉 − e−iβ cosα sinα|21〉+ cos2 α|22〉,

which in the special case β ∈ {0, π} gives

f(1)⊗ f(1) + f(2)⊗ f(2) = (cos2 α + sin2 α)|11〉+ (cos2 α + sin2 α)|22〉,
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and hence
1√
2

(
f(1)⊗ f(1) + f(2)⊗ f(2)

)
=

1√
2

(
|11〉+ |22〉

)
= ψ.

(c) Let P = |η〉〈η|, where η ∈ H is a vector of norm one. A general vector η ∈ H of
norm one is of the form

η = eiγ
(

cos(α)e(1) + eiβ sin(α)e(2)
)

with α, β, γ ∈ R, which gives

P = |eiγf(1)〉〈eiγf(1)| = |f(1)〉〈f(1)|.
By part (a), it follows that

(P ⊗ P )φ =
1√
2

(
Pf(1)⊗ Pf(2)− Pf(2)⊗ Pf(1)

)
= 0,

and hence
ρφ(P ⊗ P ) = 〈φ|P ⊗ P |φ〉 = 0.

(d) As we have seen in part (c), without loss of generality, we can take P = |f(1)〉〈f(1)|.
Using the physicist’s shortened notation

|1′1′〉 = f(1)⊗ f(1), |1′2′〉 = f(1)⊗ f(2), etc.,

we then have

P ⊗ (1− P ) = |f(1)〉〈f(1)| ⊗ |f(2)〉〈f(2)| = |1′2′〉〈1′2′|.
In view of this, we need to choose α and β such that if we write ψ = 1√

2
(|11〉+ |22〉) in

terms of the basis |1′1′〉, |1′2′〉, |2′1′〉, |2′2′〉, the constant in front of |1′2′〉 is nonzero. We
observe that

e(1) := cosαf(1)− eiβ sinαf(2),

e(2) := e−iβ sin(α)f(1) + cos(α)f(2),

which implies that

|11〉= cos2 α|1′1′〉 − eiβ cosα sinα|1′2′〉 − eiβ cosα sinα|2′1′〉+ ei2β sin2 α|2′2′〉,
|22〉= e−i2β sin2 α|1′1′〉+ e−iβ cosα sinα|1′2′〉+ e−iβ cosα sinα|2′1′〉+ cos2 α|2′2′〉.

In view of part (b), setting β = 0 or β = π will not work. We see that choosing
α ∈ {−π/2, 0, π/2, π} will also not work. Instead, we set α = π/4 and β = π/2. In this
case, sinα = cosα = 1/

√
2 and eiβ = i, e−iβ = −i, so

|11〉= 1
2
|1′1′〉 − i1

2
|1′2′〉 − i1

2
|2′1′〉 − 1

2
|2′2′〉,

|22〉=−1
2
|1′1′〉 − i1

2
|1′2′〉 − i1

2
|2′1′〉+ 1

2
|2′2′〉,

and

ψ = − i√
2

(
|1′2′〉+ |2′1′〉

)
.

(Note the + sign; in view of part (c), ψ never takes the form 1√
2
(|1′2′〉− |2′1′〉).) It then

follows that
ρψ
(
P ⊗ (1− P )

)
= 〈ψ|1′2′〉〈1′2′|ψ〉 = 1

2
6= 0.
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